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ABSTRACT

DATA TRANSFER SYSTEM FOR HOST COMPUTER AND FPGA COMMUNICATION

Name: Barnard, Michael T.
University of Dayton

Advisor: Dr. Eric Balster

This Thesis describes a communication system to allow for the transmission of data between a

host computer and a DE2-115 FPGA board over an Ethernet connection. This is achieved by using

a socket between the host computer and a NIOS II embedded processor that accepts the data from

the host computer and transfers it to the FPGA fabric. The host computer uses a C++ program to

open a file and send the data over the socket to the NIOS II processor. The NIOS II acts as memory

controller for the Synchronous Dynamic Random Access Memory (SDRAM) on the board with

separate input and output data sections for the Hardware Description Language (HDL) processing

module. A HDL module then processes the data and sends it back to the NIOS II to be returned to the

host computer over the socket. The data transfer system is tested with three basic image processing

functions performed on three sample images to verify its functionality. This data transfer system

allows for easier testing of digital designs on the DE2-115 board by providing test data to the digital

design in an efficient manner.
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CHAPTER I

INTRODUCTION

The flexibility of Field Programmable Gate Arrays (FPGAs) has allowed them to become preva-

lent in many fields including digital design and control systems. These devices can be programmed

with a wide range of digital logic designs leading to large amounts of possible research topics and

design projects utilizing FPGAs [1]. An FPGA is a chip that contains hundreds of thousands of

digital logic elements that can be connected in numerous ways to create any digital logic structure.

FPGAs can be programmed as many times as needed, so improvements can be made to a design

and the design can be updated without replacing any hardware. Designs may be prototyped on one

chip and then programmed on to other FPGAs once the design is ready for production; one chip

can also be used to prototype many designs one after the other. The main restriction to widespread

FPGA prototyping is cost: the cost of the board hosting the FPGA, the cost of the software licenses

required to program the board, and the cost of software development kits (SDKs) used for data trans-

fer to and from the board. To be able to transfer data to the board most of the more expensive FPGA

models have a dedicated SDK that takes care of connecting with the board and transferring the data

while the less expensive models do not. These SDKs allow designers to focus on their specific en-

gineering problem without having to worry about the complexities of data transfer. Less expensive

FPGA models typically lack SDKs making them less capable and flexible in solving engineering
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problems. This Thesis describes a communication system which allows designers to communicate

data to the DE2-115 FPGA development board with ease.

Chapter II discusses the impact that this data transfer design will have on the campus research

community. Next, Chapter III is a discussion on the backgrounds of a few technologies significant to

the design in addition to FPGAs and HDLs. How the design is created and implemented is explained

in Chapter IV; covering all three sections of the design: the host PC program, the NIOS II program,

and the HDL modules. Chapter V follows with a section on the results of three test functions on

three test images and the data transfer system’s overall performance during these tests. Chapter VII

concludes by summarizing this paper and discussing future work based on this research.
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CHAPTER II

FPGA COST

Widespread FPGA prototyping would be more prevalent if the costs could be reduced: cost of

the board hosting the FPGA, cost of software licenses required to program the board, and cost of

software development kits (SDKs) for data transfer to and from the board. Most of the more expen-

sive FPGA models have a dedicated SDK to transfer data to the FPGA board while less expensive

models do not. These SDKs allow designers to focus on their specific engineering problem without

having to worry about the complexities of data transfer. The SDKs for data transfer can cost up-

wards of $4,000 per year alone, and Altera’s Quartus II software can also cost $2,000 per year [2].

That $6,000 a year allows for the use of the FPGA but does not include the cost of the FPGA itself.

The FPGAs with this type of support software can cost up to $50,000 per board. Alternatively,

there are inexpensive boards, like the DE2-115 shown in Figure 2.1, that can be programmed with

license free software but do not have any SDKs to transfer data [3]. These inexpensive boards are

limited to switches and buttons for data input which are not realistic input methods for large scale

data transfer. The development of this data transfer system allows for communications between the

inexpensive board and a host PC. The development of such a system allows for the possible $56,000

investment to be replaced with a $300 investment for prototyping purposes.
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Figure 2.1: DE2-115 Board
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FPGA Board NAME Number Owned Unit Cost Total Cost
Gidel Proce V [5] 57 $12,450 $709,650
Gidel PROCStar III 110 [6] 3 $7,500 $22,500
Gidel PROCStar III 150 [6] 32 $14,150 $452,800
Total 92 $1,184,950

Table 2.1: FPGA Boards Owned and Cost

This data transfer design will serve as the basis for other research projects. It also allows for

more projects to occur simultaneously because for the cost of one high end FPGA board approx-

imately 180 inexpensive boards can be purchased. The DE2-115 board is slightly less powerful

than more expensive models, but the scope of research may not be affected by that difference. By

using the less expensive boards in research, the projects would be completed less expensively. The

projects that would benefit from this data transfer system are not limited to research. There are

numerous college-level courses in Electrical and Computer Engineering that use FPGAs and could

incorporate assignments based off of this research to better illustrate how certain digital designs

operate on larger sets of input data [4].

There are already some high end FPGA boards owned by the University of Dayton used by

various faculty in the Electrical and Computer Engineering Department and researchers at the Uni-

versity of Dayton Research Institute. Table 2.1 shows the number of each type of FPGA board

owned by the University and the total cost of all of the boards. Some of the research performed on

these boards could be moved to the DE2-115 board so the University would not have to invest in

so many expensive FPGAs. The money saved could be used to facilitate other research topics by

hiring more researchers or purchasing specific equipment required by specialized research topics.

5



CHAPTER III

BACKGROUND TECHNOLOGIES

The data transfer system relies on two other major technologies in addition to the hardware

description language (HDL) language and FPGA chips. These technologies are socket communica-

tion and the NIOS II embedded-processor. Socket communication allows for data transfer between

two separate applications and even two separate computing machines. The NIOS II architecture is

an embedded processor that can be instantiated on an FPGA chip and execute the C programming

language.

3.1 Sockets and Socket Communication

The term socket describes an endpoint for either interprocess or interapplication communication

[7]. Two processes can communicate over a network by using two separate sockets. Every socket is

identified by an IP address concatenated with a port number i.e. (146.86.5.20:1625) which describes

the IP address, 146.86.5.20, and the port number, 1625. Specific services listen to well known ports;

ports numbered below 1024 are considered well known but not all are used. Sockets are generally

used in client-server architecture to ensure that communication will occur easily and error free. To

be able to communicate over sockets all connections must be unique.

The communication capabilities of sockets allow applications to send and receive packets of

information over the connection when it is established. Applications can also use sockets to connect
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a local socket to a remote address of a socket created by a different application. Sockets listen

for any remote connections that connect to a local socket to allow for communication between the

remote application and a local application.

There are five software functions used in the operations of socket for both servers and clients:

socket, bind, listen, accept, and connect. The socket function creates a communication endpoint

for either the server or client. To associate an endpoint a specific point the server uses the bind

function. The listen function makes the socket a passive listener and the accept function is used to

accept a connection request from the client. The connect function is used by the client to request a

connection from the server.

3.2 NIOS II Embedded Processor

The NIOS II is an embedded processor architecture designed to be implemented using Altera

FPGAs [8]. An embedded processor, also called a soft microprocessor, softcore microprocessor, or

a soft processor, is a microprocessor core that can be wholly implemented using logic synthesis.

The processor can be programmed onto any device containing programmable logic; the processor

can also be instantiated multiple times on the same device to mimic a multi-core processor.

The NIOS II processor is a 32 bit RISC architecture with little endianness. There are three

versions of the NIOS II processor: the NIOS II/f, the NIOS II/s, and the NIOS II/e. The NIOS

II/f core is designed for maximum performance at the expense of core size. The NIOS II/s core is

designed for a balance between performance and cost. The NIOS II/e core uses the smallest possible

logical footprint so that smaller FPGAs are able to use the NIOS II technology.
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3.2.1 NIOS II/f Features

The features of the NIOS II/f include separate instruction and data caches that range in size from

512 bytes to 64 kilobytes [9]. An optional Memory Management Unit (MMU) or Memory Protec-

tion Unit (MPU) is also available in this version. The processor has access to up to 2 GB of external

address space. The option for tightly coupled memory for instructions and data is also available.

The processor has a six stage pipeline to achieve maximum Dhrystone Million Instructions per Sec-

ond per MegaHertz. Some peripherals that are included are single cycle hardware multiply, a barrel

shifter, optional hardware divide option, and dynamic branch prediction. The core also supports up

to 256 custom instructions and unlimited hardware accelerators. A Joint Test Action Group (JTAG)

debug module is also present along with optional JTAG debug module enhancements, including

hardware breakpoints, data triggers, and a real time trace.

3.2.2 NIOS II/s Features

The features of the NIOS II/s include an instruction cache and up to 2 GB of external address

space [9]. The option for tightly coupled memory for instructions is present. The five stage pipelined

processor also has static branch prediction, hardware multiply, divide and shift options. Up to 256

custom instructions can be supported by the processor. The JTAG debug module is also present

with the optional JTAG module enhancements, including hardware breakpoints, data triggers, and

real time trace.

3.2.3 NIOS II/e Features

The features of the NIOS II/e core include up to 2 GB of external address space [9]. The

complete processor system only occupies a maximum of 700 logic elements. The JTAG debug

module is also present with some optional debug enhancements. The core supports up to 256 custom

8



instructions. This version of the NIOS II processor does not require a license unlike the other two

versions if the NIOS II processor.
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CHAPTER IV

SYSTEM DESIGN AND IMPLEMENTATION

The proposed data transfer system is split into three major components: the Hardware De-

scription Language (HDL) modules to process the data, the Communications Management Module

(CMM), which runs on the NIOS II processor, that moves the data from the socket to the process-

ing module and back again, and the Socket Client used by the host computer to communicate with

the NIOS II processor [10]. The processing module uses the CMM as a memory controller for

the Synchronous Dynamic Random Access Memory (SDRAM) reading and writing the data that

it processes. The CMM reads that data from the socket and unpacks it byte by byte and sends the

individual bytes down to the processing module. When the CMM processor receives data from the

processing module it puts the data into an output buffer that is sent across the socket when all of

the data has been processed. The host computer’s Socket Client opens the file to be processed and

sends it across the socket as one buffer; when the processed data is received from the socket it is

written out to a newly created file. Figure 4.1 shows how the data moves around the various compo-

nents. The host computer program is written in C++, the CMM is written in C, running on a NIOS

II processor and the processing module is written in Verilog, a hardware description language. The

NIOS II/s variant is used because of its balance between computing power and logic size.
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Figure 4.1: Transfer System Data Flow

4.1 Socket Client Program

The Socket Client is designed to open the input and output files and communicate to the DE2-

115 board over the Ethernet connection. The socket server is created by the CMM on the board and

connected to the host computer when a file is ready to be processed. The input data is written to

the socket and the processed data is read from the socket upon completion. The processed data is

written to a new file with a name that can be edited before run time but is defaulted to ”processed ”

followed by the name of the input file. The time taken to process the data is also calculated and

output for the user’s convenience. The size of the file, number bytes read from the input file, and

the number of bytes written to the output file are also printed to the console when the file has been

processed to ensure that the entire file is processed and there are no errors in transmitting the data

across the socket.

The Socket Client has the ability to process more than one file each time it is called by including

multiple file names in the command line arguments. The only command line arguments needed are

the application name and the name of a file to be processed. The IP address and port number are

written in the Socket Client program because the location of the server will not change unless it
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is changed by the user; these two values are used to connect to the socket and communicate with

the board. The file name is used to open both the input and output files so that if multiple files are

processed the output files are easily paired with their respective input file. When multiple files are

processed, a separate socket connection is made for each file and the console output is repeated for

each file as they are processed. An example of the console output with three files being processed

can be seen in Figure 4.2.

Figure 4.2: Example of Console Output With Multiple Files Processed

The Socket Client starts by checking for correct usage to ensure that all of the needed informa-

tion is present. The number of file names given is then obtained by subtracting one from the number

of command line arguments present to loop the correct number of times. After opening the input

file the size of the file is determined by using the C functions fseek() and ftell() to find the value of

the pointer to the last byte in the file. The buffers for the input, output, and data to be sent across

12



the socket are allocated in memory by using malloc; the size is determined by the size of the input

file. The buffers are dynamically allocated to eliminate the need for the user to hard code the size

of the file into the program and to allow multiple large files to be processed without taking up huge

chunks of the Socket Clients’ available memory. The socket connection is established using an IP

address and port number declared in the Socket Client.

The data from the input file is not the only data written to the socket. The size of the file occupies

the first four bytes of the buffer that is written down to the board so that the other parts of the design

are aware of how much data is present to process. The rest of this buffer is filled with the data from

the input file and written to the socket. The program then waits for the socket to be written to by

the NIOS II processor and reads in the processed data from the socket until the number of bytes

read is the same as the size of the input file. The output buffer is written to the output file and the

socket, the input file, and the output file are closed and the three buffers are deallocated to conserve

memory. If there are more files to be processed then the program determines the new file’s size and

reopens the socket as many times as needed.

4.2 Communications Management Module

The CMM is written in C and run on the NIOS II processor that is instantiated on the FPGA

chip. The bulk of the code is dedicated to creating and monitoring the socket and providing error

messages to the user in case any errors arise. When a connection is made and data is available to

be read the socket is read and the size of the file is separated from the body of data. When all of

the data has been read from the socket the input data is placed into a buffer that is sent to a function

to communicate with the processing module along with the size of the file and the socket details to

allow for communication.
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When a connection to the socket is detected the program calls one of two functions: if this is

the first connection then SSS handle accept is called or if the program has accepted the connection

then SSS handle receive is called to receive the data. When the first section of data is read from

the socket the number of bytes of data is separated from the rest of the data from the socket so that

the program knows when to stop reading the socket. If all of the data is received in the first read

then the function to move the data to the processing module is called; if there is still more data to

be read then the program reads the socket until all the data has been received. When all of the data

is received then a payload buffer is allocated and filled with the input data and sent with the file size

and socket details to the function that communicates with the processing module.

SSS exec command is the function that acts as a memory controller for the processing module

and also sends the processed data back over the socket. The first task it performs is to allocate mem-

ory for the output buffer based on the size passed from SSS handle receive. The HDL modules are

then enabled by setting their reset high; the size of the file is written to a Parallel Input Output (PIO)

port to be used by the processing module to know how much data needs to be processed. The start

signal is toggled on and off to start the processing module moving through its state machine to pro-

cess the data. The code then enters a loop that will exit when it receives a signal from the processing

module that all of the data has been processed. This loop constitutes the memory interface to the

SDRAM reading from a specific address when a signal is received and writing to a specific address

when a signal is received. Within the loop there are two if statements: one for reading data from

the data buffer and one for writing to the output buffer. When the signal to read data is received

the index of the data to be read is read from a PIO port; if the index references a location outside

the buffer sends back a zero instead of garbage data. The selected value is sent back to the module

and a signal that the data is ready is toggled to allow the module to continue to process the data.

The process for writing data to the output buffer is nearly the same; the address is obtained from a

14



PIO port and the data is written into that address of the buffer. A signal to continue processing is

also used to allow the module to continue through its state machine. When all of the data has been

processed the output buffer is sent back to the host computer over the socket. Finally the reset for

the processing module is set low to ensure that they start from their initial states the next time they

are used.

4.3 Hardware Description Language Modules

There are three main HDL modules that are instantiated on the board: the control module that

instantiates the other modules, the NIOS II processor module, and a processing module as seen in

Figure 4.1. These modules are responsible for most of the space on the FPGA and most of the work

in processing the data. There are two more specialized modules that are present: a Phase Locked

Loop (PLL) and a Double Data Rate Input/Output (DDIO) core. The PLL is used to create the

three clocks used with the three possible Ethernet speeds: 10 Megabit, 100 Megabit, and 1 Gigabit.

The DDIO module transmits data on both edges of the reference clock and creates an accurate edge-

aligned clock-data relationship with the Ethernet port. The HDL modules and the major connections

between them are shown in Figure 4.3; the arrows on the left side of the figure are connected to the

pins of the FPGA chip. The PLL and DDIO modules are megafunctions provided by Altera while

the NIOS II module is created using the Qsys tool. The control and process modules are hand

written. The control module instantiates the other four module and also includes some digital logic

to set various parameters for the use of the Ethernet port.

The NIOS II system is created by using the Qsys system integration tool and is instantiated in

the control module. The processor module is made up of various components that are compiled

together by the Qsys tool. The processor module includes a clock source, JTAG UART for commu-

nicating with the computer that programs it, and a system ID peripheral to simplify programing the
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Figure 4.3: Map of Hardware and Important Connections

processor. There is also a NIOS II core that is the basis of the processor; the type used is the NIOS/s

to maximize performance and leave as many logic elements open for the digital design. A memory

controller for the SDRAM and a click signals core are included; the NIOS II processor uses the

SDRAM for both instruction and data storage, and the clock signal’s core ensures that any commu-

nication between the memory and the processor is synchronized. There are two timers present in

the processor system: a system timer to schedule tasks and a timestamp timer that can be used to

measure the time that any number of lines of code take to complete. There are multiple components

that are used to control the Ethernet port on the board; the main one being a direct controller for the

Triple-Speed Ethernet. Two Scatter-Gather Direct Memory Access (SGDMA) controllers are used

for the transmit and receive functions of the Triple-Speed Ethernet controller; a small memory used

for the descriptors of the SGDMAs is also included. There is a core used to control the Flash mem-

ory on the board that is used to store details about the Ethernet port in the C code. There are also

many PIOs used to allow communication between the CMM and the processing module including

the input and output data and addresses and the control signals.
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The processing module can be configured to perform any number of operations on the input

data but there are still a few features that are consistent across all designs to allow for the correct

movement of data. There are two positive edge detectors for the start and data ready signals from

the CMM because the CMM is running on the NIOS II processor and is on a different clock domain.

An edge detector is made up of two flip flops and a two input AND gate; the input signal is assigned

to the input of the first flip flop and the output of the first flip flop is assigned to the second flip

flop [11]. The inverted output of the second flip flop output and the output of the first flip flop are

ANDed together as seen in Figure 4.4. When the input signal goes high and is stored in the first flip

flop the output of the AND gate is also high because the inverted output of the second flip flop was

high but goes low the next positive edge of the clock when the high value is read from the first flip

flop causing the AND gate to go low; Figure 4.5 shows an example of the signals listed in Figure

4.4. The edge detectors ensure that the input signals from the CMM are high for only one clock

cycle so that they are not read multiple times. The data and the addresses to read from and write

to are stored in registers to easily allow computations to be performed on them. The data is also

placed into a register so that it can be easily manipulated as needed. All three of the registers are

continuously assigned to outputs so that they can be read by other modules without any additional

work.

Figure 4.4: Logic Diagram of Positive Edge Detector
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Figure 4.5: Positive Edge Detector Signals

The state machine used to process the data is shown in Figure 4.6; each bubble is a state and the

arrows indicate the next state visited. Arrows with text near them are conditional transitions and the

other arrows are unconditional transitions. The state machine starts in the initial state and moves to

the “wait for data” state when the positive edge detector detects and edge in the start signal; when

the CMM sends a signal that the data is valid the state machine moves into the “read data” state.

Once the data has been read the state machine then moves to “update read addr” that the input data

will be read from and moves into the process state. The process state is where the data is processed;

it can be one state long or it can contain multiple states depending on the function being performed

by the design. After the data has been processed the state machine moves to the “write data” state

that writes the data to the CMM and stays in that state until a signal from the CMM tells it that the

data has been written. The state machine then updates the write address in the “update write addr”

state and moves back to the “wait for data” state that waits for the next piece of data from the

processor. The state machine moves to the “fin” state from the “wait for data” state when the write

address is equal to file size plus one meaning that all of the data has been written back to the CMM.
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Figure 4.6: The Processing Module State Machine
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CHAPTER V

RESULTS

The data transfer system operates as intended while also occupying a small amount of the logic

elements on the FPGA chip and possessing a fairly large amount of memory to store data+. The

space for the socket server and associated C code is approximately 2 MB and when it is subtracted

from the 16 MB total the maximum amount of remaining memory is 14 MB. This means that the

maximum file size is 4.6 MB due to the split of available memory into the receive buffer, the input

data buffer, and the output data buffer. The data transfer system HDL only takes up around 13,000

logic elements out of the total 114,480 meaning that there is 89% of the chip that can be dedicated

to the user’s design allowing for fairly complex designs to be tested on the DE2-115 board.

To test the proposed data transfer system, three simple image processing test designs are used to

ensure that the processing section can be changed without affecting the memory manager and socket

communication sections. These three designs are a negative of the image, a negative image flipped

across both the vertical and horizontal axes, and a moving average filter that blurs the image. Three

test input images are used for each design; the three input images are shown in Figures 5.1, 5.2,

and 5.3. The size of the images as a raw file type are 258 KB, 1026 KB, and 690 KB respectively.

The raw file type is used so that no part of the design needs to worry about any header information

located in the file itself. The raw file type only contains the pixel values so reading and writing files

of the type can be easily done with a single C array. The basic test input is Figure 5.1 because it
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is relatively small and grayscale so it does not tax any part of the system and is easily processed.

Figure 5.2 is used as a test image because of its size; its large size exposes any faults in the system’s

handling of data. If the system mishandles 1 MB of data then it may mishandle larger files that it is

presented with. The final test image, Figure 5.3, is used because it is a color image; this is just to

make sure that the system can process color images without corrupting the data.

Figure 5.1: 512x512 Grayscale Input Image

5.1 Image Inverter

The first test design inverts an image and is given by

g[x, y] = 255− f [x, y] (5.1)

where x and y describe pixel locations, f is the input image, and g is the output image. The

same equation is used for the color image but instead of a single pixel’s intensity as the input and
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Figure 5.2: 1024x1024 Grayscale Input Image

output the amount of red, green, or blue in the pixel is used. This leads to an inversion of the color

of the pixel and not necessarily an inversion in the pixel’s total intensity.

When the data transfer system is run with all three input images given at the same time the

console output is shown in Figure 5.4. The output of the design for the first input image is shown in

Figure 5.5; the data is processed in 3.87 seconds. Figures 5.6 and 5.7 are the other two outputs of

the inverter that are processed in 20.54 seconds and 11.35 seconds respectively. All three images are

processed correctly the two grayscale images have their values reversed so that dark areas became

light and light areas became dark. Figure 5.7 is not as easily identified in the areas that are not black

or white. The areas that are blue in Figure 5.3 are red in Figure 5.7 and vice versa meaning that the

image is processed correctly.
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Figure 5.3: 560x420 Color Input Image

5.2 Image Flipper and Inverter

This second test design processes the data the same as the previous test design however the data

is read normally but it is written starting at the end of the buffer and ending at the beginning. By

writing to the output buffer in this way the top left pixel ends up switched with the bottom right

pixel and the top right pixel is switched with the bottom left pixel. The process used in this test is

g[x, y] = 255− f [C − x,R− y]. (5.2)

where C is equal to the number of columns in the image and R is equal to the number of rows

in the image. The equation is similar to Equation (5.1) except that the input data is accessed in a

different order. This results in the output image being flipped upside down and backwards.

The console output for the second test design with all three input files can be seen in Figure 5.8.

Processing Figure 5.1 with this design yields Figure 5.9 in 2.98 seconds. Figures 5.10 and 5.11 are

created by this algorithm from Figures 5.2 and 5.3 in 20.51 seconds and 11.24 seconds respectively.

The grayscale images are inverted normally and flipped as expected but because of the fact that
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Figure 5.4: Console Output of Image Inverter With All Three Input Files

three bytes of data make up one pixel the colored output of this test is not just a flipped version

of Figure 5.7. The black and white portions of Figure 5.11 are the same; the change comes in the

center colored portion. Because the colored data is read in a red-green-blue pattern and written in a

blue-green-red pattern the processed colors are not the same as the previous test design.

5.3 Moving Average Filter

The final test design is a moving average filter that calculates the output value by averaging

a pixel intensity with a certain number of pixel intensities to each side. This design averages the

sample with the six values on each side of it to obtain the output value. The equation for the filter is

g[x, y] =
1

2M + 1

M∑
i=−M

f [x+ i, y] (5.3)
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Figure 5.5: 512x512 Grayscale Inverted Output Image

where M = 6 is the number of pixels on each side that are included in the average, g is the

output image, f is the input image, x and y are the pixel’s location in the image and i is used to

reference the other pixels being averaged. The value of i ranges from −M to M because the pixels

in the average are on both sides of the pixel’s location. When pixel referenced by i is outside of

current row of pixels a value from another row is used; for the pixels to the left it is the previous

row and for pixels to the right it is the next row.

The filter processes the three test images and produces the console output seen in Figure 5.12.

The outputs for the two grayscale images are shown in Figures 5.13 and 5.14; on both the left and

right sides there is some distortion because those pixel values were calculated by using values from

the ends of other rows. The blurring effect is not as prevalent in Figure 5.15 because a red, green,

or blue value is averaged with values for the other colors instead of the overall pixel intensity; those

mixed color averages lead to more detail and the colors seen in the center of the figure. The time

to process the grayscale images is 2.98 seconds for Figure 5.13 and 20.51 seconds for Figure 5.14.

Figure 5.15 is created by the system in 11.35 seconds.
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Figure 5.6: 1024x1024 Grayscale Inverted Output Image

5.4 Logic Utilization

A secondary goal of this Thesis is for the entire Data Transfer System to occupy as few logic

elements on the FPGA chip as possible. Figure 5.16 is an example of the compilation report that

Quartus II [12] provides at the end of a successful compilation. Some information list includes the

number of logic elements used by the design, the number of pins on the FPGA used by the design,

the amount of on chip memory reserved for the design, and the number of total PLLs used in the

design. The compilation report shows the report for the communications section of the system but

not the processing section; the 12,842 logic elements present must be present for the system to

operate properly. The other 89% of the chip can be used to create the digital design to be tested.

The number of logic elements taken up by the image inverter and the image inverter and flipper

do not vary by many logic elements as shown in Figures 5.17 and 5.18. These two designs do

not add many logic elements past the basic communication system. Figure 5.19 shows the report
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Figure 5.7: 560x420 Color Inverted Output Image

for the most computational intensive design, the moving average filter. Only a few hundred logic

elements are added to achieve the design giving a frame of reference for the relationship between

the number of logic elements used and the complexity of the digital design being instantiated. With

over 100,000 logic elements left on the FPGA chip with the moving average filter present the scope

of the design that would occupy the vast majority of the FPGA can be seen as immense.
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Figure 5.8: Console Output of Image Inverter and Flipper With All Three Input Files

Figure 5.9: 512x512 Grayscale Inverted and Flipped Output Image
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Figure 5.10: 1024x1024 Grayscale Inverted and Flipped Output Image

Figure 5.11: 560x420 Color Inverted and Flipped Output Image
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Figure 5.12: Console Output of Moving Average Filter With All Three Input Files

Figure 5.13: 512x512 Grayscale Moving Average Output Image
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Figure 5.14: 1024x1024 Grayscale Moving Average Output Image

Figure 5.15: 560x420 Color Moving Average Output Image

31



Figure 5.16: Compilation Report for the Communication System

Figure 5.17: Compilation Report for the Image Inverter
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Figure 5.18: Compilation Report for the Image Inverter and Flipper

Figure 5.19: Compilation Report for the Moving Average Filter
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CHAPTER VI

CONCLUSION AND FUTURE WORK

This Thesis presents a system to transfer data between a host computer and a DE2-115 FPGA

board. This is accomplished by connecting to a socket over an Ethernet connection and using a

NIOS II processor on the board to handle moving the data from the socket to the processing module.

The processing module uses the NIOS II processor as a memory controller to process the data; while

the processor acts as a socket server for the host computer’s socket client. The data is processed

and saved to a new file in an efficient manner such that one Mega Byte of data can be processed

in twenty seconds with one command line input. The data transfer system uses a relatively small

portion of the logic elements on the FPGA chip, approximately 11%, leaving the majority of the

chip free for the user’s HDL design. The system has a total of 16 MB of the SDRAM available to it

so the maximum file size is approximately 4.6 MB because the memory is sectioned into received,

input, and output buffers.

The future work of related to this system is varied it ranges from improving the design to be

more efficient in chip and memory usage to performing research of digital designs such as creating

better methods to segment an image. The improvements to this system aim to reduce the size of

its footprint so that more complex designs can be tested on the DE2-115 board and to increase the

amount of memory available to the user allowing for larger amounts of test data to be used. Any
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research that can be conducted on the DE2-115 board and needs input data to be properly tested can

incorporate this system to supply the design with data.
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