
DISCRETE-TIME CONCURRENT LEARNING FOR SYSTEM

IDENTIFICATION AND APPLICATIONS: LEVERAGING MEMORY

USAGE FOR GOOD LEARNING

Dissertation

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Doctor of Philosophy in Engineering

By

Ouboti Seydou Eyanaa Djaneye-Boundjou

UNIVERSITY OF DAYTON

Dayton, Ohio

December, 2017

DISCRETE-TIME CONCURRENT LEARNING FOR SYSTEM IDENTIFICATION

AND APPLICATIONS: LEVERAGING MEMORY USAGE FOR GOOD LEARNING

Name: Djaneye-Boundjou, Ouboti Seydou Eyanaa

APPROVED BY:

Raúl Ordóñez, Ph.D.
Advisor Committee Chairman
Professor, Department of Electrical and
Computer Engineering

Keigo Hirakawa, Ph.D.
Committee Member
Professor, Department of Electrical and
Computer Engineering

Vijayan Asari, Ph.D.
Committee Member
Professor, Department of Electrical and
Computer Engineering

Paul Eloe, Ph.D.
Committee Member
Professor, Department of Mathematics

Robert J. Wilkens, Ph.D., P.E.
Associate Dean for Research &
Innovation, Professor,
School of Engineering

Eddy M. Rojas, Ph.D., M.A., P. E.
Dean, School of Engineering

ii

c© Copyright by

Ouboti Seydou Eyanaa Djaneye-Boundjou

All rights reserved

2017

ABSTRACT

DISCRETE-TIME CONCURRENT LEARNING FOR SYSTEM IDENTIFICATION AND

APPLICATIONS: LEVERAGING MEMORY USAGE FOR GOOD LEARNING

Name: Djaneye-Boundjou, Ouboti Seydou Eyanaa
University of Dayton

Advisor: Dr. Raúl Ordóñez

Literature on system identification reveals that persistently exiting inputs are needed in order

to achieve good parameter identification when using standard learning techniques such as Gradient

Descent and/or Least Squares for function approximation. However, realizing persistency of exci-

tation in itself is quite demanding, especially in the context of on-line approximation and adaptive

control. Much recently, Concurrent Learning (CL), through its utilization of memory (and, in that

regard, quite similarly to human learning), has been shown to be able to yield good learning with-

out the need to resort to persistency of excitation. For all intents and purposes, we refer to “good

learning” throughout this work as the ability to reconstruct the function(s) being approximated well

when using the estimated parameters.

The continuous-time (CT) domain literature on CL has seen the larger share of researches. For

our part, we have focused on the discrete-time (DT) domain. Tough many systems can be modeled

as CT systems, usually, controlling such systems, especially real-time (or, rather close to real-time),

is done via the use of digital computers and/or micro-controllers, therefore making DT framework

iii

studies compelling.

We have shown that, similarly to the CT domain, granted a less restrictive CL condition com-

pared to that of persistency of excitation is verified, analogous CL results to that obtained in the CT

domain can also be achieved in the DT domain. Before incorporating and making use of the concept

of concurrent learning in our studies, we thoroughly study the Gradient Descent and Least Squares

techniques for function approximation and system identification of a dimensionally complex un-

certainty, which, to the best our knowledge, is yet to be done in literature. Our main contributions

are however the derivations of a DT Normalized Gradient (DTNG) based CL algorithm as well as

a DT Normalized Recursive Least Squared (DTNRLS) based CL algorithm for approximation of

both DT structured and DT unstructured uncertainties, while showing analytically that our devised

algorithms guarantee good parameter identification if the aforesaid CL condition is met.

Numerical simulations are provided to show how well the developed CL algorithms leverage

memory usage to achieve good learning. The algorithms are also made use of in two applications:

the discrete-time indirect adaptive control of a class of discrete-time single state plant bearing para-

metric or structured uncertainties and the system identification of a robot.

iv

To my parents and siblings.

v

ACKNOWLEDGMENTS

First and foremost, I am thankful to have lived up to now to see this dissertation through.

I am also thankful to the members of my committee, Dr. Keigo Hirakawa, Dr. Asari Vijayan,

and Dr. Paul Eloe for agreeing to serve as members of my committee as well as the help and

support they have given me. I want to personally thank Dr. Raúl Ordóñez for being my advisor, for

his exquisite attention to detail, and for guiding me throughout not only my graduate studies but,

also, my doctoral studies and this research.

I wish to express my sincere gratitude to Brother Maximin Magnan, SM, and Dr. Amy Anderson

without whom I would in all probability not be at this university in the first place.

Last but not least, I want to thank my family (my father Gbandi Djaneye-Boundjou, my mother

Akoua Tatcho, who have always been inspirational for me, my siblings Bilaal Djaneye-Boundjou

and Jamila Djaneye-Boundjou) and my friends for their love, support, and encouragements.

vi

TABLE OF CONTENTS

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER I. INTRODUCTION . 1

1.1 System Identification . 1
1.2 Need for Discrete-Time Studies . 2
1.3 Persistency of Excitation Condition for Good Learning 3
1.4 Learning Concurrently: Leveraging Memory for Good Learning 5
1.5 Research Motivation . 6
1.6 Contributions . 6
1.7 Outline . 8

CHAPTER II. MATHEMATICAL PRELIMINARIES: FUNCTION APPROXIMATION,
LYAPUNOV ANALYSIS, AND DEFINITIONS . 10

2.1 Discrete-Time Approximation . 10
2.2 Radial Basis Function Neural Network . 12
2.3 On-Line Function Approximation . 13
2.4 Normalization Signal . 15
2.5 Lyapunov Analysis . 17
2.6 Some Definitions . 18

CHAPTER III. CONCURRENT LEARNING . 20

3.1 Concept, Definitions, and Rank Condition . 20

vii

3.2 Persistency of Excitation for Good Learning 26
3.3 Using Memory for Concurrent Learning . 26

CHAPTER IV. DISCRETE-TIME GRADIENT BASED CONCURRENT LEARNING . . 30

4.1 Discrete-Time Normalized Gradient for both the Structured and Unstructured Un-
certainty Approximation Cases . 32
4.1.1 DTNG for the SUAC . 36
4.1.2 DTNG for the UUAC . 42
4.1.3 Concluding Remarks about DTNG . 51

4.2 Discrete-Time Normalized Gradient based Concurrent Learning for both Struc-
tured and Unstructured Uncertainty Approximation Cases 52
4.2.1 Discrete-Time Normalized Gradient Based Concurrent Learning Algorithm 52
4.2.2 DTNG based CL for the SUAC . 56
4.2.3 DTNG based CL for the UUAC . 57
4.2.4 Concluding Remarks about DTNG based CL 61

CHAPTER V. DISCRETE-TIME NORMALIZED LEAST SQUARES BASED CONCUR-
RENT LEARNING . 65

5.1 Discrete-Time Normalized Recursive Least-Square Algorithm for both Struc-
tured and Unstructured Uncertainty Approximation Cases 65
5.1.1 DTNRLS for the SUAC . 70
5.1.2 DTNRLS for the UUAC . 76

5.2 Discrete-Time Normalized Recursive Least Squares Based Concurrent Learning
for Both Structured and Unstructured Uncertainty Approximation Cases 83
5.2.1 Discrete-Time Normalized Recursive Least Squares Based Concurrent

Learning Algorithm . 83
5.2.2 Convergence of the Gain Matrix . 89
5.2.3 Convergence of the Parameter Error in the SUAC 90
5.2.4 Convergence of the Parameter Error in the UUAC 91
5.2.5 Concluding Remarks about DTNRLS based CL 92

CHAPTER VI. DATA RECORDING PROCEDURE FOR CONCURRENT LEARNING
IN DISCRETE-TIME FRAMEWORK . 97

6.1 Data Recording Procedure 1 . 98
6.2 Data Recording Procedure 2 . 98
6.3 Comparing DRP1 to DRP2 . 101

CHAPTER VII. ILLUSTRATIONS . 102

7.1 SUAC Simulations: Applying CL in DT . 103

viii

7.1.1 Applying Gradient Descent Based Algorithms 104
7.1.2 Applying Least Squares Based Algorithms 106

7.2 UUAC Simulations: Applying CL in DT . 108
7.2.1 Applying Gradient Descent Based Algorithms 120
7.2.2 Applying Least Squares Based Algorithms 126

7.3 Concluding Remarks . 139

CHAPTER VIII. APPLICATION 1: DISCRETE-TIME INDIRECT ADAPTIVE CONTROL
OF A CLASS OF SINGLE STATE SYSTEMS USING GRADIENT BASED
CONCURRENT LEARNING FOR PARAMETER ADAPTATION 141

8.1 Problem Statement . 141
8.2 Discrete-Time Indirect Adaptive Control . 143

8.2.1 IAC with Normalized Gradient Adaptive Algorithm 145
8.2.2 IAC with Normalized Gradient Based Concurrent Learning Adaptive Al-

gorithm . 149
8.3 Reference Model . 153
8.4 Design Fine-Tuning . 154
8.5 Numerical Simulations . 154
8.6 Concluding Remarks about IAC Design . 158

CHAPTER IX. APPLICATION 2: FRICTION PARAMETER IDENTIFICATION OF
COMAU RACER ROBOT USING LEAST SQUARES BASED CONCURRENT
LEARNING . 160

9.1 Background and Problem Formulation . 160
9.1.1 Robot Dynamics . 160
9.1.2 Comau Racer Robot . 163
9.1.3 Model Identification . 163
9.1.4 Problem Formulation . 168

9.2 Discrete-Time Representation . 168
9.3 Partial Approximation . 169
9.4 On-Line Approximation and Parameter Identification 170

9.4.1 Applying the Discrete-Time Normalized Recursive Least Squares Algo-
rithm . 174

9.4.2 Applying the Discrete-Time Normalized Recursive Least Squares Based
Concurrent Learning Algorithm . 175

9.5 Numerical Simulations and Experimental Results 178
9.5.1 Numerical Simulations . 179
9.5.2 Experimental Results . 180

9.6 Concluding Remarks . 182

ix

CHAPTER X. CONCLUSION AND FUTURE RESEARCH 188

10.1 Future Research . 190
10.1.1 Optimizing the Developed Concurrent Learning Algorithms 190
10.1.2 Data Recording for Concurrent Learning 191
10.1.3 Approximation Structure . 191
10.1.4 More Real-Time Applications . 192

BIBLIOGRAPHY . 193

APPENDIX A. Matrix Identity and Propositions . 197

APPENDIX B. Persistency of Excitation . 198

APPENDIX C. Vector Norms, Matrix Norms, and Properties 199

x

LIST OF FIGURES

4.1 Gradient descent illustration . 31

7.1 Standalone on-line approximation results of the structured uncertainty described
by (7.3) while using Gradient Descent based algorithms: DRP1 is used for CL,
εNG = εCL = 1. 105

7.2 Metric e(k) given on-line approximation of the structured uncertainty described
by (7.3) while using Gradient Descent based algorithms: DRP1 is used for CL,
εNG = εCL = 1. 106

7.3 Standalone on-line CL approximation results of the structured uncertainty described
by (7.3) while using Gradient Descent based algorithms: DRP1 is used for CL,
cZ = 2, 5, 200, εNG = εZ = 1. 107

7.4 Standalone on-line approximation results of the structured uncertainty described by
(7.3) while using Least Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1.109

7.5 Metric e(k) and evolution of the entries in P (k), given on-line approximation of
the structured uncertainty described by (7.3) while using Least Squares based algo-
rithms: DRP1 is used for CL, εφ = εZ = 1. 110

7.6 Standalone on-line approximation results of the structured uncertainty described by
(7.3) starting with saved history stack Z obtained from Experiment 3 while using
Least Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1. 111

7.7 Standalone on-line CL approximation results of the structured uncertainty described
by (7.3) while using Least Squares based algorithms: DRP1 is used for CL, cZ =

2, 10, 200, εφ = εZ = 1. 112

7.8 Basis functions used for approximating the unstructured uncertainty described by
(7.4). 113

xi

7.9 Off-line training results of the unstructured uncertainty described by (7.4) using the
DTNG algorithm. 114

7.10 Off-line training results of the unstructured uncertainty described by (7.4) using the
DTNRLS algorithm. 115

7.11 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP1 is used for CL,
εNG = εCL = 1. 116

7.12 Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, metric e(k), and ratio rCL given on-line approximation
of the unstructured uncertainty described by (7.4) while using Gradient Descent
based algorithms: DRP1 is used for CL, εNG = εCL = 1. 117

7.13 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP2 is used for CL,
εNG = εCL = 1. 118

7.14 Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, metric e(k), and ratio rCL given on-line approximation
of the unstructured uncertainty described by (7.4) while using Gradient Descent
based algorithms: DRP2 is used for CL, εNG = εCL = 1. 119

7.15 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 6 while using
Gradient Descent based algorithms: DRP1 is used for CL, εNG = εCL = 1. 122

7.16 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 6 while using
Gradient Descent based algorithms: DRP2 is used for CL, εNG = εCL = 1. 123

7.17 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP1 is used for CL,
εNG = 1, and εCL = 0.1. 124

7.18 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP2 is used for CL,
εNG = 1, and εCL = 0.01. 125

7.19 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Least Squares based algorithms: DRP1 is used for CL, εφ =

εZ = 1. 127

xii

7.20 Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, entries in P (k), metric e(k), and ratio rCL given on-line
approximation of the unstructured uncertainty described by (7.4) while using Least
Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1. 128

7.21 Standalone on-line training results of the unstructured uncertainty described by (7.4)
while using Least Squares based algorithms: DRP2 is used for CL, εφ = εZ = 1. . 129

7.22 Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, entries in P (k), metric e(k), and ratio rCL given on-line
approximation of the unstructured uncertainty described by (7.4) while using Least
Squares based algorithms: DRP2 is used for CL, εφ = εZ = 1. 130

7.23 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Least Squares based algorithms: DRP1 is used for CL, P0 =

0.1 Irψ, εφ = εZ = 1. 132

7.24 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Least Squares based algorithms: DRP2 is used for CL, P0 =

0.1 Irψ, εφ = εZ = 1. 133

7.25 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 9 while using
Least Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1. 134

7.26 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 9 while using
Least Squares based algorithms: DRP2 is used for CL, εφ = εZ = 1. 135

7.27 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Least Squares based algorithms: DRP1 is used for CL, εφ = 1,
and εZ = 0.1. 137

7.28 Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Least Squares based algorithms: DRP2 is used for CL, εφ = 1,
and εZ = 0.1. 138

8.1 Evolution of the state x when implementing both IAC designs for tracking of the
train steps. 155

8.2 Evolution of the tracking error e and IAC scheme control action ui when tracking
the train steps. 156

xiii

8.3 Evolution of the parameter estimates in F when implementing both IAC designs for
tracking of the train steps. 157

8.4 Evolution of the parameter estimates in G when implementing both IAC designs for
tracking of the train steps. 158

9.1 Sketch of a 3-DoF robot manipulator. 161

9.2 Numerical simulations: parameter identification results of the Comau Racer robot
using the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = Irq ,
and ξZ = IcZ) algorithm. 181

9.3 Experimental results: parameter identification results of the Comau Racer robot
using the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = Irq ,
and ξZ = IcZ) algorithm: P0 = 100 Irψ . 183

9.4 Experimental results: parameter identification results of the Comau Racer robot
using the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = 50 Irq ,
and ξZ = 0.1 IcZ) algorithm: P0 = 0.001 Irψ . 184

9.5 Experimental results: measured torques τm,i, i = 1, 2, . . . , 6, and predicted torques
τp,i when performing parameter identification of the Comau Racer robot using the
DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = Irq , and ξZ =

IcZ) algorithm: P0 = 100 Irψ . 185

xiv

LIST OF TABLES

2.1 Model dimentionality analysis. 11

4.1 DTNG algorithm, results, and properties. 51

4.2 DTNG based CL algorithm, results, and properties. 63

5.1 DTNRLS algorithm, results, and properties. 82

5.2 DTNRLS based CL algorithm, results, and properties. 96

9.1 Mean square torque prediction errors: P0 = 100 Irψ , DTNRLS based CL is imple-
mented with DRP1, ξφ = Irq , and ξZ = IcZ . 184

9.2 Mean square torque prediction errors: P0 = 0.001 Irψ , DTNRLS based CL is im-
plemented with DRP1, ξφ = 50 Irq , and ξZ = 0.1 IcZ 186

xv

CHAPTER I

INTRODUCTION

1.1 System Identification

System identification involves making an inference about an unknown or uncertain function

based on input and/or output data [1]. It has been widely used in areas such as machine learning

and control systems for learning, prediction, adaptation, and various other tasks. Adequate system

identification involves generation and collection of input and output data as well as performing good

function approximation.

Approximating an unknown function usually takes on two forms. There are:

• The structured uncertainty approximation case (SUAC) or grey-box case;

• The unstructured uncertainty approximation case (UUAC) or black-box case.

Uncertain function
funcertain

input output

In both cases, the approximator is made of a set of parameter estimates, updated on-line via an

adaptation rule or law so as to provide a better estimation of the unknown (true) parameters, and a

1

regressor, consisting of computable signals. The emphasis here is put on the term on-line to differ-

entiate it from off-line function approximation. While only one input data point and/or one output

data point are available at each instance of time when performing on-line function approximation,

off-line function approximation make use of all available input and output data points on the set

where approximation is being performed.

Because a structured uncertainty is parameterized by unknown (true) parameters and a known,

measurable and/or computable regressor, it is assumed that an approximator designed to estimate a

structured uncertainty can closely match that uncertainty so long the true parameters are available.

When dealing with a black box case, in addition to parametric uncertainty there also is functional

uncertainty. As a result, universal approximators, such as neural networks and fuzzy systems, which

allow for construction of a regressor and estimation of the uncertainty (with a relatively small error

provided there is enough structure in the regressor), are made use of.

1.2 Need for Discrete-Time Studies

A vast majority of systems can be modeled as continuous-time (CT) systems; and, understand-

ably so, CT systems are well-studied in control literature [2, 3, 4, 5]. However, with the high-tech

world that we live in and the demands of real-time performance, CT control algorithms are usu-

ally executed by means of digital computers. Derived CT controllers have to be implemented on

sampled-data systems that combine a CT system and a discrete-time (DT) controller. As reported

in [6, 7], three approaches usually arise.

1. The CT controller can be discretized to obtain an equivalently good DT controller provided the

sampling rate is sufficiently large. However, large delays could still be potentially introduced.

2

2. A DT model of the CT system can be obtain via discretization and the CT controller is recovered

by converting a DT controller, developed for controlling the realized DT model, back to the CT

domain. It may however not always be possible to get a good DT model of a CT system.

3. Lastly, taking in consideration exact models of the Analog to Digital (AD) and Digital to Analog

(DA) converters and based on a sample-data model of the original CT system, a DT controller

can be directly implemented. This approach is inherently challenging, since it makes no approx-

imations.

Bearing in mind the importance of DT designs of Case 2 (above) in particular, and, maybe, to a

certain extent Case 3, the study and design of DT systems and DT controllers are as crucial as that

of CT systems and CT controllers.

Moreover, of particular importance, one of our research interests (and, as a side note, what

led to further investigation of function approximation, as we do in the present work) is that of the

discrete in nature Particle Swarm Optimization (PSO) algorithm. In the past, an adaptive particle

swarm optimization (APSO) algorithm, based on the inertia factor PSO algorithm and for which

function approximation was employed, was developed [8, 9]. The term adaptive here is employed

to underline the use of adaptive control in the design of the optimizer as opposed to a self-adjusting

optimizer. Bettering the performance of the developed adaptive swarm optimizer, i.e., that in [8, 9],

has prompted further analysis of the many aspects that constitute the aforementioned optimizer,

with one those aspects being function approximation.

1.3 Persistency of Excitation Condition for Good Learning

Adaptive control, employed when dealing with uncertainties within a plant’s system, relies on

acquired a posteriori knowledge. Through collection of information, it is usually possible to put

in place a learning or adaptation mechanism on-line [10] and, given certain conditions, design a

3

control law that can achieve desired system performance even in the presence of the aforesaid un-

certainties. The adaptation mechanism performs function approximation via identification. The

resulting inferred information is then used to compute the adaptive controller. Two different adap-

tive control schemes, indirect adaptive control and direct adaptive control, emerge from the way

the control action is computed. An indirect adaptive control (IAC) scheme is concerned with, first,

approximating the system’s uncertainties before combining their estimated values in the definition

of the adaptive controller. Conversely, the adaptation mechanism of a direct adaptive control (DAC)

scheme directly approximates the adaptive controller.

Some of the standard and widely used learning methods in literature are the Gradient Descent

and Recursive Least Squares algorithms, which, when used for standalone approximation, do help

minimize the approximation error (defined as the difference between the approximation and the

function being approximated). However, they cannot be shown to theoretically guarantee conver-

gence of parameter estimates to their true values or a neighborhood around the aforesaid true values

unless the regressor used for approximation is persistently exciting (PE) [2, 3, 4]. Similarly, standard

adaptive control, i.e., adaptive control using standard learning methods, can guarantee convergence

of the tracking error (defined as the difference between the output to control and its desired value)

to the origin or a neighborhood of the origin, but cannot analytically guarantee convergence of the

parameter estimates to their true parameters or a neighborhood of their true parameters without the

PE condition of the regressor being satisfied [2, 3, 4].

The PE condition can however be hard to achieve, especially when performing closed-loop con-

trol. A formal definition of a bounded persistently exciting regressor is given by (B.2) in Appendix

B. The PE condition essentially requires complete span of the considered space over which an ap-

proximation is made for all predefined time. As an alternative, researchers have studied conditions

under which PE conditions on the reference inputs to a system can translate to its states, outputs,

4

and associated regressor(s). In [11], working in the CT framework, the authors show that if the ref-

erence input to a plant contains as many spectral lines as the number of unknown (true) parameters

to be estimates, then the plant states are PE. For DT linear systems and DT linear switched systems,

for instance, respectively, output reachability of the system [12] as well as realization theory and

knowledge of Markov parameters [13] are sufficient conditions for realizing persistency of excita-

tion of the regressor granted the reference inputs are PE. However, requiring reference inputs to be

PE is equally as restrictive and not easily verifiable on-line.

1.4 Learning Concurrently: Leveraging Memory for Good Learning

Concurrent Learning (CL) is a recently introduced method for CT uncertainty estimation [14],

whereby current and stored, past data are used in conjunction to devise an adaptation law. CL is

essentially a memory based technique (hence, sharing similarities with human learning) that is capa-

ble of helping achieve better learning without necessitating persistency of excitation. In fact, it has

been proved in the CT domain that CL guarantees global exponential convergence of the parameter

error, when used for stand-alone identification of structured uncertainties, and global exponential

convergence of both the tracking error and the parameter error, when used for developing adaptive

control of a class of CT linear system bearing an underlying structured uncertainty, without requir-

ing persistency of excitation [15, 16, 14, 17, 18]. Girish Chowdhary, who developed CL, also shows

that in the presence of unstructured uncertainties, instead of exponential convergence results, one

can get uniform, ultimate boundedness results of the tracking and parameter errors. It needs to be

added that though not requiring the PE condition, the CL condition for improved parameter identifi-

cation is that the memory containing stored data is made of the same number of linearly independent

elements as there are (row) dimensions in the regressor used for approximation.

5

1.5 Research Motivation

System identification and, more precisely, function approximation, as noted before, have many

usages in science, engineering, and mathematics. There are a good amount of publications on CL

in the CT framework [15, 16, 14, 17, 19, 18, 20, 21, 22, 23, 24, 25, 26, 27] while, to the best of our

knowledge, CL studies in DT framework were inexistent at the time. Because, as mentioned above,

DT studies and designs are important, the ambition in this research is to study and apply the CL

concept for function approximation in DT settings.

In summary:

• The present research aims to formally study system identification and how CL fairs when

used for parameter identification, be it for the SUAC or the UUAC;

• Because CL used in CT framework has been fairly studied and mostly because our interest lies

largely on DT systems, the focus here will mostly be on applying CL in the DT framework;

• Our developments on system identification in DT settings using CL can then be applied to

control systems related problems and/or any problem(s) requiring function approximation.

1.6 Contributions

Mostly due to the fact that function approximation is looked at more in depth here because

of our initial research interests, the present work has been mainly geared towards devising CL

motivated algorithms in the DT framework and extending CL results of the CT framework to the DT

framework. We have developed a normalized gradient based discrete-time CL algorithm, which we

have used for standalone parameter identification tasks [28] as well as for uncertainty approximation

within a DT adaptive control loop [29]. Literature also suggests that the Recursive Least Squares

(RLS) algorithm can potentially yield faster convergence, better function approximation, and better

6

parameter estimation. For that reason and so as to possibly exploit their beneficial sides, we have

also worked on merging the concepts of RLS and CL.

In essence, we look at the problem of on-line function approximation in the DT framework

from a very fundamental point of view, while deriving and developing learning algorithms using the

concept of CL so as to add to its already existing CT literature. On-line function approximation is

off particular interest because of its use in controls, especially within an adaptive control loop.

The following points detail our problem formulation and contributions.

• We formulate a very generic and dimensionally complex uncertainty approximation problem,

which is not the typical course of action in literature;

• In each of the following points, we investigate both the structured and unstructured uncer-

tainty approximation cases (i.e., SUAC and UUAC). It should be added that, as mentioned

above, we are mostly concerned with on-line uncertainty approximation;

– We study in great detail the use of the Normalized Gradient (NG) descent and Recursive

Least Squares learning methods for approximation in DT settings so as to derive condi-

tions for stability of the parameter error. By doing so, we add to the existing literature

on function approximation, given the nature of our problem;

– Our main contributions come from developing and thoroughly studying the DT Normal-

ized Gradient (DTNG) based Concurrent Learning and the DT Normalized Recursive

Least Squares (DTNRLS) based algorithms. Here also, we derive conditions for stabil-

ity of the parameter error;

– More specifically, we show that both the DTNG based CL and DTNRLS based CL

algorithms analytically guarantee better parameter identification properties, thus, poten-

tially, better learning properties, granted the recorded data when employing the concept

7

of Concurrent Learning is rich enough. Richness of the recorded data is linked with

verification of the aforementioned CL condition. In fact, provided the CL condition on

the recorded data is satisfied, in the SUAC, we can show exponential convergence and

asymptotic convergence of the parameter error to the origin when using the DTNG based

CL algorithm and DTNRLS based CL algorithm respectively. With the same condition

being verified, in the UUAC, we can show that the parameter error is ultimately, uni-

formly bounded using either algorithms and, particularly, in the case of the DTNRLS

based CL algorithm, asymptotic convergence of the parameter error to the origin. It

should be noted that, unlike the PE condition, the CL condition is less demanding as it

only concerns the recorded data, thus, only a portion of the past information. Moreover,

it is much easier to implement and verify on-line as opposed to the PE condition;

• We use our DTNG based CL algorithm for indirect adaptive control of a single state system

bearing structured uncertainties and our DTNRLS based CL algorithm for system identifica-

tion of a robot. We show via derivations and illustrations the merits of CL. For the indirect

adaptive control problem in particular, we show that, besides the parameter error, the tracking

error is also exponentially stable.

1.7 Outline

We describe in details the function approximation problem in Chapter II. We pose a function ap-

proximation problem that is generic in nature and consider two possible approximation models. The

concept of Concurrent Learning is then reviewed in Chapter III. We explore the DTNG algorithm

and develop the DTNG based CL algorithm in IV. Both algorithms, their results and properties are

summarized in Tables 4.1 and 4.2 respectively. In a similar fashion, we also study the DTNRLS al-

gorithm and derive the DTNRLS based CL algorithm in V, both of which are respectively presented

8

in Tables 5.1 and 5.2 along with their results and properties. Chapter VI presents data recording

procedures that can be used when applying CL. Specifically, we describe and compare two ways of

recording data in memory. Illustrations of our developed algorithms are provided in VII. In Chap-

ters VIII and IX we apply our developed learning algorithms to two problems. They are the indirect

adaptive control of a class of single state systems and the system identification of a Comau Racer

robot.

9

CHAPTER II

MATHEMATICAL PRELIMINARIES: FUNCTION APPROXIMATION, LYAPUNOV

ANALYSIS, AND DEFINITIONS

2.1 Discrete-Time Approximation

Letting k0 ∈ N+ and ks = k0 +N − 1 ∈ N, for some N ∈ N+ and, thus, ks ≥ k0, throughout

this note, we use k ∈ {k0, k0 + 1, k0 + 2, . . . , ks} ∩ N to denote a discrete-time step and x =

x(k) ∈ Rrx , rx ∈ N+, to denote a known, computable measurement. Essentially, k0 is the discrete-

time at which we start sampling, ks is the discrete-time at which we stop sampling, and the strictly

positive integer N represents the number of samples from start to finish. Let f (x(k)) ∈ Rrf×cf ,

rf , cf ∈ N+, be an unknown, but, measurable or computable uncertainty to approximate.

Now, let θ ∈ Rrθ×cθ , rθ, cθ ∈ N+, be an unknown, constant parameter matrix and φ (x(k)) ∈

Rrφ×cφ , rφ, cφ ∈ N+, be a computable regressor. Moreover, let F (x(k), θ) ∈ Rrf×cf be given by

F (x(k), θ) =Mn(x(k), θ) . (2.1)

For some ax ∈ Rrx×cx , φ(ax) ∈ Rrφ×cφ , aθ ∈ Rrθ×cθ , and n = 1, 2, in the present work, we

consider models

Mn(ax, aθ) =M1(ax, aθ) = a>θ φ(ax), if n = 1, and (2.2a)

Mn(ax, aθ) =M2(ax, aθ) = φ>(ax)aθ, if n = 2. (2.2b)

10

for approximation of f (x(k)) with measurement x(k), k ≥ k0, kept inside a predefined compact

set Dx ⊂ Rrx . On one hand, using model (2.2a) means rθ = rφ, cθ = rf , and cφ = cf . On the

other, though we still have that rθ = rφ with model (2.2b), it differs from (2.2a) in that cθ = cf and

cφ = rf . The previous dimensionality analysis is summarized in Table 2.1.

Table 2.1: Model dimentionality analysis.

Model 1:Mn =M1 rθ = rφ, cθ = rf , and cφ = cf

Model 2:Mn =M2 rθ = rφ, cθ = cf , and cφ = rf

Notice that both models (2.2a) and (2.2b) are linear in the parameter matrix θ; and, with respect

to θ, a model in the form of those in (2.2) is known in literature as a Linear Parametric Model (LPM)

or a linear in the parameter approximator model.

Taking into account approximation imperfections, we also define the representation errorw (x(k)) ∈

Rrf×cf as

w (x(k)) = f (x(k))−F (x(k), θ) . (2.3)

Let ‖·‖F denote the Frobenius norm operator (see C.7). Error w (x(k)), given by (2.3), is typically

defined as the subsisting functional reconstruction error when θ ∈ Dθ ⊂ Rrθ×cθ is such that

θ = arg min
θ∈Dθ

‖w (x(k))‖F = arg min
θ∈Dθ

‖f (x(k))−F (x(k), θ)‖F (2.4)

represents the best or ideal parameter matrix that can be used for approximating f on Dx, with θ

either constrained to the set Dθ or left unconstrained by making Dθ = Rrθ×cθ .

For approximations of type SUAC, only parametric uncertainties exist, as φ (x(k)) is perfectly

known. Thus, given the appropriate θ, F (x(k), θ) can fully match f (x(k)). For these reasons, it

can be assumed that there is no representation error, i.e., w (x(k)) ≡ [0]rf×cf for all x and k when

it comes to approximating structured uncertainties. When dealing with a UUAC problem, because

11

of the added functional uncertainties, i.e., the lack of knowledge of an ideal φ (x(k)), universal

approximators, such as Radial Basis function Neural Network (RBNN), Multi Layer Perceptron

(MLP), Fuzzy systems, are typically made use of to construct φ (x(k)). We mathematically define

an RBNN structure next.

2.2 Radial Basis Function Neural Network

Using the same notation for the regressor as done above, the regressor of a LPM using a RBNN

structure with Gaussian basis functions can be computed as

φ (x(k)) =
[
ζ1(x(k)) , ζ2(x(k)) , . . . , ζcφ(x(k))

]
, (2.5)

where the vectors ζi ∈ Rrφ , rφ = rθ and i = 1, 2, . . . , cφ, are such that

ζi(x(k)) =

bζi

e
−‖x(k)−µζi,1‖

2

2σ2
ζi,1

e
−‖x(k)−µζi,2‖

2

2σ2
ζi,2

...

e
−

∥∥∥∥x(k)−µζi,rφ−1

∥∥∥∥2

2σ2
ζi,rφ−1

, (2.6)

with ‖·‖ denoting the 2-norm or `2-norm operator (see (C.5) in Appendix C for more details). For

i = 1, 2, . . . , cφ and j = 1, 2, . . . , rφ − 1, µζi,j ∈ Rrx and σζi,j ∈ R+ are, respectively, the

centroids and the spreads of the Gaussian basis functions e
−‖x(k)−µζi,j‖

2

2σ2
ζi,j , and bζi ∈ R is a constant

bias term that can be used if desired or otherwise replaced by an rφ-th basis function. In this work,

we will make use of such a structure to construct the regressor when approximating an unstructured

uncertainty.

Per universal approximator properties (see [3, 5]), while making use an RBNN structure, we

can assume that a good, ideal θ exists such that the representation error w (x(k)) that results from

approximating f (x(k)) on Dx (x ∈ Dx) using the models in (2.2) is bounded. That is, there exists

12

an upper bound W ≥ 0 of ‖w (x(k))|F for all k, x ∈ Dx, and θ ∈ Dθ such that,

W = sup
x∈Dx

‖w (x(k))‖F ,

or, so that

‖w (x(k))‖F ≤W . (2.7)

Lastly, it is known in literature that if a sufficient number of basis functions are used in an RBNN

structured regressor, it is possible to make W arbitrarily small.

2.3 On-Line Function Approximation

With the true parameter θ being unknown, we define its estimate θ̂(k) ∈ Rrθ×cθ to be used for

approximation purposes. We also define the scheme F
(
x(k), θ̂(k)

)
∈ Rrf×cf modeled as

F
(
x(k), θ̂(k)

)
=Mn

(
x(k), θ̂(k)

)
(2.8)

after F (x(k), θ) in (2.1). Let q(k) ∈ Rrf×cf denote the approximation error, which we can be

numerically computed as

q(k) = F
(
x(k), θ̂(k)

)
− f (x(k)) (2.9a)

=Mn

(
x(k), θ̂(k)

)
− f (x(k)) , (2.9b)

Notice that (2.9b) stems from (2.1).

We now define the parameter error

θ̃(k) = θ̂(k)− θ, (2.10)

which means, using (2.9a), that

q(k) = F
(
x(k), θ̃(k)

)
− (f (x(k))−F (x(k), θ)) , (2.11)

13

where, given the linearity in parameter property ofMn (and, therefore, F =Mn),

F
(
x(k), θ̃(k)

)
= F

(
x(k), θ̂(k)

)
−F (x(k), θ) ,

=Mn

(
x(k), θ̃(k)

)
. (2.12)

Hence, from (2.3) and (2.12), (2.11) becomes

q(k) =Mn

(
x(k), θ̃(k)

)
− w (x(k)) . (2.13)

Because we are considering two approximation models, i.e,M1 in (2.2a) andM2 in (2.2a), for

succinctness, we define the error qε(k) ∈ Rrqε×cqε (essentially an approximation error), which is to

be computed as

qε(k) =

{
q>(k), ifMn =M1,
q(k), ifMn =M2,

(2.14)

and, hence, meaning rqε and cqε depend on the model used. Recall that q ∈ Rrf×cf . If using (2.2a),

Mn =M1 and, subsequently, rqε = cf and cqε = rf . Instead, if using (2.2b),Mn =M2 and, in

this case, rqε = rf and cqε = cf . However, no matter which of the two approximation models in

(2.2) is used, from (2.9b), (2.13), and (2.14),

qε(k) = φ>(x(k)) θ̂(k)− fn(k), (2.15a)

= φ>(x(k)) θ̃(k)− wε(k), (2.15b)

where the function fn(k) ∈ Rrqε×cqε and the residual error wε(k) ∈ Rrqε×cqε are such that

fn(k) =

{
f>(x(k)) , ifMn =M1,
f (x(k)) , ifMn =M2,

(2.16)

and

wε(k) =

{
w>(x(k)) , ifMn =M1,
w (x(k)) , ifMn =M2.

(2.17)

14

2.4 Normalization Signal

For some (possibly time-varying) bounded scalar α = α(k) > 0, a signal ρ (x(k)) ∈ Rrρ×cρ ,

with rρ, cρ ∈ N+, and a positive semi-definite, symmetric, and (possibly time-varying) bounded

matrix Ξm = Ξm(k) ∈ Rrρ×rρ (Ξm > 0 and Ξ>m = Ξm), we also define the normalization signal

m(k) ∈ Rcρ×cρ that is such that

m2(k) = αIcρ + ρ>(x(k)) Ξmρ (x(k)) , (2.18)

or, consequently,

m(k) =
(
αIcρ + ρ>(x(k)) Ξmρ (x(k))

) 1
2 .

On the right hand side of (2.18), Icρ denotes a cρ-by-cρ identity matrix. Given that Ξm > 0, for all

k, ρ>(x(k)) Ξmρ (x(k)) is at least positive semi-definite, i.e.,

φ>(x(k)) Ξmφ (x(k)) ≥ 0,

and, with α > 0 and Icρ > 0, both m2(k) and m(k) are positive definite, i.e., m2(k) > 0 and

m(k) > 0. Hence, with m2(k) > 0, its square root m(k) is unique. Further,
(
m2(k)

)−1 as well

as m−1(k) exist and are also both positive definite. Additionally, given (2.18), notice that m2(k)

and m(k) are symmetric. That is
(
m2(k)

)>
= m2(k), m>(k) = m(k). As well, their respective

inverse, i.e.,
(
m2(k)

)−1 and m−1(k), are also symmetric. We can bound the signal m2(k) in (2.18)

as

0 < αIcρ ≤ m2(k) ≤ λm2,kIcρ , (2.19)

with

λm2,k = α+ λmax

(
ρ>(x(k)) Ξmρ (x(k))

)
, (2.20)

15

from which λmax(·) is used here to denote the maximum eigenvalue operator. From (2.19), we have

that

1√
λm2,k

Icρ ≤ m−1(k) ≤ 1√
α
Icρ

and, subsequently,∥∥∥∥∥∥ 1√
λm2,k

Icρ

∥∥∥∥∥∥
2

F

=
1

λm2,k

∥∥Icρ∥∥2

F
≤
∥∥m−1(k)

∥∥2

F
≤
∥∥∥∥ 1√

α
Icρ

∥∥∥∥2

F

=
1

α

∥∥Icρ∥∥2

F

or, given that
∥∥Icρ∥∥F =

√
cρ according to the mathematical definition of the Frobenius norm in

(C.7),

cρ

λm2,k
≤
∥∥m−1(k)

∥∥2

F
≤ cρ
α

. (2.21)

Furthermore, noting that

(
m2(k)

)−1
= m−1(k)m−1(k),

using (C.1), (C.9), and with λ{(m2(k))−1}
r

, r = 1, 2, . . . , cφ, representing the eigenvalues of(
m2(k)

)−1 ∈ Rcρ×cρ ,

tr
{(
m2(k)

)−1
}

= tr
{
m−1(k)m−1(k)

}
=
∥∥m−1(k)

∥∥2

F
=

cρ∑
r=1

λ{(m2(k))−1}
r

,

≥ λmax

((
m2(k)

)−1
)

.

Hence, with λmax

((
m2(k)

)−1
)
≤
∥∥m−1(k)

∥∥2

F
and being able to write

0 <
(
m2(k)

)−1 ≤ λmax

((
m2(k)

)−1
)
Icρ ,

we get that

0 <
(
m2(k)

)−1 ≤ λmax

((
m2(k)

)−1
)
Icρ ≤

∥∥m−1(k)
∥∥2

F
Icρ , (2.22)

16

Moreover, befitting its definition, m(k) ensures that the signal

ρm(x(k)) = ρ (x(k))m−1(k), (2.23)

hence ρm(x(k)) ∈ Rrρ×cρ , is bounded for all k. It will formally be shown in later chapters that

signals defined in the same vein as ρm(x(k)) are indeed bounded.

2.5 Lyapunov Analysis

Function approximation involves developing and/or applying an adaptation law for update of

the parameter estimate θ̂(k). Boundedness and convergence of the parameter error θ̃(k) are key to

the success of the approximation scheme.

Letting tr(·) denote the trace operator, throughout this note, we will study the trajectory of θ̃(k)

using the positive definite, decrescent, and radially unbounded Lyapunov function

V (k) = tr
{
θ̃>(k)ΞV θ̃(k)

}
, (2.24)

with (possibly time-varying) ΞV = ΞV (k) ∈ Rrθ×rθ , with rθ = rφ, chosen as a positive definite,

symmetric, and bounded matrix (ΞV > 0 and Ξ>V = ΞV). From (2.24), with ΞV > 0, and because

of (C.9), there exist positive scalars β
V

and βV that are such that 0 < β
V
< βV and

β
V

∥∥∥θ̃(k)
∥∥∥2

F
≤ V (k) ≤ βV

∥∥∥θ̃(k)
∥∥∥2

F
. (2.25)

Furthermore, consider the rate of change

∆V (k) = V (k)− V (k − 1) (2.26)

or, equivalently,

∆V (k + 1) = V (k + 1)− V (k)

17

of V (k). If we can show at the very minimum that, for all k, ∆V (k) ≤ 0, then, according to

Lyapunov theory [3, 5]), V (k) is bounded and θ̃(k) can also be shown to be bounded. Besides

boundedness,

1. If V (k + 1) < V (k), then θ̃(k) is asymptotically bounded;

2. If V (k + 1) ≤ β V (k), for some 0 < β < 1, then θ̃(k) is (not only asymptotically bounded, but

furthermore) exponentially bounded.

2.6 Some Definitions

The following list highlights noteworthy definitions and properties that we will make use of in

the present note. First, however, it is important to remember that, regardless of the model utilized

for approximation, i.e., (2.2a) or (2.2b), rθ = rφ.

• Let Ir, r ∈ N+, denote an r-by-r identity matrix. According to the definition of the Frobenius

norm, i.e., (C.7), we have that ‖Ir‖F =
√
r.

• Let Φk ∈ Rrφ×rφ denote the instantaneous information matrix

Φk = φ (x(k))φ>(x(k)) . (2.27)

We can see that Φk is symmetric, i.e., Φ>k = Φk, and positive semidefinite, i.e., Φk ≥ 0 for

all k. Having previously defined λmax(·) as the maximum eigenvalue operator, we now let

λmin(·) denote the minimum eigenvalue operator. As such, for

λΦk
= λmin(Φk) and λΦk = λmax(Φk) ,

we can write that

λΦk
Irφ ≤ Φk = φ (x(k))φ>(x(k)) ≤ λΦkIrφ (2.28)

for all k.

18

• The rest of the definitions, properties, and propositions, including (but not limited to) persis-

tency of excitation, vector and matrix norm operators, and the use of tr(·), vec(·), and ‖·‖F

to respectively denote the trace, vectorization, and Frobenius norm operators, are given in the

appendices.

For brevity, we will use ‖·‖ to denote the `2-norm operator (see (C.5)).

Next, after defining the concept of Concurrent Learning, we study in depth both the Gradient

Descent and Recursive Least Squares methods for function approximation in discrete-time settings

and then go on to develop their respective Concurrent Learning modifications.

19

CHAPTER III

CONCURRENT LEARNING

3.1 Concept, Definitions, and Rank Condition

As suitably named, Concurrent Learning is a memory based method, whereby carefully selected

and recorded past information (saved in memory) is duly combined together with current informa-

tion during the learning process. Its use of memory makes it therefore quite similar to human learn-

ing. The concept of Concurrent Learning was developed by Girish Chowdhary [15, 16, 14, 17, 18],

though in the CT framework. The implied, used memory storage when employing Concurrent

Learning, coined history stack, will be played by matrices Z and/or ZG defined below in (3.1) and

(3.8) respectively.

Recall regressor φ (x(k)) ∈ Rrφ×cφ , used for approximation purposes and elementally defined

in (2.5) as

φ (x(k)) =
[
ζ1(x(k)) , ζ2(x(k)) , . . . , ζcφ(x(k))

]
,

with vectors ζi(x(τj)) ∈ Rrφ , i = 1, 2, . . . cφ, representing the columns of φ (x(k)). Let Z ∈

RrZ×cZ , rZ = rφ = rθ and cZ ∈ N+, be a matrix whose columns are composed of vectors

ζi(x(τj)), i ∈ {1, 2, . . . , cφ}, of the regressor φ (x(τj)) (see (2.5)), computed at discrete time τj ,

20

k0 ≤ τj < k, with j ∈ {1, 2, . . . , cZ}. That is

Z =
[
ζi(x(τ1)) , ζi(x(τ2)) , . . . , ζi(x(τcZ))

]
. (3.1)

Given (2.5), substituting ρ (x(k)) in (2.18) by φ (x(k)), and for the scalars gn,p(k) and ḡn,n(k),

n ∈ {1, 2, . . . , cφ} as well as p ∈ {1, 2, . . . , cφ}, defined as

gn,p(k) = ζ>n(x(k)) Ξmζp(x(k)) (3.2)

and

ḡn,n(k) = α+ gn,n(k) = α+ ζ>n(x(k)) Ξmζn(x(k)) , (3.3)

we have that

αIcφ + φ>(x(k)) Ξmφ (x(k)) =

ḡ1,1(k) g1,2(k) . . . g1,cφ(k)

g2,1(k) ḡ2,2(k) . . . g2,cφ(k)
...

. . .
...

gcφ,1(k) gcφ,2(k) . . . ḡcφ,cφ(k)

 .

Given that α > 0, Ξm > 0, and

gn,n(k) = ζ>n(x(k)) Ξmζn(x(k)) ≥ 0,

notice that for any k and n ∈ {1, 2, . . . , cφ}, the scalar ḡn,n(k) > 0. Since a scalar (and though

redundant), ḡn,n(k) = ‖ḡn,n(k)‖F , and, while making use of (C.5), (C.7), (C.8), (C.10), and (C.11),

we can find a scalar αg such that 0 < αg ≤ 1 and

ḡn,n(k) = ‖ḡn,n(k)‖F ≥ αg
(
α+ Λ2

ζn,k
)

, (3.4)

where, for

ΛΞm = ‖Ξm‖F , (3.5a)

Λζn,k = ‖Ξm‖
1
2
F ‖ζn(x(k))‖F = Λ

1
2
Ξm
‖ζn(x(k))‖ . (3.5b)

21

Expressions (3.4), (3.5a), and (3.5b) allow us to say that∥∥∥∥∥ ζn(x(k))√
ḡn,n(k)

∥∥∥∥∥
F

=
‖ζn(x(k))‖F∥∥√ḡn,n(k)

∥∥
F

=
‖ζn(x(k))‖∥∥√ḡn,n(k)

∥∥
F

≤
Λ
− 1

2
Ξm

Λζn,k(
αg

(
α+ Λ2

ζn,k
)) 1

2

= Bg. (3.6)

Since Ξm is to be picked such that it is bounded, (3.6) means that
ζn(x(k))√
ḡn,n(k)

∈ Rrφ is indeed

bounded. Actually, similarly to (3.6), we can show that

∥∥∥∥ζn(x(k)) ζ>n(x(k))

ḡn,n(k)

∥∥∥∥
F

≤
Λ
− 1

2
Ξm

Λ2
ζn,k

αg

(
α+ Λ2

ζn,k
) , (3.7)

and conclude that
ζn(x(k)) ζ>n(x(k))

ḡn,n(k)
∈ Rrφ×rφ is also bounded. It should be added that, for the

derived Frobenius norm upper-bounds above, i.e., (3.6) and (3.7), boundedness is contingent upon

αg, which, according to (3.3) and (3.4), can be made to be far away from zero and closer to 1. In

any case, the main reason for going through the previous analysis is to set a basis for the definitions

of matrix ZG ∈ RrZ×cZ , matrix Z̄G ∈ RrZ×cZ , and row vector G ∈ R1×cZ , made to respectively

contain the bounded vectors
ζi(x(τ))√
ḡi,i(τj)

, vectors
ζi(x(τ))

ḡi,i(τj)
, and the positive scalars ḡi,i(τj), with

i ∈ {1, 2, . . . , cφ}, j ∈ {1, 2, . . . , cZ}, and DT τj being such that k0 ≤ τj < k. That is,

ZG =

[
ζi(x(τ1))√
ḡi,i(τ1)

, ζi(x(τ2))√
ḡi,i(τ2)

, . . . ,
ζi(x(τcZ))√
ḡi,i(τcZ)

]
, (3.8)

Z̄G =
[

ζi(x(τ1))
ḡi,i(τ1) , ζi(x(τ2))

ḡi,i(τ2) , . . . ,
ζi(x(τcZ))
ḡi,i(τcZ)

]
, (3.9)

and

G =
[
ḡi,i(τ1), ḡi,i(τ2), . . . , ḡi,i(τcZ)

]
. (3.10)

Notice that ZG and Z̄G can actually be constructed by knowing Z and G. Hence, one needs not

to put together and carry along all three memory banks, i.e., Z, ZG, and Z̄G, saved up in memory

at all times, as having Z and G would suffice. It is also worthwhile mentioning that ZG may be

practically easier to operate on than Z and, for that matter, Z̄G, because of the boundedness of its

22

elements, i.e.,
ζi(x(τj))√
ḡi,i(τj)

. On that note, given (3.6), (C.10), and the fact that ZG ∈ RrZ×cZ in (3.9)

can be written as a summation of cZ matrices of size rZ-by-cZ , with each matrix containing only

one of the cZ columns of ZG at a time and the rest of the elements being zero, we can in fact write

that

‖ZG‖F ≤
cZ∑
j=1

∥∥∥∥∥ ζi(x(τj))√
ḡi,i(τj)

∥∥∥∥∥
F

≤ cZBg. (3.11)

Concerning Z̄G, notice that though, for all k and n ∈ {1, 2, . . . , cφ},
ζn(x(k))√
ḡn,n(k)

is bounded as (3.6)

shows, we cannot readily make the same conclusion for

ζn(x(k))

ḡn,n(k)
=

ζn(x(k))√
ḡn,n(k)

1√
ḡn,n(k)

,

as
√
ḡn,n(k) may be so small or, equivalently,

1√
ḡn,n(k)

may be so large that
∥∥∥∥ζn(x(k))

ḡn,n(k)

∥∥∥∥
F

is also

large. Obviously, given (3.3), we can avoid having

1√
ḡn,n(k)

=
1√

α+ gn,n(k)
=

1√
α+ ζ>n(x(k)) Ξmζn(x(k))

≥ 1

by picking α ≥ 1.

Furthermore, say for any x and k, f (x(k)) ∈ Rrf×cf is such that

f (x(k)) =
[
f1(x(k)) , f2(x(k)) , . . . , fcf (x(k))

]
and l (x(k)) = f>(x(k)) ∈ Rcf×rf is such that

l (x(k)) =
[
l1 (x(k)) , l2 (x(k)) , . . . , lrf (x(k))

]
,

where fi(x(k)) ∈ Rrf , i = 1, 2, . . . , cf , and lj(x(k)) ∈ Rcf , j = 1, 2, . . . , rf , are column vectors

of matrices f(x) and l(x) respectively. Let Fn ∈ RrF×cF , n = 1, 2 and rF , cF ∈ N+, be a matrix

containing the uncertainty entities in f (x(τj)). That is, either fi(x(τj)) or li(x(τj)). If using model

(2.2a), then, we set rF = rf , cF = cZ , and, for some values of i = 1, 2, . . . , cf representing the

23

columns indexes of f(x),

Fn = F1 =
[
fi(x(τ1)) , fi(x(τ2)) , . . . , fi(x(τcZ))

]
. (3.12)

Similarly, if using model (2.2b) instead, then, rF = cZ , cF = cf , and

Fn = F2 =
[
li(x(τ1)) , li(x(τ2)) , . . . , li(x(τcZ))

]> , (3.13)

for some i = 1, 2, . . . , rf denoting the columns indexes of l(x). For conciseness, we choose not to

explicitly show time dependency of matrices Z, ZG, Z̄G, G, and F , i.e., Z = Z(k), ZG = ZG(K),

Z̄G = Z̄G(k), G = G(k) and, for n = 1, 2, Fn = Fn(k), though, they could very well be time

dependent.

Moving along, let ΦZ,k ∈ RrZ×rZ and ΦZG,k ∈ RrZ×rZ be defined as

ΦZ,k = ZZ> (3.14)

and, based on the definition of Z, ZG, and Z̄G in (3.1), (3.8), and (3.9) respectively,

ΦZG,k = ZGZ
>
G = Z̄GZ

>. (3.15)

We want to bring attention to the second equality in (3.15) because we will make use of it later.

Notice further that both ΦZ,k and ΦZG,k are symmetric, i.e., Φ>Z,k = ΦZ,k and Φ>ZG,k = ΦZG,k, and

(at least) positive semidefinite, i.e., ΦZ,k ≥ 0 and ΦZG,k ≥ 0. Moreover, based on the definitions

of Z, ZG, and Z̄G in, respectively, (3.1), (3.8), and (3.9), we have that

ΦZ,k = ZZ> =

cZ∑
j=1

ζi(x(τj)) ζ
>
i (x(τj)) (3.16)

and

ΦZG,k = ZGZ
>
G =

cZ∑
j=1

ζi(x(τj))√
ḡi,i(τj)

ζ>i (x(τj))√
ḡi,i(τj)

=

cZ∑
j=1

ζi(x(τj)) ζ
>
i (x(τj))

ḡi,i(τj)
, (3.17)

24

with
ζi(x(τj)) ζ

>
i (x(τj))

ḡi,i(τj)
being bounded for any i ∈ {1, 2, . . . , cφ} and τj that is such that j ∈

{1, 2, . . . , cZ} and k0 ≤ τj < k , as (3.7) shows. Defining

λΦZ,k = λmin(ΦZ,k) , λΦZ,k = λmax(ΦZ,k) ,

λΦZG,k = λmin(ΦZG,k) , and λΦZG,k = λmax(ΦZG,k) ,

for all k,

λΦZ,kIrZ = λΦZ,kIrφ ≤ ΦZ,k = ZZ> ≤ λΦZ,kIrZ = λΦZ,kIrφ . (3.18)

and

λΦZG,kIrZ = λΦZG,kIrφ ≤ ΦZG,k = ZGZ
>
G ≤ λΦZG,kIrZ = λΦZG,kIrφ , (3.19)

given that rZ = rφ. From (3.16) and (3.17), notice that λΦZG,k and λΦZG,k are functions of λΦZ,k

and λΦZ,k respectively, as well as the strictly positive scalars ḡi,i.

Now, as done in the CT framework, we present the condition on the linear independence of the

data in the history stack(s). This condition is also known as the rank condition. We will however

formulate it in terms of matrix ZG, which, as mentioned earlier, might be more appropriate to use in

practice for numerical operations due to its columns being bounded (and/or, also, the fact that ZG

is bounded as (3.11) reveals). However, it is important to explicitly mention that, because, as show

(3.1), (3.8), and (3.9), Z, ZG, and Z̄G, are constructed with the same column vectors, a condition

on ZG also applies to Z and Z̄G.

Condition 3.1.1. The history stack ZG ∈ RrZ×cZ , rZ = rφ = rθ and cZ ∈ N+, given by (3.8)

contains rZ linearly independent columns.

Mathematically speaking, Condition 3.1.1 means ZG is full row rank, cZ ≥ rZ = rφ = rθ, and,

considering rank(·) as the rank operator, rank(ZG) = rZ . Thus, from (3.15), ΦZG,k = ZGZ
>
G is

25

positive definite, i.e., ΦZG,k > 0. With ΦZG,k > 0, its eigenvalues λΦZG,k and λΦZG,k are both

strictly positive, therefore making λΦZ,k and λΦZ,k also strictly positive when taking in account

(3.16), (3.17), and, as shown before, the fact that ḡi,i > 0 for any i ∈ {1, 2, . . . , cφ}. As a result,

ΦZG,k being positive definite also means that ΦZ,k = ZZ> is also positive definite.

3.2 Persistency of Excitation for Good Learning

We know from literature that the standard and widely used learning methods of Gradient Descent

and Recursive Least Square, which we will closely look at in the next chapters, cannot theoretically

guarantee good parameter identification, i.e., convergence of the parameter estimates to their true,

ideal values or a neighborhood about their true, ideal values unless the regressor used for approxi-

mation (or its bounded version) is persistently exciting [2, 3, 4]. In Appendix B, we mathematically

define what it means for a (bounded) signal to be persistently exciting (see Definition B.2). A look

at the aforementioned definition shows that the PE condition means realizing complete span, for all

time, of the approximation space. For that reason, it is a hard, demanding, and impractical condition

to achieve, especially in the context of closed-loop control.

Compared with the PE condition, the rank condition, i.e., Condition 3.1.1, is a more moderate

condition. It certainly differs from the PE condition in that it only deals with a subset of the past

information stored in the history stack ZG. Moreover, it can be implemented and monitored on-line,

and can be attained even with
ζi(x(τj))√
ḡi,i(τj)

in ZG (refer to (3.8)) being, for instance, exciting, therefore

verifying Definition B.1, as opposed to being PE, as given by Definition B.2.

3.3 Using Memory for Concurrent Learning

Granted the history stack Z in (3.1), we denote F̄ (Z, θ) ∈ RrF×cF given by

F̄ (Z, θ) = M̄n(Z, θ) , (3.20)

26

where, depending on the model used, i.e., (2.2a) or (2.2b), for some aZ ∈ RrZ×cZ , with rZ = rφ =

rθ as mentioned before, and, again, aθ ∈ Rrθ×cθ , we define

M̄n(aZ , aθ) = M̄1(aZ , aθ) = a>θ aZ , ifMn =M1, and (3.21a)

M̄n(aZ , aθ) = M̄2(aZ , aθ) = a>Zaθ, ifMn =M2. (3.21b)

Recalling our discussion in Chapter II, notice, from (3.21a) and (3.21b) respectively, that when

n = 1, cθ = rf = rF , cF = cZ , and M̄1(Z, θ) ∈ Rcθ×cZ , while, for n = 2, rF = cZ ,

cθ = cf = cF , and M̄2(Z, θ) ∈ RcZ×cθ . Hence, the dimensions of M̄n(Z, θ) and, according

to (3.20), F̄ (Z, θ) agree with that of Fn in each case (i.e, n = 1, 2), which is given by (3.12) or

(3.13). In fact, remark that F̄ (Z, θ) approximates the recorded Fn ∈ RrF×cF , n = 1, 2. Moreover,

similarly to (2.8), we also define

F̄
(
Z, θ̂(k)

)
= M̄n

(
Z, θ̂(k)

)
(3.22)

for on-line approximation purposes.

By using memory (Z and Fn) and by comparing F̄
(
Z, θ̂(k)

)
to Fn (which contains items

pertaining to the actual uncertainty being approximated, i.e., f(x) or l(x) = f>(x)), we could

gauge the learning ability of the approximation algorithm. Such a comparison would tell us, as time

evolves, how well θ̂(k) is able to adjust if it were to be used to reconstruct Fn with F̄
(
Z, θ̂(k)

)
or, said differently, how good of a learning generalization is being performed. That information can

then be re-used when devising the adaptation law.

As such, based on (3.22), we define the approximation error qZ(k) ∈ RrqZ×cqZ based on

recorded data as

qZ(k) = F̄n
(
Z, θ̂(k)

)
− Fn (3.23a)

= M̄n

(
Z, θ̂(k)

)
− Fn. (3.23b)

27

Notice how similar (for good reasons) the expressions in (3.23) are to the ones in (2.9). According to

(3.21a) and (3.21b) respectively, ifMn =M1, rqZ = cθ and cqZ = cZ , whereas, whenMn =M2,

rqZ = cZ and cqZ = cθ. It is worthwhile re-emphasizing that Z and Fn, n = 1, 2, can vary with

k and depend on the column vectors in the regressor φ (x(τj)) and the uncertainty f (x(τj)) or

l (x(τj)) = f>(x(τj)) respectively, for discrete times τj , k0 ≤ τj < k, with j = 1, 2, . . . , cZ , as

(3.1), (3.12), and (3.13) show. Subsequently, we then have, just like (2.13), that

qZ(k) =Mn

(
Z, θ̃(k)

)
− wZ(x(k)) , (3.24)

where the incurred representation error wZ(x(k)) ∈ RrqZ×cqZ is given by

wZ(x(k)) = Fn − F̄ (Z, θ) = Fn − M̄n(Z, θ) , (3.25)

with the second equality due to (3.20). Moreover, letting WZ ≥ 0 denote an upper bound to

‖wZ(x(k))‖F for all k, i.e.,

‖wZ(x(k))‖F ≤WZ ,

since the columns of Fn are made of either columns or rows of f (x(k)) (see (3.12) and (3.13) for

reasons why), due to (2.3), (2.7), (3.25), (C.7), and (C.8), and because wZ(x(k)) ∈ RrqZ×cqZ , can

be written as a summation of cqZ matrices of dimension rqZ -by-cqZ , with each matrix containing

only one column of wZ(x(k)) at a time and the rest of the elements being zero, WZ is such that

‖wZ(x(k))‖F ≤
cZ∑
j=1

‖w (x(τj))‖F ≤ cZW = WZ . (3.26)

Lastly, we also define the error qZ,ε(k) ∈ RcZ×cθ as

qZ,ε(k) =

{
q>Z(k), ifMn =M1,
qZ(k), ifMn =M2.

(3.27)

28

From, respectively, (3.23b) and (3.24), and regardless of the expressions of M̄n in (3.21), notice

that the error qZ,ε(k) in (3.27) is also

qZ,ε(k) = Z>θ̂(k)− Fn, (3.28a)

= Z>θ̃(k)− wZ,ε(k), (3.28b)

where the matrix Fn ∈ RcZ×cθ and the residual error wZ,ε(k) ∈ RcZ×cθ are respectively given by

Fn =

{
F>1 , ifMn =M1,
F2, ifMn =M2,

(3.29)

and

wZ,ε(k) =

{
w>Z (x(k)) , ifMn =M1,
wZ(x(k)) , ifMn =M2.

(3.30)

29

CHAPTER IV

DISCRETE-TIME GRADIENT BASED CONCURRENT LEARNING

In the present chapter, we explore the fundamental method of Gradient Descent for discrete-

time uncertainty approximation. Doing so, we only consider approximators that are linear in all

parameters to identify. We study both the structured and unstructured uncertainty approximation

cases. From the established foundations, we develop a Gradient Descent Based Concurrent Learning

algorithm and show how Concurrent Learning can help achieve better parameter identification.

First, setting ρ (x(k)) = φ (x(k)) and Ξm = Irφ > 0 in (2.18), in this chapter, we will make

use of the signal

m2(k) = αIcφ + φ>(x(k))φ (x(k)) . (4.1)

That means m(k), m2(k) ∈ Rcφ×cφ . Now, consider the scalar cost function J(k) defined as

J(k) =
1

2
tr
{
q>ε (k)

(
m2(k)

)−1
qε(k)

}
, (4.2a)

=
1

2
tr
{(

φ>(x(k)) θ̂(k)− fn(k)
)> (

m2(k)
)−1

(
φ>(x(k)) θ̂(k)− fn(k)

)}
, (4.2b)

where (4.2b) comes to be because of the expression of qε in (2.15a). Recall that, according to Table

2.1 and the definition of qε in (2.14), if Mn = M1, qε(k) ∈ Rrqε×cqε = Rcf×rf , cθ = rf , and

cφ = cf , whereas, whenMn = M2, qε(k) ∈ Rrqε×cqε = Rrf×cf , cθ = cf , and cφ = rf . That

means, in any case, rqε = cφ and cqε = cθ, and, subsequently, the right hand side of (4.2a) is

30

dimensionally correct.

Now, for some scalar η > 0, the cost J can be recursively minimized with respect to θ̂ in a

steepest descent direction using the update law

θ̂(k) = θ̂(k − 1)− η∂J(k − 1)

∂θ̂(k − 1)

or, equivalently,

θ̂(k + 1) = θ̂(k)− η∂J(k)

∂θ̂(k)
(4.3)

An illustration of the concept of Gradient Descent on Figure 4.1 shows a ball moving on the right

side along the gradient of the cost J . Depending on its velocity each step of the way, it may be able

to avoid falling into crevices and make it all the way to the bottom, where J is absolutely minimized.

If that velocity is too high, though it may skip the crevices, it is possible that it gets over to left side

and, undesirably, it may exit the enclosure altogether. Parameter η plays the role of the velocity of

the ball or, at least, has control over the velocity at which the ball is moving. If η is appropriately

set each step of the way then, it is likelier that one is able to guide the ball down the gradient of J

without having it falling and dwelling into a crevice.

−10 −5 0 5 10
0

50

100

150

one dimension of parameter estimates

co
st

J

moving along gradient of J

Figure 4.1: Gradient descent illustration

31

As far as function approximation goes, minimizing J leads to the reduction of the instantaneous

approximation error qε or, equivalently, q (as (4.2a) hints to). The latter update law, i.e., (4.3),

is actually what is commonly known as the discrete-time Normalized Gradient (DTNG) descent

algorithm. From (4.3), given an initial parameter estimate matrix θ̂(k0) = θ̂0 ∈ Rrθ×cθ , where

k0 ∈ N is an initial discrete-time step, for k ≥ k0, a more general DTNG update law can be

formally given as

θ̂(k + 1) = θ̂(k)− Γ∆θ̂NG(k), (4.4)

where Γ ∈ Rrφ×rφ , with rφ = rθ, is a positive definite, symmetric matrix (Γ > 0 and Γ> = Γ) and,

by deriving the gradient
∂J(k)

∂θ̂(k)
using (4.2b), (C.4), and recalling (2.15a), ∆θ̂NG(k) ∈ Rrφ×cqε ,

with cqε = cθ, is given by

∆θ̂NG(k) = φ (x(k))
(
m2(k)

)−1
qε(k), (4.5)

with the error qε(k) ∈ Rrqε×cqε computed as in (2.14), i.e.,

qε(k) =

{
q>(k), ifMn =M1,
q(k), ifMn =M2.

4.1 Discrete-Time Normalized Gradient for both the Structured and Unstructured
Uncertainty Approximation Cases

Consider the DTNG update rule of (4.4), from which, using (4.5), the parameter matrix error

given by (2.10) can also be expressed as

θ̃(k + 1) = θ̃(k)− Γφ (x(k))
(
m2(k)

)−1
qε(k). (4.6)

Since Γ > 0, by setting

ΞV = Ξ>V = Γ−1 =
(
Γ−1

)>
> 0,

32

the Lyapunov function given by (2.24) becomes

V (k) = tr
{
θ̃>(k)Γ−1θ̃(k)

}
. (4.7)

With Γ being symmetric, Γ−1 also is. While letting ∆θq(k) ∈ Rrθ×cθ (cθ = cqε) be defined as

∆θq(k) = φ (x(k))
(
m2(k)

)−1
qε(k), (4.8)

along (4.6), or, essentially, θ̃(k + 1) = θ̃(k)− Γ∆θq(k), we write, using (4.7), that

V (k + 1) = tr
{
θ̃>(k)Γ−1θ̃(k)−Υq −Υ>q + Υ∆θq

}
,

where Υq ∈ Rcθ×cθ and Υ∆θq ∈ Rcθ×cθ are defined as

Υq = θ̃>(k)∆θq(k), (4.9a)

Υ∆θq = ∆θ>q (k)Γ∆θq(k). (4.9b)

Thus, given (2.26) and the definition of V (k), i.e., (4.7),

∆V (k + 1) = tr
{
−Υq −Υ>q + Υ∆θq

}
. (4.10)

Let q(k) ∈ Rcφ×cθ (cθ = cqε) and w(k) ∈ Rcφ×cθ be such that

q(k) = m−1(k)qε(k) and (4.11a)

w(k) = m−1(k)wε(k). (4.11b)

Also, given (4.11a) and (4.11b), let µq,k > 0 and µw,k > 0 be defined as

µq,k = ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F

and (4.12a)

µw,k = ‖w(k)‖ =
∥∥m−1(k)wε(k)

∥∥
F

. (4.12b)

Recalling (2.15b), we can write

φ>(x(k)) θ̃(k) = qε(k) + wε(k).

33

or

θ̃>(k)φ (x(k)) = q>ε (k) + w>ε (k).

Hence, given (4.8), (4.11a), (4.11b), and because the signalm−1(k) is symmetric, Υq, defined above

in (4.9a), is also

Υq = q>ε (k)
(
m2(k)

)−1
qε(k) + w>ε (k)

(
m2(k)

)−1
qε(k)

=
[
m−1(k)qε(k)

]> [
m−1(k)qε(k)

]
+
[
m−1(k)wε(k)

]> [
m−1(k)qε(k)

]
= q>(k)q(k) + w>(k)q(k).

By making use of (4.12a), (4.12b), (C.2), (C.8), and (C.9),

tr {Υq} = tr
{

Υ>q

}
= µ2

q,k + tr
{
w>(k)q(k)

}
. (4.13)

Additionally, from (4.8), (4.9b), and (4.11a),

Υ∆θq = q>ε (k)
(
m2(k)

)−1
φ>(x(k)) Γφ (x(k))

(
m2(k)

)−1
qε(k)

=
[
m−1(k)qε(k)

]>
m−1(k)φ>(x(k)) Γφ (x(k))m−1(k)

[
m−1(k)qε(k)

]
= q>(k)m−1(k)φ>(x(k)) Γφ (x(k))m−1(k)q(k).

We define the scalar

η = λmax(Γ) , (4.14)

meaning Γ ≤ ηIrφ = ηIrθ since rθ = rφ. With η > 0 given that Γ > 0,

Υ∆θq ≤ η q>(k)m−1(k)φ>(x(k))φ (x(k))m−1(k)q(k).

Hence, from (C.16) and (4.12a),

tr
{

Υ∆θq

}
≤ η ‖φ (x(k))‖2F

∥∥m−1(k)
∥∥2

F
µ2
q . (4.15)

34

Moreover, given (4.12a) and (4.12b), for all k,

tr
{
w>(k)q(k)

}
≥ −‖q(k)‖F ‖w(k)‖F = −µq,kµw,k. (4.16)

With η > 0, based on (C.2), (4.13), (4.15), and (4.16), we get from (4.10) that

∆V (k + 1) = −2tr {Υq}+ tr
{

Υ∆θq

}
≤ −2µ2

q − 2tr
{
w>(k)q(k)

}
+ η ‖φ (x(k))‖2F

∥∥m−1(k)
∥∥2

F
µ2
q

≤ −2µ2
q + 2µqµw,k + η ‖φ (x(k))‖2F

∥∥m−1(k)
∥∥2

F
µ2
q = QE , (4.17)

where, letting the scalar

βu(k) = 2− η ‖φ (x(k))‖2F
∥∥m−1(k)

∥∥2

F
, (4.18)

the quadratic expression QE in µq,k and µw,k is defined as

QE = −βu(k)µ2
q,k + 2µqµw,k = −µq,k (βu(k)µq,k − 2µw,k) . (4.19)

Notice that, for all k, since η > 0, m2(k) > 0, and ‖φ (x(k))‖2F ≥ 0, then βu(k) < 2.

Given (2.25) and bearing in mind that QE ≤ 0 implies

β
V

∥∥∥θ̃(k + 1)
∥∥∥2

F
− βV

∥∥∥θ̃(k)
∥∥∥2

F
≤ ∆V (k + 1) ≤ QE ≤ 0,

with, by the way, 0 < β
V
< βV , which therefore leads to stability results, we are now interested in

determining the sign ofQE as a function of the design parameter η. Recall that µq,k = ‖q(k)‖F ≥ 0

for all k. We have from (4.19) that QE = 0 if µq,k = 0 or, because of (2.14), (4.11a), and given that

m−1(k) > 0, effectively, qε(k) = [0]rqε×cqε or q(k) = [0]rf×cf , which cannot always be expected.

Hence, we will investigate the case when µq,k > 0.

35

4.1.1 DTNG for the SUAC

Assuming f is a structured uncertainty, then, as pointed out before, we can set w (x(k)) =

[0]rf×cf and, given (2.17), wε(k) = [0]rqε×cqε for all k. Also, from (2.1) and (2.3), essentially,

f (x(k)) = F (x(k), θ) =Mn(x(k), θ) , (4.20)

and, using (2.13) and (2.15b),

q(k) =Mn

(
x(k), θ̃(k)

)
(4.21)

and

qε(k) = φ>(x(k)) θ̃(k). (4.22)

Moreover, as a result of havingwε(k) = [0]rqε×cqε for all k, according to (4.12b), µw,k = ‖w(k)‖F =

0. Given (4.19), that means

∆V (k + 1) ≤ QE = −βu(k)µ2
q,k, (4.23)

with QE = −βu(k)µ2
q,k ≤ 0 if βu(k) > 0, which, given (4.18), means picking η = λmax(Γ) and,

subsequently, designing Γ such that

0 < η <
2

‖φ (x(k))‖2F ‖m−1(k)‖2F
= ηNG(k). (4.24)

In the case that φ (x(k)) = [0]rφ×cφ , ηNG(k) becomes undefined. However, when that happens,

there is no need picking η and designing for Γ as, for any Γ > 0, (4.4) reduces in that case to

θ̂(k + 1) = θ̂(k) since, from (4.5) ∆θ̂NG(k) = [0]rθ×cθ . Moreover, with η picked according to

(4.24), notice that 0 < βu(k) < 2.

In all, ∆V (k + 1) ≤ QE ≤ 0 implies boundedness of V (k) and θ̃(k). In fact, from (2.25),

(2.26), and (4.7), ∆V (k + 1) = V (k + 1) − V (k) ≤ 0 means that V (k + 1) ≤ V (k) and,

36

consequently, for all k, V (k) ≤ V (k0). Thus,

β
V

∥∥∥θ̃(k)
∥∥∥2

F
≤ V (k) ≤ V (k0) ≤ βV

∥∥∥θ̃(k0)
∥∥∥2

F
,

implying, for all k,

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘNGs =

√
βV
β
V

∥∥∥θ̃(k0)
∥∥∥
F

(4.25)

We could have actually gotten a larger upper bound of η by going back to (4.6) and rewriting it,

while using qε(k) in (4.22), as

θ̃(k + 1) = [Irθ − ΓΦm,k] θ̃(k), (4.26)

where

Φm,k = φ (x(k))
(
m2(k)

)−1
φ>(x(k)) . (4.27)

Notice that Φm,k is symmetric, i.e., Φ>m,k = Φm,k, as
(
m2(k)

)−1 also is. By evaluating the Lya-

punov function (4.7) along (4.26) and using (2.26),

∆V (k + 1) = tr
{
θ̃>(k)QNG,kθ̃(k)

}
, (4.28)

where,

QNG,k = − (2Irθ − Φm,kΓ) Φm,k. (4.29)

From (2.22) and (4.27), we can write that

Φm,k ≤
∥∥m−1(k)

∥∥2

F
φ (x(k)) Icφφ

>(x(k)) =
∥∥m−1(k)

∥∥2

F
Φk,

with Φk defined in (2.27). Furthermore, given (2.28), rθ = rφ, and η = λmax (Γ),

Φm,k ≤ λΦk

∥∥m−1(k)
∥∥2

F
Irφ = λΦk

∥∥m−1(k)
∥∥2

F
Irθ (4.30)

37

and

2Irθ − Φm,kΓ ≥
(

2− ηλΦk

∥∥m−1(k)
∥∥2

F

)
Irθ

Consequently, for the scalar

βs(k) = 2− ηλΦk

∥∥m−1(k)
∥∥2

F
, (4.31)

QNG,k in (4.71) can be upper bounded as

QNG,k ≤ −βs(k)Φm,k.

As a result, given (4.12a), (4.22), (4.27), and (4.28),

∆V (k + 1) ≤ −βs(k)tr
{
θ̃>(k − 1)φ (x(k))

(
m2(k)

)−1
φ>(x(k)) θ̃(k − 1)

}
≤ −βs(k)tr

{
q>ε (k)

(
m2(k)

)−1
qε(k)

}
≤ −βs(k)tr

{[
m−1(k)qε(k)

]> [
m−1(k)qε(k)

]}
≤ −βs(k)µ2

q,k ≤ 0 (4.32)

if βs(k) > 0, which from (4.31), means

0 < η <
2

λΦk ‖m−1(k)‖2F
= ηNGs(k). (4.33)

We formally show in Remark 4.1.3 why, given in (4.24) and (4.33), ηNG(k) ≤ ηNGs(k).

Consider the following remarks.

Remark 4.1.1. Parameter η can vary as k evolves, i.e., η = η(k), so long as (4.24) (or (4.33)) is met.

Hence, Γ, which is such that λmax(Γ) = η, can be set to vary with time also. Moreover, let λ{Φk}r ,

r = 1, 2, . . . , rφ, denote the eigenvalues of Φk.

Remark 4.1.2. Both ηNGs(k) and ηNG(k) become undefined if φ (x(k)) = [0]rφ×cφ , as, in that case,

‖φ (x(k))‖F and λΦk in, respectively, (4.24) and (4.33) are exactly zero. However, when that is the

case, η and Γ need not to be designed for, as (4.4) reduces to θ(k + 1) = θ(k).

38

Remark 4.1.3. Because, for all k,

λΦk = λmax(Φk) = max
r
λ{Φk}r ≤

rφ∑
r=1

λ{Φk}r

and, using (2.27), (C.1), (C.8), and (C.9),

rφ∑
r=1

λ{Φk}r = tr (Φk) = ‖φ (x(k))‖2F

then λΦk ≤ ‖φ (x(k))‖2F . This therefore proves why ηNG(k) in (4.24) and ηNGs(k) in (4.33) are

such that ηNG(k) ≤ ηNGs(k).

Remark 4.1.4. Because we are working here with a dimensionally complicated approximation prob-

lem, the upper bound ηNGs(k) on η in (4.33) may seem different from the one we previously found

in [28] (and used in [29]). However the upper bound ηNGs(k) of η is only written here in a more

general form. Notice that, if the normalization signal m(k) is scalar, then (4.24) and (4.33) can be

rewritten as

0 < η <
2m2(k)

‖φ (x(k))‖2F
(4.34)

and

0 < η <
2m2(k)

λΦk

, (4.35)

as is the case in [28, 29]. Moreover, notice that if m(k) is scalar, then φ (x(k)) is a column vector,

thus, cφ = 1, and m2(k) in (4.1) becomes

m2(k) = α+ φ>(x(k))φ (x(k)) = α+ ‖φ (x(k))‖2F = α+ ‖φ (x(k))‖2 ,

which consequently means that

m2(k) > ‖φ (x(k))‖2F = ‖φ (x(k))‖2 . (4.36)

Hence, if for all k, λΦk > 0, i.e., φ (x(k)) 6= [0]rφ×cφ , or, with cφ = 1, φ (x(k)) 6= [0]rφ ,

1 <
m2(k)

‖φ (x(k))‖2
≤ m2(k)

λΦk

.

39

and, again, given (4.24) and (4.33) or rather (4.34) and (4.35), ηNGs(k) ≥ ηNG(k) > 2. The upper

bounds ηNGs(k) and ηNG(k) can indeed be chosen to be constant in general, precisely ηNGs(k) =

ηNG(k) = 2 as done in [2, 3] when dealing with a scalar normalization signal. However, we elect

not to do so here to allow for less restraining upper bounds of η.

Remark 4.1.5. Using (2.21) and because we have, in this chapter, substituted ρ (x(k)) by φ (x(k))

in the expression of the m2(k) in (2.18), we have that

ηNGs(k) =
2

λΦk ‖m−1(k)‖2F
≤

2λm2,k
αcρλΦk

, (4.37)

where the strictly positive scalar λm2,k is defined in (2.20). If φ (x(k)) 6= [0]rφ×cφ , then λΦk > 0.

We can therefore say from (4.37) that, for all k, if φ (x(k)) 6= [0]rφ×cφ , for which we have to design

for Γ as pointed out in Remark 4.1.2, ηNGs(k) is bounded away from infinity as long as α 6= 0 and

cρ < ∞ (which should be the case in practice). With ηNG(k) ≤ ηNGs(k) as we have shown in

Remark 4.1.3, that also means ηNG(k) being bounded away from infinity.

In summary, when dealing with structured uncertainties, we are guaranteed to have

∆V (k + 1) ≤ QE ≤ 0

provided η is picked according to (4.24) or (4.33). By doing so, V (k) is nonincreasing and, as a

result, θ̃(k) remains bounded for all k.

Proceeding, the following properties can be obtained. First, given (4.1), (C.8), (C.10), and

(C.11), there exists some scalar αm,1 such that 0 < αm,1 ≤ 1 and

‖m(k)‖F ≥ αm,1
(
α
∥∥Icφ∥∥F + ‖φ (x(k))‖2F

) 1
2 . (4.38)

Thus, from (2.14), (4.22), (4.38), (C.8), (C.10), and (C.11),

‖q(k)‖F
‖m(k)‖F

=
‖qε(k)‖F
‖m(k)‖F

≤

∥∥∥θ̃(k)
∥∥∥
F
‖φ (x(k))‖F

αm,1
(
α
∥∥Icψ∥∥F + ‖φ (x(k))‖2F

) 1
2

(4.39)

40

and, using (2.23) to define φm(x(k)) ∈ Rrφ×cφ , i.e.,

φm(x(k)) = φ (x(k))m−1(k), (4.40)

(4.12a), and (C.13), for some scalars βqε and βφ,1, such that 1 < βqε <∞ and 1 < βφ,1 <∞,

µq,k = ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F
≤
∥∥m−1(k)

∥∥
F
‖qε(k)‖F < βqε

∥∥Icφ∥∥F ‖qε(k)‖F
‖m(k)‖F

(4.41)

and

‖φm(x(k))‖F =
∥∥φ (x(k))m−1(k)

∥∥
F
≤ ‖φ (x(k))‖F

∥∥m−1(k)
∥∥
F
< βφ,1

∥∥Icφ∥∥F ‖φ(k)‖F
‖m(k)‖F

< βφ,1
∥∥Icφ∥∥F ‖φ (x(k))‖F

αm,1
(
α
∥∥Icψ∥∥F + ‖φ (x(k))‖2F

) 1
2

.

(4.42)

Hence, with θ̃(k) being bounded, given (4.39),
‖q(k)‖F
‖m(k)‖F

is also bounded and, from (4.41) and

(4.42), so are

µq,k = ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F

and ‖φm(x(k))‖F =
∥∥φ (x(k))m−1(k)

∥∥
F

.

Nevertheless, the previously mentioned boundedness results are dependent on αm,1. Based on (4.1)

and (4.38), we can say that there exists at least an instance of αm,1 that is much closer to 1 than

0 and for which the aforementioned boundedness results stand. Additionally, we get from (2.26),

(4.12a), and (4.32) that

V (k + 1) = V (k0)−
k∑

τ=k0

βs(τ)µ2
q,τ = V (k0)−

k∑
τ=k0

βs(τ)
∥∥m−1(τ)qε(τ)

∥∥2

F
,

meaning

k∑
τ=k0

βs(τ)
∥∥m−1(τ)qε(τ)

∥∥2

F
= V (k0)− V (k + 1) ≤ V (k0) = tr

{
θ̃>(k0)Γ−1θ̃(k0)

}
,

given that, for all k, V (k), which is defined in (4.7), is nonincreasing,

∞∑
τ=k0

βs(τ)
∥∥m−1(τ)qε(τ)

∥∥2

F
= lim

k→∞

∞∑
τ=k0

βs(τ)
∥∥m−1(τ)qε(τ)

∥∥2

F
≤ V (k0),

41

and, subsequently,
∥∥m−1(k)qε(k)

∥∥
F
∈ L2 or, given (C.9), vec

{
m−1(k)qε(k)

}
∈ L2. Notice that

we could also have used (4.23) to get the same results. For the definitions of Lp, p ∈ [1,∞), and

L∞ signal spaces as well as properties pertaining to those spaces, consult Appendix C. From (4.6),

the fact that η = λmax (Γ), meaning, for Γ ∈ Rrφ×rφ , Γ ≤ ηIrφ , and given rφ = rθ, we can also

bound

∆θ̃(k + 1) = θ̃(k + 1)− θ̃(k) (4.43)

as

∥∥∥∆θ̃(k + 1)
∥∥∥
F

=
∥∥∥Γφ (x(k))

(
m2(k)

)−1
qε(k)

∥∥∥
F

=
∥∥Γ
[
φ (x(k))m−1(k)

] [
m−1(k)qε(k)

]∥∥
F

≤ ‖Γ‖F
∥∥φ (x(k))m−1(k)

∥∥
F

∥∥m−1(k)qε(k)
∥∥
F

≤ η
∥∥Irφ∥∥F ∥∥φ (x(k))m−1(k)

∥∥
F

∥∥m−1(k)qε(k)
∥∥
F

. (4.44)

With η being bounded away from infinity,
∥∥φ (x(k))m−1(k)

∥∥
F

bounded (as shown by (4.42)), and∥∥m−1(k)qε(k)
∥∥
F
∈ L2, (4.44) means that, aside from being bounded,

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2, or, written

differently, from (C.9), vec
{

∆θ̃(k)
}
∈ L2.

4.1.2 DTNG for the UUAC

When considering the unstructured uncertainty case, we can no longer assume that w (x(k)) =

[0]rf×cf and/or wε(k) = [0]rqε×cqε . From (4.19) and (4.23), we have that

∆V (k + 1) ≤ QE = −βu(k)µ2
q,k + 2µqµw,k = −µq,k (βu(k)µq,k − 2µw,k) . (4.45)

For µq,k ≥ 0 and µw,k ≥ 0 for all k, QE ≤ 0 (which, as mentioned before, implies stability of θ̃) if

βu(k)µq,k − 2µw,k ≥ 0, (4.46)

which in turns can only be possible if βu(k) > 0 or, consequently, η is picked such that 0 < η <

ηNG(k), i.e., (4.24) is verified. Consider the following analysis.

42

• It is worth wondering if we can ensure that condition (4.46) holds by adequately designing

for η? Recall that QE = 0 if µq,k =
∥∥m−1(k)qε(k)

∥∥
F

= 0, which implies that qε(k) =

[0]rqε×cqε , and, just like in the case when φ (x(k)) = [0]rφ×cφ , picking η is of no use as, from

(4.5), ∆θ̂NG(k) = [0]rθ×cθ and, as a result, (4.4) simply becomes θ̂(k + 1) = θ̂(k). For

µq,k > 0, because of (4.18), (4.46) leads to

βu(k) = 2− η ‖φ (x(k))‖2F
∥∥m−1(k)

∥∥2

F
≥

2µw,k
µq,k

.

Noticing that
2µw,k
µq,k

= 0 is a possibility (essentially when µw = 0), to make sure βu(k) is

strictly greater tan zero, i.e., βu(k) > 0, we need

βu(k) = 2− η ‖φ (x(k))‖2F
∥∥m−1(k)

∥∥2

F
>

2µw,k
µq,k

instead. That is

0 < η <
µq,k − µw,k

µq,k

[
2

‖φ (x(k))‖2F ‖m−1(k)‖2F

]
=
µq,k − µw,k

µq,k
ηNG(k), (4.47)

given the definition of ηNG(k) in (4.24). Moving along, we can find some constant scalar

W ≥ 0 such that

µw,k = ‖w(k)‖F =
∥∥m−1(k)wε(k)

∥∥
F
≤W (4.48)

for all k > k0. In fact, going back to (2.19) we can write that

m−1(k) ≤ 1√
α
Icφ and

∥∥m−1(k)
∥∥
F
≤ 1√

α

∥∥Icφ∥∥F =

√
α cφ

α
. (4.49)

Hence, given the L∞ property of ‖w (x(k))‖F , i.e., (2.7), and considering (2.17), (4.48),

(4.49), (C.8), and (C.11),

µw,k = ‖w(k)‖F =
∥∥m−1(k)wε(k)

∥∥
F
≤
∥∥m−1(k)

∥∥
F
‖wε(k)‖F

≤
∥∥m−1(k)

∥∥
F
‖w (x(k))‖F ≤

√
α cφ

α
W = W .

(4.50)

43

Thus, picking up from (4.47), as a more general rule, η can be picked to verify

0 < η < ηNG0
(k) =

µq,k −W 0

µq,k
ηNG(k), (4.51)

where, for some upper bound W 0 ≥W ≥ 0, since µw,k ≤W ,

µq,k −W 0 ≤ µq,k −W ≤ µq,k − µw,k.

Noticing that, for any k > k0,

µq,k −W 0

µq,k
≤ 1,

sinceW 0 ≥ 0, if η is picked such that (4.51) is met then (4.24) will also be verified. As a side

note, remark that ηNG0
(k) = ηNG(k) if, by design, W 0 = 0. However, an W 0 = 0 assumes

W = 0, given that W 0 ≥ W , and, effectively, that there is no representation error w (x(k)),

i.e., w (x(k)) = [0]rf×cf . Hence, setting W 0 = 0 would only be a good idea if dealing with

the SUAC. Moving on, as hinted to, satisfying (4.51) can only be feasible if µq,k > W 0. If

that is in fact the case then

βu(k) >
2µw,k
µq,k

or βu(k)µq,k − 2µw,k > 0,

(4.46) is verified, and

∆V (k + 1) = V (k + 1)− V (k) ≤ QE < 0.

It should nevertheless be noted that (4.51) requires knowledge of W 0 for possible implemen-

tation and, in practice, it may be difficult to acquire such W 0. Moreover, even if we could

find a viable W 0, the question still remain as to what happens when µq,k = ‖q(k)‖F ≤ W 0

and (4.51) is no longer realizable. Again if we know for a fact that W = 0 (SUAC), then

we need not to worry about the representation error and can proceed to apply the DTNG

algorithm as is. Otherwise, in the event W > 0, (4.51) is no longer valid for values of

44

µq,k = ‖q(k)‖F ≤ W 0 and, therefore, picking η for which βu(k) >
2µw,k
µq,k

cannot be

achieved. This analysis can however become useful if we were to implement a dead-zone

modification [30].

• We thus go back to studying the sign of QE and look more closely to what happens when

µq,k > 0. Remark that if the approximation error qε(k) is such that

µq,k = ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F
> εq,k

with εq,k =
2µw,k
βu(k)

, then (4.46) is verified, ∆V (k + 1) ≤ QE < 0 and, consequently, both

V (k) and
∥∥∥θ̃(k)

∥∥∥
F

are bounded. However, when µq,k ≤ εq,k then

βu(k)µq,k − 2µw,k ≤ 0,

QE ≥ 0, ∆V (k + 1) can be positive, which would lead to
∥∥∥θ̃(k)

∥∥∥
F

possibly growing un-

bounded. We can say a few things from this.

1. First, because of (4.48) and since, by picking η to verify (4.24), βu(k) > 0 for all

k ≥ k0, we can find an upper-bound to εq,k =
2µw,k
βu(k)

. In fact, for some constant scalar

β
u

such that, for all k ≥ k0, 0 < β
u
≤ βu(k) < 2, we have

εq,k =
2µw,k
βu(k)

≤ 2W

β
u

.

Even though ∆V (k+1) < 0 when µq,k = ‖q(k)‖F > εq,k (or µq,k >
2W

β
u

), we cannot

claim ultimate boundedness of ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F

or ‖qε(k)‖F or, according

to (2.14), ‖q(k)‖F in view of the fact that the Lyapunov function V (k) is defined in

terms of θ̃ and not q or qε or q. An equivalent argument can be made by recalling from

(2.15b) that

qε(k) = φ>(x(k)) θ̃(k)− wε(k),

45

and, for µq,k ≤ εq,k and ∆V (k + 1) > 0,
∥∥∥θ̃(k)

∥∥∥
F

growing large will cause ‖qε(k)‖F

to also become large. As a result, claiming that ‖qε‖F or ‖q‖F are ultimately bounded

is not accurate.

2. Second, boundedness of qε, even if possible, does not directly translate into that of θ̃.

According to (2.15b), (C.8), (C.10), and (C.11),

‖qε(k)‖F ≤ ‖φ (x(k))‖F
∥∥∥θ̃(k)

∥∥∥
F

+ ‖wε(k)‖F or µqε,k ≤ µφ,k µθ̃,k + µwε,k

where we define µqε,k = ‖qε(k)‖F , µφ,k = ‖φ (x(k))‖F , µθ̃,k =
∥∥∥θ̃(k)

∥∥∥
F

, and µwε,k =

‖wε(k)‖F . For µqε,k 6= 0, solving for µθ̃,k yields

µθ̃,k ≥
µqε,k − µwε,k

µφ,k
.

Thus, analytically speaking, a bounded µqε,k does not necessarily imply a bounded µθ̃,k.

Actually, even for a small µqε,k = ‖qε(k)‖F (which also means a small ‖q(k)‖F) such

that µq,k =
∥∥m−1(k)qε(k)

∥∥
F
≤ εq,k and ∆V (k + 1) > 0 for the remainder of the

time, µθ̃,k =
∥∥∥θ̃(k)

∥∥∥
F

will keep growing indefinitely. When that happens, considering

θ is bounded, it implies θ̃(k) = θ̂(k) − θ and, subsequently, θ̂(k) possibly drifting to

infinity. Caused by the presence of the representation error w (x(k)), this phenomena is

known as the “parameter drift” phenomena [30].

With the NG update rule of (4.4), in the UUAC as opposed to the SUAC, it is therefore, accord-

ing to the previous analysis, possible that ‖q(k)‖F is small while
∥∥∥θ̃(k)

∥∥∥
F

grows without bounds.

Hence, when dealing with unstructured uncertainties, the DTNG algorithm may therefore lack ro-

bustness in certain cases. We will now look more in depth into what needs to happen in order to

realize boundedness of θ̃(k) given the possibility of ∆V being positive.

First, recall that when µq,k ≤ εq,k, 0 ≤ QE ≤ max
µq

QE . We can actually write

∆V (k + 1) ≤ QE ≤ max
µq

QE

46

regardless if µq,k ≤ εq,k or µq,k > εq,k even though, in the event that µq,k > εq,k, as we have

seen in the previous analysis, we can with all certainty further say that ∆V (k) < 0. Consider the

expression of QE in (4.19). Since
∂QE
∂µq,k

= 0 at

µq,k = µqM =
µw,k
βu(k)

,

µqM ≥ 0, and , granted βu(k) > 0 as long as η is chosen so as to satisfy (4.24),

∂2QE
∂µ2

q,k
= −2βu(k) < 0,

then µqM is where QE reaches its maximum value. As a result,

max
µq,k

QE = QE |µq,k=µqM
=

µ2
w,k

βu(k)
≥ 0.

Because of (2.26) and with µw,k = ‖w(k)‖ =
∥∥m−1(k)wε(k)

∥∥
F

(see (4.12b)),

∆V (k + 1) = V (k + 1)− V (k) ≤ QE ≤ max
µq,k

QE =
µ2
w,k

βu(k)
=

∥∥m−1(k)wε(k)
∥∥2

F

βu(k)

implies V (k + 1) ≤ V (k0) + ΛNG,1, where the scalar

ΛNG,1 =
k∑

τ=k0

2µ2
w,τ

βu(τ)
=

k∑
τ=k0

∥∥m−1(τ)wε(τ)
∥∥2

F

βu(τ)
.

Thus, for all k ≥ k0, we can show boundedness of the parameter error θ̃(k) provided that there

exists a finite scalar Bwε,1 such that

ΛNG,1 ≤ ΛNG,1 =

∞∑
τ=k0

2µ2
w,τ

βu(τ)
=

∞∑
τ=0

∥∥m−1(τ)wε(τ)
∥∥2

F

βu(τ)
≤ Bwε,1 <∞. (4.52)

In fact, if (4.52) is verified then, V (k + 1) ≤ V (k0) + ΛNG,1 also means

V (k) ≤ V (k0) +Bwε,1, (4.53)

which, due to (2.25), implies

β
V

∥∥∥θ̃(k)
∥∥∥2

F
≤ V (k) ≤ V (k0) +Bwε,1 ≤ βV

∥∥∥θ̃(k0)
∥∥∥2

F
+Bwε,1.

47

Therefore,

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘNGu =

√
βV
β
V

∥∥∥θ̃(k0)
∥∥∥2

F
+

1

β
V

Bwε,1. (4.54)

Hence, if (4.52) is guaranteed, for all k, both V (k) and θ̃(k) are bounded.

Here, using (2.14), (2.15b), (4.38), (C.8), (C.10), and (C.11), we get that

‖q(k)‖F
‖m(k)‖F

=
‖qε(k)‖F
‖m(k)‖F

≤

∥∥∥θ̃(k)
∥∥∥
F
‖φ (x(k))‖F + ‖wε(k)‖F

αm,1
(
α
∥∥Icψ∥∥F + ‖φ (x(k))‖2F

) 1
2

.

Because of (2.7), (2.17), and (C.8), ‖wε(k)‖F = ‖w (x(k))‖F ≤W and, subsequently,

‖q(k)‖F
‖m(k)‖F

=
‖qε(k)‖F
‖m(k)‖F

≤

∥∥∥θ̃(k)
∥∥∥
F
‖φ (x(k))‖F +W

αm,1
(
α
∥∥Icψ∥∥F + ‖φ (x(k))‖2F

) 1
2

(4.55)

Thus, so long as (4.52) is met and θ̃(k) is bounded, (4.55) implies that
‖q(k)‖F
‖m(k)‖F

is also bounded.

Inequalities (4.41), (4.42), and (4.44) remain the same even in the UUAC. Hence, boundedness of

‖q(k)‖F
‖m(k)‖F

also means boundedness of
∥∥m−1(k)qε(k)

∥∥
F

,
∥∥φ (x(k))m−1(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

.

Going further, by “completing the square,” the expression of QE in (4.19) can be rewritten as

QE =
2µ2

w,k
βu(k)

−
βu(k)µ2

q,k
2

−
βu(k)ε2

u,k
2

, (4.56)

where the scalar signal

εu,k = µq,k −
2

βu(k)
µw,k. (4.57)

Notice that the first term in (4.56) is indeed 2 max
µq,k

QE . Recalling, from (2.26) and (4.23), that

∆V (k + 1) = V (k + 1)− V (k) ≤ QE ,

and proceeding like we did before while using the expression of QE in (4.56) this time around, we

would get

V (k + 1) ≤ V (k0) + 2ΛNG,1 − ΛNG,2 − ΛNG,3,

48

where ΛNG,1 is as defined above, and the scalars

ΛNG,2 =

k∑
τ=k0

βu(τ)µ2
q,τ

2
and ΛNG,3 =

k∑
τ=k0

βu(τ)ε2
u,τ

2
.

Because both −ΛNG,2 ≤ 0 and −ΛNG,3 ≤ 0, we could separately write

V (k + 1) ≤ V (k0) + 2ΛNG,1 − ΛNG,2 − ΛNG,3 ≤ V (k0) + 2ΛNG,1 − ΛNG,2 and

V (k + 1) ≤ V (k0) + 2ΛNG,1 − ΛNG,2 − ΛNG,3 ≤ V (k0) + 2ΛNG,1 − ΛNG,3.

Consequently,

ΛNG,2 ≤ V (k0)− V (k + 1) + 2ΛNG,1 ≤ V (k0) + 2ΛNG,1 and

ΛNG,3 ≤ V (k0)− V (k + 1) + 2ΛNG,1 ≤ V (k0) + 2ΛNG,1,

since, by definition, V (k) ≥ 0 for all k. Granted that θ and θ̂(k0) are bounded, V (k0) is also

bounded. Hence, if (4.52) is in fact verified then 2ΛNG,1 <∞, therefore leading to

ΛNG,2 = lim
k→∞

ΛNG,2 =
∞∑

τ=k0

βu(τ)µ2
q,τ

2
≤ V (k0) + 2 lim

k→∞
ΛNG,1 = V (k0) + 2ΛNG,1 <∞

and

ΛNG,3 = lim
k→∞

ΛNG,3 =

∞∑
τ=k0

βu(τ)ε2
u,τ

2
≤ V (k0) + 2 lim

k→∞
ΛNG,1 = V (k0) + 2ΛNG,1 <∞.

Because, α > 0 and 0 < βu(k) < 2 for all k, we can thus conclude that

µq,k = ‖q(k)‖F =
∥∥m−1(k)qε(k)

∥∥
F
∈ L2 ∩ L∞ and εu,k ∈ L2 ∩ L∞

(actually, as Appendix C points out, for a signal [·], [·] ∈ L2 causes [·] ∈ L∞). As we have done

before, given (4.44),
∥∥m−1(k)qε(k)

∥∥
F
∈ L2 also implies

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2.

It is nevertheless worth reminding again that the previously derived stability results and prop-

erties are obtained with the assumption that (4.52) is guaranteed, which may not be true for all

types of representation errors. In fact, as we found out, (4.52) is verified for ‖wε(k)‖F ∈ L2 or

49

vec {wε(k)} ∈ L2, which, given (2.17), also means vec {w (x(k))} ∈ L2. However, we have only

assumed thatw (x(k)) is given by (2.7). That is, vec {w (x(k))} ∈ L∞, which is less restrictive than

requiring anL2 property of vec {w (x(k))}. For the class of representation errorsw (x(k)) such that

vec {w (x(k))} ∈ L∞ is the lone assumption made, (4.52) may still work out in practice but cannot

be formally proved. One thing that one may consider doing is to force the term

∥∥m−1(τ)wε(τ)
∥∥2

F

βu(τ)

in (4.52) to decreases exponentially as time evolves so that it sums up over infinite time to a finite

aggregate. We may well attempt such a task in the future.

Ideally, we would like to show that θ̃(k) → [0]rθ×cθ as time evolves. However, in the SUAC

when using the DTNG update rule of (4.4), proving convergence of θ̃(k) to the origin is only possi-

ble if φm(x(k)) in (4.40) is PE [3, 30]. Matters get even more complicated when dealing with un-

structured uncertainties due to the presence of the representation error. Nevertheless, in the UUAC,

as it turns out, for a PE φm(x(k)), regardless of the condition given by (4.52), it could be shown

that θ̃(k) is bounded [3, 30], with the bound only depending on the upper bound W of w (x(k))

and the level of excitation [30]. However, the PE condition on φm(x(k)) is demanding and possibly

even more restrictive than requiring (4.52).

If (4.52) is met, as suggested by (4.54),
∥∥∥θ̃(k)

∥∥∥
F

dwells inside a bounded neighborhood as large

as ΘNGu , which basically also serves as its ultimate bound. The smaller ΘNGu is, the closer θ̃(k)

gets to [0]rθ×rf . It therefore begs the question, how large is ΘNGu? As (4.54) shows, the size of

ΘNGu is affected by initial conditions, i.e., θ̂(k0) since θ̃(k0) = θ̂(k0)− θ. The closer θ̂(k0) is to θ,

the smaller ΘNGu becomes and the better the learning/prediction performance of the algorithm will

be. However, θ being unknown, it is difficult to say how to pick θ̂(k0) so as to minimize
∥∥∥θ̃(k0)

∥∥∥2

F

and, consequently, ΘNGu . What we may be able to control however, is how to minimize Bwε,1 in

(4.54) so as to get at least closer to the results obtained in the SUAC, i.e., (4.25).

50

4.1.3 Concluding Remarks about DTNG

Unlike in the SUAC, the boundedness of θ̃(k) in the UUAC is obtained if (4.52) is guaranteed,

which is true forw (x(k)) ∈ L2. Notice how convenientlyw (x(k)) = [0]rf×cf ∈ L2 for the SUAC.

For performance and robustness sakes, it is desirable that θ̂(k) converges to θ or θ̂(k) converges

to a (small) neighborhood around θ as k → ∞. However, as far as the NG algorithm is concerned,

this is only realizable if φm(x(k)) is PE [2, 3, 30]. The PE condition, as already mentioned, is

demanding however. Persistency of excitation, as Definition B.2 in Appendix B and/or expression

(B.2) show, imposes conditions on past, current and future regressor vectors, and, for those reasons,

is not simple to achieve and/or monitor on-line.

Table 4.1 summarizes the DTNG algorithm, its results and properties.

Table 4.1: DTNG algorithm, results, and properties.

DTNG algorithm

For k ≥ k0, φ (x(k)) ∈ Rrφ×cφ being the regressor, qε(k) given by (2.14), some Γ ∈ Rrφ×rφ ,

and some initial guess θ̂(k0) = θ̂0 ∈ Rrθ×cθ , update θ̂ by applying:

m2(k) = αIcφ + φ>(x(k))φ (x(k)),

∆θ̂NG(k) = φ (x(k))
(
m2(k)

)−1
qε(k),

Design Γ = Γ> = Γ(k) > 0 such that, η = λmax(Γ) verifies (4.24) (or (4.33) only in the SUAC),

θ̂(k + 1) = θ̂(k)− Γ∆θ̂NG(k).

SUAC results and properties UUAC results and properties

θ̃(k),
∥∥m−1(k)qε(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

are bounded;∥∥m−1(k)qε(k)
∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

belong to L2.
Same as SUAC only if vec {w (x(k))} ∈ L2.

Convergence Properties

θ̃(k) converges to the origin (meaning θ̂(k) converges to θ) in the SUAC or θ̃(k) converges to a

neighborhood of the origin (meaning θ̂(k) converges to a neighborhood of θ) in the UUAC if φm(x(k))

in (4.40) is persistently exciting.

51

Next, we present the Normalized Gradient based Concurrent Learning algorithm in DT frame-

work. We show that, given a less constraining condition comparatively to that of persistency of

excitation, Concurrent Learning can help achieve better parameter identification.

4.2 Discrete-Time Normalized Gradient based Concurrent Learning for both Struc-
tured and Unstructured Uncertainty Approximation Cases

After presenting the discrete-time Normalized Gradient based CL algorithm in Section 4.2.1,

we investigate the SUAC and the UUAC when using it.

4.2.1 Discrete-Time Normalized Gradient Based Concurrent Learning Algorithm

Starting with an initial guess θ̂(k0) = θ̂0 ∈ Rrθ×cθ and, with rθ = rφ, given positive definite,

symmetric matrices Γ, ξNG, ξCL ∈ Rrφ×rφ = Rrθ×rθ (i.e., Γ, ξNG, ξCL > 0 and Γ> = Γ, ξ>NG =

ξNG, ξ>CL = ξCL), we put forth for k ≥ k0 the DTNG based CL update

θ̂(k + 1) = θ̂(k)− Γ
{
ξNG∆θ̂NG(k) + ξCL∆θ̂CL(k)

}
. (4.58)

The instantaneous update term ∆θ̂NG(k) ∈ Rrφ×cqε , with cqε = cθ, is as expressed in (4.5). Given

matrix Z̄G and the approximation error based on recorded data qZ,ε(k), both of which are defined

defined in (3.27) and (3.9) respectively, we define ∆θ̂CL(k) ∈ Rrφ×cqε as

∆θ̂CL(k) = ZG qZ,ε(k). (4.59)

Notice that the adjustments terms ∆θ̂NG and ∆θ̂CL in (4.58) do not necessarily contribute equally

to the update of the parameter estimate θ̂, as ξNG does not have to be set equal to ξCL. Conse-

quently, if need be, either update terms can be prioritized over the other. It should also be added

that, just like Γ, ξNG and ξCL can be set to vary with time, i.e., ξNG = ξNG(k) and ξCL = ξCL(k).

The term ∆θ̂CL in (4.58) provides adjustments based on recorded data. In doing so, update of

the parameter estimate θ̂(k) (if any) can and/or might continue even when the instantaneous approx-

imation error qε(k) = [0]rcqε×cqε , or, equivalently, ∆θ̂NG(k) = [0]rφ×cqε , since qε(k) = [0]rcqε×cqε

52

and, thus, from (2.14), q(k) = [0]rf×cf does not necessarily mean that θ̂(k) has converged to θ.

Let λmax(ξNG) = εNG and λmax(ξCL) = εCL. If Condition 3.1.1 is met, using the CL update

rule of (4.58) for

0 < η <
2

2εNGλΦk ‖m−1(k)‖2F + εCLλΦZG,k
= ηCL(k) (4.60)

and Γ constructed such that λmax(Γ) = η, we can achieve convergence of the parameter error θ̃(k)

to the origin for the SUAC and to a neighborhood of the origin for the UUAC as time evolves.

We prove our assertion next. However, first, from the expressions of ΦZG,k in (3.15) and qZ,ε(k)

in (3.28b), notice that (4.59) can be rewritten as

∆θ̂CL(k) = Z̄G

(
Z>θ̃(k)− wZ,ε(k)

)
= Z̄GZ

>θ̃(k)− Z̄GwZ,ε(k)

= ΦZG,kθ̃(k)− εw,k, (4.61)

with εw,k ∈ Rrθ×cθ (rθ = rφ = rZ) given by

εw,k = Z̄GwZ,ε(k). (4.62)

Let ∆θw(k) ∈ Rrθ×cθ be such that

∆θw(k) = φ (x(k))
(
m2(k)

)−1
wε(k). (4.63)

Substituting the expression of qε(k) in (2.15b) into that of ∆θ̂NG(k) in (4.5), using (4.58), (4.61),

and letting

ε̄w,k = ∆θw(k) + εw,k, (4.64)

the parameter error, fundamentally defined in (2.10), can be rewritten as

θ̃(k + 1) = [Irθ − ΓξNGΦm,k − ΓξCLΦZG,k] θ̃(k) + ΓξCLε̄w,k. (4.65)

53

where Φm,k is defined by (4.27). Now, let matrices Q(k) ∈ Rrθ×rθ , Ek ∈ Rrθ×cθ , and Ew,k ∈

Rcθ×cθ be such that

Qk = Irθ − ΓξNGΦm,k − ΓξCLΦZG,k, (4.66)

Ek = Q>k ξCLε̄w,k, and (4.67)

Ew,k = ε̄>w,kξCLΓξCLε̄w,k. (4.68)

With θ̃(k + 1) given by (4.65), V (k + 1) obtained using (4.7) expands to

V (k + 1) = tr
{
θ̃>(k)Qkθ̃(k)

}
+ tr {ΥE,k}+ tr

{
Ew,k

}
, (4.69)

where Qk = Q>k Γ−1Q(k) and ΥE,k ∈ Rcθ×cθ given by

ΥE,k = θ̃>(k)Ek + E>k θ̃(k).

Since, for any ma ∈ Rrm×cm , rm ∈ N+ and cm ∈ N+, tr(m>a) = tr(ma), we get that

tr
{
θ̃>(k)Qkθ̃

>(k)
}

= tr
{
θ̃>(k)Qkθ̃

>(k)
}

,

where, based on the expression of Qk above and (4.66),

Qk = Γ−1 +QNG,k − 2ΦZG,k ξCL + 2ΦZG,kξCL ΓξNG Φm,k + ΦZG,k ξCLΓξCL ΦZG,k, (4.70)

with

QNG,k = − (2Irθ − ξNGΦm,kΓ) Φm,kξNG, (4.71)

as well as

tr (ΥE,k) = 2tr
{
θ̃>(k)Ek

}
. (4.72)

Requiring that Γ, ξNG, and ξCL be positive definite matrices, then, η = λmax(Γ) > 0, εNG =

λmax(ξNG) > 0, εCL = λmax(ξCL) > 0. Notice that QNG,k in (4.71) is exactly QNG,k in (4.29)

54

if ξNG = Irφ . To find an upper-bound for QNG,k, we will use (4.30). Doing so while recalling that

rθ = rφ, we have that

2Irθ − ξNGΦm,kΓ ≥
(

2− ηεNGλΦk

∥∥m−1(k)
∥∥2

F

)
Irθ

and, using (4.71),

QNG,k ≤ −
(

2− ηεNGλΦk

∥∥m−1(k)
∥∥2

F

)
εNGΦm,k ≤ 0

first because Φm,k ≥ 0 for all k and, second, if Γ, with η = λmax(Γ), is such that, for φ (x(k)) 6=

[0]rφ×cφ ,

0 < η <
2

εNGλΦk ‖m−1(k)‖2F
= ηNG(k). (4.73)

It is worth noting that (4.73) is quite similar to (4.33). Moving along, if we were to pick η (and

therefore Γ) such that (4.73) is met, then, by leaving QNG,k ≤ 0 out of the expression of Qk in

(4.70), we get

Qk ≤
(
Irθ − ΦZG,kQCL,k

)
Γ−1, (4.74)

with

QCL,k = 2ξCLΓ− 2ξCLΓξNGΦm,kΓ− ξCLΓξCLΦZG,kΓ.

Denoting λCL = λmin(Γ)λmin(ξCL) and given (4.30), we can say that

QCL,k ≥
(

2λCL − 2η2εNGεCLλΦk

∥∥m−1(k − 1)
∥∥2

F
− η2ε2

CLλΦZG,k
)
Irθ .

If ZG is full row rank (as required by Condition 3.1.1), then ΦZG,k = ZGZ
>
G is positive definite

(ΦZG,k > 0), which means the minimum and maximum eigenvalues of ΦZG,k, i.e., λΦZG,k and λΦZG,k

respectively, are such that λΦZG,k ≥ λΦZG,k > 0. For

RNG,k = 1− λΦZG,k
(

2λCL − 2η2εNGεCLλΦk

∥∥m−1(k)
∥∥2

F
− η2ε2

CLλΦZG,k
)

,

55

from (4.74), a further upper bound of Qk is Qk ≤ RNG,kΓ−1. However, with

−ηεCL ≤ −λmin(Γ)λmin(ξCL) = −λCL,

ensuring Qk ≤ RNG,kΓ−1,

RNG,k = 1− ηεCLλΦZG,k
[
2− η

(
2εNGλΦk

∥∥m−1(k)
∥∥2

F
+ εCLλΦZG,k

)]
. (4.75)

For convenience, as RNG,k ≤ RNG,k, we have that Qk ≤ RNG,kΓ−1 ≤ RNG,kΓ−1. Finally, with

Qk ≤ RNG,kΓ−1, from (4.69), and given (4.7), we write

V (k + 1) ≤ RNG,kV (k) + 2tr
{
θ̃>(k)Ek

}
+ tr

{
Ew,k

}
. (4.76)

4.2.2 DTNG based CL for the SUAC

If f is a structured uncertainty then w (x(k)) = [0]rf×cf and, similarly, wZ(x(k)) = [0]rqZ×cqZ

for all k, which, according to (2.17), (3.30), (4.62), and (4.63), meanswε(k) = [0]rqε×cqε ,wZ,ε(k) =

[0]cZ×cθ , εw,k = [0]rθ×cθ , and ∆θw(k) = [0]rθ×cθ respectively. Hence, given (4.64), (4.67), and

(4.68), ε̄w,k = Ek = [0]rθ×rf and Ew,k = [0]rf×rf . Consequently, (4.76) reduces to

V (k + 1) ≤ RNG,kV (k). (4.77)

Now, notice that we effectively have 0 < RNG,k < 1 if η in the expression of RNG,k, i.e., (4.75),

verifies (4.60). It is however necessary to add that a value of η that meets (4.60) also verifies the

first condition that was imposed onto it while developing this proof, i.e, (4.73), as, given (4.60) and

(4.73), ηCL(k) < ηNG(k).

In summary, by appropriately designing for η such that 0 < RNG,k < 1, i.e., making sure that

(4.60) is valid, then, as a result of (2.25) and (4.77),

lim
k→∞

β
V

∥∥∥θ̃(k)
∥∥∥2

F
≤ lim

k→∞
V (k) = 0

56

if the rank condition on ZG (as opposed to persistency of excitation) is satisfied. Hence, θ̃(k) =

[0]rθ×cθ is exponentially stable. Additionally, given (4.77) and 0 < RNG,k < 1, for all k, V (k) ≤

V (k0) and, just like (4.25),

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘNG,CLs =

√
βV
β
V

∥∥∥θ̃(k0)
∥∥∥
F

(4.78)

The upper bounds of
‖q(k)‖F
‖m(k)‖F

,
∥∥m−1(k)qε(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

are as given in (4.39), (4.41),

and (4.44). Hence, with θ̃(k) being bounded and converging to the origin exponentially, so do

‖q(k)‖F
‖m(k)‖F

,
∥∥m−1(k)qε(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

. Besides, much like in Section 4.1.1, it could be

shown that both
∥∥m−1(k)qε(k)

∥∥
F
∈ L2 and

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2.

4.2.3 DTNG based CL for the UUAC

Given (2.26) and going back to (4.76), we can write

∆V (k + 1) ≤ (RNG,k − 1)V (k) + 2tr
{
θ̃>(k)Ek

}
+ tr

{
Ew,k

}
.

As previously defined and because (C.8), let µθ̃,k =
∥∥∥θ̃(k)

∥∥∥
F

=
∥∥∥θ̃>(k)

∥∥∥
F

. Using the expression

of Ew,k in (4.68), realize that

tr
{
Ew,k

}
= tr

{
(Ew,k)

> (Ew,k)
}

,

where

Ew,k =
√

ΓξCLε̄w,k. (4.79)

Finally, given (C.9), (C.15), based on the definition of V (k), i.e., (4.7), with λmax

(
Γ−1

)
=

1

λmin(Γ)
,

which means 0 < Γ−1 ≤ λmax

(
Γ−1

)
Irφ =

1

λmin(Γ)
Irφ , and letting

A1 =
RNG,k − 1

λmin(Γ)
,

57

we have that

∆V (k + 1) ≤ A1µ
2
θ̃,k + 2 ‖Ek‖F µθ̃,k + ‖Ew,k‖2F . (4.80)

We now proceed to upper bounding ‖Ek‖F and ‖Ew,k‖F . Before continuing, it is worth recall-

ing that, according to (4.49), (4.50), and (4.42), for all k,

m−1(k) ≤ 1√
α
Icφ and

∥∥m−1(k)
∥∥
F
≤ 1√

α

∥∥Icφ∥∥F =

√
cφ
α

,

∥∥m−1(k)wε(k)
∥∥
F
≤W =

√
cφ
α
W ,

and

∥∥φ (x(k))m−1(k)
∥∥
F
≤ βφ,1

∥∥Icφ∥∥F ‖φ (x(k))‖F

αm,1
(
α
∥∥Icψ∥∥F + ‖φ (x(k))‖2F

) 1
2

= Bφm .

From (2.7) and (3.26), ‖w (x(k))‖ ≤ W and ‖wZ(x(k))‖F ≤ WZ = cZW , which, given (2.17),

(3.30), and (C.8), means ‖wε(k)‖ ≤W and ‖wZ,ε(k)‖ ≤WZ . Also, ‖Ir‖F =
√
r for any r ∈ N+,

rθ = rφ = rZ , Γ ≤ ηIrφ = ηIrθ , ξNG ≤ εNGIrφ = εNGIrθ , ξCL ≤ εCLIrφ = εCLIrθ , and

ΦZG,k = ZGZ
>
G ≤ λΦZG,kIrZ = λΦZG,kIrθ . Hence, ‖Irθ‖F =

√
rθ, ‖Γ‖F ≤ η

√
rθ, ‖ξNG‖F ≤

εNG
√
rθ, and ‖ξCL‖F ≤ εCL

√
rθ. Among other properties, we will make use of (C.8), (C.9),

(C.10), (C.11), and (C.12) when finding upper bounds for ‖Ek‖F and ‖Ew,k‖F .

First, using the expression of Ek, i.e., (4.67),

‖Ek‖F ≤ ‖Qk‖F ‖ξCL‖F ‖ε̄w,k‖F ≤ εCL
√
rθ ‖Qk‖F ‖ε̄w,k‖F .

Recalling (4.66), Φm,k in (4.27), then

‖Qk‖F ≤ ‖Irθ‖F + ‖Γ‖F ‖ξNG‖F
∥∥φ (x(k))m−1(k)

∥∥2

F
+ ‖Γ‖F ‖ξCL‖F

∥∥∥ZZ>∥∥∥
F

<
√
rθ + ηrθ

(
εNGB

2
φm + εCLλΦZG,k

√
rθ

)
.

58

Carrying on, from (4.64), ‖ε̄w,k‖F ≤ ‖∆θw(k)‖F + ‖εw,k‖F . Given (3.11, (4.62), and (4.63),

‖εw,k‖F ≤
∥∥Z̄G∥∥F ‖wZ,ε(k)‖F ≤ cZBgWZ = c2

ZBgW

and

‖∆θw(k)‖F =
∥∥[φ (x(k))m−1(k)

] [
m−1(k)wε(k)

]∥∥
F

≤
∥∥φ (x(k))m−1(k)

∥∥
F

∥∥m−1(k)wε(k)
∥∥
F
≤ BφmW =

√
cφ
α
BφmW .

Thus,

‖ε̄w,k)‖F ≤
∥∥Z̄G∥∥F ‖wZ,ε(k)‖F <

√
cφ
α
BφmW + c2

ZBgW =

(√
cφ
α
Bφm + c2

ZBg

)
W

and

‖Ek‖F ≤ εCL
√
rθ ‖Qk‖F ‖ε̄w,k‖F ≤

B1

2
,

where, for

B2 = 2
√
rθ

(√
rθ + ηrθ

(
εNGB

2
φm + εCLλΦZG,k

√
rθ

))
,

B1 = εCL

(√
cφ
α
Bφm + c2

ZBg

)
WB2.

Further, the expression of Ew,k in (4.79) allows us to write

‖Ew,k‖2F ≤
∥∥∥√Γ

∥∥∥2

F
‖ξCL‖2F ‖ε̄w,k‖2F ≤ C1,

with

C1 = ηrθ
√
rθ ε

2
CL

(√
cφ
α
Bφm + c2

ZBg

)2

W 2.

Notice thatB2 6= 0 as rθ ≥ 1 by definition. Also, withW ≥ 0,B1 ≥ 0 andC1 = rθ
√
rθ

(
B1

B2

)2

≥

0.

59

As pointed out before, making sure that η is picked such that (4.60) is verified when applying

CL leads to 0 < RNG,k < 1. As a result, −1 < A1 =
RNG,k − 1

λmin(Γ)
< 0. From (4.80), we get

∆V (k + 1) ≤ QE = A1µ
2
θ̃,k +B1µθ̃,k + C1, (4.81)

given our upper bounds of ‖Ek‖F and ‖Ew,k‖F . Because A1 < 0 if (4.60) is met and µθ̃,k ≥ 0, the

only valid root (because nonnegative) of the quadratic expression QE in (4.81) is

BNG,CLu =
−B1 −

√
B2

1 − 4A1C1

2A1
.

At µθ̃,k = µθ̃M = − B1

2A1
,
∂QE
∂µθ̃,k

= 0 and
∂2QE
∂µ2

θ̃,k
= 2A1 < 0 granted (4.60) is verified. Hence, QE

attains its maximum at the stationary point − B1

2A1
≥ 0. That is,

max
µθ̃,k

QE = QE |µθ̃,k=µθ̃M
= − B2

1

4A1
+ C1 ≥ 0.

With A1 < 0, if µθ̃,k > BNG,CLu ,

∆V (k + 1) = V (k + 1)− V (k) ≤ QE < 0,

whereas, when θ̃ enters the set

SNG,CLu =
{
θ̃ :
∥∥∥θ̃(k)

∥∥∥
F
≤ BNG,CLu

}
,

∆V (k) = V (k)− V (k − 1) ≤ max
µθ̃,k

QE ,

meaning that it is possible to have ∆V (k) ≥ 0 in that case. However, for discrete times thereafter, θ̃

stays within the positively invariant set SNG,CLu (consult [31] to see how SNG,CLu can be formally

proved to be positively invariant). Thus, for all k,

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘNG,CLu = max

(∥∥∥θ̃(k0)
∥∥∥
F

, BNG,CLu
)

(4.82)

and, based on (2.25),

V (k) ≤ βV
∥∥∥θ̃(k)

∥∥∥2

F
≤ βV max

(∥∥∥θ̃(k0)
∥∥∥2

F
, B2

NG,CLu

)
.

60

Here also, without requiring PE condition, provided instead that the rank condition on ZG is

verified and η satisfies (4.60), the DTNG based CL algorithm of (4.58) guarantees that V (k) and

θ̃(k) are bounded. We do not have convergence of the parameter error matrix to the origin as we did

in the SUAC, but, rather, with SNG,CLu being invariant,

lim
k→∞

∥∥∥θ̃(k)
∥∥∥
F
≤ BNG,CLu .

We could find a scalar, constant upper bound to BNG,CLu and conclude that
∥∥∥θ̃(k)

∥∥∥
F

is uniformly,

ultimately, bounded (UUB).

4.2.4 Concluding Remarks about DTNG based CL

For the more general approximation case, i.e., the UUAC, unlike in Section 4.1.2, we were able

to show that the ultimate bound of
∥∥∥θ̃(k)

∥∥∥
F

, i.e, BNG,CLu , which, by the way, is obtained without

necessitating that vec {w (x(k))} ∈ L2, solely depends on entities such as the upper bound W of

the representation error w, spectral properties λΦk , λΦZG,k , λΦZG,k , and design parameters such as

η, α, cZ , and rθ. This makes it easier from a design point of view because W might be the only

parameter over which there may not be much control. Proper choice of design parameters can help

reduce the size of BNG,CLu , which, ideally, we would want to make as close as possible to zero.

As a result of
∥∥∥θ̃(k)

∥∥∥
F

being bounded for all k, in the UUAC,
‖q(k)‖F
‖m(k)‖F

,
∥∥m−1(k)qε(k)

∥∥
F

,

and
∥∥∥∆θ̃(k)

∥∥∥
F

, which are as given in (4.55), (4.41), and (4.44) receptively, are bounded and their

upper bounds, similarly to that of
∥∥∥θ̃(k)

∥∥∥
F

, can be rewritten so as to show explicit dependency on

the previously mentioned controllable parameters. Lastly, we would like to point out that each of

‖q(k)‖F
‖m(k)‖F

,
∥∥m−1(k)qε(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

converges to an ultimate bound as
∥∥∥θ̃(k)

∥∥∥
F

converges

to its ultimate bound.

The following theorem summarizes our results.

61

Theorem 4.2.1. Let f be an uncertainty to approximate. Consider the approximation model (2.1),

the on-line scheme (2.8), and the approximation error (2.9a) (equivalently, (2.9b) or (2.13)). If the

rank condition, described by Condition 3.1.1, is met and parameter η = λmax(Γ) is picked to satisfy

(4.60), then, the DTNG based CL adaptation law (4.58) guarantees that:

• θ̃(k), consequently θ̂(k) (since θ is considered to be constant), m−1(k)qε(k) and ∆θ̃(k) =

θ̃(k)− θ̃(k − 1) are bounded;

• if in the SUAC, θ̃(k) → [0]rθ×rf exponentially, or, equivalently, θ̂(k) → θ exponentially as

k →∞. Also, both
∥∥m−1(k)qε(k)

∥∥
F
∈ L2 and

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2;

• if in the UUAC, θ̃(k) is ultimately, uniformly bounded, as its Frobenius norm converges to a

positively invariant set.

Table 4.2 is a summary of the DTNG based CL algorithm, its results and properties.

We make the following remarks.

Remark 4.2.1. The upper bound ηCL(k) on η given in (4.60) is written in a more general form than

what we previously found in [28] (and also used in [29]). For a scalar normalization signal m(k),

as is the case in [28, 29], (4.60) can be rewritten as

0 < η <
2m2(k)

2εNGλΦk + εCLλΦZG,km2(k)
. (4.83)

Remark 4.2.2. Because εNG, εCL > 0, and from (4.33), (4.60), and (4.73), we can say that

ηNG(k) =
ηNGs(k)

εNG
and ηNG(k) ≤ ηCL(k).

Hence, with ηNGs(k) being bounded away from infinity for all time, as shown in Remark 4.1.5, so

are both ηNG(k) and ηCL(k).

62

Table 4.2: DTNG based CL algorithm, results, and properties.

DTNG based CL algorithm

For k ≥ k0, φ (x(k)) ∈ Rrφ×cφ being the regressor, the history stack ZG given by (3.8), m2(k)

given by (4.1), qε(k) given by (2.14), qZ,ε(k) given by (3.27), some ξNG, ξCL, Γ ∈ Rrφ×rφ such

that ξNG, ξCL, Γ > 0, and some initial guess, θ̂(k0) = θ̂0 ∈ Rrθ×cθ , update θ̂ by applying:

m2(k) = αIcφ + φ>(x(k))φ (x(k)),

∆θ̂NG(k) = φ (x(k))
(
m2(k)

)−1
qε(k),

∆θ̂CL(k) = ZG qZ,ε(k),

Design Γ = Γ> = Γ(k) > 0 such that, η = λmax(Γ) verifies (4.60),

θ̂(k + 1) = θ̂(k)− Γ
{
ξNG∆θ̂NG(k) + ξCL∆θ̂CL(k)

}
.

SUAC results and properties UUAC results and properties

Same as DTNG algorithm in the SUAC

(see Table 4.1);

If Condition 3.1.1 is verified:

θ̃(k) = [0]rθ×cθ is exponentially stable.

Same as DTNG algorithm in the UUAC

(see Table 4.1);

If Condition 3.1.1 is verified:

θ̃(k) is UUB;∥∥m−1(k)qε(k)
∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

belong to L∞.

Convergence Properties

θ̃(k) converges to the origin (meaning θ̂(k) converges to θ) in the SUAC or θ̃(k) converges to a

neighborhood of the origin (meaning θ̂(k) converges to a neighborhood of θ) as long as Condition 3.1.1
is verified. Condition 3.1.1 is less demanding than the PE condition on φm (x(k)) in (4.40) and/or

requiring that vec {w} ∈ L2).

63

Remark 4.2.3. As (4.77) and (4.81) show, RNG,k, which is given by (4.75), dictates how fast V (k)

converges to zero. Solving
∂RNG,k
∂η

(η) = 0 for η,

η = ηm =
ηCL(k)

2
=

1

2εNGλΦk ‖m−1(k)‖2F + εCLλΦZG,k
(4.84)

is the lone stationary point. Notice that ηm ∈ (0, ηCL(k)). For
∂RNG,k
∂η

< 0 and
∂RNG,k
∂η

> 0,

η < ηm and η > ηm respectively. Further,

∂2RNG,k
∂η2

=
2εCLλΦZG,k

ηm
> 0

and, as a result, ηm is a minimum point. At ηm,

RNG,k|η=ηm
= 1− εCLλΦZG,kηm = 1−

εCLλΦZG,k
2εNGλΦk ‖m−1(k)‖2F + εCLλΦZG,k

. (4.85)

Because a smallRNG,k leads to a faster convergence of V (k) to zero, then, ηm =
ηCL(k)

2
is a good

choice for η when applying the CL algorithm.

Remark 4.2.4. Based on the expression of RNG,k|η=ηm
above in (4.85), the higher the ratio

rCL =
λΦZG,k
λΦZG,k

(4.86)

is, the smaller RNG,k|η=ηm
becomes. This result, though obtained in the DT domain, supports even

further the CT framework studies in [32] as wells as [15, 16, 14, 17, 18]. While applying the CL

algorithm, maximizing rCL =
λΦZG,k
λΦZG,k

(as the procedures for data recording, detailed Chapter VI,

reveal) can therefore be enforced when selecting the data that goes into ZG and/or Z.

Remark 4.2.5. Given that λΦZG,k ≥ λΦZG,k > 0 if ZG ∈ RrZ×cZ , rZ = rφ = rθ and cZ ≥ rθ,

is full row rank, then rCL ≤ 1. If rCL = 1 then, necessarily, ΦZG,k = ZGZ
>
G = εIrZ , for some

ε > 0, and, consequently,
1√
ε
ZG is an orthogonal matrix, with ZG being a square matrix. We thus

postulate that it may be possible to get a higher rCL for values of cZ closer to rZ = rφ = rθ.

This concludes our study of the DTNG algorithm and its CL modification. We will now look at

Least Squares algorithm for uncertainty approximation.

64

CHAPTER V

DISCRETE-TIME NORMALIZED LEAST SQUARES BASED CONCURRENT

LEARNING

The current chapter investigates the use of the Least Squares (LS) technique for discrete-time

uncertainty approximation. The LS method minimizes the sum of instantaneous cost J(k), de-

fined in (4.2a), for all time, and, therefore, could potentially lead to a better learning generalization

when compared to Gradient Descent. As in Chapter IV, here also, we only consider approximators

that are linear in the parameters to identify, study both the structured and unstructured uncertainty

approximation cases, as well as develop a DTNRLS based Concurrent Learning algorithm.

5.1 Discrete-Time Normalized Recursive Least-Square Algorithm for both Struc-
tured and Unstructured Uncertainty Approximation Cases

Given an initial parameter estimate θ̂(k0) = θ̂0 ∈ Rrθ×cθ , for k ≥ k0, the discrete-time NRLS

algorithm for updating the parameter estimate θ̂ (see (5.1d)) can be given as

ψ(k) = φ (x(k)) , (5.1a)

KLS(k) = P (k − 1)ψ(k)
(
m2(k)

)−1 , (5.1b)

∆θ̂LS(k) = KLS(k)Qε(k), (5.1c)

θ̂(k + 1) = θ̂(k)−∆θ̂LS(k), (5.1d)

65

where, recalling rφ = rθ, ψ(k) ∈ Rrψ×cψ , i.e., rψ = rφ = rθ and cψ = cφ according to (5.1a) in this

case, KLS(k) ∈ Rrψ×cψ , the adjustment term ∆θ̂LS(k) ∈ Rrθ×cθ , the gain matrix P (k) ∈ Rrψ×rψ

is such that

P (k) = P (k − 1)−KLS(k)ψ>(k)P (k − 1), (5.2)

P (k0 − 1) = P0 ∈ Rrψ×rψ , P0 chosen as a symmetric, positive-definite matrix (i.e., P>0 = P0 and

P0 > 0) from the start, the normalization matrix signal m(k) ∈ Rcψ×cψ is such that

m2(k) = αIcψ + ψ>(k)P (k − 1)ψ(k), (5.3)

for some scalar α = α(k) > 0 (meaning α can be time-varying), and, given the error qε(k) ∈

Rrqε×cqε computed as in (2.14), i.e.,

qε(k) =

{
q>(k), ifMn =M1,
q(k), ifMn =M2,

with the approximation error q(k) given by (2.9a) or (2.9b), we define the overall approximation

error Qε(k) ∈ RrQε×cQε as

Qε(k) = qε(k). (5.4)

Having that q(k) ∈ Rrf×cf and based Table on 2.1, ifMn =M1, rqε = cf = cφ and cqε = rf =

cθ, whereas, ifMn = M2, rqε = rf = cφ and cqε = cf = cθ. Also, given (5.4), rQε = rqε and

cQε = cqε . We will see later on how rQε and cQε vary depending on the definition of Qε. Moreover,

notice that, for k ≥ k0, we have set ρ (x(k)) = ψ (x(k)) and Ξm = P (k − 1) in (2.18) to get the

expression ofm2(k) given in this case by (5.3). At k = k0, we have that Ξm = P (k0−1) = P0 > 0

by definition. Requiring that Ξm > 0 as initially intended when defining the normalization signal,

we will show later on that P (k) > 0 for any k ≥ k0.

We introduce the matrix Ψk ∈ Rrψ×rψ , which we define as

Ψk = ψ(k)ψ>(k). (5.5)

66

Based on (5.5), Ψk is symmetric, i.e., Ψ>k = Ψk, (at least) positive semidefinite, i.e., Ψk ≥ 0, and,

for all k, we can thus write

λΨk
(k)Irψ ≤ Ψk ≤ λΨk(k)Irψ , (5.6)

for some finite

λΨk
(k) = λmin(Ψk) , λΨk(k) = λmax(Ψk) .

Notice also that, in this case, given (2.27) and (5.5), Ψk = Φk if in fact ψ(k) is as given by (5.1a).

It should be added that, though seemingly redundant and unnecessary, reasons for defining ψ(k),

Qε(k), and Ψk will become clearer soon, as we look to tie together this section and the next one,

where we present our main results.

Expression (5.2) of P (k) will be derived in the upcoming sections. For now, first, notice that

P (k) is symmetric for all k. In fact, given that

P (k0 − 1) = P0 = P>0 = P>(k0 − 1)

and using (5.2), showing that, for all k, P (k) = P>(k) can be done by induction, starting with

the computation of P (k0) and P>(k0). Second, with P (k) being symmetric, then m(k) is also

symmetric (see expression (5.3) of m2(k) for reason as to why), i.e., m>(k) = m(k); and, its

inverse, which, for now, we can assume to exist for the sake of the argument to follow, is also

symmetric, i.e.,
(
m−1(k)

)>
= m−1(k). Actually, m(k) or m2(k) can be shown to be invertible by

induction, with the premise that P (k0 − 1) = P0 > 0. Third, P (k) can be rewritten as

P (k) = PA + PU
(
−Icψ

)
PV ,

67

where, given both (5.1b) and (5.2), PA ∈ Rrψ×rψ , PU ∈ Rrψ×cψ , and PV ∈ Rcψ×rψ are such that

PA = P (k − 1),

PU = PAφ (x(k))m−1(k) = PAψ(k)m−1(k), and

PV = P>U = m−1(k)φ>(x(k))PA = m−1(k)ψ>(k)PA.

Hence, assuming for the time being that, for any k, P (k) is invertible (or, alternatively, proceeding

with a proof by induction instead to prove invertibility of P (k)) so as to be able to use the Woodbury

Matrix Identity (A.1), we get

P−1(k) = P−1
A − P−1

A PU
(
−Icψ + PV P

−1
A PU

)−1
PV P

−1
A . (5.7)

Let PD ∈ Rrψ×cψ and PE ∈ Rcψ×cψ be such that

PD = P−1
A PU = ψ(k)m−1(k) and PE = ψ>(k)PAψ(k);

and, notice that

P>D = PV P
−1
A = m−1(k)ψ>(k)

and

PV P
−1
A PU = m−1(k)PEm

−1(k).

Now, using (5.3), m2(k) = αIcψ + PE and

PG = −Icφ + PV P
−1
A PU

= −Icψ +m−1(k)PEm
−1(k) = −m−1(k)

(
m2(k)

)
m−1(k) +m−1(k)PEm

−1(k)

= −m−1(k)
(
m2(k)− PE

)
m−1(k) = −m−1(k)

((
αIcψ + PE

)
− PE

)
m−1(k)

= −α
(
m2(k)

)−1 .

68

Based on our definitions above, (5.5), and given (5.7),

P−1(k) = P−1
A − PD (PG)−1 P>D = P−1(k − 1) +

1

α
Ψk, (5.8)

meaning

P−1(k) = P−1(k0 − 1) + ΞΨ(k) = P−1
0 + ΞΨ(k), (5.9)

where, for k > k0, we define ΞΨ ∈ Rrψ×rψ as

ΞΨ(k) =

k∑
τ=k0

1

α
Ψτ . (5.10)

With α > 0 and Ψk ≥ 0 for all k, ΞΨ(k) ≥ 0. Further, P0 > 0 (and, as a result, P−1
0 > 0) and

given that P (k) is symmetric, (5.9) allows us to write

P−1(k) =
(
P−1(k)

)> ≥ P−1(k0 − 1) = P−1
0 > 0 (5.11)

for all k. Subsequently,

0 < P (k) = P>(k) ≤ P0. (5.12)

That is, P (k) = P>(k) is positive definite and bounded for all k so long as P0 is bounded, which

should be the case in practice. With P (k) being positive definite, then, m(k) (or m2(k) given by

(5.3)) is also positive definite. These results thus confirm the existence of both P−1(k) and m−1(k),

which, as mentioned above, could also have been proven by induction. Moreover, notice that, given

(5.3), (5.6), and (5.12), there exist some scalar βIM ≥ 0 for which

αIcψ ≤ m
2(k) ≤ (α+ βIM)Icψ . (5.13)

Before looking any further into each approximation case, notice that, with (2.9b), (2.13), (5.1a),

(2.14), and regardless of the approximation models in (2.2), the error Qε(k) in (5.4) can also be

69

rewritten as

Qε(k) = qε(k) = φ>(x(k)) θ̂(k)− fn(k) (5.14a)

= ψ>(k)θ̂(k)− fn(k),

= ψ>(k)θ̃(k)− wε(k), (5.14b)

where the function fn(k) ∈ Rrqε×cqε = RrQε×cQε and the residual error wε(k) ∈ RrQε×cQε are as

given is (2.16) and (2.17), i.e.,

fn(k) =

{
f>(x(k)) , ifMn =M1,
f (x(k)) , ifMn =M2,

and

wε(k) =

{
w>(x(k)) , ifMn =M1,
w (x(k)) , ifMn =M2,

respectively. Additionally, from (5.2),

P (k)P−1(k − 1) = Irψ −KLS(k)ψ>(k). (5.15)

Thus, considering the DTNRLS update law (5.1), Qε(k) in (5.14b), and (5.15), we express the

parameter error defined in (2.10) as

θ̃(k + 1) =
[
Irθ −KLS(k)ψ>(k)

]
θ̃(k) +KLS(k)wε(k) (5.16a)

= P (k)P−1(k − 1)θ̃(k) +KLS(k)wε(k). (5.16b)

5.1.1 DTNRLS for the SUAC

If f is a structured uncertainty, then, we can set w (x(k)) = [0]rf×cf or, equivalently, given

(2.17), w (x(k)) = [0]rQε×cQε for all k. Based on (2.1) and (2.3), that essentially means f (x(k)) is

given as in (4.20), i.e.,

f (x(k)) = F (x(k), θ) =Mn (x(k), θ) ,

70

and, from (5.14b),

Qε(k) = ψ>(k)θ̃(k). (5.17)

Moreover, the parameter error equations of (5.16) reduce to

θ̃(k + 1) =
[
Irθ −KLS(k)ψ>(k)

]
θ̃(k) (5.18a)

= P (k)P−1(k − 1)θ̃(k). (5.18b)

For analysis purposes, consider the Lyapunov Function (2.24), with

ΞV = Ξ>V = P−1(k − 1) =
(
P−1(k − 1)

)> ≥ P−1
0 > 0

considering (5.11), i.e.,

V (k) = tr
{
θ̃>(k)P−1(k − 1)θ̃(k)

}
. (5.19)

Along (5.18b) and given (5.19),

V (k + 1) = tr
{
θ̃>(k + 1)P−1(k)θ̃(k + 1)

}
= tr

{
θ̃>(k + 1)P−1(k − 1)θ̃(k)

}
.

Hence, using (2.26) and (5.19),

∆V (k + 1) = V (k + 1)− V (k) = tr
{

∆θ̃>(k + 1)P−1(k − 1)θ̃(k)
}

, (5.20)

where ∆θ̃ ∈ Rrθ×rθ is as defined in (4.43), i.e., such that, for values of k ≥ k0,

∆θ̃(k + 1) = θ̃(k + 1)− θ̃(k).

From (5.1b) and (5.18a),

∆θ̃(k + 1) = −KLS(k)ψ>(k)θ̃(k) = −P (k − 1)ψ(k)
(
m2(k)

)−1
ψ>(k)θ̃(k).

In light of that, (5.20) can be rewritten as

∆V (k + 1) = −tr
{
θ̃>(k)ψ(k)

(
m2(k)

)−1
ψ>(k)θ̃(k)

}
,

71

which, because of (5.17), also means

∆V (k + 1) = −tr
{
Q>ε (k)

(
m2(k)

)−1
Qε(k)

}
= −tr

{[
m−1(k)Qε(k)

]> [
m−1(k)Qε(k)

]}
or, using (C.9),

∆V (k + 1) = −
∥∥m−1(k)Qε(k)

∥∥2

F
≤ 0. (5.21)

The result in (5.21) allows us to conclude that V (k) is bounded for all k. Now, given (5.9) and

(5.19), we can write

V (k) = tr
{
θ̃>(k)P−1

0 θ̃(k)
}

+ tr
{
θ̃>(k)ΞΨ(k − 1)θ̃(k)

}
.

Therefore, with V (k) being bounded and ΞΨ(k) ≥ 0 for all k,

tr
{
θ̃>(k)P−1

0 θ̃(k)
}

= V (k)− tr
{
θ̃>(k)ΞΨ(k − 1)θ̃(k)

}
≤ V (k)

is also bounded and, further, so is θ̃(k). Considering (5.3), (C.8), (C.10), and (C.11), we can find

some scalar αm,2 such that 0 < αm,2 ≤ 1 and

‖m(k)‖F ≥ αm,2
(
α
∥∥Icψ∥∥F + ‖P (k − 1)‖F ‖ψ(k)‖2F

) 1
2 . (5.22)

Hence, from (5.22), as well as (2.14), (5.4), (5.17), (C.8), (C.10), and (C.11),

‖Qε(k)‖F
‖m(k)‖F

=
‖q(k)‖F
‖m(k)‖F

≤

∥∥∥θ̃(k)
∥∥∥
F

Λ
− 1

2
P ,kΛψ,k

αm,2
(
α
∥∥Icψ∥∥F + Λ2

ψ,k
) 1

2

(5.23)

and, using (C.13), for some scalars βqε and βψ,1, such that 1 < βqε <∞ and 1 < βψ,1 <∞,

∥∥m−1(k)Qε(k)
∥∥
F
≤
∥∥m−1(k)

∥∥
F
‖Qε(k)‖F

< βqε
∥∥Icψ∥∥F ‖Qε(k)‖F

‖m(k)‖F
(5.24)

and, for ρ (x(k)) = ψ(k) in (2.23), ψm(k) ∈ Rrψ×cψ is defined as

ψm(k) = ψ(k)m−1(k), (5.25)

72

with

‖ψm(k)‖F =
∥∥ψ(k)m−1(k)

∥∥
F
≤ ‖ψ(k)‖F

∥∥m−1(k)
∥∥
F
< βψ,1

∥∥Icψ∥∥F ‖ψ(k)‖F
‖m(k)‖F

< βψ,1
∥∥Icψ∥∥F Λ

− 1
2

P ,kΛψ,k

αm,2
(
α
∥∥Icψ∥∥F + Λ2

ψ,k
) 1

2

, (5.26)

where

ΛP ,k = ‖P (k − 1)‖F and (5.27a)

Λψ,k = ‖P(k − 1)‖
1
2
F ‖ψ(k)‖F = Λ

1
2
P ,k ‖ψ(k)‖F . (5.27b)

We also have from (2.26) and (5.21) that, for values of k > k0,

V (k + 1) = V (k0)−
k∑

τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F
,

and, thus, with V (k) being nonincreasing for all k as a result of (5.21),

k∑
τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F
= V (k0)− V (k + 1) ≤ V (k0), (5.28)

where, according to (5.19),

V (k0) = tr
{
θ̃>(k0) (P0)−1 θ̃(k0)

}
is finite so long as

∥∥∥θ̂(k0)
∥∥∥
F

is. Consequently, first, given that θ̃(k) and P (k) are bounded for all

k,
‖q(k)‖F
‖m(k)‖F

,
∥∥m−1(k)Qε(k)

∥∥
F

, and
∥∥ψ(k)m−1(k)

∥∥
F

also are. As a side note, given (5.3) and

(5.22), there exists at least an instance of αm,2 that is closer to 1 tan 0 so that the previously men-

tioned boundedness results hold. Also, ensuring the boundedness of ψm(k) = ψ(k)m−1(k) is the

reasoning behind the use of the normalization signalm(k). Second, even better than itsL∞ property

is the L2 property of
∥∥m−1(k)Qε(k)

∥∥
F

, or, equivalently, given (C.9), vec
{
m−1(k)Qε(k)

}
∈ L2,

which is obtained from (5.28). Refer to Appendix C for definitions of Lp, with p ∈ [1,∞), and L∞

signal spaces. Continuing and referring back to the algorithm in (5.1), while also using (2.10) and

73

(4.43), we have that

∥∥∥∆θ̃(k + 1)
∥∥∥
F

=
∥∥∥θ̃(k + 1)− θ̃(k)

∥∥∥
F

=
∥∥∥P (k − 1)ψ(k)

(
m2(k)

)−1
Qε(k)

∥∥∥
F

≤ ΛP ,k
∥∥ψ(k)m−1(k)

∥∥
F

∥∥m−1(k)Qε(k)
∥∥
F

. (5.29)

Hence, not only is
∥∥∥∆θ̃(k)

∥∥∥
F

bounded since
∥∥ψ(k)m−1(k)

∥∥
F
∈ L∞ and

∥∥m−1(k)Qε(k)
∥∥
F
∈

L∞, but, with
∥∥m−1(k)Qε(k)

∥∥
F
∈ L2, we also have

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2 or, correspondingly, due to

(C.9), vec
{

∆θ̃(k)
}
∈ L2.

Now, notice, using (5.2), that, for all k,

P (k) = P (k0 − 1)− ΞP,1(k) = P0 − ΞP,1(k), (5.30)

where, with ΞP,2 ∈ Rrψ×rψ given by

ΞP,2(k) = KLS(k)ψ>(k)P (k − 1).

which, from the expression of KLS(k) in (5.1b) and because, for all k, P (k) > 0 and m2(k) > 0

as (5.12) and (5.13) respectively show, also means

ΞP,2(k) = P (k − 1)ψ(k)
(
m2(k)

)−1
ψ>(k)P (k − 1) ≥ 0,

we define ΞP,1 ∈ Rrψ×rψ as

ΞP,1(k) =

k∑
τ=k0

ΞP,2(τ).

Let za ∈ Rrψ be an arbitrary, constant vector. Also, we define the scalar function

hza(k) = z>a ΞP,1(k)za.

With P (k) > 0 for all k, we get from (5.30) that

z>a P (k)za = z>a P0za − hza(k) ≥ 0; (5.31)

74

thus, resulting in hza being bounded from above, as (5.31) leads to hza(k) ≤ z>a P0za. It can also be

shown that

hza(k + 1)− hza(k) = z>a ΞP,2(k + 1)za ≥ 0,

since ΞP,2(k) ≥ 0 for any k, and, therefore, hza is monotonically increasing. Both properties of

hza , i.e., boundedness from above and monotonic growth, imply that lim
k→∞

hza(k) exist and is finite.

We have essentially applied Proposition A.1 from Appendix A. Further, given that P0 is bounded

(at least in practice), z>a P0za is also bounded and finite. Hence, given (5.31), lim
k→∞

z>a P (k)za

exists and is finite. Since za is constant and arbitrary, we can conclude that there exists a constant

Pss ∈ Rrψ×rψ such that

lim
k→∞

P (k) = Pss. (5.32)

Now, considering (5.18b), for all k > k0,

θ̃(k) = P (k − 1)P−1(k0 − 1)θ̃(k0) = P (k − 1)P−1
0 θ̃(k0). (5.33)

Recalling the definition of θ̃(k) in (2.10),

lim
k→∞

θ̂(k) = θ + lim
k→∞

θ̃(k) = θ + lim
k→∞

P (k − 1)P−1
0 θ̃(k0),

with θ, as defined in (2.4), being constant. As a result, because P0 is constant and due to (5.32),

there also exists a constant θ̂ss ∈ Rrθ×cθ that is such that

lim
k→∞

θ̂(k) = θ̂ss. (5.34)

This however does not mean that θ̂ss = θ is to be expected. From (5.12), P (k− 1)P−1
0 ≤ Irψ , and,

using (5.33), for all k,

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘLSs =

∥∥Irψ∥∥F ∥∥∥θ̃(k0)
∥∥∥
F

=
√
rψ

∥∥∥θ̃(k0)
∥∥∥
F

. (5.35)

75

5.1.2 DTNRLS for the UUAC

Here, we can no longer assume that, for all k, w (x(k)) = [0]rf×cf or, equivalently, wε(k) =

[0]rQε×cQε . We go back to Qε(k) and θ̃(k) respectively given by (5.14b) and (5.16). Analyzing the

trajectory of θ̃(k) is nevertheless done in a similar fashion to what we did in Section 5.1.1.

With (5.16b) and (5.19), we get that

V (k + 1) = tr
{
θ̃>(k + 1)P−1(k − 1)θ̃(k) + Υε,k

}
,

where

Υε,k = θ̃>(k + 1) (P (k))−1KLS(k)wε(k). (5.36)

That means, according to (2.26) and (5.19), that

∆V (k + 1) = tr
{

∆θ̃>(k + 1)P−1(k − 1)θ̃(k) + Υε,k
}

. (5.37)

From (5.1b) and (5.16a), while using (4.43),

∆θ̃(k + 1) = −KLS(k)ψ>(k)θ̃(k) +KLS(k)wε(k)

= −P (k − 1)ψ(k)
(
m2(k)

)−1
ψ>(k)θ̃(k) + P (k − 1)ψ(k)

(
m2(k)

)−1
wε(k).

Therefore, (5.37) can be rewritten as

∆V (k + 1) = −tr
{
θ̃>(k)ψ(k)

(
m2(k)

)−1
ψ>(k)θ̃(k)

}
+ tr

{
w>ε (k)

(
m2(k)

)−1
ψ>(k)θ̃(k) + Υε,k

}
.

(5.38)

Let ῩP ,k ∈ Rcψ×cψ be defined as

ῩP ,k = m−1(k)ψ>(k)ΥP ,kψ(k)m−1(k) =
[
ψ(k)m−1(k)

]>
ΥP ,k

[
ψ(k)m−1(k)

]
,

where ΥP ,k ∈ Rrψ×rψ is

ΥP ,k = P (k − 1) (P (k))−1 P (k − 1),

76

which, because of (5.8), also means

ΥP ,k = P (k − 1) +
1

α
P (k − 1)ΨkP (k − 1).

Since, for all k, Ψk ≥ 0, given (5.12), with P0 being bounded, and because
∥∥ψ(k)m−1(k)

∥∥
F
∈ L∞

(as shown above, towards the end of Section 5.1.2) means ψ(k)m−1(k) is bounded, we can say that

there exists some scalar βP > 0 for which

ῩP ,k ≤ βP Icψ .

While using (5.1b) and substituting the expression of θ̃(k + 1) given by (5.16b) in (5.36), we get

that

Υε,k = θ̃>(k)ψ(k)
(
m2(k)

)−1
wε(k) + w>ε (k)m−1(k)ῩP ,km−1(k)wε(k)

≤ θ̃>(k)ψ(k)
(
m2(k)

)−1
wε(k) + βPw

>
ε (k)

(
m2(k)

)−1
wε(k),

which, going back to (5.38) and “completing the square”, in turn means

∆V (k + 1) ≤ −tr
{
Q>ε (k)

(
m2(k)

)−1
Qε(k)

}
+ β(k) tr

{
w>ε (k)

(
m2(k)

)−1
wε(k)

}
≤ −tr

{[
m−1(k)Qε(k)

]> [
m−1(k)Qε(k)

]}
+ β(k) tr

{[
m−1(k)wε(k)

]> [
m−1(k)wε(k)

]}
,

with Qε(k) given by (5.14b) and β(k) = 1 + βP > 0. Further, using (C.9),

∆V (k + 1) ≤ −
∥∥m−1(k)Qε(k)

∥∥2

F
+ β(k)

∥∥m−1(k)wε(k)
∥∥2

F
, (5.39)

≤ β(k)
∥∥m−1(k)wε(k)

∥∥2

F
, (5.40)

since
∥∥m−1(k)Qε(k)

∥∥2

F
≥ 0. From (2.26) and (5.40), it can be shown for k ≥ k0 that

V (k + 1) ≤ V (k0) +

k∑
τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F
.

Provided that there exists a finite scalar Bwε,2 ≥ 0 that is such that

∞∑
τ=0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F
≤ Bwε,2 <∞, (5.41)

77

then, for all k > k0,

V (k + 1) ≤ V (k0) +Bwε,2, (5.42)

meaning V (k) is bounded, which, as shown in Section 5.1.1, leads to θ̃(k) being also bounded.

Based on (5.42), we use the definition of V (k) in (5.19), the lower bound of P−1(k) in (5.11), and

relationship (C.9) together with the fact that, with both P0 > 0 and P−1
0 > 0,

λ0Irψ ≤ P0 ≤ λ0Irψ and λ0Irψ ≤ P
−1
0 ≤ λ0Irψ ,

where we denote

λ0 = λmin(P0) = λmax

(
P−1

0

)
, λ0 = λmax(P0) = λmin

(
P−1

0

)
,

to arrive at

λ0

∥∥∥θ̃(k + 1)
∥∥∥2

F
≤ V (k + 1) ≤ V (k0) +Bwε,2 ≤ λ0

∥∥∥θ̃(k0)
∥∥∥2

F
+Bwε,2.

Therefore, if in fact (5.41) is verified,

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘLSu =

√
λ
−1
0 λ0

∥∥∥θ̃(k0)
∥∥∥2

F
+ λ

−1
0 Bwε,2 (5.43)

for all k.

Given that β(k) is finite and, according to (5.13), m(k) is bounded from above and below, con-

dition (5.41) implies that both vec {wε(k)} and vec {w (x(k))} (recall (2.17)) possessL2 properties,

i.e., vec {wε(k)} ∈ L2 and, equivalently, vec {w (x(k))} ∈ L2. We have previously only required

that vec {w (x(k))} ∈ L∞ (see (2.7)). Hence, necessitating (5.41) is quite restrictive.

Notice also that ΘLSu in (5.43), which, in this case, also serves as an ultimate bound to
∥∥∥θ̃(k)

∥∥∥
F

,

is function of the initial value
∥∥∥θ̃(k0)

∥∥∥
F

. Hence, the larger
∥∥∥θ̃(k0)

∥∥∥
F

is or, equivalently, the farther

θ̂0 is picked (unknowingly) from the true θ, the larger the size of the neighborhood (at least in the-

ory) in which
∥∥∥θ̃(k)

∥∥∥
F

could ultimately end up in.

78

Assuming (5.41) is satisfied, which means θ̃(k) is bounded, as done in Section 5.1.1, we now

proceed to bounding other approximation related signals. The process is similar to before. The

only difference, in this case, is the presence of the representation error. Recall (2.7), which features

W as the upper bound to ‖w (x(k))‖F . Because of (2.17) and the fact that, according to (C.8),

‖w (x(k))‖F =
∥∥w>(x(k))

∥∥
F

, W is also the upper bound to ‖wε(k)‖F . Given (5.3), (2.14), (5.4),

(5.14b), (5.22), (C.8), (C.10), and (C.11),

‖Qε(k)‖F
‖m(k)‖F

=
‖q(k)‖F
‖m(k)‖F

≤

∥∥∥θ̃(k)
∥∥∥
F

Λ
− 1

2
P ,kΛψ,k +W

αm,2
(
α
∥∥Icψ∥∥F + Λ2

ψ,k
) 1

2

,

where ΛP ,k and Λψ,k are as defined in (5.27a) and (5.27b) respectively. Consequently, we have that

‖Qε(k)‖F
‖m(k)‖F

is also bounded here. With (5.24), (5.26), and (5.29), which, by the way, remain un-

changed even in this case, we conclude that
∥∥m−1(k)Qε(k)

∥∥
F

,
∥∥ψ(k)m−1(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

are all bounded. If we were to go back to (5.39), while making use of (2.26), we could write that

V (k + 1) ≤ V (k0)−
k∑

τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F
+

k∑
τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F

and

k∑
τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F
≤ −V (k + 1) + V (k0) +

k∑
τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F

≤ V (k0) +
k∑

τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F
,

since, for all k, V (k) in (5.19) is positive definite. Hence, if (5.41) is verified,

∞∑
τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F
= lim

k→∞

k∑
τ=k0

∥∥m−1(τ)Qε(τ)
∥∥2

F

≤ V (k0) + lim
k→∞

k∑
τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F

≤ V (k0) +

∞∑
τ=k0

β(τ)
∥∥m−1(τ)wε(τ)

∥∥2

F
≤ V (k0) +Bwε,2,

which with V (k0) being bounded means
∥∥m−1(τ)Qε(τ)

∥∥
F
∈ L2.

Having P (k) → Pss as k → ∞ also applies in this case, as the manner in which P (k) is

79

computed here, i.e., (5.2), remains unchanged. As for the convergence of θ̂(k) in this case, from

(5.16b), we get, for all k > k0, that

θ̃(k) = P (k − 1)P−1(k0 − 1)θ̃(k0) + Ξε,1(k)

= P (k − 1)P−1
0 θ̃(k0) + Ξε,1(k), (5.44)

where Ξε,1 ∈ Rrθ×cθ is defined as

Ξε,1(k) = P (k − 1)
k−2∑
τ=k0

Ξε,2(τ)wε(τ) +KLS(k − 1)wε(k − 1), (5.45)

with Ξε,2 ∈ Rrψ×cψ given by

Ξε,2(k) = P−1(k)KLS(k).

Making use of the definition of KLS(k) in (5.1b) and, then, relationship (5.15),

Ξε,2(k) =
[
P−1(k)P (k − 1)

]
ψ(k)

(
m2(k)

)−1

= ψ(k)
(
m2(k)

)−1 −KLS(k)ψ>(k)ψ(k)
(
m2(k)

)−1 . (5.46)

Based on (5.1b), (5.46), (C.10), and (C.11) ,

Λk,1 =
∥∥∥ψ(k)

(
m2(k)

)−1
∥∥∥
F
≤
∥∥ψ(k)m−1(k)

∥∥
F

∥∥m−1(k)
∥∥
F

,

Λk,2 = ‖KLS(k)‖F ≤ ‖P (k − 1)‖F
∥∥∥ψ(k)

(
m2(k)

)−1
∥∥∥
F

= ‖P (k − 1)‖F Λk,1,

and

‖Ξε,2(k)‖F ≤ Λk,1 + Λk,2
∥∥∥ψ>(k)ψ(k)

(
m2(k)

)−1
∥∥∥
F

.

Additionally, given (5.22), (C.7), and (C.13), we could find some βψ,2 such that 1 < βψ,2 <∞ and

∥∥∥ψ>(k)ψ(k)
(
m2(k)

)−1
∥∥∥
F
≤ ‖ψ(k)‖2F

∥∥m−1(k)
∥∥2

F
< βψ,2

∥∥Icψ∥∥F (‖ψ(k)‖F
‖m(k)‖F

)2

< βψ,2
∥∥Icψ∥∥F Λ−1

P ,kΛ
2
ψ,k

α2
m,2
(
α
∥∥Icψ∥∥F + Λ2

ψ,k
) ,

80

Therefore, given (5.12), (5.13), and (5.26), for all k, ψ(k)
(
m2(k)

)−1, ψ>(k)ψ(k)
(
m2(k)

)−1, and,

subsequently, KLS(k) and Ξε,2(k) are all bounded from above. Continuing, from (2.10), with θ

being constant, and, because, as stipulated above, P (k) → Pss as time evolves, (5.44) allows us to

say that

lim
k→∞

θ̂(k) = θ + lim
k→∞

θ̃(k) = θ + lim
k→∞

P (k − 1)P−1
0 θ̃(k0) + Ξε,1(k)

is finite and constant if lim
k→∞

Ξε,1(k) is finite and constant. Given the expression Ξε,1(k) in (5.45)

and because P (k),KLS(k), and Ξε,2(k) are bounded from above for all k, lim
k→∞

Ξε,1(k) is finite and

constant if, for instance, vec {wε(k)} ∈ Lp or, correspondingly, vec {w (x(k))} ∈ Lp, p ∈ [1,∞),

because that would mean lim
k→∞

wε(k) = [0]rQε×cQε or lim
k→∞

w (x(k)) = [0]rf×cf (see properties of

Lp, with p ∈ [1,∞), signal spaces in Appendix C). Hence, if (5.41) stands, then vec {wε(k)} ∈ L2

or, equivalently, vec {w (x(k))} ∈ L2 and, as k →∞, θ̂(k)→ θ̂ss.

Better learning is achieved by having θ̂(k) converge to θ (or a neighborhood of it) as time

evolves. When it comes to the NRLS algorithm, this is only possible if ψm(k) = ψ(k)m−1(k) ∈

Rrψ×cψ is PE [30, 2, 3]. The PE condition on ψm(k), as mentioned before, is quite demanding

however. Because it imposes conditions on past, current, and future regressor states, persistency of

excitation is not simple to achieve and/or monitor on-line.

We present a summary of the DTNRLS algorithm, its results and properties in Table 5.1.

Next, we present our main contribution, i.e., the NRLS-based Concurrent Learning algorithm

in DT framework. For a less demanding condition than the PE condition and/or the L2 property of

vec {w (x(k))}, we show that CL leads to good learning.

81

Table 5.1: DTNRLS algorithm, results, and properties.

DTNRLS algorithm

For k ≥ k0, φ (x(k)) ∈ Rrφ×cφ being the regressor, qε(k) given by (2.14), some positive definite

P (k0 − 1) = P0 ∈ Rrφ×cψ , and some θ̂(k0) = θ̂0 ∈ Rrθ×cθ , update θ̂ by applying:

ψ(k) = φ (x(k)) ∈ Rrψ×cψ ,

m2(k) = αIcψ + ψ>(k)P (k − 1)ψ(k),

KLS(k) = P (k − 1)ψ(k)
(
m2(k)

)−1,

Qε(k) = qε(k),

∆θ̂LS(k) = KLS(k)Qε(k),

θ̂(k + 1) = θ̂(k)−∆θ̂LS(k),

and, for next iteration,

P (k) = P (k − 1)−KLS(k)ψ>(k)P (k − 1).

SUAC results and properties UUAC results and properties

θ̃(k),
∥∥m−1(k)qε(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

are bounded;∥∥m−1(k)qε(k)
∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

belong to L2;

P (k) = P>(k) > 0 for all k ≥ k0, P (k) remains

bounded and converges to a constant Pss ∈ Rrψ×rψ

as k →∞;

θ̃(k) converges to a constant θ̃ss ∈ Rrθ×cθ as k →∞;

P (k) = P>(k) > 0 for all k ≥ k0, P (k)

remains bounded and converges to a

constant Pss ∈ Rrψ×rψ as k →∞;

Same as SUAC (if not already mentioned)

only if vec {w (x(k))} ∈ L2.

Convergence Properties

θ̃(k) converges to the origin (meaning θ̂(k) converges to θ) in the SUAC or θ̃(k) converges to a

neighborhood of the origin (meaning θ̂(k) converges to a neighborhood of θ) in the UUAC if

ψm(k) in (5.25) is persistently exciting.

82

5.2 Discrete-Time Normalized Recursive Least Squares Based Concurrent Learning
for Both Structured and Unstructured Uncertainty Approximation Cases

Similarly to what is done in [3], it can be shown that the NRLS algorithm of (5.1) could be

obtained via minimization with respect to θ̂(k) of the scalar cost function

JLS(k) =
1

2
tr

k−1∑
τ=k0

1

α
ΥLS(τ) + Υ0(k)

 ,

where α = α(k) is the same positive scalar that figures in the expression of m2(k), i.e., (5.3), we

define ΥLS ∈ Rcqε×cqε and Υ0 ∈ Rcθ×cθ as

ΥLS(k) = Q>ε (k)Qε(k),

with Qε(k) defined in (5.4), and

Υ0(k) =
(
θ̂(k)− θ̂0

)>
P−1

0

(
θ̂(k)− θ̂0

)
. (5.47)

Notice that ΥLS(k) is an instantaneous cost, alike the one minimized when applying the Gradient

Descent algorithm. The Least Squares algorithm, instead, minimizes a summation of instantaneous

costs.

As aforementioned (see Section 9.4.1), given (2.14) and (5.4), ifMn =M1, i.e., model (2.2a),

cQε = cqε = rf = cθ, while, whenMn = M2, i.e., model (2.2b), cQε = cqε = cf = cθ. There

are therefore no dimensional ambiguities in the definition of JLS(k) above. Moreover, proving that

(5.1) is derived through minimization of JLS(k) will be indirectly shown through the derivation of

our CL law.

5.2.1 Discrete-Time Normalized Recursive Least Squares Based Concurrent Learn-
ing Algorithm

Recalling that rqε = cφ and cqε = cθ no matter which model, i.e., (2.2a) or (2.2b), is used for

approximation, let ξφ ∈ Rrqε×rqε and ξZ ∈ RcZ×cZ be positive definite matrices, i.e., ξφ > 0 and

83

ξZ > 0. Also, let ῩLS , ΥCL ∈ Rcθ×cθ be defined as

ῩLS(k) = q>ε (k) ξφξ
>
φ qε(k), (5.48)

with instantaneous approximation error qε(k) defined in (2.14), and

ΥCL(k) = q>Z,ε(k) ξZξ
>
Z qZ,ε(k), (5.49)

where the approximation error based on recorded data qZ,ε(k) is defined in (3.27). Consider the

scalar cost function

JLS,CL(k) =
1

2
tr

k−1∑
τ=k0

1

α

[
ῩLS(τ) + ΥCL(τ)

]
+ Υ0(k)

 .

Notice that JLS,CL is a modification of JLS (previously defined). To minimize JLS,CL(k) with

respect to θ̂(k), we first express the gradient
∂JLS,CL
∂θ̂(k)

and equate it to the origin, i.e.,
∂JLS,CL
∂θ̂(k)

=

[0]rθ×cθ .

For the following calculation of the gradient, we use the expression of JLS,CL(k) above in

conjunction with the expressions of qε(k) in (5.14a), ῩLS(k) in (5.48), Υ0(k) in (5.47), qZ,ε(k) in

(3.28a), ΥCL(k) in (5.49), as well as relationships (C.3) and (C.4). As it turns out,

∂JLS,CL(k)

∂θ̂(k)
=

k−1∑
τ=k0

1

α

[
φ (x(τ)) ξφξ

>
φ qε(τ) + Z ξZξ

>
Z qε,Z(τ)

]
+ P−1

0

(
θ̂(k)− θ̂0

)
= P−1(k − 1)θ̂(k)− ν(k − 1),

where, with rZ = rφ = rθ and, cqε = cθ whether model (2.2a) or (2.2b) is used, because of (5.14a)

and (3.28a), and denoting Φ̄k ∈ Rrφ×rφ , Φ̄Z,k ∈ RrZ×rZ , Φ̄fn,k ∈ Rrφ×cθ , and Φ̄fn,k ∈ Rrφ×cθ as

Φ̄k = φ (x(k)) ξφξ
>
φ φ
>(x(k)) = [φ (x(k)) ξφ] [φ (x(k)) ξφ]> , (5.50)

Φ̄Z,k = Z ξZξ
>
Z Z

> = [Z ξZ] [Z ξZ]> , (5.51)

Φ̄fn,k = φ (x(k)) ξφξ
>
φ fn(k) = [φ (x(k)) ξφ]

[
f>n (k) ξφ

]>
, (5.52)

84

and

Φ̄fn,k = φ (x(k)) ξZξ
>
Z fn = [φ (x(k)) ξZ]

[
f>n ξZ

]>
, (5.53)

for k > k0,

P−1(k − 1) = P−1
0 +

k−1∑
τ=k0

1

α

[
Φ̄τ + Φ̄Z,τ

]
(5.54)

and ν ∈ Rrθ×cθ is such that

ν(k − 1) = P−1
0 θ̂0 +

k−1∑
τ=k0

1

α

[
Φ̄fn,τ + Φ̄fn,τ

]
. (5.55)

Hence,

∂JLS,CL(k)

∂θ̂(k)
= P−1(k − 1)θ̂(k)− ν(k − 1) = [0]rθ×cθ

means

θ̂(k) = P (k − 1)ν(k − 1). (5.56)

Recall that P (k0 − 1) = P0 > 0 means P−1
0 > 0. Therefore, because, for all k, both Φ̄k ≥ 0 and

Φ̄Z,k ≥ 0, judging by (5.50) and (5.51) respectively, it is not wrong to assume (as (5.54) hints to)

that the inverse to P (k) exists for all k since, based on (5.54), P−1(k) > 0.

Unlike in Section 9.4.1, let ψ(k) ∈ Rrψ×cψ = RrZ×(cφ+cZ), i.e., rψ = rZ = rφ = rθ and

cψ = cφ + cZ , be given by

ψ(k) =
[
φ (x(k)) ξφ, Z ξZ

]
, (5.57)

with φ (x(k)) and Z defined in (2.5) and (3.1) respectively. Given the definitions of Φ̄k in (5.50),

Φ̄Z,k in (5.51), and based on (5.57),

Ψk = ψ(k)ψ>(k) = Φ̄k + Φ̄Z,k. (5.58)

85

We thus have from (5.54) that

P−1(k) = P−1
0 +

k−1∑
τ=k0

1

α
Ψτ +

1

α
Ψk = P−1(k − 1) +

1

α
Ψk,

which is exactly what we got before in (5.8). Therefore, working backwards and using the Wood-

bury Matrix Identity (A.1) to invert the expression of P−1(k) above (or (5.8)), we get P (k) given by

(5.2), with both KLS(k) and m2(k) defined respectively in (5.1b) and (5.3). This is the derivation

of P (k) we alluded to back in Section 9.4.1. Further, recalling that fn(k) ∈ Rrqε×cqε (see (2.16)

for definition), with, as discussed before, rqε = cφ and cqε = cθ regardless of the model used, and

fn ∈ RcZ×cθ (see (3.29) for definition), we denote f(k) ∈ Rcθ×(cφ+cZ) as

f(k) =
[
f>n (k) ξφ, f>n ξZ

]
. (5.59)

Hence, notice, from (5.52), (5.53), (5.57), and (5.59), that

ψ(k)f>(k) = Φ̄fn,k + Φ̄fn,k.

As a result, from (5.55), we can write

ν(k) = P−1
0 θ̂0 +

k−1∑
τ=k0

1

α
ψ(τ)f>(τ) +

1

α
ψ(k)f>(k)

= ν(k − 1) +
1

α
ψ(k)f>(k). (5.60)

Going back to (5.56) and using (5.60), we have that

θ̂(k + 1) = P (k)ν(k) = P (k)

[
ν(k − 1) +

1

α
ψ(k)f>(k)

]
.

Because, for all k, P−1(k) exists, then (5.56) means

ν(k − 1) = P−1(k − 1)θ̂(k).

We also get from (5.8) that

P−1(k − 1) = P−1(k)− 1

α
Ψk.

86

Subsequently, θ̂(k + 1) above could also be expressed as

θ̂(k + 1) = P (k)

[
P−1(k − 1)θ̂(k) +

1

α
ψ(k)f>(k)

]
= P (k)

[(
P−1(k)− 1

α
Ψk

)
θ̂(k) +

1

α
ψ(k)f>(k)

]

or, given the definition of Ψk in (2.27),

θ̂(k + 1) = θ̂(k)− 1

α
P (k)ψ(k)Qε(k), (5.61)

where, here, the overall approximation error Qε(k) ∈ RrQε×cQε = R(cφ+cZ)×cθ , i.e., now rQε =

cφ + cZ and cQε = cθ, is

Qε(k) = ψ>(k)θ̂(k)− f>(k), (5.62)

with ψ(k) and f(k) respectively defined in (5.57) and (5.59). Hence, given the definitions of qε(k)

and qZ,ε(k) in (5.14a) and (3.28a) respectively, (5.62) can be rewritten as

Qε(k) = ξ>φ qε(k) + ξ>Z qZ,ε(k). (5.63)

Because (5.3) allows us to write

ψ>(k)P (k − 1)ψ(k) = m2(k)− αIcψ ,

we also have, using (5.1b) and (5.2), that

P (k)ψ(k) = P (k − 1)ψ(k)−KLS(k)
(
m2(k)− αIcφ

)
= P (k − 1)ψ(k)

[
Icφ −

(
m2(k)

)−1 (
m2(k)− αIcφ

)]
= αP (k − 1)ψ(k)

(
m2(k)

)−1 .

As a result, (5.61) becomes

θ̂(k + 1) = θ̂(k)− P (k − 1)ψ(k)
(
m2(k)

)−1
Qε(k).

87

We summarize our NRLS-based CL algorithm as follows. Starting with an initial parameter

estimate vector θ̂(k0) = θ̂0 ∈ Rrθ×cθ , given a positive definite, symmetric matrix P (k0 − 1) =

P0 ∈ Rrψ×cψ , and given positive definite matrices ξφ ∈ Rrqε×rqε , rqε = cφ, and ξZ ∈ RcZ×cZ , the

discrete-time NRLS-based CL algorithm for updating the parameter estimate θ̂ for k ≥ k0 is

∆θ̂LS,CL(k) = KLS(k)Qε(k), (5.64a)

θ̂(k + 1) = θ̂(k)−∆θ̂LS,CL(k), (5.64b)

where ψ(k), which is to be used in the computation of KLS(k) in (5.1b), P (k) in (5.2), and m2(k)

in (5.3), is given by (5.57) and the error Qε(k) is given by (5.62).

Matrices ξφ and ξZ are essentially weighting matrices, as portrayed by (5.63). Hence, the de-

signer could choose to emphasize the contribution of either the instantaneous approximation error

qε(k), especially, on suspicion that the history stack Z may contain outdated or corrupted informa-

tion, or the error qZ,ε(k), which is based on recorded data, for possibly better learning generaliza-

tion. For numerical consideration however, because rqε = cθ or cZ could be quite large, in practice,

both ξφ and ξZ could be reduced to just scalars. This can essentially be done by setting ξφ = εφIrqε

and ξZ = εZIcZ , for some scalars εφ > 0 and εZ > 0. It should be noted that the previous deriva-

tions do remain the same if this is opted for.

Notice that, form wise, the initial DTNRLS algorithm (5.1) and the DTNRLS based CL al-

gorithm (5.64) look identical. The only differences between the two are the manner in which the

regressor ψ(k) ((5.1a) versus (5.57)) and the overall estimation error Qε(k) ((5.4) versus (5.62)) are

computed. Consequently, when it comes to the DTNRLS based CL algorithm (5.64), proving the

boundedness of θ̃(k) and other properties that follow, be it in the SUAC or the UUAC, has already

been established in Section 9.4.1 and, thus, need not be repeated again.

Nevertheless, as we will show in the next section, when using the DTNRLS based CL al-

gorithm and faced with the UUAC, boundedness of θ̃(k) can be proven without necessitating

88

thatvec {w (x(k))} ∈ L2 as it was needed in Section 5.1.2. Moreover, we will investigate how

the DTNRLS based CL algorithm can guarantee good parameter identification even in the absence

of the PE condition.

5.2.2 Convergence of the Gain Matrix

Let the rank condition, i.e., Condition 3.1.1, be verified. If so, the history stack Z is full row

rank and, as a result, ΦZ,k (defined in (3.14)) is positive definite. Given that both ξψ > 0 and

ξZ > 0, then ξψξ>ψ > 0 and ξZξ>Z > 0 also. Letting

λψ = λmin

(
ξψξ
>
ψ

)
> 0, λψ = λmax

(
ξψξ
>
ψ

)
> 0,

λZ = λmin

(
ξZξ
>
Z

)
> 0, and λZ = λmax

(
ξZξ
>
Z

)
> 0,

granted Φk ≥ 0 for all k and rψ = rφ = rθ, we can write, from (2.27), (3.14), (5.50), (5.51), and

(5.58), that

λZλΦZ,kIrψ ≤ λψΦk + λZΦZ,k ≤ Ψk ≤ λψΦk + λZΦZ,k. (5.65)

With ΦZ,k > 0, λΦZ,k > 0 and (5.65) imply Ψk > 0.

Now, with α > 0, P0 > 0, and Ψk > 0 , (5.9) and (5.10) allow us to write

P−1(k) = P−1
0 +

k∑
τ=k0

1

α
Ψτ >

k∑
τ=k0

1

α
Ψτ > 0.

Moreover, we can find a small scalar β
Ψ
> 0 such that, given (5.6),

β
Ψ
Irψ ≤ λΨk

(k)Irψ ≤ Ψk ≤ λΨk(k)Irψ (5.66)

and

P−1(k) > λmin

(
P−1(k)

)
Irψ ≥

k∑
τ=k0

β
Ψ
Irψ =

 k∑
τ=k0

β
Ψ

 Irψ .

89

Hence,

lim
k→∞

λmin

(
P−1(k)

)
≥ lim

k→∞

k∑
τ=k0

β
Ψ

= lim
k→∞

(k − k0 + 1)β
Ψ

=∞.

(5.67)

With

λmin

(
P−1(k)

)
= (λmax (P (k)))−1 →∞,

then λmax (P (k))→ 0, and, consequently, regardless of the approximation case,

lim
k→∞

P (k) = Pss = [0]rψ×rψ . (5.68)

Now, recall the dynamics of θ̃(k) given by (5.44) in the UUAC and, in particular, for the SUAC,

with wε(k) = [0]rQε×cQε thus Ξε,1 ≡ [0]rθ×cθ (see (5.45) for the reason why), (5.44) is reduced to

(5.33).

5.2.3 Convergence of the Parameter Error in the SUAC

As P (k)→ [0]rψ×rψ , we get, from (5.33), that

lim
k→∞

θ̃(k) = lim
k→∞

P (k − 1)P−1
0 θ̃(k0) = [0]rθ×cθ .

Thus, we conclude, in this case, that θ̃(k) = [0]rθ×cθ is asymptotically stable. Given (5.33) and,

using (5.12), P (k − 1)P−1
0 ≤ Irψ , alike in the case of standard DTNRLS algorithm, we have that

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘLS,CLs =

∥∥Irψ∥∥F ∥∥∥θ̃(k0)
∥∥∥
F

=
√
rψ

∥∥∥θ̃(k0)
∥∥∥
F

(5.69)

for all k.

As discussed above, because of the similarity of the standard DTNRLS algorithm and its CL

modification, boundedness of θ̃(k) can be attained with the same analysis as in Section 5.1.1. The

asymptotic convergence of θ̃(k) to the origin as well as its boundedness can then be used to deduce

all approximation related properties of Section 5.1.1, namely the boundedness of
∥∥m−1(k)Qε(k)

∥∥
F

,

90

‖ψm(k)‖F =
∥∥ψ(k)m−1(k)

∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

, whose upper bounds are respectively expressed in

(5.24), (5.26), and (5.29). In particular, given that θ̃(k) → [0]rθ×cθ , using (5.23), for some scalars

Bq,1 > 0 and Bq,2 ≥ 0,

∞∑
τ=k0

(
‖Qε(τ)‖F
‖m(τ)‖F

)2

≤
∞∑

τ=k0

Bq,1
∥∥∥θ̃(k)

∥∥∥2

F
≤ Bq,2 <∞.

That is to say
‖Qε(k)‖F
‖m(k)‖F

∈ L2 and, as a result, considering (5.24) and (5.29) respectively, both∥∥m−1(k)Qε(k)
∥∥
F
∈ L2 and

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2.

5.2.4 Convergence of the Parameter Error in the UUAC

We have shown earlier that ψ(k)
(
m2(k)

)−1, KLS(k), and Ξε,2(k) are all bounded from above.

If (2.7) is verified, then W is an upper bound to ‖w (x(k))‖F and, equivalently, ‖wε(k)‖F for all

k. With P (k) → [0]rψ×rψ as k → ∞, given (5.1b), we also have that KLS(k) → [0]rψ×cψ as time

evolves. Given the previously cited attributes and properties, not only are both∥∥∥∥∥∥P (k − 1)
k−2∑
τ=k0

Ξε,2(τ)wε(τ)

∥∥∥∥∥∥
F

and ‖KLS(k − 1)wε(k − 1)‖F

bounded from above and for all time, but also

lim
k→∞

P (k − 1)

k−2∑
τ=k0

Ξε,2(τ)wε(τ) = [0]rθ×cθ

and

lim
k→∞

KLS(k − 1)wε(k − 1) = [0]rθ×cθ .

Hence, given (5.45), there exists a scalar Bwε,3 ≥ 0 that is such that ‖Ξε,1(k)‖F ≤ Bwε,3 and

lim
k→∞

Ξε,1(k) = [0]rθ×cθ . Now, using (5.12), P (k − 1)P−1
0 ≤ Irψ , and, recalling (5.44),

∥∥∥θ̃(k)
∥∥∥
F
≤ ΘLS,CLu =

∥∥Irψ∥∥F ∥∥∥θ̃(k0)
∥∥∥
F

+Bwε,3 =
√
rψ

∥∥∥θ̃(k0)
∥∥∥
F

+Bwε,3. (5.70)

91

Moreover, keeping with (5.44),

lim
k→∞

θ̃(k) = lim
k→∞

P (k − 1)P−1
0 θ̃(k0) + Ξε,1(k) = [0]rθ×cθ .

That is, θ̃(k) is bounded for all k and θ̃(k) = [0]rθ×cθ is asymptotically stable. Notice that we did

not need vec {wε(k)} to belong to an Lp, p ∈ [1,∞), space to get this result. Instead, if Z satisfies

the rank condition, then, we can achieve boundedness of θ̃(k) as well as its ultimate convergence to

the origin in the UUAC. Subsequently, what this allows us to do is to deduce the other approximation

related properties. Using (5.23), boundedness of θ̃(k) implies boundedness of
‖Qε(k)‖F
‖m(k)‖F

, which

can in turn be used to justify boundedness of both
∥∥m−1(k)Qε(k)

∥∥
F
∈ L2 and

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2

expressed respectively in (5.24) and (5.29).

5.2.5 Concluding Remarks about DTNRLS based CL

The following theorem summarizes our results.

Theorem 5.2.1. Let f be an uncertainty to approximate. Consider the approximator F in (2.1),

which can be modeled by (2.2a) or (2.2b). Also, consider the on-line scheme (2.8) and the approx-

imation error (2.9a) (equivalently, (2.9b)). If the rank condition (described by Condition 3.1.1) is

satisfied, then the discrete-time Normalized Recursive Least Squares based Concurrent Learning

adaptation scheme (5.64) guarantees:

• P (k) = P>(k) > 0 and P (k) is bounded;

• θ̃(k), consequently θ̂(k) (since θ is considered to be constant), m−1(k)Qε(k) and ∆θ̃(k) =

θ̃(k)− θ̃(k − 1) are bounded;

• lim
k→∞

P (k) = [0]rψ×rψ ;

• θ̃(k)→ [0]rθ×cθ asymptotically or, equivalently, θ̂(k)→ θ asymptotically as k →∞;

92

• if in the SUAC, both
∥∥m−1(k)Qε(k)

∥∥
F
∈ L2 and

∥∥∥∆θ̃(k)
∥∥∥
F
∈ L2.

We also make the remarks that follow.

Remark 5.2.1. An argument can be made that the DTNRLS algorithm of (5.1) already uses memory

because, given (5.2), as time goes by, ψ(k) at different k values is “absorbed” into P (k). By exclu-

sively picking the memory items that form the history stack Z, the DTNRLS based CL algorithm

of (5.64) can possibly help deliver better approximation results.

Remark 5.2.2. Recall that having λmin

(
P−1(k)

)
→ ∞ (see (5.67)) is what then leads to all the

convergence results. It would thus be ideal, for instance, that β
Ψ

or, subsequently, given (5.66),

λΨk
is very large for faster convergence. From (5.65), notice that the larger λΦZ,k is, the larger

λΨk
would also be. Hence, when running the CL algorithm, it would be a good idea to compute,

monitor, and maximize either the minimum eigenvalue

rCL,1 = λΦZ,k (5.71)

of ΦZ,k = ZZ> or, done differently, the inverse condition number

rCL,2 =
λΦZ,k
λΦZ,k

(5.72)

of ΦZ,k = ZZ> also, by selective selection of the data that goes into the history stack Z. As

highlighted later in the data recording procedures, we opt for maximizing

rCL = rCL,2 =
λΦZ,k
λΦZ,k

(5.73)

so as to have a well-conditioned ΦZ,k.

Remark 5.2.3. Let kR ∈ N+, with kR ≥ k0, be the DT at which Condition 3.1.1 is met. Also,

let kZ ∈ N+ represent any DT that is such that kZ ≥ kR. As previously established, for any

k = kZ ≥ kR, Ψk = ΨkZ > 0. Using (5.9) and (5.10),

P−1(kZ) = P−1
0 +

kZ∑
τ=k0

1

α
Ψτ .

93

Multiplying each side of the equality in the equation above by P (kZ) and rearranging, we get

PJ(kZ) = Irψ − P (kZ)P−1
0 = P (kZ)

kZ∑
τ=k0

1

α
Ψτ > 0

given that, for all k, P (k) > 0 (see (5.12)), α > 0, and, for k = kZ ≥ kR, ΨkZ > 0. Now,

considering (5.44) in general,

θ̃(kZ + 1) = P (kZ)P−1
0 θ̃(k0) + Ξε,1(kZ + 1),

which, due to (2.10), is also

θ̂(kZ + 1)− θ = P (kZ)P−1
0

[
θ̂(k0)− θ

]
+ Ξε,1(kZ + 1).

Recalling that rψ = rφ = rθ and having established that PJ(kZ) > 0 (implying P−1
J (kZ) exists),

the unknown, true parameter θ is identified as

θ = P−1
J (kZ)

[
θ̂(kZ + 1)− P (kZ)P−1

0 θ̂(k0)
]

− P−1
J (kZ)Ξε,1(kZ + 1).

(5.74)

When it comes to the SUAC, because wε(k) = [0]rQε×cQε implies Ξε,1 = [0]rθ×cθ given (5.45),

then (5.74) becomes

θ = P−1
J (kZ)

[
θ̂(kZ + 1)− P (kZ)P−1

0 θ̂(k0)
]

. (5.75)

We have shown that θ̂(k)→ θ ultimately (which Theorem 9.4.2 also stipulates). Notice that, for the

UUAC, the identified θ in (5.74) is subject to the representation error wε(k) (or w (x(k))) present

in the expression of Ξε,1 given by (5.45). It is therefore even more apparent that, for good learning,

a good approximation structure that commands a small ‖wε(k)‖F has to be realized.

Remark 5.2.4. Similar expressions to (5.75) for the SUAC and (5.74) for the UUAC can be obtained

when employing the DTNRLS algorithm of (5.1) instead and assuming that ψ(k) in (5.1a) is excit-

ing over a period of time. Based on Definition B.1 in Appendix B and the preceding analysis, con-

sidering some DT τ ≥ k0, scalar δΨ ∈ N+, and the time sequence ∆Ψ = {τ , τ + 1, . . . , τ + δΨ},

94

the key to being able to do so would be to have

τ+δΨ∑
k=τ

Ψk =

τ+δΨ∑
k=τ

ψ(k)ψ>(k) > 0. (5.76)

It should be noted that (5.76) is only possible if the duration of ∆Ψ is at least the number of rows (or

columns) in Ψk. That is, (τ + δΨ)−(τ)+1 ≥ rψ or δΨ ≥ rψ−1. Moreover, verifying (5.76) is quite

similar to having Ψk > 0 if and when the rank condition on Z is met. Nonetheless, in the case of

the DTNRLS based CL algorithm, verification of the rank condition can happen over the course of

time, as opposed to necessarily having it happen over a long enough ∆Ψ. Additionally, the designer

not only has the freedom of selectively picking what goes into Z, but, doing so constructively can

lead to faster convergence. For those reasons, necessitating that (5.76) be verified in the case of the

DTNRLS algorithm could turn more restrictive than having the rank condition on Z being satisfied

in the case of the DTNRLS based CL algorithm.

Table 5.2 is a summary of the DTNRLS based CL algorithm, its results and properties.

Next, provided are data recording procedures, similar to the CT framework data recording pro-

cedure proposed in [15, 16, 14, 17, 18].

95

Table 5.2: DTNRLS based CL algorithm, results, and properties.

DTNRLS based CL algorithm

For k ≥ k0, φ (x(k)) ∈ Rrφ×cφ being the regressor, the history stack Z given by (3.1), qε(k) given

by (2.14), qZ,ε(k) given by (3.27), some positive definite ξφ ∈ Rrφ×cφ , ξZ ∈ RrZ×cZ , and

P (k0 − 1) = P0 ∈ Rrφ×cψ , and some θ̂(k0) = θ̂0 ∈ Rrθ×cθ , update θ̂ by applying:

ψ(k) = [φ (x(k)) ξφ, Z ξZ] ∈ Rrψ×cψ ,

m2(k) = αIcψ + ψ>(k)P (k − 1)ψ(k),

KLS(k) = P (k − 1)ψ(k)
(
m2(k)

)−1,

Qε(k) = ξ>φ qε(k) + ξ>Z qZ,ε(k),

∆θ̂LS(k) = KLS(k)Qε(k)),

θ̂(k + 1) = θ̂(k)−∆θ̂LS(k),

and, for next iteration,

P (k) = P (k − 1)−KLS(k)ψ>(k)P (k − 1).

SUAC results and properties UUAC results and properties

Same as DTNRLS algorithm in SUAC

(see Table 5.1);

If Condition 3.1.1 is verified:

θ̃(k) = [0]rθ×cθ is asymptotically stable;

P (k)→ [0]rψ×cψ as k →∞.

Same as DTNRLS algorithm in UUAC

(see Table 5.1);

If Condition 3.1.1 is verified:

θ̃(k) = [0]rθ×cθ is asymptotically stable;

P (k)→ [0]rψ×cψ as k →∞;∥∥m−1(k)qε(k)
∥∥
F

, and
∥∥∥∆θ̃(k)

∥∥∥
F

belong to L∞.

Convergence Properties

θ̃(k) converges to the origin (meaning θ̂(k) converges to θ) in the SUAC or θ̃(k) converges to a

neighborhood of the origin (meaning θ̂(k) converges to a neighborhood of θ) as long as

Condition 3.1.1 is verified. Condition 3.1.1 is less demanding than the PE condition on

ψm (x(k)) in (5.25) and/or requiring that vec {w} ∈ L2).

96

CHAPTER VI

DATA RECORDING PROCEDURE FOR CONCURRENT LEARNING IN

DISCRETE-TIME FRAMEWORK

Verification of the rank condition is essential to realizing the CL algorithm properties. Given

some recorded off-line data, it is possible, depending on the richness of the data, to begin parameter

adaptation with a full row rank history stack Z (or ZG). However, for on-line implementation

(which is of importance in the present research), Z starts empty and, if the regressor is sufficiently

rich, then the rank condition can be realized. The designer can nevertheless decide if CL adaptation

is to be carried from the start or only after achieving the rank condition (i.e., Condition 3.1.1).

This chapter presents data recording procedures for CL implementation in DT settings. The

recording procedures that follow are described in terms of both Z (defined in (3.1)) and ZG (defined

in (3.8)). Recall, as we have pointed out earlier, that ZG may be much more suitable to use for

numerical operations rather than Z (and Z̄G in (3.9) for that matter) given that its contents, i.e., the

columns of ZG, are bounded. Also, as pointed to earlier, knowing Z and G, with the latter defined

in (3.10), ZG (and Z̄G) can be constructed, though, as we have seen in Chapter V, in the case of

the DTNRLS based CL algorithm, keeping track of G, ZG, and Z̄G is not necessary. Lastly (but

importantly), recall the definition of the regressor signal φ (x(k)) ∈ Rrφ×cφ in (2.5). That is

φ (x(k)) =
[
ζ1(x(k)) , ζ2(x(k)) , . . . , ζcφ(x(k))

]
,

97

where, for i = 1, 2, . . . , cφ, ζi(x(k)) ∈ Rrφ .

6.1 Data Recording Procedure 1

Data Recording Procedure 1 (DRP1) can be implemented if CL is to be applied from the very

beginning, i.e., k = k0. Recall that Condition 3.1.1, which we need to verify, implies cZ ≥ rZ =

rφ = rθ. Let nZ = nZ(k) be the number of filled slots (columns) in Z at time k. Without prior

knowledge, we start out with an empty cZ-slot (column wise) memory bank Z ∈ RrZ×cZ , i.e.,

nZ(k0 − 1) = 0. As long as nZ < rZ , at any DT k ≥ k0,

ncZ = min (cZ − nZ(k − 1), cφ) (6.1)

vectors ζi(x(k)), i = 1, 2, . . . , cφ, of φ (x(k)) that increase the rank of Z are selected and stored

in Z. Essentially, for k ≥ k0,

nZ(k) = nZ(k − 1) + ncZ .

A co-strategy (besides and less important than that of meeting the rank condition) for picking the

ζi vectors can be devised. For instance, ζi’s can be picked such that the ratio rCL is maximized

(given that this is imposed later). Regardless, once Z is full, for faster convergence of the learning

algorithms, old data in Z is strategically replaced so as to increase the metric rCL. Procedure 1

outlines DRP1.

6.2 Data Recording Procedure 2

With Data Recording Procedure 2 (DRP2), CL is only applied after sufficient collection of data

is able to guarantee the rank condition. Let H ∈ RrZ×cH , cH ∈ N+, be a matrix in which data is

stored during the transition period. That is, the time period before verification of the rank condition.

If/when the rank condition is verified, we would have that cH ≥ rZ . In the case when cH > rZ , we

98

Data Recording Procedure 1 DRP1 for maximizing rCL
Require: Initialize nZ = 0

Consider one ζi(x(k)), i = 1, 2, . . . , cφ, of φ (x(k)) (see (2.5)) at a time and do the
following for all ζi’s
if nZ = 0 then

Update counter: nZ ← nZ + 1;
Store ζi(x(k)) in slot nZ of Z, corresponding ḡi,i(k) in G, and corresponding row or column
of f (x(k)) in Fn (see (3.12) and (3.13)). Construct ZG and Z̄G using Z and G;

else
if nZ < rZ then

if rank

([
ZG,

ζi(x(k))√
ḡi,i(k)

])
> rank(ZG) then

Update counter: nZ ← nZ + 1;
Store ζi(x(k)) in slot nZ of Z, corresponding ḡi,i(k) in G, and corresponding row or
column of f (x(k)) in Fn (see (3.12) and (3.13)). Construct ZG and Z̄G using Z and
G;

end if
else if nZ ≥ rZ and nZ < cZ then

Update counter: nZ ← nZ + 1;
Store ζi(x(k)) in slot nZ of Z, corresponding ḡi,i(k) in G, and corresponding row or
column of f (x(k)) in Fn (see (3.12) and (3.13)). Construct ZG and Z̄G using Z and G;

else
Find metric rold = rCL of currentZG (for DTNG based CL) or of currentZ (for DTNRLS
based CL);
Create an empty row vector rnew;
for j = 1 to cZ do

Set ẐG = ZG (for DTNG based CL) or Ẑ = Z (for DTNRLS based CL);

Replace data in column j of Ẑ by ζi(x(k)) and/or column j of ẐG by
ζi(x(k))√
ḡi,i(k)

;

Find metric rCL of ẐG (for DTNG based CL) or of Ẑ (for DTNRLS based CL) and
save in column j of rnew;

end for
Let rmax = max

j=1,...,cZ
rnew found at column jmax of rnew;

if rmax > rold then
Store ζi(x(k)) in slot jmax of Z, corresponding ḡi,i(k) in G, and corresponding row
or column of f (x(k)) in Fn (see (3.12) and (3.13)). Construct ZG and Z̄G using Z
and G;

end if
end if

end if

99

extract the rZ linearly independent columns of H . Let TZ(·) ∈ RrZ×cZ denote such an extraction

transformation. We compute Z = TZ(H). However, in the case when the rank condition has been

found to be verified and cH = rZ , Z = TZ(H) = H . Next, we can proceed to apply DPR1 starting

with a full Z = TZ(H) ∈ RrZ×rZ matrix and, therefore, with nZ = rZ .

It is important to add, while data is being recorded inH , Z remains empty and therefore standard

algorithm can be implemented instead. The DTNG based CL algorithm of (4.58) can for instance

be implemented for ξCL = [0]rφ×rφ and ∆θ̂CL = [0]rφ×cqε , with η picked according to (4.73).

Essentially, this amounts to implementing a slightly modified version the standard DTNG algorithm.

Similarly, the standard DTNRLS algorithm can be implemented in place of the DTNRLS based CL

algorithm.

DRP2 is given by Procedure 2, where nH denotes the number of filled slots in H . Moreover,

associated with H are the row vector GH ∈ R1×cH of ḡi,i(τj) values, i ∈ {1, 2, . . . , cφ} and j ∈

{1, 2, . . . , cZ}, and the matrix FH,n ∈ RrF×cF containing entities in the uncertainties f (x(τj)), in

a similar fashion to G in (3.10) and Fn in (3.12) or (3.13).

Data Recording Procedure 2 DRP2 for Maximizing rCL
Require: Initialize nH = 0

Consider one ζi(x(k)), i = 1, 2, . . . , cφ, of φ (x(k)) (see (2.5)) at a time and do the
following for all ζi’s;
if Z is empty then

Update counter: nH ← nH + 1;
Store ζi(x(k)) in slot nH of H , corresponding ḡi,i(k) in GH (constructed similarly to G in
(3.10)), and corresponding row or column of f (x(k)) in FH,n (constructed similarly to Fn in
(3.12) and (3.13));
if rank(H) = rZ then

Z = TZ(H);
Similarly, properly extract G from GH and Fn from FH,n;
Construct ZG and Z̄G using Z and G;
Update counter: nZ = rZ ;

end if
else

Implement DRP1, i.e., Procedure 1;
end if

100

6.3 Comparing DRP1 to DRP2

DRP1 is initiated at the start of parameter adaptation, i.e., at k = k0, and, thus, subsequent rank

check could be biased towards initially recorded data. Extracting and using the richest stored data

in H before turning on the CL adaptation, DRP2 therefore prevents the bias issue that DRP1 might

introduce. However, unlike DRP2, applying CL modification with DRP1 could be less susceptible

to carry outdated and/or corrupted data.

101

CHAPTER VII

ILLUSTRATIONS

In this chapter, we apply and illustrate the previously investigated and developed algorithms (of

Chapters IV and V), i.e., the DTNG and DTNRLS algorithms, as well as their CL modifications, to

parameter estimation and uncertainty approximation problems.

For all simulations, we set α = 1 and run the algorithms for k ∈ [k0 = 0, ks = 500]. Let

xL, xH ∈ R be some scalars that are such that xH > xL. For k ≥ k0, measurements x(k) span the

set Dx = [xL, xH] ⊂ R uniformly, i.e., x(k0) = xL and

x(k + 1) = x(k) +
xH − xL
ks − k0

. (7.1)

Regardless of the algorithm used, parameter estimates are initialized at the origin, i.e., θ̂(k0) =

θ̂0 = [0]rθ×cθ .

To run the DTNG algorithm, we set Γ = ηIrθ , with η =
ηNGs

2
when in SUAC to validate

(4.33) and η =
ηNG

2
in UUAC to validate (4.24). For its CL modification, i.e., the DTNG based

CL algorithm, we use Γ = ηIrθ , with η = ηm =
ηCL

2
so as to validate (4.60), ξNG = εNGIrθ ,

and ξCL = εCLIrθ , for some scalars εNG > 0 and εCL > 0, which would decide the weights of

the contribution of the purely instantaneous term ∆θ̂NG or that of the term based on recorded data

∆θ̂CL. When applying DRP2 and the rank condition is yet to be verified, as pointed out earlier, the

CL adaption law is applied for ξCL = [0]rθ×rθ and ∆θ̂CL(k) = [0]rφ×rqε , while setting η =
ηNG

2

102

in order to validate (4.73), thus reducing it to a marginally modified version of the standard DTNG

algorithm.

For simulation of all LS based algorithms, we initialize the gain matrix at P (k0 − 1) = P0 =

100 Irψ , unless otherwise explicitly mentioned. To run the DTNRLS based CL algorithm, we set

ξφ = εφIrqε , ξZ = εZIcZ , and pick scalars εφ > 0 and εZ > 0. Recall that ξφ and ξZ (and, hence,

εφ and εZ) are weights that can be used to accentuate the contribution of either the instantaneous

approximation error qε(k) or the error qZ,ε(k), based on recorded data, in the expression of the

overall approximation error Qε(k), i.e., (5.63). It should be added that, when using DRP2, the

standard DTRNLS algorithm is implemented till verification of the rank condition before mixing in

the CL modification.

As a gauge of how good estimates θ̂(k) become over time, we will, for the most part, compute

metric

e(k) =

∫
Dx

∥∥∥F (x, θ̂(k)
)
− f (x)

∥∥∥
F
drxx (7.2)

and plot it versus time. Speaking of plots, on the figures shown in this chapter, legends ‘NG’, ‘NG-

CL’, ‘LS’, and ‘LS-CL’ will be used to denote the DTNG, DTNG based CL, DTNRLS and the

DTNRLS based CL algorithms respectively.

7.1 SUAC Simulations: Applying CL in DT

We start by approximating the structured uncertainty

ys (x(k)) = f (x(k)) = −0.25 + 10

(
e−

(x(k)−π2)2

4

)
= θ>φ (x(k)) ,

(7.3)

with

θ =

[
θ1

θ2

]
=

[
−0.25

10

]
∈ R2

103

representing the true, unknown parameter vector and

φ (x(k)) =

[
1, exp

(
−(x(k)−π

2)
2

4

)]>
∈ R2

denoting the computable regressor vector. In this example, notice that (7.3) uses model (2.2a), rf =

cf = 1, rψ = rZ = rφ = rθ = 2, cφ = cθ = 1. Setting cZ = rθ = 2, εφ = εZ = 1, xL = −2π,

and xH = 3π, DRP1 is used as the data recording procedure when running CL. We actually get

very similar results when using DRP2 as the data recording procedure for CL approximation instead

of DRP1. For the present numerical simulation example, i.e., (7.3), rφ = rθ = 2 and, therefore,

waiting for the rank condition to be verified before applying CL might only require two samples of

the x measurement. In Section 7.2, we will demonstrate how using DRP1 or DRP2 can influence

the estimation results.

7.1.1 Applying Gradient Descent Based Algorithms

Experiment 1

Figure 7.1a shows the true uncertainty, its DTNG and DTNG based CL on-line approximations

(plotted as functions of x) while Figure 7.1b shows the true parameters, their DTNG and DTNG

based CL estimates. As anticipated the DTNG based CL parameter estimates converges to their

ideal values unlike the DTNG parameter estimates. The on-line DTNG based CL estimation of

ys lags behind for just a while as ys starts changing rapidly, but eventually catches and matches

ys, whereas the on-line DTNG estimation only matches ys when in steady state. As the DTNG

based CL parameter estimates get to their ideal values, it can be seen on Figure 7.2 that e(k) goes

to zero. The DTNG algorithm does relatively well at estimating the uncertainty, as Figure 7.1a

shows. However, its parameters estimates are fundamentally adjusted to minimize the instantaneous

approximation error q(k) as opposed to being guided towards their ideal values. In the end, as Figure

104

7.2 consequently reveals, no set of the DTNG parameter estimates can be used to reconstruct the

uncertainty ys in this particular example.

-6 -4 -2 0 2 4 6 8 10

x

-2

0

2

4

6

8

10

U
n
ce
rt
a
in
ty

true

NG

NG-CL, cZ = 2

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

3

4

5

6

7

8

9

10

P
a
ra
m
et
er
s

true

NG

NG-CL, cZ = 2

(b) On-line parameter estimation.

Figure 7.1: Standalone on-line approximation results of the structured uncertainty described by
(7.3) while using Gradient Descent based algorithms: DRP1 is used for CL, εNG = εCL = 1.

105

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

10

20

30

40

50

60

70

80

e
(k
)

NG

NG-CL, cZ = 2

Figure 7.2: Metric e(k) given on-line approximation of the structured uncertainty described by
(7.3) while using Gradient Descent based algorithms: DRP1 is used for CL, εNG = εCL = 1.

Experiment 2

Next, for cZ = 5, 200, we look into how the DTNG based CL algorithm performs. The uncer-

tainty and parameter estimations are shown on Figure 7.3a while Figure 7.3b shows the metric e

and the evolution of the ratio rCL (given by (4.86)) as time goes by. As shown, parameter estimates

converge at different rates depending on the ratio rCL. The higher rCL is the faster the convergence.

Moreover, as conjectured earlier in Remark 4.2.5, the rate of convergence seems to be higher for

values of cZ closer to rZ = rφ = rθ.

7.1.2 Applying Least Squares Based Algorithms

Experiment 3

The true uncertainty, its DTNRLS and DTNRLS based CL on-line approximations (plotted as

functions of x) are shown on Figure 7.4a while Figure 7.4b shows a plot of the true parameters, their

DTNRLS and DTNRLS based CL estimates. For this particular example, i.e., the approximation of

106

-8 -6 -4 -2 0 2 4 6 8 10

x

0

5

10

U
n
ce
rt
a
in
ty true

NG

NG-CL, cZ = 2

NG-CL, cZ = 5

NG-CL, cZ = 200

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

5

10

P
a
ra
m
et
er
s

true

NG

NG-CL, cZ = 2

NG-CL, cZ = 5

NG-CL, cZ = 200

(a) On-line approximation results.

120 140 160 180 200 220 240 260 280 300

k (time step) : zoomed in

0

50

100

e
(k
) NG

NG-CL, cZ = 2

NG-CL, cZ = 5

NG-CL, cZ = 200

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.05

0.1

0.15

r
C
L

NG-CL, cZ = 2

NG-CL, cZ = 5

NG-CL, cZ = 200

(b) Metric e(k) and ratio rCL.

Figure 7.3: Standalone on-line CL approximation results of the structured uncertainty described
by (7.3) while using Gradient Descent based algorithms: DRP1 is used for CL, cZ = 2, 5, 200,
εNG = εZ = 1.

107

ys given by (7.3), both methods lead to convergence of the parameter estimates to their true values

and, as shown on Figure 7.5, e(k) goes to zero in both cases. Convergence seems to be a little faster

with the CL modification of the standard DTNRLS algorithm however. Shown on Figure 7.5 is also

the evolution of the entries in P (k), which achieve zero (or near to zero) steady states, therefore

corroborating (5.32) as far as the DTNRLS method is concerned and (5.68) for its CL modification.

Experiment 4

Keeping the recorded data (obtained from running Experiment 3) in the history stack(s) and

running the approximation schemes again, we get the results shown on Figure 7.6. Though the

standard DTNRLS algorithm works very well, its CL modification, aided by the recorded history

data, yields a faster convergence, therefore encouraging our research motivations.

Experiment 5

For further analysis, we run the DTNRLS based CL algorithm with cZ = 10, 200 for compar-

ison’s sake. Figure 7.7a shows the uncertainty and parameter estimations while the metric e and

the evolution of the ratio rCL, which is given by (5.73) in this case, are shown on Figure 7.7b.

All instances do well as far as function approximation is concerned (see Figure 7.7a). Parame-

ter estimates converge at different rates (with the CL estimates converging faster than the standard

DTNRLS parameter estimates), partly depending on rCL (see Figure 7.7b).

7.2 UUAC Simulations: Applying CL in DT

Now, say that we want to approximate the unstructured uncertainty

yu (x(k)) = f (x(k)) = sin (x(k)) . (7.4)

Notice from (7.4) that rf = cf = 1. For approximation purposes, we use model (2.2a), meaning

cφ = cf = 1, a RBNN with rθ = 15 basis functions and no bias term. See (2.5) (and (2.6)) for

108

-6 -4 -2 0 2 4 6 8 10

x

-2

0

2

4

6

8

10

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 2

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

3

4

5

6

7

8

9

10

P
a
ra
m
et
er
s

true

LS

LS-CL, cZ = 2

(b) On-line parameter estimation.

Figure 7.4: Standalone on-line approximation results of the structured uncertainty described by
(7.3) while using Least Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1.

109

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

10

20

30

e
(k
)

LS

LS-CL, cZ = 2

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-50

0

50

100
P
(k
)
en
tr
ie
s

LS

LS-CL, cZ = 2

Figure 7.5: Metric e(k) and evolution of the entries in P (k), given on-line approximation of the
structured uncertainty described by (7.3) while using Least Squares based algorithms: DRP1 is
used for CL, εφ = εZ = 1.

expression of the regressor φ (x(k)). For any i ∈ {1, 2, . . . , cφ} and, because no bias term is used,

j ∈ {1, 2, . . . , rφ}, centroids µζi,j’s are uniformly spaced on the interval [xL = −2π, xH = 2π]

and spreads σζi,j’s are all set equal to half of the absolute value of the distance between two con-

secutive centroids.

We first set out to perform off-line training using the RBNN structure. Our motives are two-fold.

First, we want to find a good set of “true” parameters. Second, we want to make sure that we have

a good RBNN structure for function approximation. We proceed by using both the standard DTNG

and the DTNRLS algorithms. It is worth reminding again that, as opposed to on-line approximation,

off-line training is run with all x(k) measurements in Dx = [xL, xH], obtained through (7.1), for

values of k ∈ [k0, ks]. After 501 epochs of training with the DTNG algorithm, we plot the off-line

approximation performance and the `2-norm (absolute value would be fine given problem (7.4)) of

the representation error w(x) in Dx on Figure 7.9a as well as the evolution of the identified “true”

110

-6 -4 -2 0 2 4 6 8 10 12

x

-5

0

5

10

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 2

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

10

20

30

e
(k
)

LS

LS-CL, cZ = 2

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

3

4

5

6

7

8

9

10

P
a
ra
m
et
er
s

true

LS

LS-CL, cZ = 2

(b) On-line parameter approximation.

Figure 7.6: Standalone on-line approximation results of the structured uncertainty described by
(7.3) starting with saved history stack Z obtained from Experiment 3 while using Least Squares
based algorithms: DRP1 is used for CL, εφ = εZ = 1.

111

-8 -6 -4 -2 0 2 4 6 8 10

x

0

5

10

U
n
ce
rt
a
in
ty true

LS

LS-CL, cZ = 2

LS-CL, cZ = 10

LS-CL, cZ = 200

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

5

10

P
a
ra
m
et
er
s

true

LS

LS-CL, cZ = 2

LS-CL, cZ = 10

LS-CL, cZ = 200

(a) On-line approximation results.

50 100 150 200

k (time step) : zoomed in

0

10

20

30

40

e
(k
) LS

LS-CL, cZ = 2

LS-CL, cZ = 10

LS-CL, cZ = 200

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.05

0.1

0.15

r
C
L LS-CL, cZ = 2

LS-CL, cZ = 10

LS-CL, cZ = 200

(b) Metric e(k) and ratio rCL.

Figure 7.7: Standalone on-line CL approximation results of the structured uncertainty described
by (7.3) while using Least Squares based algorithms: DRP1 is used for CL, cZ = 2, 10, 200,
εφ = εZ = 1.

112

x

-8 -6 -4 -2 0 2 4 6 8

B
as
is
fu
n
ct
io
n
s
in

φ
(χ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.8: Basis functions used for approximating the unstructured uncertainty described by (7.4).

parameters on Figure 7.9b. Similalry, we have Figure 7.10a to show the `2-norm ofw(x) and Figure

7.10b to show the evolution of the “true” parameters when using the DTNRLS algorithm. Notice

the subtle difference between Figure 7.9 and Figure 7.10. For instance, Figures 7.9b and 7.9b show

that the parameters obtained in the case of the DTNG algorithm seem to converge slightly faster to

their final values than the ones obtained in the case of the DTNRLS algorithm. In each case, the end

parameter values are used to form the sough after true parameter set θ.

The off-line training done, from here on, we will treat its findings as the gold standard. That

is, we will compare on-line parameter estimates to the “true” parameters found via off-line training.

In the following, we run the the DTNG algorithm, the DTNRLS algorithm, and their respective CL

modifications for on-line approximation of yu.

113

x

-6 -4 -2 0 2 4 6
U
n
ce
rt
a
in
ty

-2

-1

0

1

2

true

NG, offline

x

-8 -6 -4 -2 0 2 4 6 8

‖w
(x
)‖

0

0.02

0.04

0.06

0.08

NG, offline

(a) Approximation performance.

k (time step)
0 50 100 150 200 250 300 350 400 450 500

P
a
ra
m
et
er
s

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NG, offline

(b) Evolution of true parameters.

Figure 7.9: Off-line training results of the unstructured uncertainty described by (7.4) using the
DTNG algorithm.

114

-6 -4 -2 0 2 4 6

x

-2

-1

0

1

2

U
n
ce
rt
a
in
ty

true

LS, offline

-8 -6 -4 -2 0 2 4 6 8

x

0

0.02

0.04

0.06

0.08

‖w
(x
)‖

LS, offline

(a) Approximation performance.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
a
ra
m
et
er
s

LS, offline

(b) Evolution of true parameters.

Figure 7.10: Off-line training results of the unstructured uncertainty described by (7.4) using the
DTNRLS algorithm.

115

-6 -4 -2 0 2 4 6

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
n
ce
rt
a
in
ty

true

NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter estimation.

Figure 7.11: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Gradient Descent based algorithms: DRP1 is used for CL, εNG = εCL = 1.

116

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.5

1

1.5

2

2.5

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F NG
NG-CL, cZ = 15

(a) Frobenius norm of parameter error.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

NG

NG-CL, cZ = 15

50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.5

1

r
C
L

×10-15

NG-CL, cZ = 15

(b) Metric e(k) and ratio rCL.

Figure 7.12: Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, metric e(k), and ratio rCL given on-line approximation
of the unstructured uncertainty described by (7.4) while using Gradient Descent based algorithms:
DRP1 is used for CL, εNG = εCL = 1.

117

-6 -4 -2 0 2 4 6

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
n
ce
rt
a
in
ty

true

NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter estimation.

Figure 7.13: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Gradient Descent based algorithms: DRP2 is used for CL, εNG = εCL = 1.

118

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.5

1

1.5

2

2.5

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

NG
NG-CL, cZ = 15

(a) Frobenius norm of parameter error.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
) NG

NG-CL, cZ = 15

50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.005

0.01

0.015

0.02

r
C
L

NG-CL, cZ = 15

(b) Metric e(k) and ratio rCL.

Figure 7.14: Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, metric e(k), and ratio rCL given on-line approximation
of the unstructured uncertainty described by (7.4) while using Gradient Descent based algorithms:
DRP2 is used for CL, εNG = εCL = 1.

119

7.2.1 Applying Gradient Descent Based Algorithms

Experiment 6

First, we set εNG = εCL = 1 for the DTNG based CL implementations, therefore granting

the same contributing weight to both the instantaneous update term ∆θ̂NG (see (4.5)) and the term

based on recorded data ∆θ̂CL (see (4.58)). We obtain the results shown on Figures 7.11 and 7.12

with DRP1 whereas Figures 7.13 and 7.14 are obtained when using DRP2.

It is clear in this case (Figure 7.11a versus Figure 7.13a) that DRP1 and DRP2 affect the ap-

proximation results differently. It is easy to see the difference here, as opposed to the corresponding

SUAC example, because, for the present example, achieving the rank condition is more difficult due

to the larger number of (row) dimensions in the RBNN regressor.

While, with DRP1, the rank condition tends to be biased towards or centered around initial

recorded data, DRP2 allows for collection of data while waiting for the rank condition to be verified

(here, around k = 375) to fully deploy CL. This is further demonstrated by the fact that, in the long

run, as Figures 7.12b and 7.14b show, DRP2 achieves a much higher ratio rCL comparatively to

DRP1. It should be noted that, before the k = 375 mark, applying the modified DTNG algorithm

in place of the full DTNG based CL law is the reason why the DTNG based CL function approxi-

mation on Figure 7.13a and parameter estimation on Figure 7.13b while using DRP2 follow closely

that of the its DTNG counterparts. From that mark on, however, substantial changes in the evolution

of the parameter estimates (see Figure 7.13b) lead to function approximation degradation (Figure

7.13a).

Moreover, regardless of the data recording technique used, as far as function approximation

is concerned, the DTNG algorithm does see to do better than the DTNG based CL algorithm, at

least, for the present simulation example (see Figures 7.11a and 7.13a). However, when it comes

to parameter estimation, as shown on Figures 7.11b, 7.13b, 7.12a, and 7.14a, the DTNG based

120

CL algorithm fares better than the DTNG algorithm. The plots of the evolution of the metric e(k)

on Figures 7.12b and 7.14b reinforce our argument for CL having a better learning generalization

property than pure NG. When using CL, as
∥∥∥θ̃(k)

∥∥∥
F

decreases (Figures 7.12a and 7.14a) with k

increasing, e(k) also follows suit (Figures 7.12b and 7.14b). Given that DRP2 leads to a higher

ratio rCL than DRP1, as expected, we ultimately get much lower
∥∥∥θ̃∥∥∥

F
and e with DRP2. More-

over, it should be added that, by the end of the simulations, rCL 6= 0 in both cases means, based on

Procedures 1 and 2, that the rank condition has been satisfied.

Experiment 7

We save the history stacks obtained at the end of Experiment 6. We then proceed to rerun the al-

gorithms on-line for estimation of yu while starting with the previously saved histories. In essence,

we are guaranteed that the rank condition is verified even before the parameter updates take place.

Rerunning the approximation algorithms, we get Figures 7.15 and 7.16 while respectively using

DRP1 and DRP2. The DTNG based CL algorithm does much better than before (Experiment 6),

both function approximation wise and parameter estimation wise. Its learning generalization is fur-

ther improved. The reason for undertaking this experiment was to show how good an approximation

the DTNG based CL algorithm could provide (Figures 7.15a and 7.16a compared to Figures 7.11a

and 7.13a) if the rank condition is verified and the value of rCL is significant. Recall that the rate

of convergence of the DTNG based CL algorithm is dependent upon the spectral properties of the

history stack ZG.

Although rerunning the DTNG based CL algorithm using saved up histories yielded better ap-

proximation of the uncertainty, the fact remains that when implementing on-line approximation, we

usually have to start with an empty Z or ZG. Next, we look into how we can make the function

approximation performance better even when Z starts empty.

121

-6 -4 -2 0 2 4 6 8 10 12

x

-1

0

1

2

U
n
ce
rt
a
in
ty

true

NG

NG-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
) NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter approximation.

Figure 7.15: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) starting with saved history stack Z obtained from Experiment 6 while using Gradient Descent
based algorithms: DRP1 is used for CL, εNG = εCL = 1.

122

-6 -4 -2 0 2 4 6 8 10 12

x

-2

-1

0

1

2

U
n
ce
rt
a
in
ty true

NG

NG-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
) NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter approximation.

Figure 7.16: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) starting with saved history stack Z obtained from Experiment 6 while using Gradient Descent
based algorithms: DRP2 is used for CL, εNG = εCL = 1.

123

-6 -4 -2 0 2 4 6 8 10 12

x

-1

-0.5

0

0.5

1

U
n
ce
rt
a
in
ty true

NG

NG-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter approximation.

Figure 7.17: Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP1 is used for CL, εNG = 1, and
εCL = 0.1.

124

-6 -4 -2 0 2 4 6 8 10 12

x

-1

-0.5

0

0.5

1

U
n
ce
rt
a
in
ty true

NG

NG-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
) NG

NG-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-1

-0.5

0

0.5

1

1.5

P
ar
am

et
er
s

offline (“true”)
NG
NG-CL, cZ = 15

(b) On-line parameter approximation.

Figure 7.18: Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) while using Gradient Descent based algorithms: DRP2 is used for CL, εNG = 1, and
εCL = 0.01.

125

Experiment 8

Recall that in the case of the DTNG based CL algorithm with DRP2 and in Exprement 6, the

modified DTNG algorithm is first implemented in place of CL till the rank condition is guaranteed,

and, only then, is the full DTNG based CL algorithm carried out. Doing so, the approximation result

(Figure 7.13a) only degraded after the CL rank condition was verified and, equivalently, after the

inclusion of the update term based on recorded data ∆θ̂CL. It therefore does seem that the adaptation

based on recorded data, i.e., ∆θ̂CL, affects the one based on current data, i.e., ∆θ̂NG, at least as far

as function approximation performance is concerned. While ∆θ̂NG seeks to address instantaneous

approximation, ∆θ̂CL aims for better learning generalization. Hence, unless the parameter updates

are being pulled in the same directions, ∆θ̂NG and ∆θ̂CL could be working destructively. To

alleviate the effect of ∆θ̂CL on ∆θ̂NG (or vice versa), we can set εNG and εCL to different values.

First, while using DRP1, we set εNG = 1 and εCL = 10% εNG = 0.1. Simulation results are

shown on Figure 7.17. Then, using DRP2 and setting εNG = 1 and εCL = 1% εNG = 0.01 yields

the results on Figure 7.18. As those figures demonstrate, good function approximation performance

can still be achieved while also achieving good parameter estimation.

7.2.2 Applying Least Squares Based Algorithms

Experiment 9

Letting εφ = εZ = 1 for DTNRLS based CL implementations, we obtain the results shown on

Figures 7.19 and 7.20 with DRP1 whereas Figures 7.21 and 7.22 are obtained when using DRP2.

By comparing Figure 7.19 to Figure 7.21 (more so, Figure 7.19b compared to Figure 7.21b), it

is clear in this case that DRP1 and DRP2 lead to different results. DRP2, for which the DTNRLS

based CL algorithm is only applied if the rank condition is verified (here, around k = 375), achieves

a much higher rCL (see Figure 7.22b) than DRP1 (see Figure 7.20b), which is more inclined to be

126

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

1.5

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

(b) On-line parameter estimation.

Figure 7.19: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Least Squares based algorithms: DRP1 is used for CL, εφ = εZ = 1.

127

(a) Frobenius norm of parameter error and entries in P (k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

r
C
L

×10-15

LS-CL, cZ = 15

(b) Metric e(k) and ratio rCL.

Figure 7.20: Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, entries in P (k), metric e(k), and ratio rCL given on-line
approximation of the unstructured uncertainty described by (7.4) while using Least Squares based
algorithms: DRP1 is used for CL, εφ = εZ = 1.

128

-6 -4 -2 0 2 4 6

x

-1

-0.5

0

0.5

1

1.5

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

(b) On-line parameter estimation.

Figure 7.21: Standalone on-line training results of the unstructured uncertainty described by (7.4)
while using Least Squares based algorithms: DRP2 is used for CL, εφ = εZ = 1.

129

(a) Frobenius norm of parameter error and entries in P (k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

50 100 150 200 250 300 350 400 450 500

k (time step)

0

0.005

0.01

0.015

0.02

r
C
L LS-CL, cZ = 15

(b) Metric e(k) and ratio rCL.

Figure 7.22: Frobenius norm
∥∥∥θ̃(k)

∥∥∥
F

, entries in P (k), metric e(k), and ratio rCL given on-line
approximation of the unstructured uncertainty described by (7.4) while using Least Squares based
algorithms: DRP2 is used for CL, εφ = εZ = 1.

130

biased towards initially recorded data.

It should be noted that, regardless of the data recording technique used, as far as function ap-

proximation is concerned, both the DTNRLS algorithm and its CL modification do well (see Figures

7.19a and 7.21a). The entries in P (k) achieve zero (or near to zero) steady states (see Figures 7.20a

and 7.22a), thus, substantiating (5.32) and (5.68). Additionally, when it comes to parameter estima-

tion, plots of the metric e(k) on Figures 7.20b and 7.22b show that good learning is achieved for

both algorithms.

Hence, one may wonder if there is any benefit to applying the DTNRLS based CL algorithm.

If so, remember first and foremost that we have theoretically proven that the CL modification of

the standard DTNRLS algorithm does in fact lead to convergence of the parameter estimates under

less restrictive conditions than the DTNRLS algorithm. Furthermore, to show how the DTNRLS

based CL algorithm improves the standard DTNRLS algorithm we set the inital gain matrix to

P (k0 − 1) = P0 = 0.1 Irψ and rerun both technique for approximation of yu. Figures 7.23 and

7.24 are obtained when using respectively DRP1 and DRP2. Here, because the maximum eigen-

value of P0 is set low at the start (i.e., 0.1 versus 100, as we have done before), the approximation

performance of both algorithms suffers. Nevertheless, the inclusion of selectively picked data in the

parameter update law helps clearly separate the DTNRLS based CL algorithm from the standard

DTNRLS algorithm, as Figures 7.23 and 7.24 show.

Experiment 10

Having saved the history stacks obtained from DTNRLS based CL implementations at the end

of Experiment 9 (when using P (k0− 1) = P0 = 100 Irψ), we rerun the learning algorithms on-line

for approximation of yu. That means we start with non-empty Z matrices and are guaranteed veri-

fication of the rank condition at k = 0 given that, from Figures 7.20b and 7.22b, rCL 6= 0 at the end

of the simulations. We get Figures 7.25 and 7.26 while respectively using DRP1 and DRP2. The

131

-6 -4 -2 0 2 4 6 8 10 12

x

-1

-0.5

0

0.5

1

U
n
ce
rt
a
in
ty true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.23: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Least Squares based algorithms: DRP1 is used for CL, P0 = 0.1 Irψ, εφ = εZ =
1.

132

-6 -4 -2 0 2 4 6 8 10 12

x

-1

-0.5

0

0.5

1

U
n
ce
rt
a
in
ty true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.24: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Least Squares based algorithms: DRP2 is used for CL, P0 = 0.1 Irψ, εφ = εZ =
1.

133

-6 -4 -2 0 2 4 6 8 10 12

x

-2

-1

0

1

2

U
n
ce
rt
a
in
ty true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

1

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.25: Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 9 while using Least Squares
based algorithms: DRP1 is used for CL, εφ = εZ = 1.

134

-6 -4 -2 0 2 4 6 8 10 12

x

-2

-1

0

1

2

U
n
ce
rt
a
in
ty true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.26: Standalone on-line approximation results of the unstructured uncertainty described
by (7.4) starting with saved history stack Z obtained from Experiment 9 while using Least Squares
based algorithms: DRP2 is used for CL, εφ = εZ = 1.

135

convergence of the DTNRLS based CL algorithm is much faster than in Experiment 9, especially

when using DRP2 (see Figure 7.25b for DRP1 and Figure 7.26b for DRP2). However, it should be

said that, though fast in the opening stages, convergence does stall towards as k increases.

Alike when running Gradient Descent based algorithms, the main goal behind running this

experiment was to show that the DTNRLS based CL algorithm could provide good function ap-

proximation granted the rank condition is not only verified, but, also, the value of rCL is significant

enough. After all, it has been shown in Remark 5.2.2 that the convergence of the DTNRLS based

CL algorithm is a function of rCL,1 in (5.71) or rCL,2 in (5.72), hence, indirectly function of the

spectral properties of the history stack Z. The present experiment also shows how off-line data

(especially, if rich enough, i.e., verifies the rank condition) can be used when running the DTNRLS

based CL algorithm on-line. Moreover, running the same algorithms as in Experiment 9, but, with

the added saved data, and getting faster convergence results shows that the DTNRLS based CL

could work very well when dealing with similar and/or repetitive tasks to be identified over and

over.

Though using saved up data can be beneficial, when running on-line approximation with the

DTNRLS based CL algorithm, there usually are no other choices than starting with an empty Z.

From a parameter approximation point of view, we clearly see from the plots of
∥∥∥θ̃(k)

∥∥∥
F

versus

time on Figures 7.20a and 7.22a that, for the most part, CL methods might actually under perform

a bit compared to the standard DTNRLS algorithm (at least for the present example and when the

maximum eigenvalue of the initial guess of the gain matrix is set to be large). Therefore, next, we

look into how those lapses in performance can be alleviated even when starting with an empty Z.

136

-6 -4 -2 0 2 4 6 8 10 12

x

-1

0

1

2

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.27: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Least Squares based algorithms: DRP1 is used for CL, εφ = 1, and εZ = 0.1.

137

-6 -4 -2 0 2 4 6 8 10 12

x

-1

0

1

2

U
n
ce
rt
a
in
ty

true

LS

LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

e
(k
)

LS

LS-CL, cZ = 15

(a) On-line uncertainty approximation and metric e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-0.5

0

0.5

P
ar
am

et
er
s

offline (“true”)
LS
LS-CL, cZ = 15

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

1

2

∥ ∥ ∥
θ̃
(k
)∥ ∥ ∥

F

LS
LS-CL, cZ = 15

(b) On-line parameter approximation and Frobenius norm of parameter error.

Figure 7.28: Standalone on-line approximation results of the unstructured uncertainty described by
(7.4) while using Least Squares based algorithms: DRP2 is used for CL, εφ = 1, and εZ = 0.1.

138

Experiment 11

When running DRP2, as mentioned before, the standard DTNRLS algorithm is applied first and

it is when the rank condition comes to be verified (after collection of data) that the CL modifica-

tion is implemented. Looking back at Experiment 9, we see when using the DTNRLS based CL

algorithm with DRP2 that
∥∥∥θ̃(k)

∥∥∥
F

and e(k) only degraded around or after the k = 375 mark (see

Figure 7.22), which coincides with the full application of the CL modification. Hence, it seems that

incorporating the error based on recorded data qZ,ε(k) into the overall approximation error Qε(k)

does conflict with the instantaneous error qε(k). To create more balance or to choose the more in-

fluential approximation error, next, we experiment with the weighting matrices ξφ and ξZ .

While using both DRP1 and DRP2, we set εφ = 1 and ξZ = 10%εφ = 0.1. Simulation results

are shown on Figures 7.27 and 7.28 respectively. Again, for this particular example the standard

DTNRLS algorithm does really well. However, as the previously mentioned figures show, besides

the theoretical guarantees, we obtain good performances all around using the CL algorithm by ap-

propriately setting the weights ξNG and ξZ .

7.3 Concluding Remarks

Overall, we have showed via illustrations in this chapter why Concurrent Learning and the use

of memory can help achieve better learning, though, in the case of the Least Squares based Con-

current Learning scheme, it is a little bit difficult to show just that, especially when the spectral

properties of P0 are picked to be (very) large.

As we have pointed out in Remark 5.2.1, it could be argued that the standard DTNRLS al-

gorithm is a memory based method. If so, the challenge is to show that the standard DTNRLS

algorithm with an improved (or increased) external memory, which the DTNRLS based CL algo-

rithm could (rightly) be described as, can actually bring about better results. That is what we have

139

done in Experiment 9 when setting the minimum and maximum eigenvalues of the initial guess of

the gain matrix low before running the learning algorithms. We would like also to emphasize the

theoretical results obtained when using the DTNRLS based CL algorithm, i.e., the convergence of

the parameter error to the origin asymptotically under less demanding condition.

140

CHAPTER VIII

APPLICATION 1: DISCRETE-TIME INDIRECT ADAPTIVE CONTROL OF A

CLASS OF SINGLE STATE SYSTEMS USING GRADIENT BASED

CONCURRENT LEARNING FOR PARAMETER ADAPTATION

We use the discrete-time Normalized Gradient based CL algorithm developed in Chapter IV for

parameter estimates adaptation when designing a discrete-time adaptive controller for a single state

discrete-time system bearing structured uncertainties. We only focus on the well studied indirect

adaptive control (IAC) scheme [2, 3, 4, 5]. We show that if the Concurrent Learning condition, i.e.,

Condition 3.1.1, is verified, we can achieve both exponential error tracking and, simultaneously,

exponential convergence of the parameter estimates to their true values.

Some of the previously used notations, which we advise against referring back to, have been

changed in the present chapter.

8.1 Problem Statement

Consider the uncertain single state discrete-time system (or plant) given by

x(k + 1) = f (χ(k)) + g (χ(k))u(k), (8.1)

where, at the discrete time-step k ∈ {k0, k0 + 1, k0 + 2, . . .}, with k0 ∈ N being the initial starting

time-step, x(k) ∈ R and u(k) ∈ R respectively are the state and the control input in (8.1). The

141

causal vector χ(k) ∈ Rrχ , rχ ∈ N+, which appears in (8.1), can consist of known, computable

and/or available for measurement past and present signals. The uncertain nature of (8.1) stems from

the plant dynamics f (χ(k)) ∈ R and g (χ(k)) ∈ R being unknown functions of the signals in χ(k).

Assumption 8.1.1. The functions f (χ(k)) and g (χ(k)) are structured uncertainties.

Assumption 8.1.2. The function g (χ(k)) is bounded away from zero for all k. Further, there exists

some known g > 0, such that |g (χ(k))| ≥ g.

Per Assumption 8.1.1, there exist ideal, constant, but unknown parameter vectors θf ∈ Rrθf , rθf ∈

N+, and θg ∈ Rrθg , rθg ∈ N+, and known regressor vectors φf (χ(k)) ∈ Rrθf and φg (χ(k)) ∈

Rrθg such that, for all χ(k) ∈ Rrχ ,

f (χ(k)) = θ>f φf (χ(k)) , (8.2a)

g (χ(k)) = θ>g φg (χ(k)) . (8.2b)

As for Assumption 8.1.2, we require that g (χ(k)) 6= 0 for all k so that the control action u(k) is

not lost at any instance of time. We will later show how g can be made used of.

Our goal is to design a closed-loop discrete-time control action u(k) that causes the state x(k)

to track a bounded reference r(k) ∈ R, even in presence of the uncertainties f and g.

We assume knowledge of not only r(k) but also r(k + 1). If r(k + 1) is not available, a stable

reference model whose state xm(k) asymptotically tracks r(k) can be constructed. That way, both

xm(k) and xm(k + 1) can be made available for use when computing the control action. We will

later on show how such a reference model can be devised. Otherwise, if r(k + 1) is exactly known,

then let xm(k) = r(k) and xm(k + 1) = r(k + 1).

We define the tracking error e(k) ∈ R

e(k) = x(k)− xm(k) (8.3)

142

to quantify closed-loop performance of (8.1). If e(k)→ 0, then x(k)→ xm(k)→ r(k).

We approach the present design problem in a somewhat similar fashion to Lyapunov design

and analysis procedures commonly undertaken for CT systems (see [2, 3, 4, 5]). First, we express

e(k + 1) as

e(k + 1) = x(k + 1)− xm(k + 1) = f (χ(k)) + g (χ(k))u(k)− xm(k + 1). (8.4)

Assume for a moment that f and g are exactly known and consider the stabilizing controller

u(k) =
γee(k)− f (χ(k)) + xm(k + 1)

g (χ(k))
, |γe| < 1. (8.5)

If u(k) = u(k), from (8.4), we get that e(k + 1) = γee(k); and, a Lyapunov proof can then be put

forth to show that e(k)→ 0 or x(k)→ xm(k) exponentially.

However, with f and g being unknown, it is impossible to implement (8.5). We therefore resort

to using adaptive control, and, more precisely, an IAC scheme.

8.2 Discrete-Time Indirect Adaptive Control

To implement the Indirect Adaptice Control (IAC) scheme, we first have to approximate the

unknown plant dynamics f and g and use their approximations to define the adaptive controller. Let

F and G be the approximations of f and g, respectively. Given the expressions f in (8.2a) and g in

(8.2b), we let

F(k) = F
(
φf (χ(k)) , θ̂f (k)

)
= θ̂>f (k)φf (χ(k)) , (8.6)

G(k) = G
(
φg (χ(k)) , θ̂g(k)

)
= θ̂>g (k)φg (χ(k)) , (8.7)

where the time-varying parameter estimate vectors θ̂f (k) ∈ Rrθf and θ̂g(k) ∈ Rrθg are estimates

of, respectively, θf and θg. Based on (8.5), for some γe such that 0 < |γe| < 1, the indirect adaptive

controller is defined as

ui(k) =
γee(k)−F(k) + xm(k + 1)

G(k)
. (8.8)

143

We abstain from the choice of γe = 0 for reasons that will soon become clearer. The subscript i (in

ui) will be used throughout this chapter to designate indirect, as in IAC. Setting u(k) = ui(k) in

(8.4), adding G(k) (ui(k)− ui(k)) = 0 to the right hand side of (8.4), and using (8.8), we get

e(k + 1) = γee(k)− T̂i(k) + Ti(k), (8.9)

where, from (8.2a), (8.2b), (8.6), and (8.7), the signal

T̂i(k) = F(k) + G(k)ui(k) = θ̂>i (k)φi (χ(k)) (8.10)

can be considered an estimate of its true value

Ti(k) = f (χ(k)) + g (χ(k))ui(k) = θ>i φi (χ(k)) , (8.11)

with θ̂i(k) =
[
θ̂>f (k), θ̂>g (k)

]>
∈ Rrθi , rθi = rθf + rθg , being the parameter estimate vector of the

new, augmented unknown parameter vector θi =
[
θ>f , θ>g

]>
∈ Rrθi and

φ>i (χ(k)) =
[
φ>f (χ(k)) , φ>g (χ(k))ui(k)

]>
∈ Rrθi

being the new, augmented regressor vector. Let θ̃i(k) = θ̂i(k) − θi ∈ Rrθi denote the parameter

error vector. We define the approximation error qi as

qi(k + 1) = T̂i(k)− Ti(k) = θ̃>i (k)φi (χ(k)) (8.12)

and rewrite (8.9) as

e(k + 1) = γee(k)− qi(k + 1). (8.13)

Hence, from (8.13),

qi(k + 1) = γee(k)− e(k + 1) (8.14)

gives us a way to numerically compute qi(k+1) for k > k0. It should be added that, for convenience,

many signals in this chapter (including qi) are expressed at discrete-time k+ 1 even though actually

144

computed at discrete time k, k > k0, in simulation because they are causal.

Next, we investigate closed-loop behavior of error signals e and θ̃i, if the IAC scheme were to

employ either one of the standard gradient descent algorithm or the gradient based CL algorithm

(both, discussed in Chapter IV) for parameter adaptation.

Before going further, given our definitions in Chapter II, notice that (8.10) is expressed in the

form of model (2.2a). Moreover, we are dealing here with a scalar approximation problem (Ti ∈ R).

The adaptation laws of Chapter IV will then be adjusted accordingly.

8.2.1 IAC with Normalized Gradient Adaptive Algorithm

In our current notation, for some gain ηi > 0 and given an initial parameter vector θ̂i (k0), the

discrete-time Normalized Gradient (NG) descent adaptive algorithm for k > k0 is given by

θ̂i(k + 1) = θ̂i(k)− ηi∆θ̂iNG(k), (8.15)

where we define ∆θ̂iNG(k) ∈ Rrθi as

∆θ̂iNG(k) =
φi (χ(k)) qi(k + 1)

m2
i (k)

(8.16)

and, letting ‖·‖ denote the 2-norm operator, as we have done up to now, the normalization signal

mi(k) =
√
αi + φ>i (χ(k))φi (χ(k)) =

√
αi + ‖φi (χ(k))‖2, αi > 0,

defined after (4.1), ensures that φmi (χ(k)) ∈ Rrθi , expressed as

φmi (χ(k)) =
φi (χ(k))

mi(k)
,

is bounded.

Let Φi(k) ∈ Rrθi×rθi be given by

Φi(k) = φi (χ(k))φi (χ(k))>

145

and notice that Φi(k) is symmetric (Φ>i (k) = Φi(k)) as well as positive semi-definite (Φi(k) ≥ 0)

for all k. Also, let λΦi,k = λmax (Φi(k)), where, as defined before, λmax(·) denotes the maximum

eigenvalue operator. Because Φi(k) ≥ 0, λΦi,k > 0 as long as φi (χ(k)) 6= [0]rθi . From (8.12) and

(8.16), the parameter error

θ̃i(k + 1) = θ̂i(k + 1)− θi

can also be expressed as

θ̃i(k + 1) =

[
Irθi −

ηiΦi(k)

m2
i (k)

]
θ̃i(k), (8.17)

where, as noted before, Irθi ∈ Rrθi×rθi represents the rθi-by-rθi identity matrix.

The positive definite Lyapunov function

Vθ̃i(k) = θ̃>i (k)θ̃i(k) =
∥∥∥θ̃i(k)

∥∥∥2
(8.18)

is used to study the parameter error θ̃i(k) in (8.17). Denoting

∆V(k + 1) = V(k + 1)− V(k)

for a given function V and letting βi1 = 2− ηiλ2(k)

m2
i (k)

, we have shown in [28] as well as in Chapter

IV (see (4.32), (4.35), and related expressions) that

∆Vθ̃i(k + 1) ≤ −βi1
ηiq

2
i (k + 1)

m2
i (k)

≤ 0 (8.19)

so long as, for φi (χ(k)) 6= [0]rθi , βi1 > 0 or

0 < ηi <
2m2

i (k)

λΦi,k
= ηiNG . (8.20)

At any time step k, λΦi,k = 0 means φi (χ(k)) = [0]rθi , which, given (8.16), implies θ̂i(k + 1) =

θ̂i(k) and there is therefore no need to pick ηi. It can be shown, as done in Chapter IV, that

ηiNG <∞ and 0 < βi1 < 2 if ηi meets (8.20). In the end, based on (8.19), Vθ̃i(k) is nonincreasing

146

and, thus, bounded for all k.

Let us now study the tracking error e(k). The ensuing analysis is adapted from [5] and is similar

to what we have done in [9]. First, for some βi2 > 0, consider the positive definite Lyapunov

function

Ve(k) = βi2e
2(k), (8.21)

For any a, b ∈ R and ε > 0, relationship (13.52) in [5] says

(a+ b)2 ≤ (1 + ε) a2 +

(
1 +

1

ε

)
b2. (8.22)

Thus, for some εi > 0 and βi3 = 1− γ2
e (1 + εi), we have from (8.13), (8.21), and using (8.22) that

∆Ve(k + 1) ≤ −βi3Ve(k) + βi2

(
1 +

1

εi

)
q2
i (k + 1). (8.23)

We now put to use both (8.19) and (8.23). For some βi4 > 0, we define the positive definite

Lyapunov function

Vi(k) = Ve(k) + β4Vθ̃i(k). (8.24)

Using (8.19), (8.23), and (8.24), we get that

∆Vi(k + 1) = ∆Ve(k + 1) + βi4∆Vθ̃i(k + 1)

≤ −βi3Ve(k)− pi(k)q2
i (k + 1)

m2
i (k)

, (8.25)

where

pi(k) = ηiβ4β1 − βi2
(

1 +
1

εi

)
m2
i (k). (8.26)

For stability result purposes, we require that βi3 > 0, meaning

0 < εi <
1− γ2

e

γ2
e

, (8.27)

147

which then leads to 0 < βi3 < 1 − γ2
e < 1 since 0 < |γe| < 1, as well as pi(k) ≥ 0, which, from

(8.26), means

βi4 ≥
βi2

(
1 + 1

εi

)
m2
i (k)

ηiβi1
. (8.28)

Now, assuming φi (χ(k)) is bounded for all k, then, m2
i (k) is defined and, subsequently, so is βi4 .

By having βi3 > 0 and pi(k) ≥ 0, we get from (8.25) that

∆Vi(k + 1) = Vi(k + 1)− Vi(k) ≤ −βi3Ve(k) ≤ 0. (8.29)

Hence, both e and θ̃i are bounded. Actually given (8.29) and the fact that Vi is positive definite, for

all k, Vi(k) ≤ Vi(k0). It is thus possible to uniformly bound both e and θ̃i. Applying Theorem 13.5

in [5] here, we further have lim
k→+∞

Ve(k) = 0, which, by (8.21), means e ultimately goes to zero.

The same theorem allows us to write

Ve(k) ≤ max

(
Ve(k0),

βi4
βi3

Vθ̃i(k0)

)
.

Thus, given (8.21) again, for all k,

|e(k)| ≤ beiNG =

√
max

(
e2(k0),

βi4
βi2βi3

∥∥∥θ̃i(k0)
∥∥∥2
)

. (8.30)

For perspective, because 0 < βi3 < 1, εi > 0, 0 < βi1 < 2 and 0 < ηiβ1 <
4m2

i (k)

λΦi,k
given (8.20),

from (8.28),

βi4
βi2βi3

> max
k

(
m2
i (k)

ηiβi1

)
>

1

4
max
k

(
λΦi,k

)
, (8.31)

with λΦi,k ≤ ‖φi (χ(k))‖2 < m2
i (k) as shown in [28].

In all, when the IAC scheme of (8.8) is implemented with the NG algorithm of (8.16) used for

parameter adaptation, both error signals e and θ̃i are uniformly bounded. In addition, e(k) → 0 as

k → ∞. Proving parameter identification, i.e., θ̃i(k) → [0]rθi , is however not possible unless φmi

is PE [3].

148

8.2.2 IAC with Normalized Gradient Based Concurrent Learning Adaptive Algo-
rithm

To use CL for parameter adaptation, we first establish the uncertainty to be approximated. Iin

this case, that uncertainty is Ti. Next, for k > k0, we require knowledge of Ti(k). This can be done

in the two following fashions. For k > k0, being able to compute T̂i(k) using (8.10) and qi(k + 1)

using (8.14), from (8.12),

Ti(k) = T̂i(k)− qi(k + 1).

Also, referring back to (8.1) and (8.11), we have that

Ti(k) = f (χ(k)) + g (χ(k))ui(k) = x(k + 1).

Now, let ZGi ∈ Rrθi×cZi , for some cZi ∈ N+, be a matrix whose columns are comprised of

the normalized regressor vectors φmi (χ (τji)), Gi ∈ R1×cZi be a row vector of mi (τji) values and

Fi ∈ RcZi be a vector containing the actual true values Ti (τji) recorded at some discrete time-step

τji in the past, k0 ≤ τji < k, for ji = 1, 2, . . . , cZi . That is

ZGi =
[
φmi (χ(τ1)) , φmi (χ(τ2)) , . . . , φmi

(
χ(τcZi)

)]
,

Gi =
[
mi (τ1) , mi (τ2) , . . . , mi

(
τcZi

)]
, and

Fi =
[
Ti (τ1) , Ti (τ2) , . . . , Ti

(
τcZi

)]
.

Notice that, because dealing with a vector regressor in this case, for any k, m2
i (k) = ḡ1,1(k) for

Ξm = Irθi and where ḡn,n(k) (with n = 1 for the current problem) is defined in (3.3). Matrix

ZGi will be our history stack. Moreover, notice that ΦZGi ,k = ZGiZ
>
Gi
∈ Rrθi×rθi is symmetric.

Additionally, much like (3.17)

ΦZGi ,k = ZGiZ
>
Gi =

cZi∑
ji=1

φmi (χ (τji))φ
>
mi(χ (τji)) =

cZi∑
ji=1

φi (χ(τji))φ
>
i (χ(τji))

mi(k)
. (8.32)

149

Given an initial parameter vector θ̂i (k0), we pose for k > k0 the gradient based Concurrent

Learning algorithm adaptive algorithm

θ̂i(k + 1) = θ̂i(k)− ηi∆θ̂iNG(k)− ηi∆θ̂iCL(k), (8.33)

where ∆θ̂iNG(k) is defined in (8.16), the gain ηi > 0, and the adjustment term

∆θ̂iCL(k) =

cZi∑
ji=1

φi (χ (τji)) qji(k + 1)

m2
i (τji)

(8.34)

features the approximation error based on recorded data qji . Letting Eji(k) = θ̂>i (k)φi (χ (τji))

take after (8.10), by using (8.11), and proceeding similarly to (8.12), we define

qji(k + 1) = Eji(k)− Ti(τji),

= θ̃>i (k)φi (χ (τji)) = φ>i (χ (τji)) θ̃i(k). (8.35)

For k > k0, qji(k + 1) can be numerically computed as

qji(k + 1) = φ>i (χ (τji)) θ̂i(k)− Ti(τji) (8.36)

while using the stored data in ZGi , Gi, and Fi to do so. Given (8.32) and (8.35), ∆θ̂iCL(k) in (8.34)

compactly reduces to

∆θ̂iCL(k) =

cZi∑
ji=1

φi (χ (τji))
[
φ>i (χ (τji)) θ̃i(k)

]
m2
i (τji)

=

cZi∑
ji=1

φi (χ (τji))φ
>
i (χ (τji))

m2
i (τji)

θ̃i(k)

= ZGiZ
>
Gi θ̃i(k) = ΦZGi ,k θ̃i(k). (8.37)

Hence, though we have expressed the adjustment term ∆θ̂iCL(k) differently here, i.e., (8.34) versus

(4.59), both expressions are equivalent, as setting εw,k = [0]rθ×cθ , rθ = rθi and cθ = 1 for the

present problem, (4.61) and (8.37) are identical. Moving on, it then follows from (8.33) and (8.37)

that the parameter error θ̃i(k + 1) = θ̂i(k + 1)− θi, in this case, can be written as

θ̃i(k + 1) =

[
Irθi −

ηiΦi(k)

m2
i (k)

− ηiZGiZ>Gi

]
θ̃i(k) =

[
Irθi −

ηiΦi(k)

m2
i (k)

− ηiΦ>ZGi ,k
]
θ̃i(k).

(8.38)

150

We will impose the rank condition on ZGi , i.e., Condition 3.1.1 for ZG = ZGi . Condition

3.1.1 requires that cZi ≥ rθi and rank(ZGi) = rθi . As mentioned before, it is less restrictive than

persistency of excitation because it only deals with a subset of past data, can be implemented and

verified on-line, and can be achieved with φmi being (sufficiently) exciting over a time sequence.

We state the following theorem, which we prove next.

Theorem 8.2.1. Consider the single state plant defined by (8.1) bearing structured (or parametric)

uncertainties. When implementing the IAC scheme of (8.8) while using the gradient based CL

algorithm given by (4.58) for parameter adaptation, e(k) → 0 and θ̂i(k) → θias k → ∞ if the

rank condition on ZGi , i.e., Condition 3.1.1 for ZG = ZGi , is verified.

Proof. We start the proof of Theorem 8.2.1 by noting that, if Condition 3.1.1 is met, then ZGi is

full row rank and ΦZGi ,k = ZGiZ
>
Gi

is positive definite (ΦZGi ,k = ZGiZ
>
Gi
> 0). Letting

λΦZGi
,k = λmin

(
ΦZGi ,k

)
= λmin

(
ZGiZ

>
Gi

)
and

λΦZGi
,k = λmax

(
ΦZGi ,k

)
= λmax

(
ZGiZ

>
Gi

)
,

with, this time around, λmin(·) denoting the minimum eigenvalue operator as initially defined,

ΦZGi ,k = ZGiZ
>
Gi

> 0 means λΦZGi
,k ≥ λΦZGi

,k > 0. Making use of (8.18), we showed in

[28] that, along (8.38),

Vθ̃i(k + 1) ≤ βi5Vθ̃i(k)− βi1
ηiq

2
i (k + 1)

m2
i (k)

, (8.39)

where

0 < βi5 = 1− ηiλΦZGi
,k

(
2− ηi

(
2λΦi,k
m2
i (k)

+ λΦZGi
,k

))
< 1 (8.40)

151

if ηi not only satisfies (8.20) but is also picked such that

0 < ηi <
2m2

i (k)

2λΦi,k + λΦZGi
,km2

i (k)
= ηiCL , (8.41)

expressed similarly to (4.83), but with εNG = εCL = 1. Notice that niCL < niNG . Therefore,

picking ηi that guarantees (8.41) also guarantees (8.20). Next, considering the functions Vθ̃i in

(8.18), Ve in (8.21), and Vi in (8.24),

Vi(k) = Ve(k) + β4Vθ̃i(k) = βi2e
2(k) + βi4

∥∥∥θ̃i(k)
∥∥∥2

.

For all k, we can thus write

min (βi2 , βi4) ‖ϑi(k)‖2 ≤ Vi(k) ≤ max (βi2 , βi4) ‖ϑi(k)‖2 , (8.42)

where min(·) and max(·) respectively denote the minimum and maximum operators, and ϑi(k) =[
e(k), θ̃>i (k)

]>
∈ Rrθi+1. Since CL is only used for approximation purposes, then (8.23) remains

unchanged here. Thus, reworking (8.23) to get

Ve(k + 1) ≤ βi6Ve(k) + βi2

(
1 +

1

εi

)
q2
i (k + 1), (8.43)

where βi6 = 1− βi3 = γ2
e (1 + εi), and, using (8.39), (8.43), we have from (8.24) that

Vi(k + 1) ≤ βi6Ve(k) + βi4βi5Vθ̃i(k)− pi(k)q2
i (k + 1)

m2
i (k)

, (8.44)

where pi(k) is given by (8.26). Notice that 0 < |γe| < 1 and εi satisfying (8.27) means 0 < βi6 < 1.

We avoid having γe = 0 as a choice so that βi6Ve(k) = 0 only when Ve(k) = 0. Moving on, here

also, by setting βi4 such that (8.28) holds, pi(k) ≥ 0. If so, i.e., pi(k) ≥ 0, continuing along from

(8.44),

Vi(k + 1) ≤ βi6Ve(k) + βi4βi5Vθ̃i(k) ≤ βi7Vi(k), (8.45)

where βi7 = max (βi5 , βi6). Picking ηi to satisfy (8.41) implies 0 < βi5 < 1. Coupling that with

0 < βi6 < 1, then 0 < βi7 < 1. As a result, (8.45) implies that lim
k→+∞

Vi(k) = 0 exponentially,

152

and, given (8.42), lim
k→+∞

‖ϑi(k)‖ = 0 exponentially as well. Hence, e(k) → 0, and θ̃i(k) → [0]rθi

or θ̂i(k)→ θi exponentially as k →∞, therefore completing the proof of Theorem 8.2.1. �

Further, with Vi(k) being positive definite and considering (8.45), Vi(k) ≤ βi7Vi(k0) for all k.

Hence, from (8.42) and denoting βi8 =
max (βi2 , βi4)

min (βi2 , βi4)
≥ 1,

‖ϑi(k)‖2 ≤ βi7βi8 ‖ϑi(k0)‖2 .

For all k, given that ‖ϑi(k)‖2 = e2(k) +
∥∥∥θ̃i(k)

∥∥∥2
, then both |e(k)| ≤ biCL and

∥∥∥θ̃i(k)
∥∥∥ ≤ biCL,

with

biCL ≤

√
βi7βi8

(
e2(k0) +

∥∥∥θ̃i(k0)
∥∥∥2
)

. (8.46)

8.3 Reference Model

For k > k0, a stable reference model system that tracks a desired bounded reference r(k) can

be given by

xm(k + 1) = −amxm(k) + bmr(k), (8.47)

where |am| < 1 [3].

If r(k) = r is constant (at least for a long period of time), it can be shown for k > k0 that, given

an initial state xm(k0),

xm(k) =

[
xm(k0)− bmr

1 + am

]
(−am)k−k0 +

bmr

1 + am
.

Hence, by picking bm = 1 + am, as k →∞, xm(k)→ r since |am| < 1.

Let the reference be such that |r(k)| ≤Mr for all k. If bm = 1 + am then, for all k, |xm(k)| ≤

Mxm , where Mxm > 0 can be chosen as Mxm = |xm(k0)|+ 2Mr.

153

8.4 Design Fine-Tuning

Let us say that we want x to be such that, for some Mx > Mxm > 0, |x(k)| ≤Mx. From (8.3),

|x(k)| ≤ |e(k)|+ |xm(k)| .

We can therefore find some Me > 0 such that |e(k)| ≤ Me means |x(k)| ≤ Mx for all k. Such an

Me can simply be Me = Mx−Mxm . Then, given (8.30) and (8.46), we will have to ensure beiNG ≤

Me and biCL ≤Me. For both designs, given (8.3), notice that e(k0) = 0 if xm(k0) = x(k0).

For the NG-based IAC design, if e(k0) = 0, given (8.30) and (8.31), beiNG ≤ Me can be

achieved if, for some Mφi > 0 such that ‖φi (χ(k))‖ ≤Mφi ,

∥∥∥θ̃i(k0)
∥∥∥ ≤ 2

Me

Mφi

.

Given our definition of φi and that of ui in (8.8), we can write

Mφi =

√
M2
φf

+M2
φg

(
γeMe +MF +Mxm

g

)2

,

where for some Mφf , Mφg , MF > 0, ‖φf (χ(k))‖ ≤ Mφf , ‖φg (χ(k))‖ ≤ Mφg , and |F(k)| ≤

MF .

As for the CL-based IAC design, if e(k0) = 0, given (8.46), biCL ≤Me if

∥∥∥θ̃i(k0)
∥∥∥ ≤ Me

βi7βi8
.

8.5 Numerical Simulations

Before describing our simulation example, given g defined in Assumption 8.1.2, we make sure

that the approximation G of g, as given by (8.7), verifies |G(k)| ≥ g for all k. For that, we redefine

G(k) =

{
G(k) , if |G(k)| ≥ g,
µ (G(k)) g , if |G(k)| < g,

154

where, for all k > k0,

µ (G(k)) =

1 , if G(k) > 0,
1 , if G(k) = 0 and G(k − 1) > 0,
−1 , if G(k) = 0 and G(k − 1) < 0,
−1 , if G(k) < 0.

However, this necessitates that θ̂g(k0) be initialized such that G(k0) 6= 0 since G(k0 − 1) is not

defined.

Consider the single state system in (8.1), where the structured uncertainties f and g, given by

(8.2a) and (8.2b) respectively, are such that

θf = [−0.25, 10]> , φf (χ(k)) =

[
1, exp

(
−(x(k)−π

2)
2

4

)]>
,

θg = 5, and φg (χ(k)) = 1.

(8.48)

We desire to track train steps reference input of various heights, but for which Mr = 10. In the

legends of the figures below, NG and CL are used to respectively indicate the use of the standard

DTNG and DTNG based CL algorithms.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-15

-10

-5

0

5

10

15

20

25

S
ta
te

x
(k
)

r

xm

x with NG-ui

x with CL-ui

Figure 8.1: Evolution of the state x when implementing both IAC designs for tracking of the train
steps.

155

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-5

0

5

10

15

20

25

T
ra
ck
in
g
er
ro
r
e
(k
)

e with NG-ui

e with CL-ui

(a) Tracking error e(k).

0 50 100 150 200 250 300 350 400 450 500

k (time step)

-3

-2

-1

0

1

2

3

4

5

C
o
n
tr
o
ll
er

u
(k
)

NG-ui

CL-ui

(b) IAC scheme controller.

Figure 8.2: Evolution of the tracking error e and IAC scheme control action ui when tracking the
train steps.

156

For all simulations, we set αi = 1. We pick ηi = 0.5ηiNG when using the NG algorithm and

ηi = 0.5ηiCL for the gradient based CL algorithm. Additionally, we set cZi = rθi and use DRP1

(described in Chapter VI) as the data recording procedure when implementing CL.

Let k ∈ [k0, kf]∩N, where kf denotes a final simulation time-step. We set k0 = 0 and kf = 500

here. Furthermore, since φg (χ(k)) = 1 in our example, choosing θ̂g(k0) = 1 for instance ensures

G(k0) 6= 0. The other parameter estimates are set to the origin. We assume knowing g = 1. We

start at x(k0) = xm(k0) = 0 and set γe = 0.5, am = −0.5.

Figure 8.1 and Figure 8.2a compare the performance of the NG-based and CL-based IAC de-

signs when tracking the train steps reference. As shown, tracking is achieved with both designs.

Only when using CL however are we able to recover the true parameters in the plant dynamics f

and g as Figure 8.3 and Figure 8.4 show. With the CL-based IAC design, judging by Figure 8.2a (or

even Figure 8.1), tracking is significantly better during transients after convergence of the parameter

estimates to their true values. Figure 8.2b shows the control signals.

0 50 100 150 200 250 300 350 400 450 500

k (time step)

0

2

4

6

8

10

P
ar
am

et
er
s

θf

θ̂f with NG-ui

θ̂f with CL-ui

Figure 8.3: Evolution of the parameter estimates in F when implementing both IAC designs for
tracking of the train steps.

157

0 50 100 150 200 250 300 350 400 450 500

k (time step)

1

2

3

4

5

6

P
ar
am

et
er
s

θg

θ̂g with NG-ui

θ̂g with CL-ui

Figure 8.4: Evolution of the parameter estimates in G when implementing both IAC designs for
tracking of the train steps.

8.6 Concluding Remarks about IAC Design

The present chapter studies a single state DT system with structured uncertainties. We develop

an IAC scheme to cope with the inherent parametric uncertainties in the system. The behavior of

closed-loop error signals when the designed IAC scheme utilizes either the DTNG algorithm or the

DTNG based CL algorithm developed in Chapter IV for parameter adaptation is analyzed.

With the NG-based IAC design, we can ultimately drive the tracking error to zero but cannot

formally prove parameter identification without requiring persistency of excitation.

We have previously showed that the gradient based CL algorithm for stand-alone approxima-

tion can help achieve parameter identification if a condition less restrictive than the persistency of

excitation condition is met. CL is implemented by using in its adaptation law data saved in the form

of past normalized regressor vectors inside a history stack. Provided that there are as many linearly

independent normalized regressor vectors in the history stack as the number of dimensions in the

158

same normalized regressors, we show exponential convergence of the tracking error and parame-

ter error to zero when applying the CL-based IAC design. Numerical simulations are provided to

corroborate our results.

159

CHAPTER IX

APPLICATION 2: FRICTION PARAMETER IDENTIFICATION OF

COMAU RACER ROBOT USING LEAST SQUARES BASED CONCURRENT

LEARNING

We perform system identification of the Comau Racer robot (described in Section 9.1.2) using

the discrete-time Normalized Recursive Least Squares based algorithm developed in Chapter V.

We would like to add that the work described in this chapter has been done collaboratively with

a team of researchers. Everything pertaining to modeling, design of experiments and off-line system

identification has previously been done by the aforementioned research group. We have worked to

use our developed CL method for on-line system identification.

Moreover, it is advised that the reader does not refer to previously used notations as some have

been reused and redefined in the present chapter.

9.1 Background and Problem Formulation

9.1.1 Robot Dynamics

Throughout this chapter, we consider an rq-link robotic manipulator, rq ∈ N+, with q =[
q1, q2, . . . , qrq

]> ∈ Rrq denoting a vector of rq positions in joint coordinate space. Several

publications (see [33, 34, 35, 36, 37]) outline standard methods often made use of to describe the

dynamics of a rigid body manipulator. Here, using Euler-Lagrange equations, the dynamics of an

160

rq-link rigid robotic manipulator can be expressed as

D(q)q̈ + C (q, q̇) q̇ + g(q) + τc + τv = τ , (9.1)

where q̇ ∈ Rrq and q̈ ∈ Rrq represent joint velocity and acceleration vectors respectively, D(q) ∈

Rrq×rq is a positive definite inertia matrix, C (q, q̇) q̇ ∈ Rrq represents centrifugal and Coriolis

forces, g(q) ∈ Rrq is a vector of gravitational torques, and the torques τc ∈ Rrq , τv ∈ Rrq , and

τ =
[
τ1, τ2, . . . , τrq

]> ∈ Rrq respectively represent a vector of Coulomb frictions, a vector of

viscous frictions, and a vector of joint torques for control of the manipulator. To viaually illustrate

a robot manipulator, on Figure 9.1, we show a sketch of a three degree of freedom (DoF) robot with

joint positions qi, i = 1, 2, 3, and lengths Li of the manipulator’s links.

q1

L1

q2

L2

q3

L3

Figure 9.1: Sketch of a 3-DoF robot manipulator.

Consider the diagonal matrices Fc ∈ Rrq×rq and Fv ∈ Rrq×rq , which we define as

Fc =

fc,1 0 . . . 0
0 fc,2 . . . 0
...

. . .
...

0 . . . 0 fc,rq

 and Fv =

fv,1 0 . . . 0
0 fv,2 . . . 0
...

. . .
...

0 . . . 0 fv,rq

 ,

161

with scalars fc,i and fv,i respectively denoting Coulomb and viscous friction parameters for each

of the joints i ∈ {1, 2, . . . , rq}. The Coulomb friction torque τc and viscous friction torque τv are

modeled as

τc = Fc sign(q̇), (9.2)

where sign (·) denotes the signum function and is such that, for some arbitrary vector x̄ = [x̄1, x̄2, . . . , x̄rx̄]> ∈

Rrx̄ , rx̄ ∈ N+,

sign(x) = [sign(x̄1), sign(x̄2), . . . , sign(x̄rx̄)]> ∈ Rrx̄ ,

and

τv = Fv q̇. (9.3)

As [35, 36, 37] show, the dynamical equation (9.1) of the manipulator can also be expressed as

Yb(χ(t)) pb = τ(t), (9.4)

where, for t ∈ R representing continuous time or process time,

χ(t) = [q̈(t), q̇(t), q(t)]> ∈ Rrχ ,

rχ = 3rq, the constant vector pb ∈ Rrpb , rpb ∈ N+, contains rpb parameters that are functions of

inertial and/or friction parameters, and the matrix Yb(χ(t)) ∈ Rrq×rpb depends on the geometry of

the robot (which is assumed to be known). We note that the dynamic model (9.4), which is said

to be linear in the parameter vector pb or a Linear Parametric Model (LPM), certainly looks like a

regression or function approximation model, with Yb(χ) playing the role of the regression matrix

while pb consists of the unknown, but ideal parameters to be identified.

162

9.1.2 Comau Racer Robot

We experiment with an rq = 6 rotational joints Comau Racer industrial robot. The Comau

Racer is made of an anthropomorphic arm and a spherical wrist, where the rotation axes of the last

three joints intersect at a single point.

The parameters in pb are independent and fully define the dynamic model of the manipulator,

i.e., (9.1) and/or (9.4). Hence, they form what is known as the base parameter set [34, 37, 38, 39].

Though pb is not unique, its dimensions can be well defined. Given the method described in [38], a

rpb = 52 base parameter set for the Comau Racer can be found.

9.1.3 Model Identification

Several schemes (see [35, 36, 40, 41, 42, 43, 44] and references within) for control of robotic

manipulators can be found in literature. In particular, model-based control techniques make use of

dynamical equations, which, in turn, depend on specific inertial and/or friction parameters. There-

fore, good knowledge of these parameters is crucial when performing model-based control. In

contrast, when interested in model-free control, knowing the parameters in pb may not be as nec-

essary, but would help design a good base controller, which could enhance the performance of the

overall control scheme.

Though robot manufacturers often provide kinematic and some inertial parameters, in many

instances, not all parameters are given. Friction parameters, for example, are usually not known.

Computer-aided design (CAD) drawings can be used to determine many parameters. However,

a physically built robot is usually slightly different from its CAD drawings after addition of the

screws, cabling, and, possibly, other add-ons. Hence, researchers have been conducting parameter

identification through experiments (or by running experiments and using experimentally collected

data) in order to determine appropriate parameter values (see [34, 45, 46]).

163

Considering the LPM given by (9.4), the following off-line parameter identification procedure

is usually employed.

1. Step 1: Defining excitation tracking trajectory for the robot that are suitable for identification;

2. Step 2: Running experiments and sampling data points;

3. Step 3: Signal filtering for calculation of velocity q̇ and acceleration q̈ using joint positions q,

which can then be used for computation of Yb;

4. Step 4: Constructing an overdetermined linear system based on (9.4);

5. Step 5: Applying a system identification learning technique of choice for parameter identifica-

tion.

First, as we have done previously, we define off-line parameter identification or off-line training as

running a learning technique for identification purposes once it is deemed that a sufficient number

of data points have been collected and the simulations of and/or experiments on the system have

been completed. Now, say N ∈ N+ number data points are collected at times t = t0, t1, . . . , tN−1

with sampling time Ts = ti − ti−1, i ∈ {1, 2, . . . , N − 1}. The overdetermined system mentioned

above in Step 4 is given by

Spb = bτ , (9.5)

where the information matrix S ∈ R(Nrq)×rpb and the vector bτ ∈ RNrq are such that

S =

Yb(χ(t0))
Yb(χ(t1))

...
Yb(χ(tN−1))

 and bτ =

τ(t0)
τ(t1)

...
τ(tN−1)

 ,

with χ(ti) = [q̈(ti), q̇(ti), q(ti)]
> and τ(ti), i ∈ {1, 2, . . . , N}, assumed to be available at sample

times ti.

164

For collection of necessary data for off-line training using (9.5), as Step 1 stipulates, an excita-

tion trajectory for robot tracking has to be defined first. The aforesaid excitation trajectory has to be

not only practical, i.e., meet joint angles, velocity, and acceleration constraints, it also has to be rich

enough to yield good system identification. Richness of the excitation trajectory, which is closely

related to the concept of persistency of excitation (see Appendix B), mathematically translates into

matrix S being at least full row rank if Nrq ≤ rpb or full column rank Nrq ≥ rpb .

Several methods for defining excitation trajectories exist, some of which can be found in [47, 48,

49] and the references within those papers. The present research uses the method defined in [49],

where desired joint positions (and, as a result, velocities and accelerations) to track are functions of

harmonic sine and cosine waveforms, hence finite Fourier series. That is, the desired joints position

vector qd =
[
qd1 , qd2 , . . . , qdrq

]>
∈ Rrq to track is such that, for joints i = 1, 2, . . . , rq,

qdi (t) = qdi,0 +
M∑
k=1

(ai,k sin(kωf t) + bi,k cos(kωf t)) , (9.6)

with qdi,0 being a constant (with respect to time) desired joint position offset, ai,k and bi,k repre-

senting Fourier coefficients, M being the number of harmonics to use, and ωf being a fundamental

frequency. Desired velocity q̇di (t) and acceleration q̈di (t) can be analytically derived from (9.6). It

is worth mentioning that a large M , i.e., a large number of harmonics, leads to higher accelera-

tions, which could prove important for good identification. Frequency ωf needs to be appropriately

picked proportionally to the sampling frequency ωs =
2π

Ts
while making sure not to excite the

robot at its resonance frequency. Moving on, as [49] advocates, parameters qdi,0, ai,k, and bi,k for

i = 1, 2, . . . , rq and k = 1, 2, . . . , M , are found by maximizing the determinant of S>S evaluated

at qi(tj) = qdi (tj), q̇i(tj) = q̇di (tj), and q̈i(tj) = q̈di (tj), i = 1, 2, . . . , rq and j = 1, 2, . . . N ,

while making sure to take in consideration the robot joint and workspace constraints.

Position q(t) and torque τ(t) vectors are measured at every sample time. Also, as Step 3 stip-

ulates, velocity q̇(t) and acceleration q̈(t) are obtained via signal filtering of q(t). In that sense,

165

letting qm(t) =
[
qm,1, qm,2, . . . , qm,rq

]> ∈ Rrq , q̇m(t) ∈ Rrq , q̈m(t) ∈ Rrq , and τm(t) =[
τm,1(t), τm,2(t), . . . , τm,rq(t)

]> ∈ Rrq be the measured and/or filtered position, velocity, accel-

eration, and torque vectors respectively, it is not always the case that the previously listed measured

and/or filtered entities are exactly equal to their true (analytic) selves. Actually, how good qm, q̇m,

q̈m, and τm are in comparison to their correspondingly true q, q̇, q̈, and τ has to do with the quality of

the measuring devices and filtering process. Moreover, in essence, this also means that it is not pos-

sible (at least, not always) to compute Yb(χ). Rather, Yb(χm), where χm = [q̈m, q̇m, qm]> ∈ Rrχ ,

is what we would be computing. Let Sm ∈ R(Nrq)×rpb and bτm ∈ RNrq be such that

Sm =

Yb(χm(t0))
Yb(χm(t1))

...
Yb(χm(tN−1))

 and bτm =

τm(t0)
τm(t1)

...
τm(tN−1)

 .

Now, defining the errors eY ∈ Rrq , eτ ∈ Rrq , e ∈ Rrq , eS ∈ RNrq , eb ∈ RNrq , ē ∈ RNrq as

eY (t) = Yb(χm(t)) pb − Yb(χ(t)) pb,

eτ (t) = τm(t)− τ(t),

e(t) = eτ (t)− eY (t),

eS(t) = Smpb − Spb,

eb(t) = bτm − bτ ,

ē(t) = eb(t)− eS(t),

from (9.4) and (9.5) respectively, we get that

τm(t) = Yb(χm(t)) pb + e(t) (9.7)

and

bτm = Smpb + ē(t). (9.8)

166

Using the Weighted Least Squares estimation (WLSE) method, for some positive definite co-

variance matrix C ∈ R(Nrq)×(Nrq), i.e., C > 0, while ignoring ē(t) in (9.8) or, rather, assuming no

error exists, i.e., ē(t) = [0]Nrq and, therefore, bτm = Smpb, the estimate p̂b,WLSE ∈ Rrpb of pb is

computed as

p̂b,WLSE =
(
S>mC

−1Sm

)−1
S>mC

−1bτm . (9.9)

Expression (9.9) can also be described as a weighted batch Least Squares computation, where all

existing recorded data for approximation is used for calculation of the parameter estimates. It should

be noted that, with C > 0,
(
S>mC

−1Sm
)−1 exists if S>mSm is invertible, which, in turns, is possible

to achieve granted the recorded data is rich enough. This is why the robot has to be commanded to

track an excitation trajectory.

In light of all the points made previously and in the case of off-line training of the Comau Racer

robot, first, given all joints and workspace restrictions, an optimal desired excitation trajectory is

designed. Then, after running the robot through the trajectory and collecting enough data point,

the WLSE method is used to solve for p̂b,WLSE given in (9.9). The estimate p̂b,WLSE can then be

used to compute the predicted torque vector τp(t, p̂b,WLSE) that is such that, for some estimation

p̂b ∈ Rrpb of pb, we define τp =
[
τp,1, τp,2, . . . , τp,rq

]> ∈ Rrq as

τp(t, p̂b) = Yb(χm(t)) p̂b. (9.10)

Hence, using (9.10),

τp(t, p̂b,WLSE) = Yb(χm(t)) p̂b,WLSE .

Notice that τp in (9.10) is actually modeled after (9.4). From the experiments run on the Comau

Racer robot, the prediction τp(t, p̂b,WLSE) satisfactorily matched the measured torque τm(t).

167

9.1.4 Problem Formulation

In the present research, we focus on on-line approximation as opposed to its off-line counterpart.

That is, the parameter identification algorithm is run as the robot is commanded to move. Identifi-

cation needs not wait for collection of all data points to be implemented, as is the case for off-line

training. Rather, with on-line approximation, the unknown parameters in pb are being identified as

each robot data point is being collected. On-line identification is of particular interest in the context

of adaptive control, where approximation results (be it function approximation or identification of

parameters) are made use of in the definition of the control law. We will use the off-line parame-

ter estimation results as the “measuring stick” to which we will compare what we obtain when we

perform on-line approximation instead.

9.2 Discrete-Time Representation

We consider model (9.7) as opposed to (9.4) for its more generic structure. Though (9.7) de-

scribes a CT system, because data points, collected and used for parameter estimation, are being

sampled at times ti, i = 0, 1, . . . , N − 1, therefore creating a process that is discrete in nature, we

will use approximation schemes suited for the discrete-time framework.

We start by first redefining the approximation problem in the DT domain. As mentioned above,

data is collected a times t = t0, t1, . . . , tN−1 with sampling time Ts between consecutive sam-

ples. Written differently, we have t = t0 + kTs, k ∈ {k0, k1, . . . , kN−1} ∈ N, with k0 = 0 and

ki = ki−1 + 1 for i ∈ {1, 2, . . . , N − 1}. Dropping Ts for conciseness, (9.7) translates to the DT

model

τm(k) = Yb(χm(k)) pb + e(k). (9.11)

We have nevertheless essentially assumed that the system is being sampled fast enough that (9.11)

is able to closely mimic (9.7).

168

9.3 Partial Approximation

It may be the case that certain parameters are well known or, at least, known well enough and,

consequently, the complexity of the approximation problem could be reduced by only identifying

unknown parameters, as opposed to all rpb parameters. To do so, the contribution of known param-

eters (if any) to τm (given by (9.11)) must be subtracted from τm and the approximation problem

should be redefined.

Let τknm ∈ Rrq be the known portion of τm and τuknm ∈ Rrq be the unknown portion of τm.

Known parameters can be made use of to reconstruct (to certain degree) τknm by extracting and

using the known portions pknb ∈ Rrkn , rkn ∈ N and rkn < rpb , of pb and, correspondingly,

Y kn
b (χm) ∈ Rrq×rkn of Yb(χm). While neglecting measurement errors that may have occurred,

τknm can be calculated or, rather, approximated (alike τp) as

τknm (t) ' Y kn
b (χm(k)) pknb . (9.12)

Thus, if

τm(k) = τknm (k) + τuknm (k),

for all k, using (9.12), τuknm can be numerically computed or, again, approximated (given that (9.12)

is an approximation of τknm (k)) as

τuknm (k) = τm(k)− τknm (k) ' τm(k)− Y kn
b (χm(k)) pknb . (9.13)

We could then express τuknm much like τm in (9.11). That is, we could find unknown portions

puknb ∈ Rrθ , with rθ = rpb − rkn, of pb and, correspondingly, Y ukn
b (χm) ∈ Rrq×rθ of Yb(χm) such

that

τuknm (k) = Y ukn
b (χm(k)) puknb + eunk(k), (9.14)

169

where we define eukn(k) ∈ Rrq as

eukn(k) = τm(k)− Y kn
b (χm(k)) pknb .

In that sense, eukn is the error incurred by numerically computing τuknm using (??). Letting

τuknm =
[
τuknm,1 , τuknm,2 , . . . , τuknm,rq

]>
,

Y ukn
b =

[
Y ukn>
b,1 , Y ukn>

b,2 , . . . , Y ukn>
b,rq

]>
,

and

eunk =
[
eunk1 , eunk2 , . . . , eunkrq

]>
,

where, for i = 1, 2, . . . , rq, τuknm,i ∈ R, Y ukn
b,i ∈ Rrθ , and eunki ∈ R are, respectively, the row

elements of τuknm , Y ukn
b (χm), and eunk, elementally, (9.14) means

τuknm,i (k) = Y ukn
b,i (χm(k)) puknb + eunki (k). (9.15)

9.4 On-Line Approximation and Parameter Identification

Analyses and derivations regarding function approximation and parameter identification will be

done considering τuknm in (9.14), instead of τm. Notice however that, for rkn = 0, rθ = rpb − rkn =

rpb , τ
ukn
m = τm, and we therefore return to the original problem of approximating τm. Also, any

subsequent result we arrive at by studying function approximation while considering τuknm would

also be applicable to function approximation when only considering any of the scalars τuknm,i , i =

1, 2, . . . , rq, defined in (9.15) instead, given that τuknm,i is essentially a special case of τuknm .

Now, drawing parallels to Chapter V, while considering (9.14), let f(k) ∈ Rrq , φ (χm(k)) ∈

170

Rrθ×rq , θ ∈ Rrθ , and ef (k) ∈ Rrq given by

f(k) = τuknm (k), (9.16a)

φ (χm(k)) = Y >b (χm(k)) , (9.16b)

θ = puknb , (9.16c)

ef (k) = eukn(k) (9.16d)

be, respectively, the uncertainty to approximate, the regressor, the unknown but constant and ideal

parameter vector, and the representation error due to approximation imperfections. It should be

added that, though labeled as uncertain and as mentioned above, f(k) = τuknm is nevertheless

computable via (9.13). Continuing, given the expressions in (9.16), in the newly adopted notations

used for conciseness, (9.14) is rewritten as

f(k) = φ>(χm(k)) θ + ef (k), (9.17)

The LPM F (χm(k), θ) ∈ Rrq , such that

F (χm(k), θ) = φ>(χm(k)) θ, (9.18)

approximates τm(k) for χm ∈ Dχm ⊂ Rrχ and θ ∈ Dθ ⊂ Rrθ , with Dχm and Dθ being compact

sets. It should be noted that (9.18) is in model (2.2b) form. Assuming that ef (k) is bounded, there

exists a scalar E ≥ 0 such that, for all k, χm ∈ Dχm , and θ ∈ Dθ,

‖ef (k)‖F ≤ E. (9.19)

This is a fair assumption to make given that the dynamical equation (9.1) can be written as (9.4),

featuring the same regression matrix Yb as in (9.11), (9.14), and (9.17), and measurements χm(k)

are in practice supposed to be bounded. Furthermore, going back to (9.17), it is worthwhile noting

that, we are, in essence, dealing here with an unstructured uncertainty approximation case as op-

posed to its structured uncertainty counterpart, given that, as (9.17) stipulates, it is not always the

171

case that F (χ(k), pb) can be used to exactly and fully reconstruct f(k) even if we are provided

with the best θ that can be found on Dθ.

Chapter V (or reference [50]) investigates using the Least Squares method for function ap-

proximation and system identification. More specifically, it studies and compares the standard DT

Normalized Recursive Least Squares (DTNRLS) algorithm and its CL modification. CL consists of

selectively picking and recording past data so as to use it together with current data for parameter

identification. Unlike standard learning techniques, CL does not require persistently exciting (PE)

inputs but rather a more relaxed condition, involving the past, stored data being rich enough for

results listed above to be achieved.

For on-line approximation purposes, we define θ̂(k) ∈ Rrpb as the estimate of θ. Notice that

θ̂(k) is function of DT time k, as it is to be adjusted as k evolves via an adaptation law. In contrast,

the ideal, true parameter vector θ is, as mentioned above, assumed to be constant. Also, consider

the scheme F
(
χm(k), θ̂(k)

)
∈ Rrq modeled as

F
(
χm(k), θ̂(k)

)
= φ>(χm(k)) θ̂(k) (9.20)

after F (χm(k), θ) in (9.18). Let θ̃(k) ∈ Rrθ and f̃(k) ∈ Rrq , given by

θ̃(k) = θ̂(k)− θ (9.21)

and

f̃(k) = F
(
χm(k), θ̂(k)

)
− f(k), (9.22)

be the parameter error and approximation error respectively. Notice that, numerically speaking,

(9.22) gives us a way to compute f̃ . Now, using (9.18), (9.20), and (9.21), f̃(k) in (9.22) is also

f̃(k) = F
(
χm(k), θ̃(k)

)
− [f(k)−F (χm(k), θ)] , (9.23)

172

where, given the linearity in the parameter approximator of F ,

F
(
χm(k), θ̃(k)

)
= F

(
χm(k), θ̂(k)

)
−F (χm(k), θ)

= Yb(χm(k)) θ̂(k)− Yb(χm(k)) pb

= Yb(χm(k)) θ̃(k).

From (9.17), (9.23) also means

f̃(k) = F
(
χm(k), θ̃(k)

)
− ef (k). (9.24)

Consider the following definitions.

• Let ζi(χm(k)) ∈ Rrθ , i = 1, 2, . . . , rθ, represent the column vectors of φ (χm(k)) ∈ Rrθ×rq .

That is

φ (χm(k)) =
[
ζ1(χm(k)) , ζ2(χm(k)) , . . . , ζrpb (χm(k))

]
. (9.25)

• Let Z ∈ RrZ×cZ , with rZ = rθ and cZ ∈ N+, be a matrix that is filled column-wise with

vectors ζi(χm(σj)), i ∈ {1, 2, . . . , rθ}, obtained or found at discrete time σj , k0 ≤ σj < k,

with j = 1, 2, . . . , cZ . Essentially,

Z =
[
ζi(χm(σ1)) , ζi(χm(σ2)) , . . . , ζi(χm(σcZ))

]
. (9.26)

Moreover, for any k, say that the uncertainty f(k) ∈ Rrq is such that

f(k) = τuknm (k) =
[
f1(k), f2(k), . . . , frq(k)

]> ,

where the scalars fi(k), i = 1, 2, . . . , rq, are the entries of vector f(k). Now, let F ∈ RcZ

be a vector containing the uncertainty entities in f(k). That is,

F =
[
fi(σ1), fi(σ2), . . . , fi(σcZ)

]> , (9.27)

173

for some i ∈ {1, 2, · · · , rq}, denoting the columns indexes of f(σj), j ∈ {1, 2, . . . , cZ}.

It should be noted that matrices Z and F could be time dependent, i.e., Z = Z(k) and

F = F (k). Finally, we define ΦZ,k ∈ RrZ×rZ as

ΦZ,k = ZZ>. (9.28)

Notice that ΦZ,k is symmetric, i.e., Φ>Z,k = ΦZ,k, and (at least) positive semidefinite, i.e.,

ΦZ,k ≥ 0.

Next, we describe and state the properties of the learning algorithms used here for on-line function

approximation and parameter identification. As aforesaid, these learning algorithms are studied

more in Chapter V.

9.4.1 Applying the Discrete-Time Normalized Recursive Least Squares Algorithm

Let θ̂(k0) ∈ Rrθ be an initial vector parameter estimates. For k ≥ k0, we have from Chapter V

the DTNRLS algorithm for updating the parameter estimate θ̂ as

ψ(k) = φ (χm(k)) , (9.29a)

Qε(k) = f̃(k), (9.29b)

KLS(k) = P (k − 1)ψ(k)
(
m2(k)

)−1 , (9.29c)

∆θ̂LS(k) = KLS(k)Qε(k), (9.29d)

θ̂(k + 1) = θ̂(k)−∆θ̂LS(k), (9.29e)

where φ (χm(k)) is given by (9.16b), by letting ψ(k) ∈ Rrψ×cψ and Qε(k) ∈ RrQε then, for the

present algorithm, rψ = rθ and cψ = rq given (9.29a) while rQε = rq given (9.29b), KLS(k) ∈

Rrψ×cψ , ∆θ̂LS(k) ∈ Rrθ , we define the gain matrix P (k) ∈ Rrψ×rψ as

P (k) = P (k − 1)−KLS(k)ψ>(k)P (k − 1), (9.30)

174

with P (k0− 1) = P0 ∈ Rrψ×rψ chosen from the start as a symmetric, positive-definite matrix (i.e.,

P>0 = P0 and P0 > 0), and the normalization matrix signal m(k) ∈ Rcψ×cψ is such that, for some

scalar α > 0,

m2(k) = αIcψ + ψ>(k)P (k − 1)ψ(k). (9.31)

Referring to Chapter Chapter V, when dealing with an unstructured uncertainty, it can be for-

mally shown that the DTNRLS algorithm in (9.29) guarantees that:

• The parameter error θ̃(k) is uniformly ultimately bounded (UUB) or, said differently, θ̃(k)

(and, thus, θ̂(k)) ultimately ends up in a neighborhood around the origin (in a neighborhood

around θ) provided ef (k) ∈ L2 (see Appendix C for the definitions of Lp, p ∈ [1,∞), and

L∞ signal spaces);

• For all k > k0, P (k) = P>(k) is positive definite and bounded. There also exists a constant

matrix Pss ∈ Rrψ×cψ such that lim
k→∞

P (k) = Pss;

• For some constant matrix θ̂ss ∈ Rrpb , lim
k→∞

θ̂(k) = θ̂ss if ef (k) ∈ Lp, p ∈ [1,∞).

Theoretically speaking, stability of θ̃(k) could also be shown if we are guaranteed a PE ψm(k) =

ψ(k)m−1(k) ∈ Rrψ×cψ [3, 2, 4], and that is without any other requirement on ef . Nevertheless,

requiring PE condition and/or Lp, p ∈ [1,∞), properties of ef is quite demanding. Concurrent

Learning, which we employ and apply next, requires a milder condition than both previously men-

tioned conditions for stability guarantees.

9.4.2 Applying the Discrete-Time Normalized Recursive Least Squares Based Con-
current Learning Algorithm

CL makes use of memory bank, dubbed as history stack, where carefully chosen past data is

saved. That history stack is what we have denoted here as Z above in (9.26).

175

Consider the following notations and definitions. Let ξφ ∈ Rrq×rq and ξZ ∈ RcZ×cZ be positive

definite matrices, i.e., ξφ > 0 and ξZ > 0. Similarly to F , consider the approximation based on

recorded data F̄ (Z, θ) ∈ RcZ and its corresponding on-line scheme F̄
(
Z, θ̂(k)

)
∈ RcZ given by

F̄ (Z, θ) = Z>θ (9.32)

and

F̄
(
Z, θ̂(k)

)
= Z>θ̂(k), (9.33)

respectively. Much like f̃ , we compute the approximation error based on recorded data f̃Z(k) ∈ RcZ

as

f̃Z(k) = F̄
(
Z, θ̂(k)

)
− F , (9.34)

with F given by (9.27). This time around, let ψ(k) ∈ Rrψ×cψ be defined as

ψ(k) = [φ (χm(k)) ξφ, Z ξZ] . (9.35)

That is rψ = rθ and cψ = rq + cZ . We also define the row vector F̄ (k) ∈ R1×(rq+cZ) as

F̄ (k) =
[
f>(k) ξφ, F>ξZ

]
. (9.36)

In light of the expressions of ψ(k) in (9.35) and F̄ (k) in (9.36), let the overall approximation error

Qε(k) ∈ RrQε be given by

Qε(k) = ψ>(k)θ̂(k)− F̄>(k), (9.37)

which consequently means that rQε = rq + cZ in this case. Notice that f̃(k) in (9.22), f̃Z(k) in

(9.34), along with expressions (9.20), (9.33), (9.35), and (9.36) make it possible to re-express (9.37)

as

Qε(k) = ξ>φ f̃(k) + ξ>Z f̃Z(k). (9.38)

176

As (9.38) shows, matrices ξφ and ξZ are weighting matrices that could be used to emphasize either

the contribution of the approximation error based on current data, calculated as f̃(k), or the contri-

bution of the approximation error based on recorded, past data, calculated as f̃Z(k).

The DTNRLS based CL algorithm, which we described below in (9.39), very much resem-

bles the standard DTNRLS algorithm in (9.29). For k ≥ k0, for some positive definite matrices

ξφ ∈ Rrq×rq and ξZ ∈ RcZ×cZ , given an initial parameter estimate θ̂(k0) ∈ Rrθ , and for a chosen

positive definite gain matrix P (k0 − 1) = P0, with P>0 = P0, updating the parameter estimate θ is

done by recursively carrying out

ψ(k) = [φ (χm(k)) ξφ, Z ξZ] ,

Qε(k) = ξ>φ f̃(k) + ξ>Z f̃Z(k),

KCL(k) = P (k − 1)ψ(k)
(
m2(k)

)−1 ,

∆θ̂CL(k) = KCL(k)Qε(k),

θ̂(k + 1) = θ̂(k)−∆θ̂CL(k),

(9.39)

with P (k) and m2(k) respectively given by (9.30) and (9.31). Comparing the DTNRLS algorithm

in (9.29) and its CL modification in (9.39) reveals that the actual calculations of ψ(k) and Qε(k) is

where their differences lie. Otherwise, form-wise at least, both algorithms are very similar.

CL needs not PE inputs for realization of convergence of the parameter error θ̃. Nevertheless, it

requires linear independence of the data in the history stack Z. This condition, also known as the

rank condition, is given by Condition 3.1.1.

Condition 3.1.1 means cZ ≥ rZ and, denoting rank(·) as the rank operator, rank(Z) = rZ = rθ.

It is less demanding than persistency of excitation as it only deals with a subgroup of past data (in

the history stack). Additionally, unlike the PE condition, it is possible to implement and supervise

the rank condition on-line.

If Condition 3.1.1 is verified, we have from Theorem that, for the unstructured uncertainty

case, the DTNRLS based CL algorithm guarantees that:

177

• The parameter error θ̃(k)→ [0]rpb asymptotically, or, equivalently, θ̂(k)→ pb asymptotically

as times evolves;

• Here also, P (k) = P>(k) is positive definite and bounded for all k > k0. Moreover,

lim
k→∞

P (k) = Pss = [0]rψ×rψ (which actually allows to show convergence of θ̃ to the ori-

gin).

Remark 5.2.4 in Chapter V emphasizes that necessitating L2 and/or Lp, p ∈ [1,∞), properties for

ef to realize some of the theoretical guarantees of the standard DTNRLS algorithm could be, just

like the PE condition, more restrictive than requiring that the rank condition on Z be met in the case

of the CL modification.

We have mentioned throughout this work that the data that goes into the history stack Z (or the

data that makes up Z) undergoes a selective process. Chapter VI provides data recording procedures

for constructing Z. Two procedures are presented in [50] therein, namely the Data Recording Pro-

cedure 1 (DRP1) and the Data Recording Procedure 2 (DPR2). Both procedures seek to maximize

the minimum eigenvalue of ΦZ,k (defined by (9.28)) given that, as shown in [50], such a maximiza-

tion would speed up the convergence of θ̃(k) towards the origin. However, while DRP1 calls for

application of the CL modification starting at k = k0, i.e., actively looking to start mixing current

and past data from the on-start, with DRP2, CL is only applied after sufficient data guaranteeing

verification of the rank condition has been collected. Both procedures have their advantages as well

as disadvantages, as [50] points.

9.5 Numerical Simulations and Experimental Results

We now put both the standard DTNRLS algorithm and its CL modification to task on the rq = 6

rotational joints Comau Racer industrial robot. Both algorithms are used for on-line parameter

identification.

178

We are however only interested in identifying the 12 friction parameters associated with robot,

which have been labeled parameters 41 through 52 (out of the 52 parameters in pb). It is not too

far-fetched to assume that kinematic and inertial parameters are known well enough based on the

information provided by robot manufacturers and/or CAD drawings. Friction parameters, as we

have pointed to before, are however not necessarily (readily) known. Identifying them on-line, as

we have set out to do, could, for instance, help better a friction torque compensation scheme when

controlling the robot.

Numerical simulations of Section 9.5.1 are obtained by simulating a model of the robot in

Matlab/Simulink. Real-life experiments are also carried out and reported in Section 9.5.2.

For implementation of the algorithms, we start with

P (k0 − 1) = P0 = 100 Irψ and θ̂(k0) = [0]rθ ,

while setting α = 1, unless otherwise explicitly stated. For CL only, DRP1 is chosen as the data

recording procedure, we set cZ = rZ = rθ. Lastly, on the figures shown in Sections 9.5.1 and 9.5.2,

legends ‘LS’ and ‘LS-CL’ are used to denote the DTNRLS and the DTNRLS-based CL algorithms

respectively.

9.5.1 Numerical Simulations

Let θ̂WLSE ∈ Rrθ be the unknown portion of the estimate p̂b,WLSE found via off-line training

using the WLSE method. We define and compute metric

εθ̂(k) =
∥∥∥θ̂(k)− θ̂WLSE

∥∥∥ (9.40)

as a measure of the difference (in norm) between the estimates obtained on-line and off-line as time

evolves.

Seen on Figure 9.2 is the evolution of the parameter estimates, the evolution of metric εθ̂, and

the final values of the parameter estimates after 20 seconds of simulation. It should be added that,

179

for CL implementation, we set ξφ = Irq , and ξZ = IcZ . What Figure 9.2 shows is that, as far

as recovering θ̂WLSE , though both algorithms perform well, the CL modification seemingly does

better than the standard DTNRLS algorithm.

9.5.2 Experimental Results

Here, parameter identification is performed on the actual Comau Racer robot in real-time. We

have set ξφ = Irq and ξZ = IcZ for use of the DTNRLS based CL technique. From the data

collected, as Figure 9.3 shows, we are able to plot the evolution of the parameters estimates and

their final (steady-state) values. Notice on Figure 9.3a that we experience large transients between

t = 7 seconds and t = 10 seconds marks when using the DTNRLS based CL method. This could

be due to setting the minimum (and, thus, maximum) eigenvalue of P0 to a large number. Hence,

to see with better clarity what happens in steady state, we have added Figure 9.3b as a zoomed-in

version of Figure 9.3a.

Additionally, we set P0 = 0.001 Irψ (hence, with much smaller spectral properties than what

they were for the previous run) for use of both LS methods and repeat the real-time parameter

identification experiment. It should also be said that we set ξφ = 50 Irq and ξZ = 0.1 IcZ this time

around. Our results are shown Figure 9.4. Unlike before, we do not experinece large transients in

the evolution of the DTNRLS based CL parameter estimates.

Notice on both Figures 9.3c and 9.4b that, unlike in Section 9.5.1, there are more discrepancies

between the WLSE off-line estimates and both the final values of the DTRNLS and DTNRLS based

CL on-line estimates. We have up to now considered the WLSE estimates as the “golden standard,”

with respect to which, in Section 9.5.1, we have computed metric εθ̂. However, an ultimately better

measure of how good the parameters estimates are would be to compute the predicted torque τp

defined in (9.10).

Let p̂b,LS and p̂b,CL be the final values of the DTNRLS and DTNRLS based CL parameter

180

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-20

0

20

40

60

80

100

120

140

P
ar
am

et
er
s

WSLE, off-line
LS, on-line
LS-CL, on-line

(a) Evolution of parameter estimates.

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

0

20

40

60

80

100

120

140

160

M
et
ri
c
ε
θ̂

LS, on-line
LS-CL, on-line

(b) Evolution of ‖εpb‖.

40 42 44 46 48 50 52

Parameter number

-20

0

20

40

60

80

100

120

P
ar
am

et
er

fi
n
al

va
lu
es

WSLE, off-line
LS, on-line
LS-CL, on-line

(c) Parameter estimate final values.

Figure 9.2: Numerical simulations: parameter identification results of the Comau Racer robot using
the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = Irq , and ξZ = IcZ) algorithm.

181

estimates of pb. That means p̂b,LS and p̂b,CL contains the known parameters and the correspondingly

final values of the estimated unknown friction parameters using either methods. For some estimate

p̂b ∈ Rrp , let

τp(k, p̂b) = Yb(χm(k)) p̂b, (9.41)

be the DT version of CT framework τp(t, p̂b) in (9.10). Aside from τp(k, p̂b,WLSE), we can thus also

compute the predicted vector torques τp(k, p̂b,LS) and τp(k, p̂b,CL) using (9.41). For illustration

purposes, on Figure 9.5, for when P0 = 100 Irψ , we plot measurements τm,i, i = 1, 2, . . . , 6, and

their predictions τp,i(k, p̂b,WLSE), τp,i(k, p̂b,LS), and τp,i(k, p̂b,CL). Moreover, from a numerical

point of view, we compare measured and predicted torques. In fact, for N being the number of

sample points collected and i = 1, 2, . . . , 6, we compute metrics

ετi(p̂b) =
1

N

kN−1∑
σ=k0

|τp,i(σ, p̂b)− τm,i(σ)|2 , (9.42)

which, essentially, are the mean square error (MSE) between the predicted and measured torques

for each of the 6 joints of the Comau Racer robot, and tabulate them in Table 9.1 for when P0 =

100 Irψ and Table 9.2 for when P0 = 0.001 Irψ . All units are in SI. We see that the obtained

on-line parameter estimates provide better torque predictions than the WLSE estimates. Moreover,

as previously remarked in Chapter VII, when the spectral properties of P0 are large, as Table 9.1

shows, from an application standpoint, it is difficult to clearly point to the benefit (aside from the

theoretical guarantees) of using the DTNRLS based CL algorithm. Instead, when choosing P0

with smaller spectral properties, we can now, as Table 9.2 reveals, say that the DTNRLS based CL

method improves the standard DTNRLS algorithm.

9.6 Concluding Remarks

We use the Normalized Recursive Least Squares algorithms of Chapter V for system identifica-

tion of the Comau Racer robot. In particular, we are interested in estimating friction parameters.

182

0 10 20 30 40 50 60 70

Time (seconds)

-200

0

200

400

600

800

1000

1200

1400

1600

P
ar
am

et
er
s

WSLE, off-line
LS, on-line
LS-CL, on-line

(a) Evolution of parameter estimates (zoomed out).

0 10 20 30 40 50 60

Time (seconds)

-150

-100

-50

0

50

100

150

200

250

P
ar
am

et
er
s

WSLE, off-line
LS, on-line
LS-CL, on-line

(b) Evolution of parameter estimates (zoomed in).

40 42 44 46 48 50 52

Parameter number

-20

0

20

40

60

80

100

120

140

160

180

P
ar
am

et
er

fi
n
al

va
lu
es

WSLE, off-line
LS, on-line
LS-CL, on-line

(c) Parameter estimate final values.

Figure 9.3: Experimental results: parameter identification results of the Comau Racer robot using
the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = Irq , and ξZ = IcZ) algorithm:
P0 = 100 Irψ .

183

0 10 20 30 40 50 60 70

Time (seconds)

-20

0

20

40

60

80

100

120

140

160

180

P
ar
am

et
er
s

WSLE, off-line
LS, on-line
LS-CL, on-line

(a) Evolution of parameter estimates (zoomed out).

40 42 44 46 48 50 52

Parameter number

-20

0

20

40

60

80

100

120

140

160

180

P
ar
am

et
er

fi
n
al

va
lu
es

WSLE, off-line
LS, on-line
LS-CL, on-line

(b) Parameter estimate final values.

Figure 9.4: Experimental results: parameter identification results of the Comau Racer robot using
the DTNRLS algorithm and the DTNRLS based CL (with DRP1, ξφ = 50 Irq , and ξZ = 0.1 IcZ)
algorithm: P0 = 0.001 Irψ .

Table 9.1: Mean square torque prediction errors: P0 = 100 Irψ , DTNRLS based CL is implemented
with DRP1, ξφ = Irq , and ξZ = IcZ .

WLSE DTNRLS DTNRLS based CL

ετ1 × 1000 432.24 431.84 431.85

ετ2 × 1000 533.56 524.43 524.43

ετ3 × 1000 157.43 154.41 154.41

ετ4 × 1000 6.65 6.27 6.28

ετ5 × 1000 5.38 5.05 5.05

ετ6 × 1000 3.35 3.14 3.14

184

0 10 20 30 40 50 60 70

Time (seconds)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

T
o
rq
u
e
τ 1

τm,1
WSLE, off-line τp,1
LS, on-line τp,1
LS-CL, on-line τp,1

(a) τm,1 and its predictions.

0 10 20 30 40 50 60 70

Time (seconds)

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

T
o
rq
u
e
τ 2

τm,2
WSLE, off-line τp,2
LS, on-line τp,2
LS-CL, on-line τp,2

(b) τm,2 and its predictions.

0 10 20 30 40 50 60 70

Time (seconds)

-1500

-1000

-500

0

500

1000

1500

2000

T
o
rq
u
e
τ 3

τm,3
WSLE, off-line τp,3
LS, on-line τp,3
LS-CL, on-line τp,3

(c) τm,3 and its predictions.

0 10 20 30 40 50 60 70

Time (seconds)

-50

-40

-30

-20

-10

0

10

20

30

40

T
o
rq
u
e
τ 4

τm,4
WSLE, off-line τp,4
LS, on-line τp,4
LS-CL, on-line τp,4

(d) τm,4 and its predictions.

0 10 20 30 40 50 60 70

Time (seconds)

-60

-40

-20

0

20

40

60

80

T
o
rq
u
e
τ 5

τm,5
WSLE, off-line τp,5
LS, on-line τp,5
LS-CL, on-line τp,5

(e) τm,5 and its predictions.

0 10 20 30 40 50 60 70

Time (seconds)

-30

-25

-20

-15

-10

-5

0

5

10

15

20

T
o
rq
u
e
τ 6

τm,6
WSLE, off-line τp,6
LS, on-line τp,6
LS-CL, on-line τp,6

(f) τm,6 and its predictions.

Figure 9.5: Experimental results: measured torques τm,i, i = 1, 2, . . . , 6, and predicted torques
τp,i when performing parameter identification of the Comau Racer robot using the DTNRLS algo-
rithm and the DTNRLS based CL (with DRP1, ξφ = Irq , and ξZ = IcZ) algorithm: P0 = 100 Irψ .

185

Table 9.2: Mean square torque prediction errors: P0 = 0.001 Irψ , DTNRLS based CL is imple-
mented with DRP1, ξφ = 50 Irq , and ξZ = 0.1 IcZ .

WLSE DTNRLS DTNRLS based CL

ετ1 × 1000 432.24 431.87 431.84

ετ2 × 1000 533.56 525.37 524.43

ετ3 × 1000 157.43 154.78 154.41

ετ4 × 1000 6.65 6.34 6.27

ετ5 × 1000 5.38 5.17 5.05

ετ6 × 1000 3.35 3.15 3.14

First, a Weighted Least Squares Estimation method is used off-line for system identification of

the robot. It should be added that experiments with and results obtained from using the Weighted

Least Squares method are the work of a team of researchers we have collaborated with.

We have for our part performed on-line parameter identification using both the standard discrete-

time Normalized Recursive Least Squares algorithm and its Concurrent Learning modification.

Considering the parameter estimated off-line via Weighted Least Squares Estimation as a refer-

ence to compare our results to, Figure 9.2 shows that our discrete-time Normalized Recursive Least

Squares based Concurrent Learning algorithm is able to perform better than the standard algorithm

when it comes to recovering the parameters obtained off-line. Experiments are then performed on

the actual robot and as we see on Figure 9.5, there is quite a bit of mismatch between the on-line

estimated parameters and their off-line counterparts. For better comparison, we then go on to com-

pute, given each set of estimated parameters, the mean square errors between the measured torques

and the predicted torques, the latter obtained using the aforementioned set of estimated parameters.

Tables 9.1 and 9.2, both of which contain the mean square torque prediction errors for each dimen-

sion of the torque vector and for each estimation method used, show that the on-line methods, i.e.,

the standard discrete-time Normalized Recursive Least Squares and the discrete-time Normalized

Recursive Least Squares based Concurrent Learning methods, generate less error. There however

186

isn’t a clear and distinct separation between the standard Least Squares algorithm and its Concur-

rent Learning modification given the results in Table 9.1. Hence, one could again be left wondering

if there are any benefits to using the Concurrent Learning technique. However, as remarked in

Chapter V, the standard algorithm can be thought of as a memory based method, therefore with

the same underlining purposes as Concurrent Learning. From the experimental results of Table 9.1,

it would then seem that it is not always the case that adding more memory can help the CL mod-

ification perform better. In Chapter V, we have seen that, when setting the minimum (and, thus,

maximum) eigenvalue of P0 (initial guess of the gain matrix) to a large value, it becomes difficult

to distinctively tell how good the CL modification is compared to the standard algorithm. Choosing

P0 with small spectral properties, we can then clearly see, as Table 9.1 shows, the advantage(s)

of using the Concurrent Learning modification of the discrete-time Normalized Recursive Least

Squares from an application point of view. In any case, all theoretical properties guaranteed by

using the discrete-time Normalized Recursive Least Squares Concurrent Learning algorithm (which

the standard algorithm cannot or does not always provide) have been validated.

187

CHAPTER X

CONCLUSION AND FUTURE RESEARCH

Commonly used in science and engineering for various tasks such as function approximation,

learning, and signal processing (among other), system identification is the process of using input

and output data to build models of unknown or uncertain systems [1]. When approximating a func-

tion, one usually either deals with the structured uncertainty approximation case or the unstructured

uncertainty approximation case. Regardless of the type of approximation encountered, putting to-

gether a function approximation scheme involves defining a regressor, made of computable signals,

and a set of parameter estimates, updated using an adaptation rule in order to arrive at a better rep-

resentation of some unknown, true parameters that would yield the best approximation on some

predefined approximation set.

When used for standalone approximation, standard learning methods (typically, Gradient De-

scent and Recursive Least Squares), do help minimize the approximation error. However, conver-

gence of parameter estimates to their true values or a neighborhood around the aforesaid true values

when employing standard learning methods can only be theoretically proved if the regressor used

for approximation is persistently exciting (PE) [2, 3, 4]. In Appendix B, we formally define what

it means for a regressor to be persistently exciting. A look at the aforementioned definition shows

that the PE condition means realizing complete span, for all time, of the approximation space. For

188

that reason, it is hard, demanding, and impractical to achieve the PE condition, especially when im-

plementing closed-loop control. Moreover, though many researchers have studied alternative con-

ditions that could yield persistently exciting inputs when devising control algorithms [11, 12, 13],

requiring persistency of excitation conditions remains restrictive and not easily verifiable on-line.

We have in recent years investigated Concurrent Learning (CL), a method that was first intro-

duced as a continuous-time (CT) uncertainty approximation method [14]. CL, much like human

learning, makes use of current data and stored, past data. Without requiring persistency of exci-

tation, CL is shown, in CT settings, to guarantee global exponential convergence of the parameter

error (defined as the difference between the parameter estimates and their true values) when em-

ployed for standalone identification of structured uncertainties, while yielding uniform ultimate

boundedness of the parameter error when dealing with unstructured uncertainties instead instead

[15, 16, 14, 17, 18]. Those results however necessitate that the stored, past data be (at least) rich

enough. More specifically, there should be the same number of linearly independent columns in

the matrix containing the stored, past data as there are (row) dimensions in the used regressor for

approximation, which, as discussed about before, is less demanding than requiring persistency of

excitation.

To this day, several research endeavors (see [15, 16, 14, 17, 19, 18, 20, 21, 22, 23, 24, 25, 26, 27])

on CL in the CT framework have been published. For our part, to add to its already existing liter-

ature, we have looked at how the concept of CL can be implemented in the discrete-time (DT)

framework. To this end, the present research intends to provide a fundamental study of the CL

method for function approximation in the DT domain while using both the DT Normalized Gradi-

ent and the DT Normalized Recursive Least Square techniques. The following is a summary of our

problem definition and contributions.

• We formulate a very general discrete-time function approximation problem;

189

• We investigate both the DT Normalized Gradient (DTNG) and the DT Normalized Recursive

Learning (DTNRLS) algorithms for function approximation in DT settings. Because of the

generic nature of the approximation problem that we have set out to solve, our studies of the

previously mentioned techniques are not mere repetitions of the current state of literature.

Rather, we add to the already existing literature work on both standard algorithms;

• Our main contributions comes from developing a DTNG based CL algorithm and a DTNRLS

based CL algorithm;

• For each studied and developed algorithm, we study both the structured and unstructured

uncertainty approximation cases,

• Unlike in the cases of the standard DTNG and DTNRLS algorithms, we show analytically

that the DTNG based CL and DTNRLS based CL algorithms yield better parameter identifi-

cation (i.e., convergence of the parameter error to the origin or a neighborhood of the origin)

provided that the CL condition for richness of the stored data is verified.

Last, it is worthwhile mentioning that the derived stability results in the present work are ob-

tained via a Lyapunov proof, which therefore makes them conservative. In that regard, violating the

conditions for which those results are obtained does not necessarily or automatically mean that the

same results cannot be attained.

10.1 Future Research

10.1.1 Optimizing the Developed Concurrent Learning Algorithms

When developing the CL algorithms in both Chapters IV and V, we have derived upper bounds

on the Frobenius of the parameter error, with those upper bounds dependent on many variables,

including the spectral properties of the learning or gain matrices. It may be the case that the gain

190

matrices can be optimally designed so as to yield smaller upper bounds or ultimate bounds of the

parameter error and, thereby, improve approximation results.

10.1.2 Data Recording for Concurrent Learning

We have seen in our numerical simulations of Chapter VII that, in the case of the DTNG based

CL algorithm, though still performing well as far as parameter estimation is concerned, the adjust-

ment term based on recording data can potentially damage function approximation performance

depending on the current state of the data saved in memory. Similarly, we have seen, in the case of

the DTNRLS based CL algorithm that, because the standard DTNRLS algorithm essentially uses

memory, it can be difficult to show the benefit of the DTNRLS based CL algorithm aside from

its theoretical guarantees. Moreover, when it comes to the data recording procedures of VI, as

backed by our theoretical derivations, if/when the CL rank condition is met and the history stack

Z ∈ RrZ×cZ or ZG ∈ RrZ×cZ is full, we seek to update them so as to maximize the the metric rCL.

At the software level, as depict Procedures 1 and 2, this is done by replacing each of the present

column in the history stack by the newly considered one(s) and computing cZ different metric rCL.

To do so we use a for loop. Hence, as cZ increases (and/or rZ increases, since cZ ≥ rZ), more time

is used during the data recording processes, which can be a detriment when it comes to real-time

implementations. It would therefore be advisable that more study be done on the generation and

maintenance of the memory bank when using CL methods. It should be noted such studies are

present in the CL in CT framework literature.

10.1.3 Approximation Structure

The present work only uses an approximation structure that is linear in all parameters being es-

timated. Nonlinear in the parameter approximator such as Multi-Layer Perceptron have been shown

in literature to be able to provide improved function approximation performances. Devising CL

191

inspired algorithms using a nonlinear in the parameter approximator while working in DT settings

could therefore be an avenue for future studies.

10.1.4 More Real-Time Applications

We have studied in Chapter VIII the use of the DTNG based CL algorithm when implementing

indirect adaptive control of a class of single state plant. We have also used the DTNRLS based

CL algorithm for system identification of a Comau Racer industrial robot, as shows Chapter IX.

Nevertheless, for the most part, the present work has been much more concerned with fundamental

work than applied work. Hence, compelling research directions could therefore involve using the

derived CL algorithms and applying them to more problems, especially problems involving real-

time implementations.

192

BIBLIOGRAPHY

[1] L. Ljung, System identification: theory for the user, ser. Prentice-Hall information and system
sciences series. Prentice-Hall, 1987.

[2] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1994.

[3] G. Tao, Adaptive Control Design and Analysis (Adaptive and Learning Systems for Signal
Processing, Communications and Control Series). New York, NY, USA: John Wiley & Sons,
Inc., 2003.

[4] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos, Nonlinear and Adaptive Control Design,
1st ed. New York, NY, USA: John Wiley & Sons, Inc., 1995.

[5] J. Spooner, M. Maggiore, R. Ordóñez, and K. Passino, Stable Adaptive Control and Estimation
for Nonlinear Systems: Neural and Fuzzy Approximation Techniques. New York, NY, USA:
John Wiley & Sons, Inc., 2001.

[6] T. Chen and B. Francis, Optimal Sampled-Data Control Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1995.

[7] D. Nei, A. Teel, and P. Kokotovi, “Sufficient conditions for stabilization of sampled-data non-
linear systems via discrete-time approximations,” Systems & Control Letters, vol. 38, no. 45,
pp. 259 – 270, 1999.

[8] O. Djaneye-Boundjou, “Particle Swarm Optimization Stability Analysis,” Master’s thesis,
University of Dayton, Dayton, OH, USA, Dec 2013.

[9] O. Djaneye-Boundjou, R. Ordóñez, and V. Gazi, “Stable adaptive particle swarm optimiza-
tion,” in Control, Automation and Systems (ICCAS), 2013 13th International Conference on,
Oct 2013, pp. 440–445.

[10] G. Zames, “Adaptive control: Towards a complexity-based general theory,” Automatica,
vol. 34, no. 10, pp. 1161–1167, 1998.

193

[11] S. Boyd and S. Sastry, “Necessary and sufficient conditions for parameter convergence in
adaptive control,” Automatica, vol. 22, no. 6, pp. 629 – 639, 1986.

[12] M. Green and J. B. Moore, “Persistence of excitation in linear systems,” in American Control
Conference, 1985, June 1985, pp. 412–417.

[13] M. Petreczky and L. Bako, “On the notion of persistence of excitation for linear switched
systems,” in Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, Dec 2011, pp. 1840–1847.

[14] G. Chowdhary, “Concurrent learning for convergence in adaptive control without persistency
of excitation,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA, USA, Novem-
ber 2010.

[15] G. Chowdhary and E. Johnson, “Recursively updated least squares based modification term
for adaptive control,” in American Control Conference (ACC), 2010, June 2010, pp. 892–897.

[16] ——, “Concurrent learning for convergence in adaptive control without persistency of ex-
citation,” in Decision and Control (CDC), 2010 49th IEEE Conference on, Dec 2010, pp.
3674–3679.

[17] ——, “A singular value maximizing data recording algorithm for concurrent learning,” in
American Control Conference (ACC), 2011, June 2011, pp. 3547–3552.

[18] G. Chowdhary, T. Yucelen, M. Muhlegg, and E. Johnson, “Concurrent learning adaptive con-
trol of linear systems with exponentially convergent bounds,” Int. Journal of Adaptive Control
and Signal Processing, vol. 27.00, no. 4, pp. 280–301, 2013.

[19] M. Mühlegg, G. Chowdhary, and E. Johnson, “Concurrent learning adaptive control of linear
systems with noisy measurements,” in AIAA Guidance, Navigation, and Control Conference,
August 2012.

[20] G. D. L. Torre, G. Chowdhary, and E. N. Johnson, “Concurrent learning adaptive control for
linear switched systems,” in 2013 American Control Conference, June 2013, pp. 854–859.

[21] B. Reish, G. Chowdhary, K. Ure, and J. P. How, “Concurrent learning adaptive control in
presence of uncertain control allocation matrix,” in AIAA Guidance, Navigation, and Control
(GNC) Conference, August 2013.

[22] M. Mühlegg, G. Chowdhary, and F. Holzapfel, “Optimizing reference commands for concur-
rent learning adaptive-optimal control of uncertain dynamical systems,” in AIAA Guidance,
Navigation, and Control (GNC) Conference, August 2013.

[23] M. Mühlegg, G. Chowdhary, J. P. How, and F. Holzapfel, “Adaptive-optimal control of con-
strained nonlinear uncertain dynamical systems using concurrent learning model predictive
control,” in AIAA Guidance, Navigation, and Control (GNC) Conference, August 2013.

194

[24] G. Chowdhary, M. Mühlegg, J. P. How, and F. Holzapfel, Concurrent Learning Adaptive
Model Predictive Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 29–
47.

[25] B. Reish and G. Chowdhary, “Concurrent learning adaptive control for systems with unknown
sign of control effectiveness,” in 53rd IEEE Conference on Decision and Control, Dec 2014,
pp. 4131–4136.

[26] R. Kamalapurkar, B. Reish, G. Chowdhary, and W. E. Dixon, “Concurrent learning for param-
eter estimation using dynamic state-derivative estimators,” CoRR, 2015.

[27] S. B. Roy, S. Bhasin, and I. N. Kar, “Memory-based data-driven MRAC architecture ensuring
parameter convergence,” CoRR, vol. abs/1602.00482, 2016.

[28] O. Djaneye-Boundjou and R. Ordóñez, “Parameter identification in structured discrete-time
uncertainty without persistency of excitation,” in European Control Conference (ECC), 2015,
Linz, Austria, July 2015.

[29] ——, “Discrete-time indirect adaptive control of a class of single state systems using concur-
rent learning for parameter adaptation,” in IEEE Multi-Conference on Systems and Control
2016, Buenos Aires, Argentina, September 2016.

[30] P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1995.

[31] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural,
Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems
for Signal Processing, Communications and Control Series). Wiley-Interscience, 2006.

[32] I. M. Y. Mareels, M. Gevers, R. R. Bitmead, C. R. Johnson, R. L. Kosut, and M. A. Poubelle,
“How exciting can a signal really be?” Systems & Control Letters, vol. 8, no. 3, pp. 197–204,
1987.

[33] L. Sciavicco, B. Siciliano, and L. Villani, “Lagrange and newton-euler dynamic modeling of
a gear-driven robot manipulator with inclusion of motor inertia effects,” Advanced Robotics,
vol. 10, no. 3, pp. 317–334, 1995.

[34] W. Khalil and E. Dombre, Modeling, identification and control of robots. Butterworth-
Heinemann, 2004.

[35] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. Hoboken (N.J.):
John Wiley & Sons, 2006.

[36] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[37] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotic, Modelling, Planning and Con-
trol. London: Springer, 2009.

195

[38] H. Mayeda, K. Yoshida, and K. Osuka, “Base parameters of manipulator dynamic models,”
IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 312–321, 1990.

[39] M. Gautier, “Numerical calculation of the base inertial parameters of robots,” in Proceedings.,
IEEE International Conference on Robotics and Automation, May 1990, pp. 1020–1025 vol.2.

[40] O. Khatib, “A unified approach for motion and force control of robot manipulators: The opera-
tional space formulation,” IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp. 43–53,
February 1987.

[41] R. Kelly, “Global positioning of robot manipulators via PD control plus a class of nonlinear
integral actions,” IEEE Transactions on Automatic Control, vol. 43, no. 7, pp. 934–938, Jul
1998.

[42] R. Colbaugh and H. Seraji, “Adaptive tracking control of manipulators: theory and experi-
ments,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference
on, May 1994, pp. 2992–2999 vol.4.

[43] A. Zavala-Rio and V. Santibanez, “Simple extensions of the PD-with-gravity-compensation
control law for robot manipulators with bounded inputs,” IEEE Transactions on Control Sys-
tems Technology, vol. 14, no. 5, pp. 958–965, Sept 2006.

[44] X. Xu and R. Ordóñez, “Multi-input multi-output adaptive torque control of 9-DOF hyper-
redundant robotic arm,” in International Conference on Control, Automation and Systems,
2016. ICCAS 2016. IEEE International Conference on, October 2016.

[45] J. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in Springer Handbook of
Robotics. Springer, 2008, pp. 321–344.

[46] J. Wu, J. Wang, and Z. You, “An overview of dynamic parameter identification of robots,”
Robotics and computer-integrated manufacturing, vol. 26, no. 5, pp. 414–419, 2010.

[47] B. Armstrong, “On finding exciting trajectories for identification experiments involving sys-
tems with nonlinear dynamics,” The International journal of robotics research, vol. 8, no. 6,
pp. 28–48, 1989.

[48] M. Gautier and W. Khalil, “Exciting trajectories for the identification of base inertial param-
eters of robots,” The International journal of robotics research, vol. 11, no. 4, pp. 362–375,
1992.

[49] J. Swevers, C. Ganseman, D. B. Tukel, J. de Schutter, and H. V. Brussel, “Optimal robot
excitation and identification,” IEEE Transactions on Robotics and Automation, vol. 13, no. 5,
pp. 730–740, Oct 1997.

[50] O. Djaneye-Boundjou and R. Ordóñez, “Normalized recursive least square based discrete-time
concurrent learning for system identification,” submitted for journal publication.

196

APPENDIX A

Matrix Identity and Propositions

Consider the expression

B = A+ UCV ,

where matrices A, B, C, U , and V are of appropriate size. The Woodbury Matrix Identity or Matrix

Inversion Lemma stipulates that

B−1 = (A+ UCV)−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

(A.1)

provided A−1 and C−1 exist and are computable.

The following proposition, given without proof and obtained from [3], is about convergence of

monotonic functions. However, first, we define what it means for a function to be monotonic. A

function h(k) is monotonically increasing (or decreasing) if, for discrete-time k1 and k2 such that

k2 > k1, h(k2) ≥ h(k1) (or h(k2) ≤ h(k1)).

Proposition A.1. If a function h(k) is either monotonically decreasing and bounded from below or

monotonically increasing and bounded from above, then lim
k→∞

h(k) exists and is finite.

197

APPENDIX B

Persistency of Excitation

By adopting and adapting the definitions in [3], we define here what it means for a signal to be

exciting or persistently exciting.

Consider $(k) ∈ Rr$×c$, r$, c$ ∈ N+, to be a bounded signal.

Definition B.1. The signal $(k) is exciting over the time sequence set {τ , τ + 1, . . . , τ + δ$},

τ ≥ k0 and δ$ ∈ N+, if for some β$ > 0 it holds that

τ+δ$∑
k=τ

(k)>(k) ≥ βIr . (B.1)

Definition B.2. The signal $(k) is persistently exciting (PE) if there exist δ$ ∈ N+ and β$ > 0

such that

τ+δ$∑
k=τ

(k)>(k) ≥ βIr , ∀ τ ≥ k0. (B.2)

198

APPENDIX C

Vector Norms, Matrix Norms, and Properties

The reader is encouraged to refer to [3, 5] for proofs. Consider:

• Vector v̄ =
[
v̄1 v̄2 . . . v̄n

]> ∈ Rn, n ∈ N+. That is vi’s, i = 1, 2, . . . , n, are scalars.

• Vectors va ∈ Rrva and vb ∈ Rrvb , with rva , rvb ∈ N+.

• For n ∈ N+, the discrete-time vector signal

x̄(k) =
[
x̄1(k) x̄2(k) . . . x̄n(k)

]> ∈ Rn.

• Square matrix Asq ∈ RrAsq×rAsq , where rAsq ∈ N+.

• Matrix A = [araca]rA×cA ∈ RrA×cA , where rA, cA ∈ N+ and, for ra = 1, 2, . . . , rA,

ca = 1, 2, . . . , cA, araca are the elements of A.

• Matrices ma, mb ∈ Rrm×cm and msq1 , msq2 ∈ Rrm×rm , with rm and cm such that rm, cm ∈

N+.

We make use of the following definitions and properties.

• Let tr(·) denote the trace operator, which can only be applied to square matrices, and vec(·)

denote the vectorization operator. While tr (Asq) = tr
(
A>sq
)
∈ R is the sum of the main

199

diagonal entries, vec(A) ∈ RrAcA is obtained by appropriately stacking up columns of matrix

A one after the other, starting with the very first one. We have that

tr (Asq) =

rAsq∑
r=1

λ{Asq}r , (C.1)

with λ{Asq}r , r = 1, 2, . . . , rAsq , being the eigenvalues of Asq,

tr(msq1 +msq2) = tr(msq1) + tr(msq2). (C.2)

and, if msq1 is neither function of msq2 nor ma,

∂tr {msq1msq2}
∂msq2

=
∂tr {msq2msq1}

∂msq2

= m>sq1 , (C.3)

and

∂tr
{
m>amsq1ma

}
∂ma

=
[
msq1 +m>sq1

]
ma. (C.4)

• The `p-norm, p ∈ [1,∞), of vector v̄ is defined as

‖v̄‖p =

(
p∑
r=1

|v̄r|p
) 1

p

, (C.5)

while

‖v̄‖∞ = max
1≤r≤n

|v̄r| , (C.6)

where max(·) denotes the maximum operator, is the `∞-norm of v̄.

• Let ‖·‖F represent the Frobenius (or Hilbert-Schmidt) matrix norm operator. By definition,

‖A‖F =

(
rA∑
ra=1

cA∑
ca=1

|araca |
2

) 1
2

. (C.7)

Given (C.7),

∥∥∥A>∥∥∥
F

= ‖A‖F , (C.8)

200

and

‖A‖2F = vec (A)>vec (A) = ‖vec (A)‖2 = tr
(
A>A

)
. (C.9)

Among other properties, the Frobenius norm is subadditive, submultiplicative, and subordi-

nate to the `2-norm. That is, for n ∈ N+ matrices mi, i = 1, 2, . . . , n, whose dimensions are

suitably and appropriately chosen (depending on (C.10) and/or (C.11)),

‖m1 ±m2 ± . . .±mn‖F ≤ ‖m1‖F + ‖m2‖F + . . .+ ‖mn‖F , (C.10)

‖m1m2 . . .mn‖F ≤ ‖m1‖F ‖m2‖F . . . ‖mn‖F , (C.11)

and, given a vector va ∈ Rcm ,

‖mava‖ ≤ ‖ma‖F ‖va‖ , (C.12)

where ‖·‖ is the `2-norm operator. Additionally, for some positive scalar β, such that

1 < β <∞,

and assuming that matrix Asq is invertible,

IrAsq = AsqA
−1
sq < βIrAsq .

Given the submultiplicate property (see (C.11)) of the Frobenius norm, we can write

∥∥∥IrAsq∥∥∥F ≤ ‖Asq‖F ∥∥A−1
sq

∥∥
F
< β

∥∥∥IrAsq∥∥∥F .

Thus, ∥∥∥IrAsq∥∥∥F
‖Asq‖F

≤
∥∥A−1

sq

∥∥
F
< β

∥∥∥IrAsq∥∥∥F
‖Asq‖F

. (C.13)

• Consider the following:

201

– We have

tr
(
m>amb

)
= tr

(
m>bma

)
= vec(ma)

>vec(mb).

Therefore, from (C.9),

tr
(
m>sq1msq1

)
= vec(msq1)>vec(msq1) = ‖vec(msq1)‖2 = ‖msq1‖

2
F , (C.14)

tr
(
m>amb

)
≤
∣∣∣tr(m>amb

)∣∣∣ ≤ ‖ma‖F ‖mb‖F , (C.15)

and, given (C.11) and (C.15), for n ∈ N+ dimensionally well-chosen matrices mi,

i = 1, 2, . . . , n,

tr (m1m2 · · ·mn) ≤ |tr (m1m2 · · ·mn)| ≤ ‖m1‖F ‖m2‖F · · · ‖mn‖F . (C.16)

– Similarly, tr
(
vav
>
b

)
= v>a vb = v>b va = tr

(
vbv
>
a

)
, which means

∣∣tr (vav>b)∣∣ ≤ ‖va‖ ‖vb‖
and

∥∥∥vav>a ∥∥∥
F
, tr

(
vav
>
a

)
= v>a va = ‖va‖2 . (C.17)

• Norms and signal spaces [3]:

– For p ∈ [1,∞) and ‖·‖` representing any vector norms, the Lp signal norm of x̄(k) can

be defined as

‖x̄(k)‖Lp =

(∞∑
k=0

‖x̄(k)‖p`

) 1
p

. (C.18)

Moreover, the L∞ signal norm of x̄(k) is given as

‖x̄(k)‖L∞ = sup
k≥0
‖x̄(k)‖∞ , (C.19)

where sup(·) stands for the supremum operator

202

– The Lp, with p ∈ [1,∞), and L∞ signal spaces are respectively

Lp = {x̄(k) ∈ Rn : ‖x̄(k)‖Lp <∞} , (C.20)

L∞ = {x̄(k) ∈ Rn : ‖x̄(k)‖L∞ <∞} . (C.21)

– Some properties:

∗ For p1, p2 ∈ [1,∞) such that p1 ≤ p2, if x̄(k) ∈ Lp1 then x̄(k) ∈ Lp2 . For

instance, if x̄(k) ∈ L1 then x̄(k) ∈ Lp, p ∈ (1,∞).

∗ Moreover, if x̄(k) ∈ Lp, for p ∈ [1,∞), then x̄(k) ∈ L∞ and lim
k→∞

x̄(k) = [0]n or

lim
k→∞

‖x̄(k)‖ = 0.

203

		2017-12-07T11:26:08-0500
	Certified by Linda Wallace, University of Dayton

