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ABSTRACT

AN EFFICIENT FPGA IMPLEMENTATION OF A CONSTANT MODULUS ALGORITHM

EQUALIZER FOR WIRELESS TELEMETRY

Name: Schumacher, Robert G.
University of Dayton

Advisor: Dr. Eric Balster

In this manuscript, a real-time Field Programmable Gate Array (FPGA) implementation for a

Constant Modulus Algorithm Equalizer is presented. In many wireless telemetry applications, the

presence of multipath in the channel can obscure the intended message. One approach to reduce

transmission errors is the application of equalization, with the objective of restoring the received

information to an estimate of its original form, prior to demodulation. In situations where no a pri-

ori knowledge of the transmission exists, Constant Modulus Algorithm equalizers may be applied,

leveraging only the constraint that the ideal transmitted signal exhibits a substantially constant am-

plitude. The application of the Constant Modulus Algorithm in an FPGA to high bit rate telemetry

signals is analyzed, developed and tested. The research and development activity shows that the

approach is practical to improve over-the-air bit error rate performance in airborne telemetry appli-

cations.
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CHAPTER I

INTRODUCTION

1.1 Background

In the transmission of wireless information, the effects of multipath are well documented, but

persist as a major impediment to data transmission[1]. In analog video or voice communications,

though multipath often produces unwanted artifacts, it may not render the signal unusable, for exam-

ple, the ghosts in analog NTSC video. However in digital communications, especially the military

telemetry market, it is generally necessary to obtain a nearly error-free link, and the presence of mul-

tipath makes this impossible without sufficiently restoring the original signal. The need to support

higher data rates tends to aggravate the issue, as delays can span several symbols. One approach,

which applies an equalization filter to correct the linear distortion caused by multipath, is presented

here.

The application of equalization to repair multipath impaired channels has been studied and an-

alyzed for many years[2][3]. Some wired systems, e.g.ethernet, have utilized equalization for some

time now to correct distortions caused by the wired connection. Ample research has been presented

on the topic, and many demonstrations of systems employing equalization have been shown[4].

Real-time processing has been successfully applied to many lower frequency applications, but the

implementation of an equalizer to process samples of high data rate telemetry receivers is limited.
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The advent of high density Field Programmable Gate Arrays with digital signal processing capabil-

ity provides a platform for implementation of equalization approaches described in the literature. In

this paper, we present a well-known approach first described by Godard [5]. This method, referred

to as Constant Modulus Algorithm, leverages the fact that the transmitted waveform is a constant

amplitude. The cases presented are continuous phase modulation, with constant envelope. The note-

worthy advantage of the Constant Modulus Algorithm is that it can be applied to what is referred to

as ”blind” applications, where the receiver has no a priori knowledge of the data transmitted, and

must therefore determine an equalization solution without this information[6][7].

1.2 Scope

One application of the equalization methods described is telemetry for the application of gath-

ering range data from airborne test articles. The ranges are often over sea water, or mountainous

areas, and the landings and takeoff areas are surrounded by many large buildings. This application,

known as airborne telemetry, is a market served by a number of vendors who produce transmitters

and receivers. To date, demonstration of receivers with working equalizers has been very limited,

with inconsistent documented success in field applications.

In this paper, a method to implement a working Constant Modulus Algorithm equalizer is pre-

sented. It is noteworthy that the implementation will be tested in real telemetry applications, and

therefore the design must be product ready, which is a higher standard than a typical academic ex-

perimental application. The Constant Modulus Algorithm is created in MATLAB Simulink, and

then converted to VHDL using MATLAB’s HDL Coder. The VHDL is compiled in Altera’s Quar-

tus tool, and downloaded to an Altera Stratix IV device. The target Altera device is installed in a

receiver developed and produced by Quasonix, LLC. The receiver provides telemetry performance

in L, S and C bands for data rates up to 46 Mbps. The waveforms supported are those specified in

IRIG106, defined as Tier 0 (PCM/FM), Tier 1 (SOQPSK), and Tier 2 (MHCPM)[8].

2



A description of multipath and multipath scenarios is presented. The multipath analysis is per-

formed assuming that the channel behaves as a linear, time-invariant (LTI) system over a suitable

period of time. Through this analysis method, it is shown that the channel behaves like a linear

filter, and can be analyzed in either time or frequency domains using LTI methods. A description of

equalization approaches is presented, with background on equalizer types and performance compar-

isons. The CMA equalizer is presented in mathematical and structural detail, and simulation data

are presented.

Finite precision digital signal processing methods pertinent to this implementation are presented

with the design for this application. As the architecture requires the resources a large FPGA, a

discussion of efforts to optimally utilize the available resources, and approaches to ensure timing

compliance with high bit rate applications is presented. The architecture for the tested system is

presented in detail, and associated support circuitry. Finally, test results are presented for the design,

including eye diagrams, BER analysis and acquisition results.
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CHAPTER II

THE MULTIPATH ISSUE

2.1 Multipath Overview

Multipath is generally described as a wireless communications phenomenon whereby the signal

transmitted from an antenna arrives at the receiving antenna through a multiplicity of paths. These

paths may have different attenuations, and also may exhibit different time delays. The classical

example is the case where the line of sight (shortest) path is joined by a single longer delay path, for

example, a reflection off of a mountain or building. The diagram in Figure 2.1 shows this case. The

channel shown is not static, i.e. time-variant, as the aircraft is moving. However, at a given instant

in time, the channel can be treated as static. This static case can be described mathematically using

Figure 2.1: Multipath Example
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r(t) = Γ1m(t− τ1) + Γ2m(t− τ2). (2.1)

The simple relationship can be generalized by extending the channel to include an arbitrary

number of alternate paths, each with different attenuations and delays. Further, for mobile, or non-

static scenarios, each path may exhibit time-variance with respect to the attenuation and delay. This

generalized form can be expressed as follows:

h(t) =

L−1∑
i=0

Γi(t)δ(t− τi(t)) (2.2)

While this time-variant relationship is an effective way to fully describe a multipath channel, it

is difficult to analyze. We will therefore make some observations about the system to simplify its

analysis.

2.2 Linear Time Invariance

Although equation 2.2 clearly exhibits time-varying behavior in the channel attenuation and

path delay as the object moves, we observe that the time-variance is slow with respect to the data

rate over the information channel. For example, in a common telemetry application, the data rate

through the information channel is 10Mbps, with a symbol rate of 5MSym/sec (2 bits per symbol).

This corresponds to a symbol period of 200ns. For this example scenario, the receiving antenna

is fixed, and the transmitting antenna is attached to an airborne platform moving less than mach

1 (761 mph). Even when the aircraft is flying directly at the receiving antenna at mach 1, in one

bit period the aircraft has moved only 6.8e-5 meters. With operation in L-band (1500MHz), the

resulting phase shift is 0.0049 degrees, or less than one-half degree over 100 bits. Treating this

channel as an LTI case is acceptable, and convenient, though an equalizer to address the multipath

must adapt at a rate high enough to track the changing multipath. In most cases, the test article
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is moving much slower, and in fact, some of the most severe multipath is experienced when the

aircraft is taxiing, on take-off, or landing. Therefore, over a finite, significant period of time, the

channel can be viewed as stationary. In mobile applications such as airborne telemetry, we treat

the channel as a series of static channels. This property is leveraged such that the computational

benefits of linear, time-invariance can be utilized. Therefore, equation 2.2 is reduced to

h(t) =

L−1∑
i=0

Γiδ(t− τi). (2.3)

It is this reduced form that we use for analysis, and treat the response as linear and time invariant.

Although the telemetry application and lab environment includes the changing path attenuation and

delay, test data confirms that these are slow enough that we can use LTI techniques.

2.3 A Multipath Example

The impact of summing multiple paths may not be intuitive. The simplest case, where multiple

paths have the same delay, will simply result in positive reinforcement of the signal. If one of the

two paths includes a 180 degree phase shift, the signal may cancel. Taking this thought experiment

further, consider multiple paths with different delays, but with an unmodulated carrier. The sum-

mation of multiple paths at the receiver for this case would result in vector addition of the signal

with different phases. The vector summation results in a vector modified in amplitude and phase.

Therefore, a carrier described by

m(t) = Acos(2πfct), (2.4)

simply becomes a copy of the unmodulated carrier, with a different phase and amplitude, or

r(t) = ΓrAcos(2πfct+ φr). (2.5)
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with Γr and φr resulting from vector addition of the multiple paths.

This case is valid for unmodulated (zero bandwidth) transmissions only. However, since an

unmodulated carrier is of virtually no communications value, we must address a case of a carrier

with modulation. For this case, the transmission is represented by

m(t) = A(t)cos(2πfct+ φ(t)). (2.6)

Information is carried by modulating either the value of A(t) or φ(t) or both. However, in the

multipath channel, combination of delayed versions of the transmitted signal results in intersymbol

interference, which can make direct demodulation of the signal difficult or impossible. For example,

take a simple case to illustrate the issue. A binary phase shift keyed (BPSK) signal is transmitted,

where a carrier phase of +90 degrees represents a digital ”1” (Acos(2πfct + π/2) and a carrier

phase of -90 degrees represents a digital ”0” (Acos(2πfct − π/2))). The multipath channel is

composed of the incident ray, a second ray of 1/2 amplitude with a delay of exactly one bit time,

and a third ray of 1/2 amplitude with a delay of exactly 2 bit times. The impulse response of the

channel is shown in Figure 2.2, with a sample rate of 4 times per bit (Channel impulse response

will be discussed in Section 2.4.1). Suppose further that the transmission sequence was the pattern

’00010011010100101’. The baseband transmission in Figure 2.3 results. The bit states are marked

for each transmission state. Ignoring the states of the first two received symbols, the third symbol

received is ”0”, with reflected rays with one and two bits delay, respectively, giving a received signal

of

r(3T ) = Ar(Acos(2πfc3T − π/2) +
1

2
Acos(2πfc2T − π/2 +

1

2
Acos(2πfcT − π/2)). (2.7)

yielding
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Figure 2.2: Example channel impulse response.

r(3T ) = Ar(2Acos(2πfc3T − π/2)). (2.8)

The following symbol received is ”1”, again with reflected rays of one and two bits delay, giving

r(4T ) = Ar(Acos(2πfc4T + π/2) +
1

2
Acos(2πfc3T − π/2 +

1

2
Acos(2πfc2T − π/2)). (2.9)

yielding

r(4T ) = Ar(0) = 0. (2.10)

In this very simple example, the multipath has the effect of doubling the bit magnitude for pat-

terns 000 and 111, providing the correct bit magnitude for patterns 011, 101, 010 and 100, and

completely canceling the information for patterns 001 and 110. The received baseband signal is

presented in Figure 2.4. The detector in the receiver/demodulator will score a positive in-phase
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Figure 2.3: Example BPSK transmission (baseband).

Figure 2.4: Example BPSK signal received after multipath channel (baseband).
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Figure 2.5: Detector output for BPSK signal demodulated after multipath channel (baseband).

value as a binary one, a negative in-phase value as a binary zero, and phase near zero is uncer-

tain. The demodulator output shown in Figure 2.5 will produce errors at the uncertain regions in

the recovered in-phase signal. Though this example is contrived, it demonstrates the deleterious

effect of multipath, and further, a case where the most sophisticated equalization cannot recover lost

information1.

2.4 Channel Response

As we have established the basis for application of LTI analysis methods, the multipath channel

response can be described as a linear system. The channel can be equivalently described in either

time domain or frequency domain terms. In the time domain, the path is characterized by its impulse

response, whereas in the frequency domain, the frequency response is used. These responses are

complex valued.
1This is true in a single symbol detection system. A multisymbol detector may be be able to reconstruct the original

sequence by observing the pattern in neighboring symbols.
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2.4.1 Impulse Response

The most straightforward method to observe the effect of multipath is to characterize the impulse

response of the channel. In digital signal processing, the discrete response of a system is given by

the linear constant coefficient difference equation (LCCDE). For a finite impulse response filter

(FIR) this is

y[n] =

M−1∑
m=0

bmx[n−m]. (2.11)

In this representation, the coefficients, bm, form the impulse response. Clearly, a discrete rep-

resentation of the multipath channel can be directly inferred if the path attenuations and delays are

known. Since y[n] is complex, the coefficients, bm, are complex. Generally, it is convenient to

choose the sample rate for 2.11 as a multiple of the information symbol rate. Although delays are

continuous in time (and also dispersive), a sample rate of 4 times the symbol rate will yield an ef-

fective analysis. Choosing a sample rate as a multiple of the symbol rate is convenient for analyzing

the waveform, and is coincidentally the approach used in the receiver.

As an example, consider a channel with a line of sight attenuation of 110 dB, and propagation

delay of 16.0 microseconds. A second path has an attenuation of 113 dB, with a delay of 16.1

microseconds, and a third path has attenuation 117.5 dB and delay 16.4 microseconds. Since the

channel description for multipath can be completely described using relative relationships for atten-

uation and delay, it is convenient to adjust the values for the three paths to

Path Loss(dB) Delay(µs)
1 0 0
2 3.0 0.1
3 7.5 0.4
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Though this may seem to be a complete characterization, the transmission frequency wave-

length is very short in comparison to multipath delays. For a particular carrier frequency, the path

characteristic for a given delay results in a phase shift2 given by

φpath = 2πfcτ. (2.12)

which may be reduced to the interval [−π, π] using

φpath = φpath − round(
φpath
2π

)2π. (2.13)

When the signal is translated to baseband, the resulting phase must be preserved. As a result, it

is common practice to include a phase with the path description, or alternatively, the loss may be

represented using a complex value. Assigning phases to the paths described aboved based on an

arbitrary carrier frequency of 1485.5MHz, the table describing the channel becomes

Path Loss(dB) Delay(µs) Phase(radians)
α τ θ

1 0 0 0
2 -3 0.1 -2.827
3 -7.5 0.4 1.256

Using these values, the equation in 2.3 becomes

h(t) = 1 + 10
α2
20 δ(t− τ2)ejθ2 + 10

α3
20 δ(t− τ3)ejθ3 . (2.14)

Suppose that the communications system is operated at a symbol rate of 5MSPS (200ns period),

and that the received waveform was sampled at 4 times the symbol rate (sampling period is 50

nanoseconds). The equivalent sampled result given x[n] transmitted through the multipath channel

is given by
2The path may impart a constant phase change, although this is generally simply a 180 degree inversion due to a

reflection off of a surface.
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y[n] = x[n] + 10
α2
20 x[n− 2]ejθ2 + 10

α3
20 x[n− 8]ejθ3 . (2.15)

And therefore,

h[n] = δ[n] + 10
α2
20 δ[n− 2]ejθ2 + 10

α3
20 δ[n− 8]ejθ3 . (2.16)

The stem plot in Figure 2.6 shows the system impulse response, clearly showing the 3 discrete

paths. The stem plots are shown using magnitude and phase plots as the response is complex. It is

common to focus on cases where the incident, or line of sight path, which by definition the shortest

delay, is also the strongest. However, it is entirely possible, especially in mountainous areas or

areas with structures, to have the shortest delay path be weaker in amplitude. This would occur,

for example, when the line of sight path was blocked or heavily attenuated. The characterization

above applies, but note that τ should be made zero for the shortest path, and the path losses adjusted

accordingly.
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Figure 2.6: Multipath Example– Channel Impulse Response

2.4.2 Frequency Response

An equivalent description of the multipath channel is given by the channel frequency response.

The response must be complex, in order to describe the delays in the channel. This familiar way of

measuring a system response is similar to the response calculated for a linear filter. In fact, the LTI

channel behaves like a linear filter and, as we shall discuss later, is normalized by equalization using

the inverse filter response. The response in Figure 2.7 is the frequency response of the channel given

by the impulse response in Figure 2.6. Note that the phase response in Figure 2.7 is not a straight

line, indicating that the response is not a constant delay for all frequencies.

The frequency response also provides some intuition into the difficulty to equalize the channel.

For example, consider the case with a substantially long second path with little attenuation relative

to the incident, shown in Figure 2.8. This forms a frequency response with a deep notch. The
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Figure 2.7: Multipath Example– Baseband Frequency Response

Figure 2.8: Multipath Example– Impulse and frequency response for a deep notch.

notch in the frequency response removes the energy at that frequency, and intuitively, the inverse

filter will have nearly infinite gain at this frequency. Even if this were practical, the noise in the

communications channel would most likely conceal the energy in the notch, and the gain would

cause excessive amplification of the noise at the equalizer output.

2.5 Multipath Models

In order to simulate and test the performance of the equalizer implemented, it is necessary to

develop multipath models. Generally, test equipment that simulates a multipath environment will
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Figure 2.9: Multipath Example– Multipath Test System

have a fixed number of ”rays” that represent the fundamental and delayed path components of a

multipath scenario. The diagram in Figure 2.9 shows the general layout for a multipath test emulator.

This test equipment is manufactured by a number of vendors, such as Agilent, and is also included

as a capability with the Quasonix Receiver Test set, pictured in Figure 2.10. This equipment was

used to characterize the performance of the receiver/demodulator used in this development.

Although static multipath is appropriate for analysis and test of the equalizer as an LTI system,

the true measure of an adaptive equalizer is using a dynamic channel. This is done by varying w, τ ,

and φ in Figure 2.9. Often, test equipment will have a setting for each path, doppler frequency, that

modulates the angle, φ, at the set frequency. This parameter simulates a mobile target, such as an

airborne test article, as it traverses many wavelengths of the carrier frequency over a short period of

time. Simulations, such as those built in MATLAB, use the same mathematical representation for

multipath. In fact, it is convenient to construct a model in MATLAB using identical parameters as

the test system, to ease the transition to the laboratory.
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Figure 2.10: Photo of the Quasonix Receiver Test set, containing multipath emulation capability.
Photo courtesy of Quasonix, LLC.
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CHAPTER III

EQUALIZATION TECHNIQUES

3.1 Equalization

The implementation of an equalizer requires two main elements. The first is a method to de-

termine the channel characteristic, either directly or indirectly. The second is to develop a transfer

function (e.g. an inverse filter to the channel transfer function) to modify the received waveform

to allow the demodulator to recover the intended data. Many implementations have been proposed

and tested, either by simulation or in hardware[9]. In some implementations, the two processes are

combined, for example, in a gradient search algorithm, where a cost function drives the shape of the

transfer function iteratively.

The first part, determining the channel characteristic, can exist in various forms, but most al-

gorithms focus on either characterizing the frequency or impulse response of the channel, which is

then converted to an inverse channel filter, or direct determination of the inverse filter. An example

of this approach is a system that utilizes a training sequence to estimate the inverse channel response

using a Wiener solution. The second part of the equalizer implementation is the creation of a trans-

fer function to attempt to restore the information signal. Again, various implementations have been

proposed and constructed. Probably the most popular is a finite impulse response (FIR) filter that

utilizes variable tap weights to construct the inverse filter. Another approach uses a frequency do-

main implementation that applies a filter to the frequency domain representation of a signal. These
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Figure 3.1: Response of rectangular filter in frequency domain

filters approximately invert the channel response, in an effort to obtain the original signal. The

multipath signal is applied to the filter, and at the equalizer output, the signal should resemble the

original transmitted signal.

If we consider that the distortion imparted by the channel is convolution, or linear application

of an impulse response to the signal being transmitted over the channel, the equalizer is performing

deconvolution. In most cases, complete deconvolution is not possible even if the exact channel

impulse response is known. For example, a common filter applied in signal processing is rectangular

in the time domain, given by the response

y[n] =
1

N

N−1∑
k=0

x[n− k]. (3.1)

This rectangular response in the time domain can be converted to a frequency domain response

as shown in Figure 3.1. The frequency response has zeros at frequencies related to the inverse of

the filter length. The information at frequencies where zeros exist cannot be recovered, even with

infinite gain.

Although perfect deconvolution is normally unachievable, solutions generally exist that are ac-

ceptable, or more importantly, useful. While data transmission systems strive for error free com-

munications, unlike analog systems, they are often relatively robust in the presence of noise and
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distortion. Effectively, a signal distorted by multipath is not required to be restored to original con-

dition, as long as the data can be recovered. This will be demonstrated in later sections, as eye

diagrams from equalized signal are presented.

3.2 Data Aided versus Blind Equalizers

The method to determine either the channel or the inverse channel can be broadly grouped into

two approaches, data-aided and blind[10]. The data-aided implementation requires some sort of

known transmission, which is received after being distorted by the channel. Various approaches are

then utilized by comparing the received, or observed, signal against a local copy in the receiver to

determine the channel response or directly determine an inverse filter. This leads ultimately to a

channel inverse transfer function that can then be applied to equalize the received signal. The blind

equalization approach is far more difficult in that there is no a priori knowledge at the receiver of the

intended transmission. The equalizer must attempt to create the inverse channel transfer function

by leveraging hypotheses of the most likely transmission One of example of this is termed decision

feedback, whereby the best guess at the intended state of the digital symbol is made, and fed back

to compare against the transmitted signal. The comparison yields a cost, which is used to update

the transfer function. The focus of the work in this manuscript is an approach that is called the

Constant Modulus Algorithm. This algorithm uses a cost function based on the distance of the

received waveform amplitude from a constant radius. The Constant Modulus Algorithm approach

is a gradient search approach, closely related to a Minimum Least Squares algorithm.

In the process of equalization of a communications channel, the task of identifying either the

channel characteristic, or the direct solution to the impaired channel is the most daunting. The

application of an LTI solution thereafter is straightforward (albeit requiring complex mathematics).

A number of techniques will be presented in this section.
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3.3 Simulation Environment

In this chapter, we will compare a number of standard equalizer implementations. These im-

plementations are simulated in MATLAB, and results provided graphically. Note that it is not the

intent to quantitatively compare performance, rather to build a reference backdrop for the CMA

implementation synthesized in the FPGA. First, we establish a stimulus for the equalization tech-

niques, using a PCM/FM waveform at 5Mbps. The waveform is transmitted at high signal to noise

and convolved with a static multipath case. This simulation environment is described in more detail

below, and will be used for the comparison of a number of equalizer implementations.

3.3.1 Transmission waveform

The application of equalizers to range telemetry, as described in the introduction, provides an

opportunity rich environment for test scenarios. The telemetry standard, IRIG106[8], defines three

primary waveforms for telemetry communications. The oldest and still the most widely used today,

PCM/FM (pulse coded modulation, frequency modulation), is an excellent case to demonstrate the

effects of multipath, and the benefits of equalization, as the the eye pattern may be visually observed.

The PCM/FM transmitter takes a serial stream of bits as its input, and outputs a frequency based

on the bit state. The IRIG standard defines PCM/FM parameters, including a peak deviation of 0.35

times the bit rate. This specifies that the frequency of a mark (binary 1) will be 0.35 times the bit

rate above frequency, and a space (binary 0) 0.35 times the bit rate below the center frequency. The

modulator shapes the bit transitions using a premodulation filter as shown in Figure 3.2, in order

to maintain a reasonable transmission bandwidth. This has the effect of smoothing the transitions

between symbols.
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When the signal is received at the receiver, the demodulator functions to recover the binary

information. Many demodulators have been proposed and implemented, but for our purposes we

will consider a simple FM discriminator based on change in angle of the complex signal. Since

f =
∆φ

∆t
, (3.2)

we can measure the change in complex phase on each new sample to determine frequency. In

the digital signal processing implementation, the arctangent of the complex signal is computed,

unwrapped, and compared to the previous sample, giving

φ[n] = unwrap(atan(y[n])), (3.3)

and,

f [n] =
φ[n]− φ[n− 1]

Ts
. (3.4)

The magnitude of the discriminator output is independent of signal amplitude, as it is scaled by

the modulation index of the transmitted waveform. However, as the apparent modulation index of

the receiver is impacted by multipath and other intersymbol interference, it is necessary to maintain

headroom in the discriminator output.

The IRIG106 standard for PCM/FM prescribes a modulation index of 0.7, which corresponds

to a peak deviation of ±0.35 times the bit rate. Since we are sampling at 4 times the bit rate in the

receiver/demodulator, fs = 4fb, and fdev = 0.35fb, yielding

fdev =
0.35

4
fs, (3.5)
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Figure 3.2: Notional block diagram of a PCM/FM modulator. The equivalent system is done math-
ematically in a DSP implementation.

meaning that the complex phase of the signal will advance or diminish 0.175π radians on each

sample. Because this type of discriminator develops its output on each sample, and does not con-

sider information from adjacent symbols, it is called a single symbol detector. The block diagram

in Figure 3.3 shows the notional block diagram for the discriminator. Note that the output from

the discriminator are binary values (0, 1), but the frequency versus time signal is recovered as an

intermediate step as shown in Figure 3.3. This information is plotted for a number of symbols on

a persistent graph. This is known as the eye diagram, or eye pattern, as the persistent collection

of demodulated symbols resembles an eye. In general, the more open the ”eye”, the easier it is to

detect the binary information.

The eye pattern of the PCM/FM signal is observed after the received signal has been demod-

ulated by an FM discriminator. The transmission, when demodulated without noise, multipath or

any other impairments will produce an eye diagram as shown in Figure 3.4. Note the sharp zero

crossings, and open eye.
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Figure 3.3: Notional block diagram of a PCM/FM discriminator. The equivalent system is done
mathematically in a DSP implementation.

Figure 3.4: Eye diagram of an ideal PCM/FM signal.
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3.3.2 Multipath Channel

Next, we create a simulation channel. The analyses presented will attempt to show convergence

of the various equalization approaches, so a static channel is used. The multipath channel is a 3-ray

scenario, with the channel response given by

h(t) = δ(t) + 0.7δ(t− 5

fs
)e−jπ/2 + 0.1δ(t− 8

fs
)e−jπ/4. (3.6)

The response in Equation 3.6 is normalized such that the main (incident) path is a magnitude

of 1, with no delay. The additional paths have magnitudes of 0.7 and 0.1, delays of 5 samples and 8

samples, and phase shifts of π2 and −π4 , respectively. In discrete terms, Equation 3.6 is written as

h[n] = δ[n] + 0.7δ[n− 5]e−jπ/2 + 0.1δ[n− 8]e−jπ/4. (3.7)

The stem plots for this response are given in Figure 3.5. The stem plots are shown as real/imag-

inary, and magnitude/phase, which are equivalent representations.

This impulse response represents a static multipath case with a strong reflection at 11
4 symbols,

and a weaker reflection at 2 symbols. The impulse response can be transformed to the frequency

domain equivalent shown in Figure 3.6.

When the transmitted signal is convolved with the multipath channel described in Equation 3.6,

with the impulse response in Figure 3.5, delayed versions of the signal are summed with the incident

signal, producing an eye diagram like that in Figure 3.7. In this diagram, we can observe the time

domain distortion caused by the multipath channel, and we can clearly see that a single symbol

detector, such as the simple FM discriminator in Figure 3.3, would be unable to correctly recover

the information bits.
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Figure 3.5: Example channel impulse response. The upper stem plots show the impulse response in
real/imaginary format. The lower stem plots show the impulse response in magnitude/phase format.
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Figure 3.6: Example channel frequency response.

Figure 3.7: Eye diagram of an PCM/FM signal after convolution with a multipath channel.
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Figure 3.8: PSD of an ideal PCM/FM signal, and received signal after multipath channel is applied.

In addition, the signal can be observed in the frequency domain. While this may not provide the

intuitive assessment of distortion that the time domain affords, it demonstrates the loss of energy

at some frequencies that complicates the inversion filter, and in cases renders complete recovery

impossible. Figure 3.8 show power spectral density (PSD) plots of the transmitted signal and the

received signal after convolution with the multipath channel. Note how the frequency response in

Figure 3.6 results in the PSD at the right (convolution in the time domain is multiplication in the

frequency domain).

3.4 Data-aided Equalizers

In the design of data-aided equalizers, a sequence of known bits must be transmitted, so that

when the sequence is received, the data can be used to ”train” the equalizer. Using one of several

methods, the equalizer uses this information to determine the equalization filter characteristics. In

an application where the multipath is fixed, such as a building-to-building link, the training may be

accomplished during setup of the system, where the equalizer taps will be permanently established.

However, in the airborne telemetry application, the target platform is mobile, and as a result, the
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Figure 3.9: Pilot sequence inserted in block formatted transmission.

multipath characteristic is dynamic. In this application, a method must be utilized to continuously

update the equalizer settings. In most data-aided implementations, this is done by inserting a number

of ”pilot” bits occasionally, so that the equalizer may adjust its settings. Clearly, the pilot bits must

occur at a rate sufficiently high enough that the equalizer can adapt to the multipath channel.

In Figure 3.9, a block based transmission begins each block with a fixed pilot sequence. The

remaining bits in the block are ”payload” bits, used to transmit telemetry data. The pilot bits are

chosen such that their position in the received signal can be extracted using a correlator. The corre-

lator operates by locating a maximum response when the complex samples are correlated against a

local copy of the known pilot sequence, modulated to form a complex baseband representation of

the transmitted signal. The correlator function

C[n] =

L−1∑
k=0

Srx[n− k]Spilot[L− k], (3.8)

must provide the ability to locate and extract the pilot in the received data with low signal to noise

ratio, with frequency offsets, and in the presence of impairments such as multipath. The design of

effective correlators is a science unto itself and will not be covered in detail here. After the pilot

sequence position has been determined, the samples comprising the pilot sequence are extracted,

and used in one of the methods described below to determine the equalizer response.
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3.4.1 Zero Forcing Equalizer

The data-aided equalizer approach known as zero forcing (ZF) uses the known transmission

characteristic to estimate the channel impulse response, which is then inverted to create the equalizer

filter. This approach was proposed by Robert Lucky [11], and in a mathematical sense, the zero

forcing filter is the ideal solution for equalization. However, the zero forcing approach suffers in

practical applications for the following reasons:

1. Due to zeros in the frequency response of the channel, the inverse filter may exhibit very high

gain at these frequencies. In a practical implementation, this results in processing overflows,

excessive noise due to the high gain, and some frequencies that are not invertible (i.e. divide

by zero).

2. Although the channel impulse response may be finite, the impulse response of the inversion is

generally infinite. Truncation of the impulse response in any practical implementation results

in an imperfect solution. While no implementation results in a perfect solution, approaches

that utilize a cost function that minimizes the error may provide a better solution.

3. The ”known” data must have sufficient frequency content to provide information at all fre-

quencies within the data bandwidth. Frequencies that are not well represented in the fre-

quency response of the known data may cause erroneous gains in the inversion filter.

To demonstrate the zero forcing approach, we utilize the stimulus described in section 3.3.1.

There are two methods of computing the transversal filter tap weights. The first method utilizes the

frequency response of the channel as shown in in Figure 3.6. Procedurally, we extend the complex

impulse response, h, toN samples, where N is the number of taps we intend to use on the transversal

filter. Then,
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H = FFT (h). (3.9)

The inverse of H is found by inverting each frequency point in H,

Hinv =
1

H
. (3.10)

The inversion yields the response shown in Figure 3.10. Note the high gain peaks which attempt

to compensate the low gain in the channel response notches. We then convert the inverse filter

response, Hinv to its impulse response in the time domain,

hinv = IFFT (Hinv). (3.11)

The complex values in hinv are mapped directly to the equalizer weights, w. The impulse

response is presented in Figure 3.11 and Figure 3.12. This impulse response maps directly to the

equalization filter tap weights. The impulse response spans the entire set of filter taps, but the

magnitude has decayed considerably at the final tap. This would suggest that the truncation of the

infinite response will not have a large effect on the result. In a later section, we will discuss the

impact of the filter length on the solution.

The received signal is then convolved with the impulse response of the zero forcing filter. The

result is the eye diagram shown in Figure 3.13. The filter does a nearly perfect job of opening the

eye, and should result in error free reception of the original signal.

An alternative method for finding the coefficients operates entirely in the time domain, and gives

the process its name[12]. Effectively, we are seeking a set of coefficients, c, to force the convolution

of c and h to the delta function, δ. Therefore,
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Figure 3.10: Zero forcing filter response, with channel response shown for reference.
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Figure 3.11: Zero forcing impulse response showing the real and imaginary parts of the complex
response.

33



Figure 3.12: Zero forcing impulse response. The top two plots show the real and imaginary parts,
and the third shows the magnitudes of the taps.
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c ∗ h = δ. (3.12)

Writing this in matrix form,


h1 h2 h3 ... hN
0 h1 h2 ... hN−1
0 0 h1 ... hN−2
... ... ... ... ...
0 0 0 ... h1



c1
c2
c3
...
cN

 =


0
...
1
...
0

 (3.13)

and solving for c,


c1
c2
c3
...
cN

 =


h1 h2 h3 ... hN
0 h1 h2 ... hN−1
0 0 h1 ... hN−2
... ... ... ... ...
0 0 0 ... h1


−1 

0
...
1
...
0

 . (3.14)

The inversion in Equation 3.14 is not trivial, especially in an FPGA implementation. After solv-

ing for c, these complex values are directly mapped to the equalizer weights, w, and will produce

an eye diagram nearly identical to that in Figure 3.13.

Note that in the development of the equations in this section, it was assumed that the channel

impulse response, h, was known. In a data-aided implementation, either the frequency or impulse

response must be derived by comparing the received pilot to its expected value. This process is

similarly non-trivial, especially in the case where the multipath is dynamic and the filter must adapt

quickly.
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Figure 3.13: Eye diagram for system with Zero forcing equalizer.

3.4.2 Wiener Filter

A popular adaptive filter approach invented by Norbert Wiener[11] provides the optimal solu-

tion in the least squares sense[13]. This filter, known by the inventor’s name, uses the known and

observed data sets to create an overdetermined system. A matrix manipulation of the data forms an

autocorrelation matrix, R, and a cross-correlation matrix, p. The solution for the channel inverse

filter weights is given by

w = R−1p. (3.15)

The block diagram in Figure 3.14 shows a top level view of the Wiener adaptive equalizer. This

data-aided approach requires an embedded pilot sequence of known data. The correlator identifies
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Figure 3.14: Block diagram of the Wiener adaptive equalizer.

the position of the pilot and the samples, x, are fed to to the Wiener solver. The solver uses a stored

record of the complex pilot samples, d, made up of samples, d[n], and forms the autocorrelation

and correlation matrices.

Assuming sufficient length in x and d, for a transversal filter length of N, and M observations,

the received data vector is broken into M observation vectors of length N,

x0 = [x[0], x[1], x[2], ...x[N − 1]] , x1 = [x[1], x[2], x[2], ...x[N ]] , etc. (3.16)

The autocorrelation matrix, R, is given by

R =
1

M

M−1∑
i=0

xT
i xi, (3.17)

and the crosscorrelation matrix, p, is given by

p =
1

M

M−1∑
i=0

d[i]xT
i . (3.18)
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Figure 3.15: Magnitude tap weights of the Wiener adaptive equalizer.

From these we find the tap weights for the transversal filter, using Equation 3.15. Applying this

process to the test signal, and using M = 1000 observations, the weights are calculated as shown

in Figure 3.15. The corresponding eye diagram is shown in Figure 3.16.

Clearly, this solution has opened the eye, and should provide error free communication. In an

FPGA implementation, especially for high speed signaling, this approach is plagued by the need to

invert the autocorrelation matrix, which is a very computation intensive operation. Further, in order

to constrain overhead, the pilot bit observations will normally be spread over multiple blocks.
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Figure 3.16: Eye diagram after application of the Wiener adaptive equalizer.

3.4.3 LMS Algorithm

The LMS algorithm, or Least Mean Squares algorithm, iteratively increments the taps of the

transversal filter, according to a cost function given by the equation

e[n] = d[n]− y[n]. (3.19)

The block diagram in Figure 3.17 shows a high level view of the architecture. As in the other

data-aided approaches, a correlator is used to determine the position of the pilot sequence, d. The

output of the FIR filter, y[n], is compared against the pilot sample, and forms the cost, e[n], as

described in Equation 3.19. This cost is used to update the taps according to
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Figure 3.17: Block diagram of the LMS adaptive equalizer.

wn = wn−1 + µe[n]x̄. (3.20)

The constant, µ, is a gain constant, and adjusts the rate at which the taps update based on the cost

function.

The LMS Algorithm is a stochastic gradient descent algorithm, generally attributed to Bernard

Widrow[11], of Stanford University. Given sufficient iterations to converge, and a stationary chan-

nel, the LMS equalizer will converge on a solution that approaches the Wiener solution[13]. The

rate of convergence is slow, and therefore begs the question as to why the Wiener (more exact) solu-

tion would not be applied. The computational complexity of the Wiener solution, which is based on

autocorrelation and correlations, and requires a matrix inversion, is difficult to realize in hardware

such as an FPGA. The LMS solution uses an iterative approach that is computationally very light

compared to the Wiener solution.

The LMS algorithm was used to equalize the test stimulus, with µ = 0.005, and resulted in the

tap weights shown in Figure 3.18. The application to the test signal resulted in the eye diagram

shown in Figure 3.19.
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Figure 3.18: Magnitude tap weights of the LMS adaptive equalizer.

Figure 3.19: Eye diagram after application of the LMS adaptive equalizer.
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Again, this approach has opened the eye, and with significantly lower processing load on the

equalizer system. This algorithm is closely related to our subject approach.
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3.5 Blind Equalizers

3.5.1 Decision Feedback Equalizer

One form of blind equalization is an approach termed decision feedback. In this approach, the

best guess for the bit decisions are fed back to a Wiener, LMS, or other adaptive equalizer. The

block diagram in Figure 3.20 shows an implementation using the LMS algorithm. Conceptually, if

most of the guesses are correct, the solution will begin to converge, and the decisions will improve.

Once a satisfactory inverse filter is attained, the decisions will be error-free or nearly so, and the

equalizer will perform similar to a data-aided equalizer. A problem with this type of equalization

is that if insufficient correct decisions are made, the equalizer may never converge on an acceptable

solution.

43



Figure 3.20: Block diagram for a decision feedback implementation of an LMS adaptive equalizer.

3.5.2 CMA Equalizer

The Constant Modulus Algorithm is similar to the LMS Algorithm in that it is a stochastic

gradient descent algorithm. In fact, the tap weight update approach is identical, differing only in the

cost function. In this algorithm, the cost function utilizes the expectation of constant envelope power

to develop the direction of the gradient. Although beyond the scope of this work, it is interesting

to note that the CMA algorithm can be used to provide some improvement even with non-constant

envelope waveforms, assuming that the waveform displays a constant power over some reasonable

interval. An example of this is its application to Quadrature Amplitude Modulation (QAM).

The block diagram in Figure 3.21 shows the equalizer connections in the receiver system. The

CMA equalizer does not require known data, so the correlator is not needed to extract the pilot.

The cost function for CMA is relatively simple to compute, although the application of the result to

update the tap weights is not particularly intuitive. The cost function, e, is given by

e[n] = (1− |y[n]|2)y[n]. (3.21)
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Figure 3.21: Block diagram of the CMA adaptive equalizer.

This cost function is then used to update the tap weights in exactly the same fashion as the LMS

algorithm, using

wn = wn−1 + µe[n]x̄. (3.22)

Again, this computation is relatively light on resources as equalizers go, making it a good choice

for a high-speed FPGA implementation. The CMA equalizer was utilized with the test input and

µ = 0.001, resulting in the tap weights in Figure 3.22. The eye diagram in Figure 3.23 is clearly

opened with the CMA equalizer, and would certainly yield an error free link.

CMA Issues

So, clearly the CMA equalizer provides a number of significant benefits over data-aided equal-

izers. Examples include

1. The blind approach does not require a pilot. This eliminates the overhead associated, included

expanded bandwidth, and more complicated block generation in the transmitter.
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Figure 3.22: Magnitude tap weights of the CMA adaptive equalizer.

Figure 3.23: Eye diagram after application of the CMA adaptive equalizer.
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2. As there is no pilot to recover, the receiver does not require a correlator or associated block

timing to recover and process the pilot.

3. Blind equalization is preferred in applications where existing equipment is used, again, as the

transmitters were generally designed without pilot sequences.

4. The relatively light processing load is well-suited for FPGA implementation.

However, the CMA has a number of weaknesses, including:

1. Unlike the Wiener and the LMS approaches, the CMA equalizer does not have a data refer-

ence. As a result, the delay through the system is uncertain. This will be discussed in greater

detail later.

2. The CMA equalizer will tend to converge on a solution, but the length of time and path

taken can vary widely. Acquisition times and tracking rates are reasonably predictable, but

statistical in nature.

3. The CMA equalizer will occasionally converge on a poor or even unusable solution. Although

this is sometimes attributed to an unsolvable channel, it may occasionally occur as a result of

the path taken.
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CHAPTER IV

FPGA IMPLEMENTATION

4.1 FPGA Synthesis

The FPGA synthesis is a multi-step process using sophisticated applications from MathWorksr

and Alterar. The block diagram in Figure 4.1 gives a top-level overview of the design synthesis

flow. The process starts with a design in MATLAB Simulinkr, VHDL coding using a MATLAB

tool called HDL Coder, compilation with the Altera Quartusr tool, and then programming into a

target Altera device. Each of these steps will be described in greater detail below.

4.2 MATLAB Design

The FPGA implementation is achieved using MATLAB as the synthesis tool. MATLAB pro-

vides an entire host of engineering analysis and simulation capabilities. In recent years, MathWorks

has introduced a toolbox integrated within MATLAB called HDL Coder. This toolbox takes a de-

sign from Simulink, and translates the design to equivalent VHDL (VHSIC Hardware Description

Language) code. VHDL is commonly used to synthesize logic and digital signal processing design

in Field Programmable Gate Arrays (FPGA’s), and is universally compatible with FPGA compilers.

While VHDL is a powerful syntax within its own right, the fixed precision power, simulation capa-

bilities and array/matrix handling capabilities make MATLAB an extremely powerful tool to design
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Figure 4.1: Block diagram showing the steps in synthesizing the equalizer in an Altera FPGA.

digital signal processing machines. HDL Coder then provides an efficient means to create FPGA

programming firmware.

4.3 Simulink

Simulink provides a graphical interface to efficiently develop a digital signal processing system,

and a powerful simulator to perform ”bit true” simulations for that design. Although Simulink was

initially intended to provide an environment for graphical system design, a generic block is avail-

able that permits the use of a subset of MATLAB code to implement special functions. Although

these operate similar to ordinary MATLAB functions, some special considerations are necessary for

Simulink use. Additionally, the function block synthesizes a graphical block with input and output

pins to use in the Simulink environment. As the HDL Coder product has matured, it has become

more tightly integrated with MATLAB, and the use of MATLAB m-functions is now supported

within the Simulink environment.

The use of MATLAB to create a system design provides a number of advantages.
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1. MATLAB is an extremely powerful analysis tool for mathematical analysis and simulation,

and its highly optimized engine provides the ability to perform millions of complex calcula-

tions very quickly.

2. The syntax and highly optimized matrix/array handling are well suited for many digital signal

processing tasks, for example the FIR filter.

3. MATLAB’s extensive offering of toolboxes for specialized processing are essential produc-

tivity enhancers. For this task, these include:

(a) HDL Coder to generate VHDL from the Simulink design.

(b) Fixed Point processing toolbox.

4.4 HDL Coder Toolbox

The HDL Coder takes a Simulink project as its input, and generates VHDL files. HDL Coder

is configurable, but for the most part, the operation of the tool is as simple as a mouse click. The

generated VHDL files are then used as input to the Altera Quartus II tool that compiles the VHDL

for a specific FPGA device.

4.5 Fixed Point Processing

The FPGA design for this equalizer implementation necessarily utilizes a fixed point implemen-

tation, which MATLAB supports with the Fixed Point Processing Toolbox. In fixed point process-

ing, the single and double precision variables generally encountered in numerical analysis software

like MATLAB are replaced by variables of finite precision. For example, 8, 16 and 32 bit variations

are commonly used. A 16 bit unsigned integer includes the range from 0 to 216− 1. A 16 bit signed

integer spans −215 to 215 − 1. Although integers are simple to understand, to convert and manage

all variables as integers would require a significant level of bookkeeping. Instead, fixed precison
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with a fractional part is used. For example, a signed 16 bit with 12 bits fractional spans the range

−23 to 23 − 1 in increments of 2−12.

Ordinarily, in digital signal processing that includes multiplication steps, it is advantageous to

normalize signals to magnitudes of approximately one. This approach provides products after mul-

tiplication that will similarly have magnitudes of approximately one, thus allowing a uniform fixed

point declaration. This approach keeps the bookkeeping of precision to a minimum. In some in-

stances, however, some processes requiring smaller or larger values will require some manipulation

of fixed point results. For example, the equalization cost function gain value, µ, is used to set the

rate of convergence, and is generally on the order of µ = 0.001. Suppose we intend to represent

this value using a 16 bit number. If the standard variable type of signed 16 bit with 12 bits fractional

numerictype(1, 16, 12), the resulting representation is

fi(.001,1,16,12) = 9.7656e-04

whereas,

fi(.001,1,16,16) = 0.0010.

To further emphasize the point, suppose that µ = 0.001 is multiplied by a small value, b = .01,

also represented as a fixed point using numerictype(1, 16, 12). It is instructive to look at the full

32 bit result as compared to when recast to 16 bits.

mu = fi(0.001,1,16,12);
b = fi(0.01,1, 16,12);

a = mu * b;

fi(a,1,32,24) = 9.7752e-06
fi(a,1,16,12) = 0
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Although at times it is acceptable, or necessary, to keep the 32 bit result, it is common to recast

results to the smallest width possible to conserve resources and improve computation speed in the

FPGA. So, reconsider the example above, with some optimization to the fixed point casts,

mu = fi(0.001,1,16,16);
b = fi(0.01,1,16,28);

a = mu * b;

fi(a,1,32,32) = 1.0065e-05
fi(a,1,16,28) = 1.0066e-05.

Clearly, the accuracy of the result is reasonably well maintained, though the designer must

take great care in analyzing the range of input and output variables when creating a mathematical

process.

A design observation for the CMA equalizer is that the tap weight is an accumulator (integrator),

and due to small values for µ, may accumulate very small increments. As the FPGA implementation

is fixed point, it is necessary to keep a larger number of bits in the tap weight registers, though it is

not necessary to use the entire register when executing the FIR. For example, the received complex

samples, x[n], are designed to be on the order of one. As the solution converges, the error function,

e[n], becomes increasingly smaller. Suppose that the power error is approximately 15 dB below the

signal value, or a ratio of 0.03. In the tap update equation,

wn = wn−1 + µe[n]x̄. (4.1)

this value is multiplied by µ and the conjugate of x[n]. If µ = .001, and x[n] is approximately unity,

the fixed point result

mu = fi(0.001,1,16,16);
b = fi(0.03,1,16,28);
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a = mu * b;

fi(a,1,32,32) = 3.0195e-05
fi(a,1,16,12) = 0

So, in order to support the convergence to these levels, the tap weights must be accumulated with

more precision.

One of the challenges historically of working with finite precision variables is managing over-

flow and underflow conditions. The default treatment in the Simulink fixed point processing is

saturation. A signed, 16-bit, with 12-bit fractional variable accepts numbers in the range of -8.00 to

+7.9998. Any attempt to store a number greater than 7.9998 will saturate to the maximum value,

and similarly, a value less than -8.0 will saturate to the lower limit. Although good design practice

avoids overflow and underflow, a system that processes signals with additive white gaussian noise

will occasionally overflow or underflow, and saturation is preferable over wrapping.

4.6 Hardware Consideration

One consideration when managing fixed point values is the type of operation it will be used in.

For example, the Altera Stratix device DSP blocks have four 18 bit by 18 bit high-speed hardware

multipliers, as shown in Figure 4.2. Earlier, it was shown that the tap weight accumulators would

perform better at more than 16 bits. Suppose that 24 bits were used. In the operation of the FIR filter,

the tap weights are multiplied by the contents of the shift register. While the device will support

24 bit multiplication, it will significantly impede the clock speed, and consume a large quantity of

resources. Further, the extended precision does not measurably improve the output fidelity, since

the system must operate in a noisy environment.

So, to coordinate the precision of variables, the designer may need to recast variables. This is

very easy to do using the MATLAB fixed point notation. For example, if y is a signed, 32-bit, 24-bit

fractional and x is a signed, 16-bit, 12-bit fractional, y is recast to x by
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Figure 4.2: Block diagram of an Altera Stratix DSP block.

x(:) = y;.

In this example, x simply takes on the numeric value of y. If y is too large to fit in x, it saturates

at the largest value of x; if it is less than the smallest value x can hold, it saturates at the smallest

value of x. it Some care must be taken in recasting, as Simulink has some unique variable handling

quirks.

Although not part of the current equalizer design, the device contains random access memory

(RAM), which can also be configured as read only memory (ROM). These are arranged in blocks of

9 kilobits and blocks of 144 kilobits. When designing to use the RAM or ROM, the designer should

consider the address and data bus sizes to optimize use of the memory.

4.7 Pipelined Architecture

When designing high speed functions within an FPGA, it is crucially important to understand

the flow of the processing with respect to timing. The FPGA provides highly parallel processing,
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which is very helpful in attaining high speed, but often complex mathematical operations cannot be

accomplished in one clock cycle. A straightforward example of this is the finite impulse response

(FIR) filter structure used in the equalizer, with the block diagram in Figure 5.1. For this imple-

mentation, a 64-tap complex FIR filter is realized. Ideally, at each tick of the clock, the FIR would

produce a complex output for its present set of complex inputs. In MATLAB, the statement

y = sum(x .* h);

seems simple enough, but breaks down to 64 complex multiplications (four scalar multiplica-

tions plus two scalar additions for each complex multiplication), plus 63 complex summations (two

scalar additions for each complex addition). The 64 complex multiplications can be done in one

clock cycle using parallel DSP blocks, but a summation with 64 complex inputs would consume a

mammoth amount of resources, and would require a substantial length of time for the solution to

ripple to the output.

In order to accomplish this function and maintain high throughput, pipelining is used. In the

pipelined approach, the function is broken into smaller pieces, and each piece is performed on sub-

sequent clock cycles. This method has the negative effect of delaying the answer, but maintains a

high rate of throughput, which is generally more important. Consider the diagram in Figure 4.4.

The multiplications are done in parallel, resulting in 64 complex values, which are stored in regis-

ters. On the following clock cycles, the 64 values are reduced to 32 by adding adjacent samples.

During the following cycle, these 32 are reduced to 16 and so forth until on the seventh cycle, the

final summation, yout, is performed. The timing diagram in Figure 4.5 shows how the FIR result

progresses through the pipeline on each clock cycle.

In order to successfully implement the equalizer algorithm, careful accounting of pipeline delays

must be accomplished. It is noteworthy that pipeline delays are generally not an issue for linear
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Figure 4.3: Block diagram of a finite impulse response filter.

Figure 4.4: Block diagram showing pipelined FIR filter.
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Figure 4.5: Timing diagram showing the progression of the FIR filter result through the pipeline.

processing, as the result is simply delayed. Pipelining can be an issue for processes that utilize

feedback, as the delay must be accommodated.

4.8 Resource Planning

The FPGA target for this design is very large, with over 180,000 registers and nearly 1300

multipliers. While this is a large canvas to paint on, careless design practices can quickly consume

resources. Early design rough-in generally includes a coarse estimate of resources needed to accom-

plish the overall design. In this application, the digital demodulator consumes a large percentage

of the available FPGA resources. Within the equalizer, the FIR filter coupled with the tap update

circuitry consumes the largest percentage of the remaining resources.

The FIR structure is a common digital signal processing tool, but in order to implement a high

speed filter in an FPGA, a significant number of resources are consumed. The design implemented

as shown in Equation 4.1 used 16 bit complex values in the complex shift registers, 32 bits in the tap

weight accumulators, and 32 bits in each sum to generate the FIR filter output. Next, the resources

for the tap update are included. There are 64 complex registers to store µx̄, 64 registers to contain
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Description Values Registers (bits) Registers (ext)
Shift Reg 64 32 2048

µx̄ 64 32 2048
Tap Delta 64 64 4096

Tap Weights 64 64 4096
Mult 64 64 4096

Sum 1 32 64 2048
Sum 2 16 64 1024
Sum 3 8 64 512
Sum 4 4 64 256
Sum 5 2 64 128
Result 1 64 64
Power 1 32 32
Delta 1 32 32
e[n] 1 32 32
Total 20512

Table 4.1: Table showing resource usage for core CMA implementation.

the pipeline value for µx̄e[n], or the tap delta, and 3 registers to develop e[n]. Table 4.1 shows the

estimate of expected registers in the equalizer core, estimated at 20,512.

In a device with 182,000 registers, this would not seem to be an overwhelming demand, but

the digital demodulator consumes over half the available resources. Assuming approximately 40

percent of the devices total resources available, the core of the equalizer utilizes a little less than a

third of the allocated registers. Register count is one measure of expected resource usage. As the

design is placed by the compiler, logical functions will utilize Adaptive Look-Up Table (ALUT)

elements 3, for example, to implement the adders in the filter summation steps. Estimation of the

number of ALUT’s is much more difficult, and for this type of logic, a value of 2 times the register

count is a reasonable rough estimate.
3An Adaptive Look-Up Table (ALUT) is a logical construct that represents what can be implemented by the combi-

national logic hardware of an Adaptive Logic Module (ALM) in supported device families. Taken from Altera website.

58



To some extent, rough planning can be helpful at the start of a project, but given the complexity

of DSP functions, and the wide array of resources in a high-density FPGA, the best information is

derived from compiling to investigate the resource usage and maximum operating frequency.

4.9 Device Programming

The Quartus tool creates programming files for the Altera FPGA. These files are combined

with compiled code for the Nios processor, which is instantiated within the FPGA. The converted

programming file is then downloaded into EEPROM on the receiver. For the CMA equalizer, no

changes to the Nios processor code were necessary, except to provide a switch to disable or enable

the equalizer.
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CHAPTER V

EQUALIZER ARCHITECTURE

5.1 Finite Impulse Response Filter

The main element of the equalizer that creates the inverse filter to repair the channel is a finite

impulse response (FIR) filter. The FIR filter uses variable weights as determined by the CMA cost

function. Referring to 5.1, the FIR filter is comprised of an N-length shift register, N tap weight

registers, and summation circuitry to accumulate the result. The output of a FIR filter is given by[14]

y[n] =
N∑
k=1

w[k]x[n− k], (5.1)

Figure 5.1: Block diagram of Finite Impulse Response (FIR) filter
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It would seem intuitive that the filter length in samples, or alternatively, the length of the impulse

response would be simply long enough to span the maximum delay in the multipath channel. How-

ever, the inverse response to the channel is generally an infinite response, so to approach an ideal

solution, the FIR filter should be as long as possible. Clearly, in a hardware implementation, the

number of taps are constrained by available resources, and the ability to meet timing requirements.

In the tested implementation, the filter contained 64 delay elements, or ”taps”, each with a corre-

sponding tap weight. The weights for these taps are determined by the Constant Modulus Algorithm

cost function, which is described in section 3.5.2 in more detail. The 64-tap implementation is a

reasonable compromise between hardware constraints in the FPGA and performance. To demon-

strate this, the tap weight stem plots for 16-tap, 32-tap, 64-tap and 128-tap architectures are given

in Figure 5.2, and eye diagrams are given in Figure 5.3. Observation of the different eye diagrams

shows marked improvements from 16-tap to 32-tap and from 32-tap to 64-tap filters. The difference

from 64-tap to 128-tap for the case shown, would not seem to justify the more than doubling of

resources necessary to accommodate the additional taps.

The FIR filter design in the FPGA consists of a 64-stage shift register that stores the complex

data samples. On each sample clock, the values in the shift register are shifted, with a new value

being stored, and the oldest value discarded. Another array of 64 registers holds the complex values

of the tap weights. The output of the filter is pipelined, in order to produce an output on each sample.

The pipelining process is described in more detail in Section 4.7. The delay due to pipelining is 7

samples. It is worth noting that the finite impulse response filter implementation is the most popular

for practical equalizer designs, but many other architectures are possible, but outside the scope of

this thesis.
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Figure 5.2: CMA Tap Weights for various length FIR filters

5.2 CMA Tap Calculation

The next significant processing function is the CMA tap update function. The cost function as

described in Section 3.5.2 is realized in a pipeline architecture. Recall that the cost function

e[n] = (1− |y[n]|2)y[n], (5.2)

is based on the filter output power, |y[n]|2, which is computed using

P [n] = |y[n]|2 = y[n]ȳ[n]. (5.3)

Thereafter, the error magnitude is calculated by subtracting from a target power of 1, and then

multiplying by the filter output to produce a complex error, e[n]. This process is accomplished in
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Figure 5.3: CMA Eye Diagrams for various length FIR filters

63



3 pipeline steps, extending the delay from the FIR to 10 samples. The final step to update the tap

weights is to complete the update equation

wn = wn−1 + µe[n]x̄. (5.4)

Observing Equation 5.4, the term µe[n]x̄, requires two multiplications. However, to conserve

multipliers, and acknowledging that the pipelining process will incur registers anyway, and that µ is

constant, a resource optimization is accomplished by creating a second 64-stage shift register. This

shift register will contain µx̄, delayed by the appropriate number of cycles to compensate for the

pipeline delay. In addition to using only two multipliers (saving 126), the fixed point format of the

register can be designed to minimize quantization loss. Since µ is generally small, on the order of

µ = 0.001, the register can be designed to hold the appropriate fixed point numeric range for the

variable. So, the remaining steps of Equation 5.4 require multiplication by the error function , e[n],

and addition to the existing tap weight array. Note that this multiplication and addition produce

complex results.

5.3 Convergence Monitor

Although the Constant Modulus Algorithm tends to converge for many channels, the algorithm

does not guarantee convergence, and more importantly, the initial conditions play a role in attaining

convergence. Therefore, there is some probability that for some channels, under certain initial con-

ditions, that a solution will not develop. This condition is further aggravated by the fixed precision

implementation. Since a tap weight is bounded by the maximum value of the register, sometimes

convergence is impeded because a tap value has saturated, and a converging path to the solution

does not develop.
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Although an incorrect solution for a given channel may not bring severe consequences (cer-

tainly, some channels have no solution), these invalid solutions are often ”latched”, wherein the

machine cannot recover, even as the channel multipath characteristic improves. This is certainly

an unacceptable state for the machine to rest in, as thereafter no valid data is recovered, even in

non-multipath situations.

Whatever the cause, for a practical, useful implementation, the algorithm must have a means

to avoid, or remedy an invalid solution. Test observation of the conditions under which an invalid

solution was encountered yield two conditions. First, the power distribution of the taps can be

monitored for a particular signature. For most cases, this is sufficient information to determine that

the system is stuck on an invalid solution. The second condition discovered is that when an invalid

state is encountered, the data recovered by the demodulator will not be sufficiently random, given a

random input, due to a characteristic of the demodulator. These methods are considered proprietary

by Quasonix, and the technique is therefore not disclosed in detail.

If an invalid state is detected, the CMA machine is simply reset by applying a 1 + j0 to the

primary tap, and zero to all others. This has proven to give the initial condition most likely to result

in convergence.

5.4 Tap Centering

Another challenge of the CMA approach is managing the delay through the FIR equalization

filter. Consider the case where two FIR filters have the tap values shown in the two topmost graphs

in Figure 5.4. These solutions provide identical outputs in magnitude frequency response, but they

exhibit significantly different delays. In the third graph, a reference signal, Vin is convolved with

the responses, yielding the outputs, V1 and V2, in the lower two graphs in the figure. Clearly, V1 and

V2 are identical time domain responses, but have different delays.
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Figure 5.4: This series shows how H1 and H2 have identical magnitude responses in the frequency
domain, but exhibit different delays.
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Although a receiver by its fundamental design must adapt to different delays (e.g. the path

delay for a mobile system changes constantly), as the rate of change of the delay approaches the

symbol rate, the receiver will struggle to maintain proper timing. Further as the non-zero taps

approach one end or the other of the equalizer FIR filter, the equalizer will be constrained potentially

by the abrupt truncation of the response. The CMA design is a stochastic gradient search which

generally converges to a solution, because there is no reference the algorithm has no knowledge of

delay or the boundaries of the FIR filter. For identical path parameters, the algorithm can settle on

slightly different tap arrangements, and delays. An approach was implemented to force the ”center

of gravity” of the taps to a set position in the FIR. The center of gravity is given by

COG =

∑
i |Wi|i∑
i |Wi|

. (5.5)

The approach to shift taps without discontinuity in the filter output is proprietary and is not disclosed

here in detail.

5.5 FM Discriminator

5.6 Noise Generator

In channels that result in deep notches in the frequency domain, the solution tends toward large

gain in the equalizer to correct those notches. This is one of the weaknesses of a zero-forcing

approach. The CMA approach will migrate toward large gain solutions as well. A method that

was tested and implemented intentionally added white noise to the input signal4 in order to aid the

convergence in the finite math implementation. The noise assists in two cases:
4this approach is also considered proprietary

67



1. The noise provides a method to force a truer average in the finite math processing. As the

quantization of the signal may have a bias in value, an appropriate level of noise will help to

mask biases.

2. In a path response that exhibits notches or deep zeros, the noise may help to constraint the

solution to finite values. If left alone, the solution may attempt to produce an infinite response.

The noise was generated using a Park-Miller linear congruential pseudo-random noise genera-

tor (PRNG). The PRNG is approximately white in nature, with a uniform distribution in the time

domain. The linear congruential generator is of the form Xi = (aXi−1 + b) mod m, where a, b,

and m are constants.

Figure 5.5 shows the frequency spectrum and distribution of values. Although the distribution is

uniform, it is postulated that the distribution is not critical to the function of the noise generator, as

the noise is added far below the point where it would contribute errors. It is further postulated that

possibly if AWGN were used, the gaussian ”tails” contain very large values, that although infrequent

may cause sporadic errors, whereas the uniform distribution is constrained. Future testing may

explore performance comparisons with different generators, and with gaussian shaping (more like

AWGN. Gaussian shaping can be accomplished by applying the Box–Muller transform where

n1 =
√
−2ln(u1) cos(2πu2), (5.6)

and

n2 =
√
−2ln(u1) sin(2πu2), (5.7)

where u1 and u2 are random variables with uniform distribution.

The scaling for the noise is controlled automatically by the equalizer. The power in the taps

given by
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Figure 5.5: PSD and distribution for noise generator

Ptaps =
∑
i

|Wi|, (5.8)

is compared to a threshold, and the gain of the noise generator is set in a feedback loop. The system

Laplace form is given by

Gn(s) = (Ptarg − Ptaps)(
ki
s

+ kp). (5.9)

This was found empirically to work very well to stabilize the tap magnitudes, without adding

excessive noise when the system signal to noise decreased.
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CHAPTER VI

SYSTEM ARCHITECTURE

6.1 Digital Receiver Overview

The advent of high speed, high density FPGA’s (Field Programmable Gate Arrays) and ASIC’s

(Application Specific Integrated Circuits) has enabled the realization of high performance digital re-

ceivers. High profile military programs, such as Joint Tactical Radio System (JTRS), have incurred

vast research and funding for the development of digital transmitters, receivers and transceivers.

Generally, the receiver front end is constructed in the form of a heterodyne, as has been done

for many years. The availability of miniature components, especially complex, high performance

MMIC’s (Monolithic Microwave Integrated Circuits) has led to highly integrated, densely packaged

designs. Two methods are commonly employed in digital receivers, either conversion to baseband

IF (intermediate frequency), or conversion to a non-zero IF.

The receiver used in this investigation is a dual conversion type, with a final analog IF at 70MHz.

The level controlled IF is directly sampled by an analog to digital converter, with a sampling rate

of 93.3333MHz. The receiver is designed and produced by Quasonix, in West Chester, Ohio. A

photo of the receiver is as shown in Figure 6.1. The samples are delivered to the FPGA on a parallel

bus, at 93.3333 Ms/sec, in scalar form. In the FPGA, the samples are downconverted to zero IF, or

baseband, and are therefore of complex form. The equalizer is a complex implementation of a finite

impulse response filter, and is followed by a sophisticated demodulator, standard to the product line.
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Figure 6.1: Quasonix Digital Receiver. Photo courtesy Quasonix, LLC.

Because of the mathematical realization of the equalizer structure, the digital receiver implementa-

tion provides an ideal approach. In this chapter, the receiver functions will be described in greater

detail, as the interactions of the various blocks are critical to understand for proper operation of the

equalizer.

6.2 Receiver Functions

6.2.1 RF Downconversion

Although the receiver/demodulator is classified as a software defined radio, the function to con-

vert a received RF signal at L, S or C band is done via conventional means, albeit in an extremely

compact package. The RF is filtered using a tunable preselector, converted to a first Intermediate

Frequency (IF) at 374 MHz, then converted to a second IF at 70 MHz. The block diagram in Fig-

ure 6.2 shows the progression of the dual conversion from the antenna to the FPGA. In addition

to filtering and variable gain stages, the IF section contains several SAW filters at different band-

widths, so that an optimum configuration can be selected depending on modulation type and bit rate.

The selection of intermediate frequencies to maintain selectivity, and optimize image and spurious

performance, is a specialized skill, and beyond the scope of this manuscript.
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Figure 6.2: Block diagram of the receiver, showing dual conversion approach.

6.2.2 Automatic Gain Control

The receiver has an advanced Automatic Gain Control, or AGC, which receives feedback from

the digital receiver to adjust gain in the RF and IF sections. The AGC characteristic is programmable

according to optimum parameters based on mode, modulation type and bit rate. The AGC function

is critical to optimizing operation of the digital receiver. First, analog to digital conversion tech-

nology is limited to approximately 14 bits at the conversion rate used in this implementation. The

A to D converter in this receiver operates at 12 bits. At approximately 6dB per bit, this gives a

dynamic range of about 72dB, whereas the receiver is required to operate over a range in excess

of 120dB. The AGC sets the gain to a level that optimizes the A to D conversion. Secondly, many

of the specialized waveforms require a stable amplitude for demodulation. The AGC is key to this

performance.

In order to preserve dynamic range through the analog receiver, the automatic gain control stages

are distributed through the cascade of gain, filter, and mixing stages. In general, gain is reduced from

the back end toward the front end for optimal performance.

6.2.3 Conversion to Baseband

The analog to digital converter samples the 70MHz IF input at 93.3333 MHz. Although the

signal is above the Nyquist rate, it is sufficiently bandlimited, so the response in the second Nyquist

region is returned, as shown in Figure 6.3. This is equivalent to sampling a response centered at an IF
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of 23.3333MHz (with the spectrum inverted). An advantage of sampling at 93.3333MHz is that the

signal is very easily converted to baseband by simply consecutively multiplying the samples by the

sequence 1, j,−1,−j, 1, j,−1,−j, etc., which describes a carrier of amplitude one at 23.3333MHz.

This simple multiplication does not even require a hardware multiplier, as the IF samples are simply

multiplied by zero, 1 or -1 as they are converted to complex baseband. For example, consider a

stream of IF samples

s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, etc.

The mix to complex baseband yields the following samples

s1 + j0, 0 + js2,−s3 + j0, 0− js4, s5 + j0, 0 + js6,−s7 + j0, 0− js8, s9 + j0, 0 + js10, etc.

This process is shown graphically in Figure 6.4. The complex baseband result contains an image at

46.6667MHz, which must be removed by filtering. This is done using digital filters in the FPGA.

6.2.4 Decimation (Resampling)

The digital demodulators require 4 samples per symbol, so the baseband signal is decimated, or

more accurately, resampled to 4 samples per symbol. The decimation subsystem creates a clock us-

ing a numerically controlled oscillator driven by the 93.3333MHz reference. The resampled output

rate can be any frequency up to 93.3333MHz. Because the decimation clock uses the 93.3333MHz

as its reference, the output rate is an average rate, but does not guarantee that the clock enables are

evenly spaced in time. The resampling is performed with interpolation, and does provide evenly

spaced samples in time. Figure 6.5 shows the decimation operation, with interpolation between

samples to provide time accurate samples. Decimation is a critical process in the FPGA implemen-

tation, as it significantly decreases resources in the signal processing of the received signal, without

violating Nyquist criterion for sampling rate.
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Figure 6.3: Receiver Sampling approach. The IF is sampled at 93.3333MHz, mixed to baseband
and filtered.

Figure 6.4: Digital Downconverter
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Figure 6.5: Example of decimation function interpolating samples synchronously.

6.2.5 Frequency Loop

When the transmitted message is created and applied to a carrier, the source reference clock is a

high precision reference, often with an accuracy of ±1ppm. Similarly, the receiver nominal center

frequency is determined by the receiver reference clock, which is also on the order of±1ppm. Even

with that precision, with use in C-band, this equates to over 8 kHz possible total error. Further, with

airborne test articles, doppler frequency shift adds algebraically. The doppler shift is given by

fshift =
v

v + c
fccosθ, (6.1)

where v = magnitude of velocity of test article,

c = speed of light,

fc = carrier frequency, and
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θ = angle between test article path and receiver.

For example, consider an aircraft flying at a velocity of Mach 1 (761 miles per hour) directly at

the receiver, the doppler shift at C band is over 2 kHz. The doppler shift adds algebraically, which

for this example produces a frequency offset of up to 10 kHz. This offset must be resolved by the

demodulator, and corrected by multiplying the baseband signal by the inverse of the offset, given by

x′[n] = x[n]ejθ[n], (6.2)

where θ[n] = θ[n− 1] + 2π
−foffset
fsample

,

The multiplication at baseband is done using a numerically controlled oscillator (NCO) as the

other multiplicand. The NCO is made up of a phase accumulator and a sine/cosine look-up table.

The accumulator is configured as a wrapping register, so an overflow or underflow is wrapped (i.e.

overflow or underflow value truncated to the register size). The block diagram in Figure 6.6 shows

a block diagram of the NCO. In Figure 6.7, the NCO phase accumulator is depicted as a circle,

indicating its circular continuity as a wrap accumulator. The input frequency is essentially a phase

increment to the accumulator, leveraging the relationship

f =
∆φ

∆t
. (6.3)

The accumulator output, generally rounded to fewer bits, is input as an address to a sin/cos

lookup table, which outputs a+jb. The complex received baseband signal is then multiplied by this

complex value to offset the frequency error. An NCO can generate a very precise frequency output.

For example, a 10MBPS signal is samples at 4 times per symbol, yielding fs = 40MSPS. If an

NCO is designed with a 32 bit accumulator, the NCO precision is given by
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Figure 6.6: Block diagram of numerically controlled oscillator (NCO).

fincr =
1

232
fs = 0.009Hz. (6.4)

The frequency control loop utilizes a detection circuit to detect the offset frequency in the de-

modulated data. This frequency is fed back in a control loop to drive the NCO in the opposite di-

rection. Although, many frequency detection methods do not provide an exact value for frequency

error, the loop iteratively drives the frequency offset the proper direction, until the error is zero. The

frequency control loop is relatively sophisticated in its implementation, which is beyond the scope

of this thesis.

6.2.6 Timing Loop

A similar function of the receiver is to determine the exact bit rate, so the demodulator can

be synchronized to the bit rate of the transmitter. The timing loop determines timing from the bit

synchronizer, and adjusts a numerically controlled oscillator to exactly match the correct rate. Due

to the trellis demodulation, the timing loop in the test receiver is somewhat sophisticated. For our

purposes, the function can be simply described as an operation that detects zero crossing in the

demodulated output. A numerically controlled oscillator generates a bit clock that is aligned to the

data using a servo loop, generally consisting of a proportional and an integral term. A common

implementation called an early/late gate structure is depicted in Figure 6.8. In this approach a first

integrator integrates samples for one-half of the bit period prior to an anticipated edge and a second
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Figure 6.7: Graphical description of NCO operation.

integrator integrates samples for one-half of a bit period after the anticipated edge. The absolute

values of these integrator are subtracted. If the transition is centered between the integration periods,

the error is zero. An unbalance in the integrator will create an error that drives a servo loop to force

an NCO to the proper frequency and phase, operating similarly to a conventional phase locked loop.

6.2.7 Demodulation

The most important function in the receiver subsystem is the demodulator. The demodulator

converts the complex baseband signal to information bits. Demodulators appear in many forms,

trading complexity and resource usage for robustness and acquisition speed, among other features.

The demodulators in the test receiver use an advanced technique termed trellis demodulation. Trellis

demodulators seek to wring every last bit of information out of the received waveform, especially

in additive, white, Gaussian noise (AWGN). The trellis designs for the 3 ARTM waveforms operate

on continuous phase modulations, and in simple terms, attempt to match the waveform over several
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Figure 6.8: Bit synchronization using early-late gate approach.

symbols to work back to the most probable sequence of bits. These general provide significantly

better performance than single symbol detectors.

To understand a simplistic view of the trellis, consider the PCM/FM waveform discussed in

Section 3.3.1. The waveform is clearly frequency modulated, and a simple demodulator would

detect the frequency versus time, to yield the data states. This straightforward approach works

well in a low noise, undistorted channel, as shown in the eye pattern for the transmitted signal in

Figure 3.4. However, consider another method to analyze the waveform. The diagram in Figure 6.9

shows the baseband waveform plotted on the complex plane versus time. Since the waveform is

a constant amplitude, the result is a cylinder. The path traced on the cylinder shows the phase

progression. This can alternatively be shown in a phase trajectory plot in Figure 6.10. The phase is

”unwrapped”, so as not be be discontinuous at ±π.

In Figure 6.11, using the same phase trajectory, a sequence of five symbols is highlighted to

show the ideal trajectory for that combination of bits. The frequency discriminator is shown to the

right, showing perfect demodulation, as would be expected in a noise free signal. In Figure 6.12,
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Figure 6.9: Graphical view of PCM/FM on complex plane versus time.
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Figure 6.10: Graphical view of PCM/FM on complex plane versus time.

noise has been added to the signal. The phase trajectory at the left is noisy, but it it easy to visualize

that the trajectory would correlate strongly with the ideal segment, while the discriminator output

at the right would certainly cause occasional errors. Simplistically speaking, the trellis demodula-

tor compares the phase trajectory over a number of symbols to ideal trajectories, to find the most

probable match. Highly optimized algorithms exist, such as Viterbi decoders, in order to realize the

trellis decoder in an FPGA implementation.

Although this is a qualitative comparison, the trellis demodulator clearly has an advantage in

AWGN over a single symbol detector. Empirical data has shown that the trellis demodulator also

performs better than a single symbol detector in light multipath channels.
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Figure 6.11: Phase trajectory and frequency discriminator plots for a PCM/FM signal without noise.

Figure 6.12: Phase trajectory and frequency discriminator plots for a PCM/FM signal with noise.
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Figure 6.13: Receiver System block diagram showing Equalizer insertion.

6.3 Equalizer Insertion

The equalizer operates on baseband information, attempting to drive samples to a fixed radius

on the complex plane. For this reason, the equalizer is best suited prior to demodulation. If the

equalizer were positioned before the decimation stage, equalization would need to occur at the full

sample rate, regardless of bit rate. This limits the length of the finite impulse response filter, which

optimally spans as many symbols as possible. Therefore, the equalizer is situated between the

decimation function and the demodulation function. The equalizer does not require the frequency

of the received signal to be exactly resolved, but the best performance is realized with very small

offsets, so it is advantageous to place the equalizer function within the frequency loop. Similarly, the

equalizer does not require exact resolution of the bit timing, but more stable operation is obtained

with the timing resolved, as the samples will fall in sync with bit timing. Further, timing resolution

is achieved by minor changes to the decimation rate, which necessarily precedes the equalizer, as

described above. The block diagram in Figure 6.13 shows the receiver subsystem with the equalizer

inserted.

With the equalizer inserted, the samples in the 70MHz IF are converted to the equivalent IF

of 23.3333MHz. This is converted to complex baseband and the image filtered. The samples are

resampled to 4 times the symbol rate in the decimation block. These samples are presented to
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the CMA equalizer. Assuming multipath free transmission, and well-constructed receiver front-

end, these complex samples should lie on a circle of constant radius if plotted on the IQ plane.

When multipath is introduced, amplitude variation appears on the received waveform, and the linear,

transversal filter in the equalizer attempts to adapt the filter weights to achieve a constant radius. The

demodulator then operates on equalized samples.

With the equalizer placed as shown in the block diagram, the receiver operates as it would

normally, and is essentially unaware of the presence of the equalizer, and its attempt to improve the

signal quality. As such, the equalizer is applicable to all constant envelope mode, including Tier 0,

Tier 1, and Tier 2 waveforms as defined in the IRIG 106 specification.
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CHAPTER VII

TEST RESULTS

7.1 Test Setup

The test setup shown in Figure 7.1 was used to exercise the receiver/demodulator with the CMA

equalizer installed. The test source shown in the block diagram is a Quasonix Receiver Analyzer.

For the test results presented, the Receiver Analyzer was configured to output a base signal with

the characteristics shown in Table 7.1. The receiver/demodulator produces an analog output from

a frequency discriminator before the equalizer, and a second analog output from a frequency dis-

criminator after the equalizer. These signals are available on connectors on the receiver, and are

displayed on the oscilloscope. Alternatively, the analog outputs can by configured to present a near

real-time representation of the FIR tap weight magnitudes. This output may also be displayed on the

oscilloscope. The spectrum analyzer is connected to the 70MHz intermediate frequency output on

the receiver. This output is spectrally identical to the spectrum at the RF frequency, and translated

to 70MHz by the dual conversion receiver.

Although a wide range of test conditions were exercised, three are presented in this section.

1. As a baseline, the test system produced the signal described in Table 7.1 with no multipath.
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Waveform Tier 0 (PCM/FM)
Frequency 1485MHz
Data rate 5Mbps
Ouput Power -60dBm
Data Pattern PN15

Table 7.1: Table showing test parameters for Receiver Analyzer test source.

Ray Loss delay (ns) phase (degrees) Doppler (Hz)
Ray 1 0 388 276 0
Ray 2 0.423 0 66 0
Ray 3 4.86 48 66 0

Table 7.2: Table showing test parameters for static multipath channel.

2. To demonstrate the system with a static multipath channel, the channel characteristics in Ta-

ble 7.2 were utilized. The multipath characteristic is taken from a paper detailing observations

made for telemetry channels at Edwards Air Force Base in California[10].

3. To demonstrate the adaptive capability of the equalizer, the channel characteristics in Ta-

ble 7.3 were utilized. Note that the highest doppler frequency is 0.14 Hz. The slow rate is

chosen to allow visual observation of the spectrum display and the tap weight adaptation.

Ray Loss delay (ns) phase (degrees) Doppler (Hz)
Ray 1 0 0 0 0
Ray 2 4.5 200 0 0.035
Ray 3 15.0 400 0 0.072
Ray 3 8.4 500 0 0.143

Table 7.3: Table showing test parameters for dynamic multipath channel.
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Figure 7.1: Block diagram showing equipment used to test the receiver with equalization.

7.2 Spectral Plots

In order to observe the multipath impact to the channel, the spectrum was viewed at the receiver

IF output on a spectrum analyzer. In Figure 7.2 the transmitted spectrum is shown with no multipath.

In Figure 7.3 and Figure 7.4 the spectrum analyzer display is shown for the dynamic multipath

channel, at two different times, to demonstrate the changing spectrum of the dynamic multipath.

7.3 Eye Diagrams

The oscilloscope in Figure 7.1 is connected to two analog outputs on the receiver. These outputs

can be configured to display eye diagrams for equalized and unequalized demodulated data, or

alternatively, to display a near real-time representation of tap weight magnitudes in the finite impulse

response filter in the equalizer. The baseline signal (no multipath) produced an eye pattern as shown

in Figure 7.5. The corresponding tap weights are shown in Figure 7.6. The eye pattern indicates

no detectable distortion or noise caused by the equalizer. The tap display shows a cluster of larger
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Figure 7.2: Spectrum analyzer display for transmit signal with no multipath.

Figure 7.3: Spectrum analyzer display for transmit signal with multipath.
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Figure 7.4: Spectrum analyzer display for transmit signal with multipath.

tap magnitudes around the center. Though the anticipated response is simply 1 + j0, the cluster

of non-zero weights are best explained as the equalizer attempting to correct other path distortions,

such as IF and baseband filtering. Figure 7.7 and Figure 7.8 are eye diagrams and tap weights for the

static multipath case. The reference eye diagram in red (bottom trace) shows the demodulated output

with no equalization, demonstrating the severe distortion experienced with a single symbol detector.

The equalized case in blue (top trace) shows the effectiveness of the equalizer in deconvolving the

channel distortion, and opening the eye pattern.
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Figure 7.5: Oscilloscope eye pattern display before and after equalizer with no multipath.

Figure 7.6: Oscilloscope tap display from equalizer with no multipath.
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Figure 7.7: Oscilloscope eye pattern display before and after equalizer with multipath.
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Figure 7.8: Oscilloscope tap display from equalizer with multipath.

7.4 Bit Error Rate Testing

A very common characterization of a receiver/demodulator’s performance is the bit error rate

curve. The BER curve x-axis is Eb
N0

, which is a normalized measurement of signal to noise ratio.

The y-axis is bit error rate, expressed as a ratio. The graph of BER is typically drawn with the

x-axis linear in decibels, and the y-axis logarithmic. The bit error rate curve in Figure 7.9 shows

the measured BER values for the receiver/demodulator with the equalizer bypassed, and with the

equalizer engaged. When the receiver/demodulator is operated with the equalizer in bypass, the unit

deviates from the theoretical curve by less than 0.1 dB. When the equalizer is engaged, less than 1.0

dB degradation occurs due to the equalizer. This is due to the equalizer filter increasing the noise in

the demodulator bandwidth.
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Figure 7.9: Bit Error Rate curve for the receiver with equalization.
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7.5 Fmax and Data Rate

Fmax is a measure of the maximum clocking rate, and is reported by the Altera Compiler. The

demodulator FPGA is clocked at 93.3333MHz, and therefore the compiled result must meet this

value of Fmax as a minimum. The reported Fmax is 96.3MHz. As a result, the equalizer will

support the full data rate capability of the receiver/demodulator, which is 23 Mbps for IRIG106 Tier

0, and 46 Mbps for Tier 1. Tier 2 was not tested.
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CHAPTER VIII

CONCLUSIONS

Equalization has been proposed in many wireless systems and successfully deployed. Constant

Modulus Algorithm equalization, which is a form of blind equalization, leverages the expectation

that the signal envelope is constant, without the benefit of known data transmissions. In this project,

it was shown that an FPGA implementation of a Constant Modulus Algorithm equalizer works

well to restore constant envelope modulation formats described in IRIG 106, for airborne telemetry

applications. An equalizer was designed and developed for a high density FPGA, and operated in

lab and field environments. The equalizer was able to sufficiently restore a signal corrupted with a

dynamic profile to result in an error-free link. The implementation is production ready, requiring no

further development for field application.

The FPGA implementation was designed and developed using MATLAB Simulink, and down-

loaded to an Altera Stratix IV device, in an existing production digital receiver. The design was

simulated and tested and met the full data rate capability of the receiver.
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