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ABSTRACT 

SPATIAL HETERODYNE IMAGING USING A BROADBAND SOURCE 

 

Name: Zimnicki, James John 
University of Dayton 

 
Advisor: Dr. Paul McManamon 

 

Imaging through obscurants is a critical issue for lidars looking through clouds, or 

human tissue.  Traditionally Spatial heterodyne imaging has been performed with a low-

bandwidth laser source that exhibits good coherence length characteristics. One of the 

drawbacks of using a low-bandwidth source with long coherence length is that signal 

return from all objects within the coherence length of the source mix equally well on the 

camera imaging the system. Broadening the bandwidth of the source shortens the 

coherence length of the system. This thesis intends to show that through careful system 

design, spatial heterodyne imaging can be performed in the presence of a broadband 

source, allowing significantly improved imaging in the presence of obscurants such as 

clouds or human tissue. The method used will be phase modulating the source with a 

pseudo-random bit sequence and matching the optical path lengths of the signal and local 

oscillator branches of the system. By matching the path lengths for a pseudo-random 

coded source we can image objects at specific distances related to the modulation speed 

and code length, while isolating the power of signal return from objects at other distances 

as a factor of the autocorrelation coefficient of the code.   
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INTRODUCTION 

 

1.1 Problem Statement 

Spatial heterodyne systems are typically designed using a source laser of high 

temporal coherence, or coherence length. One drawback of this source is that returns 

from any distance within the coherence length will mix equally well on the detector array, 

or camera. Broadening the source linewidth, or bandwidth, has the effect that the 

coherence length is much shorter and objects at distances greater than this length cannot 

be imaged clearly.  

Just like temporal heterodyne has reduced mixing efficiency when the return signal 

and the LO are not spatially matched, spatial heterodyne has reduced mixing efficiency 

when the returned signal and the LO are not temporally matched. Temporal fringes can 

be created by modulating the phase of either the signal or LO branches of the system, 

which would cause the spatial fringes on the camera to average over the integration time 

and wash out, reducing the mixing efficiency. This effect has been shown to have 

detrimental effects to the sensitivity of the system by creating the appearance of a moving 

target, and thus, a Doppler shifted signal [1]. The Doppler shift frequency between the 

signal and LO at the detector create temporal beat frequencies.  

By modulating both branches at the same rate we can allow for the relative phase 

to remain the same, creating stable fringe patterns. In this thesis we show that spatial 

heterodyne imaging can be performed with a broadband signal. The correct modulation 

scheme can allow us to reduce the mixing efficiency for areas in the system FOV that are 
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at distances of no interest, allowing imaging through obscuring media. Pseudo-random bit 

sequences (PRBS) are such a modulation scheme that will allow us the rejection of 

interference from distances of no interest. 

   

1.2 Background 

Off-axis holography is a field of study that began its existence in 1961 when Leith 

and Upatnieks[2]–[4] expanded on the work shown by Gabor[5]. With the introduction of 

the off-axis system, the object field could be disseminated from the image field by a shifting 

introduced with an off-axis reference beam. This work opened up new opportunities in the 

field, one of which is the ability to create digital holograms using computers and 

reconstruction algorithms. Goodman and Lawrence are credited for the first digital 

hologram in their 1967 paper[6]. 

The use of PRBS are well known in the communications and radar communities. 

The work by MacWilliams and Sloane has summarized the properties of such 

sequences[7]. The property of interest to the process of spatial heterodyne imaging is the 

autocorrelation rejection for misaligned codes, those delayed in return time at the detector. 

This property is still being explored in recent works[8], [9] for various heterodyne 

applications and shows the potential to work in a coherent imaging system as well.  

 

1.3 Thesis Overview 

Chapter 2 of this thesis consists of imaging theory for a spatial heterodyne system 

as well as theory for the effects of modulation in creating temporal fringes. We describe 

how pseudo-random bit sequence can be used to align our code to specific distances and 

the amount of isolation provided by a misalignment of the code. Chapter 3 will discuss the 

simulation of the system in the MATLAB environment involving a few different codes and 

their effects on the system. The effect of incomplete code sequences is also discussed. 
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Chapter 4 will cover the lab experiment implementing the theory and system design 

covered by this thesis and will show how it can operate in practice. Chapter 5 will discuss 

the results of each section and conclude with a recommendation of future work in this 

area.  
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THEORY 

 

2.1 Imaging System 

In this section we develop the imaging system diffraction theory relevant to our 

project. Both the work by Goodman[10] and Kraczek[11] will be used as it applies to this 

thesis. We start with the diffraction of an object through a space and a single lens and 

then develop the theory behind spatial heterodyne systems.  

 

2.1.1 Diffraction Theory 

In order to describe the effects of the phase modulation on the spatial heterodyne 

process, diffraction effects in the system must first be defined. The general starting point 

for diffraction theory is the Huygens-Fresnel principle, which is rewritten in Goodman[10], 

equation 4-9, as shown in Equation 2.1. 

 

𝑈(𝑥, 𝑦) =  
𝑧

𝑗𝜆
∬ 𝑈(𝜉, 𝜂)

exp(𝑗𝑘𝑟)

𝑟2
 𝑑𝜉 𝑑𝜂

𝛴

 (2.1) 

This defines the diffraction of a point in the object plane, U(ξ, η), into the secondary plane 

which we will call the aperture plane, U(x, y). A depiction of the space is shown in Figure 

2-1 below. 
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Figure 2-1: Diffraction Geometry Showing the Three Planes of Interest: Object, Aperture, 
and Image 

 

As shown in the illustration, r is the distance between the point P1 in the object 

plane and P2 in the aperture plane. This distance can be shown to be 

 𝑟 =  √𝑧1
2 + (𝑥 − 𝜉)2 + (𝑦 − 𝜂)2 , 

 
(2.2) 

 

which is simply the distance formula between two points in rectangular coordinates.  

 The Huygens-Fresnel principle can be reduced to a simpler form to aid in the 

analysis of our optical system, called the Fresnel diffraction integral. This will give an 

approximation in the near field of the object. In order to build this approximation, we first 

look at the equation for r, Eq. (2.2), and factor out the z1 term from the radical expression 

 

𝑟 =  𝑧1√1 + (
(𝑥 − 𝜉)

𝑧1
)

2

+ (
(𝑦 − 𝜂)

𝑧1
)

2

 . (2.3) 

 

 From Eq. (2.2) it can be shown, as in Goodman, that we can use the binomial 

expansion of the square root term in order to obtain a good approximation of the distance 

r between P0 and P1. The radical term can then be viewed as 

 
√1 + 𝑏 = 1 + 

1

2
𝑏 +

1

8
𝑏2 + ⋯, (2.4) 
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of which we will take only the first two terms. This is appropriate if the magnitude of 𝑧1 ≫

(𝑥 − 𝜉) 𝑜𝑟 (𝑦 − 𝜂), which will be assumed for our system and shown later to be accurate. 

Using the first two terms of Eq. (2.4) where 𝑏 =  (
(𝑥−𝜉)

𝑧1
)

2
+  (

(𝑦−𝜂)

𝑧1
)

2
, we reduce 

Eq. (2.3) to  

 
𝑟 ≈  𝑧1 [1 +

1

2
(

𝑥 − 𝜉

𝑧1
)

2

+  
1

2
(

𝑦 − 𝜂

𝑧1
)

2

] , 

 

(2.5) 

 

which we substitute into Eq. (2.1) to get 

 

𝑈(𝑥, 𝑦) =  
𝑧1

𝑗𝜆
∬ 𝑈(𝜉, 𝜂)

exp (𝑗𝑘𝑧1 [1 +
1

2
(

𝑥−𝜉

𝑧1
)

2
+  

1

2
(

𝑦−𝜂

𝑧1
)

2
])

(𝑧1 [1 +
1

2
(

𝑥−𝜉

𝑧1
)

2
+  

1

2
(

𝑦−𝜂

𝑧1
)

2
])

2  𝑑𝜉 𝑑𝜂

∞

−∞

. 

. 

(2.6) 

To simplify Eq. (2.6) we can assume that the contributions from the r term we substituted 

into the bottom of the quotient to be negligible apart from the lone z1 term that results from 

the product. For the exponential term the same cannot be said, as if we assume our 

system to have a wavelength 𝜆 ≈ 0.5 𝜇𝑚 , our wavenumber is on the order of 107 𝑚−1. 

This fact, combined with the knowledge that phase wraps at 2π, means that we cannot 

make such an assumption as we did with the quotient term.  

Eq. (2.6) then reduces to  

 

𝑈(𝑥, 𝑦) =  
𝑧1

𝑗𝜆
∬ 𝑈(𝜉, 𝜂)

exp (𝑗𝑘𝑧1 [1 +
1

2
(

𝑥−𝜉

𝑧1
)

2
+ 

1

2
(

𝑦−𝜂

𝑧1
)

2
])

(𝑧1 [1 +
1

2
(

𝑥−𝜉

𝑧1
)

2
+ 

1

2
(

𝑦−𝜂

𝑧1
)

2
])

2  𝑑𝜉 𝑑𝜂

∞

−∞

 , (2.7) 

 

and redistributing the top exponential we come to Eq. (2.7) 

 

𝑈(𝑥, 𝑦) =  
1

𝑗𝜆𝑧1
∬ 𝑈(𝜉, 𝜂) exp (𝑗𝑘𝑧1 +

𝑗𝑘

2𝑧1

(𝑥 − 𝜉)2 +  
𝑗𝑘

2𝑧1

(𝑦 − 𝜂)2)  𝑑𝜉 𝑑𝜂

∞

−∞

 , (2.8) 

 

which further reduces, again, to 
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𝑈(𝑥, 𝑦) =  
𝑒𝑗𝑘𝑧1

𝑗𝜆𝑧1
∬ 𝑈(𝜉, 𝜂) exp (

𝑗𝑘

2𝑧1

[(𝑥 − 𝜉)2 +  (𝑦 − 𝜂)2])  𝑑𝜉 𝑑𝜂

∞

−∞

 . (2.9) 

 

 Eq. (2.9) is the Fresnel diffraction integral that we were interested in developing 

from the Huygens-Fresnel principle. This equation defines the diffracted field at coordinate 

(x, y) given a field from the (ξ, η) plane.  

For ease in later calculations, we introduce the Point Spread Function (PSF) which 

defines the impulse response of our system to a single point object. We start with a delta 

function, defined at a point (ξ0, η0) in the object plane, as 

 𝑈(𝜉, 𝜂) =  𝛿(𝜉 − 𝜉0, 𝜂 − 𝜂0) . (2.10) 
 

We then insert this function into Eq. (2.9) and evaluate it to get the result 

 
𝑈𝑙(𝑥, 𝑦) =  

𝑒𝑗𝑘𝑧1

𝑗𝜆𝑧1
 𝑒

𝑗𝑘

2𝑧1
[(𝑥− 𝜉0)2+(𝑦− 𝜂0)2]

 . (2.11) 

 

If we want to generalize for any point in the object plane, we can change (ξ0, η0) simply to 

(ξ, η) to get 

 
𝑈𝑙(𝑥, 𝑦) =  

𝑒𝑗𝑘𝑧1

𝑗𝜆𝑧1
 𝑒

𝑗𝑘

2𝑧1
[(𝑥− 𝜉)2+(𝑦− 𝜂)2]

 . (2.12) 

 

This defines the field contribution in the aperture plane by a single point in the object plane, 

and will need the combinations of all points in the object plane to create the total field 

incident in the aperture plane. 

 

2.1.2 Transformation from a Lens 

For our experiment we will be using a simple, single-lens imaging system. For 

simplicity, we assume our lens to be a perfect thin lens. If we look at the geometry of a 

lens, as drawn in Goodman[10], we see what is shown in Figure 2-2. 
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Figure 2-2: Thickness Geometry of Lens 

 

In Figure 2-2 we have several terms to define. Each section of the lens has an 

overall thickness designated by tn where n corresponds to the section number. For the first 

and third sections, we have the terms Rn and Δtn, which are the radius of the lens and the 

distance travelled before coming into contact with the lens surface, respectively. At the 

lens’ widest point along the optical axis Δtn, would equal 0, whereas at a point (x, y) it 

would equal either 

 
𝛥𝑡1 =  𝑅1 − √𝑅1

2 − 𝑥2 − 𝑦2 (2.13) 

 

or 

 
𝛥𝑡3 =  −𝑅3 − √𝑅3

2 − 𝑥2 − 𝑦2 (2.14) 

 

dependent on which section of the lens is being analyzed. We ignore the flat, middle 

section of the lens because we assume a perfect thin lens, but this would result in a 

constant thickness/phase term.  

The total thickness of each section at a point (x, y) is then simply the subtraction 

of the Δtn term from the tn term in each region, and is given in Eqs. (2.15) & (2.16). 
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𝛥1(𝑥, 𝑦) =  𝑡1 − [ 𝑅1 − √𝑅1

2 − 𝑥2 − 𝑦2] 
(2.15) 

 

 
𝛥3(𝑥, 𝑦) =  𝑡3 − [−𝑅3 − √𝑅3

2 − 𝑥2 − 𝑦2] (2.16) 

 

The total thickness of the lens at the point (x, y) can then be expressed as 

 

𝛥(𝑥, 𝑦) =  𝑡 −  𝑅1 [1 − √1 −
𝑥2 + 𝑦2

 𝑅1
2 ] +  𝑅3 [1 − √1 −

𝑥2 + 𝑦2

 𝑅3
2 ] , 

(2.17) 

 

where t = t1 + t3. This is similar to the result Goodman[10] reaches in Eq. (5-6) of his text, 

although we’ve ignored the central section of the lens.  

The thickness function in Eq. (2.17) can be simplified further if we use a paraxial 

ray assumption, that is, that only the wavefront nearest the optical axis is of interest. This 

is easily made in practice and in our single lens imaging system (4f system) by using a 

reasonably small lens with a long focal length, or, consequently, that the radius of the lens 

is large in comparison with the off-axis distance of our point. When we make this 

assumption, we can use a Taylor series expansion to get 

 

𝛥𝑡𝑛(𝑥, 𝑦) =   𝑅𝑛 [1 − √1 −
𝑥2 + 𝑦2

 𝑅𝑛
2 ] ≈  𝑅𝑛 [1 − (1 −

𝑥2 + 𝑦2

 𝑅𝑛
2 ) ] =

𝑥2 + 𝑦2

2 𝑅𝑛
 

(2.18) 

 

Eq. (2.18) is then easily substituted into Eq. (2.17) to give 

 
𝛥(𝑥, 𝑦) =  𝑡 −

𝑥2 + 𝑦2

 2𝑅1
+ 

𝑥2 + 𝑦2

 2𝑅3
= 𝑡 − 

𝑥2 + 𝑦2

2
(

1

𝑅1
−

1

𝑅3
) , 

(2.19) 

 

Having the thickness function of the lens, we then want to find the phase change 

it causes. Phase change is accumulated in a medium as 

 
𝛷 =  

2𝜋

𝜆
𝑛𝐿 = 𝑘𝑛𝐿 , 

(2.20) 

 



10 
 

where n is the refractive index of the medium, L is the distance travelled in the medium 

and k is the wavenumber. If we are to find the phase accumulation travelling through a 

portion of the lens at a point (x, y), we must describe each section of the lens with phase. 

The first section accumulates a phase of 

 𝛷1(𝑥, 𝑦) =  𝑘(𝑛𝑙(𝑡1 − ∆𝑡1(𝑥, 𝑦) +  𝑛𝑎∆𝑡1(𝑥, 𝑦)), 
 

(2.21) 

 

where nl is the refractive index of the lens and na is that of air. 

We continue to ignore the second section and describe the third section as 

 𝛷3(𝑥, 𝑦) =  𝑘(𝑛𝑙(𝑡3 − ∆𝑡3(𝑥, 𝑦) +  𝑛𝑎∆𝑡3(𝑥, 𝑦)), (2.22) 
 

and since we know our simplified equation for Δtn, the phase accumulation is then 

 
𝛷𝑛(𝑥, 𝑦) =  𝑘 (𝑛𝑙 [𝑡𝑛 −

𝑥2 + 𝑦2

2 𝑅𝑛
] +  𝑛𝑎

𝑥2 + 𝑦2

2 𝑅𝑛
), 

(2.23) 

 

or  

 
𝛷𝑛(𝑥, 𝑦) =  𝑘 (𝑛𝑙𝑡𝑛 + (𝑛𝑎 − 𝑛𝑙)

𝑥2 + 𝑦2

2 𝑅𝑛
) . 

(2.24) 

 

We can now add the contributions to phase change by the two interesting sections 

of the lens, which results in  

 𝛷𝑙(𝑥, 𝑦) = 𝛷1(𝑥, 𝑦) + 𝛷3(𝑥, 𝑦) = 

 𝑘 ((𝑛𝑙𝑡1 + (𝑛𝑎 − 𝑛𝑙)
𝑥2 + 𝑦2

2 𝑅1
) + (𝑛𝑙𝑡3 + (𝑛𝑎 − 𝑛𝑙)

𝑥2 + 𝑦2

2 𝑅3
)) = 

𝑘𝑛𝑙(𝑡1 + 𝑡3) − 𝑘
(𝑥2 + 𝑦2)

2
[(𝑛𝑙 − 𝑛𝑎) (

1

𝑅1
−

1

𝑅3
)]. 

 

(2.25) 

 

Looking at the last bracketed term in Eq. (2.25) we notice a familiar equation. As Goodman 

notes, this term can be combined into a common term f, and is a form of the commonly 

known lens-marker’s formula.  
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 1

𝑓
= (𝑛𝑙 − 1) (

1

𝑅1
−

1

𝑅3
) . 

(2.26) 

 

 We have simplified our form of the lens-maker’s formula by assuming na to be that 

of air, or ≈1. Then simplifying Eq. (2.25) with this step we get to 

 
𝛷𝑙(𝑥, 𝑦) = 𝑘𝑛𝑙𝑡 − 𝑘

(𝑥2 + 𝑦2)

2𝑓
. 

 

(2.27) 

This result leads to the change in the field due to the lens, which is given as  

 
𝑈𝑙𝑒𝑛𝑠 = 𝑒𝑗𝑘𝑛𝑡𝑃(𝑥, 𝑦)𝑒

(−𝑗
𝑘

2𝑓
(𝑥2+𝑦2)

, 
 

(2.28) 

where P(x, y) is the extent of the lens in space and is referred to as the pupil function.  

 
𝑃(𝑥, 𝑦) =  {

1 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑒𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑙𝑒𝑛𝑠

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

 

(2.29) 

 

To find the field behind the lens we multiply Eq. (2.28) by Eq. (2.12) to get 

 
𝑈𝑙

′(𝑥, 𝑦) = 𝑒𝑗𝑘𝑛𝑡𝑈𝑙(𝑥, 𝑦)𝑃(𝑥, 𝑦)𝑒
(−𝑗

𝑘

2𝑓
(𝑥2+𝑦2)

, 
 

(2.30) 

 

which is the same result found in Goodman, Eq. 5-12, apart from the constant phase factor 

which is ignored in his text. 

 

2.1.3 Imaging 

The last piece of Figure 2-1 left to discuss is the formation of the image as the field 

propagates from the aperture plane to the image plane. To describe this section we recycle 

the derivation for Eq. (2.9) and simply shift the coordinate planes of interest.  

 

𝑈(𝑢, 𝑣) =  
𝑒𝑗𝑘𝑧2

𝑗𝜆𝑧2
∬ 𝑈𝑙

′(𝑥, 𝑦)𝑒
(

𝑗𝑘

2𝑧2
[(𝑢−𝑥)2+ (𝑣−𝑦)2])

 𝑑𝑥 𝑑𝑦

∞

−∞

  (2.31) 
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 We can now describe the propagation through the system as the combination of 

Eqs. (2.31), (2.30), and (2.12). First, Eq. (2.31) should now be reclassified as the impulse 

response, that is, the function that describes the relationship between a point-source at 

the object plane and its field in the output, or image, plane. As Goodman notates in Eq. 5-

24, the impulse response, h, should be approximately a Dirac delta function, plus or minus 

any magnification, M, or a constant phase term, K.  

 ℎ(𝑢, 𝑣;  𝜉, 𝜂)  ≈ 𝐾 𝛿(𝑢 ± 𝑀𝜉, 𝑣 ± 𝑀𝜂) (2.32) 
 

We rewrite and simplify to get Eq. (2.33). 

 ℎ(𝑢, 𝑣; 𝜉, 𝜂) = 

 
1

𝜆2𝑧1𝑧2
𝑒𝑗𝑘(𝑧1+𝑧2)𝑒𝑗𝑘𝑛𝑡𝑒

𝑗𝑘

2𝑧2
(𝑢2+𝑣2)

𝑒
𝑗𝑘

2𝑧1
(𝜉2+𝜂2)

 

∬ 𝑃(𝑥, 𝑦)𝑒
𝑗

𝑘

2
(

1

𝑧1
+

1

𝑧2
−

1

𝑓
)(𝑥2+𝑦2)

𝑒
(−𝑗𝑘[(

𝜉

𝑧1
+

𝑢

𝑧2
)𝑥+(

𝜂

𝑧1
+

𝑣

𝑧2
)𝑦])

 𝑑𝑥 𝑑𝑦  .

∞

−∞

  

(2.33) 

 

 

 To eliminate some of the terms in Eq. (2.33) and simplify it significantly, we can 

now make some assumptions as to the quadratic phase terms. Starting with the term 

𝑒
𝑗𝑘

2𝑧2
(𝜉2+𝜂2)

, we assume that the distance from the object to the lens is much greater than 

the physical size of the object, and so the term equals unity.  

 The second term to consider is in the integral, 𝑒
𝑗

𝑘

2
(

1

𝑧1
+

1

𝑧2
−

1

𝑓
)(𝑥2+𝑦2)

, and can be 

ignored if we use the lens law so that imaging takes place, that is (
1

𝑧1
+

1

𝑧2
−

1

𝑓
) = 0. 

The third term, 𝑒
𝑗𝑘

2𝑧2
(𝑢2+𝑣2)

, cannot be ignored because we neither measure the 

field of the image on a spherical surface nor do we ignore the phase distribution of the 

image. Since we have eliminated two of the three quadratic phase terms, we rewrite Eq. 

(2.33) as 

 ℎ(𝑢, 𝑣; 𝜉, 𝜂) = (2.34) 
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1

𝜆2𝑧1𝑧2
𝑒𝑗𝑘(𝑧1+𝑧2)𝑒𝑗𝑘𝑛𝑡𝑒

𝑗𝑘

2𝑧2
(𝑢2+𝑣2)

∬ 𝑃(𝑥, 𝑦)𝑒
(−𝑗𝑘[(

𝜉

𝑧1
+

𝑢

𝑧2
)𝑥+(

𝜂

𝑧1
+

𝑣

𝑧2
)𝑦])

 𝑑𝑥 𝑑𝑦  .

∞

−∞

  

 

We then rewrite Eq. (2.34) taking into account the magnification factor 𝑀 =  −
𝑧2

𝑧1
 

as, 

 ℎ(𝑢, 𝑣; 𝜉, 𝜂) = 

 𝑒𝑗𝑘(𝑧1+𝑧2)𝑒𝑗𝑘𝑛𝑡𝑒
𝑗𝑘

2𝑧2
(𝑢2+𝑣2) 𝑀

𝜆2𝑧2
2

∬ 𝑃(𝑥, 𝑦)𝑒
(−

𝑗𝑘

𝑧2
[(𝑢−𝑀𝜉)𝑥+(𝑣−𝑀𝜂)𝑦])

 𝑑𝑥 𝑑𝑦  .

∞

−∞

  
(2.35) 

 

Ignoring the magnification term, as we set it to be negative unity, we see that the 

integral of Eq. (2.35) is a Fourier transform of P(x,y).  

 ℎ(𝑢 − 𝜉, 𝑣 −  𝜂) = 

 𝑒𝑗𝑘(𝑧1+𝑧2)𝑒𝑗𝑘𝑛𝑡𝑒
𝑗𝑘

2𝑧2
(𝑢2+𝑣2) 𝑀

𝜆2𝑧2
2

 ℱ[𝑃(𝑥, 𝑦)] |
𝑓𝑥 =  

𝑢+ 𝜉

𝜆𝑧2
, 𝑓𝑦 =

𝑣+ 𝜂

𝜆𝑧2

 
(2.36) 

 

Since we know the impulse response of the system, Goodman states that we can 

write the image field Ui as he states in Eq. 5-23, 

 

𝑈𝑖(𝑢, 𝑣) =  ∬ ℎ(𝑢, 𝑣;  𝜉, 𝜂)𝑈𝑜(𝜉, 𝜂)𝑑𝜉𝑑𝜂 .

∞

−∞

 (2.37) 

 

This equation states that the image field can be described as the point responses of 

individual samples of the object field Uo(ξ,η). Since we have already described the point 

response function of our system, we can now describe the image field as 

 𝑈𝑖(𝑢, 𝑣) = 

 𝑒𝑗𝑘(𝑧1+𝑧2)𝑒𝑗𝑘𝑛𝑡
𝑀𝑒

𝑗𝑘

2𝑧2
(𝑢2+𝑣2)

𝜆2𝑧2
2

 ∬ 𝑈𝑜(𝜉, 𝜂)ℱ[𝑃(𝑥, 𝑦)] |
𝑓𝑥 =  

𝑢+ 𝜉

𝜆𝑧2
, 𝑓𝑦 =

𝑣+ 𝜂

𝜆𝑧2

𝑑𝜉𝑑𝜂

∞

−∞

 
(2.38) 
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2.1.4 Point Source Local Oscillator  

In order to create the spatial heterodyne imaging we mix the input field with a local 

oscillator that will create the spatial fringes across the detector surface. The local oscillator 

(LO) used will be from a fiber tip, as this closely approximates a point source, to create a 

spherical wave front within the numerical aperture of the fiber To create stationary fringes 

the LO and signal need to be the same wavelength (which can be done by using the same 

laser) and the difference in the object and LO optical paths need to be within the coherence 

length of the laser. We will discuss optical path length in another section. 

We model a point source as a Dirac delta function. We shift the delta function from 

the axis which, as we will later show, causes a separation between the LO and the pupil 

field terms in the Fourier plane. The equation we use for the delta function is 

 𝑈(𝛼, 𝛽) = 𝛿(𝛼 − 𝛼0, 𝛽 − 𝛽0), (2.37) 
 

as written by Kraczek[11], Eq. 2.54 in his thesis. 

As is done in his text, we diffract the LO to the image plane  in a similar fashion to 

what was done previously.  

 

𝑈(𝑢, 𝑣) =  
𝑒𝑗𝑘𝑧3

𝑗𝜆𝑧3
∬ 𝑈(𝛼, 𝛽) exp (

𝑗𝑘

2𝑧3

[(𝑢 − 𝛼)2 + ( 𝑣 − 𝛽)2])  𝑑𝛼 𝑑𝛽

∞

−∞

 . (2.38) 

 

 where z3 is a new distance, defined as the distance from the LO source to the image 

plane. Just as before, we expand Eq. (2.38) to  

 𝑈(𝑥, 𝑦) = 

𝑒
𝑗𝑘

2𝑧3
(𝑢2+𝑣2)

 
𝑒𝑗𝑘𝑧3

𝑗𝜆𝑧3
∬ 𝛿(𝛼 − 𝛼0, 𝛽 − 𝛽0)𝑒

−𝑗𝑘

𝑧3
(𝑢𝛼+𝑣𝛽)

𝑒
𝑗𝑘

2𝑧3
(𝛼2+𝛽2)

 𝑑𝛼 𝑑𝛽

∞

−∞

 . 
(2.39) 

 

Eq. (2.39) is evaluated as  

 
𝑈𝐿𝑂(𝑥, 𝑦) =  

𝑒𝑗𝑘𝑧3

𝑗𝜆𝑧3
𝑒

𝑗𝑘

2𝑧3
(𝑢2+𝑣2)

 𝑒
−𝑗𝑘

𝑧3
(𝑢𝛼0+𝑣𝛽0)

𝑒
𝑗𝑘

2𝑧3
(𝛼0

2+𝛽0
2

)
 . (2.40) 
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In order to create a regular spatial fringe pattern we must match the quadratic terms of the 

LO and signal. If the two are unmatched the fringe pattern will vary in spatial frequency as 

a function of the position on the detector; the fringes cannot be sampled if they become 

smaller than the Nyquist frequency of the pixels.  

 To mode match the LO to the signal we write 

 
𝑒

𝑗𝑘𝑠
2𝑧2

(𝑢2+𝑣2)
= 𝑒

𝑗𝑘𝐿𝑂
2𝑧3

(𝑢2+𝑣2)
 . (2.41) 

 

We can solve for the condition of mode matching our point source LO as 

 
𝑧3 =

𝑧2𝜆𝑠

𝜆𝐿𝑂
 . (2.42) 

 

In Kraczek[11], z2 is written as fs, or the focal length of the lens for the signal. We write z2 

due to the nature of our 4f system, or equivalently 2fs. Since this is the case, our LO must 

be in the same plane as the lens for mode matching to occur.  

 

2.1.5 Off-Axis Digital Holography/Spatial Heterodyne 

Camera sensors are not quick enough to follow the phase of incident light. Since 

we are unable to collect the amplitude and phase information of the field directly, we must 

resort to mathematically extracting it. Fortunately, systems exist that allow us to image an 

object and determine its phase information using post-processing. One such technique is 

off-axis holography, or spatial heterodyne. As its name implies, this system uses an off-

axis signal, the LO in this case, in order to provide separation between the signal and the 

reference wave during the analytics.  

Mixing the signals onto the camera detector gives us the intensity of the combined 

fields, expressed as 

 |𝑈𝑠 +  𝑈𝑙𝑜|2 =  |𝑈𝑠|2 + |𝑈𝑙𝑜|2 +  𝑈𝑠𝑈𝑙𝑜
∗ + 𝑈𝑠

∗𝑈𝑙𝑜 (2.43) 
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In order to separate the fields from each other, we first take the Fourier transform of the 

image. The purpose of this transform is to separate the fields in the Fourier plane. We call 

this space the pupil plane because it contains the physical shape of our pupil, but also 

contains the LO beams which are outside of the physical pupil space. The Fourier 

transform of Eq. (2.43) is 

 ℱ{|𝑈𝑠 +  𝑈𝑙𝑜|2} =  ℱ{|𝑈𝑠|2} +  ℱ{|𝑈𝑙𝑜|2} +  ℱ{𝑈𝑠𝑈𝑙𝑜
∗} + ℱ{𝑈𝑠

∗𝑈𝑙𝑜}. (2.44) 

 

 The two terms of interest are the last two in Eq. (2.44), which are conjugate terms 

of the product of the signal and LO fields. Since the Fourier transform separates the terms 

in space due to the angle between the LO and object signal, we can crop out the terms 

we are interested in, effectively eliminating the rest, as depicted in Figure 2-3. The 

separation between the LO and signal source is the  𝑒
𝑗𝑘

2𝑧3
(𝑢𝛼0+𝑣𝛽0)

 term from our point 

source LO (Eq. 2.40). This tilt term transforms to a translation of the pupil field in the 

Fourier plane. Re-centering the pupil in the new crop eliminates the tilt term when 

transformed back to the image plane, where we have the desired field’s amplitude and 

phase. The system is modeled by the Eq. (2.45), in which we say that taking the inverse 

Fourier transform of the cropped region of interest, we obtain the fields of interest. 
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Figure 2-3: Left: Cropped Region of Fourier Plane Containing Pupil.   Right: Fourier Plane 
Showing Cropped Region 

 

 𝑈(𝑢, 𝑣) =  ℱ−1{ℱ{𝑈𝑠𝑈𝑙𝑜
∗}} = 𝑈𝑠(𝑢, 𝑣)𝑈𝑙𝑜(𝑢, 𝑣)∗. (2.45) 

 

We rewrite Eq. (2.40) with the removed tilt term and add in the temporal component 

that will help us later,  

 
𝑈𝐿𝑂(𝑥, 𝑦) =  

𝑒𝑗𝑘𝑧3

𝑗𝜆𝑧3
𝑒

𝑗𝑘

2𝑧3
(𝑢2+𝑣2)

 𝑒
𝑗𝑘

2𝑧3
(𝛼0

2+𝛽0
2

)
𝑒−𝑗(𝜔𝐿𝑂𝑡+𝜑𝐿𝑂) . (2.46) 

 

We can do the same for the signal field Ui to obtain Us, which we write simply, 

 𝑈𝑠(𝑢, 𝑣) =  𝑈𝑖(𝑢, 𝑣)𝑒−𝑗(𝜔𝑆𝑡+𝜑𝑆). (2.47) 

 

Eqs. (2.46) & (2.47) allow us to show the effects that a temporal mismatch can have on 

our imaging by writing Eq. (2.45) as 

 𝑈(𝑢, 𝑣) = [𝑈𝑠(𝑢, 𝑣)𝑒𝑗(𝜔𝑆𝑡+𝜑𝑆)][𝑈𝑙𝑜(𝑢, 𝑣)∗𝑒−𝑗(𝜔𝐿𝑂𝑡+𝜑𝐿𝑂)]. (2.48) 

 

From Eq. (2.48) we see that if the frequencies of the signal beam and LO match the result 

is the field of interest with an added constant phase term. Whether or not the phases 
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match is of little concern because the difference will be a constant; however, when the 

phases are modulated it becomes an issue if the phases change at a different rate. 

 

2.2 Temporal Heterodyne Modulation Effects  

This section will explore the effects of phase modulation on our spatial heterodyne 

system and how it creates a temporal component when mismatched between the signal 

and LO legs of the system. We will first explain the technique of binary phase shift keying 

(BPSK). Later we will develop the idea further using PRBS.  

 

2.2.1 Binary Phase Shift Keying  

The modulation technique used in this experiment will be BPSK, chosen because 

it allows us to use a relatively simple system by which to achieve our goal of range gating, 

where higher-order PSK modes are useless because they are strictly meant for higher 

data rates in communication channels. BPSK uses two phases, as its name implies, to 

shift the carrier signal by 180° or π. This can be illustrated in Figure 2-4 where we see the 

phase of the carrier instantaneously changed due to the modulation signal. 
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Figure 2-4: BPSK Signal (top) and Modulated Carrier Output (bottom) 

 

We see in Figure 2-4 that our signal’s effect on the carrier waveform is that of 

instantly reversing its phase, or effectively inverting the waveform since we use a pi phase 

shift. In the example illustrated, the phase reversals occur at the zero crossings of the 

carrier, but this is not at all necessary in our final system and would be, in fact, very difficult 

to achieve at optical frequencies.  

The modulation effect of BPSK can be simply described as  

 𝑆(0) =  𝐴 ∗ 𝑒𝑗∗0 

𝑆(1) = 𝐴 ∗ 𝑒𝑗∗𝜋, 

(2.49) 

 

where S(b) indicates the output for a given binary input. We have written that a “1” 

represents a pi phase shift, but this is not absolute and depends on the convention being 

used. 
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2.2.2 Pseudo-Random Binary Sequence 

To identify how a PRBS is useful, we should first understand how it is created. The 

sequence is generated by linear feedback shift-registers (LFSR), or a system of devices 

that feeds the output of the previous state into the input of the next state. This system is 

shown in Figure 2-5. 

 

Figure 2-5: Linear Feedback Shift Register 

 

This depiction shows how a LFSR might be structured as a circuit, where the ⊕ 

symbol indicated a “XOR” gate. The output of this circuit is the right-most bit and the next 

state is generated by taking the feedback nodes and passing them to the input shifting the 

remaining bits right. The feedback nodes indicate what is known as the feedback or 

characteristic polynomials. The right-most indicates the highest order of the polynomial, in 

this case x5, and the input bit is always x1. The x0 term is present in the polynomial 

equation, but is not indicated by a tap. The LFSR depicted in Figure 2-5 would be written 

as 𝑥5 + 𝑥2 + 1.  

This same polynomial is special because it is also a maximum length sequence 

(MLS) polynomial. Since we have a LFSR of 5 bits, the MLS that can be generated is 

given by 

 𝑁 = 2𝑘 − 1. (2.50) 

 

The sequence length is given as N and k is the number of shift-registers. The 5 bit 

system would then have a MLS of N = 31. Not all polynomials representing the feedback 

taps will generate a MLS. All MLS’ will have the property that if a window k bits wide is slid 
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across the sequence all possible “words” will be generated within the sequence, except 

for the “null” term of all zeros, which would lead to a halted state because the device could 

never generate the next state successfully.  

Each MLS contains identical frequency content, being comprised of the same 

words, regardless of the order in which they appear in the sequence. A PRBS will also 

have the autocorrelation property of  

 
𝑟(𝑖) =  {

1  𝑓𝑜𝑟 𝑖 = 0

−
1

𝑁
 𝑓𝑜𝑟 1 ≤ |𝑖| ≤ 𝑁 − 1

 
(2.51) 

  

which says that the autocorrelation peak occurs at an offset of 0 bits and any integer of 

bits offset from that will experience an autocorrelation factor proportional to the length of 

the sequence[7]. Obviously then, it is useful in communications or telemetry, where 

applying this code to a waveform gives a very definite offset position to a waveform, 

something exploited in GPS. This is the property we are interested in exploring in this 

thesis.  

The coherence length of a system is generally given by the equation  

 𝐿 =  
𝑐

∆𝜈
 , (2.52) 

 

where c is the speed of light and ∆ν is the linewidth, or bandwidth, of the source. This 

equation is modified with a change in the refractive index of the medium, but we assume 

that to be unity for the purposes of this thesis, as it has little effect to us. 

Physically, as the PRBS travels through space it has length features related to its 

pattern length and modulation frequency. The bit rate, or modulation frequency, 

determines the temporal duration of each bit as well as the spatial extent, and so we 

modify Eq. (2.52) as, 

 𝐿𝑏 =  
𝑐

𝑏𝑖𝑡 𝑟𝑎𝑡𝑒
 (2.52) 
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where Lb is the length is meters and c is the speed of light. We will also relate this our 

alignment length, which is a fraction of the length of the bit. 

 The total length of the code is then 

 𝐿𝑐 = 𝐿𝑏 ∗  𝑁 (2.53) 

   
or, the bit length multiplied by the code length. If we reach the repetition length, the PRBS 

will once again have a correlation factor of unity. For this reason it is important to have a 

longer bit sequence for long depths of field being imaged as well as for high modulation 

rates. 

 

2.2.3 Effects of Phase Mismatch 

As we have described above, adding a phase code to the signal or LO beam in 

our spatial heterodyne system can have a great effect to the process. If we once again 

look at Eq. (2.48), written again here for reference, we see that a constant phase difference 

between the two terms makes no difference overall. This is what allows us to perform 

spatial heterodyne imaging on stationary objects easily. 

 𝑈(𝑢, 𝑣) = [𝑈𝑠(𝑢, 𝑣)𝑒𝑗(𝜔𝑆𝑡+𝜑𝑆𝑡)][𝑈𝑙𝑜(𝑢, 𝑣)∗𝑒−𝑗(𝜔𝐿𝑂𝑡+𝜑𝐿𝑂𝑡)]. (2.48) 

 

If we begin to change the phase of one of the fields relative to the other we create 

a temporal phase component and the terms no longer cancel. The shift in the relative 

phase causes the fringe pattern at the image plane to average and wash out, making the 

process less efficient the more the phase is modulated.  

However, if we modulate the two fields at the same rate and with the same 

waveform at the image plane the phase remains constant and the fringes on the detector 

stay stationary. An important factor in considering the system’s physical structure will then 

be the optical path length from the electro-optic phase modulator to the image plane. The 

optical path length for a medium of constant refractive index is given as  
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 𝑂𝑃𝐿 = 𝑛 ∗ 𝑑 (2.54) 
 

where n is the index of refraction of the medium and d is the distance travelled through 

the medium. In order to maintain the phase relation between our signal and LO the optical 

path length difference between the two should be either zero or a multiple of Lc, the length 

of the code in space.  
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SIMULATION 

 

3.1 Spatial Heterodyne System Simulation 

This section will cover the necessary steps to reproduce a spatial heterodyne 

system in simulation, using MATLAB. We will take portions of the theory developed in the 

previous chapter and make assumptions in order to simplify the simulation calculation 

load. The goal of this section is to lay the foundation on which to build the phase 

modulation technique. 

We begin by recalling Eq. (2.43), which describes the intensity pattern on the 

camera as the modulus square of signal and LO fields. 

 |𝑈𝑠 +  𝑈𝑙𝑜|2 =  |𝑈𝑠|2 + |𝑈𝑙𝑜|2 +  𝑈𝑠𝑈𝑙𝑜
∗ + 𝑈𝑠

∗𝑈𝑙𝑜 (2.43) 

 

In order to combine these fields we must first create them in MATLAB. 

 The first term, the signal is easily modeled. We recall earlier that we stated the 

image field in a geometric optical model can be described as the impulse response of the 

system convolved with a magnified, inverted field of the object with a constant phase factor 

applied through its propagation. For our simulation and experiment we assume no 

magnification, and the image inversion can be ignored for our purposes. Starting with an 

image of our target, as depicted in Figure 3-1, what we see is the intensity pattern, therefore 

taking the square root of the object components will give us a pseudo-field to start with. 

We could add a random phase term to the object’s field, but since we are not concerned 

with static phases, we need not trouble with this step. 
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 The object we use is a slant “H” portion of an ISO12233 target, typically used for 

MTF reports. It is the portion of the chrome on glass target used in our lab experiment. A 

“.png” graphic file was created to simulate the binary shaded shape, shown in Figure 3-1. 

 

Figure 3-1: Slant H Object Used in Simulation 

 

 The impulse response of the system can be modeled by taking the Fourier 

transform of the lens pupil, as it was stated in Goodman to be a special case of the 

Fraunhofer diffraction pattern in our system. Having this result we can convolve it with our 

object field to get the image field. A simpler and quicker operation in MATLAB would be 

to instead take the individual Fourier transforms, multiply, and then inverse transform 

back, as stated in Eq. (2.55). 

 𝑈𝑖(𝑢, 𝑣) =  ℎ̃(𝑢, 𝑣)⨂𝑈𝑔(𝑢, 𝑣) =  ℱ−1{ℱ(ℎ̃) ⋅ ℱ(𝑈𝑔)}  (2.55) 

 

The periodicity of the Fourier transform shows that two forward transforms yields a 

reversed image. Using this property, we can assume that a double forward transform on 

a circular binary mask would not change the mask; we simply need to transform the object 

field and multiply the two fields. This simplifies the computational step immensely.  
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The LO term takes more effort to model in the imaging plane, as we need to 

propagate a point source from the pupil plane. We use Eq. (2.40) which gives the Fresnel 

diffraction pattern of the point source LO shifted in space. To calculated the shift for the α 

and β terms take the pixel pitch resolution which is 
1

5.86 µ𝑚
=  170.648 𝑚𝑚−1. By Nyquist’s 

theorem, we can only sample spatial frequencies of half that, or 85.324 𝑚𝑚−1. The angle 

between the LO and the optical axis is roughly 

 sin 𝜃 =  
𝑥

2 𝑚
 , (3.1) 

 

where x is the spacing between the LO and the axis, and 2 meters is roughly the length of 

the hypotenuse.  

Since the propagation distance to the camera is much greater than the diameter 

of the sensor, we can assume a nearly planar, tilted wavefront, the spatial frequency given 

as 

 
𝛼 ≈

sin 𝜃

𝜆
 . 

(3.2) 

 

Solving for the sinθ term and setting it equal to Eq.(3.1), we find that 𝑥 = 2 ∗ 𝛼 ∗ 𝜆, or that 

the maximum shift we can have before undersampling is about 9.08 cm, or 3.57 in from 

the optical axis. 

As we then have our spatial variables defined, we iteratively find the field of the LO 

at the image plane by solving for the amplitude and phase at each point in the plane. This 

gives a phase distribution based on the real portion of the field, as shown in Figure 3-2. 
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Figure 3-2: (a) LO Field with No Added Phase; (b) LO Field with Pi Added Phase 

 

 

These two fields represent the LO with either 0 or pi phase shift added to it. These are not 

the actual fields used in the simulation, but are shifted closer to the optical axis to show 

the detail of the fringes better as the phase is shifted. Since we are only modulating the 

phase by these two states, we need to only generate these fields once for the remainder 

of the simulation. 

 After we have the fields of the object and the LO at the image plane, we can then 

combine them to simulate what our square-law detector would see, the intensity pattern. 

The result is then Fourier transformed to see the individual conjugate components that 

make up the field, as shown in Figure 3-3. In this space we can clearly see the circular 

pupils caused by convolving our target with the pupil function’s transform.  
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Figure 3-3: Fourier Plane from Intensity Image 

 

One of the pupils is then chosen based on the LO shift, which determines which 

contains the conjugate image field or the original image field, and is cropped out and re-

centered in its plane. This removes the tilt caused by the angle between the LO and optical 

axis, as described previously. The cropped pupil is then inverse Fourier transformed back 

to the image space to retrieve the object and LO fields overlaid, the real portion shown in 

Figure 3-4. Taking the modulus squared, we get back the image of our object, shown in 

Figure 3-5. 
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Figure 3-4: Object and LO Fields Retrieved from Fourier Plane 
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Figure 3-5: Intensity of Fields Showing Reconstructed Object Shape 

 

 

3.2 Spatial Heterodyne with PRBS Modulation 

Since we have shown that our system is successful in retrieving the object field 

from the pupil we can begin the portion of the simulation where the phase of the original 

LO and object fields are modulated according to a PRBS. We will use an array of PRBS 

patterns to show the effects of each; PRBS4, 7 & 9 are the sequences we will use. As the 

sequences get longer the simulation time takes an exponentially greater period of time to 

run, so the results will be trimmed, but will show a consistent pattern. 

Two functions were created for the author’s own benefit to find each MLS given a 

certain shift-register length. The first sequence generated by each length (the choice does 

not affect the results, as they are functionally equivalent) and imported into a vector in the 
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script. The code for the sequence generation in given in Appendix A. The sequence being 

analyzed is then stretched by a factor of 10 so that sub-bit shifts can be more easily 

performed. This takes a PRBS4 pattern, which would originally be 15 bits in length, to 150; 

or a PRBS9 pattern of 511 bits to 5110.  

In order to simulate the length of code that will impact the signal during the 

camera’s integration time, 0.5 ms, we repeat the code several times during our simulation 

length, but we will show this does not have any effect due to the autocorrelation properties 

of a PRBS sequence. Iterating over a non-integer multiple of the PRBS sequence, or 

stopping in mid-sequence has limited effect that degrades our isolation, but only in the 

limit of a few sequences. Any integration time that is many code lengths long will suffice. 

For instance, our camera integration time of 0.5 ms would see almost 197 repetitions for 

a PRBS7 pattern modulated at 50 MHz. This effect will be discussed later.  

Since we have already calculated the LO field at the image plane, we need only 

multiply that result by a constant phase of 0 or pi to represent the two binary states of our 

phase modulator. The same will be done for the object field at the image plane. The script 

must then iterate and decide each time which state of each field it will combine. Figure 3-6 

depicts the phase states of the two fields and the resulting phase difference for each 0.1 

bit point in the sequence, using no mismatch between the two, which results in a constant 

phase difference throughout. We then take the intensity (magnitude squared) of the object 

and LO fields (as they would be seem on the camera) and then sum them into a matrix 

comprised of the previous iterations. The process loop is depicted in Figure 3-9. 
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Figure 3-6: Object and LO Phase Modulation and Phase Difference w/no Offset 

 

To create the next phase offset, the script can shift the mismatch in the signal and 

LO codes by 0.1 bit. We are interested to see that the theory of the autocorrelation of 

PRBS matches with the simulation. Once we increase the offset shift, the code runs 

through the math again and recalculates the intensity image that the camera sees. This 

process can be repeated for an entire sequence, but takes double the amount of time for 

every added bit, as expected. Figure 3-7 and Figure 3-8 depict the phase mismatch for 

both an offset less than one bit and for an offset greater than one bit, respectively. Notice 

that the duty cycle of the phase difference becomes approximately 50% when the offset 

is greater than one bit, this reduces the heterodyne efficiency and gives greater isolation 

with longer codes, as the duty cycle approaches the 50% limit. The cartoon is not a MLS 

PRBS and should not be taken literally, but is representative of the process. 
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Figure 3-7: Object and LO Phase Modulation and Phase Difference w/Less than 1 
Bit Offset 

 

 

Figure 3-8: Object and LO Phase Modulation and Phase Difference w/Greater than 
1 Bit Offset 
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Figure 3-9: Iterative Loop to Simulate PRBS Modulated System 

 

Once the process is completed we have one image comprised of the individual 

images of a full PRBS. We use the previous process described in the simpler spatial 

heterodyne section to find the intensity in the pupil, and sum the values in both dimensions 

to get a relative power number. Taking the 0 bit offset case as our standard (where the 

autocorrelation in PRBS is unity), we calculated the dB isolation from the standard as 

 𝑑𝐵 𝑝𝑜𝑤𝑒𝑟 = 10 ∗ 𝑙𝑜𝑔10 (
𝑂𝑓𝑓𝑠𝑒𝑡 𝑃𝑜𝑤𝑒𝑟

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑃𝑜𝑤𝑒𝑟
)  (3.3) 

 

The results for some of the PRBS4 case are listed in Table 3-1. They are also 

truncated as the middle values (between 1 and 14 bit lag shift) are identical results. We 

put the Total Power field in the table to show that the total energy in the image does not 

change, but the phase modulation causes temporal fringes in mismatched code. This 

creates a DC term on our detector, the energy of which stays in the center of the Fourier 

plane. 
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Table 3-1: Power in Image and from Pupil Region in PRBS4 Case 

Bit Shift 0 0.2 0.5 0.8 1 14 14.5 

Total 
Power 

1.39E+20 1.39E+20 1.39E+20 1.39E+20 1.39E+20 1.39E+20 1.39E+20 

Pupil 
Power 

1.51E+21 9.34E+20 3.29E+20 3.25E+19 6.71E+18 6.71E+18 3.29E+20 

dB from 
Standard 

0 -2.08 -6.62 -16.7 -23.5 -23.5 -6.62 

 

The entire range of results is shown in Figure 3-10. 

 

Figure 3-10: Power vs. Standard in Pupil Region in PRBS4 Case 

 

The maximum power isolation achievable for a PRBS4 sequence is -23.52 dB, and so we 

see our simulation matches the theoretical value of the autocorrelation power of PRBS 

sequence, 

 𝑑𝐵 𝑝𝑜𝑤𝑒𝑟(𝑃𝑅𝐵𝑆) = 10 ∗ 𝑙𝑜𝑔10 (
1

𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑅𝐵𝑆)2) . (2.59) 

 

The next case is for PRBS7, and a similar table and figure are shown below in 

Table 3-2 and Figure 3-11. 
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Table 3-2: Power in Image and from Pupil Region in PRBS7 Case 

Bit Shift 0 0.2 0.5 0.8 1 126 126.5 

Total 
Power 

1.18E+21 1.18E+21 1.18E+21 1.18E+21 1.18E+21 1.18E+21 1.18E+21 

Pupil 
Power 

1.08E+23 6.90E+22 2.66E+22 4.06E+21 6.71E+18 6.71E+18 2.66e+22 

dB from 
Standard 

0 -1.96 -6.09 -14.3 -42.1 -42.1 -6.09 

 

 

Figure 3-11: Power vs. Standard in Pupil Region in PRBS7 Case 

 

The maximum achievable isolation using PRBS7 is -42.08 dB, which mirrors our 

simulation. 

 The last case we observe is the PRBS9 sequence. The length of the sequence is 

511 bits, and the maximum isolation is -54.2 dB. Table 3-3 and Figure 3-12 show the 

results from this partial simulation. 

Table 3-3: Power in Image and from Pupil Region in PRBS9 Case 

Bit Shift 0 0.2 0.5 0.8 1 510 510.5 

Total 
Power 

4.73E+21 4.73E+21 4.73E+21 4.73E+21 4.73E+21 4.73E+21 4.73E+21 

Pupil 
Power 

1.75E+24 1.12E+24 4.36E+23 6.90E+22 6.71E+18 6.71E+18 4.36E+23 

dB from 
Standard 

0.00E+0 -1.94E+0 -6.04E+0 -1.40E+1 -5.42E+1 -5.42E+1 -6.04E+0 
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Figure 3-12: Power vs. Standard in Pupil Region in PRBS9 Case 

 

 

3.3 Spatial Heterodyne with Truncated PRBS Modulation 

The last piece to explore in the simulation is whether or not the real world case of 

a truncated PRBS pattern has any effect on the image. We anticipate that the more 

complete PRBS patterns the camera captures during its integration time, the less affected 

it is by the partial length of code (if there is one) that does not complete its sequence. If 

we imagine a truncated PRBS (that is not maximum length), we know it will not have the 

same autocorrelation isolation as the MLS version. Therefore, it stands to reason that if 

we have one full sequence and add the same truncated sequence to the end of it, the total 

sequence will have less isolation than the single sequence.  

We model this effect by using our MATLAB script as previously done, but we 

change the conditions of the loop such that it stops before a full integer of sequence 

iterations. Using the PRBS4 sequence, Figure 3-13 shows the isolation of power vs. the 

standard 0-bit offset case for a variety of offset values. Each bit offset value was evaluated 

for various lengths of complete sequences added to a truncated sequence of 6 bits. 
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Figure 3-13: Power Isolation from Incomplete Sequences for Various Bit Shifts 

 

As we added more complete PRBS4 sequences to the beginning of the code, the trends 

of each shift series converged on the autocorrelation limit for PRBS4. This test shows that 

as we integrate over many complete sequences, the addition of an incomplete sequence 

does not disrupt our power isolation significantly. This alleviates any doubts about running 

this without a triggering mechanism between the AWG and camera, although such a 

system can be implemented. Instead, we can have a free-running generator and capture 

frames at any period in time without much variance. If we consider the camera integration 

time intended to be used in the experiment, 0.5 ms, we see that even for our slowest 

repeating code and modulation, PRBS9 at 50 Mbit/s, we would receive 48 full code-

lengths during the integration time. This alleviates much of the variance caused by the 

truncated sequence.  
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EXPERIMENTAL RESULTS 

 

4.1 Lab Setup 

The experimental setup in the lab is shown in Figure 4-1. The laser used is a Cobolt 

Samba with a center frequency of 532.1±0.3 nm and a spectral linewidth (FWHM) of <1 

MHz. The phase modulation was performed by a Tektronix 5014C AWG that fed a 

Conoptics Model 550 linear amplifier that drove their 360 series low-voltage phase 

modulator. The linear amplifier had bandwidth exceeding 300 MHz.  The Tektronix AWG 

had predefined PRBS7 & 9 patterns, so none had to be loaded into the device, and could 

modulate them at a rate exceeding the limit of the amplifier. 

The system was laid out in a manner consistent with Figure 4-1.  
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Figure 4-1: Optical Component Table Layout 

 

The laser source was split into two paths using a half-wave plate (HWP) and polarization 

beam-splitter (PBS); one path of the laser source was directed into the phase modulator 

branch, the other was coupled into a fiber to serve as a CW LO. The modulator branch 

consisted of the Conoptics phase modulator, which was then passed through a HWP and 

PBS in order to better control the intensity of light directed at the target and camera, 

respectively. The fiber cables used were single-mode polarization maintaining fiber 

designed for our laser’s wavelength of 532nm. The fiber tips were rotated such that the 

polarization of the light emitted from the tips was the same as that returning from the 

object. 

 The camera used was a PointGrey (now part of FLIR) Grasshopper3 model GS3-

U3-23S6M-C. The camera is natively 1920 by 1200 pixels in format, but the active sensor 

area was reduced to the central 1024 by 1024 pixels. The cameras were managed through 

the NI MAX program, part of the LabVIEW suite, which allows full control of all the camera 

attributes. Shutter time, gain, gamma, black level, active sensor region, frame-rate, etc. 

could all be controlled through this application. Shutter speed, or exposure time, was set 

to 0.5 ms.  

https://www.ptgrey.com/grasshopper3-23-mp-mono-usb3-vision-sony-pregius-imx174-camera
https://www.ptgrey.com/grasshopper3-23-mp-mono-usb3-vision-sony-pregius-imx174-camera
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  The object used was a chrome-on-glass mask of the ISO 12233 resolution target, 

of which we chose the region containing the slant “H” to image. Figure 4-2 is the entire 

mask and is the area of interest.  Behind the mask was a metal plate with a rough surface. 

The target was oriented in such a manner that the specular reflection was not directly 

aimed back to the camera. Imaging was performed by a single positive, dual-convex lens 

set between the object and image planes. The lens was 2 inches in diameter and had a 

focal length of 1 meter for our wavelength.  

 

 

Figure 4-2: Image of Target Mask; Chrome on Glass Pattern 
 



42 
 

 

Figure 4-3: Mask Region of Interest 

 

The images were collected using LabVIEW software; first, using a panel designed 

to quickly view the image data and its Fourier transform in real-time, then second, 

capturing images and storing them in .png format so as not to lose data to compression. 

Other formats could have been used, so long as they were lossless in format. A screenshot 

of the LabVIEW panel is shown in Figure 4-4 for reference.  

 

Figure 4-4: LabVIEW Panel of Image and Fourier Transform 
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Once the system was powered up and the laser sufficiently warmed-up the 

LabVIEW panel was run. The real-time Fourier view of the camera capture allowed for 

ease in balancing the powers in the two LOs and the signal, such that the pupils in all four 

quadrants were of equal brightness/contrast. The system was then set for the experiment 

and various cases of PRBS pattern length, modulation frequency, and optical path 

difference were tested. A single image for each instance was considered sufficient for the 

purposes of this project. 

 

4.2 Data Collection 

The first data taken were of the signal and two LOs where no modulation was 

applied. This is used as a reference point for the power levels in each area of the captured 

image: the entire image frame and one pupil each for the two corresponding LOs. A 

representative image captured by the camera is shown in Figure 4-5. The discontinuous 

striping in the figure is caused by the aliasing of the high spatial frequency fringes in the 

image being resized to this page. Figure 4-6 is an image of the Fourier plane of the fields 

with no modulation applied. The two sets of pupils can be seen to be nearly the same 

brightness.  
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Figure 4-5: Representative Spatial Heterodyne Image Capture 

 

Figure 4-6: Fourier/Pupil Plane with No Modulation Applied 

 

The same process is then followed as in the simulation; the pupils are cropped, a 

circle mask is applied, and they are inverse transformed back to the image plane, where 
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the power is calculated for each component. The calculated powers for the case with no 

modulation code is given in Table 4-1. The recovered image is shown in  

 

Table 4-1: Powers from Section of Image with No Modulation 
Full Image PRBS Pupil CW Pupil 

6.15E+07 3.38E+07 3.37E+07 

 

 

The next step was to apply a phase code to the signal beam and one of the LOs. 

The AWG was set to a PRBS7 (127 bit) pattern and modulated at 50, 100, 150, 200 & 300 

Mbit/s. A representative image of the pupil plane is shown in Figure 4-7. Notice that one 

set of pupils is now greatly diminished in power. The recovered images of the “H” target 

from each the modulated and unmodulated LOs are given in Figs. 4-8 and 4-9 

respectively. The calculated powers for each modulation rate are given in Table 4-2. 

 

Figure 4-7: Fourier/Pupil Plane with PRBS7 Modulation Applied 
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Figure 4-8: Recovered Image of “H” Target from Pupil Corresponding to Modulated LO 

 

 

Figure 4-9: Recovered Image of “H” Target from Pupil Corresponding to  
Unmodulated LO 
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Table 4-2: Powers from Sections of Image with PRBS7 Modulation 

 
Full Image PRBS Pupil CW Pupil 

50 Mbit/s 6.18E+07 2.78E+07 1.86E+06 

100 Mbit/s 6.20E+07 2.43E+07 2.19E+05 

150 Mbit/s 6.09E+07 1.84E+07 2.68E+05 

200 Mbit/s 6.22E+07 1.88E+07 2.10E+05 

300 Mbit/s 6.31E+07 1.70E+07 2.04E+05 

 

The same was done for the PRBS9 case, with the results listed in  
 
Table 4-3. 
 

 

Table 4-3: Powers from Sections of Image with PRBS9 Modulation 

 
Full Image PRBS Pupil CW Pupil 

50 Mbit/s 5.91E+07 2.41E+07 1.72E+06 

100 Mbit/s 5.91E+07 1.93E+07 2.04E+05 

150 Mbit/s 6.17E+07 2.01E+07 1.88E+05 

200 Mbit/s 6.12E+07 1.65E+07 1.96E+05 

300 Mbit/s 6.16E+07 1.67E+07 2.29E+05 

 

 To calculate the isolation achieved, we compare the modulated and unmodulated 

pupils. Table 4-4 reports the isolation achieved in dB for the PRBS7 and PRBS9 cases. 

 

Table 4-4: dB Isolation Achieved Between Pupils 

 PRBS7 PRBS9 

50 Mbit/s -1.17E+01 -1.15E+01 

100 Mbit/s -2.05E+01 -1.98E+01 

150 Mbit/s -1.84E+01 -2.03E+01 

200 Mbit/s -1.95E+01 -1.93E+01 

300 Mbit/s -1.92E+01 -1.86E+01 
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The last sets of data taken were for the various lengths of fiber added to the coded 

LO path to create a large OPD. This was to simulate returns from objects at distances 

where the phase codes do not align, in order to show isolation in imaging such objects.  

The various path length differences and the modulation rate results are given in Table 4-5, 

Table 4-6, and Table 4-7.  

. 

 

 
Table 4-5: Powers from Sections of Image with PRBS7 Modulation and 3m Fiber Length 

 
Full Image PRBS Pupil CW Pupil 

50 Mbit/s 6.02E+07 2.42E+06 1.72E+06 

100 Mbit/s 5.95E+07 1.25E+05 1.25E+05 

150 Mbit/s 5.84E+07 1.23E+05 1.82E+05 

200 Mbit/s 6.06E+07 1.29E+05 1.24E+05 

300 Mbit/s 5.97E+07 2.77E+05 1.16E+05 

 

Table 4-6: Powers from Sections of Image with PRBS7 Modulation and 9m Fiber Length 

 
Full Image PRBS Pupil CW Pupil 

50 Mbit/s 5.85E+07 1.11E+05 1.65E+06 

100 Mbit/s 5.82E+07 1.70E+05 1.21E+05 

150 Mbit/s 5.67E+07 1.19E+05 1.78E+05 

200 Mbit/s 5.81E+07 1.18E+05 1.19E+05 

300 Mbit/s 5.85E+07 3.28E+05 1.16E+05 
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Table 4-7: Powers from Sections of Image with PRBS7 Modulation and 12m Fiber Length 

 
Full Image PRBS Pupil CW Pupil 

50 Mbit/s 8.74E+07 3.18E+05 1.02E+06 

100 Mbit/s 8.62E+07 1.07E+06 1.69E+05 

150 Mbit/s 8.43E+07 1.48E+05 1.84E+05 

200 Mbit/s 8.74E+07 7.39E+05 1.65E+05 

300 Mbit/s 8.82E+07 1.92E+05 1.60E+05 

 

To calculate the isolation achieved by the OPD mismatch, we compare each PRBS 

pupil from each of the fiber lengths against the standard values given in Table 4-2, again 

for each modulation frequency. The results are given in Table 4-8. 

 

Table 4-8: Isolation Achieved by OPD between Signal and LO Paths 

 
3m Difference 9m Difference 12m Difference 

50 Mbit/s -1.06E+01 -2.40E+01 -1.94E+01 

100 Mbit/s -2.29E+01 -2.15E+01 -1.36E+01 

150 Mbit/s -2.18E+01 -2.19E+01 -2.10E+01 

200 Mbit/s -2.16E+01 -2.20E+01 -1.41E+01 

300 Mbit/s -1.79E+01 -1.71E+01 -1.95E+01 

 

The results of this experiment are clear, we have achieved isolation of the signal 

from our noise by both un-coded returns through our imaging system and returns that 

exhibit an optical path difference greater than the “wavelength” of the modulation 

frequency of the code. If we closely examine the 3 meter fiber case in Table 4-8, we notice 

that the isolation is much less at 50 Mbit/s than at and other bit rate. This is because the 

length a bit takes travelling in space at that modulation frequency is 6 meters and, 

therefore, the OPD is not quite great enough to bring the autocorrelation of the PRBS to 

its lowest threshold.  
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 We also notice that, for these PRBS7 & 9 cases, we are not achieving the 

maximum results that our simulation predicted. This can be caused by several reasons. 

Observations while doing setups for other experiments noted that the polarization in the 

fibers seems to wander while they settle after being moved around, which may cause 

some lowering of efficiency. Also, since the additional fiber lengths were butt-coupled in, 

we expect decent efficiency of power transfer at each junction, but we also see that it can 

affect total image power, as shown in Table 4-7 compared to the two previous to it. Even 

though great care was taken during setup, the optical path lengths may have also been 

slightly off, which has been shown previously to cause large efficiency effects, even within 

one bit-length of offset.  
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CONCLUSION 

 

5.1 Simulation Conclusion 

The simulation was successful in showing that spatial heterodyne imaging is 

possible in the presence of PRBS phase modulation. Not only does it show that we can 

perform this imaging, but we can achieve isolation of our targets with respect to their 

surrounding if our imaging system has a large enough depth of focus. We have also shown 

that the isolation provided is relatively independent of the modulation frequency of the 

PRBS sequence when we have many sequences incident during the camera’s integration 

period. The isolation available is dependent of the length of the pattern and is given in Eq. 

(3.3). 

 

5.2 Experimental Conclusion 

The experiment conducted was successful in showing, in real-time and through 

image processing, that the mixing efficiency of the signal and LO could be greatly affected 

through PRBS phase modulation. By modulation with different lengths of code, we had 

hoped to achieve better results for the longer length (PRBS9) code, but ultimately we 

seemed to be limited by our equipment and setup practices. We did show that by 

mismatching the optical path lengths between two modulated branches of our system we 

simulate changing the distance to our target. This allowed us to follow the simulation, laid 
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out previously, and misalign the codes at the imaging plane, creating temporal fringes and 

reducing heterodyne efficiency.  

5.3 Future Work 

It would be beneficial to design a better imaging system with a large depth of focus 

so we can run the experiment again with multiple targets separated in distance along the 

optical axis. This would better show the effectiveness of this method at isolating targets in 

distance with respect to the code length and modulation frequency. The SNR of the 

camera should also be taken into consideration, as the isolation values we are hoping to 

achieve may be much greater than the camera’s sensitivity and dynamic range is capable 

of. Additionally, as we modulate to higher bit rates we should be able to “focus” our system 

to finer distance resolutions. This would mean creative methods for controlling the focus, 

such as dynamically changing the optical path length or the modulation frequency, pattern, 

and phase delay. This could be done with two phase modulators linked to an AWG that 

allows a temporal shift between the two driving signals. The theory required to create such 

systems should largely be covered in this thesis.  

It would be very useful to employ this imaging approach while viewing an object 

embedded in a cloud chamber. Embedding the target in a cloud chamber will allow us to 

determine how well this imaging approach will work for objects embedded in obscurants. 
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APPENDIX A 

Spatial Heterodyne Simulation Code (MATLAB) 

%Spatial Heterodyne Simulation with Pseudo Random Bit Sequence 
%James Zimnicki 
%University of Dayton 
  
%The purpose of this code is to simulate the spatial heterodyne mixing 
%of a object ('target') return field with that of a local oscillator. 
%Phase modulation is applied via a PRBS 
  
  
target = imread('target_shape.png'); %Load Object Image 
target_field = sqrt(im2double(target(:,:,1))); %SQRT to simulate 'field' from 
%intensity image 
  
  
%Create system variables and constants 
lambda = 0.000000532;   %Set to source wavelength 
k = 2*pi/lambda;    %wavenumber from lambda 
z3 = 2;     %Propagation distance from LO to Image plane 
c = 3.0E8;  %Speed of light in m/s 
  
pp = 0.00000586; %Pixel Pitch of detector 
pixel = 1024; %# of pixels used in each dimension 
diam = pixel*pp;     %Diameter of detector array, Pixel pitch * # of pixels 
  
%Set the number of iterations to loop through, offset will increase by one 
%tenth bit for every iteration. 
iter = 1; 
iter_offset = 0;%starting offset (tenth of bits) 
truncate = 0;%how many tenth of bits to truncate from the end of PRBS 
  
  
%Create the PRBS for various lengths. Can leave uncommented or commented 
%without affecting speed of simulation much. 
n7 = [1,0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,1,1,0,1,1,... 
    1,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,1,... 
    0,0,1,0,0,0,1,1,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1,... 
    0,1,0,0,0,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0]; 
n3 = [1,     0,     0,     1,     1,     1 ,    0]; 
n4 = [1,0,0,0,1,1,1,1,0,1,0,1,1,0,0]; 
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% n9 = [1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,1,1,0,1,0,... 
%     1,0,1,1,0,1,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,1,1,... 
%     0,0,1,1,1,1,1,0,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,1,... 
%     0,0,0,0,0,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0,1,1,1,1,1,0,1,1,1,1,0,0,... 
%     0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,0,1,1,1,0,0,0,0,1,0,1,1,... 
%     0,0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,1,0,0,... 
%     1,0,0,0,1,0,1,0,1,1,1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,1,1,1,0,0,1,1,... 
%     1,0,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1,0,1,0,0,1,0,1,0,... 
%     0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0,1,1,... 
%     0,1,1,1,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0,0,1,0,1,1,1,0,1,1,1,1,1,0,... 
%     0,0,1,1,1,1,0,0,1,1,0,1,0,0,1,1,0,1,0,1,1,1,0,0,0,1,1,0,1,0,0,0,... 
%     1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,1,1,... 
%     0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0,1,1,1,1,1,1,... 
%     0,1,1,0,1,0,0,1,0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,1,0,1,1,0,1,0,1,... 
%     0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,1,0,1,1,0,0,1,0,1,1,1,1,0,1,1,0,0,... 
%     0,0,1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0]; 
  
  
c_t = linspace(1, 10*length(n4), 10*length(n4)); %vector sized 10x code 
%                                                      length 
phase_code = c_t; %placeholder variable to be changed 
  
%This loop "stretches" the PRBS to take up 10 bits for each bit 
%Which will be used for sub-bit shifting 
for a = 1:length(c_t) 
    phase_code(a) = n4(ceil(c_t(a)/10)); 
end 
  
phase_code_long = repmat(phase_code,1,2);%Repeat code by the last integer 
%to simulate multiple lengths during a camera integration time. The number 
%of full codes is N-1-(tuncate/length(phase_code)). This should be set to 
%at least 2. 
  
  
%Create vectors with spacing based upon the pixel pitch of the camera 
u = linspace(0,diam,pixel); 
v = linspace(0,diam,pixel); 
  
a_lo = -0.0254; %distance between LO and horizontal axis 
b_lo = -0.0254; %distance between LO and vertical axis 
  
%This loop calculates the field of the LO incident on the detector 
%through Fresnel propagation. 
for m = 1:length(u) 
    for n = 1:length(v) 
        lo_field(m,n) = exp((1i*k/(2*z3))*(u(m)^2 + v(n)^2))*... 
            (exp(1i*k*z3)/(1i*lambda*z3))*... 
            exp((1i*k/(2*z3))*(a_lo^2 + b_lo^2))*... 
            exp(-(1i*k/(z3))*(u(m)*a_lo + v(n)*b_lo)); 
    end 
end 
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%These are the two fields we are concerned with, one with no phase 
%shift and the second with pi phase shift. We need only generate these 
%once. 
lo_field0 = lo_field*exp(1i*0); 
lo_fieldpi = lo_field*exp(1i*pi); 
lo_fields = zeros(1024,1024,2); %array to store both LO fields 
lo_fields(:,:,1) = lo_field0; %sub-matrix to store LO w/no shift 
lo_fields(:,:,2) = lo_fieldpi; %sub-matrix to store LO w/pi shift 
  
  
%Circle mask for lens pupil to simulate the PSF of the system. 
center_x=512;center_y=512;size_x=1024;size_y=1024;r=128; 
[x_mesh,y_mesh]=meshgrid(-(center_x-1):(size_x-center_x),... 
    -(center_y-1):(size_y-center_y)); 
c_mask=((x_mesh.^2+y_mesh.^2)<=r^2); 
  
  
%Takes the Fourier of the object and multiplies by the mask. The same 
%operation as convolution in the transformed space, but faster in 
%implimentation 
target_ft = fftshift(fft2(target_field,1024,1024)); 
target_field_mask_ft = c_mask.*target_ft; 
target_field_masked = (ifft2(target_field_mask_ft,1024,1024)); 
  
  
%Various placeholder matrices 
target_code = zeros(length(u),length(v)); 
im_intensity = zeros(length(u),length(v)); 
im_power = zeros(1,iter); 
pupil_power1 = zeros(1,iter); 
pupil_power2 = zeros(1,iter); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Main iterative loop 
% tic 
for d =1:iter %loops through and increases offset by 1/10 bit each time 
     
     
    code_delay = iter_offset + d-1;%sets the number of bits to offset by 
    %and adjusts each iteration 
     
    %This loop takes the target and LO fields, adds in the appropriate 
    %phase to each field, then takes the intensity. The loop is iterated 
    %through the number of code lengths the user has chosen above. This 
    %simulates all the phase combinations present on the detector during 
    %the integration period. 
    for a = 1:length(phase_code_long)-length(phase_code)-truncate 
        target_code = target_field_masked*exp(1i*pi*phase_code_long(a)); 
        lo_field_code = lo_fields(:,:,phase_code_long(a+code_delay)+1); 
        im_intensity = im_intensity + abs(lo_field_code + target_code).^2; 
         
       
 
    %a handy percent counter, which is not too intrusive on speed. 
%         percent_complete = (((a)/(iter*(length(phase_code_long)-... 
%             length(phase_code)-truncate))) +(d-1)*(1/iter)) *100 
         
         
    end 
 
 
     
    %Sum all intensities in the image plane to get a relative power level 
    im_power(1,d) = sum(sum((im_intensity))); 
     
    %FFT of the total intensity image to get Fourier Plane 
    im_ft = fftshift(fft2(im_intensity)); 
     
    %Can show Fourier Plane 
%         figure() 
%         imagesc(log10(abs(im_ft))) 
%         colormap gray 
%         axis image 
      
 
    %Crop region associated with pupil. May need adjustment based on user 
    %settings. 
    im_crop = im_ft(1:322,1:322); 
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    %Creates a binary circle mask to crop only the pupil shape of 
    %interest. May need resized and positioned for user's purposes. 
    center_u=161;center_v=161;size_u=322;size_v=322;r2=160; 
    [u_mesh,v_mesh]=meshgrid(-(center_u-1):(size_u-center_u),... 
        -(center_v-1):(size_v-center_v)); 
    im_crop_mask=((u_mesh.^2+v_mesh.^2)<=r2^2); 
 
    %Crop Pupil shape of interest 
    im_crop = im_crop.*im_crop_mask; 
     
 
    %Transform back to image plane 
    im_restored = ifft2(im_crop,1024,1024); 
     
 
    %Find power associated with Pupil Region of Fourier plane and plot 
    %resulting intensity image after spatial heterodyne processing. 
    pupil_power1(1,d) = sum(sum(abs(im_restored).^2)); 
 
%     figure() 
%     imagesc(abs(im_restored).^2) 
%     colormap gray 
%     axis image 
     
 
    %This section can be uncommented if the user is interested in seeing 
    %that the second pupil contains similar information as the first, as it 
    %is a conjugate image. The power levels should be equal if cropped 
    %correctly. 
    %     im_crop2 = im_ft(1024-321:1024,1024-321:1024); 
    % 
    % 
    %     im_crop2 = im_crop2.*im_crop_mask; 
    % 
    %     im_restored2 = ifft2(im_crop2,1024,1024); 
    %     pupil_power2(1,d) = sum(sum(abs(im_restored).^2)); 
    % %     figure() 
    % %     imagesc(abs(im_restored2).^2) 
    % %     colormap gray 
    % %     axis image 
     
     
%     toc 
end%End of Iteration loop 
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