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ABSTRACT 

 
 

REAR AXLE GEAR WHINE NOISE ABATEMENT VIA ACTIVE VIBRATION 

CONTROL OF THE REAR SUBFRAME 

 
Name: Deng, Jie 
University of Dayton 
 
Advisor: Dr. Reza Kashani 
 

An active, feedback vibration control strategy with the goal of abating gear whine 

noise in rear- wheel and all-wheel drive vehicles is developed. The control strategy was 

implemented using two small inertial (proof mass) actuators, mounted on the rear 

subframe of a luxury all-wheel drive sedan with independent rear suspension, as the 

active elements in this application. Acceleration information measured by accelerometers 

nearly-collocated with the actuators was used as the feedback signal. 

The effectiveness of active vibration control was successfully demonstrated by 

examining the extent of reduction in the shaker induced vibration of the rear subframe as 

well as the sound pressure inside the vehicle. The evaluation of the active control scheme 

was extended to rolling dynamometer tests, during which effective reduction of vibration 

of rear subframe and the pressure inside the vehicle were demonstrated. 
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CHAPTER I 

 

                                                  INTRODUCTION 

 

 

1.1   Problem Statement 

Rear axle gear whine noise is caused mainly by the gear mesh vibration in the 

powertrain. This vibration is in turn transmitted thru the rear axle gear housing, the 

corresponding subframe, as well as other support structures to the vehicle cabin as an 

unpleasant tonal noise [1, 2]. Although gear mesh forced vibration transmits into the 

cabin at all speeds, but at certain speeds/frequencies the transmission of vibration is more 

dominant than others. This is due to the matching of the gear mesh frequency with one 

(or multiple) resonant frequency (ies) of a structural element along the transmission path 

(consisting of the drive shaft, rear differential, rear subframe, and the vehicle body). 

 

1.2   Vibration Control Strategies 

1.2.1   Passive Vibration Control 

Passive vibration control is a strategy utilizing a device which does not need any 

power consumption. Two types of such devices are used in the passive vibration control: 

broadband [3] and tuned devices. Viscous and viscoelastic dampers are examples of 

broadband passive vibration control devices. As to the passive tuned devices, tuned mass 

damper (TMD) and dynamic absorber (DA) are two of the most commonly used devices 
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in tuned vibration control [4]. The makeup of these two devices consists of a mass, a 

spring, and a damper with decent amount of damping in TMD but negligible amount of 

damping in DA. Passive tuned devices are simple, low cost and stable but are not 

adjustable when the parameters of the controlled structure are changed. 

 

1.2.2   Active Vibration Control 

Active vibration control uses an actuation device (actuator) to generate force 

moment exerted on the controlled structure to fulfill the goal of vibration reduction. A 

sensor1 is also used, in conjunction with the actuator to provide information on the 

vibration of the structure. The readings from the sensor are manipulated in the actuator to 

do the appropriate action on the structure. This kind of control strategy is powerful and 

exact especially in the areas where high precision control is needed. It can coordinate 

itself with the varying parameters of the structure and always keep its most optimal 

effectiveness. However, active vibration control systems come with high cost and 

complexity and are prone to instability. Moreover, They consume energy and require 

periodic maintenance. 

The heart of an active vibration control application is the actuator which can be 

classified as „regular actuator‟ and „proof mass actuator (PMA)‟. A regular actuator gets 

attached to the structure being controlled at one end and to an anchor point at the other. A 

proof mass actuator uses a moving mass (called proof mass) as its anchor and uses its 

inertia force of the proof mass as its actuation force. Figure 1.1 shows the schematic 

diagram of a regular actuator and a PMA actuating a structure. A shown in Figure 1.1 is a 

                                                           
1
 Some actuators will have a sensor inside since manufactured to pursue a better control effectiveness for 
this   collocated arrangement in certain control scenarios [5].  
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regular actuator consists of only an active actuation element while a PMA contains an 

active actuation element and a proof mass attached to it. 

 

 

 

 

 

                                (a)                                                                (b) 

Figure 1.1: Schematic diagram of a regular actuator (a) and a PMA (b) appended to a 
structure 

 

1.3   Active Vibration Control to Abate Gear Whine Noise 

In this research project active vibration control was applied to the rear subframe 

of an all-wheel drive sedan to abate the gear whine noise in the cabin. Proof mass 

actuators (PMAs) were used in this active vibration control application. As stated earlier, 

these actuators generate their force by pushing against a suspended mass and thus do not 

need their other ends to be anchored. Chapter 2 describes the inner working of these 

actuators and how they can be used in active vibration control applications. 

With proof mass actuators (PMAs) as the actuation mechanism, the following two 

active vibration control strategies, each with its own advantages and disadvantages, were 

considered in this work: 

1. Set natural frequency of the PMA substantially lower than the natural frequency of the 

structure targeted for damping/absorption. 

Regular Actuator  

 Structure 

Anchor  

PMA 

 Structure 

 Proof mass 

Actuation Element 
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This strategy results in proof mass actuator possessing no unwanted 

dynamics over the frequencies they are intended to function. This allows 

treating the proof mass actuator the same way as an anchored actuator which in 

turn enables the control designer to use traditional and familiar active control 

schemes.  

2. Place the natural frequency of the PMA within its operating frequency range 

(bandwidth). 

This strategy results in a proof mass actuator with a natural frequency (and 

the associated phase angle) in the frequency range where the active system 

needs to be most effective, making the synthesis of active control strategy 

somewhat more involved/elaborate. The advantage of such strategy is lower 

power consumption of the actuator. 

Both strategies can be used in the active whine noise control application, 

depending on the character of the noise. 

It is more straightforward to use the strategy 1 in vibration control as long as the 

actuator does not overheat because of the large power consumption. No phase angle issue 

needs to be considered during the control process. The control scheme for the strategy 2, 

on the other hand, is more involved. 

 

1.4   Literature Survey 

The two above-mentioned active feedback control strategies with the goal of 

abating gear whine noise in rear-wheel and all-wheel drive vehicles were experimented 

with aiming to absorb the vibration somewhere along its transmission path to the test 
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vehicle cabin, but preferably as close as possible to the source of vibration, i.e., the rear 

differential. 

Following to the synthesis and numerical simulation of the two active vibration 

control strategies, they were both successfully tested on a simple structure, i.e., a beam, in 

the laboratory. One of the active vibration control strategies has been implemented on an 

all-wheel drive test vehicle exhibiting whine noise at around 450Hz. The effectiveness of 

active acoustic damping system was evaluated objectively and subjectively using rolling 

dynamometer tests. The active control scheme absorbed an appreciable amount of 

vibration of the rear axle and the corresponding whine noise. 

Isao Nishimura, et al., [7] proposed a control algorithm applied in active TMD 

control. The active TMD is a system by adding a regular actuator in a passive TMD with 

one end fixed on the structure and the other end attached to the mass of the TMD. They 

measured the relative velocity between the structure and the TMD as well as the 

acceleration of the structure, then fed the two signals back thru two optimal gains, to the 

actuator. The enhanced effectiveness of the active TMD over the passive TMD is greatly 

distinguishable, proving the feasibility of this control scheme in active TMD control.   

One of the approaches to implement the control strategy 2 is the estimator-based 

control schemes such as Linear Gaussian Regulation (LQG) commonly used in active 

multi resonance damping [8]. Before carrying out this sort of control, the model of the 

structure including with first few modes of the structure needs to be constructed. In the 

absence of measured states, a Kalman estimator is designed to estimate the states. The 

estimated states are feedback to an optimal Linear Quadratic Regulator (LQR) to generate 
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the control force. The Schematic diagram of a plant and a Kalman estimator is shown in 

Figure 1.2, where the Ke is the Kalman estimator gain.  

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic diagram of a plant and a Kalman estimator 
 

 

Chin-Hsiung Loh, et al., [9] presented a prediction-type Kalman filter approach 

used for estimating the full-state variables of a six-story eccentric building subject to 

seismic perturbation, from a limited number of measurements. The building equipped 

with a dual tuned mass damping system is subjected to a full-state feedback control 

strategy for the control of its bending-torsion motion. They used the measurement signals 

of the 2nd and 6th floors to control the structural response and found that using the Kalman 

filter technique to predict the full state for control will have a similar control 

effectiveness as optimal full-state feedback control (LQR). 

The organization of the thesis is as follows: chapter 2 discusses the mechanics of 

PMAs and how they can be used in vibration control applications. The development of 

 

Plant  
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Measured Input 
Measured Output 
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the aforementioned two control strategies as well as their laboratory applications on test 

structures are discussed in chapter 3. The implementation of one of the control schemes 

on the test vehicle along with the measured results showing its effectiveness in abating 

gear whine vibration and noise are presented in chapter 4. A summary of the work as well 

as some recommendation for future work are presented in chapter 5. 
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CHAPTER II 

 

PROOF MASS ACTUATOR INTRODUCTION 

 

 

2.1   Proof Mass Actuator 

Proof mass (also known as inertial) actuators are used for actively abating the 

gear whine noise. To actuate these actuators do not need to push/pull against an anchor; 

A proof mass actuator (PMA) is comprised of parallel arrangement of spring and an 

active element pushing/pulling against a mass (known as proof mass or inertial mass). 

Figure 2.1 shows the schematic of such actuator appended to a structure. The force of 

such actuator is the reaction force caused by the acceleration of the suspended mass. 

 

Figure 2.1: Schematic of a PMA installed on a structure 
 

 

            Depending on the application, some damping is incorporated into the makeup of 

PMA. Thus a proof mass actuator can be viewed as a spring mass damper system with an

PMA 
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active element in parallel with its spring-damper suspension. Depending on the 

application, the active element could be piezoelectric, electromagnetic, magnetostrictive, 

or even hydraulic/pneumatic. Piezoelectric and electromagnetic actuators are the two 

types of PMAs used in this project. 

 

2.2   Piezoelectric and Electromagnetic PMAs Comparison 

The piezoelectric actuator is the actuator using piezoelectric materials as active 

material in which application of a voltage to the material causes it to expand. It has 

extremely fine positioning resolution, but a short limited motion. The makeup of an 

electromagnetic actuator consists of a coil wound an iron core called an armature, placed 

in a magnetic field. The armature will move back and forth when alternating current 

flows through the coil. It is widely used in loud-speakers and voice coils.     

The frequency response functions (FRFs) of a typical piezoelectric and 

electromagnetic PMAs mapping the voltage on the active element to the force generated 

by PMA is shown in Figure 2.2 and Figure 2.3, respectively. Clear from this frequency 

response function, PMAs have a rather limited effectiveness at lower frequencies, 

acceptable and somewhat frequency-independent effectiveness at high frequencies and 

are highly effective around their natural frequencies.  
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Figure 2.2: Typical FRF of a piezoelectric PMA 
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Figure 2.3: Typical FRF of an electromagnetic PMA 
 

 

2.3   Experimental Evaluation 

            Frequency response functions (FRFs) of a PMA can be evaluated experimentally 

by installing the PMA on a rather massive structure (e.g. a large block of mass), driving it, 

and measuring the acceleration of the proof mass. The image of Figure 2.4(a) shows such 

an experimental setup. Figure 2.4(b) shows the measured FRF of the piezoelectric PMA 

used in this project with a 150 gram proof mass as the inertial element.  Note that the 

natural frequency of the piezoelectric PMA is measured at around 340Hz. Similarly, the 

electromagnetic PMA with a proof mass of 417 gram is also evaluated in the same way as 

0 100 200 300 400 500 600 700 800 900 1000
-50

0

50

M
ag

ni
tu

de
, d

B

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

200

Frequency, Hz

P
ha

se
, d

eg



12 
 

shown in Figure 2.5. The natural frequency of the electromagnetic PMA is measured to 

be around 130Hz.    

Figure 2.4: The experimental setup (a) and measured FRF of the piezoelectric PMA (b) 
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Figure 2.5: The experimental setup (a) and measured FRF of the electromagnetic PMA (b) 
 

It should be noted that, a TMD and a PMA have much in common. A TMD 

consists of a spring, a mass, and a damper. And a PMA is made up of a spring, a mass, a 

damper plus an actuation element. The schematic diagrams of the two systems are shown 

in Figure 2.6.  

 

 

  

 

                 (a)                                                                (b) 

Figure 2.6: Schematic diagram of a TMD (a) and a PMA (b) 
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CHAPTER III 

 

LABORATORY EVALUATION 

 

 

3.1   Introduction 

The first of the control strategies discussed in chapter 1 was used in active 

vibration control of a beam, with the goal of damping one or multiple resonant modes as 

well as abating the forced vibration at the disturbing frequency. The feedback control 

adding damping to a target mode of vibration was fashioned after the dynamics of a TMD 

and the one used to abate the forced vibration was fashioned after the dynamics of a DA. 

These two control algorithms are dubbed TMD control and DA control in this write up. 

This control scheme is straightforward to implement and is highly effective but consumes 

more power than the second control scheme.
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3.2   Experimental Setup 

A 24.75 × 27/16 × 19/32 inch steel beam with free-free 

boundary conditions was used in the laboratory experiments. As 

shown in Figure 3.1 the nearly free-free boundary conditions are 

realized by suspending the beam. 

 

 

 

                                                           

 
 
                                                                                                                          
 
 

                                                                                            Figure 3.1: Experimental setup 
of the free-free beam 

 

3.3   FE Model Analysis of the Beam 

Finite element analysis (FEA) was first conducted to get the natural frequencies 

and mode shapes of the beam. As in any continuous parameter structure, the beam has 

infinite degrees of freedom modes. Considering the impracticality of modeling all the 

modes of the beam, only the first two modes with the corresponding frequencies of less 

than 1KHz, shown in Figure 3.2, were included in the model. The state space model of 

the beam was formulated using the model parameters. 
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(a)                                                               (b) 
 
 

Figure 3.2: The 1st (a) and 2nd (b) modes of the beam 
 

The natural frequency of the piezoelectric PMA used in this experiment was 

between the frequencies of the 1st and 2nd mode of the beam. The 2nd mode was the 

targeted mode with its natural frequency close to the frequency where the test vehicle has 

the noise issue, i.e. ~ 500Hz. With the natural frequency of the 2nd mode well beyond the 

natural frequency of the PMA, the requirement for the first control strategy was satisfied. 

What is more, it is clear that one third length location of the beam where the PMA and 

the sensor (an accelerometer) were installed in a nearly co-located arrangement in Figure 

3.1 has an anti-node shown in Figure 3.2(b). The goal of the experiment is to a) add 

damping to the 1st (not necessarily since does not have much effectiveness) and the 2nd 

mode, and b) absorb vibration of the beam at 750Hz.   

 

 
 
 

Natural frequency = 197Hz Natural frequency = 540Hz 
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3.4   Control Modeling 

3.4.1   State Space Formulation of the Structure 

In structural dynamics, displacements and velocities (in physical or modal 

domains) are the most commonly used states in state space models. The formulation 

presented by Equation (3.1) is the basis for state space modeling of flexible structures, in 

modal domain, having point force(s) as the input(s) and displacement(s) at discrete 

locations on the structure as the output(s). 

 
   

2

11

11

0 0
2

0

n n

I
z z u

w w Q
BA

y W z D u
DC



   
        

 

  (3.1) 

where 

                 State vector: ( ) [ ( ) ( )]z t q t q t   

       Number of modes: Nm    

       Number of inputs: Nu   

     Number of outputs: Ny   

   Modal displacement: 1 2( ) [ ( ) ( ) ... ( )]'Nmq t q t q t q t   

           Modal velocity: 1 2( ) [ ( ) ( ) ... ( )]'Nmq t q t q t q t   

                          Input:  
'

1 2 ... Nuu u u u   

     Natural frequency:  1 2( ... )n n n nNmW diag W W W   

Modal damping ratio:  1 2( ... )Nmdiag      

     Spatial coordinate: r   
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                      Mode_i: ( )i r   

   Modal input matrix: 1 2( ) [ ( ) ( ) ... ( )]'NuQ r r r r     (evaluated at the input   

locations)   

 Modal output matrix: 1 2( ) ... ( )NyW r r       (evaluated at the output locations) 

Clear from Equation (3.1), the 1A , 1B , 1C , 1D  matrices describing the structure's 

state-space model in modal domain, are functions of the modal parameters of the system 

(natural frequencies, modal damping ratios, and mode shapes). 

 

3.4.2   State Space Formulation of the PMA 

The schematic diagram of Figure 3.3, depicting a PMA appended to a one degree 

of freedom structure, is used to develop the model of a structure actively controlled by a 

PMA. In Figure 3.3, 1m , 1k , 1c  are the parameters (mass, stiffness and damping 

coefficient) of the structure, 2m , 2k , 2c  are the parameters of the PMA, and 1x , 2x  are 

the displacement of the structure and PMA, respectively. 

 

 

 

 

 

 

 

Figure 3.3: Schematic diagram of PMA appended to a structure 
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First, we viewed the PMA as a tuned mass damper (TMD) and developed its (the 

TMD‟s) model. Note that the difference between a PMA and a TMD is the presence of an 

active element ( ) in the PMA. Equation (3.2) shows the transfer function of the TMD 

with the displacement of the structure, where the TMD is appended to, as the input and 

the force in the TMD suspension as the output.       

 
2

2 2 2
2

2 2 2

( )force

disp

TMD m s c s k
structure m s c s k




 
 (3.2) 

To be able to extend the model of the TMD shown by Equation (3.2) to that of a 

PMA and subsequently use that model in the development of controlled plant (structure 

plus PMA), the transfer function of Equation (3.2) needs to be reformulated in state space 

format. To do this, first the non-rational transfer function of Equation (3.2) needs to be 

rearranged to a rational one. This was done in the two steps of a) rewriting Equation (3.2) 

as Equation (3.3) 

 
2

2
2 22

2 2 2

( )*force disp
m sTMD c s k structure

m s c s k
 

 
  (3.3) 

and b) viewing the term 2 2(c k )* disps structure  as the summation of damping force and 

stiffness force of the structure, i.e. 2 1 2 1c kv x  where 1x  and 1v  are the displacement and 

velocity2 of the structure where the TMD is installed. This in turn changes Equation (3.3) 

to Equation (3.4).     

 
2

2 2 1 2 12
2 2 2

( )force
sTMD m c v k x

m s c s k
 

 
  (3.4) 

Equation (3.4) is presented in block diagram format of Figure 3.4. 

 
                                                           
2
 Note that s in Laplace domain is equivalent to differentiation in time domain. 
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Figure 3.4: A block diagram model of TMD 
 

To formulate the model of the TMD shown in Figure 3.4 in state space format, 

first the equation of motion of the TMD mass i.e. Equation (3.5) is looked at  

 2 2 2 2 2 2 2 1 2 1m x c x k x c x k x      (3.5) 

where 1x  and 2x  are the displacements of structure and TMD, respectively. 

Setting  2 2K k c , 1

1

x
y

x
 

  
 

 and dividing both sides by 2m , Equation (3.5) is written 

as Equation (3.6).  

 2 2
2 2 2

2 2 2

1c kx x x Ky
m m m

     (3.6) 

Defining the displacement 2x and velocity 2v of the TMD mass as the states,  Equation 

(3.6) is reformulated in the state and output Equations of (3.7) and (3.8).  

 2 2
2 2

2 2
2 2 2

0 1 0
1

x x
Kyk c

v v
m m m

   
                 

      

  (3.7)  

 22 2
2

22 2 2

1xk ca Ky
vm m m

   
      

  
  (3.8) 

𝑦 = [𝑥1 𝑣1] (disp and vel 
of structure) 

𝑠2

𝑚2𝑠2 + 𝑐2𝑠 + 𝑘2
 

𝑓 = TMD 
force  

𝐾𝑦 = input force  

 𝐾 = [𝑘2 𝑐2] 

acc of the TMD mass   

𝑚2 
 

𝐾 
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where 2a = 2v  , i.e., the acceleration of the TMD mass is the output and Ky is the input.   

Multiplying the output Equation (3.8) by the mass of TMD, 2m , changes the output of the 

state space model to TMD force, shown in Equation (3.9) .   

 

 

2 2
2 2

2 2
2 2 2

22

2
2 2

2
2

2

0 1 0
1

1 *Ky

x x
Kyk c

v v
m m m

BA
x

f k c
v DC

   
                 

      

 
    

 

  (3.9) 

As will be discussed in the next section, the introduction of the actuation extends the state 

space model of TMD to that of PMA. 

 

3.4.3   Structure Plus PMA Model 

Interfacing the structure model to that of the TMD shown in Figure 3.4 results in 

the block diagram model of the structure plus TMD shown in Figure 3.5. The -1 gain in 

the block diagram signifies the negative feedback nature of the loop. 
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Figure 3.5: The block diagram model of TMD appended to a structure 
 

The addition of the control input u to the TMD block of Figure 3.5 changes the 

tuned mass damper model to the model of a PMA. This, in turn, modifies the block 

diagram of Figure 3.5 to that of Figure 3.63.  As shown in the state space model of the 

TMD presented by Equation (3.9), the TMD force is 2 *m acc . Considering that the 

inertial force of the TMD mass is also the suspension (spring + viscous damper + actuator) 

force of the TMD, it is sufficient to input the control force u only on the TMD block and 

not on the structure block of Figure 3.6. In addition, when the PMA is used to both 

perturb and control the structure, the synthetic disturbance input, similar to the control 

force u, acts on the TMD only.  

 

 

 

                                                           
3
 Note that PMA has the same state space formulation as that of TMD.    

 

Structure 

-1 

 

TMD 

𝐾 

𝑦 = [𝑥1 𝑣1] (disp and vel 
of structure) 

𝐾 = [𝑘2 𝑐2] 

𝐾𝑦 = input force  

𝑓 = TMD 
force  
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Figure 3.6: The block diagram of PMA appended to a structure 

 

3.4.4   The State Space Model of Structure Plus PMA  

The state space formulation of the structure and the PMA is shown by Equations 

(3.10) through (3.13) where d, f and u represent the disturbance, PMA force, and control 

force, respectively. Note that 1D  is zero.  

Structure: 

 1 1 1 1x A x B f    (3.10) 

 1 1 1 1 1y C x D f C x     1 0D   (3.11)                                    

PMA: 

 2 2 2 21 22 23x A x B d B Ky B u      (3.12) 

 2 2 21 22 23f C x D d D Ky D u      (3.13) 

 

Structure 

-1 

 

TMD 

𝐾 

dist, d 

control force, 𝑢 

𝑦 = [𝑥1 𝑣1] (disp and vel 
of structure) 

𝐾 = [𝑘2 𝑐2] 

𝐾𝑦 = input force  

TMD force,  𝑓  
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           In order to combine the structure and the PMA into one state space formulation, the 

procedure outlined in the following steps of 1 thru 4 and Equations (3.14) through (3.18) 

are performed. 

1. Substitute for f  in Equation (3.10) from Equation (3.13) 

 1 1 1 1 2 2 21 22 23( )x A x B C x D d D Ky D u       (3.14) 

     2. Substitute for y  in Equation (3.14) from Equation (3.11) 

 1 1 1 1 2 2 1 21 1 22 1 1 1 23x A x B C x B D d B D KC x B D u       (3.15) 

 1 1 1 22 1 1 1 2 2 1 21 1 23( )x A B D KC x B C x B D d B D u       (3.16) 

     3. Substitute for y  in Equation (3.12) from Equation (3.11)  

 2 22 1 1 2 2 21 23x B KC x A x B d B u       (3.17) 

4. Combine Equation (3.16), (3.17) and (3.11) we can get the state space 

formulation of a PMA appended to a structure. 

 

1 231 1 22 1 1 2 1 21

2322 1 2 21

1 1

dist control

B DA B D KC B C B D
x x d u

BB KC A B
B BA

y C x
C

     
       
     



  (3.18) 

In Equation (3.18), x  is the vector of two velocities 1

2

x
x
 
 
 

. The B matrix contains the two 

parts of distB  in the first column and controlB  in the second column. The D matrix is zero 

in this state space formulation. 
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3.4.5   Numerical Modeling and Verification 

The state space model of the structure with disturbance force as the input and 

acceleration as the output was constructed using the modal parameters of the structure 

evaluated by finite element modal analysis. The FRF of the state space model of the 

structure was compared well with the experimentally measured4 FRF, pointing to the 

fidelity of the state space model using the frequency response functions as the metric. 

Figure 3.7 shows the magnitude of the two FRFs.  

 

Figure 3.7: Numerically and experimentally evaluated FRFs of the structure 
 

 

                                                           
4
 The experimental FRF was evaluated by perturbing the structure using an instrumental hammer and 

measuring the acceleration by a nearly co-located accelerometer. 
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Augmenting the verified model of the structure with the model of the PMA, 

resulted in the model of the plant (structure plus PMA). The numerical model of the plant 

also compared well with the experimentally measured one. Figure 3.8 compares the two 

numerically and experimentally evaluated FRFs. The FRFs were generated using the 

PMA force as the perturbation (input) and the acceleration measured by a nearly co-

located (with the PMA) accelerometer as the output. 

 

Figure 3.8: Numerically and experimentally evaluated FRFs of the plant (structure plus 
PMA) 

 

3.5   Controller Design 

With the state space model of the plant formulated and experimentally verified, 

the next step was designing the controller. With the goal of adding tuned damping and/or 

tuned vibration absorption to the structure, TMD and DA controllers fashioned after the 
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dynamics of a passive TMD and DA5 were designed and implemented both numerically 

and experimentally. The common transfer function of these controllers, is shown in 

Equation (A-4) of Appendix A. What distinguishes TMD controller from DA controller 

is the extent of damping in the transfer function Equation (A-4). These controllers are 

rather straightforward to design and implement, using a PMA as the control actuator, as 

long as the natural frequency of the PMA itself is placed well below the frequency of 

intent targeted for tuned damping and/or tuned vibration absorption.    

 

3.6   TMD + Basic DA Control 

Evident from Figure 3.8, the system (structure plus PMA) has three modes in the 

100-900Hz frequency range. The 1st mode (around 200Hz) and the 3rd mode (around 

600Hz) are the modes of the beam. The 2nd mode (around 340Hz, matching the natural 

frequency of the PMA shown in Figure 2.4(b)) is the mode of the PMA. A TMD 

controller was used to damp the 1st mode (with minimal effectiveness) and 3rd mode of 

the system. Moreover, with an external excitation force (causing forced vibration) at the 

frequency of 750Hz, a DA controller tuned to that frequency was used to absorb 

corresponding forced vibration of the structure. The block diagram of the combined TMD 

and basic DA controlled system is shown in Figure 3.9.  

 

                                                           
5
 See appendix A for the formulation of the TMD and DA dynamics 
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Figure 3.9: Block diagram of the TMD + basic DA controlled system 
 

 

As shown in the block diagram of Figure 3.9, three controllers were used in this 

simulation for the 1st mode, 3rd mode (TMD 1 and TMD 2) and external excitation (DA) 

respectively. The uncontrolled structure was also included in the model of Figure 3.9, for 

comparison purposes, to show the effectiveness of the controller against. The FRFs 

mapping the perturbation input to the acceleration output of the structure without and 

with control were evaluated and are presented in Figure 3.10. Note that acceleration was 

evaluated at the same location as the actuator position.  
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Figure 3.10: Numerically evaluated FRFs mapping the perturbation input to the 
acceleration output without (blue trace) and with (red trace) basic TMD + DA controller  

 

Clear from Figure 3.10, the first active vibration control strategy introduces a 

desirable amount of damping to the 1st mode and 3rd mode of the structure. It also absorbs 

the forced vibration at 750Hz. Following this numerical exercise, an experiment was 

conducted, by shaking the free-free beam with a PMA and adding control by the same 

PMA6. The experimental setup is shown in Figure 3.1. 

A digital signal analyzer (DSA) generated a disturbance signal to drive the PMA 

perturbing the beam. Meanwhile, the control signal from the control computer was added 

to the disturbance signal to reduce vibration of the beam. The control signal was turned 

                                                           
6
 Note that the PMA is a linear system which can deal with the perturbation and control at the same time.  
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off and on to set the beam to be in the stage of uncontrolled and controlled. The block 

diagram of the controller residing in the control computer is shown in Figure 3.11.  

   

 
 

Figure 3.11: TMD_DA control interface 
 

In Figure 3.11, the blocks represent the parallel cascade of 3 individual controllers 

that make up the overall control. fn and z in the blocks represent the natural (tuning) 

frequency and damping ratio of each controller. Additional analog hardware for 

converting unipolar to bipolar signals and vice-versa7 were also used in this experiment.  

The FRFs mapping the disturbance to the measured acceleration of the 

uncontrolled and controlled structure (the beam) are shown in Figure 3.12. Band limited, 

random disturbance with the frequency content of 100-900Hz was used to perturb the 

beam. Almost 20dB effectiveness (10 times reduction) is obtained in the 3rd mode. 

Moreover, at the frequency to which the DA controller is tuned, a substantial absorption 

                                                           
7
 The A/D and D/A convertors of the control computer are unipolar devices. 
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of vibration is realized. Note that the experimentally measured FRFs of Figure 3.12 are 

very similar to the numerically evaluated ones of Figure 3.10.  

 

Figure 3.12: Experimentally measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) basic TMD_DA control 

   

In another experiment, two single frequency disturbances at 592Hz (the frequency 

of the 2nd mode targeted for active damping) and 750Hz (the forced vibration frequency) 

were used to perturb the system. The abatement of the audible structure-borne noise 

caused by the vibration of the beam was clearly distinguishable, when the controller was 

turned on.  
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3.7   Modified DA Controller 

The DA controller transfer function is fashioned after the second order dynamics 

of mechanical dynamic absorber made up of highly underdamped spring-mass-damper 

system. Mechanical dynamic absorbers are normally used to absorb forced vibration of a 

structure at a forcing frequency which is not in the vicinity of a resonant frequency8.  

The transfer function of a structure over the frequencies away from resonant frequencies 

can be approximated as 1acc
force M

 , where M is the mass of the structure. The block 

diagram model of such structure, treated with a mechanical dynamic absorber is shown in 

Figure 3.13, with the overall transfer function of 

 
2 2

2 2

21

(1 )2 (1 )
n n

n n

s w s wacc
m mdist M s w s w
M M





 


   

  (3.19) 

 
 

 

 

 

 

 

 
 

 
 

Figure 3.13: Schematic block diagram of a structure plus a DA 
 

                                                           
8
 When the forcing frequency is in the vicinity of a resonant frequency, tuned mass dampers are the more 

appropriate vibration control solution. 
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The very small damping ratio of the mechanical dynamic absorber  , results in a 

pair of complex conjugate zeros (the roots of the numerator of Equation (3.19)) 

responsible for placing the desirable notch, at the forcing frequency on the FRF of the 

controlled structure. Considering that m
M

is  very small, the coefficient 1 m
M

  in the 

denominator of Equation (3.19) is almost equal to 1. With this approximation, the very 

small damping ratio of the dynamic absorber  also results in a pair of complex conjugate 

poles (the roots of the denominator of Equation (3.19)). This pair of highly underdamped 

poles creates an undesirable sharp peak next to the desirable notch. This creation of the 

peak, caused by the highly underdamped poles of Equation (3.19) could have been 

addressed had the damping ratio in the numerator of the dynamic absorber transfer 

function been made many times larger than the damping ratio in its denominator. 

Although not possible in a mechanical dynamic absorber, but this can be done in a DA 

controller. Modifying the transfer function of the DA controller from that of Equation (A-

4) in Appendix A to 

 
2

2 2

2( )
2

n n

n n

w s wF m
acc s w s w








 
  (3.20) 

with  > 1 (e.g.  = 10), changes the transfer function of the structure actively treated by 

a DA controller to 

 
2 2

2 2

21

(1 )2( ) (1 )
n n

n n

s w s wacc
m mdist M s w s w
M M





 


   

  (3.21) 

Clear from Equation (3.21), the underdamped zeros creating the desirable notch in 

the FRF absorbing the forced vibration are unchanged, but the poles are now many times 

more damped resulting in a very shallow peak in the FRF of the DA controlled structure. 
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Figure 3.14 shows the FRFs of the structure without and with the DA controller of 

Equation (21). Comparison of the controlled system FRF in Figure 3.14 with that of 

Figure 3.12 shows the impact of modifying the DA controller dynamics from Equation 

(A-4) to Equation (20).  

 

Figure 3.14: Theoretically measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) improved DA controller 

 

The peak around the tuning frequency of the DA controller has been almost wiped 

out without damaging the notch close to it. The modified DA controller was 

experimentally implemented on the beam and similar result to that of Figure 3.14, as 

shown in Figure 3.15, was achieved. 
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Figure 3.15: Experimentally measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) improved DA controller 

 

3.8   Active Damping 

As the active element in vibration control application, PMA introduces its own 

resonance into the dynamics of the structure equipped with PMA. In the FRF of the PMA 

actuated beam shown in Figure 3.15, the 2nd mode at around the 340Hz is due to the 

dynamics9 of the PMA itself. In other words, the beam tested in the previous experiments 

would not have had this mode without the PMA. If the disturbance to the structure 

happens to be at the frequency of the 2nd mode, the vibration created by the disturbance 

will be severe. The TMD controller targeting this mode does not work since the condition 

                                                           
9
 If the natural frequency of the PMA is not in the frequency range of interest, the presence of the PMA 
related resonance is immaterial. 
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for the control strategy 1 is not satisfied. There are two ways to solve this problem. 

Firstly, incorporate passive damping into the PMA itself. Secondly, add active damping 

via velocity feedback. 

For a one degree of freedom (DOF) system, the damping in the system is 

proportional to the velocity of structure itself, i.e., the relative velocity between the 

structure and the ground, as it is shown in Figure 3.16. In the case discussed the relative 

velocity between the PMA and the beam is needed for incorporating active damping  

in the TMD_DA and active damping control.   

                                                                   

 

 

 

Figure 3.16: The schematic diagram of a one DOF structure 
 

Adding damping to the PMA mode actively along with active tuned mass 

damping of the two of the structure‟s modes were numerically explored and 

experimentally verified. Figure 3.17 shows the block diagram of the numerical model. 
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Figure 3.17: Simulation block diagram of the TMD_DA and active damping control 
 

In Figure 3.17, the controllers work in a parallel. The numerical FRFs of the beam 

uncontrolled (dashed line) and controlled (solid line) by two TMD controllers tuned to 

200 and 600Hz, a DA controller tuned to 750Hz and a relative velocity feedback 

controller to dampen the PMA‟s 340Hz mode are shown in Figure 3.18. 
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Figure 3.18: Numerically measured FRF mapping the perturbation input to the 
acceleration without (dashed line trace) and with (solid line trace) TMD_DA and active 

damping control 
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The numerical evaluation of Figure 3.18  

was verified experimentally using the setup of  

Figure 3.19. One additional accelerometer was  

added to the PMA‟s mass and used in evaluating  

the relative velocity of the mass with respect to the 

structure. Note that the relative acceleration was 

measured and integrated to realize the relative 

velocity. The block diagram of the cascade of 

controllers is shown in Figure 3.20 and the  

experimentally evaluated FRFs are presented in  

Figure 3.21.                                                                                                               

                                                                      Figure 3.19: Experimental setup of   
the active damping 

 

   

 

 

 

                                                 

Sensor #2 

Sensor #1 



40 
 

 
 
 

Figure 3.20: TMD_DA  and active damping control interface 
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Figure 3.21: Experimentally measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) TMD_DA and active damping 

control 
 

Clear from Figure 3.21, damping of the PMA, tuned damping of two of the 

structure‟s modes, and absorption at a forcing frequency have all been achieved, 

simultaneously.  

The advantages of the TMD and DA control schemes are being simple and yet 

very effective in vibration reduction.  
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3.9   Linear Quadratic Gaussian (LQG) Control Scheme 

As stated earlier the alternative to setting the natural frequency of the PMA 

substantially lower than the lowest natural frequency of the structure targeted for 

damping, is placing the natural frequency of the PMA a) to that of the structure if only 

one mode needs to be damped or b) within the frequency range of interest if damping of 

multiple modes is sought. This design strategy results in a proof mass actuator with a 

resonance in the frequency range where the active system needs to be most effective. On 

the positive side, this strategy put less demand on the actuator in term of providing 

actuation. On the negative side, this strategy requires controllers that are somewhat more 

involved/elaborate than the first control scheme. An example of such controllers is the 

estimator-based Linear Quadratic Gaussian (LQG) commonly used to achieve active 

multi resonance damping.  

 

3.9.1   Controller Design 

As stated earlier LQG is a full state-estimate feedback controller. The states are 

estimated by a Kalman estimator which uses the control force as well as the measurement 

error (the difference between the measured and estimated output, i.e., acceleration) as the 

inputs. 

The state space formulation of the Kalman estimator is shown by Equation (3.22) 

and (3.23) where y , ŷ , L and u represent the measured acceleration, estimated 

acceleration, Kalman filter gain and control force, respectively. 

 ˆ ˆˆ ˆ ( )x Ax Bu L y y      (3.22) 

 ˆ ˆˆ ˆy Cx Du    (3.23) 
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The control force is the linear combination of states, i.e., 

 ˆu Kx    (3.24) 

where K is evaluated by solving the algebraic Riccati Equation.   

In order to obtain the state space formulation needed in the right format, the steps shown 

by Equations (3.25) through (3.28) are taken. 

Substitute for u in Equation (3.23) from Equation (3.24) 

 ˆ ˆˆ ˆˆ ˆ ˆ ˆ ( )y Cx DKx C DK x      (3.25) 

Substitute for u in Equation (3.22) from Equation (3.24) 

 ˆ ˆˆ ˆ ˆˆ ˆ ˆ( ) [ ( ) ]x Ax B Kx L y C DK x        (3.26) 

 ˆ ˆˆ ˆ ˆ[ ( ) ]A B LD K LCx x Ly       (3.27) 

From Equation (3.24) and (3.27), the new state space formulation of the LQG regulator 

can be obtained shown by Equation (3.28). Note that LQGD is zero.  

 

ˆˆ ˆ ˆ ˆ[ ( ) ]

ˆ
LQGLQG

LQG

x A B LD K LC x L y
BA

u K x
C

    

 
  (3.28) 

 
 

3.9.2   LQG Vibration Control 

The model of the plant (beam plus PMA), Equation (3.18), derived in the 

TMD_DA control approach and the experimental setup shown in Figure 3.1 were used to 

implement the LQG active damping control. The goal of the experiment was dampening 

multiple modes of the beam (with free-free boundary conditions), in the frequency range 
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of 100 to 900Hz, using the piezoelectric PMA with its natural frequency placed within 

the above-mentioned frequency range. 

Figure 3.22 shows the FRFs of the beam measured at the accelerometer location, 

without and with the LQG based active damping control. A piezoelectric PMA with the 

natural frequency of 340Hz was used for both perturbation and control actuation. Clear 

from this figure, the LQG control scheme added damping to all the resonances of the 

structure (the beam) in the frequency range of interest. Note that the resonance at 340Hz 

belongs to the PMA itself, not the structure. 

 

Figure 3.22: Experimentally measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) LQG control 
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3.10   LQG Control plus TMD Control plus DA Control 

As shown in Figure 3.22 the effectiveness obtained using LQG control compared 

to the result shown in Figure 3.21 by TMD + DA control, is somewhat limited. To 

enhance the damping effectiveness on the targeted (3rd) mode and also vibration 

absorption effectiveness at the perturbation frequency, a TMD controller and a DA 

controller were cascaded, in parallel, with the LQG controller. The TMD controller was 

tuned to the 3rd mode at 620Hz and the DA controller was tuned to the frequency of the 

disturbance at 750Hz. The Experimentally measured FRF mapping the perturbation input 

to the acceleration without (blue trace) and with (red trace) LQG control plus TMD + DA 

control are shown in Figure 3.23.  

 

Figure 3.23: Experimentally measured FRF mapping the perturbation input to the 
acceleration without (blue trace) and with (red trace) LQG control plus TMD_DA control 
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Clear from Figure 3.23, the DA located at 750Hz can successfully absorb the 

vibration caused by the perturbation coming from outside. On the negative side, this 

cascaded control scheme spilled some energy into the 1st mode. Fortunately, the 1st mode 

is not in the frequency range of interest in this project, i.e., the test vehicle does not have 

the noise issue around the frequency of the 1st mode.  

Each of the two control schemes presented in this document has its own 

advantages and disadvantages. Many factors need to be considered in choosing the right 

control scheme including power consumption, complexity, reliability, cost and so on. 

Moreover using multiple control schemes together can be a viable option. Cascading the 

LQG controller with TMD + DA controller has introduced more damping and absorption 

to the target mode and at the perturbation frequency.  

 

3.11   Rear Axle Control  

To examine the effectiveness of active vibration control on a real vehicle axle, an 

old solid rear axle was used as the structure. Considering the high rigidity of solid axles, 

our existing piezoelectric PMAs were not large enough to have sizable actuation. A 

regular (non-proof mas) actuator (of magnetostrictive type) was used to perturb and 

control the structure. 

Figure 3.24 shows experimental setup of the solid axle with the regular actuator 

installed on (a) and measured FRF of the rear axle (equipped with the regular actuator) 

with the control off and on (b). An active dynamic absorption algorithm tuned to the 

frequency of 534Hz was used as the controller. The notch in the FRF of Figure 3.24(b) at 
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the tuning frequency shows the viability of active vibration control on such massive 

structure. 

 

 

(a) 

 

 

 

 

 
 
 
 
 
 
 
 

Actuator 
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(b) 

 
Figure 3.24: The experimental set up with the regular actuator (a) and measured FRF of 

the rear differential equipped with the regular actuator with the control off and on (b) 
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CHAPTER IV 

 

TEST VEHICLE EVALUATION 

 

 

4.1   Active Vibration Control Implementation 

Following the laboratory work in developing the vibration control strategies using 

proof mass actuators, the first vibration control scheme mentioned earlier was chosen as 

the controller candidate for implementing on the vehicle. The choice was based on the 

baseline measurements of the rear axle of the candidate vehicle exhibiting whine noise at 

around 450Hz corresponding to the vehicle speed of 93km/hr. 

In the initial attempt, two piezoelectric proof mass actuators with 150 gram mass 

were used for actuation. The natural frequencies of the PMAs were set below the 450HZ 

frequency of interest (critical frequency). Figure 4.1 shows an image of the actuator 

installed on the rear subframe.
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Figure 4.1: One of the two piezoelectric PMAs installed on the rear subframe 
 

Although the piezoelectric PMAs exhibited effectiveness in mitigating 450Hz 

vibration in shaker tests, but the test on the dynamometer with constant speed at the 

critical frequency showed the lack of effectiveness of these actuators in absorbing the 

vibration induced by the rear differential. 

The piezoelectric proof mass actuators were replaced with two larger, 18 watt (at 

20 deg C), electromagnetic proof mass actuators with 250 gram inertial masses. Figure 

4.2 shows the FRF mapping the voltage to the force output of these actuators, measured 

in the laboratory. The rather large inductors in these actuators which along with a strong 

magnet produce large forces, also introduces up to 90 degrees of phase lag, at high 

frequencies (well beyond their resonant frequency), into the dynamics of the 

electromagnetic PMAs. 
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Figure 4.2: FRF of electromagnetic PMA 
 

First the electromagnetic PMAs were installed at the same locations as those of 

the piezoelectric actuators shown in Figure 4.1 and later moved to their new location 

underneath the front bushings attaching the rear differential to the subframe as it is shown 

in Figure 4.3. An accelerometer nearly-collocated with each actuator, provided the 

sensory information to the controller.  
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Figure 4.3: Location of the electromagnetic PMA on the subframe 
 

The availability of space to house the actuators, somewhat a) on the transfer path 

of the vibration and b) as close as possible to the source of vibration i.e., the rear drive 

shaft and differential were the main deciding factors on the placement locations of the 

actuators. 

To investigate the dynamics of the rear drive shaft/differential and the subframe 

an additional electromagnetic PMA was installed, temporarily, on the drive shaft and 

used as a shaker. To perturb the drive shaft both in torsion and bending, the shaker was 

installed off-center on the drive shaft shown in Figure 4.4. To avoid the gear and u joint 

backlash introducing nonlinearities during the shaking test, the vehicle was placed/parked 

on a ramp. 
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Figure 4.4: Shaker placement on the rear drive shaft 
 

 

4.2   Rear Subframe Active Vibration Control 

The presence of no prominent resonance around the frequency of interest, ruled 

out the need for adding active tuned damping to the subframe. To lower the transmission 

of forced vibration at the frequency of interest from the rear differential to the vehicle, the 

use of an active vibration absorption strategy was decided on. 

Using the acceleration measured by the feedback sensor on the front bushing of 

the rear subframe, the FRFs mapping the voltage driving the shaker (installed on the 

drive shaft) to the aforementioned accelerations were measured. Figure 4.5 shows the 

magnitude of these FRFs with the control loop open (blue/solid line traces) and closed 

(red/dashed line traces). The placement of a zero (a notch) at the frequency of interest on 

the FRF magnitude indicates the effectiveness of the active vibration control scheme in 

absorbing vibration at the frequency of interest, i.e. the  perturbation frequency. 
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(b) 

Figure 4.5: FRFs of acceleration of the passenger side subframe bushings (a) and driver 
side subframe bushings (b) with the voltage driving the driver shaft shaker as the input 

 

The evaluation of the control scheme continued by perturbing the drive shaft (by 

the shaker) with a tonal perturbation at the tuning frequency of the DA controller and 

measuring pressure in the cabin by a microphone placed close to the driver's ear. Figure 

4.6 shows the power spectra of such measurement without and with the control loops 

closed. The comparison of the power spectra in Figure 4.6 indicates the effectiveness of 

the control scheme in lowering the tonal noise.  
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Figure 4.6: Power spectra of pressure next to the driver's ear, with the active vibration 
control off (blue trace) and on (red trace), measuring during the shaker test 
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Figure 4.7: Amplified area with ellipse in Figure 4.6 
 

Following the shaker test, the perturbation actuator was removed from the drive 

shaft and the vehicle with the control hardware installed on its rear subframe, was placed 

on the rolling dynamometer and tested at the constant speed of 93km/hr, as shown in 

Figure 4.8. To prevent the vehicle from down shifting, the torque load was limited to 

below 54 Nm (40 ft lb). 
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Figure 4.8: The vehicle on rolling dynamometer 
 

With the vehicle running on the constant speed of 93km/hr, the accelerations on 

the front bushings of the rear subframe as well as the pressure next to driver's ear were 

measured with the active vibration control scheme being off and on. Figure 4.9 compares 

the power spectra of aforementioned accelerations, showing the absorption of vibration at 

the target frequency.  
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(b) 

Figure 4.9: Power spectra of the measured acceleration of the passenger side subframe 
bushing (a) and driver side subframe bushing (b) with the active vibration control off 

(blue trace) and on (red trace), measured during the rolling dynamometer test 
 

Figure 4.10 compares the power spectra of pressure measured next to the driver's 

ear, with the active vibration control off and on. The comparison of the traces points to 

the abatement of noise at the target frequency.  
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Figure 4.10: Power spectra of pressure next to the driver's ear, with the active vibration 
control off (blue trace) and on (red trace), measured during the rolling dynamometer test 
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CHAPTER V 

 

                                                       SUMMARY 

 

 

5.1   Conclusion 

In the field of active vibration control, PMA has been widely used to suppress the 

vibration caused by the external excitation. Unlike regular actuators, PMAs do not need 

anchors to push against; PMAs are not effective at low frequencies but are highly 

effective at high frequencies. 

Based on the FRF mapping the voltage of the active element to the force 

generated by PMA, several control strategies can be applied depends on the frequency 

range of interest. Two of the control strategies are designed and evaluated numerically 

and experimentally. The effectiveness of active control in absorbing the shaker induced 

vibration of rear subframe of a test vehicle was successfully demonstrated by examining 

the extent of reduction in the vibration of the rear subframe as well as the sound pressure 

inside the vehicle. Moreover, rolling dynamometer tests have shown effectiveness of the 

active control in reducing the vibration of the rear subframe and the pressure inside the 

cabin caused by the rear differential gear mesh. 
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5.2   Future Work and Recommendation  

The experimental results on the test vehicle show the success of the TMD/DA 

control schemes developed in the laboratory. However, more work can be done to mature 

this technology. The following are the recommendations: 

1. Extending the single frequency control to multifrequency control. 

2. Introducing adaptability into the controller by following the speed of the drive shaft. 

3. Extending the one directional control to multidirectional control. 

4. Exploring the model-based control application.   
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                                                    APPENDICES 
 

A. TMD and DA Controller Design 

 
 

 

Figure A - 1 shows the schematic diagram of a passive control scheme (namely a 

TMD) appended to a structure. 1m , 1k , 1c  are the parameters (mass, stiffness and 

damping coefficient) of the structure, 2m , 2k , 2c  are the parameters of the controller, and 

1x , 2x  are the displacement of the structure and controller mass, respectively. 

 

 

 

 

 

 

 

 

Figure A - 1: Schematic diagram of the control algorithm 
 

The structure is subject to a disturbance which causes vibration of the structure 

marked by displacement 1x . The vibration of the structure will be transmitted to the 
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spring-mass-damper system named controller, resulting in vibration of mass 2m marked 

by displacement 2x . Equation (A-1) shows the transfer function of the controller with the 

displacement of the structure, where the controller is appended to, as the input and the 

displacement of the controller as the output.      

 2 2 2
2

1 2 2 2

x c s k
x m s c s k




 
  (A-1) 

Changing the relationship of displacement between the structure and the controller to 

acceleration results in Equation (A-2). 

 
2

2 2 2 2 2
2 2

1 1 1 2 2 2

x a s a c s k
x a s a m s c s k


  

 
  (A-2) 

where 1a and 2a are the acceleration of the structure and the controller respectively. 

The acceleration of the controller multiply its mass generates a control force exerted on 

the structure. Equation (A-3) shows the transfer function of the controller, describing the 

acceleration of the structure as the input with the control force as the output.    

 2 2 2 2 2 2
2

1 1 1 2 2 2

( )a a m c s k mf
a a a m s c s k


  

 
  (A-3) 

where f is the force produced by the controller. 

Dividing both numerator and denominator of Equation (A-3) by 2m yields another 

transfer function format of the controller shown in Equation (A-4). 

 
2

2 2 2
2 2 2

1 2 2 2

2
2

n n

n n

w s wf m
a s w s w








 
  (A-4) 

where 2 and 2nw are the damping ratio and natural frequency of the controller. Depending 

on the extent of damping 2 , the passive controller is either a TMD or a DA. 
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The transfer function of the controller presented by Equation (A-4) can be used as 

an active vibration controller either as the TMD controller or the DA controller. Note that 

the difference between these two controllers is the damping ratio. Normally the TMD 

controller has a large damping ratio whereas the damping ratio is small in DA controller. 

In addition, the TMD controller is used to target the modes of the structure but DA 

controller is used to absorb forced vibration which depends on the forcing frequency. 
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B. Active Vibration Control Schemes Comparison 

 
 
 

In Chapter III, the TMD controller is introduced to add damping to the resonant 

frequencies of the structure. However, another active vibration control scheme dubbed as 

ATMD controller can achieve the same effectiveness by feeding back the acceleration of 

the target mode. The feedback gain is derived using the dynamics of passive TMD. 

To explore the advantages and disadvantages of these two control schemes, a 4-

mode structure with 1% damping is created in simulation. The natural frequencies of the 

first two modes of the structure are 0.3473rad/sec and 1rad/sec respectively. The PMA is 

tuned to the first mode of the structure and the TMD controller as well as the ATMD 

controller is used to control the second mode of the structure in comparison. Also, the 

ATMD controller is added to the first mode in both scenarios. The schematic block 

diagram of the two control schemes are shown in Figure B - 1.  
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(b) 

 
Figure B - 1: Schematic block diagram of the ATMD control (a) and TMD control (b) 

 

Note that the ATMD controller needs the modal acceleration to be the feedback 

signal while the physical measured acceleration is used in the TMD controller. Mode 

shapes (eigenvectors) of the structure and additional sensors are needed to get the 

measurement result of the modal acceleration.   

In order to compare the performance of the two control schemes, such as the 

stroke and power consumption of the PMA, the two controllers are adjusted to have 

almost the same effectiveness on the 2nd mode and an impulse disturbance is used to 

perturb the system. It is found that there is not much difference between these two control 

strategies in stroke, power consumption and so on. So based on the easier signal 

measurement, the TMD control scheme should be the better choice for this application. 
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Figure B - 2 shows the FRFs mapping the perturbation input to the displacement of the 

structure without and with the two control schemes.   

 

Figure B - 2: FRF mapping the perturbation input to the displacement without (solid 
trace), with ATMD (dashed trace) and with TMD (dotted trace) control 
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