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ABSTRACT

POISSON NOISE PARAMETER ESTIMATION AND COLOR IMAGE DENOISING

FOR REAL CAMERA HARDWARE

Name: Zhang, Chen

University of Dayton

Advisor: Dr. Keigo Hirakawa

Noise is present in all images captured by real-world image sensors. The distribution of

real camera sensor data is well approximated by Poisson, and the estimation of the light

intensity signal from the Poisson count data plays a prominent role in digital imaging.

Multi-scale Poisson image denoising techniques have processed Haar frame and wavelet

coefficients—being enabled by Skellam distribution analysis. Previous work has solved the

minimum risk shrinkage operator (MRSO) that produces denoised wavelet coefficients with

best achievable Mean Squared Error (MSE) for gray scale image. We extend the idea

of MRSO to denoise color sensor data in color-opponent space, improving the quality of

denoised color images. In addition, the stable representation of color is to use ratios which we

denote by chromaticities. Thus we propose a new Bayes estimator for color image denoising

in log-chromaticiy coordinate. Using full resolution real R/G/B camera images, we verified

that the proposed denoising is more stable than the state-of-art color denoising techniques,

yielding higher image quality result. Furthermore, the noise parameters that characterize

the level of noise in an image or video frame are required for effective denoising. We develop a

novel technique to estimate the noise parameters from natural scenes by exploiting the global

joint statistics across multiple video frames, which can be interpreted as a binomial random

variable that is insensitive to textures and scene contents. We verify experimentally that
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the proposed noise parameter estimation method recovers noise parameters more accurately

than the state-of-art noise parameter estimation techniques.
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CHAPTER I

INTRODUCTION

1.1 A: Introduction of Poisson Parameter Estimation

The goal of this work is to characterize the random noise in a video sensor by estimating

noise parameters. Noise parameters are needed in most of image and video denoising meth-

ods, as the level of noise determines the degree to which the denoising functions smooth

out the spatial features [7–22]. Noise in video sensor measurements are dynamic, as they

are affected by the gain factor and sensor/environment temperatures. See Figure 2.1(b,c)

showing an example of noise parameters drifting for a fixed camera setting. The parame-

ters governing the noise model can be computed by a simple calibration experiment, which

requires that we capture images/video sequences of known calibration targets, like the one

shown on Figure2.1(a). But calibration is not desirable or possible in many cases—example

scenarios include image sensor becoming hot during a long video capture, and the sensor

gain adjusting in real-time to compensate for the dynamic range of the scene. It is also in-

convenient and impractical to require consumers to calibrate their video camera frequently.

Estimating the noise parameter without calibration targets is challenging due to the

complexity of scene content. Existing noise parameter estimation techniques are “patch

based” methods, determining regions of the image that are homogeneous (resembling the

calibration targets). These methods fail when scene content is inhomogeneous (e.g. tex-

tured) or if the noise dominates, making it difficult to determine the homogeneous regions.

With wide-angle lens or when observing scenes far away, homogeneous patches are small

and unusable.
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Video presents an opportunity to develop a noise parameter estimation technique that is

invariant to scene content by exploiting scene redundancy across video frames. Specifically,

joint statistics across multiple frames can be interpreted as a binomial random variable,

and we develop a method to estimate noise parameters based on properties of binomial

statistics. The proposed algorithm draws on global binomial statistics (unlike the patch

based methods which are inherently spatially local) that are insensitive to textures and

scene contents, and achieves performance better than the state-of-the-art noise parameter

estimation techniques.

The remainder of this paper is organized as follows. We briefly review image/video sensor

noise models, and existing techniques for parameterizing them in Section 2.1. In Section

3.1, we develop the theory of binomial statistics that help characterize the joint statistics

between pixels in multiple frames. In Section 3.2 we develop a novel noise parameter

estimation technique based on the binomial statistics we investigated in Section 3.1. In

Section 5.1 we present a dataset we collected to assess the noise parameter estimation

techniques, and verify quantitatively that the proposed method outperform the existing

techniques. Finally, we make concluding remarks in Section 6.1.

1.2 B: Introduction of Color Image Denoising

The goal of this research is to develop color denoising technique for full resolution R/G/B

raw sensor data of color video camera. Pixel sensor is a type of integrating detector,

many evidence have proved that the distribution of sensor measurement is well modeled as

Poisson [7, 23]. The normal approximation to Poisson breaks down especially during low-

photon scenarios because the camera noise is heteroskedastic. Thus, the intense demand

for shrinking sensor size and increasing image resolution encourages the development of

2



Poisson images denoising [11, 12, 15, 17, 19, 24–26]. The Poisson based denoising has been

well-studied for gray-scale image. It can be extended for denoising color image by treating

each color channel as independent gray-scale image. However, as the Figure 2.2 (g) shows,

the undesired under/over-smoothing in different color channel is also heteroskedastic. In

other word, this method is not capable to keep the spatial dependency between different

color channels. Consequently, the denoising result creates artificial color defects that are

spatially inconsistent.

Alternatively, with the notions of luminance component and chrominance component,

denoising in color-opponent space is another way to overcome the spacial consistency. Color-

opponent space is commonly used in many color image processing applications, including

demosaicking, color video broadcasting, printer and projector design, etc. However, as

shown in the Figure 2.2 (a), the disequilibrium of spectral sensitivities of red/green/blue

channels exists in every modern camera. Normally, it is compensated by white balance

which is illustrated by the change from Figure 2.2 (a) to (b). The denoising of chrominance

component recovers the step size relationship between different color channels so that it

maintains the spatial dependency across different channels. However, as shown in Figure

2.2 (f,g), this method fails after white balance because it can hardly maintain the color

ratios, especially when the brightness is low and the spatial contrast is high. Therefore,

denoising in color-opponent space is not ideal unless the luminance is constant or can be

normalized.

Color scientific research shows that hue is invariant to brightness [27]. Therefore, it

is better to model the color noise with the brightness being normalized, which is usually

inconvenient and challenge. CIE xyY color space describes color in two parts: luminance

“Y” and chromaticity “x and y”. Originally, the latter pair is defined in terms of color

3



ratios computed from the values in CIE XYZ space, and used to draw the CIE chromaticity

diagram. Chromaticity is a stable representation of Hue. Therefore, in order to overcome

the issues of spatial consistency and brightness invariance in color denoising of sensor data,

we analyze the color behavior in chromaticity space. Then we develop a minimum mean

square error (MMSE) estimator to estimate the clean chromaticity in log domain from noisy

observations. Using real camera noisy images, we testify that the proposed method provides

color denoising with stable performance than the denoising in each color channel method

and denoising in color-opponent space. Using synthetic noisy images, we experimentally

verify that the proposed method can achieve better PSNR performance than the state-of

the- art color denoising techniques.

We hereby emphasize that this work bypassed the influence of demosaicking to study

the noise behavior of raw sensor data. The acquisition of R/G/B/ full resolution image

will be explained in the future section. The remainder of this paper is organized as fol-

lows. We briefly review the gray scale Poisson image denoising, and propose a practical

color denoising strategy in color-opponent space in Section 2.2. In Section 4.1 we develop

the theory of Centered Log-Ratio Transform (CLRT) and established the basic idea of

log-chromaticity coordinate analysis. In Section 4.2, we establish a framework to analyze

multivariate inhomogeneous Poisson sequence using CLRT and propose the Bayes estimator

in log-chromaticity coordinates. We verify the significance of proposed method in Section

5.2. Finally, we make concluding remarks in Section 6.2.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 A: Background and Related Works of Parameter Estimation

2.1.1 Noise Distribution and Parameterization

The camera noise is heteroskedastic. The variance of noise is dependent on the intensity

of the pixel value we measure. Studies have confirmed that the noise variance increases

linearly with the signal [1,3,7,21,22,28]. This phenomenon is attributed to photon emission

(the randomness associated with photons in light) and photon recapture (the stochastic

process of generating electrical current in photodiode) [7]. The thermal noise in dark current

contribute to additional noise. It is largely signal-independent, and scales with the gain as

well as the temperature of the sensor. Combined, signal strength and noise variance are

typically related by an affine relationship, as shown by Figure 2.1. The photon emission,

photon recapture, and thermal noise are non-repeatable variables in sensor measurement,

and is the focus of our paper.

Other sources of noise include fixed pattern noise stemming from non-uniform char-

acteristics of A/D converters and pixels (whose influence can be minimized by extensive

calibration), quantization noise that affects very low signals (typically overcome by increas-

ing sensor gain), and reset noise caused by the inadequate discharging of capacitors (handled

by subtracting the bias). However, we exclude these from the considerations of this paper

as they are largely repeatable sources of noise (i.e. not dynamic).

There are three noise models for noise in image and video sensors commonly used in

image denoising methods [7–23]. Each of them is consistent with the affine relationship

between the signal strength and noise variance, as evidenced in Figure 2.1. First noise
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(a) (b) (c) (d)

Figure 2.1: Evidence of heteroskedastic noise and noise parameter drift. (a) Observed video
sensor frame X̃ with Colorchecker. (b) The empirical mean/variance of the Colorchecker
patches on Day 1. (c) The empirical mean/variance on Day 2, taken with the same sensor
parameters as the plot in (b). The difference between (b) and (c) indicate the noise param-
eter drift over time. (d) The empirical mean/variance of the recovered Poisson image using
(2.7). The mean and variance are equal. 3.1. The cyan line denotes the estimated relation
computed by the proposed theorem.

model of the observed image/video sensor output X̃ is based on Poisson:

X̃ = αX + β

X|λ, ξ ∼ P(λ+ ξ)

(2.1)

where λ represents the underlying light intensity (the “signal”), and ξ is the offset that

accounts for thermal noise that is independent of the signal. Alternatively, the Gaussian-

Poisson noise model uses additive white Gaussian noise to represent the signal-independent

noise component (often attributed to thermal noise). Consider the following:

X̃ = aΛ +NP +NN , (2.2)

where Λ + NP ∼ P(Λ) represent the signal dependent noise as defined by Poisson distri-

bution, and NN ∼ N (0, b) represent additive white Gaussian noise. Lastly, a “normal”

approximations to (2.2) coupling the noise variance to the pixel intensity yields:

X̃|Λ ∼ N (aΛ,Λ + b)

X̃ = aΛ +
√

Λ + b ·NN0 ,

(2.3)
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where NN0 ∼ N (0, 1). As a side note, a generalized model for signal dependent noise of the

form

X̃|Λ ∼ N (aΛ,Λτ + b) (2.4)

has been proposed also, where the additional parameter τ controls the dependence on the

pixel value [2, 3, 29–33]. However, Figure 2.1 clearly suggests τ = 1 for real image/video

sensor data. The model with τ 6= 1 is more appropriate for describing the noise behavior

in post-demosaicking, post-gamma-correction image data, which is outside of the scope of

this paper. We also exclude the considerations for censoring, which we handle by excluding

the pixels that are close to saturation.

Thus noise parameters (α, β) in (2.8) or (a, b) in (2.2) and (2.3) above must be estimated

in order to characterize the noise behavior in Figure 2.1. Specifically, both sets of parameters

establish the affine relationship between the observed signal E[X̃] and the noise variance

var[X̃] in the following ways:

var[X̃] = αE[X̃]− β

= a−1E[X̃] + b.

(2.5)

The slope and the intercept of the above affine equation establish that the noise parameters

(α, β) and (a, b) are related as follows:

α = a−1, β = −b. (2.6)

By and large, (α, β) and (a, b) are equivalent. For example, the “Generalized Anscombe

transform” technique developed in [9] for the Gaussian-Poisson model in (2.2) is mathemat-

ically identical to applying ordinary Anscombe to the Poisson noise model X̂ = (X̃−β)α−1

in (2.8).
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Most image and video denoising techniques designed to handle heteroskedastic noise re-

quire the noise parameters. These parameters determine the degree to which the denoising

functions smooth out the image/video details. Methods leveraging the normal approxima-

tion treat the noise according to the estimated noise model parameters (â, b̂) to infer the

variance of noise (
√

Λ + b̂) at each pixel. Due to the lack of direct access to the pixel value

Λ, it is often necessary to approximate the actual noise model by a proxy for Λ, such as

observed (Λ ≈ X̃/â) or denoised pixel values. Alternatively, Poisson-based denoising tech-

niques are designed to estimate clean image λ from a Poisson image X. In this scenario,

we reconstruct X using estimated parameters (α̂, β̂), as follows [34]:

X̂ =
X̃ − β̂
α̂

. (2.7)

The recovered Poisson image X̂ is subsequently used as an input to the denoising function.

The advantage to this type of denoising is that no ad-hoc preprocessing step is required to

infer the noise variance at each pixel because the notion of heteroskedastic noise is already

captured by the Poisson likelihood function precisely [15,19,20,26,35]. We draw conclusion

that the noise parameters (α, β) or (a, b) must be known a priori or estimated accurately

in order to carry out the denoising task effectively.

2.1.2 Noise Parameter Estimation Techniques

The conventional method to determine (α, β) or (a, b) is to calibrate the sensor data using

known signal targets, such as Gretag Macbeth Colorchecker shown in Figure 2.1(a) [36].

Taking empirical mean and variance of homogeneous patches as proxies for E[X̃] and var[X̃],

one can use regression to find the slope and intercept in (2.5), as shown in Figure 2.1(b).

Besides the fact that the calibration is impractical for consumer applications, however, the

thermal noise level is affected by the environment temperature as well as the heat that the
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sensor itself generates over extended usage and the gain that dynamically changes to adopt

to scene. See Figure 2.1(b,c) for an evidence of noise parameter drift over time—under the

same exact camera settings, the calibrated noise parameters differed over two separate days.

Thus noise parameter estimation from natural scenes to adjust denoising for dynamic

noise conditions is an attractive alternative to re-calibration after some period of usage.

Most existing noise parameter estimation methods rely on homogeneous patch detection [1–

3,22,37,38]. The empirical mean and variance of detected homogeneous patches can be used

as proxies for E[X̃] and var[X̃], similar to the calibration steps using the Gretag Macbeth

Colorchecker described above. Conventional hypothesis tests for identifying homogeneous

regions of sensor data in the presence of noise (such as Student’s-t and Welch) are designed

to exclude (a group of) samples n ∈ `2 with large differences X̃n− X̃n+1 (where n and n+1

denote adjacent pixel location). However, thresholding noisy pixels is challenging for several

reasons—large difference magnitude may be due to noise rather than differences in pixel

intensities; and by determining the membership of a patch based on noisy pixel differences,

we bias empirical variance to be smaller than the actual var[X̃]. Consequently, methods

in [1,3,22,37,38] seek robust alternatives to determining homogeneous patches. In addition,

method in [2] use lower envelope fitting to infer noise parameters to safeguard against

empirical variance of a segmented region that is not completely homogeneous. However,

patch-based methods are sensitive to scene contents, and fail in presence of textured regions.

Alternatively, noise parameter estimation method in [23] used a combination of variance

stabilization transfer (VST) and “blank images” (captured with the mechanical shutter

closed) to increase robustness to scene contents. While it eliminated the need for detecting

homogeneous patches, it is not compatible with cameras with no mechanical shutter, such

as video cameras and smartphone cameras.
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Recent trends in DSLR and smartphone cameras leverage multi-shot imaging, exploiting

temporal redundancy across images taken in a burst or using video frames. Indeed, the noise

parameter estimation technique developed in this paper overcome the sensitivities to the

scene contents by leveraging the joint statistics across multiple frames that are independent

of the scene contents, eliminating the need to detect homogeneous patches. However, this

comes at the cost of increased sensitivities to camera and scene motion. As described below,

we develop robust techniques to overcome these issues.

2.2 B: Background and Related Works of Color Image Denoising

2.2.1 Review: Noise Model and Denoising Technique for Gray-scale Image

Poisson distribution accurately models noise caused by photon arrival process in low light

imaging (also known as “shot” noise) [23, 28]. Let λ = [λ(1), . . . , λ(N)]ᵀ ∈ RN denote the

latent light intensities, the independent Poisson counts sequence F = [F (1), . . . , F (N)]ᵀ ∈

RN can be described as:

F (n)|λ(n) ∼ P(λ(n)),

P r[F (n)|λ(n)] =
e−λ(n)λ(n)F (n)

F (n)!
,

(2.8)

where n indicates the pixel location. For two independent variables F (n)|λ(n) ∼ P(λ(n))

and F (m)|λ(m) ∼ P(λ(m)), n 6= m, there are two key relations with respect to (2.8).

Firstly, the distribution of variable summation is still Poisson:

F (n) + F (m)|λ ∼ P(λ(n) + λ(m)). (2.9)

Secondly, the distribution of variable difference is called Skellam:

F (n)− F (m)|λ ∼ Skellam(λ(n) + λ(m), λ(n)− λ(m)),

P r[F (n)− F (m)|λ] = e−(λ(n)+λ(m))(
λ(n)

λ(m)
)
F (n)−F (m)

2

× IF (n)−F (m)

(√
(λ(n) + λ(m))2 − (λ(n)− λ(m))2

)
,

(2.10)
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 2.2: Color denoising comparison of real camera sensor data. The plots represent
the pixel values of a line crossing black/white/grey patches. Scene was captured using
Sony α7RIII with pixel-shifting mode to capture the full resolution R/G/B data. Plots
in (a,b,c,d) correspond to the long-exposure image, which we use as a proxy of cleaner
reference. Plots in (e,f,g) illustrate image denoising process in each color channel. Plots in
(h,i,j,k) illustrate image denoising process in color-opponent space. Plots (e,l,m,n) illustrate
the proposed image denoising process in log-chromaticity space. More specifically, for the
plots in (a,e,f,j,m), the red/green/blue lines represent the R/G/B values of sensor data,
respectively. For the plots in (b,g,k,n), the red/green/blue lines represent the R/G/B values
after white balance. For the plots in (c,h,i), the purple lines denote the chrominance values
R-G of sensor data. Similarly, the gold lines denote the G-B values. And the emerald-
green lines denote the R-B values. For the plots in (d,l), the magenta lines represent the
log-chromaticity value corresponding to log R

R+G+B . The darker-green lines correspond to

log G
R+G+B . And the cyan lines correspond to log B

R+G+B . From (b), we know the latent
pixel intensities are in black/white/grey. Any pixels with obvious imbalance in R/G/B after
white balance will create artificial color artifacts. Clearly, the performance of (n) > (k) >
(g). The (i,j,k) and (l,m,n) share the same denoised luminance component, which does not
show in (c,d,h,i,l). Because luminance represents the brightness only, which is separated
from hue components. In this figure, we mainly focus on the comparison of color processing.
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where IF (n)−F (m)(·) is the modified Bessel function of the first kind.

Poisson image denoising is often performed in transform domains such as Haar wavelet.

Because the denoising gain benefits from the sparse property. Define F = t0, let F 7→

(tJ ,XJ , · · · ,X1) denotes a J-level Haar wavelet transformation of noisy image. With

this transformation, the noisy image F is decomposed into multi-level wavelet coefficients

Xj = [· · · , Xj(n), · · · ]ᵀ and scaler coefficients tj = [· · · , tj(n), · · · ]ᵀ, ∀j ∈ [0, 1, . . . , J ],

which are comprised of:{
scaling coefficients: tj(n) = tj−1(2n) + tj−1(2n+ 1)

wavelet coefficient: Xj(n) = tj−1(2n)− tj−1(2n+ 1).
(2.11)

Similarly, let λ 7→ (µJ ,κJ , · · · ,κ1) denotes the Haar wavelet transfer of clean intensity

λ (which cannot be observed directly). Combine (2.9), (2.10), and (2.11), naturally, the

following relations hold:

tj(n)|µj(n) ∼ P(µj(n)), (2.12)

Xj(n)|µj(n), κj(n) ∼ Skellam(µj(n), κj(n)). (2.13)

In turn, the typical wavelet based denoising task is addressed by [4]: 1) let µ̂j = tj , and

reconstruct denoised wavelet coefficient κ̂j ; 2) proceed the inverse Haar wavelet transform

to yield denoising result λ̂. For convenient, the level index j’s are omitted in the following

discussion. Instead we simply define the clean and noisy scaling coefficients µ = λ(2n) +

λ(2n + 1) and t = F (2n) + F (2n + 1), and the clean and noisy wavelet coefficients κ =

λ(2n)−λ(2n+ 1) and X = F (2n)−F (2n+ 1), respectively. Define a function γ[κ̂] predicts

the `2 error of a given wavelet estimator κ̂ such that:

γ[κ̂] = E ‖κ− κ̂‖2 (2.14)
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In [4], Wu proposed a wavelet shrinkage operator produces denoised wavelet coefficients

with minimum attainable `2 error.

Theorem 1. Let F |λ as defined in (2.8), and X, t, κ, and µ as defined in (2.12) and

(2.13). Define minimum risk wavelet shrinakge operator(MRSO) κMR(t,X) ∈ `2(R) → R

as:

κ̂MR(t,X) =

ψ̂UMR(X) if E[t] ≈ 1
N

∑
n
t(n) > threshold

ψ̂BMR(t,X),
(2.15)

where

ψ̂BMR(X, t) = X
Pr(X + 1, t+ 1) + Pr(X − 1, t+ 1)

2Pr(X, t)

− (t+ 2)
Pr(X + 1, t+ 1)− Pr(X − 1, t+ 1)

2Pr(X, t)
,

(2.16)

and

ψ̂UMR(X) =
X + 1 + E[t|X + 1]

2

Pr[X + 1]

Pr[X]

+
X − 1− E[t|X − 1]

2

Pr[X − 1]

Pr[X]
.

(2.17)

Let κ̂MR(X, t) = [· · · , κ̂MR(n), · · · ]ᵀ, ∀n ∈ [1, N/2], this MRSO function minimizes the

risk function in (2.14), that is:

∀κ̂ ∈ R2, γ[κ̂MR] ≤ γ[κ̂] (2.18)

At last, the reconstructed image will be obtained by inverse wavelet transform λ̂MR(F ) ←[

(t̂J , κ̂JMR(XJ , tJ), · · · , κ̂1
MR(X1, t1)).

The works in [4] proved that the MRSO denoising λ̂MR(F ) yield visually optimal and

quantitatively higher PSNR result for gray-scale image.

2.2.2 Image Denoising of Each Color Channel.

Let k ∈ {R,G,B} be the color channel index. Denote by � = [λᵀ
R,λ

ᵀ
G ,λ

ᵀ
B]ᵀ ∈ R3N a

latent multivariate sequence of interest, where λk = [λk(1), . . . , λk(N)]ᵀ ∈ RN is a vectored
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value referred to as the image intensity of k-th color channel. In multivariate inhomogeneous

Poisson sequence problems, we assume that the true intensities of color image is observed via

heteroschedastically noisy measurement F. Specifically, denote by F = [F ᵀ
R,F

ᵀ
G ,F

ᵀ
B ]ᵀ ∈ R3N

the noisy measurements of � is an independent Poisson random sequence such as:

Fk(n)|λk(n) ∼P(λk(n)). (2.19)

It is straightforward to use MRSO function [4] for color image denoising as follows: �̂(F) =

[λ̂ᵀ
MR(FR), λ̂ᵀ

MR(FG), λ̂ᵀ
MR(FB)]ᵀ ∈ R3N . Figure 2.2(e,f,g) illustrates the process of de-

noising each color channel independently. As we introduced in previous section, the color

artifacts in (g) is spatially inconsistent.

2.2.3 Image Denoising in Color-opponent Space.

Alternatively, color-opponent space description transfers R/G/B color image into the

luminance component by the linear summation of all color channels, and the chrominance

component by the linear subtraction of different channels. Usually, the studies based on

the additive white Gaussian noise (AWGN) or based on the Gaussian approximation to

Poisson conveniently leverage the gray-scale study to luminance and chrominance denoising

because the variance of added white noise can linearly pass through the color-opponent

transfer, which is no longer hold for Poisson image. Next, we propose a practical Poisson

color denoising strategy in color-opponent space.

Proposition 1. Let F|� as defined in (2.19). Denote by λL ∈ RN and FL ∈ RN the clean

and noisy luminance that are computed as:

λL = λR + λG + λB, (2.20)

FL = FR + FG + FB. (2.21)
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As illustrated in Figure 2.2(c) and (h), denote by Cj and Dj , ∀j ∈ [1, 2, 3] the j-th clean

and noisy chrominance element, the computations of chrominace are described as Cj =

λk1 − λk2 ∈ RN and Dj = Fk1 − Fk2 ∈ RN , respectively. Specifically, we define the

color-opponent space transfer of noisy color image as example:
F ᵀ
L
Dᵀ

1

Dᵀ
2

Dᵀ
3

 =


1 1 1
1 −1 0
0 1 −1
1 0 −1

×
 F ᵀ

R
F ᵀ
G
F ᵀ
B

 . (2.22)

With the help of the properties described in (2.8), (2.9), and (2.10), the distribution of noisy

image in color-opponent space follows:

FL(n)|� ∼ P(λR(n) + λG(n) + λB(n)), (2.23)

D1(n)|�,C1 ∼ Skellam(λR(n) + λG(n), C1(n)),

D2(n)|�,C2 ∼ Skellam(λR(n) + λB(n), C2(n)),

D3(n)|�,C3 ∼ Skellam(λG(n) + λB(n), C3(n)),

(2.24)

∀n ∈ [1, N ]. Naturally, the reconstruction of clean luminance λ̂L applies the Poisson im-

age denoising. And the reconstruction of clean chrominance Ĉj applies Skellam operator.

Finally, the inverse color transfer yields the denoised color image such that:

 λ̂Rλ̂G
λ̂B

 =
1

3

 1 1 0 1
1 −1 1 0
1 0 −1 −1

×

λ̂L
Ĉ1

Ĉ2

Ĉ3

 . (2.25)

Here we use MRSO as example to illustrate the Poisson-Skellam based denoising in

color-opponent space. As we discussed in Section 2.2.1, the denoised luminance λ̂MR(FL)

with minimum Skellam risk is calculated as:

λ̂MR(FL)←[ (t̂JL, κ̂
J
MR(XJ

L, t
J
L), · · · , κ̂1

MR(X1
L, t

1
L)). (2.26)
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Meanwhile, as demonstrated in Figure 2.2(i), the MRSO denoised chrominances are com-

puted as:

Ĉ1 = κ̂MR(D1,FR + FG),

Ĉ2 = κ̂MR(D2,FG + FB),

Ĉ3 = κ̂MR(D3,FR + FB).

(2.27)

Moreover, Figure 2.2(j) demonstrates the denoised R/G/B value after the inverse color

transfer (2.25). And Figure 2.2(k) is the denoised image after white balance. From (h) to (j),

the denoising function tries to keep the gap between different chrominances as constant so

that the (k) can overcome the spatial inconsistency issue existing in (g). However, compare

with (b) and (c), the color-opponent transfer is not capable to normalize the changes of the

latent ratio in the “texture” area. Therefore, it may produce false color after white-balance.

More examples will be discussed in Section 5.2.3.

From now on, we will gradually introduce the proposed color denoising in log-chromaticity

coordinates, and verify that the ratio based color processing is more spatially invariant.
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CHAPTER III

A:PROPOSED THEOREMS OF PARAMETER ESTIMATION

3.1 Theoretical Results: Binomial Statistics

In this section, we develop the requisite theory of binomial statistics, which describes the

joint statistics across multiple frames. We adopt the notational conventions of the Poisson

noise parameterization in (2.8). But for notational simplicity, we develop the theory below

using λ only, without the loss of mathematical generality when extending to λ + ξ as the

affine relationship in (2.5) remains intact the same way. In the subsequent discussion, we

let X̃n and Ỹn denote nth pixel in two adjacent frames in a video sequence. We denote the

corresponding latent pixel intensity values by λn and µn, respectively. The subscript n is

omitted whenever it is understood from the context.

Lemma 1. Let X|λ ∼ P(λ) and Y |µ ∼ P(µ) be two independent random variables. Define

Z := X + Y and θ := λ
λ+µ ∈ [0, 1]. Then Z|λ, µ and X|λ, µ, Z are Poisson and binomial

Figure 3.1: Block diagram of the proposed Poisson noise parameter estimation method.
The binomial statistics in (3.27) are computed in the oriange block. The main steps for
estimating the noise parameters (lower-bound linear regression in (3.31) and parameter
estimation in (3.26)) appear in green blocks. The blue blocks carry out the pixel registration
and selection steps outlined in Section 3.2.3 to ensure that the proposed method is robust
to foreground and background motion.
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random variables of the form

Z|λ, µ ∼ P(λ+ µ) (3.1)

X|λ, µ, Z ∼ B (Z, θ) . (3.2)

Proof. Recall that the characteristic function ΦX(ω) := E[ejωX |λ] of Poisson random vari-

able X|λ is the discrete time Fourier transform of the conditional probability P [X = k|λ]:

ΦX(ω) =
∑
k

ejωkP [X = k|λ] = eλ(ejω−1). (3.3)

By the well-known property of characteristic functions, the following relation holds for a

sum of independent random variables X|λ and Y |µ:

ΦZ(ω) = ΦX(ω)ΦY (ω) = e(λ+µ)(ejω−1). (3.4)

Inverting Fourier transform of ΦZ(ω) proves (3.1).

By definition of conditional probability,

P [X = k|λ, µ, Z = z] =
P [X = k, Z = z|λ, µ]

P [Z = z|λ, µ]
. (3.5)

Substituting (3.1),

P [X = k|λ, µ, Z = z] =
P [X = k, Y = z − k|λ, µ]

P [Z = z|λ, µ]

=

(
e−λ−µλkµz−k

k!(z − k)!

)(
e−λ−µ(λ+ µ)z

z!

)−1

=
z!

k!(z − k)!

(
λ

λ+ µ

)k ( µ

λ+ µ

)z−k
.

(3.6)

Substituting θ := λ
λ+µ proves (3.2).

If X and Y are noisy measurements of the true pixel intensity values λ and µ, then

θ = λ
λ+µ is a ratio describing the relative intensities of λ and µ. That is, θ = 1

2 means λ and
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µ have equal pixel intensity; θ > 1
2 implies λ > µ and θ < 1

2 implies λ < µ. Interpreting θ

as a random variable,

E[θ|Z] =
1

2
(3.7)

is a reasonable assumption, because the sum Z = X + Y does not provide any meaningful

information about whether λ or µ is greater on average.

Theorem 2. The variance of X|Z is

σ2
X|Z =

Z

4
+ σ2

θ|Z(Z2 − Z). (3.8)

Proof. By the law of total variance, the following relation holds:

σ2
X|Z = E

[
Var(X|Z, θ)

∣∣∣Z]+ Var
(
E[X|Z, θ]

∣∣∣Z). (3.9)

The mean and the variance of the Binomial random variable X|λ, µ, Z are:

E[X|Z, θ] =Zθ (3.10)

Var(X|Z, θ) =Zθ(1− θ). (3.11)

Evaluating the conditional variance of (3.10), we have

Var
(
E[X|Z, θ]

∣∣∣Z) = Var
(
Zθ
∣∣∣Z) = Z2σ2

θ|Z . (3.12)

Similarly, we assess the conditional mean of (3.11):

E
[

Var(X|Z, θ)
∣∣∣Z] =ZE

[
θ(1− θ)

∣∣∣Z]
=Z(E[θ|Z]− E[θ2|Z]).

(3.13)

Rewriting E[θ2|Z] as σ2
θ|Z + E[θ|Z]2 and substituting (3.7),

E
[

Var(X|Z, θ)
∣∣∣Z] =

Z

4
− Zσ2

θ|Z . (3.14)

Combining (3.12) and (3.14) proves the Theorem.
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Corollary 1. Define new random variables X̃, Ỹ , and Z̃ by the relation

X̃ =αX + β, Ỹ = αY + β (3.15)

Z̃ =X̃ + Ỹ = αZ + 2β. (3.16)

Then the variance of X̃|Z̃ is

σ2
X̃|Z̃ =

α

4
Z̃ − αβ

2
+ σ2

θ|Z((Z̃ − 2β)2 − α(Z̃ − 2β)). (3.17)

Proof. By (3.15) and (3.16),

P [X̃ = k̃|Z̃ = z̃] =P [αX + β = k̃|Z̃ = z̃]

=P [X = k|Z = z],

(3.18)

where

k = α−1(k̃ − β), z = α−1(z̃ − 2β). (3.19)

Thus

Var(X̃|Z̃) = Var(αX + β|Z) = α2σ2
X|Z . (3.20)

Substituting (3.8) and (3.16) into (3.20) proves the Corollary.

Corollary 2. Define X̃, Ỹ , and Z̃ as before. Then

E[X̃|Z̃] = Z̃/2 (3.21)

Proof. Recall (3.7). Then

E[X̃|Z̃] = E[αX + β|Z̃] = E[αθZ + β|Z̃]. (3.22)

By the assumption (3.7) and the invertibility of (3.16), we have

E[X̃|Z̃] = E[X̃|Z] = αZ/2 + β. (3.23)

Substituting (3.16) proves (3.21).
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Figure 3.2: Demonstration of the proposed noise parameter estimation. The blue points
denote the empirical binomial statistics σ̂2

X̃|Z̃n=z̃
in (3.27). The linear regression in (3.28)

and lower envelope fit in (3.29) are shown by green and red lines, respectively. The cyan
line denotes the proposed robust lower-bound function f(z̃) = sz̃+t computed using (3.31),
based on which we recover the noise parameters using (3.26). For reference, we included the
magenta line corresponding to the noise parameters from calibration. Qualitatively, we may
assess the accuracy of the parameter estimation by observing the closeness of green/red/cyan
lines to the magenta line.

3.2 Application: Noise Parameter Estimation

Let X̃n|λn and Ỹn|µn correspond to the noisy video frames of the latent pixel intensities

λn and µn at pixel n, respectively. Furthermore, we continue to assume that the underlying

model for X̃n|λn and Ỹn|µn is an affine transformation as described in (3.15). Our goal in

Poisson noise parameter estimation is to determine the values of α and β from the properties

of X|λ, µ, Z where Z = X+Y . The schematic for the proposed algorithm is shown in Figure

3.1.

21



3.2.1 Motivation

Define an affine line f : R→ R of the form:

f(z̃) :=
α

4
z̃ − αβ

2
. (3.24)

Owing to the fact that σ2
θ|Z ≥ 0 and Z2 − Z ≥ 0 (recall Z is a positive integer), it follows

from Corollary (1) that σ2
X̃|Z̃=z̃

is lower-bounded by f(z̃):

σ2
X̃|Z̃=z̃

≥ f(z̃). (3.25)

Figure 3.2 confirms that the empirical scatter plot of σ2
X̃|Z̃=z̃

against Z̃ = z̃ is lower-bounded

by the function f : R→ R in (3.25). The key observation is that the noise parameters α and

β can be determined unambiguously from the slope (s) and intercept (t) of this lower-bound

function f(z̃) = sz̃ + t:

α = 4s, β = − t

2s
. (3.26)

Hence in the remainder of this paper, we focus on developing a novel technique for recovering

this lower-bound function f : R → R in (3.25). As explained in Section 2.1, the idea to

exploit lower-bound function has been developed for patch-based method in [2]. However,

the binomial statistics in Corollary 1 and the lower-bound in (3.25) are global (i.e. not

patch-based), making the problem fundamentally different.

3.2.2 Lower-Bound Function

Given sensor observations X̃n and Ỹn, we may compute Z̃n = X̃n + Ỹn, and obtain the

empirical conditional variance σ̂2
X̃|Z̃

for each value of Z̃ = z̃ by the following formula:

σ̂2
X̃|Z̃=z̃

=
1

#{n ∈ Z2 : Z̃n = z̃}

∑
n∈Z2:Z̃n=z̃

(
X̃n −

z̃

2

)2

. (3.27)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Illustration of how proposed method gains robustness to foreground and back-
ground motions. (a,b) Two adjacent frames of a video sequence (which we refer to as “frame
1” and “frame 2”, respectively). (c,d) Difference of frames 1 and 2 (D̃n = X̃n − Ỹn) before
and after frame registration, respectively. Frame registration largely eliminates the back-
ground motion caused by camera motion, but the foreground motion remains. (e) Pearson
product-moment correlation coefficient of sgn(D̃) computed on (d). It determines the re-
gions of image affected by foreground motion without relying on the magnitude of D̃. (f)
Empirical binomial statistics with no motion compensation (as shown in (c)). (g) Empir-
ical binomial statistics after frame registration (as shown in (d)). (h) Empirical binomial
statistics after frame registration and thresholding (as shown in (e)). The improvement of
addressing foreground and background motion is evidenced by comparing the tightening of
clusters in (f), (g), and (h). See text for explanation.
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Note that we do not use the “corrected” sample variance (whose denominator in (3.27) would

become #{n ∈ Z2 : Z̃n = z̃}−1) because of the fact that the mean value E[X̃|Z̃] is computed

from Corollary 2 and not from the sample mean. In high resolution sensors, σ̂2
X̃|Z̃=z̃

is a

stable function of z̃ because of the ensemble averaging in (3.27). Note also that (3.27) is a

global statistics, not a local statistics like the patch-based methods in [1–3,22,37,38].

Let Λ ⊂ R be the range of valid z̃ values, based on observation data. We compute the

lower-bound function f(z̃) = sz̃ + t by fitting a line to σ̂2
X̃|Z̃=z̃

. Consider a conventional

linear regression of the form

(
ŝ, t̂
)

= arg min
s,t

∫
Λ

(
σ̂2
X̃|Z̃=z̃

− (sz̃ + t)
)2
dz̃. (3.28)

It does not yield the desirable result because the fitted line goes through the center of point

cluster (i.e. not lower-bound). On the other hand, imposing a lower-envelope constraint(
ŝ, t̂
)

= arg min
s,t

∫
Λ

(
σ̂2
X̃|Z̃=z̃

− (sz̃ + t)
)2
dz̃

subject to σ̂2
X̃|Z̃=z̃

≥ sz̃ + t

(3.29)

is very sensitive to noise and outliers.

We instead propose a novel “robust lower-bound linear regression” method. Based on

the intuition that the error term ∆ = σ̂2
X̃|Z̃=z̃

− sz̃ + t should be non-negative most of the

time, we design a piece-wise non-symmetrical squared error function φ : R→ R:

φ(∆, z̃) =


−∆ if ∆ < 0

γ1∆ if η z̃
z̃min

≥ ∆ > 0

γ2∆ + η z̃
z̃min

(γ1 − γ2) if ∆ > η z̃
z̃min

, (3.30)

where z̃min is the smallest Z̃n = X̃n + Ỹn value present in a frame. The slope parameter

values γ1 and γ2 determine the severity of the penalty for the positive error (relative to

the negative error). When 0 < γ2 < γ1 < 1, the non-symmetric error function in (3.30)

encourages a lower-bound line fitting (because ∆ ≥ γ1∆ ≥ γ2∆), while remaining robust
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to noise by allowing the possibility of negative error. The parameter η > 0 determines

the sensitivity of robustness—smaller value of η results in more aggressive lower-bound fit-

ting. In our actual implementation, we solve the following weighted lower-bound regression

problem:

(
ŝ, t̂
)

= arg min
s,t

∫
Λ
w(z̃)φ

(
σ̂2
X̃|Z̃=z̃

− (sz̃ + t)
)
dz̃. (3.31)

We used heuristical weights of the following form:

w(z̃) =
1

κ+ z̃/#{n ∈ Z2 : Z̃n = z̃}
. (3.32)

The rational for the weights is that the empirical conditional variance σ̂2
X̃|Z̃=z̃

in (3.27) is

more stable when #{n ∈ Z2 : Z̃n = z̃} is large; and Theorem 3 suggests that the influence of

σ2
θ|Z grows quadratically with z̃. The constant κ > 0 prevents division by a small number.

Note that (3.31) approaches the strict (and non-robust) lower-envelope estimation in (3.29)

as γ1 → 0. The affine line parameters
(
ŝ, t̂
)

was computed using Matlab’s fminsearch(·)

function; and the noise parameters (α̂, β̂) can be recovered from
(
ŝ, t̂
)

using (3.26). In

practice, we found that median filtering on σ̂2
X̃|Z̃=z̃

improved the stability when the spatial

resolution is limited.

3.2.3 Improvements: Pixel Registration and Selection

Estimating the lower-bound function directly from an empirical scatter plot of σ2
X̃|Z̃

in

Figure 3.2 is sensitive to unknown positive value σ2
θ|Z . We focus on the fact that an equality

between σ2
X̃|Z̃=z̃

and f(z̃) in (3.25) is attained when θn = 1
2 . (Proof: θn := λn

λn+µn
= 1/2

is a constant, and so σ2
θ|Z = 0.) In video, let λn and µn refer to two consecutive frames.

The scenario λn 6= µn occurs when either the foreground object movement or the camera

movement cause the intensity values of pixel n ∈ Z2 to change between frames pair.
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In this work, we improve the lower-bound regression by taking a number of safeguards

against the pixel movements. Specifically, we evaluate (ŝ, t̂) and w(z̃) in (3.31) and (3.32)

only over the subset Γ ⊂ Z2 of pixels satisfying the condition:

Γ = {n ∈ Z2 : λn = µn}. (3.33)

First, modern cameras and smartphones have inertial measurement units (IMU) that mea-

sure the camera motion. The inertial measurements can be leveraged to determine the

frames affected by camera movements, which should be excluded from the subset Γ because

pixels are likely to have shifted. Only the frames under the noise floor of the IMU are

usable. (Obviously, one can use a tripod to ensure camera does not move, but this is highly

restrictive. We do not assume this.)

Second, (for the remaining frames that were not discarded,) we further correct for frame-

to-frame movements by global image registration. Specifically, we use the well-known SURF

feature extraction to find the corresponding points across the two frames [39], then we use

RANSAC to recover the homography transformation between the two frames [40]. By

registering X̃ to the coordinates of Ỹ to compensate for the camera motion across frames,

background pixels become stationary. See Figures 3.3(c) and 3.3(f) for the improvements.

Third, we develop another technique to handle foreground object movements. Conven-

tional hypothesis tests such as Student’s-t and Welch are designed to exclude pixels n ∈ Z2

with large differences Dn := Xn − Yn. However, these methods also discard pixels where

Dn is large due to noise (i.e. not because λn 6= µn), degrading the overall quality of (ŝ, t̂)

estimates because the magnitude of σ̂2
X̃|Z̃

is reduced. To overcome this problem, we develop

a hypothesis test based on the spatial correlation of Dn, and not based on the magnitude

of Dn.
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Consider Table 3.1 showing that Pearson product-moment correlation coefficient of the

noise of two neighboring pixels (Xn and Xn+1)

ρX|λn =
Cov(Xn, Xn+1|λn, λn+1)√

Var(Xn|λn) Var(Xn+1|λn+1)

=
E[(Xn − λn)(Xn+1 − λn+1)|λn, λn+1]√
E[(Xn − λn)2|λn]E[(Xn+1 − λn+1)2|λn+1]

(3.34)

is negligibly small. (Its experimental methodology is described in Section 5.1.1.) That is,

noise Xn − λn of raw image sensor data are spatially uncorrelated.1 By extension, ρY |µ is

also negligible. Hence, the spatial correlation of the difference Dn = Xn−Yn is entirely due

to the difference λn − µn. More concretely, we have the following Theorem.

Theorem 3. Suppose that the following approximations hold:

Cov(Xn, Xn+1|λn, λn+1) ≈ 0

Cov(Yn, Yn+1|µn, µn+1) ≈ 0.

(3.35)

Then Cov(Dn, Dn+1) ≈ Cov(λn − µn, λn+1 − µn+1).

Proof. By the law of total covariance,

Cov(Dn, Dn+1) =E
[

Cov(Dn, Dn+1|λ, µ)
]

(3.36)

+ Cov
(
E[Dn|λ, µ],E[Dn+1|λ, µ]

)
.

Because Xn|λn and Yn|µn are independent, this reduces to

Cov(Dn, Dn+1) = Cov(λn − µn, λn+1 − µn+1)

+ E
[

Cov(Xn, Xn+1|λ) + Cov(Yn, Yn+1|µ)
]

≈ Cov(λn − µn, λn+1 − µn+1). (3.37)

where the approximation stems from (3.35).

1Recall that the covariance and variance conditioned on λ are statistics only on noise. These quantities
do not represent the covariance/variance of the signal.
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We conclude from Theorem 3 that we can draw inference on λn − µn indirectly by

observing the Pearson product-moment correlation coefficient of Dn = Xn − Yn. Since

Pearson product-moment correlation coefficient is invariant to affine transformation, we

propose to threshold the Pearson product-moment correlation coefficient of D̃n := X̃n− Ỹn

instead of Dn = Xn − Yn to determine the set Γ ⊂ Z2:

Γ̂ =

n ∈ Z2 :

∣∣∣∣∣∣ Cov(D̃n, D̃n+1)√
Var(D̃n) Var(D̃n+1)

∣∣∣∣∣∣ < ε

 . (3.38)

The purpose of (3.38) is to discard theDn that is spatially correlated withDn+1, i.e. λn 6= µn

that represents pixels of foreground object movements.

The correlation coefficient in (3.38) is sensitive to noise. Inspired in part by work by [41],

we overcome this shortcoming by proposing a robust alternative to correlation coefficient in

(3.38). Specifically, we compute the correlation coefficient using the “sign” of D̃n instead

of D̃n itself:

Γ̂ =

n ∈ Z2 :

∣∣∣∣∣∣ Cov
(
sgn(D̃n), sgn(D̃n+1)

)√
Var(sgn(D̃n)) Var(sgn(D̃n+1))

∣∣∣∣∣∣ < ε


=
{
n ∈ Z2 :

∣∣∣Cov
(
sgn(D̃n), sgn(D̃n+1)

)∣∣∣ < ε
}
.

(3.39)

Heuristically, we found that the threshold ε can be chosen to be arbitrarily small, as long as

it is sufficient to keep enough pixels for the noise parameter estimation. See Figures 3.3(d)

and 3.3(g) as well as Table 5.1 for evidence of robustness to motion that these technique

achieve.
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Table 3.1: Spatial correlation of noise in various commercial cameras and smartphones are
uncorrelated. We collected 100 raw images (Bayer color filter array patterned sensor) of
maximally blurred blank walls taken for each camera setup placed on a tripod. We computed
Pearson product-moment correlation coefficient of spatially adjacent pixels (which have two
different color filters, denoted “cross color”) and two pixels apart (with same color filters).
Maximum correlation coefficient magnitude is only 0.0969, most are smaller than 0.05.

Device ISO –
ShutterSpeed

cross
color

red green1 green2 blue

Nikon
D5100

100 – 1/15 0.0711 0.0814 0.0974 0.0969 0.0254
100 – 1/60 0.0127 0.0081 0.0147 0.0149 0.0071
1250 – 1/15 0.0055 0.0031 0.0045 0.0046 0.0023
5000 – 1/60 0.0043 0.0025 0.0030 0.0029 0.0022

Nikon
D90

200 – 1/30 0.0417 0.0539 0.0533 0.0555 0.0516
1000 – 1/15 0.0332 0.0426 0.0351 0.0442 0.0431
1000 – 1/60 0.0199 0.0215 0.0242 0.0294 0.0216

Canon
5D III

200 – 1/60 0.0404 0.0421 0.0635 0.0638 0.0288
1000 – 1/15 0.0352 0.0606 0.0439 0.0456 0.0111
1000 – 1/60 0.0499 0.0567 0.0661 0.0672 0.0231

Sony
α7R3

100 – 1/15 0.0201 0.0267 0.0205 0.0159 0.0267
100 – 1/60 0.0197 0.0262 0.0184 0.0177 0.0258
2000 – 1/15 0.0051 0.0053 0.0048 0.0116 0.0053
5000 – 1/60 0.0028 0.0020 0.0017 0.0116 0.0020

Samsung
Galaxy

S7

50 – 1/15 0.0017 0.0031 0.0030 0.0013 0.0050
200 – 1/60 -0.006 -0.004 0.0004 -0.007 0.0032
800 – 1/15 0.0023 0.0064 0.0014 0.0020 0.0067
5000 – 1/60 0.0028 0.0020 0.0017 0.0116 0.0020

iPhone X 100 – 1/100 0.0439 0.0225 -0.0207 0.0055 0.0136

OnePlus
3

125 – 1/15 0.0168 0.0544 -0.072 -0.071 0.0492
1000 – 1/15 0.0000 0.0455 -0.086 -0.085 0.0471
2500 – 1/60 -0.002 0.0570 -0.069 -0.069 0.0692
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CHAPTER IV

B:PROPOSED THEOREMS OF COLOR IMAGE DENOISING

4.1 Background: Aitchison Geometry

4.1.1 Elementary Operations

Define Rm+ = [0,∞)m to be a vector space of positive-valued real numbers, where x =

[x1, . . . , xm]T ∈ Rm+ denotes an m-dimensional non-negative vector. Let

‖x‖ := x1 + · · ·+ xm (4.1)

denote an `1 norm. (Since x1, . . . , xm ≥ 0, absolute value operator is not needed.) In

Aitchison Geometry, we define compositional data as m-dimensional unit simplex ∆m.

Definition 1. Unit simplex ∆m is defined as subset of Rm+ , as follows:

∆m := {x ∈ Rm+ | ‖x‖ = 1} ⊂ Rm+ . (4.2)

Let y, z ∈ ∆m and a ∈ R. Known as perturbation and powering operators, we

respectively define simplex addition ⊕ : ∆m × ∆m → ∆m and simplex multiplication

⊗ : R×∆m → ∆m as follows:

y ⊕ z :=
(y1z1, . . . , ymzm)T

y1z1 + · · ·+ ymzm
(4.3)

a⊗ y :=
(ya1 , . . . , y

a
m)T

ya1 + · · ·+ yam
, (4.4)

where the denominators normalizes to ensure that the range spaces of ⊕ and ⊗ are also

simplex.

Proposition 2 (Aitchison vector space). The perturbation and powering operators in (4.3)

satisfy the axioms of a vector space, where the simplex vector c = [ 1
m , . . . ,

1
m ]ᵀ ∈ ∆m is the
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zero vector with the property:

y ⊕ c =y (4.5)

0⊗ y =c. (4.6)

Proof. The commutativity and associativity of ⊕ follow directly from the same properties

of multiplication. The neutral element in (4.5) and inverse conditions can be verified in a

straightforward way:

y ⊕ c =
[y1

m , . . . ,
ym
m ]T

y1

m + · · ·+ ym
m

= y (4.7)

y ⊕ (−1⊗ y) =
[y1y

−1
1 , . . . , ymy

−1
m ]T

y1y1 + · · ·+ ymym
(4.8)

y ⊕ c =
[y1

m , . . . ,
ym
m ]T

y1

m + · · ·+ ym
m

= y (4.9)

0⊗ y =
[y0

1, . . . , y
0
m]T

y0
1 + · · ·+ y0

m

=
[1, . . . , 1]T

m
= c. (4.10)

4.1.2 Centered Log-Ratio Transform

The Aitchison vector space has a few canonical representations. We describe one such

representation system below.

Definition 2. Centered log-ratio transform (CLRT) φ : ∆n → Rm is defined by the relation

[?]:

φ(y) :=


1− 1

m − 1
m − 1

m . . . − 1
m

− 1
m 1− 1

m − 1
m . . . − 1

m
...

. . .
...

− 1
m . . . − 1

m 1− 1
m


︸ ︷︷ ︸

Mm×m

 log y1
...

log ym

 (4.11)

31



Let Y = φ(y) ∈ Rm. Define uk ∈ ∆m as a set of basis vectors, where

uk =
[1, . . . , 1, e, 1, . . . , 1]ᵀ

m− 1 + e
, (4.12)

where e appears on the k-th entry of uk. Then the inverse CLRT (ICLRT) φ−1 : Rm → ∆m

takes a canonical vector space representation:

y = φ−1(Y ) := (Y1 ⊗ u1)⊕ · · · ⊕ (Ym ⊗ um). (4.13)

Corollary 3. Inverse CLRT in (4.13) can be rewritten as

φ−1(Y ) :=
[eY1 , . . . , eYm ]ᵀ

eY1 + · · ·+ eYm
. (4.14)

Proposition 3 (Homomorphism). Centered log-ratio transform φ has the following sense:

φ((a⊗ y)⊕ (b⊗ z)) = aφ(y) + bφ(z). (4.15)

Proof. To see why this is the case, consider

(a⊗ y)⊕ (b⊗ z) =
[ya1z

b
1, . . . , y

a
mz

b
m]

ya1z
b
1 + · · ·+ yamz

b
m

(4.16)

Rewriting φ(y) as φ(y) = (φ1(y), . . . , φm(y))

φk((a⊗ y)⊕ (b⊗ z))

= a log(yk) + b log(zk)

− a log y1 + · · ·+ log ym
m

+ b
log z1 + · · ·+ log zm

m

= aφk(y) + bφk(z),

(4.17)

where the denominator in (4.16) term has conveniently canceled out in (4.17).

Proposition 4. The unit simplex ∆m is isomorphic to Rm−1.

Proof. The range space of CLRT φ(y) is isomorphic to Rm−1 due to the fact that M ∈

Rm×m is a rank m−1 matrix. The nullspace of M ∈ Rm×m is {x ∈ R|x1 = x2 = · · · = xm},
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which can only be reached by c (i.e. log y1 = · · · = log ym if and only if y = c). Thus by the

first group isomorphism theorem and by Proposition 3, the Proposition is true [?].1)

Proposition 5 (CLR coefficients). If Y = φ(y), then

m∑
k=1

Yk = 0. (4.18)

Proof. This is a simple consequence of the fact every column of M sums to zero.

Corollary 4 (Log-unit-simplex-Sum). If y = φ−1(Y ) ∈ ∆m, then

m∑
k=1

log yk ≈ −m ·max(Y1, . . . , Ym). (4.19)

Proof. Recall (4.13) and (4.19), the sum of log-unit-simplex can be rewritten as:

m∑
k=1

log yk =
m∑
k=1

log eYk −m · log(eY1 + · · ·+ eYm)

= −m · log(eY1 + · · ·+ eYm).

(4.20)

Consider a set of real number v1, . . . , vm ∈ R. The maximum function max{−v1, . . . ,−vm}

can be rewritten as log-sum-exponential form [?]:

max{−v1, . . . ,−vm} = lim
λ→+∞

1

λ
log

(
m∑
k=1

e(−vkλ)

)
. (4.21)

Assume vkλ ≈ Yk,

log(eY1 + · · ·+ eYm) ≈ max(Y1, . . . , Ym). (4.22)

1Alternatively, ∆m is isomorphic to Rm−1 by transivity since CRLT is invertible.
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Figure 4.1: Demonstration of chromaticity coordinate. Equation (4.23) maps color channels
R G B onto the triangle plane in (a)—-the chromaticity coordinate. By colorizing the
chromaticity coordinate triangle, (b) demonstrates the relation between color and color
ratios .

4.1.3 Log-chromaticity Coordinate Representation of Color

Recall the definitions of clean pixel intensities and clean luminance in Section 2.2.2

and 2.2.3, denote by � = [θᵀR,θ
ᵀ
G ,θ

ᵀ
B]ᵀ ∈ R3N the chromaticities of color intensities can be

calucalted by the Grassmann’s law: ∀n ∈ [1, N ],

θR(n) =
λR(n)

λL(n)
, θG(n) =

λG(n)

λL(n)
, θB(n) =

λB(n)

λL(n)
. (4.23)

Figure 4.1 demonstrates that Equation (4.23) maps � to the chromaticity coordinates. Ob-

viously, for every pixel, θR(n) + θG(n) + θB(n) = 1 and θk(n) ≥ 0. Thus the chromaticity

vector �(n) = [θR(n), θG(n), θB(n)]ᵀ ∈ ∆3. Define an unit simplex vector c = [1
3 ,

1
3 ,

1
3 ]ᵀ.

And let log �(n) = [log θR(n), log θG(n), log θB(n)]ᵀ denotes the log chromaticity vector. By

(4.11), let [r(n), g(n), b(n)]ᵀ denotes the CLRT coefficients of log �(n), such that:

[r(n), g(n), b(n)]ᵀ = [M3×3] log �(n) (4.24)
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According to (4.19), we further expand log �(n) as follow:

log �(n) =
[
Mᵀ

3×3 3cᵀ
] [M3×3

c

]log θR(n)
log θG(n)
log θB(n)



≈


2
3 −1

3 −1
3 1

−1
3

2
3 −1

3 1

−1
3 −1

3
2
3 1


 I3×3

−δ(n)



r(n)

g(n)

b(n)


, (4.25)

where I3×3 ∈ R3×3 is the identity matrix. And the row vector δ(n) = [δr(n), δg(n), δb(n)]

is a selector to choose which color channel has the highest value. Specifically, for instance,

δ(n) = [1, 0, 0] if λR(n) ≥ λG(n) & λR(n) ≥ λB(n) (4.26)

Proof.


2
3 −1

3 −1
3 1

−1
3

2
3 −1

3 1

−1
3 −1

3
2
3 1




2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

1
3

1
3

1
3

 =
[
I3×3

]
. (4.27)

Recall (4.11), (4.18), and (4.19) and ,
2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

1
3

1
3

1
3




log θR(n)

log θG(n)

log θB(n)

 ≈
I3×3

δ(n)



r(n)

g(n)

b(n)

 . (4.28)

4.1.4 Time-Frequency Analysis Of CLRT Simplex coefficients

The analysis in Section 4.1.3 explicitly described the log-chromaticity coordinate rep-

resentation of single color pixel. Image denoising techniques normally gain strength from

multiple pixels. In addition, in signal processing, many time-frequency analysis techniques
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have been developed to address non-stationary random process—short-time Fourier trans-

form, filter banks, frame transform, and discrete wavelet transforms are examples of popular

linear transformations developed for such purpose. We would like to extend these techniques

to CLR coefficients. Below, we provide a toy example first to develop the basic idea, before

presenting the full Haar-wavelet analysis in Section 4.2.

Define discrete Haar wavelet transform (DWT) as

TW =
1√
2

[
1 1
1 −1

]
. (4.29)

And let S = [Sᵀ
r ,S

ᵀ
g ,S

ᵀ
b ]ᵀ and W = [W ᵀ

r ,W
ᵀ
g ,W

ᵀ
b ]ᵀ denote the scaling and wavelet CLR

coefficients, respectively. The Haar wavelet transform of CLR coefficients can be described

as: 

Sr(1)
Wr(1)
Sg(1)
Wg(1)
Sb(1)
Wb(1)

 :=


TW

TW

TW


︸ ︷︷ ︸

6×6



r(1)
r(2)
g(1)
g(2)
b(1)
b(2)

 , (4.30)

where the elements in blank areas are zeros. Recall Proposition 3, the CLR coefficients

of chromaticities are isomorphic to R2. In particular, Sr(1) + Sg(1) + Sb(1) = 0, Wr(1) +

Wg(1) +Wb(1) = 0.

4.2 Multivariate Inhomogeneous Poisson Sequence and Bayes Estimate in Chro-
maticity Coordinates

4.2.1 Poisson-Multinomial Likelihood Function and Minimum Mean Square Error
Estimator in Chromaticity Coordinates

Recall that k ∈ {R,G,B} be the color channel index. Let F|� as defined in Section 2.1,

in multivariate in-homogeneous Poisson sequence problems, every noisy measurement of � is
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an independent Poisson corrupted pixel as described in (2.19). We now turn our attention

to a multivariate random sequence.

For any single color pixel F(n)|�(n), ∀n ∈ [1, N ], the multivariate Poisson probability is

described as

Pr[F(n)|�(n)] =
∏

k∈[R,G,B]

e−λk(n)λk(n)Fk(n)

Fk(n)!
. (4.31)

Recall (2.21) and consider rewriting the Poisson probability as a product of conditional

probabilities:

Pr[F(n)|�(n)] = Pr[FR(n), FG(n), FL(n)|�(n)]

= Pr[FR(n), FG(n)|FL(n), �(n)]Pr[FL(n)|�(n)].

(4.32)

Therefore, given that chromaticity is defined as in (4.23), the conditional probability

F(n)|FL(n), �(n) has the distribution of the form:

Pr[F(n)|FL(n), �(n)]

=
FL(n)!

FR(n)!FG(n)!FB(n)!

∏
k∈[R,G,B]

θk(n)Fk(n) (4.33)

Proof. Rewrite (4.32),

Pr[FR(n), FG(n)|FL(n), �(n)]Pr[FL(n)|�(n)],

=Pr[FR(n), FG(n), FL(n)− FR(n)− FG(n)|FL(n), �(n)]

· Pr[FL(n)|�(n)],

=Pr[F(n)|FL(n), �(n)]Pr[FL(n)|�(n)].

(4.34)

Therefore,

Pr[F(n)|FL(n), �(n)] =
Pr[F(n)|�(n)]

Pr[FL(n)|�(n)]
(4.35)

Substituting (2.23), (4.31), and (4.23) we proof (4.33).
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∑
k∈{R,G,B}

Fk(n)log θk(n)

=
[
FR(n) FG(n) FB(n)

]


2
3 −1

3 −1
3 1

−1
3

2
3 −1

3 1

−1
3 −1

3
2
3 1




2
3 −1

3 −1
3

−1
3

2
3 −1

3

−1
3 −1

3
2
3

1
3

1
3

1
3




log θR(n)

log θG(n)

log θB(n)

 ,

≈
[
FR(n) FG(n) FB(n)

]


2
3 −1

3 −1
3 1

−1
3

2
3 −1

3 1

−1
3 −1

3
2
3 1




1 0 0

0 1 0

0 0 1

−δr(n) −δg(n) −δb(n)



r(n)

g(n)

b(n)

 ,

=[FR(n)− ( 1
3 + δr(n))FL(n) FG(n)− ( 1

3 + δg(n))FL(n) FB(n)− ( 1
3 + δb(n))FL(n)]

[
r(n)
g(n)
b(n)

]
.

(4.38)

N∏
n=1

∏
k

θk(n)Fk(n) = exp

[F ᵀ
R F ᵀ

G F ᵀ
B
] log θR

log θG
log θB


≈ exp

[F ᵀ
R − (Mδ

R ◦ FL)ᵀ F ᵀ
R − (Mδ

G ◦ FL)ᵀ F ᵀ
R − (Mδ

B ◦ FL)ᵀ
] rg

b

 ,

(4.40)

=exp


[
F

ᵀ
R − (Mδ

R ◦ FL)ᵀ F
ᵀ
R − (Mδ

G ◦ FL)ᵀ F
ᵀ
R − (Mδ

B ◦ FL)ᵀ
]

T

ᵀ
W

T
ᵀ
W

. .
.

T
ᵀ
W


︸ ︷︷ ︸

3N×3N︸ ︷︷ ︸
DWT of noisy image


TW

TW

.
. .

TW


︸ ︷︷ ︸

3N×3N

rg
b



︸ ︷︷ ︸
DWT of clean CLR coef.


,

(4.41)

we focus the influence of Mδ
k on the wavelet coefficients for denoising purpose,

≈exp

[t′Rᵀ t′G
ᵀ t′B

ᵀ
(
XR −Mδ

R ◦XL
)ᵀ (

XR −Mδ
G ◦XL

)ᵀ (
XR −Mδ

B ◦XL
)ᵀ

]

 Sr
Sg
Sb
Wr
Wg
Wb

. (4.42)
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The traditional way of using minimum mean square error (MMSE) to reconstruct clean

chromaticies �̂ is a posterior mean E[�|FL,F] of the form:

�̂ =

∫
�Pr[�|FL,F] d�

=

∫
�
∏N
n=1 Pr[F(n)|FL(n), �(n)]Pr[�(n)] d�∫ ∏N
n=1 Pr[F(n)|FL(n), �(n)]Pr[�(n)] d�

,

(4.36)

where the probability of the clean chromaticity Pr[�(n)] indicates the prior distribution.

There are two majority challenges in using (4.36) directly. First, if we substitute (4.33) in

(4.36), it yields a multidimensional product2:

N∏
n=1

∏
k

θk(n)Fk(n), (4.37)

which is hard and impractical to deal with. Second, Pr[�(n)] is a density in three mutually

dependent dimensions.

4.2.2 Linearized Poisson-Multinomial Likelihood Function in Wavelet Domain

We firstly focus on linearizing and simplifying the likelihood function. Rewrite the

multiplication product as
∏
k θk(n)Fk(n) = exp {

∑
k Fk(n) log θk(n)}, by substituting (4.24)

— (4.27), we expand the above exponent as (4.38). Now we define a variable vector

Mδ
k = [. . . ,Mδ

k(n), . . . ]ᵀ such that:

Mδ
k(n) =

{
4
3 , if λk(n) = max {λR(n), λG(n), λB(n)}
1
3 , otherwise

(4.39)

As a result, we can rewrite the product (4.37) in terms of exponential summation and

log-chromaticities or CLR coefficients as illustrated in (4.40), where the “◦” denotes the

Hadamard product. Note that (4.29) is equivalent to (2.11). And TW is an orthornomal

matrix. Using (4.29) — (4.48), we implement Haar-wavelet analysis of (4.37) in CLRT

space as illustrated in (4.41) and (4.42). For convenience, we denote X ′k = Xk−Mδ
k ◦XL.

2For convenience,
∏

k∈[R,G,B]

,
∑

k∈[R,G,B]

will be denoted as
∏
k

,
∑
k

.
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Equation (4.41) and (4.42) are absolutely equal if the dominated color channel of under-

lying pixels has no change. By contrast, this relation becomes weaker at each color edge.

We admit that there exists trade-off between using wavelet analysis and maintaining the

intact of (4.40). However, in our real application, The mismatching of X ′k and λk does not

cause color invariance at the color edges. We will verify that the color edges will not be ob-

viously influenced using real sensor data in Section 5.2.3. The significance of (4.42) is that it

illustrates the connection of clean log-chromaticities and noisy pixels in Haar wavelet space,

enabling a way to use wavelet based denoising in chromaticity coordinates. For wavelet

based denoising, clean scaling coefcients are technically unavailable. In practice, they are

replaced by corresponding noisy scaling coefcient. Specifically, denote Ŝ = [Ŝᵀ
r , Ŝ

ᵀ
g , Ŝ

ᵀ
b ]ᵀ

and W̃ = [W̃ ᵀ
r , W̃

ᵀ
g , W̃

ᵀ
b ]ᵀ the corresponding noisy scaling and wavelet coefficients which

are calculated using (4.24) and (4.30), and meanwhile, replacing θk(n) by Fk(n)
FL(n) , ∀n, k. We

set S = Ŝ. Then the following parts of this work will focus on the estimation of wavelet

CLR coefficients Ŵ = [Ŵ ᵀ
r , Ŵ

ᵀ
g , Ŵ

ᵀ
b ]ᵀ.

Proposition 6 (Isomorphic Transferred likelihood function of wavelet CLR Coefficients).

Let F|�, FL, λL being defined as in Section 2.1, and � being defined as in 4.1.3, define an

image dependent constant:

(F) =

N∏
n=1

FL(n)!

FR(n)!FG(n)!FB(n)!
, (4.43)

the original likelihood function of independent Poisson color pixels has the form:

Pr[F|FL, �] =

N∏
n=1

Pr[F(n)|FL, �(n)]

=(F)×
N∏
n=1

∏
k

θk(n)Fk(n).

(4.44)
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Let F 7→ (t,X) being defined as in Section 2.1. Let S and W being defined as in 4.1.4, and

X′ being denoted as in 4.2.2. Assume that Ŝ ≈ S, we define a new likelihood function:

Pr[X|FL,W] =

N/2∏
n=1

Pr[X(n)|FL,W(n)]

=ef(t,Ŝ) ·(F)× exp

[X ′Rᵀ X ′G
ᵀ X ′B

ᵀ
] Wr

Wg

Wb

 ,

(4.45)

where the f(t, Ŝ) is another constant that depending on t and Ŝ. The form of f(t, Ŝ) follows

the exponential summation of scaling coefficients that partially described in (4.42). We omit

such analysis in this paper because we assume it can be approximately accessed. According

to the described in (4.42),

Pr[X|FL,W] ≈ Pr[F|FL, �] (4.46)

Consider the orthonormal rotation matrix:

TC =


1√
3

1√
3

1√
3

1√
6
−2√

6
1√
6

1√
2

0 −1√
2

 , (4.47)

we denote the isomorphic color transform of wavelet coefficients as follow:Aᵀ
0

Aᵀ
1

Aᵀ
2

 = TC

X ′Rᵀ

X ′G
ᵀ

X ′B
ᵀ

 ,
Bᵀ

0

Bᵀ
1

Bᵀ
2

 = TC

W ᵀ
r

W ᵀ
g

W ᵀ
b

 , (4.48)

where B0(n) = 0 ∀n ∈ [1, N2 ]. For future usage, we let B̃ denotes the isomorphic color

transformed result of W̃. Finally, we transfer (4.45), and define another likelihood function

to describe the wavelet CLR coefficients such that:

Pr[A|FL,B] =

N/2∏
n=1

Pr[A(n)|FL,B(n)]

=ef(t,Ŝ) ·(F)× exp

{[
Aᵀ

1 Aᵀ
2

] [B1

B2

]}
.

(4.49)
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Note that ∀n1 6= n2, P r[A(n1)|FL,B(n1)] is independent to Pr[A(n2)|FL,B(n2)]. With the

fact that Pr[A|FL,B] = Pr[X|FL,W], we say Pr[A|FL,B] is isomorphic to Pr[F|FL, �]

Proof.

[
X ′R X ′G X ′B

]
T ᵀ
c Tc

W ᵀ
r

W ᵀ
g

W ᵀ
b


=
[
A0 A1 A2

] Bᵀ
0

Bᵀ
1

Bᵀ
2

 (4.50)

4.2.3 Practical MMSE Denoising in Chromaticity Coordinates

Proposition 7 (Framework of color image denoising in log-chromaticity coordinates). With

the definition of (4.49), we propose a practical color denoising strategy in chromaticity co-

ordinates as follow: 1), estimate the clean coefficients B̂(·) using MMSE estimator method

from A. Here we emphasize again that B is the transformed coefficient of log �; 2), cal-

culate Ŝ as described in 4.2.2. And inverse the orthornormal color transform and wavelet

transform which are defined in (4.47) and (4.29), respectively, to obtain [̂r ĝ b̂]ᵀ; 3), apply

ICRLT using (4.13) to obtain �̂. Now we propose the reconstructed clean coefficients B̂(A)

using posterior mean. 4), reconstruct λ̂L using Poisson image denoising technique, then

reconstruct [λ̂ᵀ
R, λ̂

ᵀ
G , λ̂

ᵀ
B] ∈ R3N by:

λ̂R(n) = λ̂L(n) · θ̂R(n)

λ̂G(n) = λ̂L(n) · θ̂G(n) ∀n ∈ RN

λ̂B(n) = λ̂L(n) · θ̂B(n).

(4.51)

Details of step 1) will be explained in the following sections.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Analysis of prior density Pr[B] using long exposure image as the proxy of
clean reference. (a,b), Log-histogram (blue plots) of the marginal prior density Pr[B1]
and Pr[B2], respectively. The red-line plots illustrate the approximation of the marginal
prior with mixture-Gaussian model. The green-line plots illustrate the approximation with
Laplacian model. (c), 2D-histogram of Pr[B]. (d), Approximation of Pr[B] using 2-D
mixture-Gaussian model as described in (4.55). (e), the top-down view of (c). We can see
B1 and B2 are less correlated. (f), the approximation of (e) using 2-D mixture-Gaussian
model. In this model, B1 and B2 are dependent but uncorrelated.
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Recalling (4.36), due to the independency of (4.49), the clean coefficinet B̂(A(n)) can

be reconstructed using posterior mean E[B(n)|FL,A(n)] of the form:

B̂(A(n)) =

∫
B(n)Pr[B(n)|FL,A(n)] dB(n)

=

∫
B(n) exp {A1(n)B1(n) +A2(n)B2(n)}Pr[B(n)] dB(n)∫

exp {A1(n)B1(n) +A2(n)B2(n)}Pr[B(n)] dB(n)
.

(4.52)

Note that all the constant terms in (4.49) are canceled eventually. Compare with the MMSE

in original chromaticity coordinates, three dimensional prior density Pr[�(n)] is mapped to a

restrict two dimensional form Pr[B(n)]. Thereby, we can visualize the 2D prior density with

color image data. As illustrated in Figure 4.2, we study the density Pr[B] using real sensor

data with longer exposure as a proxy of clean image. First of all, from (a,b), we notice that

the marginal prior densities B1 and B2, especially the heavy tails, can be approximated by

(but not limited to) mixture-Gaussian model of the form Pr[Bk(n)] :

=ρPr[Bk(n)|Z = z0] + (1− ρ)Pr[Bk(n)|Z = z1]

=ρ
1√

2πσ0k

e
−
(
B2
k(n)

2σ2
0k

)
+ (1− ρ)

1√
2πσ1k

e
−
(
B2
k(n)

2σ2
1k

)
, (4.53)

where k = 1 or 2, and Z is a latent hidden variable specifying the identity of the mixture

components. ({Bk(n)|Z = z0} ∼ N (0, σ2
0k) represents the edge/texture information and

{Bk(n)|Z = z1} ∼ N (0, σ2
1k) represents the smoother/flatter areas, in particular.) The

prior probability ρ = Pr[Z = z0] indicates the proportion of {Z = z0} vs {Z = z1}.

The mixture Gaussian model is good, but not enough to describe the heavy tail phe-

nomenon in log-scale. So, as demonstrated in (4.54), we tried to use Laplacian model to

overcome the heavier-tail issue remained in mixture-Gaussian model. The Laplacian model

can be described as:

Pr[Bk(n)] =
1

2bk
e
− |Bk(n)|

bk , (4.54)

where the positive constant bk is the Laplacian distribution parameter. The Figure 4.2

(a,b) show the potential of the accurate approximation using complicate mixture model.
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However, due to the computational complexity, we keep using mixture of two Gaussian’s in

this paper.

Furthermore, in the original chromaticiy coordinates, θR, θG , and θB are highly corre-

lated. From Figure 4.2 (e), we find out a fact that B1 and B2 have limited correlation. We

verified above findings with several different scene contents, as well as images captured un-

der illuminations in different color temperatures. Overall, we use the 2D mixture-Gaussian

function to approximated the prior density, which is described as Pr[B(n)] :=

ρPr[B(n)|Z = z0] + (1− ρ)Pr[B(n)|Z = z1]

=ρ
exp{−Bᵀ(n)Σ−1

0 B(n)
2 }

2π
√
|Σ0|

+ (1− ρ)
exp{−Bᵀ(n)Σ−1

1 B(n)
2 }

2π
√
|Σ1|

,
(4.55)

where Σm =

[
σ2
m1

σ2
m2

]
∀m = 0 or 1. Such model has the marginal density function that

is exactly same as (4.53), has the B1(n) and B2(n) are dependent but uncorrelated random

variables. The latent variable Z in (4.53) and (4.55) plays the role of “edge detector”. It

is correct that both B1 and B2 share the similar edge map, but their color variations are

spatially different. The approximation of prior density is demonstrated as the comparison

between (c,e) and (d,f).

To implement MMSE in terms of mixture prior, we further extend the posterior density

in terms of the hidden variable Z. By total probability, Pr[B(n)|FL,A(n)]:=∫
Pr[B(n)|FL,A(n), Z]Pr[Z|FL,A(n)]dZ

=

∫
Pr[A(n)|FL,B(n), Z]Pr[B(n)|Z]

Pr[A(n)|FL, Z]
Pr[Z|FL,A(n)]dZ.

(4.56)

And assume m = 0 or 1, by total expectation,

E[B(n)|FL,A(n)] :=

1∑
m=0

E[B(n)|FL,A(n), Z = zm]Pr[Z = zm|FL,A(n)].
(4.57)
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Assume that the prior density Pr[B(n)] is defined as in (4.55). By substituting (4.52), (4.56)

into (4.57), we explicitly solved the MMSE estimator B̂(A) as follow. For each n ∈ [1 : N2 ]B̂1(A1(n))

B̂2(A2(n))

 =

A1(n) ·
(
σ2

01τ̂ + σ2
11(1− τ̂)

)
A2(n) ·

(
σ2

02τ̂ + σ2
12(1− τ̂)

)
 , (4.58)

where τ̂ = Pr[Z = z0|FL,A(n)], such that:

τ̂ =
ρ · e

Aᵀ(n)Σ0A(n)
2

ρ · e
Aᵀ(n)Σ0A(n)

2 + (1− ρ) · e
Aᵀ(n)Σ1A(n)

2

. (4.59)

The derivations of (4.58) and (4.59) are explained in detail in Appendix A.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 A:Experimental Results and Discussion of Parameter Estimation

5.1.1 Spatial Correlation of Noise

We first verify that the noise Xn − λn is spatially uncorrelated with Xn+1 − λn+1. The

experiment was carried out with various commercial cameras (Sony α7Riii, Nikon D5100,

Nikon D90, Canon 5D) as well as smartphones (iPhoneX,Samsung Galaxy S7, OnePlus 3).

We collected 100 raw sensor images from cameras placed on a tripod, taken under exactly

same condition and parameters. The cameras were pointed to a blank scene content (a wall)

and the focus was manually set to be maximally blurred promote maximal spatial unifor-

mity. The light source used DC power to prevent illumination from flickering (e.g. 60Hz)

during image acquisition.

We compute the Pearson product-moment correlation coefficient in (3.34) of neighboring

pixels over these images. The average pixel values λn and λn+1 were computed by averaging

over the 100 images. Recalling that commercial cameras have Bayer color filter array

pattern, the correlation coefficients were computed both between spatially adjacent pixels

(i.e. Xn − λn and Xn+1 − λn+1) which have two different color filters, and between pixels

that are two pixels apart (i.e. Xn−λn and Xn+2−λn+2) which have the same color filters.

The experiment is repeated for various combination of low/high ISO settings and shutter

speeds to cover a wide range of operating conditions for the camera.

The results are reported in Table 3.1. The Pearson product-moment correlation coef-

ficients of noise are far less than 0.1—most are smaller than 0.05. This trend is in force
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Figure 5.1: Frame examples of video sequence. Each scene has two recordings—first was
shot on tripod, second one shot with camera held by hand.

regardless of whether we used spatially adjacent pixels (of different color filters) or two pix-

els apart (of the same color filters), and the observation holds for a wide variety of cameras,

including DSLRs and smartphones. Thus we conclude that the noise of raw image sensor

data are largely spatially uncorrelated. Thus Theorem 3 and the pixel selection technique

in (3.39) are indeed valid.

5.1.2 Dataset and Experiment Setup

We now describe a dataset we prepared to quantitatively evaluate the performance of

Poisson parameter estimation using real-world data.1 We acquired raw sensor frame data

from FLIR (Point Grey) video camera (Model#: CM3-U3-13Y3M) recording at 60Hz.

Because this camera does not have a built-in IMU, we did not exclude frames based on

presumed camera motion magnitude. Our dataset is comprised of 9 diverse scenes of indoor

and outdoor contents, including natural objects, such as trees, flowers, etc; man-made

objects like stuffed animals, books, metal/plastic products, buildings; and human faces.

See Figure 5.1. To cover a wide range of camera settings, every scene was captured using

1Upon acceptance of this paper, we will make this dataset and code public.
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(a)

(b)

Figure 5.2: Performance evaluation of the noise parameter estimation algorithms. Each
plot represents one experiment with 69 consecutive frame pairs of scenes in Figure 5.1,
respectively. The plots in (a) correspond to the test video recorded on tripod, while (b)
correspond to the tests with a camera that is held by hand. The results of the proposed
robust lower-bound regression are shown by cyan and blue lines, while the “ground truth”
line (according to the calibration) is shown by the magenta line. For comparison, we map
the noise parameter estimates of methods in [1–3] to the binomial statistics plot as well.
Each thin yellow/red/green line corresponds to a parameter estimate from one of the 70
frames in a video sequence. The thick line corresponds to their average. Qualitatively, we
may assess the accuracy of the parameter estimation by observing the closeness of these
lines to the magenta line.
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Table 5.1: Quality of estimated Poisson noise parameters (α̂, β̂) assessed by S-MSE and N-
MSE scores. The proposed algorithm yields one estimate for the entire video sequence (so
we only report one MSE score). For methods in [1–3] that yield noise parameters for each
frame, we report the minimum/maximum/mean/median MSE scores of all frames, which
are subsequently averaged over all video sequences. We partitioned our dataset into low,
medium, and high gain settings; and assessed the performance for stationary and hand-held
cameras separately.

Averaged S-MSE Scores

MethodGain # 2—5 6—10 11—13
Overall
Average

Camera on tripod

A.Foi [1] 0.1367/ 0.4744/ 0.2456/ 0.2377 0.0730/ 0.2475/ 0.1642/ 0.1630 0.0317/ 0.1247/ 0.0740/ 0.0725 0.0810/ 0.2847/ 0.1611/ 0.1574

X.Liu [3] 220.37/ 361.31/ 291.21/ 290.45 0.2782/ 0.8480/ 0.4564/ 0.4300 0.4234/ 1.8610/ 0.8073/ 0.7366 78.93/ 129.95/ 104.42/ 104.12

C.Liu [2] 0.1726/ 0.8278/ 0.3744/ 0.3644 0.1525/ 5×107/ 7×105/ 0.3842 0.1486/ 2×106/ 3×105/ 0.2424 0.1583/ 2×107/ 30×105/ 0.3265

Proposed (para1) 0.0058 0.0086 0.0169 0.0106

Proposed (para2) 0.0070 0.0161 0.0265 0.0166

Camera hold by hand

A.Foi [1] 0.0592/ 47595/ 7512.4/ 0.2145 0.1120/ 0.2666/ 0.1767/ 0.1768 0.0380/ 11.851/ 0.2496/ 0.0785 0.0667/ 169931/ 2683.1/ 0.1552

X.Liu [3] 366.54/ 699.04/ 548.80/ 550.25 1×1029/5×1045/ 5×1043/2×1034 0.6170/ 743.98/ 157.15/ 127.06 3×1028/9×1044/1×1043/5×1033

C.Liu [2] 0.1714/ 1.7620/ 0.3978/ 0.3777 0.2404/ 0.8542/ 0.3941/ 0.4067 0.1409/ 1.4450/ 0.4039/ 0.2636 0.1802/ 1.3894/ 0.3989/ 0.3452

Proposed(para2) 0.0388 0.0395 0.0359 0.0379

Averaged N-MSE Scores

MethodGain # 2—5 6—10 11—13
Overall
Average

Camera on tripod

A.Foi [1] 0.1626/ 0.7246/ 0.2967/ 0.2782 0.1271/ 0.2315/ 0.1740/ 0.1729 0.0530/ 0.1696/ 0.1035/ 0.1018 0.1133/ 0.3855/ 0.1927/ 0.1851

X.Liu [3] 494.13/ 852.91/ 672.79/ 671.80 0.3038/ 0.9225/ 0.5028/ 0.4766 0.6007/ 4.8496/ 1.6222/ 1.4063 176.78/ 306.61/ 241.01/ 240.57

C.Liu [2] 0.1795/ 4×1010/ 7×108/ 0.3017 0.1785/ 1×108/ 2×106/ 0.2841 0.1377/ 3×107/ 5×105/ 0.2186 0.1643/ 1.6×1011/ 2×108/ 0.2670

Proposed (para1) 0.0138 0.0141 0.0264 0.0184

Proposed (para2) 0.0106 0.0155 0.0375 0.0216

Camera hold by hand

A.Foi [1] 0.0983/ 1.5×106/ 25051/ 0.2152 0.1362/ 0.2388/ 0.1802/ 0.1793 0.0508/ 55.008/ 0.8948/ 0.0941 0.0921/ 572401/ 8947.2/ 0.1617

X.Liu [3] 811.01/ 1651.9/ 1267.4/ 1277.5 4×1029/1×1046/ 2×1044/7×1034 1.1646/ 3673.6/ 728.00/ 561.43 1×1029/4×1045/5×1043/2×1034

C.Liu [2] 0.1717/ 7.1×107/ 1×106/ 0.3001 0.1588/ 0.6822/ 0.2948/ 0.2986 0.1213/ 1.0201/ 0.3086/ 0.2255 0.1501/ 2.5×107/ 370865/ 0.2730

Proposed (para2) 0.0498 0.0342 0.0412 0.0426

Averaged S-MSE Scores

MethodGain # 2—5 6—10 11—13 Overall Average

A.Foi 7512.4 0.1767 0.2496 2683.1

X.Liu 548.80 5×1043 157.15 1×1043

C.Liu 0.3978 0.3941 0.4039 0.3989

Proposed 0.0388 0.0395 0.0359 0.0379

Averaged N-MSE Scores

MethodGain # 2—5 6—10 11—13 Overall Average

A.Foi 25051 0.1802 0.8948 8947.2

X.Liu 1267.4 2×1044 728.00 5×1043

C.Liu 1×106 0.2948 0.3086 370865

Proposed 0.0498 0.0342 0.0412 0.0426
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two or more gain values (ranging between 2–13) and at least two exposure time settings.

Each scene was recorded by holding the camera by hand (i.e. with both scene and camera

motions), and by camera mounted on a tripod (i.e. only foreground motion). In total, we

prepared 42 video sequences. From this video sequence, we used 70 frames each (69 pairs

of adjacent frames for our algorithm).

In each video sequence, X-Rite Macbeth Colorchecker (October 2015 edition) was recorded

in the first few frames. The Colorchecker is used to determine the ground truth noise param-

eters α and β by a calibration (by regressing mean and variance of Colorchecker patches),

but is excluded from the performance evaluation of Poisson parameter estimation tech-

nique. For each scene, we reconstructed the Poisson image X = (X̃ − β)/α as a reference

image. We then estimated (α̂, β̂) using the proposed technique, reconstruct the Poisson

image X̂ = (X̃ − β̂)/α̂, which was compared to the reference image X in the mean squared

sense for performance evaluation in Table 5.1. Comparing X̂ to X is preferred over directly

computing error between (α̂, β̂) and (α, β) because of the fact that smaller α̂ value can be

compensated for by a larger β̂ value, etc.

The proposed Poisson noise parameter estimation technique has several control variables:

κ in (3.32); and γ1, γ2, and η in (3.30); and ε in (3.39). We chose two sets of values empir-

ically, one for stationary camera on tripod (“param1” with (κ, γ1, γ2, η) = (10, 0.5, 0.5, 33))

and another for hand-held camera (“param2” with (κ, γ1, γ2, η) = (10, 0.5, 0.01, 33)) tuned

more aggressively towards the lower-bound in (3.25) to deal with motion. The value of ε is

set to admit 45% of the pixels in Γ̂ in (3.39).

We compared our results to state-of-the-art Poisson noise parameter estimation meth-

ods in [1–3]. Method in [2] is a patch-based non-parametric noise parameter estimation
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technique (i.e. not specific to Poisson). To make the comparison more fair, we improved

its performance by enforcing the output space to be restricted to Poisson noise parameter

space. Since methods in [1–3] are designed for a single frame, we apply these techniques

on all 70 images yielding 70 different noise parameter estimates (α, β). These parameters

were averaged (per scene) to yield a final estimate of (α, β), which was subsequently used

in Table 5.1 to compute the performance scores.

5.1.3 Noise Parameter Estimation Performance

Recall Corollary 1 describing the relationship between the binomial statistics in (3.17)

and the affine line f(z̃) in (3.24). In Figure 5.2, we show the scatter plot of the bino-

mial statistics σ̂2
X̃|Z̃

as a function of Z̃ over the 9 video sequences (grey dots). The pro-

posed method uses a robust lower-bound regression as shown by cyan (tuned for hand-

held camera) and blue (tuned for tripod) lines. For reference, we plot the “ground truth

line” (magenta) corresponding to the calibration noise parameters (α, β) obtained from

Colorchecker—qualitatively, we may assess the performance of the proposed method by

observing how close cyan and blue lines are to the magenta line.

In tripod sequences, the binomial statistics (grey dots) are clustered closely, thanks to

the absence of background motion, with variation only due to foreground/scene motion and

noise. As expected, the blue line (tuned for tripod sequence) is closer to the magenta line

in stationary camera case, though the cyan line also behaves well. The hand-held camera

sequences are more difficult, as evidenced by the wider range of binomial statistics. Yet,

the proposed robust lower-bound regression is able to handle the scene variations—the cyan

line never deviates far from the magenta line, indicating robustness of the algorithm.
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In Figure 5.2, we compare this to the state-of-the-art Poisson parameter estimation

methods in [1] (yellow), [3] (red), and [2] (green). The thin lines correspond to estimation of

(α, β) on each of the 70 frames; the thick lines show the estimated (α, β) averaged over the 70

frames. As evidenced by Figure 5.2, these methods are influenced by scene content, with no

prior method performing reliably across all scenes. Even within the same scene, the variation

among frames were high (especially for method in [2]). This is understandable—the patch-

based algorithms rely on finding homogeneous regions within an image. Thus when using

a wide-angle lens (where image details are smaller) or if a scene is dominated by textures,

these algorithms fail. In presence of strong noise, the ability to identify smooth regions

is difficult. By comparison, the proposed method relies on global statistics, insensitive to

textures and small image features. We gain robustness to motion using more aggressive

robust lower-bound regression, the improvements we described in Section 3.2.3, and by the

use of multiple video frames instead of relying on a single frame. Overall, the reliability of

the proposed method is highest among the Poisson parameter estimation techniques tested.

Table 5.1 summarizes our a quantitative performance evaluation of the proposed Poisson

parameter estimation method. For every single frame, we compute the signal-normalized

MSE (S-MSE) score, defined as:

S-MSE =
1

N

N∑
n=1

∥∥∥∥∥Xn − X̂n

ν

∥∥∥∥∥
2

, (5.1)

where ν denotes the mean value of “Neutral 5” patch on the Colorchecker (to normalize

to the illumination radiance). We also adopt another performance metric convention com-

monly used in the Poisson rate estimation literature. Specifically, let ψj and ψ̂j refer to the

average pixel values of Xn and X̂n in the j-th color patch of the Colorchecker. Then we
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compute the noise-normalized MSE (N-MSE), defined as:

N-MSE =
1

J

J∑
j=1

∥∥∥∥∥ψj − ψ̂jψj

∥∥∥∥∥
2

. (5.2)

The intuition here is that the noise variance in X and X̂ scales linearly with the mean value

ψj . Hence (5.2) normalizes by the noise variance.

Table 5.1 reports the S-MSE and N-MSE scores of various noise parameter estimation

techniques. The proposed method estimates unique (α̂, β̂) for an entire sequence, and

therefore have one S-MSE and N-MSE score each. On the other hand, the methods in [1–3]

yield the Poisson noise parameter estimates (α̂, β̂) for each of the 70 frames. Thus determine

the minimum, maximum, mean, and median S-MSE/N-MSE scores for each video sequence.

We report in Table 5.1 the average the above min/max/mean/median scores over all the

video sequences.

We draw the following conclusions from Table 5.1. The S-MSE and N-MSE scores

indicate that the proposed method performs most reliably among all methods considered.

In fact, the performance of our method is better than even the minimum S-MSE/N-MSE

scores of the alternatives. The maximum MSE scores of the state-of-the-art methods are

much higher than that of minimum and median scores, suggesting a large disparity of

estimation performance among the video sequences. As predicted, the performance of the

proposed method is better when camera is placed on tripod, and by and large it is insensitive

to the gain setting when the camera is hand held.

5.1.4 Discussion

We experimentally support the claim of the invariance to scene content by providing a

result estimating the noise parameters from a textured patch, which is arguably the most
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(a) (b)

Figure 5.3: (a) An example frame from a noisy texture patch video sequence. (b) The
empirical binomial statistics σ̂2

X̃|Z̃n=z̃
in (3.27). The plot follows the legends used in Figure

5.2. The recovered S-MSE/N-MSE scores from the proposed method are 0.0062/0.0020.
Compare this to the S-MSE/N-MSE scores of 0.4429/0.1733 by method in [1], 0.0911/0.0383
by method in [3], and 1.7271/0.7209 by method in [2].

difficult scene for any noise parameter estimation algorithms. Figure 5.3 shows an example

of a frame capturing a highly textured surface. In absence of any homogeneous patch, the

state-of-the-art noise parameter estimation methods fail (see S-MSE and N-MSE scores in

the figure caption). Nevertheless, the proposed noise parameter estimation provides reliable

result, thanks to the invariance of the joint binomial statistics of the adjacent frames to the

scene content.

Lastly, recall that the proposed algorithm performs the best when λn = µn. One way to

achieve this is to let X̃n and Ỹn correspond to consecutive frames in a video sequence—λn

and µn correspond to the same scene point after frame registration (Section 3.2.3). One

alternative to this approach is to consider a single-shot framework, where Ỹn can be a shifted

version of the image X̃n (i.e. Ỹn = X̃n−1). In absence of an edge or texture, λn ≈ λn−1, this

method can be thought of as a global-statistics alternative to the single-shot noise parameter
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(a) (b)

Figure 5.4: Successful and non-successful examples of binomial statistics computed from
a single frame with (κ, γ1, γ2, η) = (10, 0.5, 0.002, 15). In the scene in (a), the proposed
robust lower-bound function regression successfully estimates the noise parameter. In (b),
the noise parameter estimation is more difficult. The topic of single frame noise parameter
estimation is left for future work. See text.

techniques in [1–3,22,37,38]. The pixel selection algorithm in (3.39) can be thought of as an

edge detector (to exclude unfavorable pixels from noise parameter estimation). The main

advantage of this single-shot variant of the proposed noise parameter estimation technique

over the state-of-the-art methods is that it does not require a large homogeneous patch (only

need two adjacent pixels to be similar). However, it is still sensitive to textures (where no

adjacent pixels are alike) and therefore it is not entirely invariant to the scene content. See

Figure 5.4. Improving the single-shot variant of the proposed method is left as a future

topic of research.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.5: Behavior analysis for tunable parameter η.y
B̃1

and η.y
B̃2

. (a) Relatively clean

image taken by increasing the exposure time. (b) Noisy image taken under low illumination.
(c) Denoised result with very low value of y under three levels of Haar wavelet decomposition.
(d) Denoised result with very high value of y under three levels decomposition. (e) Denoised
result with very low value of y under four levels decomposition. (f) Denoised result with
very high value of y under four levels decomposition. (g) Denoised result with fine tuned
value of y under four levels decomposition.

5.2 B:Experimental Results and Discussion of Color Image Denoising

5.2.1 Parameter Tuning Methodology for Proposed Denoising

Here, we remind the reader that the focus of this paper is color denoising in log-

chromaticity coordinate. As for the luminance component denoising, we simply borrow

the ideas that described in Section 2.2.3. Next, we will discuss the parametric tuning of

the proposed estimator. In summary, the proposed estimator contains tunable variables as

follow: ρ, σ01, σ11, σ02, and σ12. The meanings of each have been explicitly explained above.
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In this research, we have investigated at most five levels Haar-wavelet decomposition. In

every wavelet scale, there are three subbands corresponding to horizontal, vertical, and di-

agonal components sharing the same parent coefficients (the finer-scale scaling coefficients).

Therefore, we claim to fix a unique ρ value for each wavelet scale. And due to the com-

pact property of wavelet, the clean coefficients are dominated by the {Z = z1} elements,

and are more sparse in finer scale than the coarser one. In particular, after studying the

cleaner images of natural scene, like we described in Figure 4.2, the ρ values in this research

were chosen within the range between 0.05 to 0.1. And their values should be increasing

monotonically from the first (finest) to the fifth (coarsest) level.

Unlike conventional denoising schemes, the wavelet-based reconstruction of B comes

indirectly from non-wavelet noisy input A rather than directly from the corresponding B̃.

It seems ambiguous to determine the variance values. Therefore, we seek for a more robust

environment for parameter tuning. For convenient, we restrict the relationship rules for

variance pair such that

σ2
11 = t1× σ2

01, and σ2
12 = t2× σ2

02, (5.3)

where the ratio values t1, t2 << 1. In real experiments, we found that a good choice of

t1, t2 could be less than 0.01. Meanwhile, the denoising performance is less sensitive with

σ1m, but more relies on the choice of σ0m. It matches the fact that the variance value

corresponding to edges should be obviously larger than the one to clean smooth areas.

Finally, we draw our attentions to the tuning of σ0m’s. From Equation (4.58), we

can learn two basic features. First, the σ2
01 · A1 and σ2

02 · A2 have to be upper bounded

by max(B1) and max(B2). In theorem, those hidden parameter can be found by σ01 =√
max(B1)
max(A1) , and σ02 =

√
max(B2)
max(A2) . Ideally, we need to choose max(B̂1) ≈ max(B1) and
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max(B̂2) ≈ max(B2). Second, as long as σ0m’s are fixed values, the estimator in (4.58)

is an one-to-one function. However, the pixel values which are close to the maximum

have higher chance to be outliers or suffer from saturation. So, let η.xAm denotes the x-th

percentile of Am, instead of [max(A1), max(A2)], we are mapping the near maximum

values [η.xA1
, η.xA2

] to max(B).

More importantly, [max(B1), max(B2)] is not directly available. So to determine the

accurate upper bounds becomes impractical. By comparing the range and distribution of

Figure 5.5(a) and (b), we realize that there exist y < 100 such that the y-th percentile of

B̃: [η.y
B̃1
, η.y

B̃2
] = [max(B1), max(B2)]. Then the denoising parameters are computed by:

σ01 =

√
η.y

B̃1

η.xA1

, and σ02 =

√
η.y

B̃2

η.xA2

. (5.4)

As a result, the tunable parameters switches from σ0m’s to the pairs of (x, y) . Based

on our experiments, we found a reasonable range of x could be 1 ∼ 3. Since the coarser

level wavelet coefficients naturally suppress the noise, the values of y’s are increasing as the

wavelet level growing up.

Next, as shown in Figure 5.5, we compared several denoising results using over-high

values of y (y = 98) for (c,e) and very low values (y = 5) for (d,f). The results in (c)

and (d) have obvious color artifacts in the flatter areas. By contrast, the results in (e) and

(f) are cleaner because they were denoised under one extra level of wavelet decomposition.

Note that the parameters we used for (c) and (d) remained the same for (e) and (f) in

the three most fine levels. Unlike (c) and (d) whose results are generally similar ((c) is

slightly noisier than (d)), the result in (e) has strong over-shooting defects in the edges, but

closer sharpness as (c,d). On the contrary, the result in (f) is too over-smoothed and having

strong bleeding artifacts in the edge. We repeated this comparisons using 5 different scenes
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with several different noise levels, and observed the same phenomenons. Therefore we have

conclusions as follow: 1), the over-shooting and bleeding artifacts are more sensitive to the

choice of y’s in coarser level, particularly for the 4-th or higher level coarser subbands. 2),

for the first 2 or 3 levels fine subbands, the values of y’s should be low to have adequate

enough noise reduction. In summary, as an example illustrated in Figure 5.5(g), we expect

a range of upper bounds that just smaller than the values producing over-shooting and

bigger than the values can result in bleeding artifact.

5.2.2 Verification Using Synthetic Images

Let log �̂(F) denote any denoising function estimating the latent clean chromaticity �

in log domain. In the previous sections, we established a scheme that in log chromaticity

coordinate, log �̂B̂(A) could achieve the minimum `2 error with respect to log �, such that:

γ
[

log �̂B̂(A)
]
≤ γ

[
log �̂(A)

]
(5.5)

To verify this, we implement the proposed method using synthetic images, and compare its

performance with some other existing color denoising techniques. We collected 63 different

natural scenes of cleaner RGB images using Sony α7RIII camera, and used them as ideal

references �. Then we simulated the Poisson corrupted images with three levels of pseu-

dorandom noise. In this study, the level of noise is represented in terms of the maximum

intensity of F. Then we denoise all the 63×3 samples using CBM3D [5] and Anscombe trans-

formation [9], the color-MRSO [4], the dnCNN [6], and the proposed method, respectively.

For better visual performance, the CBM3D, the color-MRSO (CMRSO), and the dnCNN

methods are implemented in color-opponent space. In particular, the use of CMRSO is de-

scried in Section 2.2.2 since the original work was designed for gray-scale image. For the use

of dnCnn, we implemented it using the MATLAB 2018b function from the Deep Learning
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Table 5.2: Summation MSE score in log chromaticity coordinates averaged over 63 samples.

Each score is computed as
∑

m γ
[

log θ̂m(F)
]
. The maximum intensity of F indicates the

noise level. max(F) = 20 corresponds to the moderate noisy scenario. max(F) = 10
corresponds to the high noisy scenario. max(F) = 5 corresponds to the extremely noisy
scenario. Each noisy image was denoised with four different methods. The method with
score in bolder face has the minimum `2 error, indicating the best obtained performance in
each noise level.

Denoising Method

max(F) CBM3D [5]+ [9] CMRSO [4] dnCNN [6] Proposed

20 0.0057 0.0051 2.0187 0.0062

10 0.0104 0.0098 9.7161 0.0087

5 0.0212 0.0185 33.3189 0.0130

ToolboxTM. The MATLAB build-in function was not pre-trained using RAW sensor data. In

order to better match the scale of training image, we tried several ways, such as to include

white-balance before denoising, or to compare gamma correction before/after denoising.

We realize that the build-in training works better with pre-white-balance and pre-gamma

corrected image. So we kept those pre-processing for both simulation experiments and for

the following real data experiments.

With the discussion above in mind, we report in Table 5.2 the MSE comparison between

different denoising methods in log chromaticity coordinate. For each sample we collected

summation MSE scores of four denoising methods’ result. The summation score was com-

puted by the sum of `2 errors in each color channel, such as
∑

m γ
[

log θ̂m(F)
]
. From the

experimental results we see that when noise level is low (the maximum pixel value is high),

the denoising performances of CBM3D and CMRSO are compatible with the proposed

method. However, when the noise level is high, the performances of compared methods

drop faster than the proposed one.
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(a) (b) (c) (d) (e) (f)

Figure 5.6: The Relatively clean image taken by increasing the illumination. Scenes were
captured using Sonyα7RIII with pixel-shifting mode to capture the full resolution R/G/B
data. Clean images are used as the proxies of latent color intensities.

5.2.3 Real Camera Sensor Data Experiment

Finally, we verify the visual performance of the proposed color denoising. Similar as we

mentioned before, several scenes of images were captured using Sony α7RIII in raw sensor

mode with all manual settings under low light condition. For each scenes, camera settings

were varied to ensure that both less/moderate/very noisy conditions were being included.

We captured a diverse set of scene contents comprised of resolution chart, natural objects,

man-made objects, stuffed animals, etc. The Sony pixel-shifting mode enables the access of

full resolution RGB data without the requirement of demosaicking technique. Each scene

was captured with the Gretag Macbeth Colorchecker [42] being included. Because the raw

sensor data value H is assumed to be an affine transformation of the Poisson count variable

F, such that H = αF+ β. And the affine noise parameters α and β could be accurately de-

termined by the Colorchecker calibration process [34]. Following the procedures introduced

above, the denoising parameters were chosen to avoid over-shooting artifact, and to keep as

much sharpness as we could. In order to show the robustness, we kept using same set of pa-

rameters to denoise all the scenes. For very noisy condition, we used 4 levels of Haar-wavelet

transform. For the rest, we used 3 levels of transform. Same as the test described in Figure

5.5, the parameters for 3 levels denoising remained the same in the first three finest scales
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5.7: Color denoising results comparison. The reference image correspond to
Figure5.6(a) and (e). Noisy images were taken under low illumination using same cam-
era as Figure5.6, but three different camera settings. The acquired less/moderate/very
noisy images are displaced in a same picture to demonstrate the degradation change ac-
cording to noise level. (a,b) Noisy images. (c,d) Denoising each color channel independently
using MRSO [4]. (e,f) Denoising in color-opponent space using (2.22)–(2.27). (g,h) Pro-
posed color denoising in log-chromaticity coordinate. (i,j) Denoising using CBM3D [5]. (k,l)
Denoising in color-opponent using dnCnn [6].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5.8: Some other examples of color denoising results comparison. The reference image
correspond to Figure5.6(c) and (f). The figure arrangement follows Figure 5.7.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 5.9: Some other examples of color denoising results comparison. The reference image
correspond to Figure 5.6(b) and (d). The figure arrangement follows Figure 5.7.
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of 4 levels denoising. Similarly, we compared its visual quality with other results denoised

by CBM3D [5] and Anscome-transform [9], original MRSO [4] (denoising each color channel

independently), CMRSO in color-opponent space, and dnCnn [6] in color-opponent space.

Using Figure 5.6 as cleaner references, the comparisons are illustrated in Figure 5.7—5.9.

As expected, CBM3D results in (i,j) and dnCnn results in (k,l) work fine during less noisy

conditions, but will have strange artifacts in higher noise levels. The dnCnn denoising could

be better if we have enough real data to re-train the network. However, it is not practical in

this work because the lack of real noisy image dataset. As for the using of original MRSO

in each color channel independently, as shown in (c,d), the color artifacts are obvious and

spatially inconsistent. If do CMRSO denoising in color-opponent space, as shown in (e,f),

the colors are much more spatially invariant. However, the color shifting around the edge

are strong. For example, around black-white line patterns, the white areas turn in pink.

This is the color artifacts suffered from white-balance. It matches the discussion we intro-

duced in Figure 2.2. By contrast, the proposed denoising in log-chromaticity coordinate, as

results shown in (g,h). It can maintain the spatial consistency, meanwhile can achieve the

correct color noise reduction in both flatter and edge areas. Remember that the proposed

method shares the same luminance denoising as CMRSO in this research. Thus (e,f) and

(g,h) have the same spatial sharpness. So the color improvement from (e,f) to (g,h) demon-

strates the significance of the proposed CLRT domain strategy. Meanwhile, here we would

like to emphasize reader that the color edges were not obviously influenced by the trade-off

described in (4.40).

Based on the experimental results for color denoising using synthetic data and real

camera data, the proposed denoising strategy outperformed the other compared methods.

However, the proposed method is not without limitation. First of all, the tuning process of
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denoising parameter is time consuming. If the noise level is far different from our testing

data, it might require different setup to achieve the best performance. Secondly, in this

paper, the luminance denoising is borrowing the idea of original MRSO [4]. Sometimes,

the spatial sharpness of luminance is not compatible with popular patch-based denoising

method, e.g. CBM3D [5]. The overall performance would be better if we could have

better luminance reconstruction. Thirdly, the choice of Prior model directly control the

performance of chromaticity denoising. The mixture of two Gaussian’s is not perfectly

accurate to describe the cleaner chromaticity in log scale. Therefore, for future study, 1),

we will extend the CLRT domain work to luminance study to improve the spatial sharpness.

2), we will try to extend the current work using other Prior model to further improve the

color performance.
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CHAPTER VI

CONCLUSIONS

6.1 A: Conclusions of Parameter Estimation

We proposed a Poisson noise parameter estimation technique designed specifically for

video cameras. We showed that the noisy pixel value X̃ conditioned on the sum of two

noisy pixels across frames Z̃ = X̃ + Ỹ is a Binomial random variable, whose variance σ2
X̃|Z̃

scales linearly with Z̃. We proved that the Poisson noise parameters can be recovered from

the slope and intercept of this line, which we carry out using the proposed robust lower-

bound regression method. Though the algorithm is sensitive to foreground and background

movements, we largely overcome them using camera motion and scene motion analysis.

The algorithm is not sensitive to textures and edges, which is the main advantage over the

existing Poisson noise parameter methods.

6.2 B: Conclusions of Color Image Denoising

We proposed a new Poisson color image denoising strategy for RGB video camera.

The idea is to reconstruct the latent chromaticity information, which is fundamentally

different with almost all of the exisiting denoising techniques. We have shown it again that

chromaticity coordinate analysis is the stable representation of color signal. However, since

it is defined in terms of ratio, the computational difficulty limited people to work with it

directly. We largely overcome this problem by providing CLRT transform and corresponding

analysis. Based on that, we proposed one MMSE estimator denoising framework, enabling

a spatially invariant way for future color image denoising.
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APPENDIX A

Appendix for Color Image Denoising

A.1 Proof of (4.58)

Let {B(n)|Z = zm} ∼ N
([

0
0

]
,Σm

)
, we have:

eA1(n)B1(n)+A2(n)B2(n) · Pr[B(n)|Z = zm]

=
e

−(B2
1(n)−2σ2

m1A1(n)B1(n))
2σ2
m1 e

−(B2
2(n)−2σ2

m2A2(n)B2(n))
2σ2
m2

2π
√
|Σm|

=
exp

{
−1

2

[
B1(n)− A1(n)σ2

m1
B2(n)− A2(n)σ2

m2

]ᵀ
Σ−1

0

[
B1(n)− A1(n)σ2

m1
B2(n)− A2(n)σ2

m2

]}
2π
√
|Σm|

× e
A2

1(n)σ2
m1

2 e
A2

2(n)σ2
m2

2 .

(A.1)

Note that the first portion of the above product describe a new 2D Gaussian distribution

function with mean vector
[
A1(n)σ2

m1
A2(n)σ2

m2

]
and covariance matrix Σm. Use similar method for the

derivation of (4.52), we compute the following conditional expectation as:

E(B(n)|FL,A(n), Z = z0)

=

∫
B(n)Pr[B(n)|FL,A(n), Z = z0] dB(n)

=

∫
B(n)eA1(n)B1(n)+A2(n)B2(n) · Pr[B(n)|Z = zm] dB(n)∫
eA1(n)B1(n)+A2(n)B2(n) · Pr[B(n)|Z = zm] dB(n)

.

=

[
A1(n)σ2

m1

A2(n)σ2
m2

]
(A.2)

Thus, the proof of (4.58) is done by substituting (A.2) into (4.57).
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A.2 Proof of (4.59)

Note that {Z = zm} does not depend on the value of FL. Use Bayes rule, we rewrite

the conditional probability Pr[Z = z0|FL,A(n)] as follow:

Pr[Z = z0|FL,A(n)]

=
Pr[A(n)|FL, Z = z0]Pr[Z = z0]

1∑
m=0

Pr[A(n)|FL, Z = zm]Pr[Z = zm]

(A.3)

By the definition of marginal density function, we have

Pr[A(n)|FL, Z = zm]

=

∫
Pr[A(n)|B(n),FL, Z = zm]Pr[B|FL, Z = zm] dB(n)

=

∫
Pr[A(n)|B(n),FL]Pr[B|Z = zm] dB(n)

(A.4)

Substituting (A.4) into (A.3), we have Pr[Z = z0|FL,A(n)] :=∫
Pr[A(n)|B(n),FL]Pr[B|Z = z0] dB(n)Pr[Z = z0]

1∑
m=0

∫
Pr[A(n)|B(n),FL]Pr[B|Z = zm] dB(n)Pr[Z = zm]

(A.5)

Recalling (4.49) and (A.1), (A.5) can be re-written as:∫
eA

ᵀ(n)B(n)Pr[B|Z = z0] dB(n)Pr[Z = z0]
1∑

m=0

∫
eAᵀ(n)B(n)Pr[B|Z = zm] dB(n)Pr[Z = zm]

=
ρ · e

Aᵀ(n)Σ0A(n)
2

ρ · e
Aᵀ(n)Σ0A(n)

2 + (1− ρ) · e
Aᵀ(n)Σ1A(n)

2

.

(A.6)

Pay attention that the constant terms in (4.49) are cancelled in (A.6).
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