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ABSTRACT

NONLINEAR ELECTROMAGNETIC RADIATION FROM METAL-INSULATOR-METAL

TUNNEL JUNCTIONS

Name: Hussain, Mallik Mohd Raihan
University of Dayton

Advisor: Dr. Joseph W. Haus

Our goal was to experimentally detect nonlinear electromagnetic (EM) radiation (in the far

field) from a metal-insulator-metal (MIM) tunnel junction where the insulator thickness lies in the

nanometer to subnanometer range and the metals in the junction are coupled to the electro-magnetic

field of incident photons. The radiation from an MIM junction originated from the photon-induced

tunneling current passing through it. The phenomenon is elegantly described by photon-assisted-

tunneling (PAT) theory that introduces transfer Hamiltonians in the uncoupled (when two metals are

at infinite distance from each other) system Hamiltonian. This theory predicts the contribution of

additional conductivity terms in the MIM interface (due to tunneling inside the junction) and ush-

ered the development of quantum conductivity theory (QCT), as a consequence. In this thesis, we

reviewed QCT from the perspective of many-body formulation and designed careful experiments to

detect the nonlinear electromagnetic radiation from MIM junctions that can be attributed to photon

assisted tunneling of electrons. In our experiment, first, an insulator layer was put on the metal

surface using atomic layer deposition (ALD) technique. The number of layers were varied to pro-

duce MI samples with different insulator thickness in the subnanometer range. Then, we set the
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background signal strength by measuring the second harmonic (SH) and third harmonic (TH) signal

due to the bulk material and the surface of metal-insulator (MI) interface. Next, we spin-coated the

MI sample with Au nanospheres (diameter ≈ 10 nm) to construct MIM interfaces and measured

SH and TH signals from them again. Without any bias voltage across the MIM, QCT predicts an

increase in TH signal only. Experimentally, we observed an increase in TH signal strength. The

increase was modest which is partially attributed to the fact that we could not reliably produce MIM

samples with subnanometer insulator thickness and uniform coverage. We intend to improve the

surface coverage and uniformity of the insulator layer, in future, and measure SH and TH from the

improved samples. Detection of such radiation would support QCT and validate the extension of

transfer Hamiltonian approach from the realm of superconducting tunnel junctions to normal MIM

tunnel junctions.
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CHAPTER I

INTRODUCTION

The introduction of the ‘transfer Hamiltonian’ approach in the theory of superconducting tunnel

junctions [1, 2, 3] was a breakthrough. Since it was developed for single quasi-particle tunneling†,

extension of the theory to the realm of MIM tunnel junction [4] was intriguing. With the devel-

opment of PAT theory [5, 6], the effect of photons on tunneling electrons became clearer. When a

photon is incident on a metal-insulator-metal junction,

1. it acts as a particle by perturbing the system Hamiltonian and, thus, inducing the transition of

electrons through the insulator region (quantum tunneling).

2. it acts as a classical field and modulates the Fermi energy level of the system.

Figure 1.1: Photon field coupling to an antenna and the MIM junction.

†In the context of normal metals, electron-electron interactions through phonon (Cooper pairs) are not prominent.
So, Josephson tunneling or pair tunneling is negligible and only non-Josephsonian part of the tunneling current (termed
as, single quasi-particle tunneling current or normal tunneling current) becomes important. Therefore, the review of the
theory is done for single quasi-particle tunneling only and the pertinent radiation is always implied as ‘non-Josephsonian’.
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If the dimension of the metal sides (see Figure 1.1) of the MIM junction is comparable to the photon

wavelength than it can act as antennas and couple to a photon’s oscillating electromagnetic field. It is

very interesting to note that the field of photons can cause, at the same time, ‘harmonic perturbation’

and ‘harmonic modulation’ in the system Hamiltonian of an MIM junction. The terms in the system

Hamiltonian that are responsible for photon assisted tunneling are called, ‘transfer Hamiltonian’s.

The constituent of transfer Hamiltonians are as follows,

ĤT = |ĤT |︸︷︷︸
magnitude

term

×ei 6 0ĤT︸ ︷︷ ︸
time

independent
phase term

×ei 6 tĤT︸ ︷︷ ︸
time

dependent
phase term

, (1.1)

• Magnitude of transfer Hamiltonian, |ĤT |:

|ĤT | consists of terms that are directly related to ‘harmonic perturbation’ in the MIM junc-

tion. In fact, when two systems are coupled through quantum tunneling, the photon-induced

harmonic modulation on the input-side can acts as ‘harmonic perturbation’ on the output-

side. Such perturbation causes the transition of quasi-particles from input-side to output-side

energy levels (the transition rate can be calculated using Fermi’s golden rule, discussed in

Appendix A) and generate a DC current. So, it is reasonable to infer that the magnitude of

transfer Hamiltonian, |ĤT |, accounts for the particle effect of photon.

• Phase of transfer Hamiltonian, 6 ĤT :

The phase of transfer Hamiltonian, 6 ĤT = 6 0ĤT + 6 tĤT accounts for the classical elec-

tromagnetic field aspect of photons. This will be further discussed later in Chapter III. In

the absence of tunneling (or any coupling between the junctions), any voltage, AC or DC,

including the voltage due to the electromagnetic field of photons, simply causes a phase mod-

ulation on the (Fermionic) creation and annihilation operator. In a coupled system, phases of

annihilation and creation operators can form the phase part of the transfer Hamiltonian. The

phase part is responsible for the nonlinear radiations coming out of the MIM junction [5, 7].

2



Microscopically, the effect of photons on MIM tunnel junction is analogous to photo-detection

where a DC bias voltage across the MIM junction plays the same role as band gap in semiconductor

photo-detectors. The result is a DC current through the junction. Meanwhile, the phase part of the

transfer Hamiltonian causes back and forth ‘sloshing’ of electrons through the junction, generating

AC currents at the input photon frequency and its harmonics. These AC current terms can be related

back to the DC current terms for the corresponding DC photon voltages of higher frequencies.

Consequently, the macroscopic effects of photons on tunnel junctions are two fold. Their oscillating

electric field can (1) generate a DC current and, (2) AC currents of the same and higher-order

harmonic frequencies. These AC currents, in turn, may couple to electromagnetic waves and radiate

from the tunnel junction. ‘Quantum conductivity theory’ builds on that notion and couples the

higher frequency current terms with the local electric field (due to the incident photon) through few

constitutive relations. These constitutive relations give us a set of linear and nonlinear quantum

conductivity coefficients which can be used to calculate the higher harmonic current terms easily.

The goal of this thesis was to experimentally detect the harmonic electromagnetic radiation from

the tunnel junction due to the corresponding current terms.

To make this thesis as self-consistent as possible, the theory is developed from first principles

and gradually brought to a point where additional nonlinear conductivity terms can be introduced

that explains the coupling of nonlinear radiation with tunneling current. To understand QCT and its

implication, one needs to contemplate the following topics step-by-step:

Step 1 : Tunneling probability current density operator in quantum mechanics,

Step 2 : Time dependent perturbation and Fermi’s second golden rule,

Step 3 : Bardeen’s picture of microscopic tunneling current and introduction of transfer Hamiltonian

formulation,

3



Step 4 : Generalized PAT theory,

Step 5 : Finally, QCT theory and predictions.

The step-by-step derivation of theoretical equations predicting radiation from MIM junction is

fascinating and gives one confidence on the possibility of experimental detection of such junction-

induced radiation. In Figure 1.2, we linked the concepts required to describe QCT and PAT theory

from many-body formulation. The linked diagram is partitioned into boxes representing different

chapters of the thesis. This figure may serve as a map of all the required concepts for future referral.

Figure 1.2: Strategic development of concepts of quantum conductivity theory.

In Chapter II, we deduced the tunneling probability current density inside a barrier by utilizing

one of the ‘matching boundary condition’ methods, namely, ‘transfer matrix method’ (TMM) [8].

Chapter III is a treatment of Bardeen’s picture of microscopic tunneling [1, 3]. Our goal in Chapter
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III is to introduce additional terms in the uncoupled system Hamiltonian, namely transfer Hamil-

tonians, that account for tunneling electrons and can be used to measure currents in Heisenberg

picture [9]. It turns out that the transfer Hamiltonian operator between any two energy levels of the

two ends of the junction is a product of: i) a matrix element that incorporates coupling between

those energy levels, ii) an annihilation operator on side, and, iii) a creation operator on the other

side. Overall, the transfer Hamiltonian operators annihilate particle on one side and create it on

the other side and the process is dependent on the coupling matrix element between the two energy

levels. The concept of probability current density inside a barrier, discussed in Chapter II, becomes

handy for the calculation of these coupling matrix elements. In fact, the coupling matrix elements

are tunneling probability current densities scaled by reduced Planck’s constant, h̄ and has units of

energy [1]. The transmitted probability current density, calculated through TMM (in Chapter II) and

transfer Hamiltonian approach (in Chapter III) are shown to be one and equal [8]. In Chapter IV,

we explained the PAT theory by Tien and Gordon [5]. The derivation of total current and quantum

conductivity coefficients [10] are discussed later in this chapter. For the experimental part, dis-

cussed in Chapter V, we focused intense laser pulses on MIM junction and relayed an image of the

radiating junction on a sensitive detector. To guide us through the experiment, we used the quantum

conductivities, derived from QCT in Chapter IV, to simulate the radiation pattern. The simulation

also helped us to determine the wavelength of incident photons for which the field enhancement is

the most and the resonance region of the metal could be avoided. In Chapter VI, we conclude by

discussing the implications and potential applications of this theory.
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CHAPTER II

PROBABILITY CURRENT DENSITY

The wide-spread use of the word ‘current’ in different contexts is a source of confusion in

the literature of quantum mechanics and one needs to be very careful. Cross-checking the units

is always a good way to physically understand the context of the word ‘current’. For example,

‘current’ may represent a particle flux (with or without charge). In some literature, ‘current’ is the

transition rate of a particle from one state to another. Yet, sometimes, ‘current’ stands for current

density normalized over some volume and as the context of volume changes in different number

of dimensions, the unit of ‘current’ changes accordingly. In many-body formulation of quantum

mechanics, the ‘current’ operator is the rate of change of ‘number’ operator, or, in Heisenberg

picture, ‘current’ operator is the commutation between the system Hamiltonian and the ‘number’

operator. The macroscopic current density is related to the ensemble average of microscopic many-

body ‘current’ operator. All of these ‘current’ concepts will become handy as we develop the theory.

Having this discussion in mind, we will move forward to deduce the current, that will, eventually,

couple to electromagnetic radiation. At first, we will derive equation for microscopic probability

current density operator, j(x). The most important take away from this chapter will be the concept

that, probability current density from energy level l on one side of the junction to energy level r on

the other side, i.e. jlr(x), multiplied by reduced Planck’s constant, h̄, gives us a quantity that has

dimension of energy and forms the energy matrix element, Tlr that couples different energy levels
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on both side of the junction.

Tlr = h̄jlr(x). (2.1)

The physics behind calculating jlr(x), and, in turn, Tlr will be discussed in this chapter. In later

chapters, we will discuss that how this coupling energy, i.e. Tlr, plays an important role in the

coupled system Hamiltonian and when multiplied by (creation and annihilation) operators that con-

tribute to the transfer of electrons, they form the ‘transfer Hamiltonian’ operators.

2.1 Derivation of probability current density, j(x)

Quantum particles, charged or neutral, incorporates a wavefunction, ψ(x) (in 1-D) that holds

all the information regarding the particle, such that ρ(x) = |ψ(x)|2 = ψ(x)†ψ(x) represents the

probability density and the probability of finding the particle in a small volume dV is ρdV . If the

wave function is properly normalized, then the probability of finding the particle throughout all

space should be 1, i.e.
∫∞
−∞ ρdV = 1. Since, probability is a unit-less term that varies from 0 to 1,

the dimension of probability density ρ should be [L]−n, where [L] is the dimension of length and n

is the number of dimension. For 1-D case, the unit of ψ is m−1/2 and accordingly, the unit of ρ is

m−1.

Operators of any sort (i.e. position, momentum, energy etc) may act on the wavefunction and

reproduce ψ(x) as a linear combination of the corresponding operator’s eigenfunctions, weighted

by the respective eigenvalues. For a non-relativistic particle with charge qe, mass m, momentum

operator p̂, position operator x̂, the Hamiltonian is,

Ĥ =
p̂2

2m
+ U(x). (2.2)

Here, U(x) is the potential landscape. In space representation, the momentum operator is, p̂ =

−ih̄∇, where ∇ is a differentiation operator. By using Dirac’s continuity equation that conserves
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probability current, we get

∂

∂t
ρ(x) +∇.j(x) = 0. (2.3)

where, j(x) is the current density (note: definition of Volume changes according to dimension).

Now, differentiation of ρ with respect to time t, is,

∂

∂t
ρ(x) =

∂

∂t
|ψ|2 =

∂

∂t
ψ†.ψ = ψ̇†.ψ + ψ†.ψ̇. (2.4)

The time evolution of a wave function follows the Schrödinger equation i.e.

ih̄ψ̇ = Ĥψ. (2.5)

By putting this in Equation 2.4, we get,

∂

∂t
ρ(x) =

−1

ih̄
[(Ĥ†ψ†)ψ − ψ†(Ĥψ)]. (2.6)

By putting Equation 2.2 and Equation 2.6 in Equation 2.3, we get,

∇.j(x) =
1

ih̄

(ih̄)2

2m
[(∇2ψ†)ψ − ψ†(∇ψ)] = ∇.

{
−ih̄
2m

[ψ†(∇ψ)− (∇ψ†)ψ]

}
,

⇒ j(x) =
−ih̄
2m

[ψ†(∇ψ)− (∇ψ†)ψ] . (2.7)

Equation 2.7 gives us the probability current density which will be used for later development.

2.2 Remarks on probability current density

Some noticeable features of Equation 2.7 will be discussed now.

Feature 1. Classical resemblance:

Notice that, the probability current can be represented in terms of momentum operator p̂. This

relation closely resembles to its classical counterpart,

~j =
1

2m
[ψ†(p̂ψ) + (p̂ψ)†ψ] =

1

m
Re{ψ†(p̂ψ)}. (2.8)
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Classically, current density (more appropriately, particle flux density) in 1-D is, ~jcl = ρcl.~vcl =

ρcl
~pcl
m . The classical analog of the current density matches its quantum representation for wave-

functions with real wavevectors. In Dirac notation, the complete current density operator in 3D can

be written from Equation 2.8 as [11],

~̂j(r) =
1

2m

[
|r〉 〈r| ~̂p+ ~̂p† |r〉 〈r|

]
, (2.9)

where, density of states operator, ρ̂ = |r〉 〈r|.

Feature 2. Boundary matching conditions and probability current in free particle and particle

with decaying wavefunction:

The general solution of Equation 2.2 in 1-D has the following form,

ψ(x) = aeikx + be−ikx, (2.10)

k = ±
(

2m

h̄2 (E − U)

)1/2

, (2.11)

where, the particle is placed on the potential landscape, U = eV (x) +Uint designed by an external

potential eV (x) and any internal potential Uint due to crystal lattice, and interaction with other

particles. When E − U > 0, the wavefunction ψ(x) resembles a free propagating wave. On the

other hand, when E−U < 0 the wavefunction represents an evanescent wave. Let’s find j(x) from

Equation 2.7 for different kinds of potential landscape:

Case 1 U(x) = Constant Function

When E − U > 0, from Equation 2.10,

ψ(x) = aeikx + be−ikx, ψ(x)† = ae−ikx + be+ikx,

d

dx
(ψ(x)) = a(ik)eikx − b(ik)e−ikx,

d

dx
(ψ(x)†) = −a(ik)e−ikx + b(ik)e+ikx.
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(a) (b)

Figure 2.1: Propagating wavefunctions for (a) a step potential and (b) a rectangular potential.

From Equation 2.7

j(x) =
−ih̄
2m

[a2(ik)− ab(ik)ei∗2k + ab(ik)ei∗2k − b2(ik)

+a2(ik)− ab(ik)ei∗2k + ab(ik)ei∗2k − b2(ik)],

j(x) =
h̄k

m
(a2 − b2).

(2.12)

Notice v = p
m = h̄k

m . So, for a freely propagating particle, the probability current density

corresponds to the classical result.

When E − U < 0, ψ = ψ† and so,

j(x) = 0. (2.13)

Therefore, a decaying particle with constant starting amplitude, (at x = 0) i.e. constant a or

b carries no current.

Case 2 U(x) = Step Function

Let’s consider a step potential function [see Figure 2.1(a)],

U(x) =

{
0, for x < x1, Region 1
U0, for x ≥ x1, Region 2
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When U(x) in Equation 2.2 has a discontinuity or jump at some point x1, boundary con-

ditions need to be matched at that point in space. Careful observation of Equation 2.2 and

2.5 brings out the matching condition. Equation 2.5 equates ψ and ∇2ψ. If ψ or dψ
dx has a

discontinuity anywhere, ∇2ψ ends up having δ(x) function and Equation 2.5 is not satisfied.

So, ψ and dψ
dx have to be equal at x1. To find the matching condition, it is convenient to

express wavefunction (from Equation 2.10) of region 1 and region 2 [see Figure 2.1(a)]. in

two-dimensional vector format, i.e.
(
a1

b1

)
and

(
a2

b2

)
. The matching conditions can be

described by a 2 × 2 matrix, R, as follows:

R1(x = x1) =
1

2k1

(
(k1 + k2).e[i(−k1+k2)x] (k1 − k2).e[i(−k1−k2)x]

(k1 − k2).e[i(k1+k2)x] (k1 + k2).e[i(k1−k2)x]

)
, (2.14)

(
a1

b1

)
= R1

(
a2

b2

)
, (2.15)

Because Equation 2.12 and 2.13 of Case 1 covers U(x) > U0 and U(x) < 0, for Case 2 our

region of interest is, 0 < U(x) < U0. Let’s assume, a free particle in this energy band is

incident on the interface from left of region 1 with probability current density jin = h̄k1
m |a1|2.

Since no particle is incident from the right of region 2, b2 = 0 in Equation 2.15. From

Equation 2.14 and 2.15, we can calculate the ψ,ψ†, dψdx ,
dψ†

dx , in region 2 after tunneling as,

ψ2 =
2k1(k1 − iκ2)

(k1)2 + (κ2)2
eik1x1e−κ2(x−x1), ψ2

† =
2k1(k1 + iκ2)

(k1)2 + (κ2)2
e−ik1x1e−κ2(x−x1),

(2.16)

dψ2

dx
=
−2k1κ2(k1 − iκ2)

(k1)2 + (κ2)2
eik1x1e−κ2(x−x1),

dψ2
†

dx
=
−2k1κ2(k1 + iκ2)

(k1)2 + (κ2)2
e−ik1x1e−κ2(x−x1).

(2.17)

By putting the above values in Equation 2.7, we calculate the tunneling probability current

density as, jt = 0. So, for a step function i.e. one potential discontinuity, the current never

tunnels. This changes for a rectangular potential, as we will see next.
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Case 3 U(x) = Rectangular Function

Now, let’s consider a rectangular potential function of w width [see Figure 2.1(b)],

U(x) =


0, for x < x1, Region 1
U0, for x2 ≥ x ≥ x1, Region 2
U(< U0), for x > x2, Region 3

For such potential barrier problems, Equation 2.15 can be written as,

(
a1

b1

)
= R1R2

(
a3

b3

)
, (2.18)

where,R1 is the transfer matrix at left interface (x = x1) [see Equation 2.14],R2 is, similarly,

the transfer matrix at right interface (x = x2). The energy band which offers something new

for Case 3 is, U < U(x) < U0. A particle, with energy that lies in this band and with

probability current density, jin = h̄k1
m |a1|2, is incident on the left edge of the barrier and

it transmits from the right edge with probability current density jtr = h̄k3
m |a3|2. Since no

particle is incident on the right edge of the barrier, b3 = 0. By following the same trick we

used for Case 2, we write,

a1 = (R1R2)11a3,

⇒ a3 =
4k1κ2e

−κ2w

(k1
2 + κ2

2)1/2(k3
2 + κ2

2)1/2
φa1,

(2.19)

where, φ = e[i(π
2
−α)+(k1x1−k3x3)], α = tan−1(κ2/k1) + tan−1(κ2/k3) and κ2 = ik2 =

2m(U0−E)

h̄2

1/2
. At this point, we can figure out the tunneling probability, W ,

W =
jtr
jin

=
16k1k3κ2

2

(k1
2 + κ2

2)(k3
2 + κ2

2)
e−2κ2w. (2.20)

Notice that the tunneling probability is symmetric with respect to region 1 and 3. We can also

determine the tunneling probability current density, j(x) inside the barrier region. At any

point inside the barrier i.e. x1 < x < x2, the wavefunction has the form,

ψ2(x) = a2e
−κ2x + b2e

+κ2x. (2.21)
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By putting ψ in Equation 2.7, we find,

j(x) =
ih̄κ

m
(a2b2

† − b2a2
†). (2.22)

Notice, the difference between Case 2 (step potential) and Case 3 (rectangular potential) is

that, b2 6= 0 for Case 3. So, to have a sustaining tunneling probability current density, one

must introduce at least one barrier like potential with two interfaces.

Case 4 U(x) = Arbitrary Function

Figure 2.2: Transfer matrix method for arbitrary potential barrier [12].

The method we used so far is called transfer matrix method (TMM). We can use it to de-

termine the tunneling probability current density through barrier of any arbitrary shape by

representing the barrier as a collection of very thin rectangular barriers (see Figure 2.2). For

arbitrary potentials, we can also use Wentzel, Kramers, and Brillouin (WKB) approximation.

This is a simple result covered in many texts and papers. For example, tunneling through
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parabolic potential is extensively developed by Simmons [13, 14] using WKB approxima-

tion. Calculation of tunneling probability current density through different cases of potential

barrier using WKB is also discussed in Ghatak’s book [15]. Shooting method is another

technique to calculate the tunneling probability current density [16]. Since the boundary con-

ditions at the potential barrier are utilized to develop these methods, they can be collectively

called ‘matching boundary condition’ method.

2.3 Summary

Tunneling probability current density only exists inside a barrier potential with at least two

boundaries. Inside the barrier (i.e. when, E − U < 0), the particle must have an evanescent

wavefunction both in forward and backward direction. If either of a or b is 0, the probability current

density drops to zero. This sort of current density that exists inside a barrier was used by Bardeen

to couple two metal systems through a barrier [1, 3].
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CHAPTER III

BARDEEN’S PICTURE OF MICROSCOPIC TUNNELING CURRENT

A good grasp over Fermi’s golden rule (discussed in Appendix A) is required to understand

Bardeen’s picture of tunneling. In fact, the picture relates the tunneling probability current density‡,

jlr (or jrl), inside the barrier, to the transition rate, Γlr (or Γrl), calculated from Fermi’s (second)

golden rule. The dependency is shown in Equations 3.1-3.3 (subscripts ‘r’ and ‘l’ can be exchanged

to produce Equations describing tunneling in the opposite direction),

Γlr =
2π

h̄
× | Tlr︸︷︷︸

↓

|2 × ρr(Er), (3.1)

Tlr =− ih̄× jlr︸︷︷︸
↓

, (3.2)

jlr =
−ih̄
2m

∫
dS.(ψl

†∇ψr − ψr∇ψl†). (3.3)

Equation 3.1 is discussed in Appendix A as Fermi’s golden rule, whereas, Equation 3.3 is discussed

in Chapter II as tunneling probability current density inside a barrier. In Section 3.1, we will describe

how Bardeen’s approach to the tunneling problem gives us Equation 3.2 (energy coupling matrix

element, Tlr) that links Equation 3.1 and 3.3. In Section 3.2, we will show that Equation 3.2 is

equivalent to the simple ‘matching boundary condition’ approach [discussed in Section 2.2] taken

by Simmons [13, 14] to solve the same tunneling problem.
‡Subscript definition: ‘r’ = right, ‘1’ = left, ‘lr’ = right to left, ‘rl’ = left to right. The direction of electron transfer

from right to left (subscript ‘lr’) is positive. These are the convention followed in the literature and in this thesis.
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The merits of Bardeen’s approach are:

1. many-body effects can be easily included,

2. the technique naturally lends itself to time-dependent phenomena.

The success of Bardeen’s approach in explaining the results of Giaever’s experiment on supercon-

ductor tunnel junction [17] makes it attractive. Josephson extended this approach for pair tunneling

[18], which brilliantly explained the AC and DC Josephson effect in Shapiro’s experiment [19]. It

is intriguing to describe tunneling in MIM junctions using Bardeen’s approach and, thus, extend its

use in regular metals. In Section 3.3, we will derive the total probability current density, JDC from

transition rate, Γlr.

3.1 Introduction of transfer Hamiltonian, ĤT

The objective of Bardeen’s approach is to introduce a transfer Hamiltonian ĤT to the system

that accounts for tunneling.

Ĥ = Ĥl0 + Ĥr0 + ĤT , (3.4)

where, Ĥ0 = Ĥl0 + Ĥr0 is the uncoupled Hamiltonian of the system, when the metals are at infinite

distance from each other and no electron can tunnel from one to another. So, they are two separate

systems Ĥl0 and Ĥr0 and their Eigenfunctions are ψl(x) and ψr(x) and Eigenvalues are El and

Er respectively. ĤT is the unknown addition to the Hamiltonian that needs to be calculated. The

Eigenfunctions ψl(x) and ψr(x) of uncoupled, unperturbed system will be used as trial function

to, eventually, calculate ĤT of the coupled system. Notice, the usual implementation of time-

dependent perturbation technique involves the introduction of small changes in the Hamiltonian

and, then, determination of the new exact wavefunction. But Bardeen took a different approach. He

introduced an approximate trial wavefunction and solved for the exact transfer Hamiltonian, ĤT .
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This way, the calculated transfer Hamiltonian does not have to be “assumed” as small, it will always

be small. To couple the systems through tunneling, metals are now brought very close to each other.

Figure 3.1: Bardeen’s picture of tunneling in MIM junction.

Now, as they get closer (see Figure 3.1), the decaying tail of electron wavefunction in the barrier

region starts to overlap with the other metal. But ‘overlap’ does not mean that electron wavefunction

is still decaying after it reached the metal system on the other side. Rather, decaying tail of the

wavefunction of one metal system acts as a source of perturbation in the other system. Now, let’s

assume the decaying part of the wavefunction in the uncoupled system are:

ψl(x) = a2le
−κ2x; for x ≥ x1, (3.5)

ψr(x) = b2re
κ2x; for x ≤ x2, (3.6)

where, κ2 is the attenuation constant inside the barrier. The wavefunction envelops of the uncoupled

system are shown in Figure 3.1 with ψl(x) in green and ψr(x) in red. When the coupling is weak,

the uncoupled solution, ψl(x) is still a good solution of the new Hamiltonian, Ĥ for x < x2. For

x > x2, ψl(x) is not a correct solution of Ĥ , but it is taken as an ansatz for this region. Similarly,

ψr(x) is a good solution for x > x1, but for x < x1 it is incorrect but an approximate solution.
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In Figure 3.1, the part of the curves that have the blue shaded regions underneath it, represent the

part of the corresponding wavefunction that is not a solution of the new coupled system. Since,

inside the barrier both ψl(x) and ψr(x) are good solution, we can use Equation 2.7 to calculate the

probability current density at any point inside the barrier (i.e. x1 < xB < x2).

j(xB) = − ih̄

2m

[
(ψl + ψr)

†(
d

dx
)(ψl + ψr)− (ψl + ψr)(

d

dx
)(ψl + ψr)

†
]
,

= − ih̄

2m

(
ψ†r
dψl
dx
− ψl

dψ†r
dx

)
︸ ︷︷ ︸

= jrl

+
ih̄

2m

(
ψ†l
dψr
dx
− ψr

dψ†l
dx

)
︸ ︷︷ ︸

= jlr

. (3.7)

Let’s assume, initially, that the electron is in left-side metal and we want to calculate the effective

transfer Hamiltonian. The new mixed state can be written as,

ψ(t) = c(t)ψle
−iElt/h̄ + d(t)ψre

−iErt/h̄. (3.8)

By substituting ψ(t) in Schödinger’s equation i.e. Ĥψ = ih̄∂ψ∂t , we get,

ih̄ċψle
−iElt/h̄ + cψlEle

−iElt/h̄ + ih̄ḋψre
−iErt/h̄ + dψrEre

−iErt/h̄

= ce−iElt/h̄Ĥψl + de−iErt/h̄Ĥψr. (3.9)

Since the electron is assume to be sitting at left side wavefunction initially, c ≈ 1, d ≈ 0. Now, the

particle must be found either in left or right side metal. Therefore, if Equation 3.8 is normalized,

then,

cc† + dd† = 1. (3.10)

By differentiating Equation 3.10 with respect to time, t,

d

dt
(cc† + dd†) = 0,

⇒ ċ = 0. (3.11)

By putting the values of c, d, ċ in Equation 3.9, we get,

iḋψre
−iErt =

(Ĥ − El)
h̄

ψle
−iElt. (3.12)
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By multiplying both sides by ψr† and then integrating over all volume, we get,

ḋ =
1

ih̄

∫ ∞
−∞

ψr
†(Ĥ − El)ψle−i(El−Er)tdx. (3.13)

Notice, we used a time-dependent perturbation technique which is similar to the technique used

to derive Fermi’s golden rule (discussed in Appendix A) and Equation 3.13 looks very similar to

Equation A.6. Therefore, by using same deduction, we can write,

Trl =

∫ ∞
−∞

ψr
†(Ĥ − El)ψldx. (3.14)

Let’s focus on the limits of the integration of Equation 3.14. For x < x2 the integrand in zero,

because, as already discussed above, ψl(x < x2) is a solution of new system Hamiltonian Ĥ . So,

for any point inside the barrier xB , i.e. x1 < xB < x2.

Trl =

∫ ∞
xB

ψr
†(Ĥ − El)ψldx. (3.15)

Similarly, it can be shown,

Tlr =

∫ xB

−∞
ψl
†(Ĥ − Er)ψrdx. (3.16)

Equation 3.15 can be further developed by adding the term −ψl(Ĥ − Er)ψr†dx to the integrand.

The addition changes nothing because within the integration limit ψr(x) is the correct solution of

Ĥ and the value of the added term is 0. We may write,

Trl =

∫ ∞
xB

[
ψr
†(Ĥ − El)ψl − ψl(Ĥ − Er)ψr†

]
dx. (3.17)

Notice, Trl = −Tlr†. So, |Trl|2 = |Tlr|2 . Integrating Equation 3.17 by parts gives,

Trl = − h̄2

2m

(
ψr
†dψl
dx
− ψl

dψr
†

dx

)
. (3.18)

Similarly,

Tlr = − h̄2

2m

(
ψl
†dψr
dx
− ψr

dψl
†

dx

)
. (3.19)
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From Equation 3.7, 3.18 and 3.19, we can deduce that,

Trl = −ih̄jrl, (3.20)

and,

Tlr = +ih̄jlr. (3.21)

Equation 3.20 and 3.21 are very important as well as very interesting results achieved by Bardeen.

At the beginning of the chapter (see Equation 3.2), we shortly discussed the implications of these

equations. They will be utilized in two ways:

1. Introduction of transfer Hamiltonian, ĤT ,

2. Formulation of total probability current density, JDC .

It is evident from Equation 3.12 (similar deductions are also discussed in Equation A.8) that, the

energy coupling matrix elements, Trl, carry a phase part with it, i.e. e−i(El−Er)t, that represents the

external modulation of the Fermi level of the system. Equation 3.15 and 3.16, with their phase part,

can be presented using many-body formulation [20, 21], as follows:

Ĥ−T =
∑
l,r

T̂rlĉ
†
r ĉl, (3.22)

Ĥ+
T =

∑
l,r

T̂lr ĉ
†
l ĉr, (3.23)

where, ĉ†l and ĉl represents the Fermionic annihilation and creation operators on the left side of the

barrier and ĉ†r and ĉr represents the Fermionic annihilation and creation operators on the right side

barrier. Ĥ−T represents the perturbation that causes the electrons to transfer from left to right, while

Ĥ+
T does the opposite. As we can see, they are the complex conjugate of each other. So, ĤT can be

written as,

ĤT = Ĥ+
T + Ĥ−T =

∑
l,r

[
T̂rlcr

†cl + T̂lrcl
†cr

]
. (3.24)
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Figure 3.2: Comparison of transfer Hamiltonian approach and boundary condition matching ap-
proach for rectangular potential.

This is the transfer Hamiltonian we are looking for. Notice, the indices ‘l’ and ‘r’ used to represent

just the left and right side of the barrier respectively. But in Equation 3.24 they are used to rep-

resent the number of Bloch states in their corresponding sides. So, they have integer values now.

This transfer Hamiltonian approach was successful in describing the linear relationship of tunneling

current with density of state in superconductor junction. But the question remains, whether this

approach can be extended to metals. In Section 3.2 this approach is justified by showing that tun-

neling probability remains the same as determined from ‘matching boundary condition’ approach.

Experimental validation of QCT (to be discussed in Chapter IV) can further consolidate the claim

that the transfer Hamiltonian approach is applicable to regular metals.

3.2 Justification of transfer Hamiltonian approach

Let’s assume that an electron has tunneled from left metal to right metal and is now a free

electron on the right metal [Region 1 to Region 3 of Figure 3.2]. The amplitude of the incident

wavefunction is a1. Since no particle is incident from the right side, b3 = 0. The transmitted

wavefunction amplitude is a3. Putting these in Equation 2.12, the probability current densities on

21



each side of the barrier can be written as,

jin(x) =
h̄k1

m
a1

2, (in Region 1)

jtr(x) =
h̄k3

m
a3

2. (in Region 3)

The tunneling probability is, then, calculated in Equation 2.20 by using jtr(x). Let’s rewrite the

tunneling probability equation here:

W1 =
jtr
jin

=
16k1k3κ2

2

(k1
2 + κ2

2)(k3
2 + κ2

2)
e−2κ2w. (3.25)

To justify the transfer Hamiltonian approach, we will determine the transmitted current Γtr(x) from

left to right metal, again, but this time by using the tunneling probability current density, jrl, i.e. cur-

rent density living inside the barrier (Region 2 of Figure 3.2). We will then show that the tunneling

probability, W2 is the same as W1. Here are the steps to calculate W2:

1. By putting the value of ψl(x) and ψr(x) [from Equation 3.5 and 3.6] in Equation 3.7, we get,

jrl = b2r
†a2l. (3.26)

2. From Equation 3.20, we get,

Trl = − h̄
2κ

m
b2r
†a2l. (3.27)

3. Since ψl(x) and ψr(x) are exact solutions of the unperturbed Hamiltonian H0, ψl(x) is

matched to the wavefunction at the left interface of the barrier. Similarly, ψr(x) is matched

to the wavefunction at the right interface of the barrier. From matching conditions, we put

the values of a2l and b2r, in terms of a1l and a3r respectively. Since the coupling is weak,

a2r ≈ b2l ≈ 0. By taking the square of the perturbation matrix element, i.e. |Trl|2,

|Trl|2 =
h̄4κ2

2

m2

16k1
2k3

2|a1l|2|a3r|2e−2κ2w

(k1
2 + κ2

2)(k3
2 + κ2

2)
. (3.28)
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4. The density of states in k-space is, ρ(k) = 1
2π|a|2 , where a is the normalization amplitude of

the wavefunction. Now, the energy density of states, ρ(E)is,

ρ(E) = ρ(k).
dk

dE
=

1

2π|a|2
1

h̄

m

h̄k
=

m

2πh̄2k|a|2
. (3.29)

From Equation 3.29 it is easy to show that the energy density of final states in the right-side

metal, ρr is,

ρr =
m

2πh̄2k3|a3r|2
. (3.30)

5. Putting the values of |Trl|2 and ρr in Equation 3.21, let’s calculate the tunneling current, Γtr,

Γtr =
h̄κ2

2

m

16k1
2k3|a1l|2e−2κ2w

(k1
2 + κ2

2)(k3
2 + κ2

2)
. (3.31)

6. Finally, the tunneling probability, W2, is

W2 =
Γtr
jin

=
jtr
jin

=
16k1k3κ2

2

(k1
2 + κ2

2)(k3
2 + κ2

2)
e−2κ2w. (3.32)

We can immediately see from Equation 3.25 that, W1 = W2. The tunneling probability

remains the same in ‘matching boundary condition’ approach and ‘transfer Hamiltonian’ ap-

proach. From this we can deduce that,

jtr = Γtr. (3.33)

So, the transmitted current density in output-side (region 3) does not change , no matter what ap-

proach are we taking to deduce it. But, the upside of choosing ‘transfer Hamiltonian’ approach is

that, it gave us the framework to extend the theory for time-dependent phenomena e.g. modula-

tion of the Fermi level on the input side of the junction. This extension is called ‘photon assisted

tunneling’ theory.
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3.3 Total probability current density, JDC

Electrons in a metal have a collective wavefunction with exchange symmetry. Fermionic ex-

change symmetry confirm that no two electron occupy the same state. For simplicity, we are sup-

pressing any forms of interaction between the electrons and the host crystal (i.e. phonon interaction)

and the electrons themselves, (i.e. Coulomb interaction). To describe a collection of interaction-free

particle we need some statistical dependence that quantifies the probability of finding a particle at

certain energy level. At any temperature, T the occupation of the states is determined by the Fermi

distribution:

f(E) =
1

1 + e[(E−EF )/kT ]
, (3.34)

where, Fermi level, EF is an energy level below which the probability of finding particle is 1 when

temperature, T = 0. In second quantization formulation, the probability of finding an empty state

follows this Fermi distribution. So, the probability of a particle occupying a state with energy

between E and E + dE is ρ(E)f(E)dE. On the other hand, the probability of a particle NOT oc-

cupying in a state with energy between E and E + dE is ρ(E) (1− f(E)) dE. We need to include

Fermi distribution f(E) to account for many-body effects for our calculation of probability current

density. If we assume electrons are moving from left metal to right metal, then by following the

steps mentioned in Table 3.1 :
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Table 3.1: Calculation of output probability current density from Region 1 to 3, J−

Region 1 (left) to Region 3 (right)
Input wavefunction amplitude |a1|

Free electron Velocity, v = p/m h̄k1/m

Probability current density per state, j j1 = |a1|2h̄k1/m

Fermi occupancy factor f(El)(1− f(Er))

Energy density of states ρl(El)

Input probability current density, J−in J−in =
∫ −∞
∞ j1ρl(El)f(El)(1− f(Er))dEl

Tunneling probability W31

Output probability current density, J− J− = W31

∫ −∞
∞ j1ρl(El)f(El)(1− f(Er))dEl

Table 3.2: Calculation of output probability current density from Region 3 to 1, J+

Region 3 (right) to Region 1 (left)
Input wavefunction amplitude |b3|

Free electron Velocity, v = p/m h̄k3/m

Probability current density per state, j j3 = |b3|2h̄k3/m

Fermi occupancy factor f(Er)(1− f(El))

Energy density of states ρr(Er)

Input probability current density, J+
in J+

in =
∫ −∞
∞ j3ρr(Er)f(Er)(1− f(El))dEr

Tunneling probability W13

Output probability current density, J+ J+ = W13

∫ −∞
∞ j3ρr(Er)f(Er)(1− f(El))dEr
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From Table 3.1, the transmitted probability current density oozing out of the right barrier inside

Region 3 (see Figure 3.2) is,

J− = W31

∑
l,r

∫ ∞
−∞

j1ρl(El)fl(El)(1− f(Er))dEl,

=
∑
l,r

∫ ∞
−∞

Γtr
−ρl(El)fl(El)(1− f(Er))dEl,

=
∑
l,r

∫ ∞
−∞

[∫ ∞
−∞

dErδ(El − Er − Eω)(
2π

h̄
)|Trl|2ρr(Er)

]
︸ ︷︷ ︸

Γtr−

ρl(El)fl(El)
(
1− fr(Er)

)
dEl,

=
∑
l,r

∫ ∞
−∞

∫ ∞
−∞

[
(
2π

h̄2 )|Trl|2Ar(ωr)Al(ωl)
]
δ(ωl − ωr − ω)fl(h̄ωl)

(
1− fr(h̄ωr)

)
dωldωr,

(3.35)

where, El,r = h̄ωl,r, Eω = h̄ω (photon energy) and Al,r(ωl,r) = h̄ρl,r(El,r), is the single particle

spectral density. Similarly, From Table 3.2, the transmitted probability current density oozing out

of the left barrier inside Region 1 (see Figure 3.2) is,

J+ = W13

∑
l,r

∫ ∞
−∞

j3ρr(Er)fr(Er)(1− f(El))dEr,

=
∑
l,r

∫ ∞
−∞

Γtr
+ρr(Er)fr(Er)(1− f(El))dEr,

=
∑
l,r

∫ ∞
−∞

[∫ ∞
−∞

dElδ(El − Er − Eω)(
2π

h̄
)|Tlr|2ρl(El)

]
︸ ︷︷ ︸

Γtr+

ρr(Er)fr(Er)
(
1− fl(El)

)
dEr,

=
∑
l,r

∫ ∞
−∞

∫ ∞
−∞

[
(
2π

h̄2 )|Tlr|2Ar(ωr)Al(ωl)
]
δ(ωl − ωr − ω)fr(h̄ωr)

(
1− fl(h̄ωl)

)
dωldωr.

(3.36)

From Equation 3.17, we noticed, |Trl|2 = |Tlr|2. Therefore, from Equation 3.35 and 3.36, the total

probability current density can, now, be written as,

JDC(ω) = J− − J+,

=
∑
l,r

∫ ∞
−∞

∫ ∞
−∞

(
2π

h̄2 )|Trl|2Al(ωl)Ar(ωr)δ(ωl − ωr + ω)[(
1− fr(h̄ωr)

)
fl(h̄ωl)−

(
1− fl(h̄ωl)

)
fr(h̄ωr)

]
dωldωr,
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⇒ JDC(ω) =
∑
l,r

∫ ∞
−∞

∫ ∞
−∞

(
2π

h̄2 )|Trl|2Al(ωl)Ar(ωr)δ(ωl − ωr + ω)
(
fl(h̄ωl)− fr(h̄ωr)

)
dωldωr.

(3.36)

This DC current is the total probability current density. This expression for JDC is provided in

Tucker’s paper [6]. Notice, JDC(ω) should not be confused as a Fourier transform of a time domain

function. The ω in JDC(ω) represents the input photon frequency,

ω = qeVphoton. (3.37)

3.4 Summary

The chapter reveals the inner working of the Bardeen’s ‘transfer Hamiltonian’ approach. Bardeen’s

goal was to explain linear dependency of tunneling current, JDC to energy density of states ρ(E)

in superconducting tunnel junction. Fermi’s second golden rule provided a clue towards that linear

dependency. The concept of transfer Hamiltonian and its external voltage dependent phase lays the

foundation of PAT theory. We will develop this in the next chapter.
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CHAPTER IV

GENERALIZED PHOTON ASSISTED TUNNELING THEORY AND QUANTUM
CONDUCTIVITY THEORY

‘Photon assisted tunneling’ theory stand for exactly what the name suggests. The oscillating

field of photons helps electrons in one side of the junction to tunnel on the other side. Tien and

Gordon [5] proposed the photon assisted tunneling theory, which was generalized by the work of

Rogovin, Scalapino [22] and Tucker [23]. To set the stage for PAT theory, let’s discuss Figure

4.1. For two metal systems placed very close to each other, if harmonic perturbation occurs in

Figure 4.1: Harmonic ‘modulation’ vs harmonic ‘perturbation’ in MIM.

one metal system (let’s assume, right system in Figure 4.1) due to tunneling electron wavefunction
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(ψl(x), in green) of another metal (left), electron transition occurs from left to right according to

Fermi’s golden rule. This harmonic perturbation is, in fact, the effect to photon absorption on the

other side (left). The electric field of the photon causes harmonic modulation in its energy level.

Due to this modulation, the decaying wavefunction of this electron inside the barrier modulates.

The attenuation constant, κ inside the barrier is so high that at the right barrier-metal interface the

wavefunction amplitude becomes small enough and the harmonic ‘modulation’ can be consider

as harmonic ‘perturbation’. The treatment of this harmonic perturbation is done in Chapter III

using Bardeen’s ‘transfer Hamiltonian’ approach. The procedure introduced ĤT in the system

Hamiltonian that accounts for tunneling current [see Equation 3.24]. But, the modulation due to

photon absorption on the left side that caused this perturbation on the right side has not been treated

yet. We will start discussing this modulation in Section 4.1.

4.1 Harmonic modulation of Fermi energy

Let’s assume a Voltage, V (t) = VDC + Vωcos(ωt) is introduced in the left side of the barrier,

where VDC is the DC voltage (bias voltage) part and Vωcos(ωt) is the AC voltage (modulation

voltage) part. Let’s assume, qe is the charge of each electron. Now the Hamiltonian becomes,

Ĥ = Ĥ0 + ĤT + qeV (t)N̂l, (4.1)

where, N̂l =
∑

l ĉ
†
l ĉl, is the left side number operator. Similarly, the number operator on the right

side is, N̂r =
∑

r ĉ
†
r ĉr. For the uncoupled system, the only effect of V (t) is the phase modulation

of all the left-side single particle creation-annihilation operator, ĉl(t).

ĉl(t) = ĉl0e
−i qe

h̄

∫ t
0 V (t′)dt′ ,

= ĉl0e
−i qeVDCt

h̄

∫ ∞
−∞

W (ω′)e−iω
′tdω′, (4.2)

where, ĉl0 is the Heisenberg operator in the absence of any applied potential (i.e. V (t) = 0) and

W (ω′) is the Fourier transform of the phase part of the creation operator without the DC voltage,
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VDC , i.e.

W (ω′) =

∫ ∞
−∞

e−i
qe
h̄

∫ t
0 [V (t′)−VDC ]dt′eiω

′t′dt′ =

∫ ∞
−∞

e−i
qe
h̄

∫ t
0 [Vωcos(ωt′)]dt′eiω

′t′dt′. (4.3)

So, for the coupled system, after referring to Equation 3.22 and 4.19, we may write the transfer

Hamiltonian as,

ĤT (t) = eiqe/h̄
∫ t
0 V dt

′
Ĥ+
T + e−iqe/h̄

∫ t
0 V dt

′
Ĥ−T . (4.4)

Now in the Heisenberg picture, the current operator is given by [2, 24],

Ĵ(t) = qeṄr = i
qe
h̄

[
Ĥ(t), N̂r

]
. (4.5)

Only ĤT in Equation 4.1 does not conserve particle number. So, Equation 4.5 becomes,

Ĵ(t) = i
qe
h̄

[
ĤT (t), N̂r

]
,

= i
qe
h̄

[
Ĥ+
T (t), N̂r

]
+ i

qe
h̄

[
Ĥ−T (t), N̂r

]
. (4.6)

Now, we know Fermions follow the anti-commutation relation, i.e.

[
ĉk, ĉ

†
k′

]
= ĉk ĉ

†
k′+ĉ

†
k′ ĉk = δk,k′ = δk′,k, (4.7)

[ĉk, ĉk′ ] =
[
ĉ†k, ĉ

†
k′

]
= 0,

ĉk ĉk′ = −ĉk′ ĉk and ĉ†k ĉ
†
k′ = −ĉ†k′ ĉ

†
k, (4.8)

where, ĉk and ĉ†k′ are the Fermionic creation and annihilation operators. k, k′ are any states of the

system. For our MIM system, the states on left metal are represented with l, l′ and the states on the

right side metal are represented with r, r′. Using anti-commutation relations (Equation 4.7 and 4.8),
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let’s find,
[
Ĥ+
T (t), N̂r

]
and

[
Ĥ−T (t), N̂r

]
,

[
Ĥ−T (t), N̂r

]
=
∑
l,r,r′

Trl

(
ĉ†r ĉlĉ

†
r′ ĉr′ − ĉ

†
r′ ĉr′ ĉ

†
r ĉl

)
,

=
∑
l,r,r′

Trl

(
ĉ†r

(
δl,r′ − ĉ†r′ ĉl

)
ĉr′ − ĉ†r′ ĉr′ ĉ

†
r ĉl

)
,

=
∑
l,r,r′

Trl

(
δl,r′ ĉ

†
r ĉr′ − ĉ

†
r′ ĉ
†
r ĉr′ ĉl − ĉ

†
r′ ĉr′ ĉ

†
r ĉl

)
,

=
∑
l,r,r′

Trl

(
δl,r′ ĉ

†
r ĉr′ − ĉ

†
r′

(
δr,r′ − ĉr′ ĉ†r

)
ĉl − ĉ†r′ ĉr′ ĉ

†
r ĉl

)
,

=
∑
l,r,r′

Trl

(
δl,r′ ĉ

†
r ĉr′ − δr,r′ ĉ

†
r′ ĉl +�����

ĉ†r′ ĉr′ ĉ
†
r ĉl −�����

ĉ†r′ ĉr′ ĉ
†
r ĉl

)
,

=
∑
l,r,r′

Trlδl,r′ ĉ
†
r ĉr′ −

∑
l,r,r′

Trlδr,r′ ĉ
†
r′ ĉl, [Since, δl,r′ = 0]

= −
∑
l,r

Trlĉ
†
r ĉl0e

−i qe
h̄

∫ t
0 V (t′)dt′ , [ĉl = ĉl0e

−i qe
h̄

∫ t
0 V (t′)dt′ ]

= −Ĥ−T e
−i qe

h̄

∫ t
0 V (t′)dt′ . (4.9)

Similarly,

[
Ĥ+
T (t), N̂r

]
=
∑
l,r,r′

Tlr

(
ĉ†l ĉr ĉ

†
r′ ĉr′ − ĉ

†
r′ ĉr′ ĉ

†
l ĉr

)
,

=
∑
l,r,r′

Tlr

(
ĉ†l ĉr ĉ

†
r′ ĉr′ − ĉ

†
r′

(
δr′,l − ĉ†l ĉr′

)
ĉr

)
,

=
∑
l,r,r′

Tlr

(
ĉ†l ĉr ĉ

†
r′ ĉr′ + ĉ†l ĉ

†
r′ ĉr ĉr′ − δr′,lĉ

†
r′ ĉr

)
,

=
∑
l,r,r′

Tlr

(
ĉ†l ĉr ĉ

†
r′ ĉr′ + ĉ†l

(
δr,r′ − ĉr ĉ†r′

)
ĉr′ − δr′,lĉ†r′ ĉr

)
,

=
∑
l,r,r′

Tlr

(
�����
ĉ†l ĉr ĉ

†
r′ ĉr′ −�����

ĉ†l ĉr ĉ
†
r′ ĉr′ + δr,r′ ĉ

†
l ĉr′ − δr′,lĉ

†
r′ ĉr

)
,

=
∑
l,r,r′

Tlrδr,r′ ĉ
†
l ĉr′ −

∑
l,r,r′

Tlrδr′,lĉ
†
r′ ĉr, [Since, δr′,l = 0]

=
∑
l,r,r′

Tlr ĉ
†
l0ĉr′e

i qe
h̄

∫ t
0 V (t′)dt′ , [ĉ†l = ĉ†l0e

i qe
h̄

∫ t
0 V (t′)dt′]

= Ĥ+
T e

i qe
h̄

∫ t
0 V (t′)dt′ . (4.10)
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Therefore, putting Equation 4.9 and 4.10 in Equation 4.6, we get,

Ĵ(t) = i
qe
h̄

(
ei
qe
h̄

∫ t
0 V (t′)dt′ĤT

+
− e−i

qe
h̄

∫ t
0 V (t′)dt′Ĥ−T

)
,

= −Ĵ+(t) + Ĵ−(t), (4.11)

where,

Ĵ±(t) = ∓iqe
h̄
Ĥ±T e

±i qe
h̄

∫ t
0 V (t′)dt′ ,

= Ĵ±0 (t)eiφt
∫ ∞
−∞

dωW (ω)e−iωt, (4.12)

where, again,

Ĵ±0 (t) = ±iqe
h̄
Ĥ±T , (4.13)

φ =
qeVDC
h̄

, (4.14)

and W (ω) is given in Equation 4.3.

Now, Ĵ(t) can be expanded in Taylor series (up to first order term), i.e.

Ĵ (1)(t) = Ĵ (0)(t) +

∫ t

0

d

dt′
Ĵ (0)(t)dt′ + ... ,

= Ĵ (0)(t) +
i

h̄

∫ t

0
[ĤT (t′), Ĵ (0)(t)]θ(t− t′)dt′ + ... , [Heisenberg picture] (4.15)

where θ(t− t′) is Heaviside function that enforces the fact that, the coupled system was in thermal

equilibrium and ĤT was adiabatically turned on at some point. According to ‘fluctuation dissipation

theorem’, at thermal equilibrium, voltage across an electrical resistor would statistically show a

value with mean 0. But the measurement will have a certain standard deviation. This voltage is

called thermal noise or Johnson noise. The process can be assumed as a weak sense stationary

(WSS) process, i.e. their auto-correlation between different time-step, only depends on the time

difference. J(t) in an MIM can be thought of as a WSS process, in a similar sense. So, the average

of the zeroth order term of Equation 4.15 will give us a zero value, i.e.
〈
Ĵ (0)(t)

〉
= 0. Therefore,
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average current is the average of the first order term in Equation 4.15. We may write,

J(t) =
〈
Ĵ(t)

〉
=
〈
Ĵ (1)(t)

〉
=
i

h̄

∫ t

0

〈
[ĤT (t′), Ĵ (0)(t)]

〉
θ(t− t′)dt′. (4.16)

Now let’s calculate,
〈

[ĤT (t′), Ĵ (0)(t)]
〉

by using Equation 4.11.

〈 [
ĤT (t′), Ĵ (0)(t)

] 〉
= i

qe
h̄

〈[
Ĥ+
T (t′) + Ĥ−T (t′), Ĥ+

T (t)− Ĥ−T (t)
]〉
,

= i
qe
h̄

〈[
Ĥ+
T (t′), Ĥ+

T (t)
]
−
[
Ĥ−T (t′), Ĥ−T (t)

]
+
[
Ĥ−T (t′), Ĥ+

T (t)
]
−
[
Ĥ+
T (t′), Ĥ−T (t)

]︸ ︷︷ ︸
Quasi-paricle terms

〉
. (4.17)

We are only interested in quasi-particle terms. So,

〈 [
ĤT (t′), Ĵ (0)(t)

] 〉
qp

= i
qe
h̄

〈[
Ĥ−T (t′), Ĥ+

T (t)
]
−
[
Ĥ+
T (t′), Ĥ−T (t)

]〉
,

=
h̄

qe

〈[
i
qe
h̄
Ĥ−T (t′), i

qe
h̄
Ĥ+
T (t)

]
−
[
i
qe
h̄
Ĥ+
T (t′), i

qe
h̄
Ĥ−T (t)

]〉
,

= −2h̄

qe
Re
{〈[

Ĵ−(t′), Ĵ+(t)
]〉}

. (4.18)

By putting this value in Equation 4.16, we get,

J(t) =
〈
Ĵ(t)

〉
= −2i

qe
Re

{∫ ∞
−∞

θ(t− t′)
〈[
Ĵ−(t′), Ĵ+(t)

]〉
dt′
}
. (4.19)

From Equation 4.19, 4.12 and 4.14, we get,

J(t) =
〈
Ĵ(t)

〉
=
−2i

qe
Re

{∫ ∞
−∞

dt′θ(t− t′)
〈[
Ĵ−0 (t′), Ĵ+

0 (t)
]〉
eiφ(t−t′)∫ ∞

−∞

∫ ∞
−∞

dω′dω′′W (ω′)W ∗(ω′′)e−i(ω
′−ω′′)t

}
.

(4.20)

This is the average current passing through MIM [6].

4.2 Self coupling and higher harmonic generation

In Equation 4.20, when the input across the MIM junction is a DC voltage, i.e. V (t) = VDC ,

from Equation 4.3, we can infer W (ω′) = δ(ω′). Equation 4.20 then becomes,

〈
ĴDC(t)

〉
=

2

qe
Im

{∫ ∞
−∞
−iθ(t− t′)

〈[
Ĵ−0 (t′), Ĵ+

0 (t)
]〉︸ ︷︷ ︸

χ(t− t′)

}
. (4.21)
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The value of this
〈
ĴDC(t)

〉
is derived in Equation 3.36. So,

〈
ĴDC(t)

〉
= JDC(qeVDC/h̄). The

term inside the integrand of Equation 4.21 is noted in the literature as χ(t − t′) [6]. χ(t − t′)

is a current correlation function, which is a parameter of WSS process and depends on the time

difference only. It can be derived from single particle Green’s function from many-body point of

view [24].

On the other hand, when V (t) has a frequency component, ω in it, so,

V (t) = VDC + Vωcos(ωt). (4.22)

Equation 4.3 produces Bessel function of different order, n, i.e.

W (ω′) =

∫ ∞
−∞

e−i
qe
h̄

∫ t
0 Vωcos(ωt

′)dt′eiω
′t′dt′,

=

∫ ∞
−∞

e−i
qeVω
h̄ω

sin(ωt′)dt′eiω
′t′dt′,

=

∫ ∞
−∞

∞∑
n=−∞

Jn(α)einωteiω
′t′dt′,

=
∞∑

n=−∞
Jn(α)δ(ω′ − nω). (4.23)

where Jn is a nth order Bessel function, α = qeVω
h̄ω , Vω = Eωw, w is the width of the MIM junction

and Eω is the local electric field inside junction. From Equation 4.20 we may write,

J(t) =Re

{∫ ∞
−∞

∫ ∞
−∞

dω′dω′′W (ω′)W ∗(ω′′)e−i(ω
′−ω′′)tJDC(ω′ + qeVDC/h̄)

}
,

=Re

{ ∞∑
n,m=−∞

∫ ∞
−∞

∫ ∞
−∞

dω′dω′′Jn(α)δ(ω′ − nω)

Jn+m
∗(α)δ(ω′′ − (n+m)ω)e−i(ω

′−ω′′)tJDC(ω′ + qeVDC/h̄)

}
,

=Re

{ ∞∑
n,m=−∞

Jn(α)Jn+m(α)eimωtJDC(nω + qeVDC/h̄)

}
, (4.24)

=

∞∑
m=0

(
Jmω

2
e−imωt +

Jmω
2
eimωt

)
. (4.25)
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From Equation 4.24 the AC current density, Jmω with frequency at mth harmonic of the fundamen-

tal modulation frequency, ω, can be written as,

Jmω =

+∞∑
n=−∞

Jn(α)[Jn+m(α) + Jn-m(α)]JDC(nω +
qeVDC
h̄

). (4.26)

We will expand the Bessel function only for n = −1, 0, 1. From Equation 4.26, we will gradually

generate values for, m = 0, 1, 2, 3 by Haus [10].

For m = 0, Equation 4.26 may be written as,

Jrect(ω, VDC) = [J0]2JDC(
qeVDC
h̄

) + [J1]2
(
JDC(ω +

qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
,

=

(
1− α2

2

)
JDC(

qeVDC
h̄

) +
α2

4

(
JDC(ω +

qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
.

(4.27)

For m = 1, Equation 4.26 may be written as,

Jω(ω, VDC) =J1 (J0 + J2)

(
JDC(ω +

qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
+

J1J2

(
JDC(2ω +

qeVDC
h̄

) + JDC(−2ω +
qeVDC
h̄

)

)
,

≈α
2

(
JDC(ω +

qeVDC
h̄

)− JDC(−ω +
qeVDC
h̄

)

)
+
α3

16

(
2JDC(2ω +

qeVDC
h̄

)− 2JDC(−2ω +
qeVDC
h̄

)

− JDC(ω +
qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
. (4.28)

For m = 2, Equation 4.26 may be written as,

J2ω(ω, VDC) =2J0J2JDC(
qeVDC
h̄

) + J1 (J3 − J1)

(
JDC(ω +

qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
+ J2 (J4 + J0)

(
JDC(2ω +

qeVDC
h̄

) + JDC(−2ω +
qeVDC
h̄

)

)
,

≈α
2

4
JDC(

qeVDC
h̄

)− α2

4

(
JDC(ω +

qeVDC
h̄

) + JDC(−ω +
qeVDC
h̄

)

)
+
α2

8

(
JDC(2ω +

qeVDC
h̄

) + JDC(−2ω +
qeVDC
h̄

)

)
. (4.29)
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For m = 3, Equation 4.26 may be written as,

J3ω(ω, VDC) =J1 (J4 − J2)

(
JDC(ω +

qeVDC
h̄

)− JDC(−ω +
qeVDC
h̄

)

)
+ J2 (J5 − J1)

(
JDC(2ω +

qeVDC
h̄

)− JDC(−2ω +
qeVDC
h̄

)

)
+ J3 (J6 − J0)

(
JDC(3ω +

qeVDC
h̄

)− JDC(−3ω +
qeVDC
h̄

)

)
,

=
α3

16

(
JDC(ω +

qeVDC
h̄

)− JDC(−ω +
qeVDC
h̄

)

)
− α3

16

(
JDC(2ω +

qeVDC
h̄

)− JDC(−2ω +
qeVDC
h̄

)

)
− α3
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(
JDC(3ω +

qeVDC
h̄

)− JDC(−3ω +
qeVDC
h̄

)

)
. (4.30)

Since we have calculated Jmω, we can move on to QCT to further develop the theory.

4.3 Quantum conductivity from PAT theory

In Equation 4.26, notice that, JDC is now a function of nω. That means, multiple photons can

be absorbed or re-emitted while the Fermi levels are modulated by the field of the photon itself.

On the other hand, this phenomenon is inducing current density of higher harmonics. Naturally,

it is intriguing to make the connection between them through the classical nonlinear constitutive

relationship. The generalized classical constitutive relation between is as follows,

Jmω =


(∑

n=0,1,2,.. σ
(2n)
mω (JDC).|Eω|2n

)
Eω

m, for even m(∑
n=0,1,2,.. σ

(2n+1)
mω (JDC).|Eω|2n

)
Eω

m, for odd m
(4.31)

where, number of photons involved, Nphoton is,

Nphoton =

{
2n, for even m
2n+ 1, for odd m

(4.32)

Equations 4.27-4.30 are already in the format presented in Equation 4.31, once it is realized that,

for a tunneling barrier of width = w, α =
qew

h̄ω︸︷︷︸
constant

×Eω. All the JDC in Equation 4.27-4.30 can be

put into a single parameter, σ(Nphoton)
mω as shown on Equation 4.31. These σmω parameters are the
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so-called ‘quantum conductivity coefficients’.

For m = 0, 1, 2, 3 the generalized constitutive relations of Equation 4.31 reduce to the following:

Jrect =Jdc(qeVDC) + σ0
(2)|Eω|2, (4.33)

Jω =σω
(1)Eω + σω

(3)|Eω|2Eω, (4.34)

J2ω =σ2ωEω
2, (4.35)

J3ω =σ3ωEω
3. (4.36)

By using Equations 4.27-4.30 and Equations 4.33-4.36, we can derive all the conductivity co-

efficients arising due to tunneling in MIM junction,

σ0
(2) =

( qew
2h̄ω

)2
[JDC(h̄ω + qeVDC) + JDC(−h̄ω + qeVDC)− 2JDC(qeVDC)] , (4.37)

σω
(1) =

( qew
2h̄ω

)
[JDC(h̄ω + qeVDC)− JDC(−h̄ω + qeVDC)] , (4.38)

σω
(3) =

( qew
2h̄ω

)3 [
JDC(2h̄ω + qeVDC)− JDC(−2h̄ω + qeVDC)

− JDC(h̄ω + qeVDC) + JDC(−h̄ω + qeVDC)
]
, (4.39)

σ2ω =
( qew

2h̄ω

)2 [1
2
JDC(qeVDC)− (JDC(h̄ω + qeVDC) + JDC(−h̄ω + qeVDC))

+
1

2
(JDC(2h̄ω + qeVDC) + JDC(−2h̄ω + qeVDC))

]
, (4.40)

σ3ω =
1

2

( qew
2h̄ω

)3 [
(JDC(h̄ω + qeVDC)− JDC(−h̄ω + qeVDC))

− (JDC(2h̄ω + qeVDC)− JDC(−2h̄ω + qeVDC))

+
1

3
(JDC(3h̄ω + qeVDC)− JDC(−3h̄ω + qeVDC))

]
. (4.41)

Using quantum conductivity coefficient, ‘σ’s, we have essentially coupled the Eω to Jmω. The Jmω

will, in turn, radiate Emω. Calculation of ‘σ’s for different geometry is done by Haus [10, 25]. This

coefficient was used to simulate the radiation field of the MIM junction. In Chapter V we will try to

experimentally detect this radiation.
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4.4 Summary

According to PAT theory, the effect of incident photons on MIM is two-fold. First, they change

(or assist) the DC tunneling current, JDC . Second, there electric field modulates the Fermi level

generating higher harmonics of tunneling current, Jmω, m = 1, 2, 3 etc. This tunneling current

should couple to a radiative field according to Maxwell’s equation. This coupling of Eω and Jmω

is discussed by QCT. Detection of this higher-order harmonics would validate the existence of such

higher-order tunneling current. In this experiment, we are trying to detect this radiation.
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CHAPTER V

EXPERIMENTS

Our inspiration for this experiment came from the analysis of QCT and its prediction of non-

linear EM radiation. As discussed in Section 4.3, the quantum conductivity terms are functions

of E-field of the fundamental photon frequency (FF), Eω and produce nonlinear tunneling current,

Jmω in the MIM system. The constitutive relation between Emω and Jmω causes the nonlinear

tunneling currents to further couple to EM fields and radiate EM waves at harmonic frequencies.

Such radiation could be very short-lived due to the geometry and material properties of MIM. If not

designed properly, they are absorbed before reaching at the far field. Through our experiments, we

intended to detect second harmonic (SH) and third harmonic (TH) signals at the far field generated

on MIM samples. Since far field detection was expected to be hard, the input photon frequency (FF)

and the geometry and material of MIM were chosen accordingly. The work-flow to experimentally

detect SH and TH from MIM at the far field consists of the following steps:

• Simulate the field enhancement at pump (or, input) frequency inside the insulator region of

the MIM geometry of our choice i.e. Au nanospheres - plane layer ofAl2O3 of subnanometer

thickness - plane Au surface.

• Use the enhanced pump field amplitude data to calculate the quantum conductivity coeffi-

cients for SH and TH frequencies by using Equation 4.34-4.35.
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• Introduce this quantum conductivities as insulator parameter to simulate the tunneling-induced

SH and TH signals near the MIM interface and, also, at the far field.

• Experimentally detect the SH and TH signal from a physical MIM sample at far field and

compare them with simulated results .

The development of simulation models of MIM and experiments on physical MIM were simulta-

neous and their evolution influenced each other. We sought guidance from the simulation results

from time to time. But, For this thesis, we focused mostly on the experimental setup and attempted

to physically measure SH and TH signals from MIM samples at the far field. The experimental

procedure consists of stages shown in Figure 5.1:

Figure 5.1: Experimental work flow diagram

5.1 Initial simulation

As our first step, we assumed a 2-D geometry consisting of a circle next to a line shown in Figure

5.2(a). In 3-D, the geometry is essentially an infinite metal nano-wire sitting on a thin insulating
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oxide layer that was deposited on a metal surface. This is the simplest geometry for which the metal

layer can interact with FF photons and, at the same time, the SH and TH coupled to the tunneling

current inside the insulator can radiate into free space and become accessible for detection. For

our simulation, we chose Au − Al2O3 − Au as our metal-insulator-metal combinations. But they

could have been a combination of any other metal and insulator. We intend to use other relevant

oxides (TiO2, Ta2O5, HfO2 etc.) for simulation in future. Simulation was performed using a

finite element method (FEM) software called COMSOL. The above-stated geometry of MIM (Au−

Al2O3 − Au) was studied for different radii and gap sizes. It was noted that a field enhancement

occurs for all wavelength. The field enhancement inside the gap between the cylinder and the

plane is responsible for the quantum tunneling effect. Figure 5.3(b) shows that wavelength around

1500nm gave us maximum (around 900×) field enhancement†. But we decided to use Ti:Sapphire

laser (tuned at 810 nm) as our pump because it was available to us and the intensity was measured

to be high enough for nonlinear effects.

(a) (b)

Figure 5.2: (a) Cross-section of 2D simulation geometry, (b) meshing of simulation geometry.

†The simulation was done by Dr. Domenico de Ceglia and shared through private communication.
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(a) (b)

Figure 5.3: Field enhancement in simulation geometry: (a) color-map representation of normalized
electric field between the insulator gap, (b) field enhancement chart for different gap size, cross-
section radii and input pump wavelength. The darker the green the larger the field enhancement.

5.2 System component characterization:

To better organize our discussion on the system components, the experimental setup is divided

into five major blocks: input, input path, sample, output path, detector. Figure 5.4 shows the

block diagram of the setup and its components in tandem. We will characterize those components

of each block and discuss their positioning and alignment procedures.

5.2.1 Input

The input beam (pump) is a tunable Ti:Sapphire laser tuned at 810 nm. From its spectrum, the

-3dB bandwidth was measured to be 10 nm. The temporal pulse width as well as the size, shape and

intensity of the beam at the focal length of the first lens L1 was measured and cross-checked with

the laser manual.
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Figure 5.4: Block diagram of the experimental setup.

Pulse width characterization

The pulse width of our laser was characterized using an autocorrelation method. The pulse

width is inferred to be 78fs †, which is very close to the value (tp = 80fs) given in the manual.

The repetition rate of the pulse is fp = 80MHz.

Spot size characterization

The spot size of the beam after focused by L1 is measured by ‘knife-edge’ experiment. Figure

5.5 shows the sketch and the actual experimental setup. Since the beam shape is elliptical, the

experiment was done along both transverse directions (i.e. X axis and Y axis).

Step 1: S curve fitting of intensity, I(Z)

First, the intensity data were acquired by translating the knife edge along the X axis and gradually

blocking the beam. Once the beam is completely blocked, the knife edge is translated along the Y

axis, and the beam was gradually unblocked (see Figure 5.6). The intensity was fitted to S curve or

†The measurement was done and shared by Dr. Andy Chong
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(a) (b)

Figure 5.5: Experimental setup of knife-edge experiment: (a) sketch of the experimental setup and
(b) actual setup.

1± erf() , where erf() is an error function. A sample of fitted S curve near the focal length of L1

(beam waist) is given in Figure 5.7. The erf() equations used for the fitting is as follows:

Imeasured(X,Z) =
P1

2

(
1− erf(

√
2(X − P2)

P3
)

)
, (5.1)

Imeasured(Y,Z) =
P1

2

(
1 + erf(

√
2(Y − P2)

P3
)

)
, (5.2)

where, P1, P2 and P3 are the fit parameters. P1 is the maximum intensity, P2 is the starting position

of the knife edge relative to the beam. P3 corresponds to the 1/e2 radius of the Gaussian beam.

Since translation along X axis blocks the beam, the intensity data along X axis is fitted to Equation

5.1 (i.e. 1−erf()). Meanwhile, the translation along Y axis releases the beam, so the intensity data

along Y axis is fitted to Equation 5.2 (i.e. 1 + erf()). This process of data acquisition and curve

fitting was repeated for 21 different positions of the knife edge along Z axis. The fitted S curve for

all Z positions are given in Appendix B. The number of data samples(Nsample) inside the beam

width at each Z position was picked up from the curve parameter P3.
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(a) (b)

Figure 5.6: Blocking and releasing of beam for knife-edge experiment: (a) Translation of the knife
edge along the X axis and blockage of the beam, (b) translation of the knife edge along the Y axis
and release of the beam.

For each position along the Z axis the velocities (Vk) of the knife edge (along both X and Y

axis) were determined by noting its start and end position and time required for the knife edge to go

from the start position to the end position. Table 5.1 shows the velocity values measured on different

Z positions. The velocity values, divided by the sampling rate (fs = 10Hz) i.e. Vk/fs, provided us

the sample spacing, ls(µm/sample), i.e. the distance (µm) traveled by the knife edge per sample

of data. Sample spacing, when multiplied by number of sample in the beam waist i.e. ls×Nsample,

gives us the measurement of beam width, w.

Precautions: The spatial and temporal resolution of the stage moving the knife edge has to be

fine enough to pick up the steep intensity change even at the focal position where the spot size is

tiny. Care was taken to confirm that the sample spacing is small enough (by reducing the velocity of

the knife edge, and by keeping the sampling frequency large) to have multiple samples even at the

focal position where the spot size is the smallest. This helped us to resolve even the small focal spot.

The stage used to move the knife edge was a Newfocus Picometer 8752 which has 30nm spatial
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(a) (b)

Figure 5.7: S curve fitting of I(Z): (a) 1 − erf() curve fit to intensity data along X axis and (b)
1 + erf() curve fit to intensity data along Y axis.

resolution. On the other hand, the time constant of the detection system was small enough (100ms)

to confirm that the steep change in intensity near the focal spot is not lost. Figure 5.7 shows the

result of such careful measurement near focal spot. The number of samples across the region where

there is a steep change of intensity is around 50.

Step 2: Quadrature curve fitting of beam width squared, w2(Z)

A quadratic equation that is used to fit the square of beam width i.e. w2(Z) for different values of

Z. The equation of interest is as follows:

w2(Z) = w0
2

(
1 +

(Z − z0)

zR2

)
. (5.3)

Here, w0 is the spot size, z0 is the relative position of the beam waist along Z axis, zR is the

Rayleigh range. We fit w2(Z) to the following parameterized quadratic equation (Equation 5.4) and

determined the fit parameters P1, P2 and P3.

w2(Z) = P1.Z
2 + P2.Z + P3. (5.4)
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Table 5.1: Velocity measurement of knife edge along X and Y axis.

Figure 5.8: Quadrature curve fitting of w2(Z).
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Table 5.2: Calculated fit parameters, P1, P2 and P3.

Then by comparing the coefficients of Equation 5.3 and 5.4, we calculate the beam parameters

of our interest, i.e.

w0 =

√
P3 −

P2
2

4.P1
, (5.5)

, z0 = − P2

2.P1
, (5.6)

zR =

√
P3

P1
− P2

2

4.P1
2 . (5.7)

Equation 5.5, 5.6 and 5.7 is used to characterize the beam (see Table 5.3)

Table 5.3: Characteristic parameters of the FF beam.

Remarks: The beam profile is elliptical.

wx,input ≈ wx.(z = 35) = 0.643mm,

wy,input ≈ wy.(z = 35) = 0.797mm.

As expected from elliptical beam profiles (since, wy,input 6= wx,input), the beam waist positions

and sizes on vertical and horizontal planes are different.
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Beam power characterization

The beam power was measured as follows:
Average power, Pavg,FF = 370mW

Peak power per pulse, Ppeak,FF =
Pavg,FF
tp×fp = 370[mW ]

80[fs]×80[MHz] = 57.812kW

Peak intensity at the focal spot of L1, Ipeak,FF =
Ppeak,FF
Aspot

= 57.812[kW ]
(π/2)×25.4861[µm]×23.4510[µm] = 6.1574GW/cm2

5.2.2 Input path

The input path consists of the following:

Alignment lasers, AL

Once the FF beam is completely characterized, we started designing the input path by choosing

alignment lasers. Since HeNe (632.8nm) is visible to naked eye, we used this wavelength to fix

the optic axis of the system and the height of all optical components with respect to the optical

table. Once prisms (dispersive elements) are introduced on the output path (see 5.2.4), HeNe is no

longer useful. To align for SH (405nm), we put a blue laser of same wavelength as a guidance.

Careful manipulation of prism position and incident angle (discussed in Section 5.3.3) spares us

from the need of another alignment laser at TH (which was not available to us, anyway). All the

alignment lasers (FF, HeNe, SH) were made collinear to each other at the input path. A long pass

filter (FELH0650) was put in front of the FF laser output aperture to ensure that SH or TH released

from the laser cavity (if any) couldn’t pollute the signal generated on the sample.

Half waveplate, HWP

From Fresnel’s equation of transmission and reflection, we see that the phase of s-polarized

light must be zero at the metal surface. So, s-polarization can not interact with metal surface. Only

p-polarization with respect to metal surface can generate nonlinear effects on the metal surface. So,
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we have introduced a half waveplate in the input path to make the FF beam p-polarized with respect

to metal surface.

Input objective lens, L1

Since our input and output arms are separate and the sample is positioned at a relatively large

angle (≈ 70◦), we required enough room to focus the light and collect it at the specular angle.

So, we cannot use lenses with high NA or small WD as our L1. Since we intended to achieve

a micrometer-ranged spot size, an aspheric lens with minimum spherical aberration was required.

We chose A260TM-B with AR coating at FF wavelength as our L1; EFL(810nm) = 15.31mm,

NAeff ≈ 1[mm]
15.31[mm] = 0.0653. The spot size at the focal length of L1 is measured by knife-edge

experiment, discussed in Section 5.2.1. The results are given in Table 5.3.

5.2.3 Sample

The plain Au surface that we used has a surface roughness of following nature:

Figure 5.9: The rough surface of a Au sample.

Since MIMs require a subnanometer-ranged thickness for tunneling to take place, we chose the

ALD technique to deposit a film of Al2O3 on the Au surface. The ALD technique uses precursors

like tri-methyl-aluminum (TMA) to depositAl2O3 onAu [26, 27]. Samples of different numbers of
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ALD cycles, thus, different ALD thicknesses, were produced†. After performing the SH/TH exper-

iments on MI samples, they were treated with UV and O3 to decontaminate the surface and make

it hydrophilic again. To produce MIM samples we spin coated Au nanoparticle solution (10nm)

on the MI samples. Then we imaged the surface through SEM to qualitatively get a idea of particle

distribution. Here is what we saw through SEM: The particle density is about 20particles/µm2.

(a) (b)

Figure 5.10: SEM images of Au NP on MI samples

Figure 5.11 illustrates a single MIM geometry on the sample with a p polarized input field.

Figure 5.11: Illustration of the MIM structure: nanosphere(Au)-nano-layer of Oxide(Al2O3)- Au
surface.

†The ALD was performed in Washington University in St. Louis by Zhengning Gao
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5.2.4 Output path

The output path collects the signal beam and, then, collimates, filters and refocuses it on the

detector. Next, we discuss each element of the output arm.

Output objective lens, L2 and tube lens, L3

If the prisms and filters are put aside, the output path, at its simplest level, is a combination of

two lens systems that images the metal surface on the detector. Output objective lens (L2) collimates

the signal and tube lens (L3) refocuses the signal onto the detector. The following issues were

considered while choosing L2 and L3:

• Surface conic constant: Since we are only interested in the power of our signal, the imaging

need not be perfect. Aberrations are acceptable. So aspheric lenses were not required.

• Lens material and AR coating: Since our signal can be of two wavelengths i.e. SH (405

nm) and TH (270 nm), the lenses need to be achromatic and the focal length shift should be

as small as possible. Also, the material of the lenses and the AR coating should be such that

it allows both SH and TH transmission. If it can block FF, that will be considered as added

benefit. UV enhanced fused silica provides all the required material characteristics.

• Numerical aperture: The effective NA of L1 is approximately 0.0653. The NA of L2 must

match the NA of L1.

• Diameter: The diameter of the lenses must be compatible to filter diameters and prism di-

mensions. We chose 25 mm to be our lens diameter. Since the NA has to be 0.065, the focal

length of L2 turned out to be 150mm. Additionally, the lenses need to be AR coated for SH

and TH.
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• System magnification: The L2-L3 system has to be a demagnifying system. This way, any

inevitable, but slight, defocus, decenter, tilt of the sample will be demagnified and the system

tolerance will significantly increase. We chose the focal length of L3 to be 100mm.

We chose L2 and L3 to be ACA254-150-UV and ACA254-100-UV respectively. Those lenses

matches all the requirements stated above. We have done a ZEMAX simulation to measure the

optimum object distance (from sample to L2) while keeping the detector at the focal plane of L3.

The object distance turned out to be ≈ 146mm. The results are shown in Figure 5.12 to 5.14. The

detector size is conveniently larger than the spot size. Also, on axis chromatic aberration is very

small.

Figure 5.12: Ray diagram of output path (without dispersive elements) consisting of L2 and L3.
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Figure 5.13: Spot diagram of output path (without dispersive elements) consisting of L2 and L3.

Figure 5.14: The OPD fan diagram at the detector plane. The fan suggests slight defocus of off-axis
points of image plane.
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Frequency filtering, SPF

The filters used to isolate the SH and TH were FESH0450 (Thorlabs) and FF01-276 (Semrock)

respectively. They were put before L3. So, they filtered collimated light and signal’s angle of inci-

dence is small. This makes the filtering more efficient. The filters’ transmission (normalized to 1) is

given in Table 5.4 We could use a couple of FESH0450 filters to extract the SH signal directly at the

Table 5.4: Transmittance data (normalized to 1) of filters for FF, SH and TH.

specular direction from the samples while dropping down the FF power by (≈ −120dB) and sub-

merging it below the noise level (3.35fW ) of the detector-lock-in combination. But using multiple

FF01-276 to separate TH from the FF and SH would hurt the TH signal (since the transmittance at

TH is only 35%). So, we had to introduce prisms to spatially separate the signals from each other.

Spatial filtering, P1/P2

Since we could not find a perfect filter for TH that completely kills the FF, we had to use prisms

to further separate the FF from the signals. In fact, putting one prism was not enough. At least two

prisms were required to remove FF adequately. The procedure of extracting the SH and TH without

widely shifting the detector, requires a careful alignment of the prisms, which will be discussed in

Section 5.3.3. Following considerations were crucial during the selection of prism material, incident

angle on prism and prism frequency resolution:

55



• Prism material:

Since our output signal consists of wavelength in the UV range (TH = 270nm), we used UV

graded synthetic fused silica (UVGSFS) that transmits both of our signals (Figure 5.15).

Figure 5.15: Transmittance of UV grade synthetic fused silica.†

The refractive index of the UVGSFS can be found using the dispersion relation given in

Equation 5.8 [28].

n2(λ)− 1 =
0.6961663λ2

λ2 − (0.0684043)2
+

0.4079426λ2

λ2 − (0.1162414)2
+

0.8974794λ2

λ2 − (9.896161)2
. (5.8)

We chose two UVGSFS prisms with apex angles 30◦ (P1) and 45◦ (P2).

• Incident angle on prism:

The choice of incident angle is bounded by three constraints. A MATLAB code was written

utilizing Equation 5.8 to 5.15 to generate a range of incident angles that could be allowed in

the system. These constraints influenced the choice of incident angle of the beam.

†From manufacturer’s website: http://www.slac.stanford.edu/grp/eb/dircrd/melles-griot-fused-silica.pdf
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(a) (b)

Figure 5.16: Prism constraints: (a) Fresnel transmittance constraint and the angle of separation
constraint bound the minimum incident angle and (b) beam width constraint bounds the maximum
incident angle.

– Constraint 1 : Angle of separation with respect to optic axis (HeNe)

The ‘angle of deviation’, δ in Figure 5.16(a), quantifies the deviation of signal at a cer-

tain wavelength from the input beam, whereas, the ‘angle of separation’ is the difference

of angle of deviation between the signal at that certain wavelength and the optic axis

(HeNe). The angle of separation gives the angular separation of different wavelengths

(with respect to optic axis) after the prism. Lower angular separation would require a

large optical path to achieve enough spatial separation between the SH/TH and the FF.

Large optical path would lower the throughput of the system. On the other hand, large

optical path would lower the field of view, reducing the noise. The angle of separation

calculated for incident angles from 0◦ to 90◦ for both P1 and P2 is given in Figure 5.17.

The angle of separation gives the lower bound of the incident angle. Any incident angle

smaller than the lower bound results in total internal reflection on surface 2 of the prism

(also evident from Figure 5.19 and 5.20, discussed in constraint 3) and, thus, omitted.
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(a) (b)

Figure 5.17: Angle of separation with respect to optic axis (HeNe) for (a) P1 (apex angle = 60◦)
and (b) P2 (apex angle = 45◦).

(a) (b)

Figure 5.18: Transmitted beam width for (a) P1 (apex angle = 60◦) and (b) P2 (apex angle = 45◦).
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– Constraint 2 : Transmitted beam width

From Figure 5.16(b) we deduced the relation between input beam width, w1 and the

transmitted beam width, w3 as follows:

w3 = w1 × cos θtr
cos θin

√
n(λ)2 − sin2 θin

n(λ)2 − sin2 θtr
, (5.9)

where,

θtr = sin−1(sinA

√
n2(λ)− sin2 θin − sin θin cosA). (5.10)

θtr is a transmission angle, θin is the incident angle, A is the apex angle of the prism

(see Figure 5.16(a)). n(λ) is calculated from Equation 5.8. In Figure 5.18, the trans-

mitted beam widths are plotted for both P1 and P2. We require the transmitted beam

width to be smaller than the clear aperture of L3 (< 18mm). So, any w1 that produced

w3 > 18mm are omitted and, thus, the transmitted beam width provided the upper

bound of θin.

– Constraint 3: Fresnel transmittance

Fresnel transmittance, Tp for different incident angles are calculated using Equation

5.10 to 5.15. Notice, the input beam is p-polarized. For surface 1 of any prism (P1 or

P2), tp1 is the transmission co-efficient and Tp1 is the transmittance. The equations to

calculate tp1 and Tp1 are:

tp1(λ) =
2 cos θin√

1−
(

sin θin
n(λ)

)2
+ n(λ) cos θin

, (5.11)

Tp1(λ) =
n(λ)

√
1−

(
sin θin
n(λ)

)2

cos θin
|tp1|2. (5.12)
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Similarly, for surface 2 of the same prism, tp2 is the transmission co-efficient and Tp2 is

the transmittance. The equations to calculate tp2 and Tp2 are:

tp2(λ) =
2n(λ) cos

(
A− sin−1

(
sin θin
n(λ)

))
cos
(
A− sin−1

(
sin θin
n(λ)

))
+ n(λ) cos θtr

, (5.13)

Tp2(λ) =
cos θtr

n(λ) cos
(
A− sin−1

(
sin θin
n(λ)

)) |tp2|2. (5.14)

Figure 5.19: Fresnel transmittance for P1 (apex angle = 60◦).
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Figure 5.20: Fresnel transmittance for P2 (apex angle = 45◦).

Finally, the total transmittance, Tp is calculated as:

Tp(λ) = Tp1(λ) × Tp2(λ) × Tbulk(λ), (5.15)

where, Tbulk is picked up from Figure 5.15. The Tp1, Tp2 and Tbulk were calculated and

plotted for all wavelengths relevant to our experiment.

In summary, the angle of separation and Fresnel transmittance fixed the lower limit of

θin, whereas, the transmitted beam width requirement fixed the upper limit for each

prism. We chose the following angles: The reason behind the choice of θmax as the
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Table 5.5: Choice of angle of incidence for SH and TH for P1 and P2.

angle of incidence for TH signal on both P1 and P2 will become evident when we

discuss the prism alignment procedure in Section 5.3.3.

• Prism frequency resolution:

Above we considered the angle of incidence; but what about the position of beam profile with

respect to the vertex of the prism? Figure 5.16(b) definitely suggests that placing the beam

near the edges will chip off the tail of the beam profile. Moreover, choosing to be close to the

vertex would be same as choosing a prism with smaller base. The Rayleigh resolving power

[29], ρ of a prism is proportional to the length of its base, B, i.e.

ρ ∝ B. (5.16)

The closer the beam is to vertex, the lower the spatial resolution of the prism. Lower spatial

resolution causes the tail of the FF beam profile to leak into the SH/TH space which defeats

the purpose of the prism. On the other hand, the further the beam is from the vertex, the

greater the lateral shift of the signal, as the prisms are rotated from SH configuration to TH

configuration. So, we faced yet another trade off, and decided to keep the incident beam near

the middle part of the prism arms.
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5.2.5 Output

To choose the right detector, we needed to calculate the expected power of the signal SH or TH.

The noise floor of our detector should be sufficiently below the expected power. From literature

[30], we collected the SH efficiency to be, η(70◦, 6[GW/cm2]) = 1.5 × 10−11GW/cm2.

In Section 5.2.1 we calculated the peak intensity of our laser to be, Ipeak,FF = 6.1574GW/cm2

Now, η(70◦, Ipeak,FF ) = η(70◦, 6[GW/cm2])
Ipeak,FF

6 = 1.5393 × 10−11

Therefore, the expected levels of SH is,
Ipeak,SH = η(70◦, Ipeak,FF ) × Ipeak,FF = 0.0947W/cm2

Ppeak,SH = Ipeak,SH × π
2w0xw0y = 889.9nW

Pavg,SH = Ppeak,SH × tp × fp = 5.695 pW
To successfully detect power in pW range, we needed to use a sensitive detector with low NEP and

a lock-in amplifier.

Lock-in amplifier

Since the signal was expected to be submerged into noise, we used a lock-in amplifier (SR830)

along with a chopper (SR540). The chopping frequency was set around 310Hz. The chopper had a

duty cycle of 50%. Since chopping modulates the signal into square waves, lock-in can only pick-up

the amplitude of the first frequency of the Fourier spectrum of a square wave. For a voltage Vs,rms

read from lock-in amplifier, the actual amplitude of the square potential from the photodiode is,

Vpd =
π
√

2

4
Vs,rms = 1.1107Vs,rms (5.17)

The integration time of the lock-in amplifier was tint = 100ms with a 24dB roll-off filter.

Photo detector

For signal detection, we used a UV-enhanced TE-cooled Si photodiode with H-series dual

gain FET input transimpedance amplifier. We operated the photodetector in low-gain configura-

tion (Rf = 0.6GΩ) at temperature −40◦C. The power source was also noise free. We measured
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the responsivity of the detector at FF, HeNe, SH wavelength (Table 5.6) and compared it with the

value given in the manual. Since they match very closely (Figure 5.21), we assumed the responsivity

at TH given in the manual is also correct.

Table 5.6: Responsivity measurement of the detector at relevant wavelengths.

Figure 5.21: Comparison between measured and manufacturer-given responsivity of the detector.

The theoretical maximum that an amplifier can achieve is the DC voltage of the power supply

(±15V , for our case). A more practical upper limit before saturation occurs would be ±13V .

The maximum power of signal that would saturate the transimpedance amplifiers (assuming the

responsivity of the detector remains the same) is given in Table 5.7. On the other hand, the minimum
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power that would submerge the signal is calculated from its NEP value (< 1.5 × 10−14W/Hz1/2)

[31]. The minimum detectable power (noise floor) is also given in Table 5.7.

Table 5.7: Noise floor and saturation power of the detector at relevant wavelengths.

5.3 Alignment procedure

Until now, we have characterized all the elements of our system and discussed all the issues that

were considered while selecting them. Next, we will discuss the alignment procedure to put the

system together. The sketch of the whole experimental setup is drawn in Figure 5.22. This setup

follows the block diagram description given in Figure 5.4. As we complete the alignment of each

node (element) on the setup, it will gradually start to take shape and, finally, match the version given

in Figure 5.4. Each time new samples are put into the system, all the following alignment procedure

needs to be repeated.

Figure 5.22: Simplified sketch of the experimental setup (CL: collinear lasers).
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5.3.1 Alignment lasers

The introduction of alignment lasers in the input path, makes the alignment much easier. Align-

ment lasers AL1 (632.8nm) and AL2 (410nm) are discussed in Section 5.2.2. The procedure to

make them collinear is very trivial and requires one dichroic and one mirror for two of the lasers

and two mirrors for the last one. Our setup to make three lasers collinear is given in Figure 5.23:

Figure 5.23: CL (Collinear Laser) alignment of AL1, AL2 and FF.

For brevity, the collinear lasers (CL) are shown as one element in Figure 5.22. Once the lasers

are collinear, a suitable direction of optic axis, with a suitable height, were chosen. Two irises (IR1,

IR2) of same height (placed far from each other along the optic axis) were used to make sure that

the optic axis is parallel to the optical table. Also, the irises serves as a memory of our choice of

optic axis. In case, any laser slightly drifts, we can always make it come back and hit the pinhole

(closed iris) again. Moreover, when closed as far as possible, the iris can be used as an axial point

source object (since it is small compared to the relatively large beam width of FF, AL1 or AL2).

This becomes very helpful in future alignment. Of course, when experiments were done, these irises

were kept completely open.
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5.3.2 Sample alignment

Figure 5.24: The sample stage consists of two translational stage, top and bottom, and a rotational
stage.

The sample is placed on a stage that has a rotational stage, a top translational stage and a bottom

one. The bottom translational stage moves the rotational axis and confirms that the rotational axis

and optic axis are on the same vertical plane. The top translational stage translates the sample and, at

the same time, confirms that the rotational axis is almost on the sample surface. This configuration

of stages provides any sample with all the degrees of freedom required to fix the reflection angle

each time the sample is changed. To achieve that goal, first, the sample is positioned so that the

reflected beam back reflects and falls on the same path as the input. This angular position on the

rotational stage is assigned the value of 0◦. Once we moved the rotational stage to our desired

angular position of 70◦, we immediately fixed our sample and put a UV enhanced Al mirror (M7)

to fold the optic axis towards a convenient direction. Four irises were put (IR3, IR4 before M7 and

IR5, IR6 after M7) to further fix our optic axis position and height. We made sure that the height of
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the optic axis (before and after UV mirror, M7) was the same as we initially chose. The setup after

sample alignment and fixing the optic axis in the new geometry looks like Figure 5.25.

Figure 5.25: Fixing optic axis after the sample with irises (IR: Iris).

5.3.3 Prism P1, P2 alignment

Figure 5.26: Fixing optic axis after the prisms P1, P2 with irises (IR: Iris).
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Once the optic axis after the reflection from the sample is fixed with irises, prisms P1 and P2

are placed (see Figure 5.26). Another iris IR7 is put after P2 to confirm that the prisms do not

ruin the parallel positioning of the optic axis with respect to the table. As the prisms are rotated

to configure for different wavelengths, the iris would tell us whether the wavelength that we intend

to detect is collinear to the optic axis. The prisms are sitting on carefully designed stages (similar

to the stage designed for the sample) that provides them with all the required degrees of freedom.

Introduction of prisms in the system spatially separates the wavelength. Moving the detector to

follow the signal would require a stage with very complex dynamics. But, if designed carefully, we

can fix our detector to a single position and change the angular position of each prism to confirm

that the signal we intend to detect always becomes parallel to the optic axis as it leaves P2. We can

achieve that goal by properly choosing a constant angle of deviation for the all the wavelengths. The

deviation angle that provides us the maximum allowable incident angle, θmax for TH is a prudent

choice. This deviation angle confirms that the incident angle of all the wavelengths are inside the

bound region. So, the width of the collimated beam of desirable signals (SH or TH) are equal to or

less than the clear aperture of L3. Also, none of the wavelengths will face total internal reflection

at surface 2. For example, if we choose the path of HeNe for 32.8305◦ incident angle on P1 as our

the optic axis and fix it by putting irises after P1, once we change the incident angle to 35.4775◦,

we would notice that SH alignment laser (AL2) hits the iris opening. For the same setup, if we,

now, change the incident angle to 32.1028◦, the FF beam will hit the iris opening. This coincidence

occurs because our choice of incident angles were such that the deviation for all the wavelengths

are the same. There could be slight lateral shift of the beams with respect to the optic axis. This will

be discussed in Section 5.3.4. Our choice of incident angles and the corresponding rotational axis

positions are given in Table 5.8.
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(a)

(b)

Figure 5.27: Choice of incident angle on (a) P1 and (b) P2 from its angle of deviation calculation.
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Table 5.8: Choice of incident angle on P1 and P2.

All the incident angles can be measured in relation to the incident angle of HeNe (optic axis).

Even if there were slight errors in absolute incident angle of the optic axis, as soon as we selected

that angle, all the other wavelengths are guaranteed to become parallel to optic axis at relative

incident angles. This feature greatly enhances the tolerance of the system with respect to prism

position.

5.3.4 Short pass filter SPF, Lens L3 and Photodetector PD alignment

The SPF, L3 and PD are put in tandem with the help of a tube. The tube helps reduce the noise

by blocking the light that may fall on the detector from any undesirable angle. It also helps to keep

the components aligned to each other. Once an optic axis is selected after P2, the tube is made

collinear to the optic axis with help of irises. Inside the tube L3 is fixed at a distance of 85.82mm

from the detector surface (see Figure 5.28). So, the collimated light focuses on the detector surface.

The whole tandem is placed on a translational axis that moves in transverse direction (left-right).
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This helps overcome the slight decentering of the signal, once P1 and P2 are reconfigured for a new

wavelength detection.

Figure 5.28: Alignment of Short pass filter SPF, Lens L3 and Photodetector PD with respect to
Prism P2.

Figure 5.29: Output path after the alignment of Prism P1, P2, Short pass filter SPF, Lens L3 and
Photodetector PD.
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Any light that gets modulated by the chopper, can potentially get reflected from objects that

scatter stray light and fall on the detector introducing noise. So, it is a good practice to catch any

unwanted chopped signal in a beam dump. Figure 5.29 shows the real image of the setup after the

alignment of the output path was finished.

5.3.5 Lenses L1 and L2 alignment

(a) (b)

Figure 5.30: (a) The front view and (b) the top view after L1 and L2 alignment. Red and blue rays
represents the pump and the signal respectively.

Now, we can put L1 and L2 in the system. With the help of iris IR3 (see Figure 5.25), we fixed

the height of the L2 so that the optic axis goes through the center of it. Since L2 was positioned

inside a lens tube which was screwed to the holder, the tip/tilt of L2 can be ignored. Then, we fixed

the height and tip/tilt of L1 with the help of IR2 and IR3. This was done by completely closing both

IR2 and IR3. This creats an axial object that was image onto small opening of IR3. The irises were

kept completely open after the alignment is done. The axial position of L2 is fixed to 146mm. This

73



length was determined using ZEMAX by optimizing a merit function for spot size at the detector

(see Figure 5.13). The position of L1 is changed until the SH/TH signal reaches a maximum level.

5.3.6 Sanity check with LiNbO3 crystal

After the alignment procedures are complete, a LiNbO3 crystal was placed in place of the

sample. As we changed the L1 position and focused on the LiNbO3 crystal, we generated SH from

it. The SH signal was strong enough to image with a CCD. Figure 5.31(b) shows the blue spot

generated from LiNbO3 crystal.

(a) (b)

Figure 5.31: (a) Alignment sanity check with LiNbO3 crystal; (b) Image of SH generated from
LiNbO3 crystal captured with CCD (Lumera).
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5.4 System loss measurement

The system performance at respective wavelengths would help us determine the percentage of

signal that was lost in the system (system loss). We measured the transmittance of each system

component in the system with a power meter and checked whether the data is in agreement with the

component’s manufacturer data.

Table 5.9: Loss measurement at different nodes of the experimental setup and the total system loss
measurement.

As seen on Table 5.9, the calculated transmittance matches the actual measured transmittance

of the system very well. Finally, we incorporated this loss to the power of the detected signal to

calculate the actual amount of signal generated on the sample.
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5.5 Experiments on signal confirmation

Once the signals were detected, two sets of experiment were be done to confirm the presence of

signals.

5.5.1 Polarization dependence of signal

Figure 5.32: Dependence of SH (from plain Au surface) on FF beam polarization.

The FF pump laser is vertically polarized. At 45◦ angle from the fast axis of the crystal, the po-

larization of the FF beam turned 90◦ and became p-polarized light with respect to the sample. Figure

5.32 suggests that the SH/TH signal reached maximum for p-polarized light. Only p-polarization

can interact with metal surface and generate SH/TH. So, detected signal was definitely SH/TH gen-

erated on the sample.
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5.5.2 Pump intensity dependence of signal

Signal from MI samples

The ALD thickness values are approximate values.

ALD thickness : 0nm

Figure 5.33: Quadrature dependence of SH on FF intensity. Sample is a plain Au surface.

Figure 5.34: Cubic dependence of TH on FF intensity. Sample is a plain Au surface.
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ALD thickness : 2nm

Figure 5.35: Quadrature dependence of SH on FF intensity. Sample is a 2nm ALD coated Au
surface.

Figure 5.36: Cubic dependence of SH on FF intensity. Sample is a 2nm ALD coated Au surface.
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ALD thickness : 4nm

Figure 5.37: Quadrature dependence of SH on FF intensity. Sample is a 4nm ALD coated Au
surface.

Figure 5.38: Cubic dependence of SH on FF intensity. Sample is a 4nm ALD coated Au surface.
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ALD thickness : 10nm

Figure 5.39: Quadrature dependence of SH on FF intensity. Sample is a 10nm ALD coated Au
surface.

Figure 5.40: Cubic dependence of SH on FF intensity. Sample is a 10nm ALD coated Au surface.
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ALD thickness : 20nm

Figure 5.41: Quadrature dependence of SH on FF intensity. Sample is a 20nm ALD coated Au
surface.

Figure 5.42: Cubic dependence of SH on FF intensity. Sample is a 20nm ALD coated Au surface.
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Signal from MIM samples

The ALD thickness values are approximate values.

ALD thickness : 0nm

Figure 5.43: Quadrature dependence of SH on FF intensity. Sample is a plain Au surface with NPs.

Figure 5.44: Cubic dependence of TH on FF intensity. Sample is a plain Au surface with NPs.
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ALD thickness : 2nm

Figure 5.45: Quadrature dependence of SH on FF intensity. Sample is a 2nm ALD coated Au
surface with NPs.

Figure 5.46: Cubic dependence of TH on FF intensity. Sample is a 2nm ALD coated Au surface
with NPs.
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ALD thickness : 4nm

Figure 5.47: Quadrature dependence of SH on FF intensity. Sample is a 4nm ALD coated Au
surface with NPs.

Figure 5.48: Cubic dependence of TH on FF intensity. Sample is a 4nm ALD coated Au surface
with NPs.
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ALD thickness : 10nm

Figure 5.49: Quadrature dependence of SH on FF intensity. Sample is a 10nm ALD coated Au
surface with NPs.

Figure 5.50: Cubic dependence of TH on FF intensity. Sample is a 10nm ALD coated Au surface
with NPs.
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ALD thickness : 20nm

Figure 5.51: Quadrature dependence of SH on FF intensity. Sample is a 20nm ALD coated Au
surface with NPs.

Figure 5.52: Cubic dependence of TH on FF intensity. Sample is a 20nm ALD coated Au surface
with NPs.

The quadratic and cubic dependence of signal on FF intensity (see Figure 5.33 to 5.52) confirms

that they are SH and TH signal respectively generated on the sample.
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5.6 Result analysis:

Figure 5.53: Comparison of SH from MI and MIM interface of varying ALD thicknesses.

Figure 5.54: Comparison of TH from MI and MIM interface of varying ALD thicknesses.
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The SH and TH signal strength with respect to Al2O3 film thickness is presented in Figure 5.53

and 5.54 respectively. The important conclusions derived from the above figures will discussed in

the following.

• Higher levels of SH/TH signal:

The SH signal from plain Au is 3 order of magnitude larger then what was expected (expected

levels are discussed in Section 5.2.4).

• A novel SHG technique to measure surface coverage of MI samples:

The signal strength reduces gradually for the first few nanometers (≈ 4nm) of Al2O3 thick-

ness. For even higher thicknesses the signal remains unchanged. The amount of reduction

in signal strength for higher thicknesses of ALD layer is around 40% (see Figure 5.53) com-

pared to signal from bare Au surface. From preliminary simulation of SHG † from bare Au

surface and Al2O3 deposited Au surface predicts that the SH signal strength reduction for

Al2O3 − Au interface and the percentage of drop with respect to plain Au is similar to the

experimentally detected value. But, interestingly, the amount of drop in signal strength in

the simulation model is not dependent on the thickness of Al2O3 film. As long as there is a

uniform film of Al2O3 (it could be as thin as possible), the signal strength drops to a constant

value and remains there. Since we saw a gradual drop for first few nanometers of thickness,

our initial supposition was that the Al2O3 failed to completely cover the Au surface for first

few ALD cycles. This happens because it is hard to start nucleation on metal surfaces, due to

lack of hydroxyl group [27, 26].

†The simulation was done by Dr. Domenico de Ceglia using FEM and Dr. Michael Scalora using FDTD. Results
were shared through private communication.
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Figure 5.55: Nucleation-growth model of ALD layers: (a) The experimental measurement of surface
roughness (using AFM) vs no. of ALD cycle,‡ (b) The theoretical model showing the transition
between nucleation, coalescence and film formation.

So, few atomic forced microscopy (AFM) experiments ‡ were done to confirm the nucleation-

growth model of oxides on metal surface using ALD. Figure 5.55(a) suggests an increase in

surface roughness as the nucleation starts. At this point, the surface coverage of metal oxide

is patchy. So, the SH from the pure metal surface and from the MI interface averages out to

a lower value. As the number ALD cycles are increased, the patchy nucleation sites start to

coalesce, and the SH from the MI interface dominates. Further increase in ALD cycles would

completely cover the metal surface and form a film of oxide layer. At this point, the SH is

generated only at the MI interface. Increasing the number of ALD cycles even further would

have no effect on SHG from the MI interface. Figure 5.56 shows a strong correlation between

the signal strength of SH from MI samples and the surface coverage of MI samples based on

nucleation growth model and actual roughness measurement using AFM.

‡AFM experiments were done by Zhengning gao from Washington University in St. Louis and shared through private
communication
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Figure 5.56: Dependence of SHG on surface coverage of MI samples.

• Increase of TH signal from MIM sample:

There was a definite increase in TH signal after the samples were spin-coated with Au nanopar-

ticles (see Figure 5.54). Part of the reason behind this increment could be quantum tunneling.

But the insulator thickness should be subnanometer for the quantum tunneling effect to dom-

inate. To reach to a firm conclusion, we need to increase the surface coverage and thickness

uniformity, even for first few cycles of ALD.

5.7 Future work

Our future work can progress in multiple directions. Based upon our initial findings, we are

interested to look through the following possibilities:
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• The Au samples that we used were not ultra-flat surface. In future, we intend to use ultra-flat

Au surfaces to cancel any dependency of our experimental results on Au surface roughness.

• We discovered a correlation between the SHG and surface coverage. This phenomenon can be

further developed into a novel technique to measure surface coverage non-invasively. The ex-

isting technique is to measure the surface roughness through AFM. But using SH to measure

the surface coverage would be much cheaper.

• We would like to improve our simulation to take into account the effects of surface coverage

ratio.

• Techniques to improve surface coverage is also of great interest to us. A suggestion to achieve

that goal would be to treat the sample with UV ray and O3 gas before ALD. It has been

observed that plain Au is actually hydrophilic [32] and even a small amount of carbonaceous

deposit on Au surface kills the hydrophillicity. So treating the sample with O3 would cause

the H2O and the precursors to spread out on the sample and deposit a more uniform layer of

oxide. Our final goal is to design MIM interface with subnanometer thickness to enhance the

tunneling and produce tunneling induced nonlinear radiation.
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CHAPTER VI

CONCLUSION

MIM junctions (when junction size is smaller than photon wavelength) reveal Einstein’s quan-

tum description of photon as well as Maxwell’s classical description of EM radiation. The juxta-

position of these two worlds makes MIM junctions key to many novel applications in the fields of

energy harvesting, high speed communication, sensors and biomedical engineering. For example,

a biased MIM can rectify electro-magnetic field [Equation 4.33]. Active devices, such as recten-

nas (i.e. rectifying antennas) [33], can be designed, as a new form of high efficiency solar energy

harvesting device using MIM [34]. It also shows promise in the design of passive devices, such

as detectors and modulators. For example, MIM junction can be used as long wavelength photon

detectors [23, 35]. On the other end of the spectrum i.e. for short wavelength, high frequency mod-

ulators can be designed with MIM junctions [6]. Also, the field enhancement inside the junction

may be used in sensing application. With all the prospective applications in mind, experiments on

MIM seem very crucial. Experimental validation of QCT, also have a theoretical significance. Vali-

dation of QCT would mean the substantiation of transfer Hamiltonian approach for tunnel junctions

consisting of regular metals. Our research will, eventually, answer the following critical questions:

• Can we unequivocally attribute the observations of the scattered nonlinear EM radiation to

the quantum tunneling effect?
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• What is the effect of limited field enhancement (or quenching) on other nonlinear effects, such

as Raman scattering? The quantum effect will place ultimate limits on the optimal design of

molecular sensing by methods, such as Raman scattering.

• What are the operational properties of MIM diode for energy harvesting? We have an exciting

opportunity to do experiments on new MIM devices fabricated at WUStL. The first experi-

ments will be done on nanorod MIM devices. The experiments to measure the efficiency of

the devices will be of intense interest in the field.

• Can SH from metal-insulator interface be used as a handle to measure surface coverage and

uniformity for the first few layers of insulation? This could be a breakthrough experiment on

surface characterization of MI interfaces.
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APPENDIX A

FERMI’S GOLDEN RULE AND TRANSITION RATE

Bohr’s atomic model can predict the discreteness of atomic spectra by assuming the wave nature

of electrons. But it can not explain the relative brightness differences of spectral lines. Fermi’s

golden rule is a form of time-dependent perturbation theory that predicts the transition rate of

particles from one state to another and explains why the transition between some states is higher

than the others, which, in turn, gives the reason behind the relative brightness differences. In fact,

photoelectric effect (transition of electrons from conduction band to vacuum) in metals can also be

described using Fermi’s golden rule [36]. As discussed in Chapter III, Bardeen slightly tweaked

[1, 8] the idea behind Fermi’s golden rule to account for tunneling current and adequately explained

the linear relationship between energy density of states, ρe and tunneling current density, jsc(x) in

superconducting tunnel junctions. This linear relationship was utilized by Giaever to explain his

experiments on SIS tunneling junctions [17]. The usage of Fermi’s golden rule can be extended

to MIM tunnel junctions, as well. We will now discuss the derivation and implications of Fermi’s

golden rule.

A.1 Time-dependent perturbation theory

The derivation follows very closely the terms and notation of Koukaras’s article [37] on Fermi’s

golden rule. Let’s assume, a system Hamiltonian is perturbed with a time-dependent potential,
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HT (t)† and the system undergoes a transition from initial state |i〉 to a final state |f〉. So, the new

Hamiltonian can be written as,

Ĥ = Ĥ0 + ĤT (t), (A.1)

where, Ĥ0 is the unperturbed system Hamiltonian. The eigenvalues and eigenstates of the uncou-

pled system are En and |φn〉 respectively and n = any positive integer number. According to

Schödinger’s equation i.e. Ĥψ = ih̄∂ψ∂t , the time-evolution of |φn〉 in the unperturbed system is just

a phase change in the Hilbert space:

|φn(t)〉 = |φn〉 e−iEnt/h̄. (A.2)

Notice that, addition of any external voltage also changes the phase only. The generalized wave-

function of the system is a linear combination of eigenvectors with constant weights cn, i.e.

|ψ(t)〉 =
∑
n

cn |φn(t)〉 =
∑
n

cn |φn〉 e−iEnt/h̄. (A.3)

But, when the system is perturbed, the generalized wavefunction does not remain a linear combina-

tion of eigenstates anymore, rather, it becomes a ‘mixed’ state, i.e.

|ψ(t)〉 =
∑
n

cn(t) |φn〉 e−iEnt/h̄, (A.4)

where, cn(t) are not expansion coefficients, instead, |cn(t)|2 represents the probabilities of finding

the system in state |φn〉. So, introducing perturbation in a system essentially changes ‘pure’ states

to ‘mixed’ states. When a mixed state, |ψ(t)〉 (from Equation A.4) is operated by the new perturbed

Hamiltonian, Ĥ (from Equation A.1), we get,

Ĥ |ψ(t)〉 = [Ĥ0 + ĤT (t)] |ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 ,

†Throughout this thesis, HT (t) represents the ‘transfer Hamiltonian’ that accounts for tunneling in a coupled system.
To avoid any confusion while transferring the concepts of Fermi’s golden rule to the tunneling problem, we used the same
notation here.
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⇒ Ĥ0

∑
m

cm(t) |φm〉 e−iEmt/h̄ + ĤT (t)
∑
m

cm(t) |φm〉 e−iEmt/h̄ = ih̄
∂

∂t

∑
m

cm(t) |φm〉 e−iEmt/h̄,

⇒
∑
m

cm(t)Ek |φm〉 e−iEmt/h̄ +
∑
m

cm(t)ĤT (t) |φm〉 e−iEmt/h̄ =

ih̄
∑
m

∂cm(t)

∂t
|φm〉 e−iEmt/h̄ + ih̄

∑
m

cm(t) |φm〉
(
− iEm

h̄

)
e−iEmt/h̄.

(A.5)

By multiplying Equation A.5 with 〈φn| from the left, we get,

Encn(t)e−iEnt/h̄ +
∑
m

cm(t)Tnm(t)e−iEmt/h̄ = ih̄
∂cn(t)

∂t
e−iEnt/h̄ + Encn(t)e−iEnt/h̄,

⇒ ∂cn(t)

∂t
=

1

ih̄

∑
m

cm(t)Tnm(t)e−iωnmt, (A.6)

where, Tnm is the coupling energy between states |φn〉 and |φm〉, i.e.

Tnm = 〈φn| ĤT (t) |φm〉 ,

=

∫ ∞
−∞

φn
∗(x)HT (t)φm(x)dx, (A.7)

and, e−iωnmt is the phase of coupling energy, when,

ωnm = (En − Em)/h̄. (A.8)

ωnm can also be viewed as the perturbation frequency introduced to the system through external

sources, Vext. These external sources can either be a high frequency photon voltage, Vph = h̄ωnm
qe

(where, qe = charge of electron) or a low frequency (almost DC) voltage, Vdc or both. The external

sources modulate the Fermi level of the system and change the phase of coupling energy, e−iωnmt

between any two states. For our problem of tunneling current calculation, Bloch states from two

separate systems (left, |l〉 and right, |r〉) are coupled through tunneling. Equation A.6 becomes

very useful to establish the dependence of tunneling current on external voltage in the framework

of perturbation theory. This is discussed in Chapter III in details. For now, let’s develop the rest of

the theory and, finally, derive Fermi’s golden rule.

To proceed, we need to assume that, at the beginning the particle was at initial state |i〉. So, ci = 1
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and cn = 0 for all n 6= i. The perturbation of the system is very weak and applied for a short period

of time, so that, the system reacts adiabatically to the change. From Equation A.6, we get,

∂cn(t)

∂t
=

1

ih̄
ci(t)Tni(t)e

−iωnit. (A.9)

For a final state of |f〉, by integrating Equation A.9 with respect to time, t, we get cf (t), i.e.

cf (t) =
1

ih̄

∫ t

0
Tfi(t

′)e−iωfit
′
dt′. (A.10)

A.2 Harmonic perturbation

Now, we will introduce a harmonic perturbation voltage with high (optical) frequency, ω. This

could be done physically by illuminating polarized light on the system. So, the perturbation looks

like,

T (t) = 2T0cos(ωt) = T0(eiωt + e−iωt). (A.11)

The coupling matrix element due to the harmonic perturbation is, Tfi(t) = 〈φf |T (t) |φi〉 =

|Tfi|(eiωt + e−iωt). So, Equation A.10 can be written as,

cf (t) =
|Tfi|
ih̄

∫ t

0

(
eiωt

′
+ e−iωt

′
)
eiωfit

′
dt′,

=
|Tfi|
ih̄

{
e(ωfi+ω)t − 1

i(ωfi + ω)
+
e(ωfi−ω)t − 1

i(ωfi − ω)

}
. (A.12)

The ‘Propagator’, P is defined as the inner product of a particles final state |φf 〉 and current state

|ψ(t)〉. Physically, propagator quantifies the probability of finding a particle at |φf 〉 when it started

as |ψ(t)〉. Visually, this represents the overlap component between the states in Hilbert space.

Pf (t) = |cf (t)|2 = | 〈φf |ψ(t)〉 |2. (A.13)

Since our particle started in |φi〉, Equation A.13 can be written as:

Pfi(t) = |cf (t)|2 =
T 2
fi

h̄2

∣∣∣∣∣e(ωfi+ω)t − 1

i(ωfi + ω)
+
e(ωfi−ω)t − 1

i(ωfi − ω)

∣∣∣∣∣
2

. (A.14)
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Figure A.1: Transition of particle from |i〉 to |f〉

To proceed with the Equation A.14, we made an approximation that, ω ≈ ωfi and ω is optical

frequency, so, |ω − ωfi| << ω, and Equation A.14 becomes,

Pfi(t) =
|Tfi|2

h̄2

∣∣∣∣∣e(ωfi−ω)t − 1

i(ωfi − ω)

∣∣∣∣∣
2

,

=
|Tfi|2t2

h̄2

[
sinc[(ωfi − ω)t/2]

]2

. (A.15)

A.3 Harmonic perturbation in a continuum of final states

For a continuum of final states, with density of states ρf (E), the propagator can be written as,

P =

∫ ∞
−∞
Pfi(t)ρf (E)dE,

=

∫ ∞
−∞

|Tfi|2t2

h̄2

[
sinc[(ωfi − ω)t/2]

]2

ρf (E)dE,

=

∫ ∞
−∞

|Tfi|2t2

h̄2 ρf (E)

[
sinc[(ωfi − ω)t/2]

]2

h̄dω,

=

∫ ∞
−∞

|Tfi|2t2

h̄2 ρf (E)h̄

(
2

t

)[
sinc(ωfi − ω)

]2

dω. (A.16)

Since the sinc(ωfi − ω) function has a sharp peak at ω = ωfi (see Figure A.1) and has very small

bandwidth, ∆ω, i.e. (∆ω ≈ 4π
t ) � Tfi

h̄ , Tfi and ρf (E) can be taken out of the integration as
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a constant, and the rest of the integration i.e.
∫∞
−∞ sinc

2(ωfi − ω)dω function can be written as

2π
∫∞
−∞ δ(ωfi − ω)dω. So, Equation A.16 can be written as,

P =
2π

h̄
|Tfi|2ρf (Ef )t

∫ ∞
−∞

δ(ωfi − ω)dω. (A.17)

The transition rate, Γ is the rate of change of the propagator, P with respect to time, t, i.e. Γ = d
dtP .

Therefore,

Γ =
2π

h̄
|Tfi|2ρf (Ef )

∫ ∞
−∞

δ(ωfi − ω)dω. (A.18)

This equation is known as Fermi’s golden rule.

A.4 Summary

The most important take away in this chapter is that, a Hamiltonian perturbed with high fre-

quency electric fields of photon triggers the transition of state of an electron. The dimension of rate

of transition is the same as the dimension of probability current density, i.e. [T−1]. In Chapter III

we will prove that the transition rate, Γ can, indeed, be treated as the probability current density

from each initial state to all the final states. But, the physical meaning of the term Tfi, which is

needed to calculate Γ [Equation A.18], may still feel like a bit of a mystery. It will become clearer

in the Chapter III when we discuss Bardeen’s picture of tunneling through MIM (see Section 3.1).

Having discussed Fermi’s golden rule, it is, now, prudent to grab attention to the fact that, ‘harmonic

perturbation’ is NOT the same as ‘harmonic modulation’. Even though, both of them are introduced

in the system Hamiltonian as time-dependent potential energy, the treatment of harmonic perturba-

tion (as discussed in this chapter) is quite different from the treatment of harmonic modulation (see

Section 4.1). For PAT theory, both of this world are put together (see Chapter V). In this theory,

electric field of the photon modulates one system that causes perturbation in another. The results of

PAT are then forwarded to QCT for further development.
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APPENDIX B

S CURVES FROM KNIFE EDGE EXPERIMENT

21 samples of knife edge data was taken along the Z axis. testNx represents the N th position

on the Z axis for knife edge moving along the X axis. testNy represents the N th position on the Z

axis for knife edge moving along the Y axis. S curve was fit for each data set.
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