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ABSTRACT

HIGH ORDER VOLUMETRIC DIRECTIONAL PATTERN FOR ROBUST FACE

RECOGNITION

Name: Essa, Almabrok Essa
University of Dayton

Advisor: Dr. Vijayan K. Asari

The texture of objects in digital images is an important property that has been utilized in many

computer vision and image analysis applications, such as pattern recognition, object classification,

and region segmentation. Despite its frequent usage and many attempts to describe it in general

terms, the texture lacks a precise definition. This makes the development of new texture descriptors

a big challenge. In addition, researchers’ interest has recently spread into the dynamic texture (video

domain), where the problem becomes more challenging.

The main goal of feature description and representation techniques is to extract features from

the image that are distinct and stable under different conditions during the image acquisition pro-

cess. Texture descriptors can be generally classified into structural and statistical approaches. The

structural methods consider the texture as a repetition of some primitives, with a specific rule of

placement, while the statistical techniques characterize the stochastic properties of the spatial distri-

bution of gray levels in an image using the gray tone co-occurrence matrix. In this work, we propose

a combination of the structural and statistical approaches that can be utilized to recognize a variety

of different textures, named High Order Local Directional Pattern (HOLDP) for still image based
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feature extraction (static texture) as well as High Order Volumetric Directional Pattern (HOVDP)

for video based feature extraction (dynamic texture).

Recently, the conventional Local Directional Pattern (LDP) has received a great deal of attention

in face recognition applications. However, it only describes the micro structures of the texture im-

ages, because it considers only a small neighborhood size. In fact, our proposed HOLDP descriptor

can capture more detailed discriminative information by not only extracting the micro structures but

also the macro structures of the texture images, which can be done by the help of a pyramidal multi-

structure approach. The pyramid based multi-structure presented in this dissertation research can

be created by encoding the directional information from different neighborhood layers of the image

for each pixel position, and then concatenating the feature vectors of each neighborhood layer to

form the final HOLDP feature map.

Identifying human faces in video is a challenging problem due to the presence of large varia-

tions in facial pose and expression, as well as poor video resolution. To address this, Volumetric

Directional Pattern (VDP) is proposed [1]. VDP is an oriented volumetric descriptor that is able to

extract and fuse the information of multiple frames, temporal (dynamic) information, and multiple

poses and expressions of faces in input videos to produce strong feature vectors. Meanwhile, to

demonstrate the generality and capability of the HOLDP method, we develop another novel video

based feature extraction technique, namely High Order Volumetric Directional Pattern (HOVDP)

as an extension of VDP. HOVDP combines the movement and appearance features together by

considering the nth order directional variation patterns of all neighboring pixel layers from three

consecutive frames. From extensive experiments on still image based and video based face recogni-

tion benchmarks, we demonstrate the excellent performance of our proposed techniques compared

to the state-of-the-art approaches.
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CHAPTER I

INTRODUCTION

1.1 Image Textures

The texture of objects in digital images can be generally categorized into two main types, static

texture and dynamic texture which is an extension of texture to the temporal domain. Local feature

detection and description has gained much attention in recent years since photometric descriptors

computed for regions of interest have proven to be very successful in many computer vision ap-

plications. In the context of texture (feature) analysis methods, there are two common types of

techniques: 1) The structural approaches, where the image texture is considered as a repetition of

some primitives with a specific rule of placement; and 2) The statistical methods. The stochastic

properties of the spatial distribution of gray levels in an image are characterized by the gray tone

co-occurrence matrix. A set of textural features derived from the co-occurrence matrix is widely

used to extract textural information from digital images [2].

1.2 Face Recognition

Face recognition (FR) is one of the most suitable technologies that has been spread in several ap-

plications such as biometric systems, access control and information security systems, surveillance

systems, content-based video retrieval systems, credit-card verification systems, and more gener-

ally image understanding. FR is a biometric approach that employs automated methods to verify
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or recognize the identity of a living person based on their physiological characteristics. The key

of each face recognition system is the feature extractors, which should be distinct and stable under

different conditions, such as illumination variation, random noise, and alignment error. FR system

can generally be categorized into one of the two main scenarios based on the characteristics of the

images to be matched, such as still image based (still-to-still) FR or video based (video-to-video)

FR. Also it could be a video-to-still image based face recognition system [3].

1.2.1 Still Image Based Face Recognition

In the context of face image description and representation, there are two common types of

techniques that have been applied to still image based face recognition: 1) Subspace based holistic

features; and 2) Local appearance based features. One of the initial subspace based methods is

principal component analysis (PCA), which is particularly known as eigenface [4]. In addition,

some other global features like independent component analysis (ICA) [5], gradientface [6], etc.

have showed promising results in image representation for face detection and recognition. However,

all of these representations suffer from illumination variation and alignment error.

Successful face appearance representations include Gabor features [7], elastic bunch graph

matching [8], and local binary pattern (LBP) [9]. LBP has been proposed to represent visual ob-

jects, and successfully applied for different applications in facial image analysis like human de-

tection, face recognition or expression recognition. LBP is basically a fine-scale descriptor that

captures small texture details, in contrast to Gabor features which encode the facial shape and ap-

pearance over a range of scales [10, 11]. Nevertheless, LBP considers only first order intensity

pattern changes in a local neighborhood, which may fail to extract detailed information, especially

during changes in face image due to the noise and illumination variation problems. One of the

newest local appearance methods that tries to avoid the shortcomings of LBP is local directional

pattern (LDP) [12]. LDP encodes the directional information in the neighborhood instead of the
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intensity as LBP does. However, LDP still suffers in non-monotonic illumination variation, random

noise, and changes in pose, age, and expression conditions. Recently, a new extension of LBP is

proposed to extract more detailed information named high order local derivative pattern [3]. This

technique has been investigated for texture analysis and shown robust performance to classify the

image textures.

1.2.2 Video Based Face Recognition

Dynamic texture (DT) or temporal texture is a texture with motion that includes the class of

video sequences, which offers some stationary properties in time. Recently researchers start to

investigate the domain of video, where the problem of face recognition becomes more challenging

due to pose variations, different facial expressions, illumination changes, occlusions and so on.

However, DT provides many samples of the same person, thus providing the opportunity to convert

many weak examples into a strong prediction of the identity. In [13], Zhao and Pietikinen introduced

an extended version of LBP named volume local binary patterns (VLBP) for video based facial

expression recognition. They claim that the features extracted in a small local neighborhood of the

volume can be boosted by combining the motion and appearance. These features are insensitive to

translation and rotation. However, there are some illumination limitations since this method deals

with small local neighborhood of a pixel as well as it utilizes the image intensity directly.

Nowadays, manifold features (linear subspaces), if the features lie in Euclidean spaces, have

proven a powerful representation for video based face recognition. Huang et al. [14] recently in-

troduced a new method called projection metric learning on Grassmann manifold (PML), which is

combined with Grassmannian graph-embedding discriminant analysis (GGDA) [15]. In this tech-

nique, each video sequence can be treated as a set of face images without considering the tem-

poral information. It serves as both of metric learning and dimensionality reduction method for
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the Grassmann manifold to map the manifold to a reproducing kernel Hilbert space (RKHS). Al-

though kernel-based methods have been successfully used in many computer vision applications,

poor choice of kernels can often result in degraded classification performance [16], especially when

the data lies in non-Euclidean spaces.

1.3 Scientific Contributions

The novel scientific contributions in this dissertation are summarized as follows:

• Development of a new feature extraction technique to calculate the nth-order direction vari-

ation patterns, named High Order Local Directional Pattern (HOLDP), which extracts

nth-order local information by encoding various distinctive spatial relationships from each

neighborhood layer of a pixel in the pyramidal multi-structure way. Then the feature vectors

of all neighborhood layers can be concatenated to form the final HOLDP feature vector. De-

rived from a general definition of texture in a local neighborhood, the conventional LDP en-

codes the directional information in the small 3×3 local neighborhood of a pixel, which may

fail to extract detailed information due to sensor noise and illumination variation problems,

etc. Therefore, HOLDP is introduced to capture more detailed and discriminative information

than the traditional LDP.

• Development of a novel video based feature extraction technique named Volumetric Direc-

tional Pattern (VDP) [1], which addresses a difficult problem of identifying human faces in

videos due to the presence of large variations in facial pose and expression, and poor video

resolution. VDP has been successfully applied to video based face recognition as well as hy-

perspectral imagery (HSI) classification, and it has shown a promising classification accuracy

among the other competitors [17].
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• Development of a new video based facial feature extractor, named High Order Volumetric

Directional Pattern (HOVDP), based on the HOLDP. HOVDP can be viewed as an extension

of VDP [1, 17]. It combines the movement and appearance features together by considering

the relation of all neighboring pixels from three consecutive frames layer by layer. Unlike

the conventional VDP operator that encodes the directional information in the small 3 × 3

local neighborhood of a pixel of each three consecutive frames, HOVDP extracts nth-order

volumetric information by encoding various distinctive spatial relationships from each neigh-

borhood layer of a pixel in the pyramidal multi-structure way, and then concatenating the

feature vector of each neighborhood layer to form the final HOVDP feature vector.

1.4 Dissertation Outline

The dissertation is structured as the following. Chapter II describes recent advances in FR appli-

cation where several state-of-the-art techniques based on the concept of local pattern descriptors for

face recognition are introduced. In Chapter III, we present our high order local directional pattern

descriptor (i.e., HOLDP) theoretically and experimentally. Chapter IV proposes a new video-based

face recognition descriptor (i.e., VDP), and then introduces the high order volumetric directional

pattern scheme (i.e., HOVDP). Finally, Chapter V summarizes this dissertation and suggests future

directions of this research.
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CHAPTER II

RELATED WORK

In recent years, many research work have been done on extracting image features. The main goal

of an image descriptor is to extract features from the image that are distinct and stable under different

conditions during the image acquisition process. Many computer vision applications employ the

texture analysis algorithms. One of the high performing texture algorithms group is based on the

concept of local pattern descriptors (e.g., local binary pattern (LBP) and local directional pattern

(LDP)) which describe the relationship of pixels to their local neighborhood. They only detect the

important local textures by labeling each pixel with the code of texture primitive that best matches

the local neighborhood. Fig. 2.1 shows some of these texture primitives that can be detected by

the local pattern descriptors that include spots, line ends, flat area, edges, corners and so on. In the

figure, ones are represented as white circles and zeros are black [18].

Figure 2.1: Different texture primitives detected by local pattern descriptors
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2.1 Local Binary Pattern

During the past few years, local binary pattern (LBP) has aroused increasing interest in image

processing and computer vision. LBP is a nonparametric method which extracts local structures

of images efficiently by comparing each pixel with its neighboring pixels. If a neighbor pixel has

an equal or higher gray level than the center pixel, then a one is assigned to that pixel, which is

otherwise a zero. Finally, the LBP binary code for the center pixel is produced by concatenating

the eight ones or zeros which will be converted to decimal number to produce the new value of that

central pixel.

The original LBP operator was introduced by Ojala et al. [9] for texture analysis, and has proved

a simple yet powerful approach to describe local structures. LBP was originally defined for 3 × 3

neighborhood pixels, which gives an 8 bit binary code that is derived from comparing each pixel

with its central pixel. If a neighbor pixel has a higher intensity value than the center pixel (or the

same intensity value) then a 1 is assigned to that pixel, which is otherwise a 0. Formally, it is

expressed as

LBP =
7∑

p=0

f(dp − dc)× 2p (2.1)

and

f(x) =

{
1 if x ≥ 0

0 if x < 0
(2.2)

where dc and dp denote the intensity values of the central pixel and its surrounding pixels respec-

tively.

The LBP operator has a number of extensions that have been extensively used in many ap-

plications such as, face image analysis [19, 20], image and video retrieval [21, 22], environment

modeling [23, 24], visual inspection [25, 26], motion analysis [27, 28], biomedical and aerial image

analysis [29, 30]. LBP has been exploited for facial representation in different tasks, which include
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face detection [31, 32, 33], face recognition [10, 11, 34, 35, 36, 37, 38], facial expression analysis,

and demographic (gender, race, age, etc.) classification [39, 40, 41, 42, 43, 44, 45]. The develop-

ment of LBP methodology can be well illustrated in facial image analysis, and most of its recent

variations have been proposed in this area [46].

Some of the extended versions of LBP were using neighborhoods of different sizes and rotation

invariant, which allow to deal with large scale structures [47, 48]. Moreover, a single LBP code can

be generated for each pixel in an image using all the previously mentioned extensions. This causes

two fundamental limitations, trade-off between resolution and the presence of noise. To overcome

with that, a Fuzzy Local Binary Pattern (FLBP) was introduced [49, 50]. FLBP extends the LBP

by incorporating fuzzy logic in the representation of local patterns of texture. Fuzzification allows

FLBP to contribute to more than a single bin in the distribution of the LBP values used as a feature

vector.

Another limitation of LBP is that it does not consider the texture features from the magnitude

component of the image local differences, as well as the local features from multi-resolution of

the image, so that a completed LBP (CLBP) has been introduced [51]. CLBP represents a local

region of an image by its local central information and a local difference sign-magnitude transform

(LDSMT). The most generalized version of LBP and more discriminant and less sensitive to noise in

uniform regions than LBP is local ternary pattern (LTP) [52]. Unlike the LBP operator, LTP extends

the LBP to 3 codes, in which intensity value in a tolerance interval zone of width ±τ around the

center pixel is assigned to 0. If a neighbor pixel has a higher intensity value than this zone then a 1

is assigned to that pixel, which is −1 if it is below this.
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2.2 Local Directional Pattern

One of the newest local appearance methods that tries to avoid the shortcoming of LBP is local

directional pattern (LDP) [12, 53, 54, 55]. LDP encodes the directional information in the neigh-

borhood instead of the intensity which LBP does. LDP is a gray-scale pattern that characterizes the

spatial structure of a local image texture. It computes the edge response values in eight different

directions at each pixel position by convolving the image with the Kirsch masks in eight different

orientations, centered on its own position. Then it uses the relative strength magnitude to encode

the image texture. The Kirsch operator is a derivate filter which is used to find edges in all eight

directions of a compass. It has been proven to be a strong edge detection technique for face recog-

nition tasks [56, 57]. Specifically, it takes a single mask, denoted as Mi(x, y) for i = 0, 1, ..., 7,

and rotates it in 45 degree increments through all 8 compass directions as shown in Fig. 2.2. An

example of Kirsch kernel filtered images for one sample face image can be seen in Fig. 2.3, where

all eight directional features are extracted with their corresponding masks. Since the edge responses

are more noisy and illumination insensitive than intensity values, the resultant LDP feature main-

tains more information and describes the local primitives stably, including different types of curves,

corners, and junctions.

Mathematically, given an input image I(x, y), the eight different directional edge response mi

can be computed by

mi = I(x, y) ∗Mi for i = 0, 1, ..., 7. (2.3)

where ∗ represents a convolution operation. Fig. 2.4 shows these edge responses and the corre-

sponding bit positions [58]. All eight directional features of objects are extracted with its corre-

sponding masks. The response values are not equally important in all directions. The presence of a

corner or an edge shows high response values in some particular directions. Therefore, in order to

9



Figure 2.2: Kirsch edge masks in all eight directions.

Figure 2.3: Kirsch kernel filtered output images.

generate the LDP, we need to know the t most prominent directions. Then, the top t directional bit

responses are set to 1 and the rest (8-t) bits of 8-bit LDP pattern are set to 0.
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Figure 2.4: Eight directional edge response and LDP binary bit positions.

To encode the directional information in the neighborhood, a binary coding strategy is applied

by exploiting the center pixel value in each 3 × 3 neighborhood regions. Finally, to retrieve the

LDP feature map, we change that binary codes into the corresponding decimal codes, which can be

calculated by

LDPt =

i=7∑
i=0

f(mi −mt)× 2i (2.4)

wheremt represents the tth most significant directional response and the thresholding function f(x)

can be defined as in Eq. (2.2). An example of the LDP code calculation with t = 3 can be seen in

Fig. 2.5 [58].

There are several extended versions of LDP such as local directional pattern variance (LDPv)

[58, 59] and enhanced local directional pattern (ELDP) [60]. LDPv code is generated from the
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Figure 2.5: LDP code calculation with t = 3.

integral projection of each LDP code weighted by its corresponding variance, while ELDP encodes

the image using the directions of the most prominent edge response value and the second most

prominent one from the eight different directional edge response values, which are created by the

original LDP. And then using their index i as the representation of the direction of mi to create a

double-digit octal number (ab)8. Finally, the ELDP code is formed by converting that octal code

into a decimal number. However, these extensions may increase the difficulty of recognition by

extracting more redundant texture features as in LDPv or by losing some important features as in

ELDP when using just two directional edge response values as the representation of each pixel of

the image.

Nevertheless, both the above-mentioned descriptors LBP and LDP with their extensions con-

sider only the first order intensity pattern changes in a local neighborhood which may fail to extract

detailed information, especially during changes in face image due to the noise and illumination

variation problems.

12



2.3 Local Boosted Features

To overcome some of LBP and LDP limitations that deal with small local neighborhood changes,

local boosted features (LBF) is proposed [61]. LBF capture sufficient detailed discriminative infor-

mation by encoding various distinctive spatial relationships from two neighborhood sizes of a pixel.

It includes two main stages: 1) edge detection, where the input image magnitude is extracted by

convolving the image with kernels; 2) image encoding and decoding, where the relative strength is

used to encode the image texture.

For the edge detection, the input image is convolved with Kirsch masks in eight different ori-

entations. The direction of the edge is determined by the mask that produces the maximum output

value. Then the image encoding and decoding (IED) strategy is applied [56, 57]. To encode the

local boosted features in the neighborhood, a binary coding strategy is applied to two neighborhood

layers of each pixel in the image. Given a central pixel gc in the image and its P circularly and

evenly spaced R-radius neighbors gp, p = 0, 1, ..., P − 1 that can be seen in Fig. 2.6 [51]. The

first neighbor layer is considered as P = 8 and R = 1, and the second layer as P = 8 and R = 2.

Therefore, there are 8 neighboring pixels for each surrounding layer excluding the pixel under con-

sideration (central pixel), the values of neighboring pixels that are not in the center of grids can be

estimated by interpolation. Then for each neighborhood layer, the 8 neighboring pixels (excluding

the central pixel) are compared with their median. If a neighbor pixel has a higher edge value than

the median value (or the same value) then a 1 is assigned to that pixel, which is otherwise a 0. Then

a histogram is built for each layer. Finally, the boosted feature vector is formed by concatenating

these two histograms.
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Figure 2.6: Central pixel and its P circularly and evenly spaced neighbors with radius R.

Given an input image I(x, y) and Kirsch masks in eight different orientations Mi for i =

0, 1, ..., 7, the eight different directional edge response values di,j can be computed by

di,j = I(x, y) ∗Mi, i = 0, 1, ..., 7 and j = 1, 2. (2.5)

where ’∗’ represents a convolution operation.

After obtaining the eight different directional edge response values of the first and second neigh-

borhood layers di,1 and di,2 for i = 0, 1, ..., 7 respectively, the initial step of IED computation is

to compute the median of di,1 and di,2. After that, we compare each pixel from each layer with its

corresponding median value to form the binary code. Then to retrieve the edge feature map, we

change that binary codes into the corresponding decimal codes D1 and D2, which can be computed

by

D1 =
7∑

i=0

f(di,1 −m1)× 2i (2.6)

and

D2 =
7∑

i=0

f(di,2 −m2)× 2i (2.7)
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where m1 and m2 are the medians of each 8 neighboring pixels for the first and second neighbor-

hood layers respectively. The thresholding function f(x) can be defined as in Eq. (2.2). Figure

2.7 illustrates the whole procedure of LBF technique. Although LBF was evidenced by yielding

promising recognition rates than the above-mentioned descriptors LBP and LDP, it still has limita-

tions that it considers just the first and second neighborhood layers of a pixel of interest and it does

not consider all the pixels from the second neighborhood layer, which may fail to capture premiere

features with large scale instructions.

Figure 2.7: An example of calculating LBF code.
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CHAPTER III

HIGH ORDER LOCAL DIRECTIONAL PATTERN WITH PYRAMIDAL
MULTI-STRUCTURE TECHNIQUE

In this chapter, we introduce a new feature extraction technique to calculate the nth-order di-

rectional variation patterns, named high order local directional pattern (HOLDP). After that, the

spatial histogram is built for modeling the distribution information of a face image. Lastly, several

experimental results will be given to show the strength of HOLDP for face recognition task.

3.1 Methodology

Derived from a general definition of texture in a local neighborhood, the conventional LDP

encodes the directional information in the small 3 × 3 local neighborhood of a pixel, which may

fail to extract detailed information especially during changes in the input image due to several

factors such as random noise and illumination variation problems, etc. Therefore, in this research

work we introduce a novel feature extraction technique that calculates the nth order directional

variation patterns, named high order local directional pattern (HOLDP). The proposed HOLDP can

capture more detailed discriminative information than the traditional LDP. Unlike the LDP operator,

our proposed technique extracts nth-order local information by encoding various distinctive spatial

relationships from each neighborhood layer of a pixel in the pyramidal multi-structure way. Then
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we concatenate the feature vector of each neighborhood layer to form the final HOLDP feature

vector. Several observations can be made for HOLDP:

• Under the proposed framework, the well known LDP is a special case of HOLDP, which

simply calculate the 1st order pattern information in the local neighborhood of a pixel.

• The relation between the neighbor layers and the pixel under consideration could be easily

weighted in HOLDP based on the distance between each layer and the central pixel. Because

of that, the pixels within the closest layer to the central pixel has more weight than the others.

• Due to the same format and feature length of different order HOLDPs, they can be readily

fused, and the accuracy of the face recognition can be significantly improved after the fusion.

3.2 The Proposed Method

Given a central pixel gc in the image and its P evenly spaced l neighbors gp,l where p =

0, 1, ..., P − 1 and l = 1, 2, ..., n (number of neighboring layers) as can be seen in Fig. 3.1. The tra-

ditional LDP simply calculate the 1st order edge directional value along p direction, with limitations

of the total number of involved neighbors P = 8 and l = 1. To provide a stronger discriminative

capability in describing detailed texture information than the 1st order as used in LDP, we propose

to use different layers of neighborhood configuration.

The directional edge extraction process can be done by convolving the input image I(x, y) with

Kirsch masks in eight different directions Mi(x, y) for i = 0, 1, ..., 7, which can be seen in Fig. 2.2.

An example of Kirsch kernels filtered images for one sample face image can be seen in Fig. 2.3,

where all eight directional features are extracted with their corresponding masks.

To make our calculation simple and easy to compute the high order relevant edge values along p

direction, let us assumeP = 8 and l = 1 to calculate the 1st order which means (3×3) neighborhood
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Figure 3.1: Central pixel and its P evenly spaced neighbors within l neighboring layers.

pixels, P = 16 and l = 2 to calculate the 2nd order for (5 × 5) neighborhood that means twenty

four neighbor pixels will be under consideration, as can be seen in Fig. 3.2 top, and P = 8× n and

l = n to calculate the nth order.

For example, the 1th and 2nd order local directional patterns (HOLDP1) and (HOLDP2)

could be computed as follows; Firstly, we need to find the eight different directional edge response

values of the first and second neighborhood layers (1th and 2nd LDP order), which can be done by
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Sixteen Edge Responses Sixteen Binary Bit Positions 
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Figure 3.2: Two neighborhood layers and sixteen edge responses with their binary bit positions.

mi,1 = pi,1, (3.1)

mi,2 =
1

3

j=1∑
j=−1

pg,2, (3.2)
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and

g = mod (2i+ j, 16), for i = 0, 1, ..., 7 (3.3)

where mi,1 and mi,2 are the eight different directional edge response values of the first and second

neighborhood layers respectively. pg,2 is the edge response value after convolving the input image

with Kirsch kernels, the subscripts g and 2 are the number of surrounding pixels of each direction i

and the second neighborhood layer (second order) respectively, and (mod) is the modulo operation.

From equations 4.10 and 4.11, two observations can be made. The first one is that by using

the modulo operation (mod), we maintain the circularly neighbors configuration. The second one

is that by tacking the mean of each three pixels in this case (2nd order), we give less weight to the

pixels in the second layer than the pixels in the first layer, which reduces the total number of second

layer’s pixels from sixteen pixels to eight. For example, the edge response value at 0◦ direction can

be calculated as

m0,2 =
p15,2 + p0,2 + p1,2

3
(3.4)

Secondly, based on the observation that every corner or edge has high response values in partic-

ular directions, we are interested to know t the most prominent directions after convolving the input

image with all 8 masks. Then the local directional pattern of each pixel position in each neighbor

layer for the 1th and 2nd order can be formed as

HOLDP1 =
7∑

i=0

f(mi,1 −mt,1)× 2i (3.5)

and

HOLDP2 =
7∑

i=0

f(mi,2 −mt,2)× 2i (3.6)
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where mt,1 and mt,2 are the tth most significant directional responses of the first and second neigh-

boring layers respectively. The thresholding function f(x) can be defined as in Eq. (2.2).

After identifying the local directional pattern of each pixel in each neighborhood layer (HOLDP1

for the first layer and HOLDP2 for the second layer), a histogram is built to represent the whole a

distinguishing features of an image from each neighbor layer separately. Then we concatenate these

two histograms to finalize the feature vector of our proposed technique, which statistically describes

the face image characteristics. This way, it is easy to combine multiple HOLDP with more than two

orders, by concatenating different histograms one by one.

The 3rd order local directional pattern (HOLDP3) could be computed by concatenating the

2nd order local directional pattern histogram that has been obtained above with the local directional

pattern histogram of the third neighborhood layer, which can be found by

HOLDP3 =

7∑
i=0

f(mi,3 −mt,3)× 2i (3.7)

where the thresholding function f(x) can be defined as in Eq. (2.2). mt,3 is the tth most significant

directional responses and mi,3 is the eight different directional edge response values of the third

neighborhood layer, which is computed by

mi,3 =
1

5

j=2∑
j=−2

pg,3 (3.8)

and

g = mod (3i+ j, 24), for i = 0, 1, ..., 7 (3.9)

From equation 3.8, we can say that using the pyramidal multi-structure approach, which can be

seen in Fig. 3.3 (the red cells), we give less weight to the pixels in the third layer than the pixels

in the second layer which is less than the ones in the first layer. In other words, to get the edge
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response value for each direction, we consider five pixels as one pixel from the third layer, three

pixels as one pixel from the second layer, and one pixel from the first layer. For example, the edge

response values at 270◦ direction using the pyramidal multi-structure approach can be calculated as

m6,1 = p6,1 , (3.10)

m6,2 =
p11,2 + p12,2 + p13,2

3
, (3.11)

and

m6,3 =
p16,3 + p17,3 + p18,3 + p19,3 + p20,3

5
(3.12)

Based to the analysis above, the nth order local directional pattern (HOLDPn) of each pixel

position in each neighbor layer from the input image can be defined as

HOLDPn =

7∑
i=0

f(mi,n −mt,n)× 2i (3.13)

where n = 1, 2, ... is the local directional pattern order (the number of neighborhood layers),mt,n is

the tth most significant directional responses of each neighboring layer n, the thresholding function

f(x) can be defined as in Eq. (2.2), and mi,n is the eight different directional edge response values

of each neighborhood layer n, which can be computed as

mi,n =
1

2n− 1

n−1∑
j=−n+1

pg,n (3.14)

and

g = mod (ni+ j, 8n) for i = 0, 1, ..., 7 (3.15)
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Figure 3.3: Three neighborhood layers and twenty four edge responses with their binary bit posi-
tions.

3.2.1 The Adaptiveness of the Proposed Technique

After the eight different directional edge response values of each neighboring layer are com-

puted, the image encoding and decoding (IED) strategy is applied [56, 57]. Unlike the conventional

LDP which needs to know the most prominent edge values to set them to 1 and the rest to 0, the local

directional patterns in this section can be formed adaptively by comparing the 8 neighboring pixels
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(excluding the central pixel) with their median of each neighborhood layer. If a neighboring pixel

has a higher edge value than the median value (or the same value) then a 1 is assigned to that pixel,

which is otherwise a 0. We tried to use other different measures to adaptively find the relationship

of the neighboring pixels of each layer such as thresholding the pixels with their mean, standard

deviation, and variance, but we found that the median provides better accuracy rates. Therefore, the

nth order adaptive local directional pattern (AHOLDPn) of each pixel position in each neighbor

layer from the input image can be defined as

AHOLDPn =
7∑

i=0

f(mi,n −mn)× 2i (3.16)

where n = 1, 2, ... is the local directional pattern order (the number of neighborhood layers), mn is

the median of each neighboring layer n, and mi,n for i = 0, 1, ..., 7 is the eight different directional

edge response values of each neighborhood layer n, which can be computed using equations 3.14

and 3.15. The thresholding function f(x) can be defined as in Eq. (2.2).

3.3 Experimental Results

For evaluation, we use four face recognition benchmarks that include diversity of illumination

and lighting conditions, namely extended Yale B database [62, 63], AT&T (ORL) dataset [64],

Georgia Tech (GT) face database [65], and AR database [66, 67]. All the images are resized to

64 × 64. After that, we extract the information from each image using our proposed technique

HOLDP and represent it as one histogram vector. The length of this feature vector (histogram)

depends on the order of the local directional pattern descriptor, which means it is n × 256. For

example, the first order is 256 bins, the second order is 512 bins, and so on. In addition, the proposed

HOLDP and AHOLDP techniques are compared with five spatial feature extraction methods that

have common characteristics including LBP, CLBP, FLBP, and LTP, which their codes are publicly

available. As well as the conventional LDP, which considers as a special case of the proposed
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HOLDP technique (the 1st order). When it comes to the face recognition process, the objective is to

compare the encoded feature vector from one image with all other candidate feature vectors using a

library for support vector machines classifier (LIBSVM) [68].

Two different experiments are conducted to verify the effectiveness and efficiency of the pro-

posed HOLDP framework. The first one is exploring the effectiveness of different local directional

order (different neighborhood layers for each pixel of the image) as changing the number of the

most prominent response values {t = 2, 3, · · · , 6}. The second one is the effectiveness of the pro-

posed HOLDP and AHOLDP are evaluated by comparing them with five popular texture feature

extractors including LBP, CLBP, FLBP, LTP and LDP. To avoid any bias, we randomly select the

data for training and testing, then the experiments were repeated 10 times, after that the average

results is calculated for comparison. Note that, we coded LDP technique since there is no source

code publicly available and it is a special case of our proposed HOLDP technique. The source codes

for LBP, CLBP, FLBP, and LTP were available respectively at:

• http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab

• http://www.comp.polyu.edu.hk/ cslzhang/code/CLBPMatlab

• http://www.cb.uu.se/ gustaf/textureDescriptors/FLBPMatlab

• http://parnec.nuaa.edu.cn/xtan/Publication.htm/LTPMatlb

3.3.1 Extended Yale B Database

The extended Yale B database has a total of 2280 face images for 38 subjects representing 60

illumination conditions per subject under the frontal pose, Fig. 3.4 shows some sample faces of one

subject of this dataset. In the figure, it is clear that how the illumination problems extremely affect

the input images. To show the effectiveness of the proposed HOLDP technique, we randomly select

half of the data for training (30 images/subject) and the other half for testing. Then summarize the

highest recognition rates as changing the number of neighborhood layers (the order of the proposed
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approach) in the range (1−4) along with changing the threshold t (the most prominent edge response

values) in the range {t = 2, 3, · · · , 6} as well as with the adaptive HOLDP for each pixel of the

input image in Table 3.1.

The performance results of well known local appearance based feature algorithms for face

recognition like LBP, CLBP, FLBP, LTP, and LDP with the proposed methods HOLDP and AHOLDP

on extended Yale B dataset are presented in Table 3.2. Note that, we ran the same sets of training

and testing for all methods, since LBP, CLBP, and FLBP are nonparametric methods, we extract

their histograms directly. While for LTP approach, there is one main parameter τ that splits LTP

into positive and negative parts, then the histogram is built for each part to form the final LTP

feature description of the original image. Therefore, a set of different thresholding numbers of

{τ = 0.1, 0.2, 0.5, 1, 2, · · · , 7} are experimented, and it is found that τ = 0.5 yields optimal per-

formance for this dataset.

Figure 3.4: Samples of one subject from the extended Yale B database.
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Table 3.1: Recognition rates as changing the threshold t and the proposed approach order on ex-
tended Yale B dataset.

Descriptor Recognition Accuracy (%)

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOLDP

1st Order 98.38 % 96.80 % 98.73 % 98.52 % 97.36 % 98.92 %

2nd Order 98.92 % 97.82 % 99.14 % 99.10 % 97.89 % 99.31 %

3rd Order 99.19 % 98.38 % 99.29 % 99.43 % 98.45 % 99.45 %

4th Order 99.47 % 98.59 % 99.40 % 99.54 % 98.68 % 99.56 %

Table 3.2: Performance comparison of the proposed methods with well-known face recognition
algorithms on extended Yale B dataset.

Recognition Accuracy (%) for Each Method

LBP CLBP LTP FLBP LDP HOLDP AHOLDP

97.91 % 62.92 % 88.36 % 92.21 % 98.73 % 99.54 % 99.56 %

3.3.2 AT&T Dataset (ORL)

The ORL database contains 400 face images corresponding to 40 distinct subjects each has 10

different images. Some sample faces are shown in Fig. 3.5. The images are taken at different times

with different specifications, including varying slightly in illumination and pose, different facial

expressions such as open and closed eyes, smiling and not smiling, and facial details like wearing

glasses and not wearing glasses. The same procedure as the previous section is applied, so we

randomly select half of the data for training (5 images/subject) and the other half for testing. Then

summarize the highest recognition rates as changing the order of the proposed descriptor in the range

(1−4) along with changing the threshold t in the range {t = 2, 3, · · · , 6} as well as with the adaptive
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HOLDP for each pixel of the input image in Table 3.3. While Table 3.4 presents the comparison

results of LBP, CLBP, FLBP, LTP, and LDP with the proposed methods HOLDP and AHOLDP on

ORL database. Note that, we ran the same sets of training and testing for all methods, LBP, CLBP,

FLBP, and LTP with a set of different thresholding numbers of {τ = 0.1, 0.2, 0.5, 1, 2, · · · , 7} and

it is found that τ = 2 yields optimal performance for this database.

Figure 3.5: Samples of one subject from the ORL database.

3.3.3 Georgia Tech (GT) Face Database

The Georgia Tech (GT) face database consists 750 color images corresponding to 15 different

images of 50 distinct subjects. These images have large variations in both pose and expression

and some illumination changes. Images are converted to gray scale and cropped into the size of

64 × 64. Some sample faces of one subject are shown in Fig. 3.6. The same procedure as the

previous sections is applied, so we randomly select half of the data for training (8 images/subject)
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Table 3.3: Recognition rates as changing the threshold t and the proposed approach order on ORL
database.

Descriptor Recognition Accuracy (%)

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOLDP

1st Order 95.80 % 95.90 % 96.50 % 96.65 % 96.40 % 97.70 %

2nd Order 96.60 % 96.95 % 97.40 % 97.25 % 97.10 % 98.20 %

3rd Order 96.85 % 97.15 % 97.90 % 97.80 % 97.55 % 98.60 %

4th Order 96.85 % 97.05 % 98.25 % 97.85 % 97.95 % 98.60 %

Table 3.4: Performance Comparison of the Proposed methods with-well known face recognition
algorithms on ORL database.

Recognition Accuracy (%) for Each Method

LBP CLBP LTP FLBP LDP HOLDP AHOLDP

96.00 % 81.45 % 96.00 % 96.00 % 96.65 % 98.25 % 98.60 %

and the other half for testing. Then summarize the highest recognition rates in Table 3.5 to show the

effectiveness of each neighborhood layer. While Table 3.6 presents the comparison results of LBP,

CLBP, FLBP, LTP, and LDP with the proposed methods HOLDP and AHOLDP on GT database.

Note that, we ran the same sets of training and testing for all methods, LBP, CLBP, FLBP, and LTP

with LTP with a set of different thresholding numbers of {τ = 0.1, 0.2, 0.5, 1, 2, · · · , 7} and it is

found that τ = 3 yields optimal performance for this dataset.

3.3.4 AR Database

The AR face database contains over 4000 color face images of 126 people, including frontal

views of faces with different facial expressions, illumination conditions and occlusions. In our

29



Figure 3.6: Samples of one subject from the GT database.

Table 3.5: Recognition rates as changing the threshold t and the proposed approach order on GT
database.

Descriptor Recognition Accuracy (%)

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOLDP

1st Order 87.22 % 87.40 % 89.28 % 87.94 % 87.62 % 91.57 %

2nd Order 87.80 % 88.94 % 89.80 % 88.94 % 88.40 % 93.37 %

3rd Order 88.05 % 89.11 % 89.82 % 89.51 % 88.57 % 93.00 %

4th Order 87.60 % 88.97 % 89.22 % 89.02 % 88.34 % 92.68 %

experiments, a subset with large variations in both illumination and expression was chosen, which

corresponds to 50 male subjects and 50 female subjects. For each subject, there are two sections

one for training and the other for testing. Each section contains 7 images per subject. To show

the effectiveness of each neighborhood layer, we summarize the highest recognition rates in Table
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Table 3.6: Performance comparison of the proposed methods with-well known face recognition
algorithms on GT database.

Recognition Accuracy (%) for Each Method

LBP CLBP LTP FLBP LDP HOLDP AHOLDP

89.00 % 80.48 % 90.40 % 90.85 % 89.28 % 89.82 % 93.37 %

3.7. While Table 3.8 presents the comparison results of LBP, CLBP, FLBP, LTP, and LDP with

the proposed methods HOLDP and AHOLDP on AR database. Note that, we ran the same sets of

training and testing for all methods, LBP, CLBP, FLBP, and LTP with LTP with a set of different

thresholding numbers of {τ = 0.1, 0.2, 0.5, 1, 2, · · · , 7} and it is found that τ = 5 yields optimal

performance for this database.

Figure 3.7: Samples of one subject from the AR database.
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Table 3.7: Recognition rates as changing the threshold t and the proposed approach order on AR
database.

Descriptor Recognition Accuracy (%)

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOLDP

1st Order 88.57 % 88.00 % 90.14 % 90.42 % 88.57 % 90.00 %

2nd Order 90.57 % 91.00 % 92.14 % 92.14 % 90.14 % 92.85 %

3rd Order 90.42 % 91.85 % 93.00 % 93.28 % 91.85 % 94.28 %

4th Order 91.00 % 92.00 % 93.42 % 93.85 % 93.00 % 95.57 %

Table 3.8: Performance comparison of the proposed methods with-well known face recognition
algorithms on AR database.

Recognition Accuracy (%) for Each Method

LBP CLBP LTP FLBP LDP HOLDP AHOLDP

87.57 % 78.28 % 87.28 % 85.42 % 90.42 % 93.85 % 95.57 % %

3.4 Discussion

In this chapter, we have introduced a new feature descriptor named HOLDP. Throughout the

performance evaluations, we found that HOLDP provides better performance for face recognition

regardless of extreme variations of illumination environments and slightly differences in pose and

expression conditions. In addition, compared to the other state-of-the-art methods, we conclude that

our method provides better accuracy in all test cases. Furthermore, it is observed that a number of

neighborhood layers and the threshold will affect recognition accuracy. From the results above it is

clear that the high-order local patterns provide a stronger discriminative capability in describing de-

tailed texture information than the first-order local pattern as used in the traditional LDP technique.
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When it comes to the adaptiveness of the proposed HOLDP, AHOLDP does provide the highest

recognition rates than the HOLDP in all test cases. In general, considering all comparison results,

we can assess that HOLDP can be a promising candidate for face recognition application.

It is a true challenge to build an automated system which equals human ability to recognize

faces. While traditional face recognition is typically based on still images, face recognition from

video sequences has become popular recently due to more abundant information than still images

and more adopted in real applications.
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CHAPTER IV

HIGH ORDER VOLUMETRIC DIRECTIONAL PATTERN

In this chapter, we introduce two new video-based descriptors, volumetric directional pattern

(VDP) [1] and high order volumetric directional pattern (HOVDP), for robust face recognition,

addressing a difficult problem of identifying human faces in video due to the presence of large

variations in facial pose and expression, as well as poor video resolution. VDP is an oriented

volumetric descriptor that is able to extract and fuse the information of multi frames, temporal

(dynamic) information, and multi poses and expressions of faces in input video to produce strong

feature vectors, which are used to match with all the videos in the database. Then based on our

novel HOLDP technique that we presented in Chapter 3, we develop the HOVDP, which can be

viewed as an extension of VDP. HOVDP combines the movement and appearance features together

considering the nth order volumetric directional variation patterns of all neighboring pixel layers

from three consecutive frames.

4.1 Methodology

The main goal of the volumetric directional pattern is extracting and fusing the temporal infor-

mation (dynamic features) from three consecutive frames which are distinct under multi poses and

facial expressions variations. The overall end-to-end video based face recognition framework can

be explained in Fig. 4.1.
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Figure 4.1: Video-to-video face recognition pipeline.
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Given a video as input and a gallery of videos, we perform face recognition process throughout

the whole video clip. Firstly, we detect and track faces using Viola and Jones face detector [69].

Then for each frame we extract and combine the dynamic features of its two neighborhood frames

using our novel algorithm, similar procedure to the gallery videos. Then a histogram is built for

each frame. These histograms are concatenated to form the final VDP-feature vector.

4.2 Volumetric Directional Pattern

Volumetric Directional Pattern (VDP) is a gray-scale pattern that characterizes and fuses the

temporal structure (dynamic information) of three consecutive frames. The proposed VDP has been

developed to merge the movement and appearance features together. VDP is a twenty-four bit binary

code assigned to each pixel of an input frame, which can be calculated by comparing the relative

edge response value of a particular pixel from three consecutive frames in different directions by

using Kirsch masks in eight different orientations centered on its own position for one frame and

the corresponding positions of the other two frames.

Given a central pixel in the middle (center) frame of three consecutive frames, the eight different

directional edge response values (first order) ci for i = 8, 9, ..., 15 are used to create an eight bit

binary number which can describe the edge response pattern of each pixel in the center frame (frame

of interest). Meanwhile, the eight different edge response values pi for i = 16, 17, ..., 23 and ni for

i = 0, 1, ..., 7 are used to create an eight bit binary number each, which can describe the edge

response pattern of each pixel in the previous frame and next frame respectively. Fig. 4.2 shows

the twenty four edge responses and their corresponding bit binary positions, as well as the fusing

strategy of this 24-bit code. The twenty four different directional edge response values for each

pixel location can be computed by
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ni =

7∑
0

dot(I3×3,Mi), (4.1)

ci =

15∑
8

dot(I3×3,Mi−8), (4.2)

and

pi =

23∑
16

dot(I3×3,Mi−16) (4.3)

where dot(·) represents the dot product operation, Mi is the mask, and I3×3 is 3 × 3 neighbors of

the center pixel of each frame. ni, ci and pi are the spatiotemporal directional response values of

the first layer for the next, center, and previous frames respectively.

In order to generate the VDP-feature vector, we need to know the t most prominent directional

bits for all three consecutive frames. These t bits are set to 1 and the rest of 8-bit VDP pattern of

each frame are set to 0. Then a binary code is formed to each pixel from each frame, which will be

mapped to its own bin to build a histogram. Finally, we concatenate these three histograms of these

three consecutive frames to obtain the final VDP-feature vector, which is the descriptor for each

center frame (frame of interest) that we used to recognize the face image by the help of a classifier.

The final VDP code can be derived by

V DP =

7∑
i=0

f(ni − nt)× 2i‖
15∑
i=8

f(ci − ct)× 2i−8‖
23∑

i=16

f(pi − pt)× 2i−16 (4.4)

where the thresholding function f(x) can be defined as in Eq. (2.2).
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Figure 4.2: The twenty four edge responses with their VDP binary bit positions and concatenating
them to form the final VDP feature vector.
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4.3 High Order Volumetric Directional Pattern

Derived from a general definition of texture in a local neighborhood, the conventional VDP or

the first order volumetric directional pattern encodes the directional information in the small 3 × 3

local neighborhood of a pixel of each three consecutive frames, which may fail to extract detailed

information especially during changes in data collection environments due to several factors such

as differences in the pose, random noise, illumination variation problems, etc. Therefore, we im-

prove the proposed VDP to tackle this problem by calculating the nth order volumetric directional

variation patterns. The improved version of VDP is named high order volumetric directional pat-

tern (HOVDP). The proposed HOVDP can capture more detailed discriminative information than

the traditional VDP. Unlike the VDP operator, the extension of our proposed VDP technique ex-

tracts nth-order volumetric information by encoding various distinctive spatial relationships from

each neighborhood layer of a pixel in the pyramidal multi-structure way, and then concatenating

the feature vector of each neighborhood layer to form the final HOVDP feature vector. Several

observations can be made for HOVDP:

• Under the proposed framework, our proposed VDP is a special case of HOVDP, which simply

calculate the 1st order volumetric directional information in the local neighborhood of a pixel.

• The relation between the neighbor layers and the pixel under consideration could be easily

weighted in HOVDP based on the distance between each layer and the central pixel. Because

of that, the pixels within the closest layer to the central pixel has more weight than the others.

• Due to the same format and feature length of different order HOVDP, they can be readily

fused, and the accuracy of the face recognition can be significantly improved after the fusion.
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4.4 The Proposed Method

The proposed high order volumetric directional pattern (HOVDP) technique is an oriented and

multi-scale volumetric directional descriptor that is able to extract and fuse the information of multi

frames, temporal (dynamic) information, and multi poses and expressions of faces in input video to

produce strong feature vectors. Given a central pixel in the middle (center) frame of three consec-

utive frames, to calculate the second order volumetric directional pattern (V DP2) we first compute

the first order (V DP1), which is exaltedly the same as the original VDP by using the equations (4.1)

- (4.4). Then,

ni,1 = ni, (4.5)

ci,1 = ci, (4.6)

pi,1 = pi, (4.7)

and

V DP1 = V DP (4.8)

where pi,1, ci,1, and ni,1 are an eight bit binary number that describes the edge response pattern

of each pixel of the first layer in the previous frame for i = 16, 17, ..., 23, center frame for i =

8, 9, ..., 15, and next frames i = 0, 1, ..., 7 respectively.

To make our calculation simple and easy to compute the high order relevant edge values, let us

assume vi the magnitude values for each layer separately after convolving the input image I(x, y)

with Kirsch masks in eight different directions Mi(x, y) for i = 0, 1, ..., 7, which can be seen in

Fig. 4.3. Then the directional edge values for the particular layer can be found as

ci,1 = vi,1, (4.9)
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ci,2 =
1

3

j=1∑
j=−1

vg,2, (4.10)

and

g = mod (2i+ j, 16), for i = 0, 1, ..., 7 (4.11)

where ci,1 and ci,2 are the eight different directional edge response values of the first and second

neighborhood layers respectively. vg,2 is the magnitude value after convolving the input image with

Kirsch kernels, the subscripts g and 2 are the number of surrounding pixels of each direction i

and the second neighborhood layer (second order) respectively, and (mod) is the modulo operation

which is used to maintain the circularly neighbors configuration.

Figure 4.3: Magnitude values of two neighborhood layers.

Based on the observation that every corner or edge has high response values in particular di-

rections, we are interested to know t the most prominent directional bits for all three consecutive

frames in order to generate the VDP-feature vector of each neighborhood layer. These t bits are set

to 1 and the rest of 8-bit pattern in each layer from each frame are set to 0. Then a binary code is
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formed to each pixel in each layer from each frame, which will be mapped to its own bin to build

a histogram for that particular layer of each frame. The volumetric directional pattern of each pixel

position in the second neighbor layer can be formed as

V DP2 =
7∑

i=0

f(ni,2 − nt,2)× 2i‖
15∑
i=8

f(ci,2 − ct,2)× 2i−8‖
23∑

i=16

f(pi,2 − pt,2)× 2i−16 (4.12)

where the thresholding function f(x) can be defined as in Eq. (2.2).

After identifying the volumetric directional pattern of each pixel in each neighborhood layer

from each frame (V DP1 for the first layer and V DP2 for the second layer), a histogram is built

to represent the whole distinguishing features of each neighbor layer from each frame separately,

and then to obtain the final 2nd order VDP-feature vector, which is the descriptor for each center

frame (frame of interest), concatenate these histograms starting from the same layer order one by

one which can be seen in Fig. 4.4.

In a general formulation, the nth order volumetric directional pattern (HOVDPn) of each pixel

position in each neighbor layer from each frame can be defined as

HOVDPn =
7∑

i=0

f(ni,n−nt,n)×2i‖
15∑
i=8

f(ci,n−ct,n)×2i−8‖
23∑

i=16

f(pi,n−pt,n)×2i−16 (4.13)

where the subscript n = 1, 2, ... is the volumetric directional pattern order (the number of neigh-

borhood layers), nt,n, ct,n, and pt,n are the tth most significant directional responses of each neigh-

boring layer n from next frame, center frame, and previous frame respectively, and f(x) is the

thresholding function that can be defined as in Eq. (2.2). ni,n, ci,n, and pi,n are the eight different

directional edge response values of each neighborhood layer n from next frame, center frame, and

previous frame respectively which can be computed as

ci,n =
1

2n− 1

n−1∑
j=−n+1

vg,n (4.14)
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and

g = mod (ni+ j, 8n) for i = 0, 1, ..., 7 (4.15)

The same procedure is applied to find the eight different directional edge response values of next

frame ni,n and previous pi,n.

4.4.1 The Adaptiveness of HOVDP

To encode the local structures information in the neighborhood adaptively, the image encod-

ing and decoding (IED) strategy is applied [56, 57]. Because of that there is no need to any pre-

experiments to find the most prominent edge values to set them to 1 and the rest to 0, the local

directional patterns in this section can be formed adaptively by comparing the 8 neighboring pixels

(excluding the central pixel) with their median of each neighborhood layer for each frame. If a

neighboring pixel has a higher edge value than the median value (or the same value) then a 1 is as-

signed to that pixel, which is otherwise a 0. Therefore, the nth order adaptive volumetric directional

pattern (AHOVDPn) of each pixel position in each neighbor layer from each frame can be defined

as

AHOVDPn =

7∑
i=0

f(ni,n − nm,n)× 2i‖
15∑
i=8

f(ci,n − cm,n)× 2i−8‖
23∑

i=16

f(pi,n − pm,n)× 2i−16

(4.16)

where the subscript n = 1, 2, ... is the volumetric directional pattern order (the number of neighbor-

hood layers), nm,n, cm,n, and pm,n are the medians of each neighboring layer n from the next frame,

center frame, and previous frame respectively. The thresholding function f(x) can be defined as in

Eq. (2.2).
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Figure 4.4: Procedure of 2nd order VDP. L1 and L2 are the histograms of first and second layers
respectively for each frame.
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4.5 Experimental Results

To evaluate the illumination, pose, and expression variations robustness of the introduced method,

we tested it on two publicly available datasets named, YouTube celebrities dataset [70] and Honda/UCSD

database [71, 72]. All the face images in this work were detected by using the Viola and Jones face

detector [69]. After manually removing the false detections, all the detected face images were re-

sized to 64 × 64 and then the spatiotemporal information was extracted using the proposed VDP

and HOVDP techniques. When it comes to the face recognition process, we represent the face using

a VDP-feature histogram and HOVDP-feature histogram. The objective is to compare the encoded

feature vector from one frame with all other candidates feature vector using two well-known differ-

ent classifiers. The first one is support vector machine (SVM) classifier (we used LIBSVM), and the

second one is a k-nearest neighbors classifier (k-NN). The corresponding face of the VDP/HOVDP

feature vector with the lowest measured value indicates the match found.

Two different experiments are conducted for each database to verify the effectiveness and ef-

ficiency of the proposed HOVDP framework. The first one explores the effectiveness of different

volumetric directional order (different neighborhood layers for each pixel of the image) as changing

the number of the most prominent response values {t = 2, 3, · · · , 6}. The second one evaluates the

effectiveness of the proposed VDP, HOVDP, and AHOVDP by comparing them with four popular

video based face recognition techniques. To avoid any bias, we randomly select the data for training

and testing.

4.5.1 YouTube Celebrities Dataset

YouTube celebrities database is a large-scale video dataset which contains 1910 video sequences

of 47 different celebrities (actors and politicians) that are collected from YouTube. The dataset is

considered as one of the most challenging video databases due to the large illumination, pose,
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and expression variations as well as low resolution and motion blur. In this part, we evaluated

the proposed VDP and HOVDP on all 47 celebrities, while some of the state-of-the-art compared

methods were evaluated on some of the subjects (e.g. in [73] they use only the first 29 celebrities).

Following the prior works [74, 14], for each subject three video sequences are randomly selected as

the training data, with the other six video clips are randomly selected for testing. We conduct one

experiment by randomly selection of training/testing data. The clips contain different numbers of

frames (from 8 to 400) which are mostly low resolution and highly compressed. Figure 4.5 shows

some examples of cropped faces in this dataset.

Figure 4.5: YouTube celebrities database. Each row represents different samples of one subject.

46



To show the effectiveness of the proposed VDP (the special case of HOVDP) and HOVDP tech-

niques, we summarize the recognition rates via changing the number of neighborhood layers (the

order of the proposed approach) in the range (1 − 4), varying the threshold t (the most promi-

nent edge response values) in the range {t = 2, 3, · · · , 6}, as well as comparing with the adaptive

HOVDP in Table 4.1. From Table 4.1, it is found that t = 4 yields optimal performance for this

dataset. Additionally, It is clear that the second order VDP improves the face recognition accuracy

of the first order VDP in all test cases. While the third order and fourth order decrease the accu-

racy rates due to the fact that increasing the scale (the neighbors pixels) causes to extract and fuse

the information of different poses and different locations of the face components, which produces

confused feature vectors. Therefore, there is no need to increase the descriptor order which slightly

differs on the case of still images based face recognition task as we found in the Chapter 3.

The performance results of well-known face recognition algorithms like regularized nearest

points (RNP) [73], sparse approximated nearest points between image sets (SANP) and its kernel

extension (KSANP) [74], and projection metric learning on Grassmann manifold (PML) [14] com-

bined with grassmannian graph-embedding discriminant analysis (GGDA) [15] denoted as (PML-

GGDA), with the proposed methods VDP and HOVDP on this dataset are presented in Table 4.2.

Notice that the results we compared with are as we got from their original references which are

mentioned in the table. Meanwhile, a part of this dataset was used in RNP [73] and three video

sequences were randomly selected as the training data, with the other three sequences randomly

selected as the testing data.

4.5.2 Honda/UCSD Dataset

Honda/UCSD database consists of 59 videos sequences of 20 different subjects. There are pose,

illumination and expression variations across the sequences for each subject. Each video consists

of about 12 − 645 frames. Figure. 4.6 has shown some examples [72]. Each row corresponds
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Table 4.1: Recognition rates using all video frames as changing the threshold t and the proposed
approach order on YouTube celebrities database.

Descriptor Recognition Accuracy (%) Using libsvm Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 86.50 % 86.46 % 86.75 % 86.18 % 86.28 % 76.67 %

2nd Order 87.33 % 87.28 % 87.74 % 87.14 % 87.04 % 77.38 %

3rd Order 83.62 % 85.36 % 85.51 % 85.65 % 84.76 % 86.28 %

4th Order 84.41 % 85.69 % 85.71 % 85.98 % 85.45 % 86.56 %

Descriptor Recognition Accuracy (%) Using knn Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 85.08 % 85.45 % 85.96 % 86.03 % 85.88 % 76.67 %

2nd Order 85.34 % 85.75 % 86.62 % 86.44 % 85.95 % 76.35 %

3rd Order 82.23 % 84.47 % 84.94 % 84.86 % 84.52 % 85.02 %

4th Order 82.13 % 84.48 % 84.64 % 84.71 % 84.42 % 85.41 %

Table 4.2: Performance comparison of the proposed methods with well-known race recognition
algorithms on YouTube celebrities database.

Recognition Accuracy ± Standard Deviation for Each Method

SANP KSANP PML-GGDA VDP (Proposed) HOVDP (Proposed)

55.64 ± 5.74 % 65.46 ± 5.53 % 70.32 ± 3.69 % 86.75 ± 0 % 87.74 ± 0 %

to an image set of a subject. In our experiment, we use the standard training/testing configuration

provided in [71], which means 20 sequences are used for training and the remaining 39 sequences

for testing. We report results using all frames as well as with limited number of frames. Specif-

ically, we conduct the experiments following the prior works [73, 74] by executing three parts of

experiments, 1) using only the first 50 frames/video clip, 2) using only the first 100 frames/video

clip, 3) using all video frames. In case a set contains fewer than the selected frames, all frames
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are used for classification. The performance results of the proposed techniques VDP and HOVDP

as changing the number of neighborhood layers (the order of the proposed approach) in the range

(1− 4) along with changing the threshold t (the most prominent edge response values) in the range

{t = 2, 3, · · · , 6} using set lengths 50 frames/clip, 100 frames/clip, and all frames/clip respectively

are presented in Tables 4.3, 4.4, and 4.5.

The performance results of well known video based face recognition algorithms like SANP,

KSANP, and RNP with the proposed methods VDP and HOVDP on this dataset are presented in

Table 4.6. Notice that, the results we compared with are as we got from their original references

which are mentioned in the table. For our proposed methods, we select the t that yields optimal

performance for the comparison.

Table 4.3: Recognition rates using only 50 frames of each Video as changing the threshold t and the
proposed approach order on Honda/UCSD database.

Descriptor Recognition Accuracy (%) Using libsvm Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 86.85 % 85.45 % 86.10 % 86.10 % 81.40 % 87.50 %

2nd Order 87.75 % 86.85 % 87.00 % 87.45 % 84.30 % 88.20 %

3rd Order 85.70 % 84.65 % 86.45 % 85.75 % 82.75 % 84.50 %

4th Order 86.70 % 84.45 % 86.75 % 85.55 % 82.85 % 86.65 %

Descriptor Recognition Accuracy (%) Using knn Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 88.75 % 90.11 % 89.65 % 88.65 % 88.55 % 89.60 %

2nd Order 89.25 % 90.30 % 90.10 % 89.65 % 88.80 % 90.45 %

3rd Order 86.25 % 87.05 % 88.70 % 87.60 % 87.85 % 90.15 %

4th Order 87.00 % 88.05 % 88.40 % 87.55 % 87.50 % 89.90 %
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Figure 4.6: Honda/UCSD dataset. Each row represents different samples of one subject.

4.6 Discussion

In this chapter, we introduced two new feature descriptors, namely VDP and HOVDP. Through-

out the performance evaluation in terms of face recognition accuracy, we found that VDP and its
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Table 4.4: Recognition rates using only 100 frames of each video as changing the threshold t and
the proposed approach order on Honda/UCSD database.

Descriptor Recognition Accuracy (%) Using libsvm Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 87.86 % 87.09 % 87.99 % 87.99 % 84.96 % 86.22 %

2nd Order 89.71 % 89.71 % 90.21 % 88.89 % 86.25 % 89.60 %

3rd Order 87.89 % 87.83 % 90.86 % 88.99 % 89.34 % 88.07 %

4th Order 88.34 % 89.57 % 91.68 % 89.36 % 90.20 % 90.84 %

Descriptor Recognition Accuracy (%) Using knn Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 90.47 % 92.13 % 92.16 % 91.29 % 90.47 % 92.27 %

2nd Order 91.79 % 92.56 % 93.08 % 92.58 % 91.66 % 94.92 %

3rd Order 88.89 % 91.10 % 91.58 % 91.63 % 91.13 % 92.11 %

4th Order 88.99 % 91.50 % 91.84 % 91.74 % 91.61 % 92.53 %

extension HOVDP are robust for video-based face recognition application. With a video as in-

put and a gallery of videos, we performed face recognition process throughout the whole video

clip frames. For each input frame, we extracted and combined the dynamic features of its two

neighbors frames using our novel HOVDP algorithm, similar procedure was done to the gallery

videos. Finally, we compared the encoded HOVDP-feature histogram from each frame with all

other candidate HOVDP-feature vectors from all gallery video frames. By randomly selecting three

video sequences per subject for training and other randomly six videos for testing as in the YouTube

celebrities database and by using the stander sets for training and testing as in Honda/UCSD dataset,

we finally showed that our method could achieve high recognition accuracy in most test cases.

From the evaluation results, it is found that the proposed HOVDP algorithm can successfully

improve the accuracy rates compared to the original VDP in all test cases and exceed a set of state-

of-the-art methods in most test cases. For the Honda/UCSD database, our proposed techniques
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Table 4.5: Recognition rates using all video frames as changing the threshold t and the proposed
approach order on Honda/UCSD database.

Descriptor Recognition Accuracy (%) Using libsvm Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 94.75 % 95.09 % 95.96 % 95.82 % 94.05 % 94.56 %

2nd Order 96.26 % 96.55 % 97.23 % 96.57 % 95.74 % 96.53 %

3rd Order 95.08 % 94.42 % 96.23 % 96.55 % 95.32 % 94.55 %

4th Order 95.57 % 95.11 % 96.72 % 97.13 % 95.84 % 96.88 %

Descriptor Recognition Accuracy (%) Using knn Classifier

Order t = 2 t = 3 t = 4 t = 5 t = 6 AHOVDP

1st Order 96.13 % 95.58 % 96.87 % 95.97 % 95.44 % 96.44 %

2nd Order 96.52 % 96.87 % 97.08 % 96.61 % 96.23 % 97.29 %

3rd Order 95.41 % 95.95 % 96.74 % 96.44 % 95.65 % 96.55 %

4th Order 95.42 % 96.11 } 96.63 % 96.51 % 95.86 % 96.89 %

Table 4.6: Performance comparison of the proposed methods with well-known face recognition
algorithms on Honda/UCSD database.

Number Recognition Accuracy (%) for Each Method

of Frames SANP KSANP RNP VDP (Proposed) HOVDP (Proposed)

50 84.62 % 87.18 % 87.18 % 90.11 % 90.45 %

100 92.31 % 94.87 % 94.87 % 92.27 % 94.92 %

All frames 100 % 100 % 100 % 96.87 % 97.29 %

Average 92.31 % 94.02 % 94.02 % 93.08 % 94.22 %

provide better recognition rates, although the other compared methods outperform ours in case of

all frames are used. Meanwhile, our proposed HOVDP beats the others in case of smaller sets are

used, which often occurs in real-world applications. For example, the tracking of a face may fail for

a long sequence when only the first part of the video sequence is available for classification.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this dissertation, three novel approaches were presented to extract features of face images:

1) high order local directional pattern (HOLDP) for calculating the nth-order directional variation

patterns for still images, 2) volumetric directional pattern (VDP) for videos, and 3) an extension of

the VDP named high order volumetric directional pattern (HOVDP) for extracting and fusing the

temporal information (dynamic features) in videos. The effectiveness of the methods was evalu-

ated using different face recognition benchmarks, as well as compared with a set of state-of-the-art

methods.

The first part of this research focused on the development of a local appearance feature extrac-

tion algorithm, which is capable of capturing discriminative information of still based face image.

Derived from a general definition of texture in a local neighborhood, the conventional LDP encodes

the directional information in the small 3 × 3 local neighborhood of a pixel, which may fail to ex-

tract detailed information, especially during changes in the input image due to random noise and

illumination variation. To tackle this problem, a technique named HOLDP was developed. The key

process of HOLDP is based on calculating the nth order directional variation patterns by encoding

various distinctive spatial relationships from each neighborhood layer of a pixel in the pyramidal

multi-structure way. The output of HOLDP provides a spatial histogram for modeling the distri-

bution information of a face image. From the evaluation results, it has been found that HOLDP
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algorithm can successfully perform feature extraction tasks and exceed a set of state-of-the-art de-

scriptors in all test cases.

The second part of this research concentrated on extracting and fusing various temporal infor-

mation (dynamic features) from three consecutive frames for video based face images. The goal

was to address a difficult problem of identifying human faces in video due to the presence of large

variations in facial pose and expression, as well as poor video resolution. Based on this, two new

descriptors were introduced namely VDP and HOVDP. VDP is a gray-scale pattern that character-

izes and fuses the micro patterns of three consecutive frames to represent the appearance features

deeply. Additionally, to provide a stronger discriminative capability in describing detailed texture

information than the traditional VDP does, HOVDP was developed. HOVDP incorporates the con-

cepts of HOLDP and VDP to encode various distinctive spatial relationships by considering not only

the neighborhood layers of a pixel in the pyramidal multi-structure way but also the neighbor layers

of a pixel in the adjacent frames. This combination significantly improved overall face recognition

accuracy compared to the original VDP in all test cases and exceed a set of state-of-the-art methods

in most test cases. From the evaluation results, it is observed that a fusion of static and dynamic

features would provide a better representation for video based FR.

In future exploration, it would be a great interest to apply HOLDP, VDP, and HOVDP for var-

ious applications, such as hyperspectral image (HSI) classification which has been already done

using VDP that was evidenced by yielding promising classification accuracy among the other com-

petitors [17], shape localization, and automatic object detection, so that it will extensively show

their robustness and usefulness, and further express significance of this research.
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