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ABSTRACT 

A FRAMEWORK FOR OPTIMAL DECISION MAKING OF A PHOTOVOLTAIC 

RECYCLING INFRASTRUCTURE PLANNING 

 
 

Name: Qi Guo 
University of Dayton 

  

Advisor: Dr. Jun-Ki Choi 

Solar energy, as an emerging renewable clean energy, has been rapidly growing for 15 

years all over the world and is expected to grow 15% annually until 2020. In 2015, at least 

40 GW of Photovoltaic (PV) systems were installed, achieving 178GW current solar power 

installation worldwide. In the next five years, 540 GW cumulative capacities are expected 

to be installed worldwide and US contributed 6.5 GW PV installations in 2015. US 

electricity demand is expected to be dominated by solar power by 2050 or even earlier. The 

widespread deployment of PV will not only contribute to a reduction in greenhouse gas 

emission, but can also mitigate the worldwide fossil fuel depletion. 

As the number of PV systems increases, the mass of PV waste will increase as well, 

adding a new source to the existing waste stream. The amount of End-of-Life (EoL) PV 

will approach 13.4 million ton worldwide, including approximately 5.5 million ton located 
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in the US by 2025. PV contains high value, toxic, and energy-intensive materials. In 

addition, the market price of some materials utilized in the thin-film and crystalline PV 

technologies has drastically increased in the recent years. 

There is a strong need of coordinating the information to optimize the reverse logistics 

planning in a photovoltaic (PV) recycling network in the U.S. Two major tasks are 

included: 1) locating PV Recycling Centers (PVRC); 2) allocating Transportation 

Companies (TC) shipping PV installation sites (PVIS) to PVRC. One contribution of this 

dissertation is to decide the optimal number, as well as the location of PVRC by minimizing 

the overall cost. Another contribution is to determine the optimal distribution scheme to 

minimize the transportation cost among TC, PVIS, and PVRC.  

In order to accomplish the two tasks, a mathematical modeling framework was 

developed to facilitate PV recycling in an economically and environmentally feasible 

manner. The framework included two mathematical models: 1) Multi-Facility 

Optimization Model; 2) Optimal Distribution Model. The multi-facility optimization 

model included the transportation module, the economic module, and the environmental 

module. The model identifies the geographical location of the prospective PVRCs by 

minimizing the total costs in different scenarios. While in the Optimal Distribution Model, 

a static and a dynamic optimization algorithm was applied for conducting the optimal 

solution accurately and efficiently.   

To show the efficacy of the proposed framework, case studies for recycling EoL PV in 

California were performed. Historical PV installation data in the region was utilized to 

gather information about the amount of the prospective end-of-life (EoL) PV waste 

generation in CA. In order to integrate the temporal and the spatial dispersion of PVISs in 
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CA, a three-phase recycling plan was proposed. For well displaying the geographical 

results, Geographic Information System (GIS) was utilized to visualize the installation 

data, optimized location of the PVRCs, and the optimal distribution scheme. The proposed 

generic framework provided a great insight for decision makers about the trade-offs among 

various scenarios by considering cost, environmental impact, and investment risk on PV 

recycling planning. 
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CHAPTER I 

INTRODUCTION 

1.1 The Global PV Market 

The market for photovoltaics (PV) has been growing world-wide during the last  15 

years and is expected to continue growing at least by 15% annually until 2020 [1, 2]. In 

2015, 50.6 GW new solar photovoltaics (PV) was installed worldwide. A 613 GW grid-

connected solar power was forecasted by the end of 2019 all over the world. [3] In the 

United States, alone, a record 14.8 GW of PV capacity was added in 2016 bringing the 

total installed PV capacity to 78 GW and the industry is poised to increase to 100 GW over 

next five years. With the 39% renewable electric occupancy, Solar energy has become the 

No. 1 renewable electric energy in the United States in 2016. As the largest installer, in 

2016, PV installation in California accounted for 35% amount of the United States. The 

cumulative PV installation in CA has researched 17 GW. [4] The widespread deployment 

of PV will not only contribute to a reduction in greenhouse gas emission, but can also 

mitigate the worldwide fossil fuel depletion [5, 6]. As the number of PV systems increases, 

the mass of PV waste will increase as well, adding a new source to the existing waste 

stream. The amount of End-of-Life (EoL) PV will approach 13.4 million ton worldwide, 

including approximately 1.8 million ton located in the US by 2025. Figure 1.1 illustrates a 
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preliminary PV waste prognosis based on the historical data of PV installation in the U.S 

[7] 

 

Figure 0.1: PV waste projection in the U.S. 

 

1.2 Rationale for PV Recycling  

PV contains valuable, hazardous, and energy-intensive materials. First, several high 

demand elements such as Se, Zn, Fe, and Ag are contained in PV. Those elements are the 

pillar of national industry [8]. Appropriately recycling those elements can eliminate the 

resource scarcity and material supply threat [9, 10], subsequently, stabilizing the security 

of the national economy. On the other hand, recycling the existing EoL PV can also 

partially evade the risk of material shortage or oversupply in PV manufacturing, smoothing 

the price fluctuation of the PV industry [11]. In addition, the market price of some materials 

utilized in the thin-film and crystalline PV technologies has drastically increased in the 

recent years [12, 13]. High profit is even expected to be achieved by recycling elements In 
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and Ga in CIGS PV, a type of thin-firm panel [14, 15]. Second, PV contains tons of toxic 

elements such as As, Cd, and Se. As and Cd even have a 6 and 4 tenfold toxicity index 

over common elements such as Cu [16]. Those hazardous materials need to be reclaimed 

thoroughly to ensure the health of both the environment and human beings.  Third, energy 

intensive components such as silicon wafers can be recovered during the pyrolysis by 

recycling the mono- and poly- crystalline PV [17]. In industry, producing 0.256 gram 

silicon wafers consumes 1,600 g secondary fossil fuel and 32,000 g water [18]. By 

implementing the recycling process, energy intensive materials, such as semiconductor 

elements, aluminum, and glass, can be retrieved effectively for remanufacturing of the 

CdTe and c-Si PV [11]. The technical and economic feasibility of the retrieving process 

has been verified by a previous researcher [19].  

1.3 Current Status of PV Recycling 

Although PV recycling technologies are available for both silicon and thin-film based 

modules [20, 21], the recycling process has not been deployed in most of countries due to 

the shortage of effective collection infrastructure and incentive polices. Cost effectiveness 

has been emphasized as the greatest challenge in employing and recycling of the PV system 

[22, 23]. Considering the potential trade-off among the cost factors is crucial for ensuring 

the sustainability of PV recycling. Previous studies showed that transporting reclaimed 

materials among stakeholders has enormous economic and environmental impacts on 

recycling planning [24, 25]. Choi and Fthenakis showed that the size of PVRCs should be 

optimized so that the annual incoming PV waste are processed economically[26]. 

However, our previous study did not include long-term end-of-life planning as it was 

intended to guide decisions for recycling of PV waste generated from current 
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manufacturing scraps. The economic feasibility of end-of-life recycling is debated and 

Cucciela et al. [10] reported that the annual capacity of a PV recycling plant should reach 

certain capacity in order to provide sufficient economic incentives in the recent PV 

installation rates in Italy. Goe et al. also concluded that the material recovery cost is more 

expensive than directly disposing based on the current technology and policies in the state 

of New York [27]. It is obvious that recycling is the most environmentally friendly 

approach to treat the retiring PV[28]. However, the economic feasibility of the recycling 

process is still under exploration. Confronting the rapid commercialization of the PV 

industry, the adoption of constructive policies such as imposing higher fee and taxes are 

vital to the retiring PV recycling process. There is also a need to appeal to stakeholders to 

get involved as much as possible [2, 27]. 

In Europe, recycling of EoL electronic goods is regulated by the Waste Electrical and 

Electronic Equipment (WEEE) Directive. The directive included PV and required all PV 

module manufacturers who sell in EU countries to have recycling programs in place [29, 

30]. The industry had initiated the voluntary program with PVCYCLE in 2010, which now 

oversees compliance with the WEEE [31]. In the U.S., there are no policies yet directly 

related to the development of PV recycling and with no legal obligations to process waste, 

cost optimization of recycling is imperative for the industry to voluntarily undertake such 

initiative. Because reverse logistics networks are complex, a systematic approach is needed 

to capture the dynamic interactions among stakeholders that would minimize the cost to 

the industry and ideally make end-of-life PV recycling a profitable operation. This entails 

with data analysis to identify the optimal locations for Photovoltaic Recycling Centers 
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(PVRCs) so that the sum of the costs associated with the reverse logistics the capital cost 

of collection and recycling facilities are minimized.  

1.4 Studies for Setting PV Recycling Infrastructure 

Some EoL PV recycling infrastructure have been proposed by previous researchers. 

Fthenakis devised a recycling infrastructure to demonstrate the feasibility of thin-firm solar 

cells recycling. In that infrastructure, both the centralized and decentralized scenarios were 

discussed with the quantitative parameters included [17]. Considering the complexity of 

the recycling process in collection and transportation aspects, a mathematical framework 

is recommended to resolve the PV recycling problem [32]. In that paper, they took the thin-

film PV as an example, demonstrating an operational recycling framework to take back the 

EoL PV that manufactured by the company of First Solar. The same author also published 

their mathematical model regarding the economic feasibility to recycle the EoL crystalline 

silicon PV in both macro and micro perspective in Germany [2, 26]. Cucchiella, etc, 

provided a financial analysis of recycling the EoL PV modules in Italy by considering the 

factors of technology, environment, and economy, as well as a sensitivity analysis between 

these factors [10]. Goe etc. performed a tradeoff analysis between multi-criteria by using 

both mathematical method and Geographical Information System (GIS) selection tools to 

research the optimal location to site the PV recycling centers in the state of New York [27].  

There is also literature available regarding the characteristic and construction of reverse 

logistics networks based on recovering other products [33-36]. Most studies are limited to 

investigating solutions for economic feasibility on the EoL management of the electronic 

appliances and information technology (IT) products such as computer, monitor, laptop, 

and cellphone. The fast turnover of consumer electronics creates a large waste stream of 
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obsolete electronic waste, providing opportunities to establish a relatively stable and 

economically viable recycling infrastructure.  

Unlike electronic products, it takes time for PVs to accumulate sufficient waste 

modules because of the decades-long intervals between installing and discarding them.  

The PV market has increased exponentially, therefore, the capacity of PVRCs needs to be 

strategically planned to process the exponential growing numbers of end-of-life (EoL) PV 

modules considering spatial and temporal factors. Sizing the initial capacity of the expected 

PVRCs in an economic manner is crucial in short-term period planning. In the mid- and 

long-terms, existing PVRCs could expand the processing capacity or new PVRCs should 

be added to the new geographical location in the region to be able to process growing 

amount of EoL PV modules. Therefore, in order to make the PV recycling economical, the 

quantity, the annual capacity, as well as the locations of PVRC needs to be determined for 

each recycling term. In addition, the distribution scheme needs to be optimized to while 

transporting PVIS to PVRC.  

1.5 Studies for Optimizing the Location of PVRC 

There are several proposed models on facility location optimization [33-37]. A 

Lagrangian experimental model was employed for optimizing a facility location problem 

with large geographical scale variables and capacity constraints [38]. Other studies have 

solved location optimization problems by decomposing the problem into multiple single 

facility problems [39-43]. These quantitative modeling schemes suggested efficient levels 

of the reverse logistics and supply chain management. Effendigil et al. [44] proposed a 

framework which employs artificial neural networks and fuzzy analytical hierarchy process 

in order to assure the maximum profitability of reverse logistics planning.  
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Approaches to location allocation problems have been studied, specifically for the PV 

recycling case. Choi, etc. performed a location optimization for the PV recycling facilities 

among a finite set of locations with a short-time of 5 years based on the current PV 

installation situation in Germany. Minimizing the total travel distance is the objective of 

that optimization. Capacity limitation of each recycling center and other realistic 

restrictions were considered as constraints in that model. CPLEX was employed as the 

optimization solver to generate solutions [26]. These authors reiterated the supremacy of 

appropriately allocating the PV recycling facility while recommending the recycling 

scheme for the First Solar Company: the most favorable scenario was expected to save 

$107,000 per month, while a $151,000 loss was anticipated every month in the least 

profitable scenario [32]. There were also location allocation models performing the 

recycling process for other products. Louwers developed a location allocation framework 

to collect, preprocess, and redistribute carpet waste with complete flexibility on location 

selection. Their networks were employed both in Europe based on the supply-driven reuse 

and in the United States based on the demand-driven reuse [39].  

1.6 Reducing Transportation Cost on PV Recycling 

Reducing the transportation cost is another operative aspect to reduce the PV recycling 

expense. In order to make the recycling affordable and profitable, the recycling process 

and the system cost throughout the entire collection, distribution, and transportation need 

to be optimized and minimized, respectively [45]. The PV reverse logistics cost, a cost for 

collecting and transporting the EoL PV modules, can be minimized by appropriately 

selecting the optimal location of PV recycling centers [2]. In that research, the author 

concluded that the reverse logistics cost is the leading cost among the entire PV recycling 
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process. When Goe etc. conducted the retiring PV recovery in the state of New York, they 

considered the transportation cost as an indispensable parameter in their material recovery 

framework as well [27]. The predominance of the reverse logistics cost was also 

emphasized while performing a financial analysis to the EoL PV modules in other literature 

[10].   

Implementing mathematical optimization is an effective way to reduce the 

transportation cost. Classical mathematical optimization models of the vehicle routing for 

the facility location decision has been summarized [46]. A waste collection optimization 

was performed by minimizing the route distance. A modified Backtracking Search 

Algorithm was applied in the capacitated vehicle routing problem models. By optimizing, 

the average waste collection efficiency was improved by 37%, and the fuel cost was 

reduced by 48%. [47] An optimization on solid waste collection and transport was 

performed by using the ArcGIS Network Analyst tool. As a result, a 48% gas saving was 

achieved on the optimal transport scenario. [48] Furthermore, a cooperative fuzzy 

optimization approach was utilized on the area of emergency transportation. Based on the 

approach, supplicated problems were break down to several sub-components and evaluated 

concurrently. The optimal solution was obtained by integrating all sub-solutions. By 

employing the approach, the decision making time can be reduced by 45 % to 83% for 

emergency transportation. [49] A multi-agent decision support system was created to 

perform transportation optimization with multiple requests and multiple routes. The 

objective of the optimization was minimizing the travel time and minimizing the gas 

emission. The optimal results regarding time and gas emission vary by the weight given to 

each criterion. [50].  
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1.7 Optimization Algorithm: MILP, GA 

As the optimization algorithm, Mixed Integer Linear Programming (MILP) and Greedy 

Algorithm (GA) has been used broadly on mathematical models. In order to solve a EoL 

vehicle recovery problem in Turkey economically, a MILP optimization model was 

developed to minimize the costs on opening facilities, recovery processes, and 

transportation [51]. MILP was also applied on vehicle routing problems to maximize the 

on-time possibility with the shortest path. [52] In addition, MILP was utilized for 

optimizing the beam layout on multibeam satellite systems design. The result generated by 

MILP was excellent, but the computational speed can be further improved. [53]  

Some advanced GA were developed on top of the original GA to solve specific 

problems. An iterated greedy algorithm was utilized for improving the current solution of 

permutation flowshop scheduling problems. With the algorithm, the final solution can be 

significantly improved by re-optimizing partial solutions. [54] A modified GA was 

employed to solve the stochastic control problem on the networked storage operation area. 

By deriving a sub-optimality bound to the algorithm, a semidefinite program can be 

constructed to minimize the bound. The algorithm is near-optimal because in many cases, 

the bound approaches zero. [55] A new, but generalized greedy: carousel greedy algorithm 

was developed to overcome weaknesses of the traditional greedy approaches. The new 

algorithm was used for solving several well-known combinatorial optimization problems. 

It showed that carousel greedy is able to handle problems with larger number of variables 

and can quickly generate a feasible solution. [56]  
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1.8 Aim and Contribution 

The aim of the dissertation is to develop an optimal PV recycling framework by 

evaluating the amount of PV waste and to ensure the economic feasibility of the potential 

PV recycling infrastructure in California. Unlike previous studies, the main contribution is 

to include temporal and spatial consideration together for the PV recycling planning 

framework. Several mathematical models were constructed for determining the optimal 

locations PVRCs and generating the optimal distribution scenario. Sensitivity analysis was 

performed to test the efficacy the proposed mathematical model for facilitating decisions 

on building an efficient PV recycling network. The general framework allows efficient 

decision making for policymakers and stakeholders involved in PV recycling network. 
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CHAPTER II 

METROLOGY 

2.1 PV Recycling Framework Overview     

A general framework was developed to facilitate PV recycling in local communities of the 

United States. Several mathematical optimization models were constructed to perform 

optimization. Figure 2.1 shows the overall structure of the PV recycling framework. First, 

a database was created for collecting input data on PV installation, various costs for PV 

recycling, distance matrices among PVIS, PVRC, and TC, and environmental impact index 

packages. The application of the database was shown in Chapter IV and Chapter VI. 

Second, for determining the optimal location of PVRC, multi-facility optimization model 

was developed and described in Chapter III. Third, for generating the optimal distribution 

scheme, optimal distribution model was developed and described in Chapter V. Case 

studies for multi-facility optimization model and optimal distribution model were 

demonstrated in Chapter IV and Chapter VI, respectively. Last, the framework can perform 

trade-off analyses between scenarios for guiding decision makings. 
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2.1.1 Creating Database for Input 

The database consists of 1) PV installation data initiated by the U.S. National 

Renewable Energy Laboratory [14] under the U.S. Department of Energy; 2) various costs 

associated with setting up PV recycling center from real PV recycling industries; 3) 

distance matrices among PVIS, PVRC, and TC; 4) environmental impact index packages 

to evaluate the environmental impact of each recycling scenario. 

2.1.2 Locating PVRC  

The model should be able to generate multiple optimal scenarios varied by the number 

of PVRC and recycling periods. While optimizing, the model should be able to include 

realistic constraints such as the regional restrictions for building PVRCs and the annual 

recycling capacity of each PVRCs. In addition, the model should be able to handle the 

exponentially increased PV amount.  Due to the exponentially increased amount of waste, 

several individual recycling periods, such as short, mid, and long terms should be 

considered separately. As the output, the model can give the geographical location of 

PVRCs, the total transportation distance, the break-down cost including the transportation 

cost, the capital cost, and the operational cost, and the environmental impact of each 

scenario in each recycling period.  

2.1.3 Generating Distribution Scheme 

From figure 1.1, the amount of PVIS varies a lot year by year. Thus, the optimization 

model should be smart enough for creating the distribution directives efficiently to satisfy 

the exponentially increased amount of PVIS. While performing the optimization process, 

the model should also be able to include the maximum annual capacity of each TC and 
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PVRC as physical constraints. As a result, an optimization model among three parameters: 

PVIS, TC, and PVRC needs to be constructed to distribution the most optimal TC to ship 

each PVIS to the closest PVRC.  

2.1.4 Performing Trade-off Analyses 

First, trade-off analyses should be performed among the total cost, the environmental 

impact, and the investment risk. Those three factors are affected by the location, the 

quantity, and the annual capacity of PVRC. Typically, lower total cost usually goes with 

higher environmental impact and investment risk. As a sustainable action, PV recycling is 

bringing tremendous environmental benefits on resource depletion and toxicity hazard. 

However, more positive effects are expected in the PV recycling process. As another 

sustainable manner, the environmental impact should be considered to make PV recycling 

much greener. In addition, as stakeholders, investment risk is much more interested than 

short-term investment profit. Therefore, multiple scenarios with trade-off analyses among 

cost, environmental impact and investment risk should be conducted for assisting the 

decision-making in PV recycling. 

Second, while operating the distribution optimization among TC, PVIS, and PVRC, 

the first question should be addressed is whether the optimization process is necessary. It 

is not necessary to implement the optimization process if the total cost before and after the 

optimization are similar. Results from optimizations usually search for the global minima, 

but could be significantly time consuming. Thus, Sensitivity analyses should be performed 

among scenarios to explore the necessity of the optimization process. General 

recommendations should be concluded for directing the optimization in the necessity 

perspective on PV recycling.    
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2.2 Uniqueness of the proposed work 

2.2.1 Integration of Temporal and Spatial Dispersion of PVIS  

This research integrated multiple dimensions of data into one model while developing 

the PV recycling framework. In the multi-facility optimization model, the geographical 

variance and time variance of PVIS was considered as a whole. In the geographical 

variance perspective, for addressing the uneven dispersion of PVIS, a mathematical 

optimization model was developed to select the location of PVRCs. While addressing the 

exponential increase of PVIS year by year (the time variance issue), the research creatively 

proposed three recycling phases to construct PVRCs periodically.   

2.2.2 Development of Multi-Facility Optimization Model 

Multi-facility optimization model considered the interplay among return of investment, 

environmental impact, and investment risk while planning PV recycling. Trade-off 

analyses were performed among those factors by considering several uncertain situations. 

Consequently, several recycling scenarios were concluded. 

2.2.3 Development Optimal Distribution Model  

Optimal distribution model was developed to generate the transportation schemes 

between PVIS, PVRC, and TC. Two creative algorithms: static and dynamic computational 

algorithm was employed to construct the model for conducting the optimal distribution 

scenario. Besides the computational results, the research also focused on the performance 

of two algorithms from the cost-effectiveness perspective. The practicability of each 

algorithm was discussed.  
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2.2.4 Utilization of GIS for PV Recycling Optimization 

As an alternate way to solve the location allocation problem, GIS was utilized to find 

the optimal location of PVRC. The median center and the spatial join were used as the 

optimization tool. The location and the distance results concluded by the multi-facility 

optimization model and GIS were compared. In addition, GIS was also used for displaying 

the spatial and the temporal dispersion of PVIS and the locations of PVRC in scenarios. 
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CHAPTER III 

MULTI-FACILITY OPTIMIZATION MODEL 

A general mathematical modeling framework is developed to optimize the economic 

and environmental performance of the PV reverse logistics network. There are three 

aspects in the proposed model: 1) transportation module; 2) economic module; 3) 

environmental module.  

3.1 Transportation Module 

The transportation module locates Photovoltaic Recycling Centers (PVRCs) in the 

optimal geographical regions by minimizing the total travel distance (TTD) for the 

collection of retired PV modules from PV Installation Sites (PVIS) to PVRCs. In the 

transportation module, the geographical location, and the installed year of PVIS were 

required as the input. Those spatial and temporal information can be achieved from various 

publicly available sources [57, 58]. As a result, a mathematical model was developed for 

selecting optimal locations of PVRCs by minimizing the total transportation distances.   

The weight of the material of each PVIS and the capacity of PVRC were considered in the 

module.  
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3.1.1 Distance Definition 

On a two-dimensional surface, the geometric distance between two locations (𝑥1, 𝑦1) 

and  (𝑥2, 𝑦2) can be defined as [39] : 

𝐷𝑠 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2                                           (3.1)  

Therefore, the geometric distance of two longitude and latitude based locations 

(long1, lat1) and (long2, lat2) on a flat two-dimensional surface is: 

𝐷𝑙 = √(𝑙𝑜𝑛𝑔1 − 𝑙𝑜𝑛𝑔2)2 + (𝑙𝑎𝑡1 − 𝑙𝑎𝑡2)2                                (3.2) 

However, in practice, on earth, the distance between two longitude and latitude based 

locations, instead of the linear distance, should be modified to the arc distance, in which,  

𝑇ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 1° 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 

= 𝑐𝑜𝑠  (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑚𝑖𝑙𝑒𝑠) 𝑎𝑡 𝑒𝑞𝑢𝑎𝑡𝑜𝑟 

=  𝑐𝑜𝑠 (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) × 69.172 𝑚𝑖𝑙𝑒𝑠                                       (3.3) 

𝑇ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 1° 𝑜𝑓 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  1° × 69.172 𝑚𝑖𝑙𝑒𝑠 = 69.172 𝑚𝑖𝑙𝑒𝑠          (3.4) 

Thus, the arc distance on earth can be expressed as equation 3.5 with the unit of the 

distance of the formula is expressed in miles [59]. Equation 3.5 was use as a distance 

calculating equation and was denoted by method 1.  

𝐷(1) = √[(𝑙𝑜𝑛𝑔1 − 𝑙𝑜𝑛𝑔2)×𝑐× 𝑐𝑜𝑠(𝑙𝑎𝑡1 − 𝑙𝑎𝑡2)]2 + [(𝑙𝑎𝑡1 − 𝑙𝑎𝑡2)×𝑐]2          (3.5) 

where, longitude and latitude are both measured in degrees (decimal), and c 

(c = 69.172 miles/degrees) converts the units from degrees to miles.  

In addition, by considering approximate sphere shape of earth, the distance between 

two points on earth can also be calculated as the spherical distance [60] in equation 3.6. 

Equation 3.6 was use as another distance calculating equation and was denoted by method 
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2. The distance calculated by both methods were compared for achieving the global 

minimum.   

𝐷(2) = 2×𝑅× 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 𝑙𝑎𝑡1−𝑙𝑎𝑡2
2

+ 𝑐𝑜𝑠 𝑙𝑎𝑡1 × 𝑐𝑜𝑠 𝑙𝑎𝑡2 × 𝑠𝑖𝑛2 𝑙𝑜𝑛𝑔1−𝑙𝑜𝑛𝑔2
2

)      (3.6) 

where, R is the radius of earth and equals 3,959 miles. 𝐷(2) is the arc-length distance 

on earth.  

3.1.2 Distance in PV Recycling 

The optimal quantity, and locations of PVRC needs to be determined. For the 

centralized scenario, which has a single PVRC, all EoL PV are brought into that PVRC. 

Thus, the only task is to find the location of the center in order to minimize the total travel 

distance. For decentralized scenarios, where the number of PVRC varies from two to ten, 

the optimization process is more challenging: the selected PVRC should be the one that 

has the smallest distance between the PVIS and the PVRC, also not exceeding its maximum 

annual capacity.  

In addition, while determining the location of PVRC, the weight of material of each 

PVIS should be considered because intuitively, PVRC should be closed to large PVIS than 

small PVIS. So the distance calculating equation 3.5 and 3.6 can be modified as equation 

3.7 and 3.8, respectively.  

𝐷(1𝑤) = √[(𝑙𝑜𝑛𝑔1 − 𝑙𝑜𝑛𝑔2)×𝑐× 𝑐𝑜𝑠(𝑙𝑎𝑡1 − 𝑙𝑎𝑡2)]2 + [(𝑙𝑎𝑡1 − 𝑙𝑎𝑡2)×𝑐]2×𝑊     (3.7) 

𝐷(2𝑤) = 𝑅× 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 𝑙𝑎𝑡1−𝑙𝑎𝑡2
2

+ 𝑐𝑜𝑠 𝑙𝑎𝑡1 × 𝑐𝑜𝑠 𝑙𝑎𝑡2 × 𝑠𝑖𝑛2 𝑙𝑜𝑛𝑔1−𝑙𝑜𝑛𝑔2
2

) ×𝑊     (3.8) 

where, W is the weight of material of each PVIS. 
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If all location of PVIS are denoted as (𝑎𝑖, 𝑏𝑖) and all locations of PVRC are denoted as 

(𝑥𝑗 , 𝑦𝑗),  equation 3.7 and 3.8 can be expressed as 3.9 and 3.10, respectively. All (𝑎𝑖, 𝑏𝑖) 

are known and all (𝑥𝑗 , 𝑦𝑗) are unknown. 

𝐷𝑖,𝑗
(1𝑤)

= √[(𝑎𝑖 − 𝑥𝑗)×𝑐× 𝑐𝑜𝑠(𝑏𝑖 − 𝑦𝑗)]
2

+ [(𝑏𝑖 − 𝑦𝑗)×𝑐]
2

×𝑊𝑖                 (3.9) 

𝐷𝑖,𝑗
(2𝑤)

= 2×𝑅× 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 𝑏𝑖−𝑦𝑗

2
+ 𝑐𝑜𝑠 𝑏𝑖 × 𝑐𝑜𝑠 𝑦𝑗 × 𝑠𝑖𝑛2 𝑎𝑖−𝑥𝑗

2
) ×𝑊𝑖         (3.10) 

If multiple locations of PRRC are included in the scenario, the weighted distance 

between the PVIS 𝑖 and the selected PVRC 𝑗 to recycle the PVIS 𝑖 is 

𝐷𝑖
(𝑤)

= min 𝐷𝑖,𝑗
(𝑤)

                                                     (3.11) 

where 𝐷𝑖,𝑗
(𝑤) can be either 𝐷𝑖,𝑗

(1𝑤) or 𝐷𝑖,𝑗
(2𝑤) depending on whichever distance calculating 

method is used.  

The total weighted distance to recycle all PVIS is in equation 3.12, which is also the 

objective function of the optimization.  

𝐷(𝑤) = ∑ 𝐷𝑖
(𝑤)

𝑛

𝑖=1

                                                      (3.12) 

After the locations of PVRC are calculated as (𝑥𝑗
′, 𝑦𝑗

′) by the optimization process, the 

distance between the PVIS 𝑖 and the selected PVRC 𝑗 to recycle the PVIS 𝑖 is 

𝐷𝑖,𝑗
(1)

= √[(𝑎𝑖 − 𝑥𝑗
′)×𝑐× 𝑐𝑜𝑠(𝑏𝑖 − 𝑦𝑗

′)]
2

+ [(𝑏𝑖 − 𝑦𝑗
′)×𝑐]

2
                  (3.13) 

𝐷𝑖,𝑗
(2)

= 2×𝑅× 𝑠𝑖𝑛−1 (√𝑠𝑖𝑛2 𝑏𝑖−𝑦𝑗
′

2
+ 𝑐𝑜𝑠 𝑏𝑖 × 𝑐𝑜𝑠 𝑦𝑗

′ × 𝑠𝑖𝑛2 𝑎𝑖−𝑥𝑗
′

2
)           (3.14) 

The distance between the PVIS 𝑖 and the selected PVRC 𝑗 to recycle the PVIS 𝑖 is 

𝐷𝑖 = min 𝐷𝑖,𝑗                                                        (3.15) 
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where 𝐷𝑖,𝑗 can be either 𝐷𝑖,𝑗
(1𝑤) or 𝐷𝑖,𝑗

(2𝑤) depending on whichever distance calculating 

method is used.  

The total transportation distance is  

𝐷 = ∑ 𝐷𝑖

𝑛

𝑖=1

                                                             (3.16) 

In order to illustrate the optimization mechanism, the 3-PVRC case is shown as an 

example to recycle the 1st PVIS by using method 1 in equation 3.5. The longitude and 

latitude of the 1st PVIS is (𝑎1, 𝑏1), and (𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3) for the three PVRC. 

The weighted distances between the 1st PVIS and PVRC are 

𝐷1,1
(1𝑤)

= √[(𝑎1 − 𝑥1)×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦1)]2 + [(𝑏1 − 𝑦1)×𝑐]2×𝑊1            (3.17) 

𝐷1,2
(1𝑤)

= √[(𝑎1 − 𝑥2)×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦2)]2 + [(𝑏1 − 𝑦2)×𝑐]2×𝑊1            (3.18) 

𝐷1,3
(1𝑤)

= √[(𝑎1 − 𝑥3)×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦3)]2 + [(𝑏1 − 𝑦3)×𝑐]2×𝑊1           (3.19) 

The travel distance between the 1st PVIS and the selected PVRC 𝐷1
(1𝑤)is the minimum 

distance among above three:  

𝐷1
(1𝑤)

= min(𝐷1,1
(1𝑤)

, 𝐷1,2
(1𝑤)

, 𝐷1,3
(1𝑤)

)                                    (3.20) 

For the 3-PVRC scenario, the objective function in the optimization process is  

𝐷(1𝑤) = ∑ 𝐷𝑖
(1𝑤)

𝑛

𝑖=1

                                                         (3.21) 

The optimal location of those three PVRC can be determined by the optimization 

process. The locations are (𝑥1
′ , 𝑦1

′ ), (𝑥2
′ , 𝑦2

′ ), and  (𝑥3
′ , 𝑦3

′ ). The distances between the 1st 

PVIS and those three PVRC 𝑗 are 
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𝐷1,1
(1)

= √[(𝑎1 − 𝑥1
′ )×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦1)]2 + [(𝑏1 − 𝑦1

′)×𝑐]2               (3.22) 

𝐷1,2
(1)

= √[(𝑎1 − 𝑥2
′ )×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦2)]2 + [(𝑏1 − 𝑦2

′)×𝑐]2               (3.23) 

𝐷1,3
(1)

= √[(𝑎1 − 𝑥3
′ )×𝑐× 𝑐𝑜𝑠(𝑏1 − 𝑦3)]2 + [(𝑏1 − 𝑦3

′)×𝑐]2               (3.24) 

The travel distance to recycle the 1st PVIS is the minimum distance among those three 

distances:  

𝐷1
(1)

= min(𝐷1,1
(1)

, 𝐷1,2
(1)

, 𝐷1,3
(1)

)                                   (3.25)  

The total transportation distance for recycling all PVIS in the 3-PVRC scenario by 

using method 1 is  

𝐷(1) = ∑ 𝐷𝑖
(1)

𝑛

𝑖=1

                                                        (3.26) 

3.1.3 Optimization Tool 

As part of the optimization processes, “fmincon” function in Matlab [61] was employed 

to determine the latitude and the longitude of PVRC. Fmincon function is one of built-in 

functions in Matlab. The function can be used to find the minimum solution for either linear 

and nonlinear functions subjected to given constraints. For initiating the optimization, users 

need to compile an objective function, upload input data, define the initial guess.  Several 

constraints and the upper and lower bounds can be included into the function if needed.  

By calling the function, the minimum value of the function, as well as its solved unknowns 

can be produced. The expression of the function is shown below:  
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Minimize 

 𝑓(𝑥)                                                                                (3.27) 

Subject to 

                                            𝑐(𝑥) ≤ 0                                                                        (3.28) 

𝑐𝑒𝑞(𝑥) = 0                                                                     (3.29) 

𝐴 ∙ 𝑥 ≤ 𝑏                                                                        (3.30) 

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞                                                                 (3.31) 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏                                                                  (2.32) 

 

where, 𝑓(𝑥) is the objective function that needs to be minimized. 𝑥 is the variable 

which can be a scalar, vector, or matrix. The return of the function is a scalar.  The 

constraints in equation 3.28 and 3.29 are nonlinear inequalities and nonlinear equalities, 

respectively. 𝑐(𝑥) and 𝑐𝑒𝑞(𝑥) are functions that return vectors. The constraints in equation 

3.30 and 3.31 are linear inequalities and linear equalities, respectively. 𝐴  and 𝐴𝑒𝑞  are 

matrices and 𝑥, 𝑏, and 𝑏𝑒𝑞 are vectors. The constraint in equation 3.32 is the lower and 

upper bound of the variable 𝑥. The lower bound (𝑙𝑏) and the upper bound (𝑢𝑏) can be 

defined as a vector or a matrix according to the dimension of 𝑥. 

In the PV recycling optimization, the objective function is a nonlinear function because 

it contains the square and the square root operators. It is also a discrete function because of 

containing the logical operator “min”. The input consists of the latitude, the longitude, the 

weight of material of each PVIS. The initial guess was defined as a 𝑛×2 matrix, in which 

n is the number of PVRC and 2 represents the longitude and latitude of each PVRC. The 
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upper and the lower bound were set according to the geographical bound of California, 

which were set as (-125, -114) and (32, 42) for longitude respectively. 

3.1.4 Mathematical Model 

Based on the mechanism of fmincon function, we have adopted a mathematical model 

which optimizes the locations of multiple recycling facilities. Equation 3.33 is the objective 

function which minimizes the total distance travelled for delivering the retired EoL PV 

modules from multiple PVISs to multiple PVRCs. Equation 3.34 ensures all retired PV 

modules from each PVIS are delivered to the closest PVRC. The linear inequalities in the 

Equation 3.35 restrict that the total weight that each PV PVRC receives is less than its 

maximum accepted capacity. The annual capacity of each PVRCs for different case needs 

to be specified to run the model. In order to ensure the feasibility of the mathematical 

model, maximum capacity of each PVRC set to be greater than the total amount of 

incoming PV modules delivered to each PVRC. The model is designed to send any excess 

amount of incoming PV modules to the next available PVRCs if it reaches the maximum 

capacity. Equations 3.36 and 3.37 sets geographical boundaries of the considered regions. 

The model iterates until the optimal locations of PVRCs are found.  

Minimize                                     

𝐹 (𝛷, 𝛬) = ∑ ∑ 𝐷𝑖𝑗 ∙ 𝑋𝑖𝑗 ∙ 𝑊𝑖

𝑛

𝑗=1

𝑛

𝑖=1

                                          (3.33) 

Subject to     

∑ 𝑋𝑖𝑗

𝑗∈𝐽

= 1                                                                        (3.34) 
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∑ 𝑊𝑖𝑋𝑖𝑗

𝑖∈𝐼

 ≤ 𝐶𝑗                                                                  (3.35) 

𝑙𝑏𝜙 ≤ 𝜙𝑗 ≤ 𝑢𝑏𝜙  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙𝑗  𝑖𝑛 𝛷                                  (3.36) 

𝑙𝑏𝜆 ≤ 𝜆𝑗 ≤ 𝑢𝑏𝜆  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆𝑗  𝑖𝑛 𝛬                                      (3.37) 

The main outcomes of the model are the optimal geographical location of PVRC and 

the total transportation distance. Total distance traveled can be calculated by summing up 

all optimized distance from each PVIS to the designated PVRC as shown in equation 3.38. 

𝐷 (Φ, Λ) = ∑ min (𝐷𝑖𝑗) ∙ 𝑛𝑖

n

𝑖=1

                                      (3.38) 

where, min (𝐷𝑖𝑗)  is the shortest distance between each PVIS 𝑖  and corresponding 

PVRCs 𝑗 . 𝑛𝑖  represents the number of trips required. After the transportation module 

determines the total distance traveled for each scenario, economic and environmental 

impacts can be accounted in the following modules.    

3.1.5 Local and Global Minimum 

A local minimum is the smallest value of the function within a sufficiently small 

neighborhood about the minimum point, whereas the global minimum is the smallest value 

over the entire domain of a function. Thus, the global minimum of the function is also one 

of local minima, and the global minimum of that function is always the smallest local 

minimum. Also, the global minimum may not exist for unbounded functions. [62] Figure 

3.1 represents the relationship of the local minimum and the global minimum.  
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Figure 0.1: Demonstration of local minimum and global minimum. 

 

The local minimum issue may arise in situations while the objective function is in 

nonconvex or discrete situation. In general, while finding the minimum, algorithms 

converge to a minimum, but that minimum might be a local minimum. Initial guesses affect 

the iteration stopping at a local minimum or the global minimum. Thus, appropriately 

selecting initial guesses is a key factor to finding the global minimum on the nonconvex, 

discrete, nonlinear, and multiple variable functions. Multiple start points are usually used 

in order to obtain the global minimum. 

In the PV recycling problem, while locating PVRC, the objective function is discrete 

and nonlinear. The reason of that is the existence of the logic and square root operators. 

Furthermore, as the number of the recycling centers increases from two to ten, the objective 

function turns out to be multivariable and nonconvex. The global minimum does exist 

because the objective function subjects to a closed interval, which is in the geographical 
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bounds of the state of California. However, it is challenging to obtain the global minimum 

among all local minima. The following actions were applied to facilitate obtaining the 

global minimum.  

• Apply multiple initial guesses and several Optimization algorithms 

In order to determine the global minimum, multiple initial guesses and  several 

optimization algorithms were applied in the optimization process [63]. First, several 

starting values were used including several values such as (1, 1) and (-120, 35). Also, the 

results obtained from the last or the next scenario were used as initial guesses.  Second, the 

fmincon solver has several optimization algorithms such as active-set, sqp, interior-point, 

and trust-region-reflective build in. The combinatorial initial guesses and algorithms were 

used for repetitive trials and the smallest local minimum was picked as a potential global 

minimum.  

• Use two different distance calculating methods 

In addition, two different distance calculating methods were applied while performing 

the optimization. The total transportation distance conducted by two methods were plotted 

and compared. The smaller value in each scenario tends to be the global minimum and was 

picked. In addition, with the number of PVRC increases, the slope of the total travel 

distance should decrease gradually.  If any increase, shock, or fluctuation occurs at any 

point on the plot, the global minimum of that scenario has not been reached yet. 

• Plot PVRC location on maps 

After finding the geographical location of each recycling center, ArcGIS was utilized 

to visually present all locations of each scenario on the California. Intuitively, in order to 

minimize the total travel distance, all locations of recycling centers should be close to PV 
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installing clusters. Besides, scenarios next to each other should have similar locations of 

PVRC. One additional PVRC added based on the previous scenario. If any one of two 

criteria are not satisfied, the global minimum has not been researched yet. The local 

minimum issue can be easily detected by presenting the location results on the map via 

ArcGIS. 

3.1.6 Alternate Optimization Tool: GIS 

As an alternate way, GIS can be used to find the optimal location of PVRC as well as 

the total transportation distance. The median center tool and the spatial join tool can be 

used as the optimization tools. The median center tool in ArcMap can be used to find the 

geographical locations of PVRC. Median center in ArcMap is the location that minimizes 

overall Euclidean distance among all elements of a dataset. The tool also considered the 

weight of material of each PVIS while locating median centers. Consequently, all PVRCs 

can be located closer to large PVISs: the larger the PVIS is, the closer the PVRC is nearby. 

After obtaining the location of PVRCs, the total transportation distance can be calculated 

by using the spatial join tool. Spatial join is a tool that mates each PVIS to the closest 

PVRC. The total transportation distance can be obtained by summing all individual 

distances together.  

For doing the optimization, employing GIS of requires less programming work than 

applying the mathematical models described in 2.1.2 and 2.1.3. The location of PVRC and 

the total transportation cost can be simply obtained after the location and the weighted of 

material of PVIS are uploaded into GIS. As the disadvantage, GIS can only find one median 

center in each research area. In order to obtaining multiple locations of PVRC in multiple 

PVRC scenarios, the research area needs to be physically divided to the corresponding 



29 

 

number of areas. The result of the GIS method is not expected to be as accurate as the 

method by using mathematics and programming as human subjects are included while 

dividing research areas. However, the method is still worth to try if the result is not way 

off from the programming method.   

3.2 Economic Module 

The economic module evaluates the recycling system’s economic performance. Overall 

PV recycling cost consists of 1) transportation costs, 2) capital costs, and 3) operating costs. 

After the optimal locations of PVRCs are decided from the transportation module, 

transportation costs can be calculated based on the total transportation distance travelled. 

Evaluation of the total transportation cost requires inputs such as the maximum capacity 

and fuel efficiency of trucks, fuel prices of different geographical locations, costs for truck 

drivers/contracting service. Following assumptions are made for the modeling: maximum 

load of lorry is 7.5 metric tons; fuel efficiency of truck is 3.85 km/L; cost of fuel is 

$0.99/liter; hourly wage of truck driver in the state of California is $25/hr;  approximate 

weight of the 1MW capacity PV modules are equivalent to 75 metric tons [32]. The capital 

cost includes the cost on plant, equipment, and land. The operating cost includes the costs 

of labor, utility, and maintenance. Some indirect cost such as administrative cost should be 

included as well. Evaluation of total costs requires inputs such as the annual optimal 

recycling capacity and annual operating costs of each PVRC are chosen from the 

transportation module. We have adopted functional relations among the capital cost, 

operating cost, and the annual capacity from a model developed by a study [64]. The cost 

models include the economies of scale when considering the cost variants related to the 

size of the PVRC capacity.  
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3.3 Environmental Module 

The environmental module assesses the environmental impact of the PV recycling 

generated from transportation scenarios. Global Warming Potential (GWP) impact is used 

as the main indicator to account the lifecycle environmental impacts generated from 

transportation. Greenhouse gas inventories from Ecoinvent V. 2.1 [65] for the operation 

stage of the truck is utilized. Direct airborne emissions of gaseous substances, particulate 

matter, and heavy metals are accounted for. Average environmental data for 50 percent 

loaded heavy-duty vehicles are assumed as a conservative measure. Emission from 

trucking assumed to be linear with the transportation distance. GWP over 20 years 

(GWP20) are used [66]. Other environmental impacts can be calculated readily but we 

presented GWP only in this study.  
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CHAPTER IV 

CASE STUDY OF MULTI-FACILITY OPTIMIZATION MODEL 

The proposed framework in chapter IV was applied to the California because the state 

has relatively long history and a larger size of PV installations compared to other states. 

The overall framework considers the variances of temporal and spatial parameters vis-à-

vis for short, middle, and long term planning. 

4.1 PV Installation Size, Type, and Location 

Main data used for the modeling include such as the location of the PV installation, the 

size, and the year of installation of 53,846 PV sites. Based on these data, we have classified 

three different time periods of PV installation in California. Figure 4.1 shows the PV 

installation in California from 1984 to 2015. In the first period (i.e. Introduction of PV 

during 1984-2005), PV modules were installed in a small scale, mostly as residential 

systems of relatively slow growth rate. In the second period (i.e. Fast Growth of the PV 

market in CA during 2005-2010), PV installation picked up relatively fast because of the 

establishment of incentive policies in California. In 2005, the California Solar Initiative 

(CSI) was approved by the California Public Utilities Commission (CPUC) for providing 

subsidies on solar projects. A $2 billion budget over 10 years was proposed by CSI. In 
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2006, more than $3 billion were provided by CSI as incentives on small PV systems 

throughout residential, commercial, governmental and nonprofit buildings [67]. In the third 

period, (i.e., large-scale), lot more utility scale PV modules have installed in various 

locations in CA. However, there was a sudden drop of the installation capacity in the year 

2013 partly because of the winding down of CSI; the subsidy of installing PV is reduced 

significantly from $2.50 to $0.20 per watt [68]. In addition, CPUC changed the electricity 

rate structure from four-tier to three- or two tier in 2013 [69].   

 

 

Figure 0.1: Annual PV installations in California (1984 – 2016). 

 

Table 4.1 lists the variation in size and the number of PVISs locations in the three 

periods of PV installation [57, 58]. The total number of new PVIS constructed are 2,706, 

14,875 and 36,265 for introduction, growth, and prosperity periods, respectively. We 

couldn’t include data for the 2016 as it is not available in the source. In the growth and 

prosperity periods, total size of new installation is an order of magnitude larger than those 
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of the introduction period. Basically, it shows that small residential PV installation 

dominates compare to the large utility scale installation in terms of the number of PVIS. 

However, in terms of the capacity of PVIS, utility scale installation is an order of magnitude 

larger than total small scale residential installation. 
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Figure 4.2 shows more visual insights about PV module installed during the year 1984 

to the year 2015 in different locations of California. Horizontal axis is the number of PVIS 

and vertical axis shows the capacity installed. Each dot indicates the size of the PV 

installed. For example, first dot in the far left side of the x-axis indicates the 1,133 kW 

installed in one area of CA (Dot 1), and the next dot below indicates the 908 kW system 

installed in the other area of CA (Dot 2). Each color indicates the year of installation and 

the triangular dots indicate the installation capacity over 1.2 MW system. It shows the 

relationship among the size, year of installation, and number of installed sites. For example, 

the width of the regions (i.e. aggregated dots) in year 2014 is wider than year 2012 (i.e. 

more PVIS). However, the total installed capacity in the year 2012 was higher than that of 

the year 2014 (i.e. figure 4.1). It is obvious that there were larger scale PVIS (triangular 

dots) in the year 2012 than the year 2014. In terms of the number of PVIS, small scale 

systems such as less than 3 kW and 10 kW cover twenty and ninety percent of the total 

accumulative installation in CA respectively. In addition, large scale installation (i.e. more 

than 1.2 MW) counts less than one percent in terms of the number of sites but covers seven 

percent in terms of the total capacity.  
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4.2 Phase I: Short-term Planning 

This section shows the case of selecting optimal numbers and locations of PVRCs in 

CA to process EOL PV modules expected to retire during 2021 ~ 2025 (i.e. modules 

installed in introductory period). Based on the waste prognosis, initial recycling facilities 

capable of processing a total of 70 MW per year PV EOL waste is suggested. Table 4.2 

shows the annual capacity of each PVRC, the total transportation distance (TTD) from 

PVIS to the optimal PVRC location, the breakdown of the cost, and corresponding CO2 

emissions from transportation as the number of PVRC increases. TTD decreases as the 

number of PVRCs increase since the model allocate smaller size of PVRCs to more 

decentralized locations to process annual total waste 70MW. For example, adding second 

PVRC can result in 63 percent reduction of TTD compare to single PVRC case. Adding 

third PVRC only reduces additional 5 percent of TTD compare to 1 PVRC case. It is 

modeled that the waste which could not be processed because of the capacity limit of the 

plant will be put on hold in inventory to be processed next year/phase in the same PVRC.    

Table 0.2: Total costs and emission generated from the Phase I planning. 

Number 
of 

PVRC 

Capacity 
(mT/year/ 

PVRC) 

TTD 
(106 km) 

Capital 
($M) 

O&M 
($M) 

Transport 
($M) 

Total Cost 
($M) 

GWP (103 
ton-CO2eq) 

1 5,300  9.5  0.7  2.2  5.9  8.8  1,390  
2 2,600  3.5  0.9  2.9  2.5  6.3  513  
3 1,800  3.0  1.1  3.4  2.2  6.6  444  
4 1,300  2.6  1.2  3.7  1.9  6.9  376  
5 1,100  2.1  1.3  4.0  1.7  7.0  314  
6 900  1.9  1.4  4.3  1.5  7.2  275  
7 800  1.7  1.5  4.4  1.4  7.3  249  
8 700  1.5  1.6  4.6  1.3  7.5  228  
9 600  1.5  1.6  4.7  1.3  7.6  215  

10 500  1.4  1.7  4.9  1.2  7.8  200  
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Figure 4.3 shows the trend of the total system costs as the number of PVRCs increases. 

This result stems from the relative relationship between the transportation cost savings (i.e. 

distance savings) and the other costs associated with setting and operating PVRCs with 

different capacity (i.e. as the number of PVRC increase, the capacity of PVRC decrease) 

to process total 70MW of PV waste in this period in CA. Total system capital cost and the 

operation cost increases, while the transportation cost decreases as the number of the 

constructed PVRCs increase.  

 

Figure 0.3: Total system cost vs. number of PVRC in Phase I. 

 

Optimal numbers and locations can be selected based on the size of PV waste 

generated, TTD, capacity limit of PVRC, and recycling costs. Our goal is to show diverse 

options for decision makers when they plan for constructing PVRC for processing the PV 

waste generated from the installation during the “introduction period” (1984-2005). To 
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show the efficacy of the model, we have selected constructing two 35 MW processing 

capacity (i.e. total 2,600 tonne PV waste processing per year) PVRCs in the two optimized 

locations since the scenario seems to provide the best return on investments with the least 

environmental impacts as shown in Table 3.2. Figure 4.4 shows the geographical location 

of different size of PVIS installed in the introduction period. It also shows the latitude and 

longitude of selected optimal PVRC locations. Other numbers of PVRC map can be found 

in appendix A-1.  

 

Figure 0.4: Two PVRCs selected for Phase I (2021 - 2025). 

 

4.3 Phase II: Mid-term Planning 

This section shows the case of selecting optimal numbers and locations of PVRCs in 

CA to process EOL PV modules expected to retire during 2026 ~ 2030 (i.e. modules 
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installed in the Growth period). Based on the waste prognosis, recycling facilities capable 

of processing total 700 MW per year PV EOL waste is suggested. Since, two smaller scale 

PVRCs are already constructed from Phase I to process total 70 MW of PV wastes, new 

PVRCs which can process additional 630 MW (i.e 47,000 tonne) of EOL PV waste per 

year are required. Optimal numbers and locations of new additional PVRC (different 

capacities than PVRC in Phase I) are selected based on the size of PV waste generated in 

the Growth period, TTD, capacity limit of PVRC, and the recycling costs.  Table 4.3 shows 

TTD from PVIS to the optimal PVRC locations, corresponding recycling costs, and the 

associated environmental impacts. Decentralized scenarios can disperse the financial risk 

of the entire reverse logistics network planning. If the profitability was not quite well in 

the future, some PVRC can be closed with relatively less financial risk. Second, operation 

costs (especially labor costs) take up about 60 percent in Phase II planning. Development 

of new recycling technologies with more automations and advanced processes can reduce 

the labor costs significantly.  

Table 0.3: Total costs and emission generated from the Phase II planning. 

# of 
new 

PVRC 

Capacity 
(mT/year

/PVRC) 

TTD 
(106 km) 

Capital 
($M) 

O&M 
($M) 

Transport 
($M) 

Total Cost 
($M) 

GWP (103 
ton-CO2eq) 

3  16,000  10.8  4.0  11.0  7.6  22.5  1,584  
4  12,000  9.0  4.4  12.2  6.5  23.2  1,330  
6  8,000  7.4  5.2  14.2  5.4  24.8  1,057  
8  6,000  7.2  5.9  15.3  4.7  25.8  874  

 

Figure 4.5 shows the trend of the total system cost when additional PVRCs are added 

in Phase II. As in Phase I, TTD decreases as the number of PVRCs increase since the model 

allocated smaller PVRCs to more decentralized locations to process an annual total waste 
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of 700 MW.  In purely monetary terms, constructing two additional PVRCs seems 

providing the best economic return. However, if only two additional PVRCs are 

constructed, the size (i.e. annual capacity) of those two additional PVRCs would be almost 

ten times larger (i.e. 315 MW each – 24,000 tonne) than the two existing PVRCs selected 

in phase I.  

 

Figure 0.5: Total system cost vs. number of additional PVRCs in Phase II 

 

It is still decision maker’s discretion for selecting additional number of PVRCs in Phase 

II. However, we took a conservative approach and picked allocating six additional PVRCs 

in the optimal decentralized location (i.e. additional 8,000 tonne per year processing 

capacity per PVRC) in this phase. Figure 4.6 shows the geographical location of different 

size of PVIS installed in the growth periods. It also shows the latitude and longitude of two 
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PVRCs constructed in Phase I and six new PVRCs constructed in Phase II. Other numbers 

of PVRC map can be found in appendix A-2. 

 

Figure 0.6: Six PVRC selected for Phase II (2026 - 2030). 

4.4 Phase III: Long-term Planning 

This section shows the case of selecting optimal numbers and locations of PVRCs in 

CA to process EOL PV modules expected to retire during 2031 ~ 2035 (i.e. modules 

installed in Prospective period). Based on the waste prognosis, recycling facilities capable 

of processing total 1,300 MW per year PV EOL waste is suggested. Since, eight PVRCs 

are already constructed from Phase I and Phase II for processing total 700 MW capacity of 

PV wastes, new PVRCs for processing additional 600 MW (i.e 45,000 tonne) of EOL PV 

waste per year are required.  Table 4.4 shows that the optimal numbers and locations of 
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new additional PVRC (different sizes) can be selected based on the size of PV waste 

generated in the prospective period, TTD, capacity limit of PVRC, and recycling costs.  

Table 0.4: Total costs and emission generated from the Phase III planning. 

# of 
new 

PVRC 

Capacity 
(mT/year/

PVRC) 

TTD (106 
km) 

Capital 
($M) 

O&M 
($M) 

Transport 
($M) 

Total Cost 
($M) 

GWP (103 
ton-CO2eq) 

3  16,000  20.8  3.8  24.3  13.6  41.7  3,062  
4  12,000  18.8  4.3  25.6  12.3  42.2  2,759  
6  8,000  17.9  5.1  27.2  11.2  43.5  2,491  
8  6,000  16.9  5.7  28.2  10.4  44.3  2,296  

 

Figure 4.7 shows the further breakdown of the total system costs in Phase III.  

Horizontal axis shows the number of additional PVRC constructed in Phase III and the 

breakdown of costs for capital (C), O&M (O), and transportation (T). Vertical axis in the 

left is the total system costs and each bar indicates the amount of cost components. 

Significant PV recycling processing capacity is already built in the Phase I and II. 

Therefore, additional capital costs for building, land, and equipment are only required for 

the new construction of PVRC in Phase III.  Whereas, all PVRCs constructed in Phases I, 

II, and III still needs to operate fully. Therefore, unlike phase I and II, processing costs 

contribute significantly higher relative to the capital costs for the Phase III’s total system 

costs. Vertical axis on the right shows the variation of percentile contribution of capital, 

transportation, and O&M costs to the total system cost in Phase III planning.  
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Figure 0.7: Total system cost vs. number of additional PVRCs in Phase III. 

 

To show the effectiveness of the model, we took a conservative approach and picked 

allocating six additional PVRCs in the optimal decentralized locations (i.e. processing 

capacity of 8,000 tonne per year) in this phase. Figure 4.8 shows the geographical location 

of different size of PVIS installed in Saturation periods. It also shows the latitude and 

longitude of existing eight PVRCs constructed in Phase I and II along with additional 6 

PVRCs constructed in Phase III. Other numbers of PVRC map can be found in appendix 

A-3. 
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Figure 0.8: Six PVRCs selected for Phase III (2031 - 2035). 

 

4.5 GIS Optimization 

The method described in section 2.1.5 was used to locate PVRCs in the state of 

California for Phase I planning. In this research, the state of California was evenly divided 

to several individual areas based on the amount of PVIS. The median center of each area 

was computed separated. As a result, the geographical location of PVRC and the total 

transportation distance of each scenario were concluded.  

Table 4.5 shows the transportation distance calculated by Matlab and GIS for Phase I 

planning. It was concluded that the distance results concluded by two methods are similar 

when the number of PVRC are less. The difference was larger when the number of PVRC 
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are getting more. The reason of that caused by the area dividing by human. Human area 

dividing is in an acceptable range when the number of area are less.  

In addition, no area dividing is needed when locating one PVRC. So the results by two 

methods are supposed to be identical. The -2% difference is because the number of trip 𝑛𝑖 

was not able to be included in the GIS method. So a 2% was added in each scenario to 

revise the difference due to the number of trip.  

In conclusion, GIS is a good way to approximate the locations and the total 

transportation distance when the target number of PVRC is less. The method is accurate 

enough with the error less than 5%. The method is also relatively easy to implement 

because no computer programming is requited. As the number of PVRC increases, GIS is 

not recommended to use for approximation.  

Table 0.5: Transportation distance by Matlab and GIS 

Number of 
PVRC 

Matlab 
Distance 
(106 km) 

GIS 
Distance 
(106 km) 

% 
Difference 

Revised % 
Difference 

1 9.45  9.23  -2% 0% 
2 3.49  3.55  2% 4% 
3 3.02  3.03  0% 3% 
4 2.56  2.53  -1% 1% 
5 2.13  2.22  4% 6% 
6 1.87  1.95  4% 7% 
7 1.69  1.97  16% 19% 
8 1.55  1.75  13% 16% 
9 1.46  1.80  23% 25% 
10 1.36  1.58  16% 18% 
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CHAPTER V 

OPTIMAL DISTRIBUTION MODEL 

5.1 Model Description 

A mathematical modeling framework was developed to generate the optimal 

distribution scheme by minimizing the transportation cost. In the framework, three 

parameters are included: 1) PVIS; 2) PVRC; and 3) TC. The mechanism of the recycling 

network is shown in Figure 5.1. The optimization is on a combinatorial problem. As a 

result, the optimal distribution scheme is presented by showing each PVIS is transported 

by which TC, and goes to which PVRC. The maximum annual capacity of each PVRC and 

TC are constraints to affect the distribution decision. Besides, the total transportation cost 

of the optimal distribution scheme can be conducted. Furthermore, the framework can 

show the amount of EoL PV that each PVRC received in each year to facilitate operational 

shift scheduling.   
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Figure 0.1: Mechanism of recycling network 

 

Three types of date are required as input of the framework. The first input is the cost 

structure of TC, including the overhead cost, the unit mileage cost, and the unit weight 

cost. The overhead cost ($/trip) is a fixed expense to start the transportation service. The 

mileage cost is obtained as the product of the unit mileage cost ($/km) and the mileage 

(km) traveled. The weight cost is obtained as the product of the unit weight cost ($/kg) and 

the weight of the material (kg) transported. The total cost of each transportation service is 

the summation of the overhead cost, the mileage cost, and the weight cost. The second 

input is the distance matrices consisting of a set of distance combination among PVIS, TC, 

and PVRC. With the latitude and the longitude of each PVIS, TC, and PVRC, the distance 

combination between two of three locations can be calculated and expressed in matrix 

forms. The third input is the size of each PVIS, TC, and PVRC. The weight of material of 
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each PVIS affects the weight cost. The annual capacity of each TC and PVRC is physical 

constraints affect the distribution result.  

Two types of optimization algorithms were used in the modeling framework: a static 

optimization algorithm, and a dynamic optimization algorithm.   

5.2 Static Optimization Algorithm 

The static optimization algorithm is a type of the greedy algorithm (GA). GA is an 

algorithm of finding the optimal solution by using heuristic, which orders inputs by a 

seemingly logical way. In theory, as long as all inputs are ordered in the special way, the 

GA makes the same decisions that the optimal solution does. In practice, the optimal 

solution obtained by GA is most likely a local optimum. However, the local optimum 

solution is sometimes very close to the global optimum with significant amount of running 

time reduction. 

The mechanism of GA in this model is shown in Figure 5.2. In the module, all PVIS 

can be sorted by their sizes from the largest to the smallest. The explanation is that the 

larger PVIS are the ones that would save the most money by choosing the cheapest 

transportation option. After sorting the size of PVIS, the largest PVIS has the first priority 

to be recycled by the first TC that offers the cheapest price. The less size PVIS has, the 

later that PVIS will be considered by the GA. As a result, for PVIS with larger size, the 

cost on transportation of that is the minimal. Though the saving of each is less, the total 

saving can add up by considering some thousands of PVIS. The annual capacity of PVRC 

and TC were included in the model as constraints.  
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Figure 0.2: Mechanism of GA 

 

5.3 Dynamic Optimization Algorithm 

The dynamic optimization algorithm solves the problem by using the mixed integer 

linear programming. The objective function is equation 5.1, which minimizes the total 

transportation cost. Equation 5.2 is the summation of the transportation costs (overhead 

cost, mileage cost, and weight cost) from TC to PVIS, then to PVRC. Constraint 5.3 is to 

ensure all installed PVIS are sent as a whole to one of a PVRC. The linear inequalities in 

constraint 5.4 restrict that the total weight that each PVRC received is less than its 

maximum capacity. The linear inequalities in constraint 5.5 ensure that the total weight of 
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each TC transports is less than its maximum transportation capacity. The model iterates 

until it identifies the minimum total transportation cost. 

 

Minimize      

∑ ∑ ∑{[𝑜𝑘×𝑛𝑖 + 𝑚𝑘×(𝐷𝑘𝑖 + 𝐷𝑖𝑗 + 𝐷𝑗𝑘)×𝑛𝑖 + 𝑤𝑘×𝑊𝑖]×𝑌𝑖𝑗𝑘}

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

                  (5.1) 

Subject to  

∑ ∑ 𝑌𝑖𝑗𝑘

𝑘∈𝐾𝑗∈𝐽

= 1                                                                   (5.2) 

∑ ∑ 𝑊𝑖𝑌𝑖𝑗𝑘

𝑘∈𝐾𝑖∈𝐼

≤ 𝐶𝑗                                                              (5.3) 

∑ ∑ 𝑊𝑖𝑌𝑖𝑗𝑘

𝑗∈𝐽𝑖∈𝐼

≤ 𝐶𝑘                                                             (5.4) 
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CHAPTER VI 

CASE STUDY OF OPTIMAL DISTRIBUTION MODEL 

6.1 Data Description 

A case of California is considered to show the efficacy of the proposed framework in 

chapter VI. The State of California was selected because of its relatively long history and 

the significant amount of PV installations compared to other states. In addition, the 

preliminary recycling plan and the optimal locations of PVRC has been recommended by 

a previous study (cite our 1st paper). In the study, three recycling periods were 

recommended for recycling the EoL PV between the year 1984 – 2015 based on the amount 

of EoL PV as well as the increasing trend in each year. The location as well as the annual 

capacity of PVRC in each period was recommended as well: two 2,600 tonne annual 

capacity PVRC in Period I, addition six 8,000 tonne in Period II and addition six 40,000 

tonne in Period III, respectively. The dispersion and the geographical locations of PVIS 

and PVRC in each recycling period are show is Figure 6.1.  
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The annual PV Installations of California was shown in Figure 6.2. The figure shows 

the number of PVIS of each size range, as well as their size percentage among the total size 

of in each year.  Three recycling periods were divided based on the number of PVIS as 

well as their total amount (kW) of each year. The first period has less quantity, as well as 

small amount of PVIS. The second period is the next. And the third period has the most 

quantity, as well as the most amount. Another insight of figure 6.2 is the number of PVIS 

in each kW range is not proportional with its total kW percentage. For instance, the size 

range of 3-10 kW contains the most number of PVIS (>70%) from the year of 2009 to the 

year of 2012. However, the total kW of that size range of PVIS are less than 30%. In the 

opposite, the number of PVIS in size range of 100-1,200 kW can be barely counted. 

However, they account for about 50% of the total kW amount. In conclusion, the small size 

(3-10 kW) PVIS are dominated in the quantity perspective, but in the overall amount of 

kW perspective, the proportion of lager size (100-2500 kW) PVIS is not negligible.  
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6.2 Optimization Algorithm Application 

The following assumptions are made for the modeling: the maximum load of a truck is 

7.5 metric tons; approximate weight of material of every 1 MW capacity PV modules are 

equivalent to 75 metric tons [32]; With the above assumptions, each truck can take at most 

100 kW PV modules. Considering the significant percentage (about 40%, in figure 6.2) of 

PV modules that are over 100 kW, the number trips of transporting them is non-

neglectable.  

In reality, due to the competitive market, the price of each TC offers tends to be similar. 

In addition, the mileage of the truck driving from a TC to a PVIS, and the mileage of the 

truck driving away from a TC to a PVIS are dead mileage. Dead mileage is usually not to 

be charged in reality. Thus, the optimization process is no longer related to TC. 

Consequently, the transportation cost function of recycling each individual PVIS in both 

the static and the dynamic algorithms can be simplified in terms of the overhead cost, o, 

the unit mileage cost m, the unit weight cost, w, the travel distance between the PVIS and 

the PVRC, D, the weight of material of the PVIS, W, and the number of trips, n, and is 

shown in equation 6.1. By using the simplified cost function, variables in optimization 

processes can be reduced by at least 50%.  

Transportation cost = 𝑜×𝑛 + 𝑚×𝐷×𝑛 + 𝑤×𝑊                                     (6.1) 

With the simplification, the dynamic optimization algorithm was simplified as:  
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Minimize      

∑ ∑{[𝑜×𝑛𝑖 + 𝑚×𝐷𝑖𝑗×𝑛𝑖 + 𝑤×𝑊𝑖]×𝑌𝑖𝑗}

𝑗∈𝐽𝑖∈𝐼

                        (6.2) 

 

Subject to  

∑ 𝑌𝑖𝑗

𝑗∈𝐽

= 1                                                                      (6.3) 

∑ 𝑊𝑖𝑌𝑖𝑗

𝑖∈𝐼

≤ 𝐶𝑗                                                                 (6.4) 

 

The simplified form can improve the feasibility for handling larger number of PVIS 

and fasten the computational speed of MILP. In addition, rather than MILP, Linear 

Program (LP) is recommended and utilized for solving the particular California case. It is 

concluded that LP is able to handle more variables, compute and converge way faster, and 

conduct the total transportation cost with the error of less than 1% of the total transportation 

cost conducted by the MILP.  

While performing the optimization with both algorithms, the following unit costs were 

utilized: the overhead cost is $10/trip, the unit mileage cost is $0.06/km, and the unit weight 

cost is $0.008/kg. The accuracy of each type of unit cost is not critical as the research is 

dedicating to construct a generic framework that providing the optimal distribution scheme 

with the objective of minimizing the total transportation cost. The framework can be 

employed in any multi-facility recycling problem in anywhere as long as the unit cost rates 

are available.  
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6.3 Results  

Matlab was utilized as the tool to perform the optimization for both algorithms. The 

baseline total transportation cost, and the optimal total transportation cost conducted by the 

GA and the LP is shown in figure 6.3. The baseline cost indicates the total transportation 

cost of recycling PVIS by their installed date without doing any optimization. In that way, 

each PVIS is going to the closest PVRC whose maximum annual capacity has not been 

reached. The transportation cost conducted by GA and LP is the optimal cost as they are 

generated by optimization processes. The mechanism of the GA is recycling PVIS from 

the largest size to the smallest while, LP processes the optimization with the objective of 

minimizing the overall transportation cost.  

 

Figure 0.3: Transportation cost and saving by each method and year 

 

Ideally, LP provides the lowest optimal cost, but also with the most computational 

expense. The optimal cost that GA provided is higher than LP, but lower than the baseline 

cost. However, in figure 6.3, GA even costs more than baseline. The reason of that is 
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because of the specialty of the size distribution of CA PVIS as well as the effect of the 

hypothesis cost structure. Table 6.1 shows the combination of transporting the total 100 

kW, 300 kW, and 500 kW PVIS for 100 km. In that, 100 of 1kW, 10 of 10 kW, and 1 of 

100 kW of PVIS was for the total 100 kW and the same logic for the total 300 kW, and 

500 kW of PVIS. It shows that due to the large percentage of the overhead cost among the 

grand total, the cost of transporting 100 of 1 kW is 21.8 times expensive than transporting 

1 of 100 kW, and 7.8 and 5.0 times expensive for the 300 kW and 500 kW case. Thus, 

small size PVIS should be considered first for saving the most money. In addition, from 

figure 6.2, the number of PVIS with the size in between 0-10 kW accounts for about 90% 

of the total. In conclusion, for recycling PVIS in CA with the current hypothesis cost 

structure, having small size PVIS get recycled by the cheapest way is the way to maximize 

the total transportation cost saving. Therefore, GA should be modified as sorting the size 

of PVIS from the smallest to the largest and assign the cheapest transport option to smaller 

PVIS first and was denoted as GA’.  
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Table 0.1: Total cost and multiple PVIS Size and quantity combination 

PVIS 
Size 
(kW) 

# of 
Trips 

Overhead 
Cost ($) 

Mileage 
Cost ($) 

Weight 
Cost 
($) 

Grand 
Total 
($) 

# of 
PVIS 

Total 
Cost 
($) 

Multiple 

1 1 10 6 0.6 17 100 1660 21.8 
10 1 10 6 6 22 10 220 2.9 
100 1 10 6 60 76 1 76 1.0 
3 1 10 6 1.8 18 100 1780 7.8 
30 1 10 6 18 34 10 340 1.5 
300 3 30 18 180 228 1 228 1.0 
5 1 10 6 3 19 100 1900 5.0 
50 1 10 6 30 46 10 460 1.2 
500 5 50 30 300 380 1 380 1.0 

 

Table 6.2 shows the transportation cost savings by the modified GA (GA’) and LP of 

each year. There are two conclusions. First, saving only appears in those years where the 

annual capacity of PVRC is relative tight compare with the amount of PV needs to be 

recycled (amount of installed PV). The tighter annual capacity of PVRC, the more saving 

is expected by doing optimization. No savings when the annual capacity of PVRC is about 

two or more times than the amount of PV needs to be recycled. Second, the saving 

difference between GA’ and LP in each scenario are trivial. However, the computational 

of LP could be way longer than GA’, especially when the number of PVIS and PVRC both 

increases significantly. The computation time of LP for the year 2015 is as high as 3.5 

hours. Third, the number of PVIS is another factor affects the saving. The amount of 

installed PV in the year of 2004 is less than the year of 2005. However, the saving of the 

year 2004 is twice of the year 2005. The reason of that is the number of PVIS in the year 

of 2004 is about one third more than 2005 as shown in figure 6.2. Based on above 
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conclusion, in the CA case, it is reasonable to rely on the solution generated by GA’ with 

a relative accurate solution, a short running time than LP, without purchasing an 

optimization solver.   

 

Table 0.2: Saving of GA’ and LP of each year 

Period 

PVRC 
Recycling 
Capacity 
(MW/yr)  

Installed 
Year 

Amount of 
Installed PV 

(MW) 

GA' 
Saving 
($K) 

LP 
Saving 
($K) 

Computation 
Time Ratio 
(LP/GA') 

I 70 

84-01 19  0 0 11 
2002  29  0 0 15 
2003  40  0 0 14 
2004  63  20 20 15 
2005  65  10 10 15 

II 700 

2006  113  0 0 70 
2007  287  2 2 152 
2008  346  5 5 148 
2009  418  8 9 235 
2010  603  44 45 311 

III 1,300 

2011  643  2 2 869 
2012  953  26 27 1,187 
2013  671  3 3 1,506 
2014  866  20 22 2,544 
2015  1216  473 491 3,731 

 

 

From table 6.2, though the saving can be as high as $491,000 for transporting EoL PV 

installed in the year 2015, the saving is not significant in percentage perspective (15%). 

The applied cost structure is a factor affects the saving percentage. Equation 6.1 (Cost 

Structure 1) was used in the simulation. In that cost structure, only the mileage cost can be 

reduced by optimization and neither the overhead cost nor the weight cost. In order to show 

the importance of the planning, Cost Structure 2 in equation 5.5 was hypothesized so that 
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the transportation cost is only related to the unit mileage cost, m, the travel distance, D, 

and the number of trip, n. Assume the unit mileage cost is $0.2/km.  

Transportation cost = 𝑚×𝐷×𝑛                                                     (6.5) 

Table 6.3 shows the saving comparison that generated by different cost structure of 

each year. From the table, savings turns to be significant, at most 50%, especially when the 

annual capacity of PVRC is tight. Therefore, well planning is beneficial.  

 

Table 0.3: Percentage saving of in each cost structure of each year 

 

 

The distribution decision by GA’ was displayed on maps by GIS and shown in figure 

6.4. The installed year 2003, 2008, and 2013 were selected to represent the installed period 

I, II, and III. PVIS were assigned to the closest, none-full PVRC.  

Period Installed 
Year 

Cost Structure 1 Cost Structure 2 
GA' % 
Saving 

LP % 
Saving 

GA' % 
Saving 

LP % 
Saving 

I 

84-01 0% 0% 0% 0% 
2002  0% 0% 0% 0% 
2003  0% 0% 0% 0% 
2004  9% 9% 24% 25% 
2005  5% 6% 16% 16% 

II 

2006  0% 0% 0% 0% 
2007  0% 0% 2% 3% 
2008  1% 1% 6% 6% 
2009  1% 1% 7% 8% 
2010  4% 5% 25% 26% 

III 

2011  0% 0% 1% 1% 
2012  2% 2% 15% 16% 
2013  0% 0% 2% 2% 
2014  1% 1% 8% 8% 
2015  14% 15% 51% 53% 
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Figure 0.4: Distribution decision of year 2003, 2008, and 2013 

 

Table 6.4 shows the amount of EoL PV module each PVRC received for installed year 

2003, 2008, and 2013. The serial number of each PVRC was shown in figure 6.4. The 

occupancy percentage of each PVRC can help on employee shift scheduling.  
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Table 0.4: Amount of EoL PV each PVRC receives each year 

PVRC 
Serial 

# 

2003 2008 2013 Max Annual 
Capacity 

(MW) 
Amount 

(MW) 
% 

Amount 
(MW) 

% 
Amount 

(MW) 
% 

1 19 54% 35 100% 35 100% 35 

2 21 60% 35 99% 35 99% 35 

3 - - 47 45% 79 76% 105 

4 - - 56 54% 96 92% 105 

5 - - 47 45% 32 30% 105 

6 - - 59 56% 68 65% 105 

7 - - 12 11% 28 27% 105 

8 - - 56 53% 53 50% 105 

9 - - - - 43 43% 100 

10 - - - - 61 61% 100 

11 - - - - 45 45% 100 

12 - - - - 36 36% 100 

13 - - - - 44 44% 100 

14 - - - - 17 17% 100 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

The multi-facility optimization model was developed to solve a location allocation 

problem of minimizing the system cost for recycling PV in the state of California. The 

geographical locations of potential PVRCs were found for three different phases (short, 

mid, and long terms). Total transportation distance, the total cost, and the environmental 

impact of each phase of recycle planning were concluded. The analysis indicated that two 

PVRCs scenario has the highest cost-effectiveness in phase I. Additional six PVRCs are 

recommended in both phases II and III. Although the analysis was performed based on the 

PV installation data in the state of California, the proposed model can be applied to any 

geographical area. The optimal solutions generated by the model can provide valuable 

insights for policymakers and stakeholders to initiate the PV recycling in the United States. 

Rather than the mathematical way, GIS can be used to approximate the locations and 

the total transportation distance with a decent accurate when the target number of PVRC 

is less. The method is also relatively easy to implement because no computer programming 

is requited. As the number of PVRC increases, GIS is not recommended to use for 

approximation. 
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In addition, optimal distribution model was constructed to generate the optimal 

distribution scheme for transporting EoL PVIS. A static and a dynamic optimization 

algorithm, GA and LP, respectively was employed in the framework. The following 

conclusions were concluded from the simulation result based on the PV installed case in 

CA. First, based on the size distribution of PV installed in CA, the focus of the optimization 

should be on small size PVIS than large sizes. The most saving is obtained by optimizing 

transport distribution on small size PVIS. Second, GA is a reliable algorithm to perform 

the transporting distribution optimization with a decent accuracy, low computational cost, 

no optimization solver required for the CA case. Third, no saving achieved, thus no 

optimization needed when the annual recycling capacity of PVRC is twice or larger than 

the amount of the recycled PV demand. Saving increases with the annual capacity of PVRC 

getting tighter. With the appropriate optimization process and the specific cost structure 

applied, savings can be expected at most 53% compare with not doing optimization. The 

developed framework has a wide applicability and can be applied on any PV recycling case 

for reducing the transportation cost. 

Future work can focus on further reducing the transportation cost by maximizing the 

truck occupancy of each trip. From figure 6.2, 90% of PVIS has the size less than 10 kW, 

equals to 0.75 metric tons. The hypothesized truck load is 7.5 metric tons. So each truck 

can take at least 10 PVIS with the size 0-10 kW. With this estimation, about another 90% 

saving can be expected on top of the current saving. In order to achieve that, rather than 

the installed location, the installed date of each PVIS should be considered to evaluate the 

possibility of transport several EoL PV module in one trip. Also, a multi-objective 
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optimization model needs to be developed by minimizing the transportation cost and 

minimizing the environmental impact (maximizing the truck load). 
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APPENDIX A-1 

Location of PVRC in Phase I 
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APPENDIX A-2 

Location of PVRC in Phase II 
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APPENDIX A-3 

Location of PVRC in Phase III 
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APPENDIX B 

Large PVIS 

Longitude Latitude  Size(MW) Year 
-119.69 35.62 32 2013 
-120.13 36.00 35 2013 
-118.17 35.05 45 2013 
-119.49 35.89 50 2013 
-119.23 36.99 60 2013 
-120.10 36.43 60 2013 
-120.38 36.75 63 2013 
-120.85 37.06 110 2013 
-115.72 32.75 139 2013 
-115.65 32.68 150 2013 
-115.66 32.68 170 2013 
-115.88 32.78 200 2013 
-121.62 39.76 200 2013 
-120.25 36.65 206 2013 
-119.92 35.33 250 2013 
-118.16 34.86 40 2014 
-118.17 35.05 60 2014 
-119.02 35.37 75 2014 
-119.78 36.30 100 2014 
-119.78 36.30 105 2014 
-117.97 35.31 107 2014 
-115.57 32.85 150 2014 
-117.97 35.31 150 2014 
-118.43 34.78 230 2014 
-115.64 32.67 266 2014 



78 

 

-118.42 34.77 266 2014 
-114.99 33.67 280 2014 
-117.33 35.01 280 2014 
-115.47 35.57 392 2014 
-120.07 35.38 550 2014 
-117.65 35.00 30 2015 
-120.25 36.65 40 2015 
-117.97 35.31 50 2015 
-118.16 34.86 100 2015 
-118.16 34.86 110 2015 
-118.16 34.86 279 2015 
-115.40 33.83 550 2015 
-118.40 34.83 579 2015 
-117.65 35.00 30 2016 
-117.65 35.00 30 2016 
-117.65 35.00 30 2016 
-117.20 34.93 30 2016 
-115.99 32.74 30 2016 
-118.15 34.69 50 2016 
-117.97 35.31 56 2016 
-118.16 34.86 75 2016 
-117.65 35.00 80 2016 
-117.20 34.93 80 2016 
-118.15 34.69 85 2016 
-115.27 35.47 126 2016 
-115.50 32.68 130 2016 
-115.27 35.47 133 2016 
-115.27 35.47 133 2016 
-115.78 32.77 150 2016 
-120.39 36.62 200 2016 
-118.86 35.49 200 2016 
-118.15 34.69 250 2016 
-117.20 34.93 250 2016 
-120.24 35.53 280 2016 
-115.41 35.58 300 2016 
-118.16 34.86 318 2016 
-118.00 35.35 328 2016 
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