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ABSTRACT

RECURSIVE NON-LOCAL MEANS FILTER FOR VIDEO DENOISING

Name: Almahdi, Redha
University of Dayton

Advisor: Dr. Russell C. Hardie

In this thesis, we propose a computationally efficient algorithm for video denoising that exploits

temporal and spatial redundancy. The proposed method is based on Non-Local Means (NLM). NLM

methods have been applied successfully in various image denoising applications. In the single-frame

NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring

patched, within a given search window. The weights are based on the patch intensity vector dis-

tances. The process requires computing vector distances for all of the patches in the search window.

Direct extension of this method from 2D to 3D, for video processing, can be computationally de-

manding. Note that the size of a 3D search window is the size of the 2D search window multiplied

by the number of frames being used to form the output. Exploiting a large number of frames in this

manner can be prohibitive for real-time video processing. Here we propose a novel Recursive NLM

(RNLM) algorithm for video processing. Our RNLM method takes advantage of recursion for cop-

mutationally savings, compared with the direct 3D NLM. However, like the 3D NLM, our method is

still able to exploit both spatial and temporal redundancy for improved performance, compared with

2D NLM. In our approach, the first frame is processed with single-frame NLM. Subsequent frames

are estimated using a weighted sum of pixels from the current-frame and a pixel from the previous
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frame estimate. Only the single best matching patch from the previous estimate is incorporated into

the current estimate. Several experimental results are presented here to demonstrate the efficacy of

our proposed method in terms of quantitative and subjective image quality, as well as processing

speed.
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CHAPTER I

INTRODUCTION

1.1 Objective of Study

During the last four decades, noise reduction for digital image and video sequences is a subject

of extensive research, mainly for military and satellite application. Other applications include med-

ical imaging, remote sensing and video broadcasting [1]. Digital image and video, acquired by still

cameras, consumer camcorders, or even broadcast quality video cameras, are usually degraded by

some amount of blur and noise [2]. Even the new advanced cameras for video acquisition may suffer

from severe degradation. Furthermore, old video sequences are likely to have suffered degradation

at the early stage of the acquisition mainly due to hard ware and technological limitations [1]. Noise

in imaging sensors comes from a variety of sources, the two predominant random noise sources in

digital image acquisition modalities are the stochastic nature of the photon-counting at the detectors

(Poisson), and the intrinsic thermal and electronic fluctuations of the acquisition devices (Gaus-

sian) [3]. However, the majority of the noise reduction algorithms developed are based on signal

frame filtering for image and all 2D signals or three dimensions for video sequences considering

both spatial and temporal correlation [1]. One of the main design issues in 3D filter, the size of a 3D

search window is the size of the 2D search window multiplied by the number of frames being used

to form the output. Typically, the larger the length of the filter, the more computational complexity
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significantly increases and delays are introduced. On the other hand, employ a large number of

frames to form the output in this manner can be prohibitive for real-time video processing.

1.2 Video Restoration

Digital videos are invariably corrupted by noise during acquisition. Digital video tends to have

a lower signal-to-noise ratio (SNR) than static images, due to the short integration times needed to

achieve desired frame rates [4]. Low light conditions and small camera apertures tend to worsen

the problem. In the case of some medical imagery, like x-ray images and video, short integration

times are essential to limit the x-ray dose to the patient. While digital video may suffer from

lower SNR, it also provides 3D data that often has significant temporal redundancy [5]. Video

denoising algorithms seek to reduce noise by exploiting the both spatial and temporal correlation

in the signal [4]. The Non-Local Means (NLM) algorithm [6] for image denoising has received

significant attention in the image processing community. This may be, in large part, because of

generally good performance, and its intuitive and conceptually simple nature. The standard NLM

algorithm is introduced by Buades et al. in [6]. The NLM method exploits self-similarity that

appears in most natural images for noise reduction. In the single-frame NLM method, each output

pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search

window. The weights are based on similarity with respect to the reference patch. The similarity is

measured by means of patch intensity vector distances. Pixels from patches with higher similarity

(lower vector distances) are given more weight, using a negative exponential weighting. One or

more tuning parameters are used to control the weighting.

Many variations of the NLM method have been proposed to either reduce the computational

complexity, and/or improve the denoising performance. In the work of Mahmoudi and Sapiro [7],

dissimilar neighborhoods are excluded from the weighted sum. Dissimilar blocks are identified
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based on mean value and gradient. This may improve performance, and it reduces the computa-

tional cost. Wang et al. [8] proposed an efficient Summed Square Image scheme as another means

to accelerate the patch similarity computations. A cluster tree arrangement has been used to group

similar patches [9]. A method using preselection of the most similar voxels, multithreading, and

blockwise implementation is presented in [10]. Furthermore, adaptive smoothing neighborhoods

are presented in [11], and a kernel regression method is presented in [12]. The method in [13] uses

a spatially-recursive moving-average-filter to compute the Euclidean distances. The estimation of

the mean square error (MSE) from a noisy image is performed using an analytical expression basde

on Steins unbiased risk [14]. Another speed enhancement, based on probabilistic early termina-

tion, is proposed in [15]. Karnati et al. [16] proposed a multi-resolution approach requiring fewer

comparisons.

Many methods, originally proposed for single image denoising, have been adapted to video

denoising. Among these are the NLM method, which has been applied successfully to image se-

quences in [17] and [18]. Han et al. [19] introduced the Dynamic Non-local means (DNLM) video

denoising method, which is based on Kalman filtering theory. The basic idea of this filter is to

use information from the past video frames to restore the current frame, combining the NLM and

Kalman filtering algorithms. However, the computational complexity is still relatively high with this

method. Another example of a 2D denoising method, later extended to 3D, is Block Matching and

3D (BM3D) filtering [20]. BM3D generally outperforms NLM in single image denoising, but has

a higher computational complexity. The BM3D method, like NLM, uses vector distances between

2-D image blocks. The most similar blocks are stacked into a 3-D group, and then filtered through

a transform-domain shrinkage operation. The BM3D filtering has been extended to video denoising

(V-BM3D) in [21]. While there may be many variations of patch based image denoising algorithms.

What they share in common is that they require computing vector distances between each reference
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patch and neighboring patches. Direct extension of such methods from 2D to 3D, for video process-

ing, can be computationally demanding. Note that the size of a 3D search window is the size of the

2D search window multiplied by the number of frames being used to form the output. Exploiting a

large number of frames in this manner can be prohibitive for real-time video processing.

1.3 Significance of the Study

In this thesis, we propose a novel temporally-recursive NLM (RNLM) algorithm for video pro-

cessing. Our RNLM method takes advantage of temporal recursion for computational savings,

compared with the direct 3D NLM. However, like the 3D NLM, our method is still able to exploit

both spatial and temporal redundancy for improved performance, compared with 2D NLM. In our

approach, the first frame is processed with single-frame NLM. Subsequent frames are estimated us-

ing a weighted sum of pixels from the current-frame and a pixel from the previous frame estimate.

Only the best matching patch from the previous estimate is incorporated into the current estimate.

This is done to maximize the temporal correlation. Our approach shares its recursive nature with

DNLM in [19]. However, here we have opted for a much simpler framework, in keeping with the

simplicity of the original NLM. Several experimental results are presented here to demonstrate the

efficacy of our proposed method in terms of quantitative and subjective image quality, as well as

processing speed. We show that our approach offers a computationally simple approach to video

denoising, but with a performance that rivals much more complex methods.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows. The observation model considered in the

practical work of the study, the Overview of Non-Local Means algorithm itself , and the direct

extension of the Non-Local Means algorithm from 2D to 3D for video processing presented in

Chapter II. The recursive Non-Local means (RNLM) algorithm and computational complexity are
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proposed and discussed in Chapter III. We show some experimental results in Chapter IV. Finally,

conclusions are provided in Chapter V.
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CHAPTER II

NON-LOCAL MEANS METHOD

In this chapter we introduce the Non-Local Means (NLM) method. We begin with the obser-

vation model for the proposed algorithm development in Chapter 2.1 and then We provide some of

the key algorithm details and definition in chapter 2.2. Also, we provide the direct extension of this

algorithm from 2D to 3D for video processing in Chapter 2.3.

2.1 Observation Model

In this section, we present the observation model and notation for our video restoration meth-

ods. Some of the key variables used in this paper are defined in Table 2.1. We use the standard

degradation model, treating the noise as additive and signal-independent. This is expressed as

yk(i) = xk(i) + nk(i), (2.1)

for i = 1, 2, ..., N and k = 1, 2, ...,K. Note that yk(i) represents a pixel in the observed frame in

the video sequence. The index i refers to the specific pixel in the spatial domain, and the k denotes

the temporal frame number in the image sequence. The variable xk(i) denotes the corresponding

pixel in the ideal input frame. The noise is represented by nk(i) ∼ N (0, σ2n), which is assumed to

be samples of a zero-mean independent and identically distributed Gaussian random variable, with

variance σ2n.

6



Table 2.1: Variable definitions.

xk(i) Ideal pixel i in frame k
yk(i) Noisy pixel i in frame k
x̂k(i) Estimated pixel i in frame k
yk(i) Lexicographical patch about pixel i in frame k in {yk(·)}
N Number of pixels in one frame
K Number of frames in input sequence
L Number of frames used by 3D NLM to generate one frame output
Ms NLM search window dimension (Ms ×Ms)
Mp NLM patch dimension (Mp ×Mp)
Ns BMA search window dimension (Ns ×Ns)
Nb BMA block dimension (Nb ×Nb)

2.2 Single Frame Non-Local Means Filter

The non-local means algorithm we shall now discuss is one of the most popular and attractive

algorithms for image restoration. It performs denoising in the spatial domain and removes the noise

while retaining the important image features such as for preserve edges and details. For this purpose,

the NLM take advantage of the high degree of redundancy and self-similarity of the natural image

structure. The denoising method based on assuming that every small patch in a natural image has

many similar patches in the same image. Figure 2.1 illustrates these properties on a natural image.

The image House with a chosen search windowMs×Ms marked in Black, and each colored squares

corresponds to respective similarity patches. The reference patch yk(i) is marked in blue, and the

index i is a positional of the central pixel of the reference patch while the green squares yk(1),

yk(2), yk(3), and yk(4) corresponds to a set of very similar patches to the reference patch. On the

other side, the orange square yk(5) is the patch that having a small similarity pixel values compared

to the reference patch. The red square yk(6) along with the patch that has high dissimilarity pixel

values compared to the reference patch.
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𝐲4 

𝐲6 

𝐲3 

𝐲5 

𝐲1 

Figure 2.1: The Non-Local Means scheme for a schematic view of a chosen search window and its
respective similarity patches related to reference patch.

The main idea of NLM filter is the weight computation depend on the similarity of the intensity

grey-level vectors between the similar patches in the search region. The patches with a similar

grey-level neighborhood to the reference patch yk(i) will have larger weights on the average. For

example, the central pixels of patches yk(1), yk(2), yk(3), and yk(4) will assign weights larger

than the central pixel of patches yk(5) and yk(6) because they have high similarity compared to the

reference patch yk(i). The weight computation can be expressed as in Equation (2.3) and Equation

(2.4).

We defining the single-frame NLM (SNLM) [6], upon which our method is built. Processing

the frames from an image sequence individually, the SNLM output can be expressed as

x̂k(i) =
1

Wk,i

∑
j∈ε(i)

wk(i, j)yk(j), (2.2)
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where x̂k(i) denotes the estimated image at pixel i in frame k. The set ε(i) contains the indices of

the pixels within an Ms ×Ms search window centered about pixel i. The variable wk(i, j) is the

weight applied to pixel j, when estimating pixel i in frame k. To normalize the weights, the variable

Wk,i is used, and this is simply the sum of the individual weights.

The SNLM weights are computed based on patch similarity and spatial proximity. In particular,

wk(i, j) is computed as

wk(i, j) = exp

{
−‖yk(i)− yk(j)‖2

2σ2y
− d(i, j)2

2σ2d

}
, (2.3)

and Wk,i can be expressed as

Wk,i =
∑
j∈ε(i)

wk(i, j). (2.4)

Note that the variable yk(i) is a vector in lexicographical form containing pixels from an Mp ×Mp

patch centered about pixel i in frame k from the sequence {yk(·)}. The variable d(i, j)2 is the

squared Euclidean distance between pixel i and j. The parameter σ2y is a tuning parameter to

control the decay of the exponential weight function with regard to patch similarity, and σ2d is a

tuning parameter controlling the decay with regard to spatial proximity between pixels i and j. It

can seen from Equation (2.3) that the weight given to pixel yk(j) goes down as ‖yk(i)− yk(j)‖2

goes up. The weight also goes down with the spatial distance between pixel i and j.

From Equation (2.2) and (2.3) imply that NLM filter rely on tuning parameters. The NLM patch

dimension Mp ×Mp, which is set to 5 × 5 or 7 × 7 for the most part to produce the best results.

However, the patch size should be carefully chosen depending on the local scale of the image; a

large patch size is more suitable for smooth areas in the image, and a small patch size is better

for textured areas. In fact, employing a too large patch in textured areas prevents the algorithm

from finding redundancies. The weight smoothing parameter σ2y , is often set close to the noise

variance. Studies of filter parameter selection can be found in [6, 22, 23, 24]. The size of the search

window Ms ×Ms, that has a large impact on the computation time and the overall complexity of
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the algorithm. On the other hand, the large search window size helps to find more similar patches

related to the reference patch. While, the small search window size leads to difficulty to find enough

similar patches which also has an influence on the visual quality of the results.

2.3 3-D Non-Local Means Filter

In this section, we introduce a direct extension of 2D SNLM to 3D, to use as an additional

performance benchmark. The 3D NLM uses a spatio-temporal search window to provide improved

video denoising. In our approach, the patches remain 2D, but the search window is extended to 3D.

This version of the 3D NLM is given by

x̂k(i) =
1

Wk,i

∑
j∈ε(i)

∑
m∈ψ(k)

wk,m(i, j)ym(j), (2.5)

where wk,m(i, j) is the weight for pixel j of frame m, when estimating pixel i of frame k. The

temporal search window is defined by ψ(k), which is the set of frame indices used in the 3D search

window for the estimation of frame k. The temporal window comprised of the most recentL frames,

and this is represented as ψ(k) = {k, k − 1, ..., k − L+ 1}.

The 3D NLM weights are computed as

wk,m(i, j) = exp

{
−‖yk(i)− ym(j)‖2

2σ2y
− d(i, j)2

2σ2d
− (k −m)2

2σ2t

}
, (2.6)

where a new temporal proximity tuning parameter, σ2t is introduced. This extra tuning parameter is

a natural extension to the spatial proximity parameter σ2d. The weights are normalized using

Wk,i =
∑
j∈ε(i)

∑
m∈ψ(k)

wk,m(i, j). (2.7)

Other similar extensions of the SNLM to 3D can be found in [25, 26].
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CHAPTER III

METHOD

3.1 The Proposed RNLM Video Denoising Algorithm Definition

The goal of the proposed RNLM method is to effectively exploit spatio-tempotal information, as

is done with the 3D NLM in Equation (2.5), but with a computational complexity more in line with

the SNLM in Equation (2.2). To do so, RNLM estimate is formed as a weighted sum of pixels from

the current frame, like Equation (2.2), but it also includes a previous frame pixel estimate. That is,

the current input frame and the prior output frame are used to form the current output. This type of

temporal recursive processing helps to exploit the temporal signal correlation, without significantly

increasing the search window size or overall computational complexity.

Specifically, the estimate for the proposed RNLM is given by

x̂k(i) =
1

Wk,i

wx̂,k(i)x̂k−1(sk(i)) + ∑
j∈ε(i)

wy,k(i, j)yk(j)

 , (3.1)

where x̂k−1(sk(i)) is the previous frame estimate (i.e., frame k − 1) at pixel sk(i) ∈ {1, 2, ..., N}.

Pixel sk(i) is selected from {x̂k−1(·)} based on block matching with respect to the block in input

frame k centered about pixel i. For the selection of sk(i), we allow for a potentially different block

and search size from that used for the within-frame processing. In particular, the block-matching

block size is Nb × Nb, with an Ns × Ns search window. As in Equation (2.2) for the SNLM, the
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Figure 3.1: Block Diagram of Proposed Algorithm.

set ε(i) in Equation (3.1) contains the indices of the pixels within an Ms × Ms search window

centered about pixel i. The recursive weight in Equation (3.1) is wx,k(i), and the non-recursive

weights, wy,k(i, j), are similar to that for the SNLM. We shall define and discuss all of the weights

shortly. The relationship among the various pixels used in the RNLM estimation process is depicted

in Figure 3.1. Shown are the raw unprocessed frames in parallel with the processed frames. Output

x̂k(i) is formed using a weighted sum of the input frames pixels, shown on the left, and the best

matching previous processed output, shown on the back right.
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Let us now define the weights. The non-recursive weights are defined in a manner similar to

SNLM. Specifically, these are given by

wy,k(i, j) = exp

{
−‖yk(i)− yk(j)‖2

hyb
− σ2n
hyn

}
, (3.2)

where hyb and hyn are tuning parameters. Here, we do not use the spatial distance weighting term

of the SNLM. This could easily be added, but it did not provide improved performance in out

experimental results. The recursive weights are given by

wx̂,k(i) = exp

{
−‖yk(i)− x̂k−1(sk(i))‖2

hx̂b

−
σ2x̂k−1(sk(i))

hx̂n

}
, (3.3)

where hx̂b and hx̂n are tuning parameters, and σ2x̂k−1(sk(i))
is the residual noise variance associated

with x̂k−1(sk(i)). The vector x̂k−1(sk(i)) is the Ms ×Ms patch of pixels about pixel x̂k−1(sk(i))

(shown in Figure 3.1) in lexicographical vector form. The weight normalization factor here is given

by

Wk,i = wx̂,k(i) +
∑

j∈εy(i)
wy,k(i, j). (3.4)

Finally, assuming the noise is independent and identically distributed, the residual noise variance

can be computed recursively as follows

σ2x̂k(i) =

w2
x̂,k(i)σ

2
x̂k−1

(sk(i)) +
∑

j∈εy(i)
w2
y,k(i, j)σ

2
n

W 2
k,i

. (3.5)

Note that Equation (3.5) is not the error variance. Rather it only accounts for the variance of the

noise component of the error associated with the estimate x̂k−1(sk(i)).

The RNLM weights in Equations (3.2) and (3.3) have a total of four tuning parameters, two to

govern the non-recursive weights, and two to govern the recursive weights. In the non-recursive

weights in Equation (3.2), the parameter hyb serves the same role as σ2y in the SNLM in Equation

13



(2.3). We refer to this weight as the non-recursive bias error weight. We view ||yk(i)−yk(j)||2 as a

measure of the bias error in yk(j) with respect to the true sample xk(i) that we are estimating. That

is, underlying signal differences between the pixel i and j are being quantified by this term. The

tuning parameter hyb controls the exponential decay of the weights as a function of this bias error.

The noise error associated with yk(j) is given by the constant noise variance σ2n. The noise variance

in Equation (3.2) is scaled by the hyn , to control the weight decay as a function of the noise variance.

For the recursive weight, we have similar tuning parameters. The term ||yk(i) − x̂k−1(sk(i))||2

quantifies the bias error associated with x̂k−1(sk(i)), and the residual noise variance associated

with this estimate is σx̂2
k−1

(sk(i))
, and may be computed using Equation(3.5). We give each of these

error quantities a tuning parameter, to balance their impact on the resulting filter weights. The bias

error for the recursive sample is scaled by hx̂b , and the residual noise term is scaled by hx̂n .

We acknowledge that the proposed RNLM does not have the optimal framework of the Kalman

filter [19]. However, it can exploit temporal signal correlation effectively, as we shall show in

Section 4.1. By choosing the tuning parameters to balance the bias and noise components of the

recursive and non-recursive terms, very good performance can be achieved with a low computational

complexity. We believe that the RNLM may provide useful solution for many video denoising

applications, and we believe it is in keeping with the spirit and simplicity of the original NLM

method.

3.2 Computational Complexity

In this section, we compare the computational complexity of SNLM, 3D NLM, and RNLM

by counting the number of multiplications and additions required to compute one processed out-

put pixel. Beginning with the SNLM, the number of floating point multiplies and adds to compute

14



Equation (2.2) is M2
s . Computing the weights based on Equation (2.3) requires M2

s vector dis-

tances, for vectors of size M2
p × 1. This requires approximately 2M2

sM
2
p additions/subtractions,

and M2
sM

2
p multiplications. Another M2

s adds and multiplies is needed to compute and apply the

weight normlaization in Equation (2.4).

The 3D NLM algorithm requires LM2
s floating point multiplies and adds to compute Equation

(2.5). The weights from Equation (2.6) require LM2
s vector distances using M2

p × 1 vectors. This

requires approximately 2LM2
sM

2
p additions/subtractions, and LM2

sM
2
p multiplications. Another

LM2
s adds and multiplies is needed to compute and apply the weight normlaization in Equation

(2.7). Thus, the complexity of the 3D NLM algorithm increases linearly with the number of frames,

L.

The process of the RNLM filter is accomplished in several steps. The output in Equation (3.1)

requires M2
s + 1 floating point multiplies and adds. The computation of the weights in Equations

(3.2) and (3.3) requires M2
s +1 vector distances usingM2

p ×1 vectors. This requires approximately

2(M2
s +1)M2

p additions/subtractions, and 2M2
sM

2
p multiplications. The residual noise recursion in

Equation (3.5) requires M2
s + 1 floating point multiplies and adds. Finally, if BMA is used to find

sk(i) in Equation (3.1), this requires N2
s vector distances with N2

b × 1 vectors. This requires ap-

proximately 2N2
sN

2
b additions/subtractions, and N2

sN
2
b multiplications. The weight normalization

operation is accomplished with M2
s + 1 floating point adds to compute Equation (3.4).

Note that if we let Ns = Ms and Nb = Mp, then RNLM has a computational complexity

comparable to 3DNLM for L = 2 frames. Also, if we simply let sk(i) = i (i.e., No BMA option),

the RNLM has a computational complexity that is approximately the same a SNLM. However, we

have found that the BMA matching significantly improves perfromance in video sequences with

significant amounts of motion. Furthermore, we have found that it is generally advantageous to

choose Nb > Mp. This helps to provide a better match for the the important sample x̂k−1(sk(i))

15



. The size of the search window Ns maybe selected based on the temporal motion expected in the

video sequence.
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CHAPTER IV

EXPERIMENTAL RESULTS

4.1 Simulated Data and Discussion

In order to illustatrate the efficacy of the proposed RNLM algorithm, we present a number of ex-

perimental results. We compare our method to several state-of-the-art methods including SNLM[6],

3D NLM, BM3D [20], V-BM3D [21], and DNLM [19]. Our results make use of standard and

publicly available video sequences [27], allowing for reproducable and compariative results.

These sequences present variations in scene content, lighting conditions, and scene motion.

We artifically degrade the imagery with Gaussian noise and compare the restored images to the

originals.

The metrics we shall use are the peak signal-to-noise ratio (PSNR), and the structural similarity

(SSIM). The PSNR metric in units of deciBels (dB) is defined as

PSNR(k) = 10× log10

(
R2

MSE(k)

)
, (4.1)

where R is the maximum limit of the dynamic range of the image. For our 8 bit images, R = 255.

The variable, MSE(k), is the mean squared error for frame k, given by

MSE(k) =
1

N

N∑
i=1

(xk(i)− x̂k(i))2, (4.2)
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where xk(i) is the true pixel value, and x̂k(i) is the estimated pixel.

The SSIM provides an aditional metric that some argue is more consistent with subjective per-

ception than PSNR [28, 29, 30].

In Table 4.1, we provide PSNR results for 5 different image seqeunces, each with 8 different

noise standard deviations. The proposed RNLM method results are reported for two variations. The

results labled RNLM (BMA) refers to the proposed method where block matching is employed to

find the best match for the recursive sample x̂k−1(sk(i)). The (No BMA) version simply uses the

estimate pixel position, such that sk(i) = i. This version has a reduced computational complexity.

However, as shown in Table 4.1, using BMA gives improved results, compared with the (No BMA)

version.

The results in Table 4.1 show that the RNLM method consistently outperforms the SNLM. Thus,

the recursive processing is providing a clear performance benefit. RNLM also outperforms single

frame BM3D. V-BM3D does provide higher PSNR values in most cases, but the computational com-

plexity of that method is far greater, and the processing of the video is non-causal. On the other hand,

RNLM has a low computational complexity, and the processing is fully causal, allowing for real-

time processing. SSIM results for the same sequences are shown in Table 4.2. In this table, several

additional published results are reported for comparison. These include WRSTF [31], SEQWT [32],

3DWTF [33], IFSM [34], 3DSWDCT [34], VBM3D [21], ST-GSM [35], and DNLM [19]. The re-

sults for these methods are the reported results from the respective papers, for the same sequences

and noise levels. The standard deviations of the additive Gaussian noise are 10, 15 and 20. It can

be seen that the RNLM method gives higher SSIM than SNLM, WRSTF, SEQWT, 3DWTF, IFSM,

and DNLM, with average SSIM gains of 0.070, 0.018, 0.059, 0.034, 0.063, and 0.0091, respectively.

The SSIM of RNLM is competitive with 3DSWDCT and ST-GSM. However, V-BM3D gives the

best results here.
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Table 4.1: PSNR comparison with competitive denoising algorithm.

σn

Video: Salesman Tennis Fl. Gard. Miss Am. Foreman Overall
PSNRRes.: 288 x 352 240 X 352 240 X 352 288 X 360 288 X 352

Frames: 50 150 150 150 300

5

SNLM 37.14 36.49 36.50 42.08 38.43 38.13
BM3D 38.32 37.54 37.02 43.09 38.83 38.96
RNLM (No BMA) 39.36 37.80 36.46 42.21 39.95 39.16
RNLM (BMA) 39.59 38.61 37.09 42.74 40.55 39.71
V-BM3D 41.35 40.03 37.40 43.98 39.91 40.53

10

SNLM 33.28 32.66 31.03 39.23 35.17 34.27
BM3D 34.51 33.63 31.85 40.39 35.21 35.12
RNLM (No BMA) 36.14 34.04 31.05 39.66 36.13 35.41
RNLM (BMA) 36.31 34.40 32.08 40.22 36.72 35.95
V-BM3D 38.33 36.37 32.58 42.17 36.67 37.22

15

SNLM 30.92 30.57 28.16 37.22 33.16 32.01
BM3D 32.43 31.65 28.99 38.61 33.26 32.99
RNLM (No BMA) 33.16 31.96 28.50 37.66 34.20 33.08
RNLM (BMA) 34.30 32.49 29.47 38.53 34.85 33.93
V-BM3D 36.55 34.35 29.93 40.93 34.87 35.33

20

SNLM 29.38 29.35 26.29 35.69 31.70 30.48
BM3D 31.02 30.35 27.04 37.22 31.90 31.51
RNLM (No BMA) 31.44 30.65 26.62 36.61 32.68 31.59
RNLM (BMA) 32.79 30.93 27.74 37.24 33.37 32.42
V-BM3D 35.07 32.92 28.06 39.93 33.54 33.91

25

SNLM 28.20 28.52 24.91 34.51 30.48 29.32
BM3D 29.94 29.38 25.57 36.06 30.85 30.36
RNLM (No BMA) 30.16 29.26 25.30 35.57 31.08 30.27
RNLM (BMA) 31.61 29.92 26.57 36.40 32.09 31.32
V-BM3D 33.69 31.83 26.55 39.04 32.42 32.71

30

SNLM 27.27 27.69 23.83 33.54 29.41 28.35
BM3D 29.06 28.58 24.39 34.19 29.99 29.24
RNLM (No BMA) 29.22 28.28 24.23 34.79 30.08 29.32
RNLM (BMA) 30.64 28.80 25.55 35.70 31.10 30.36
V-BM3D 32.45 30.96 25.21 37.40 31.42 31.49

35

SNLM 26.53 26.85 22.96 32.72 28.47 27.51
BM3D 28.28 27.85 23.41 34.19 29.23 28.59
RNLM (No BMA) 28.48 27.53 23.35 34.05 29.53 28.58
RNLM (BMA) 29.82 27.99 24.68 35.11 30.27 29.57
V-BM3D 31.34 30.24 24.28 37.40 30.59 30.77

40

SNLM 25.93 26.07 22.23 32.02 27.65 26.78
BM3D 27.38 27.04 22.60 33.26 28.30 27.72
RNLM (No BMA) 27.96 25.74 22.55 33.55 28.83 27.72
RNLM (BMA) 29.16 27.16 23.96 34.58 29.54 28.87
V-BM3D 30.32 29.60 23.28 36.33 29.74 29.85
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Table 4.2: SSIM comparison with competitive denoising algorithm.

σn

Video: Salesman Tennis Fl. Gard. Miss Am. Foreman Overall
SSIMRes.: 288 x 352 240 X 352 240 X 352 288 X 360 288 X 352

Frames: 50 150 150 150 300

10

SNLM 0.887 0.853 0.934 0.890 0.907 0.894
BM3D 0.917 0.869 0.963 0.959 0.918 0.925
WRSTF [31] 0.932 0.897 0.953 0.908 0.927 0.923
SEQWT [32] 0.900 0.842 0.941 NA NA 0.894
3DWTF [33] 0.923 0.856 0.909 NA NA 0.896
IFSM [34] 0.904 0.855 0.927 0.904 0.886 0.895
3DSWDCT [34] 0.955 0.894 0.959 0.946 0.932 0.937
V-BM3D 0.959 0.916 0.963 0.967 0.934 0.948
ST-GSM [35] 0.960 0.894 0.950 0.952 0.937 0.939
DNLM [19] 0.931 0.856 0.947 0.964 0.946 0.928
RNLM(No BMA) 0.937 0.881 0.953 0.954 0.923 0.930
RNLM(BMA) 0.939 0.895 0.960 0.960 0.925 0.936

15

SNLM 0.825 0.759 0.886 0.829 0.870 0.834
BM3D 0.878 0.817 0.937 0.948 0.888 0.893
WRSTF [31] 0.901 0.839 0.922 0.877 0.877 0.883
SEQWT [32] 0.846 0.722 0.893 NA NA 0.820
3DWTF [33] 0.903 0.793 0.872 NA NA 0.856
IFSM [34] 0.851 0.776 0.882 0.857 0.836 0.840
3DSWDCT [34] 0.930 0.834 0.931 0.928 0.907 0.906
V-BM3D 0.943 0.874 0.940 0.961 0.911 0.926
ST-GSM [35] 0.941 0.841 0.925 0.943 0.917 0.913
DNLM [19] 0.889 0.795 0.906 0.951 0.929 0.894
RNLM(No BMA) 0.883 0.811 0.900 0.941 0.887 0.884
RNLM(BMA) 0.902 0.829 0.933 0.945 0.901 0.902

20

SNLM 0.768 0.679 0.836 0.761 0.833 0.775
BM3D 0.843 0.780 0.909 0.936 0.861 0.866
WRSTF [31] 0.868 0.790 0.889 0.846 0.873 0.853
SEQWT [32] 0.796 0.716 0.842 NA NA 0.785
3DWTF [33] 0.882 0.740 0.840 NA NA 0.821
IFSM [34] 0.801 0.709 0.837 0.812 0.793 0.790
3DSWDCT [34] 0.905 0.790 0.900 0.909 0.884 0.878
V-BM3D 0.923 0.836 0.918 0.956 0.891 0.905
ST-GSM [35] 0.923 0.797 0.900 0.936 0.901 0.891
DNLM [19] 0.849 0.758 0.865 0.939 0.913 0.865
RNLM(No BMA) 0.881 0.779 0.881 0.930 0.855 0.865
RNLM(BMA) 0.886 0.783 0.905 0.937 0.876 0.877
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Additional PSNR results are provided in Table 4.3 for two noise levels. The noisy input image

PSNRs here are 24 dB and 28 dB. Comparison methods here include STA [26], K-SVD [36], ST-

GSM [35], 3D-patch [25], VBM3D [21], DNLM [19], and SNLM. The NLM Patch size is Mp = 7.

The NLM Search window Ms = 11. The BMA search and block-matching size used Ns = 3,

Nb = 29, respectively. As one can see, RNLM (BMA) outperforms STA, DNLM, RNLM (No

BMA), and SNLM with the average PSNR gains of 1.35, 0.95, 0.68, and 2.96, respectively.

Figures 4.2, 4.1, and 4.3 show the restored PSNR for individual frames 1 to 150 for the se-

quences Salesman,Tennis,Miss America, and Flower Garden, respectively. The noise standard de-

viation for these results is σn = 40. The methods shown are V-BM3D, BM3D, SNLM, RNLM (No

BMA), and RNLM (BMA). The proposed RNLM (BMA) provides the best results in the Flower

Garden video sequence, and provides the second best performance on the other sequence.

Besides traditional PSNR criteria, we carry out experiments based on SSIM. Figures 4.4, 4.5,

and 4.6 show the restored SSIM for individual frames 1 to 150 for the sequences Salesman, Ten-

nis, Miss America, and Flower Garden respectively. The noise standard deviation for these results

is σn = 15. The methods shown are V-BM3D, BM3D, SNLM, RNLM (No BMA), and RNLM

(BMA). The proposed RNLM (BMA) has competitive performance with the video denoising algo-

rithm V-BM3D in the Flower Garde video sequence and provides the second best performance on

the Salesman sequence.

In Fig. 4.9, we offer a visual comparison of denoised Frame 92 from the salesman sequence

with Gaussian noise at σn = 40. Figure 4.9(a) shows the original frame. The noisy frame is

shown in Figure. 4.9(b). Figure 4.9(c) is the denoised image using SNLM. This method struggles

to effectively handle the high levels of noise. However, with decreased σn, it tends to exhibit

much better subjective visual performance. Figure 4.9(d) is the BM3D denoised frame. While it

successfully reduces the noise, here it produces an over-smooth result and detail such as the mouth,
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eyes, and texture of the original frame is lost. Figure 4.9(e) shows the V-BM3D denoised frame.

This result does a good job with noise reduction and some detail preservation. However, it also

tends to over-smooth texture in this image, such as the plant leaves. Finally, Fig. 4.9(f) shows the

output of the proposed RNLM (BMA) algorithm. We believe that it produces a visually pleasing

result here, with a good balance of noise reduction and detail/texture preservation.

Moreover, In Fig. 4.8, we offer another visual comparison of denoised Frame 48 from the

Flower Garden sequence with Gaussian noise at σn = 30. Figure 4.9(a) shows the original frame.

The noisy frame is shown in Fig. 4.9(b). Figure 4.9(c) and Figure 4.9(d) are the denoised image

using SNLM, and the BM3D denoised frame, respectively. These methods successfully removed

the noise, but produces over-smooth results which resulted lose some visual features and details.

Figure 4.9(e) shows the V-BM3D denoised frame. This result successfully removed noise even in

highly noise level, and produces fine image details. However, it smooth regions produces a few

annoying artifacts and lose in texture regions. Finally, Fig. 4.9(f) shows the output of the proposed

RNLM (BMA) algorithm. It produces a visually pleasing result which maintains richer texture in

the scene and good sharp details. Figures4.10 and Figures4.11 show sample of denoised frame

114 from the Tennis sequence and frame 573 Foreman sequence, respectively. Figure 4.10 (a)

and 4.11(a) show the noisy frame. Figure. 4.10(b) and 4.11 (b) show the output of the proposed

RNLM (BMA) algorithm. Figure. 4.10(c) and 4.11 (c) show the SSIM index maps of the noisy

frame where the darkness indicates the value of the local pixel difference. Figure. 4.10(d) and 4.11

(d) show the SSIM index maps of the output of the proposed RNLM (BMA) algorithm where the

brightness indicates the magnitude of the local SSIM index. The brighter means, the better quality

regarding underlying image structures measure. The absolute error maps and the SSIM index have

been improved so the RNLM (BMA)obtain a better quality regarding image structures measure.
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Finally, the current implementation of RNLM is significantly faster than reported processing

speeds for DNLM, STA, and 3-D patch Algorithms. The average computational time of RNLM

(for Intel 2.2 GHz CPU with 4GB Ram) is 0.065 sec/QCIF frame (176 × 144 images) for both

5 × 5 and 3 × 3 patch size on an Intel 2 × 2 GHz CPU with BMA motion compensation. The

average computational time reported for DNLM is about 200 sec/QCIF frame [19]. In addition,

The average computational time for the STA with no motion compensation is 60 sec/frame (384 ×

228 images) [26], whereas RNLM(BMA) takes 0.319 sec/CIF frame at this resolution. Moreover,

The 3-D patch algorithm is reported to potentially require days to run a non-optimized MATLAB

implementation on a CIF-resolution video [25].The average computational time reported for SNLM

0.287 sec/CIF frame. The BM3D algorithm is slower than SNLM because the full operation of the

BM3D algorithm is highly complex and computationally demanding.
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Table 4.3: PSNR performances (dB) comparisons with various methods of video denoising algo-
rithms.

Video Salesman Fl. Gard. Miss Am. Suzie Foreman

Input PSNR 28 24 28 28 28 24 28 24

STA [26] 35.13 32.60 31.33 39.39 37.07 35.11 34.94 32.90

K-SVD [36] 37.91 35.59 32.13 40.49 37.96 35.95 37.86 35.86

ST-GSM [35] 37.93 35.17 NA 41.43 38.36 36.21 36.85 34.37

3D-Patch [25] 39.26 36.35 NA 42.23 38.40 36.32 36.88 34.55

VBM3D [21] 38.79 36.07 32.51 41.64 38.16 36.24 37.27 35.19

SNLM [19] 32.97 30.02 30.33 38.47 34.33 31.90 34.92 32.65

DNLM [19] 35.22 32.73 31.28 39.70 37.22 35.25 36.19 34.06

RNLM (No BMA) 36.19 32.78 30.94 39.60 38.43 35.83 36.17 33.87

RNLM (BMA) 36.36 34.03 32.01 40.07 39.36 36.55 36.46 34.37
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Figure 4.1: Shows the Comparison of PSNR output for two video sequences Salesman(top) and
Tennis (bottom) corrupted by Gaussian noise with zero mean and standard deviation = 40 denoised
by RNLM,RNLM(No BMA),VBM3D,BM3D, and SNLM
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Figure 4.2: Shows the Comparison of PSNR output for two video sequences Miss Am.(top) and Fl.
Grad (bottom) corrupted by Gaussian noise with zero mean and standard deviation = 40 denoised
by RNLM,RNLM(No BMA),VBM3D,BM3D, and SNLM
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Figure 4.3: PSNR comparison for Foreman sequence corrupted with a noise level of σ = 40.
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Figure 4.4: Shows the Comparison of SSIM output for two video sequences Salesman(top) and
Tennis (bottom) corrupted by Gaussian noise with zero mean and standard deviation = 40 denoised
by RNLM,RNLM(No BMA),VBM3D,BM3D, and SNLM
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Figure 4.5: Shows the Comparison of SSIM output for two video sequences Miss Am.(top) and Fl.
Grad (bottom) corrupted by Gaussian noise with zero mean and standard deviation = 40 denoised
by RNLM,RNLM(No BMA),VBM3D,BM3D, and SNLM
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Figure 4.6: SSIM comparison for Foreman sequence corrupted with a noise level of σ = 40.
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(d) (c) 

(a) (b) 

Figure 4.7: All truth sequence frame used in experimental results. (a) Salesman (288 × 352); (b)
Tennis (288×352); (c) Miss Am.(288×352); (d) Fl. Gard (288×352); and (e) Foreman (288×352).
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(a) 

(c) 

(e) 

(d) 

(b) 

(f) 

Figure 4.8: Comparison of denoised Frame 93 from the Flower Garden sequence with σn = 30. (a)
Original frame, (b) corrupted frame, (c) SNLM, (d) BM3D, (e) V-BM3D, (f) RNLM (BMA).
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(a) 

(c) 

(e) 

(d) 

(b) 

(f) 

Figure 4.9: Comparison of denoised Frame 93 from the Salesman sequence with σn = 40. (a)
Original frame, (b) corrupted frame, (c) SNLM, (d) BM3D, (e) V-BM3D, (f) RNLM (BMA).
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(c) 

(a) (b) 

(d) 

Figure 4.10: Denoising results of frame 114 in Tennis sequence with σn = 20. (a) Original frame,
(b) corrupted frame, (c) SSIM quality map for corrupted frame (d) SSIM quality map for RNLM
(BMA) frame

34



 

 

 

 

 

 

 

 

 

 

  

(c) 

(a) (b) 

(d) 

Figure 4.11: Denoising results of frame 573 in Foreman sequence with σn = 10. (a) Original frame,
(b) corrupted frame, (c) SSIM quality map for corrupted frame (d) SSIM quality map for RNLM
(BMA) frame

35



CHAPTER V

CONCLUSION

In this thesis, we have presented a new temporally-recursive NLM algorithm for video denois-

ing. The output of the new RNLM method is a weighted sum of pixels from the current noisy

frame, and of a selected pixel from the prior processed frame. This type of recursive processing

allows us to exploit temporal correlation with little additional computational cost, compared with a

SNLM. We have explored two versions of the RNLM method here, RNLM (BMA) that uses BMA

for motion compensation, and RNLM (No BMA) that simply uses the previous pixel at the same

location to be included in the weighted sum. The results also show that RNLM (BMA) consistently

outperformed the RNLM (No BMA). The computational complexity of the RNLM (BMA) method

is approximately the same as 3D-NLM with just two frames. Both versions of RNLM method

consistently outperform SNLM. Furthermore, our results show that RNLM (BMA) is competitive

with much more computationally complex algorithms, such as BM3D and V-BM3D. We believe the

proposed method offers a simple and practical video denoising solution, capable of balancing noise

reduction and detail preservation. Because of its low computational cost, we believe it is well suited

for real-time implementation.

36



BIBLIOGRAPHY

[1] V. Argyriou, J. M. Del Rincon, B. Villarini, and A. Roche, Image, video and 3D data registra-
tion: medical, satellite and video processing applications with quality metrics. John Wiley
& Sons, 2015.

[2] V. Madisetti, Video, Speech, and Audio Signal Processing and Associated Standards. CRC
Press, 2009.

[3] F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson–gaussian noise,” IEEE
Transactions on Image Processing, vol. 20, no. 3, pp. 696–708, 2011.

[4] Z. Lin, X. Li, and Z. Sun, “The summary of video denoising method,” 2015.

[5] G. Chen, J. Zhang, D. Li, and H. Chen, “Robust kronecker product video denoising based on
fractional-order total variation model,” Signal Processing, vol. 119, pp. 1–20, 2016.

[6] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algorithms, with a new
one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530, 2005.

[7] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via nonlocal means of similar
neighborhoods,” Signal Processing Letters, IEEE, vol. 12, no. 12, pp. 839–842, 2005.

[8] J. Wang, Y. Guo, Y. Ying, Y. Liu, and Q. Peng, “Fast non-local algorithm for image denoising,”
in Image Processing, 2006 IEEE International Conference on. IEEE, 2006, pp. 1429–1432.

[9] T. Brox, O. Kleinschmidt, and D. Cremers, “Efficient nonlocal means for denoising of textural
patterns,” Image Processing, IEEE Transactions on, vol. 17, no. 7, pp. 1083–1092, 2008.
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