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ABSTRACT 

 

 

 

 

DESIGN OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM 

 

Name: Azimian, Amin 

University of Dayton 

 

Advisor: Dr. Deogratias Eustace 

 

 

 

Due to present-day significant increases in population and consequently in traffic 

congestion in most metropolitan cities in the world, designing of an intelligent traffic 

management system (ITMS) in order to detect the path with the shortest travel time is 

critical for emergency, health, and courier services. The aim of this thesis study was to 

develop a theoretical traffic detection system and capable of estimating the travel time 

associated with each street segment based on the traffic data updated every 20 seconds, 

which successively finds the path with the shortest travel time in the network by using a 

dynamic programming technique. Furthermore, in this study we model the travel time 

associated with each street segment based on the historical and real time data considering 

that the traffic speed on each road segment is piecewise constant. It would be useful to 

implement such algorithms in GIS systems such as Google map in such a way that the 

service delivery drivers can avoid congested routes by receiving real time traffic 

information. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

 

Over several decades, traffic congestion has become a serious problem in the U.S. major 

cities. Congestion is particularly associated with motorization and the diffusion of the 

automobile, which has increased the demand for transportation infrastructure. However, 

the supply of the transportation infrastructure has often not been able to keep up with the 

growth of mobility. 

 

Traffic congestion problems consist of incremental delay, vehicle operating costs such as 

fuel consumption, pollution emissions and stress that result from interference among 

vehicles in the traffic stream, particularly as traffic volumes approach a road’s capacity. 

Across the U.S., more people are spending more time sitting in traffic jams than ever 

before. According to the U.S. Census Bureau (2000), nationwide, the average commute 

increased 14 percent in the last ten years, from 22.4 minutes in 1990 to 25.5 minutes in 

2000. 

 

Dear et al. (2001) reported that California already has five of the nation's 20 most 

congested metro areas. In California, traffic congestions statewide cost $21 billion due to 

lost time and wasted fuel every year. In this regard the state's official forecast shows the 
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number of miles driven on Los Angeles and Orange County roads will increase 40 

percent by 2020. Furthermore, Wasserman reported that in Sacramento, even with $15 

billion in planned road improvements, congestion will increase by 400 percent in the next 

20 years. 

 

According to American Society of Civil Engineers, “2001 Report Card for America's 

Infrastructure”, in Texas, 26 percent of freeways is congested and traffic volumes on the 

state's highways have increased by one-third in ten years. Also Rubin and Cox (2001) 

reported that Texas traffic is growing so quickly that even if public transit use were to 

double, the gain would be canceled out by population growth in as little as three months.
 

 

Traffic congestion occurs when the demand is greater than the available road capacity. 

There are many reasons that cause congestion; most of them reduce the capacity of the 

road at a given point or over a certain length, for example people parking on the roads or 

increase in the number of vehicles. As shown in Table 1.1, below the Federal Highway 

Administration, (Margiotta et al, 2009) mentioned that about half of U.S. traffic 

congestion is recurring, 

 

Table 1.1 The causes of traffic jams 
Bottlenecks 40% of total congestion 

Traffic Incidents 25% of total congestion 

Work zones 10% of total congestion 

Bad weather 15% of total congestion 

Poor signal timing 5% of total congestion 

Special events/Other 5% of total congestion 
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and is attributed to sheer volume of traffic; most of the rest depends on crashes, road 

construction works and severe weather events. Consequently, all of these factors affect 

our communities both mentally as well as economically. The Ohio Department of 

Transportation (2009) reported that traffic congestion prevents Honda’s employees from 

arriving on time which may threaten Honda’s low-inventory strategy in Ohio. There are 

always concerns that traffic congestion may delay emergency vehicles during critical 

moments when they need to arrive at the scenes as quickly as possible. 

 

1.2 Data Collection Techniques 

According to the Federal Highway Administration (Turner et al., 1998), the travel time 

data collection techniques can be categorized into the following groups: 

1) Test vehicle technique: in this technique an observer records cumulative travel 

time at predefined checkpoints along a travel route, then this information can be 

converted to travel time, speed for each segment along the proposed route. In this 

technique it is not possible to store a large amount of data. In addition, it requires 

quality control considering that it is associated with human or electric errors. 

2) License plate matching technique: in this method the plate numbers and arrival 

times will be recorded at various checkpoints, and finally the travel times will be 

computed by matching the license plate numbers or from the difference in arrival 

times. This method allows us to obtain travel times from a large sample of 

motorists, and it is possible to find out the variability of travel times among 

vehicles within the traffic stream. Furthermore, it is possible to transport data 
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collection equipment between observation sites. However the travel time data is 

only available to the area where video cameras are installed. 

3) ITS probe vehicle technique: this technique can collect travel times data by 

employing passive instrumented vehicles in the traffic stream and remote sensing 

devices. By using this technique it is possible to collect data electronically for 24 

hours, but such system requires skilled software designer and high 

implementation cost, furthermore this technique is not recommended for small 

scale data collection efforts. 

4) Emerging technique: this technique estimates travel times by using a variety of 

methods, such as inductance loops, weigh-in-motion stations or aerial video. 

Some of the methods used in this technique are still in testing stages. 

 

1.3 Objectives of Study 

Developing a new system such as an intelligent traffic management system in order to 

reduce traffic problems is essential. The objectives of this study are three-fold: 

1- Developing traffic detection and estimation of traffic mean speeds and travel times 

associated with each street segment based on the data provided by traffic detectors; 

2- Identifying specific zones in which all possible (or reasonable) routes are located 

(classification method and defining a coordinate system); and 

3- Designing of a route-finding algorithm. 

 

 

 



5 
 

1.4 Organization of Thesis 

The rest of this thesis is organized as follows. Chapter 2 presents a literature review on 

previous research studies concerning with shortest path finding problems. Chapter 3 

presents a description of the timetable and speedtable updating system and the 

mathematical formulation of the dynamic programming and travel time modeling. 

Chapter 4 presents the results and a numerical example. Finally, Chapter 5 presents the 

conclusions and recommendations of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Dynamic shortest path finding problems are a subset of dynamic transportation problems 

including dynamic traffic assignment, dynamic fleet management, etc. The term 

“dynamic” is also called “online” or “real-time,” which means the problem-related 

solutions are time-dependent. A shortest path problem is a problem of finding the shortest 

path from one source point to every other node in a directed graph in which each link has 

a particular weight. Every node and link stands for street intersection and road segment 

respectively. Yen (1975) split the shortest path algorithms into the following three 

groups. 

1- Finding the shortest path from a particular point to every other node in a directed 

network. 

2- Finding the shortest path between all pairs of the nodes in the directed network. 

3- Finding the short path between two particular nodes. This group is the most 

popular in the transportation area. 

 

2.2 Shortest Path Problem 

 

In the last few years,  some research efforts have focused on developing  different 

algorithms for Dynamic Vehicle Routing Problems (DVRPs); many of these applications 
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can be found in practice, for example dial-a-ride systems for transportation-on-demand, 

courier services, emergency services, pick-up and delivery of goods, and many others.  

 

As a pioneering work, Bertsimas and Van Ryzin (1991) reported a model for stochastic 

and dynamic vehicle routing with a single vehicle, traveling at a constant velocity in its 

region of service, whose time of arrival, location and on-site service are stochastic. The 

objective was to find a policy to determine service demands over an infinite horizon that 

minimizes the expected system time, however a challenging problem in a different 

direction is to investigate dynamic routing in a network environment rather than under 

some Euclidean metric. 

 

Gendreau et al. (2006) developed an algorithm for a pick-up and delivery problem in 

which vehicles travel at a constant velocity in regard to new request locations that uses 

heuristic and numerical calculations to minimize the expected system time. Their 

numerical results show the benefits of such techniques in real-time situation.  

 

Taniguchi and Shimamoto (2004) cited a comprehensive planning strategy for dynamic 

routing of traffic in a city. They proposed a routing system, which uses a routing 

algorithm based on the ant colony optimization algorithm. This algorithm follows the 

behavior of living ants that lay pheromone trail on the ground in order to find shortest 

way from the nest toward the food location. In their proposed model pheromone is a time 

function related to the vehicles that travel across the networks. The time function can be 

affected by congestion. Each node has a probability table in which there are entries for 
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each neighboring node that can be reached via one connecting link, therefore the 

probabilities influence the driver's selection of the next route. Each time the driver will be 

notified about next route (node) and this process is repeated until the driver reaches his 

destination. In Taniguchi and Shimamoto’s model congestion can be detected using 

detectors and since its algorithm is based on the ant colony it takes a long time to find the 

shortest route. 

 

Bellman (1957) developed an algorithm that calculates the shortest path to all nodes from 

a single source in the graph with non-negative edge weights which are constant functions. 

His approach seeks to solve each sub problem only once, thus reducing the number of 

computations. This is especially useful when the number of repeating sub problems is 

exponentially large. 

 

Some of the research efforts (e.g., Bertsekas and Tsitsiklis, 1991; Frank, 1969; Loui, 

1983; Ji, 2005) focused on stochastic shortest path problems on static road network. The 

stochastic shortest path problem is a generalization where either the network isn't 

completely known to the driver, and each link is associated with a probability of 

independently being in the network, while in deterministic process the weight associated 

with each link is known. Bertsekas and Tsitsiklis (1991) defined a stochastic shortest path 

problem in which each node has a transition matrix consisting of probability distributions 

over the set of successor nodes so as to reach the destination node with the minimum 

expected cost. Moreover, Frank (1969) applied shortest-path probability distributions in 

graphs in which the weights associated with each link are replaced with their expected 
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values; subsequently Loui (1983) improved this model by using a “utility function” to 

determine the optimal path. 

 

Ji (2005) studied the shortest path problem with stochastic arc length. She proposed the 

following three concepts of stochastic shortest path and formulated three models for the 

stochastic shortest path according to different decision criteria: 

(1) Expected shortest path that finds a path with the minimum expected time to help them 

make a decision; (2) alpha-shortest path that finds a path, which satisfies some chance 

constraints with at least some, given confidence level α; (3) the most shortest path that 

finds a path which maximizes the chance functions of some events (i.e., the probabilities 

of satisfying the events). Furthermore, it was assumed that there is only one directed arc 

(i,j) from i to j. 

 

Orda et al. (1993) formulated a stochastic model for the shortest path problem on a 

dynamic network whose link delays change probabilistically according to Markov chains 

and they assumed that the routing decisions at a node are based on the current state of 

links emanating from that node and on the statistics of other links. However their 

stochastic model considers the change of network to be predictable.  

 

Gonzalez et al. (2007) presented an adaptive fastest path algorithm based on the (1) 

hierarchy of roads, (2) path segments traveled frequently, and (3) significant speed 

advantage. Major roads are more preferable than minor roads except if there are minor 

roads with significant speeds over the major ones. They defined different speed patterns 

for various conditions such as time of day, weather or vehicle type. They employed A* 
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algorithm to find the shortest path. A* is a shortest path finding algorithm that uses 

a best-first search algorithm to find the least-cost path from a given initial node to 

one destination node. 

 

Similarly, Kanoulas et al. (2006) developed another method based on the A* algorithm to 

find the fastest paths on a road network with speed patterns for any time interval. For 

example, it can find the shortest path for a person who wants to go to work sometime 

between 7:00 and 7:45 AM. In their proposed method each day belongs to exactly one 

category; workday or non-workday and for the days in the same category a road segment 

has the same speed at the same time of the day. However, they assumed that speed on 

each street segment is piecewise constant. In addition, Ding et al (2008) studied a time 

dependent shortest path problem in which a graph (or a road network) has an edge-delay 

function (travel time function) associated with each edge. They proposed a new Dijkstra-

based algorithm to find the least total travel time. 

 

Peeta et al. (2011) studied the problem of dynamic routing operations in the emergency 

response context of the routing of response vehicles and evacuees. The study focuses on 

identifying the paths used for routing response vehicles and the evacuees in disaster 

situations, as a result two modules are developed: (1) the K-shortest paths module that 

allows more flexible options for routing response vehicles under the dynamic network 

conditions due to a disaster, and (2) the multiple-stop routing module that enables the 

delivery of relief resources to several locations using a single response vehicle. 
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Orda and Rom (1990) formulated a model of shortest path problem for communication 

systems in which link weights changes over the time according to arbitrary functions. 

They developed algorithms for finding the shortest-path and minimum-cost under various 

weighting constraints and investigated the properties of the derived path. 

 

Effati and Jafarzadeh (2007) presented a nonlinear neural network for solving the shortest 

path on a static network. In their research effort they defined a directed graph, whose 

edges have fixed costs; the cost coefficient can be either positive or negative. A positive 

cost coefficient represents a loss, whereas a negative one represents a gain. 

 

Chitra and Subbaraj (2010) presented a non-dominated sorting genetic algorithm for 

shortest path routing problem. They used a multiobjectives evolutionary algorithm based 

on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic 

shortest path routing problem in computer networks. The problem is formulated as a 

multiobjective mathematical programming that attempts to minimize both delay and cost 

simultaneously. In their research effort the topology of the network was specified by an 

undirected graph and the cost associated with each link is predefined. Furthermore, Ahn 

and Ramakrishna (2002) used the same method, but the topology of the network was 

specified by a directed graph. 

 

As mentioned by Wang (2003), shortest path problems are mostly studied by computer 

scientists, and almost none of them present a proper method of finding the weights 

associated with each link. However, in some GPS technologies speed limits posted on 

each street segment are used in estimating the travel times, but we cannot ignore the 
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traffic changes or congestion in the street networks. Today intelligent transportation 

systems (ITS) applications can run over the wireless broadband network, which can allow 

us to measure the number of vehicles successively, transfer data, and consequently find 

the average travel times related to each link. Definitely such technologies can improve 

the efficiency of vehicle movement throughout the entire urbanized area. 

 

2.3 Algorithm Efficiency 

 

In computer science, efficiency is used to describe properties of an algorithm relating to 

how much of various types of resources it consumes. Yen (1975) explained the following 

factors that can be used to evaluate algorithm efficiency: 

 The number of operations required to execute an algorithm (i.e. additions, 

subtractions, comparisons, etc.) 

 The running time that each computer requires to execute the algorithm 

 The amount of memory that each computer requires to store the raw data or results 

 The amount of memory that each computer requires to store the computer program of the 

algorithm. 

 

Although the efficient use of both runtime and space (memory) is important, runtime is 

usually more important than space. Wang (2003) mentioned that the runtime can be 

evaluated in two ways: (1) the asymptotic or worst-case runtime: the time that an 

algorithm requires to run if it were given the most insidious of all possible inputs, and (2) 

the average-case runtime: the average time that an algorithm requires to run if it were 

given all possible inputs. In computer science the Big-O notation represents the 
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asymptotic time class of an algorithm, which provides an upper bound on the growth rate 

of the function. For example if a problem of size n requires time that is directly 

proportional to n, the upper bound on the number of operations for that problem is in 

class g(n) and O(g(n)) stands for an algorithm that has order g(n). Table 2.1 shows the 

intuitive interpretations for some growth-rate functions (Rinker, 2002). 

 

Table 2.1 Interpretation of some growth-rate functions 

 

O(1) 

The time requirement for this growth rate function is constant and independent of 

the problem’s size. 

 

O(log n) 

The time requirement increases slowly as the problem size increases. The binary 

search algorithm has this behavior. 

O(n) The time requirement increases directly with the size of the problem. 

O(n.log n) The time requirement increases more rapidly than a linear algorithm.  

 

O(n
2
) 

The time requirement increases rapidly with the size of the problem. Algorithms 

that use two nested loops are often quadratic. 

 

O(n
3
) 

Compared to the quadratic algorithm the time requirement for the cubic algorithm 

increases more rapidly with the size of the problem. Algorithms that use three 

nested loops are often cubic and are practical only for small problems. 

 

O(2
n
) 

As the size of a problem increases, the time requirement for an exponential 

algorithm usually increases too rapidly. 

 

For a supercomputer that performs 21 trillion operations per second, the approximate 

completion time for the following algorithms with different values of n are as given in 

Table 2.2. 
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Table 2.2 Completion time for algorithms with different values of n 

n     g(n)       

  N n log n n
2
 n

3
 n

4
 2

n
 

10 
          

4.8*10-11 4.8*10-13 4.8*10-13 4.8*10-12 4.8*10-11 4.8*10-10 

20 

        
7.6*10-9 

5.0*10-8 9.5*10-13 1.2*10-12 1.9*10-11 3.8*10-10 

30 

        
3.90*10-8 

5.1*10-5 1.4*10-12 2.1*10-12 4.3*10-11 1.3*10-9 

40 

        
1.2*10-7 

5.2*10-2 1.9*10-12 3.1*10-12 7.6*10-11 3.0*10-9 

50 

        
3.0*10-7 

5.0*101 2.4*10-12 4.0*10-12 1.2*10-10 6.0*10-9 

10
2
 

        
4.8*10-7 

6.0*1016 4.8*10-12 9.5*10-12 4.8*10-10 4.8*10-8 

10
3
 

        
4.80*10-2 

5*10287 4.8*10-11 1.4*10-12 4.8*10-8 4.8*10-5 

10
4
 

           

4.8*10-2 
     5*102 

  4.8*10-10 1.9*10-12 4.8*10-6 

10
5
 

      
48 5*106 

  4.8*10-9 2.4*10-12 4.8*10-4 

10
6
 

      
        

4.8*104 
5*1010 

  4.8*10-8 2.9*10-12 4.8*10-2 

 

 

2.4 Summary of Literature Review 

According to the literature review, it is known that the study of the shortest path finding 

problems has been extensively conducted. Most of the computer scientists focused on 

developing stochastic or deterministic models in transportation and particularly in 

communication systems, and a limited part of research was found to formulate the travel 

time associate with each street segment and also they mostly do not take into account the 

events that may affect traffic condition periodically. 
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CHAPTER 3 

PROBLEM FORMULATION 

 

 

3.1 Traffic Detection 

The ultimate objective of this thesis is to develop a comprehensive system to route the traffic in 

an urbanized area. The development of this system stems from the combination of two distinctive 

sections namely traffic detection and routing system. The typical work flow is depicted in Figure 

3.1. 

  

 

 

 

 

 

 

 

 

 

Figure 3.1 Work flow of a typical detection and routing system 

 

 

In order to route the traffic within a city, it is required to access dynamic data that shows 

traffic flow condition using detectors located in all possible routes within a street 

network. According to the Federal Highway Administration (Mimbela et al, 2000), there 

are different forms of traffic detectors that include: 

Traffic Detection 

 
Traffic Detectors Controller 

Timetable  

updating system 

Real-time 

Data 

Route-finding Algorithm 

 Zone 

Identification 

 

Dynamic 

programming 

 

Routing 
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 Inductive Loop Detection System: The loop detector forms a tuned electrical circuit 

of which the loop wire is the inductive element. When a vehicle passes over the loop, 

it results in a decrease in loop inductance. The detector senses the change in 

inductance and causes the electronics unit to send a pulse to the controller, indicating 

the presence or passage of a vehicle. 

 Video Image Processing System: It allows the user to define a limited number of 

linear detection zones on the roadway in the field-of-view of the video camera. When 

a vehicle crosses one of these zones, it is identified by noting changes in the 

properties of the affected pixels relative to their state in the absence of a vehicle. it 

estimates vehicle speed and then measure the time that an identified vehicle needs to 

traverse a detection zone of known length. 

 Microwave Radar Based Traffic Detection System: It transmits energy toward an area 

of a roadway and when a vehicle crosses the roadway, a portion of the transmitted 

energy is reflected back toward the receiver and consequently it calculates volume, 

speed, vehicle length and occupancy. 

 GPS-Based Vehicle Tracking System: A GPS data logger can be used to collect a 

vehicle’s position data periodically. Typically, a GPS data logger comprises of three 

parts: data storage media, GPS receivers, and power supply devices 

 Acoustic Traffic Detection System: it measures vehicle passage, presence, and speed 

by detecting acoustic energy or audible sounds produced by vehicular traffic from a 

variety of sources within each vehicle and from the interaction of a vehicle tires with 

the road. 
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 Infrared Traffic Detection System: it detects the changes of temperature due to 

vehicle presence.  

 Magnetic traffic detection system: magnetic sensors are passive devices that detect 

the changes in magnetic field due to presence of a metal object. 

 

All of the above mentioned detector systems can provide both the number of vehicles 

(volume) and speed of each vehicle in order to calculate the time each vehicle needs to 

cover a particular route. Currently, loop detectors are still the dominant detectors in use, 

because they have been commodity-priced while the alternative detectors have not due to 

the short history of these detectors (Lees, 2008). Hence in this research study it is 

assumed that inductance loop detectors are installed on each street segment. The 

components of a loop detector shown in Figure 3.2 are as follows:  

 One or more turns of insulated loop wire wound in a shallow slot sawed in the 

pavement. 

 A lead-in cable from the curbside pull box to the controller cabinet. 

 A detector electronic unit (DEU) housed in the controller. 

 

Figure 3.2 The components of a loop detector 
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An inductance loop detector will measure two important parameters for each 20 seconds 

time interval, namely: 

 Occupancy; proportion of time during which the loop is occupied by a vehicle, (sec) 

 Number of vehicles entering (I) or exiting (E) a street segment,  (Veh/20 sec/ln) 

Let’s consider a model in which the average traffic speed associated with each street 

segment, L(i,j)  can be measured every 20 seconds and it is assumed that traffic detectors 

measure the number of vehicles every day for 24 hours continuously. 

 

Let  D(i,,j,tk) be density or the number of vehicles on street segment, L(i,j), also let 

I(i,,j,tk)  and E(i,,j,tk)  be the  number of vehicles (observed volumes), entering and exiting 

the street segment during time slot Δtk=tk - tk-1 respectively. Now if we assume that there 

is no vehicle on each street segment at t = t0, the number of vehicles during a defined 

time slot Δtk = 20 seconds can be given as follows: 

 Δt1= (t1-t0) = 20 sec. ;    D(i,j,t1) = I (i,j,t1) –E (i,j,t1)  ,  I(i,j,t1) ≥ E (i,j,t1) 

Δt2= (t2-t1) = 20 sec. ; D(i,j,t2) = D(i,j,t1) + I(i,j,t2) –E(i,j,t2), D(i,j,t2) + I (i,j,t2) ≥ E2(i,j,t2) 

. 

. 

. 

 

Δtk= (tk-tk-1) = 20 sec. ;  D(i,j,tk)=D(i,j,tk-1)+ I (i,j,tk) – E(i,j,tk) , D(i,j,tk-1) + I(i,j,tk) ≥ E(i,j,tk)   

Hence the average traffic speed S(i,j,tk) on each street segment at time tk can be expressed 

as shown in Equation 3.1: 
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Where: 

  J(i,j) = Jam density on street segment i, j, Veh/L(i,j)                                                

Sf
 
(i,j) = Speed limit on street segment i, j, mi/h 

Consequently the needed time to cover the street segment L(i,j) can be defined by 

Equations 3.2:     

 

 

 

 

 

Where: 

 

                tk= the time at which the latest time table has been created 

T
 
(i,j,tk) = Average travel time on street segment i,j at time slot Δtk       

S
 
(i,j,tk) = Traffic mean speed on street segment i,j  at time slot  Δtk, mi/h 

    L(i,j) = Length of street segment i,j, miles 

 

 

It is noteworthy to mention that the traffic mean speeds or the average travel times related 

to different directions of a particular street segment as shown in Figure 3.3 are not 

identical. 

 

 

         Figure 3.3 Traffic mean speed and the average travel time related to each lane 

 

       

          
               

       

       
               

                                      

                                             (3.2) 

 

T (i,j,tk)= 

T1(i,j,tk), S1(i,j,tk) 

T2(i,j,tk), S2(i,j,tk) 
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3.2 Timetable and Speedtable Updating System 

As shown in Figure 3.4 timetable and speedtable updating system stores all estimated 

travel times and traffic mean speeds related to each route in previous days. A new time 

table and speed table with updated data will be created every 20 seconds. On the other 

hand the time interval between two timetables or speedtables is 20 second, hence in this 

study t0, t1,…,tk are the times at which timetables and speedtables have been created. Such 

tables involve the characteristics of a street network, for example travel time and traffic 

mean speed are set to ∞ and 0 respectively for nodes not directly linked to each other 

(T(i,j,tk)= ∞, S(i,j,tk)= 0 for i ≠ j) . In additions the estimated travel time and traffic mean 

speed from one node to itself are equal to 0 and ∞ respectively (T(i,j,tk)=0, S(i,j,tk)= ∞ for 

i=j). Therefore each vehicle driver located at a node can communicate with the route 

finding system and ask for the shortest path toward his/her destination. This system will 

take care of the information provided by the timetable and speedtable updating systems 

and will select the shortest route among all possible routes. In this study T(i,j,t) and 

S(i,j,t) respectively stand for the travel time and traffic mean speed in current day and 

Y’(i,j,t) and Sy(i,j,t) respectively represent the travel time and traffic mean speed for the 

same day and same time in last week. 
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           Speed Table, S(i,j,tk) mi/hr                     Time Table, L(i,j) mile,  T(i,j,tk) minute 

 

 

Figure 3.4 Speedtable and timetable in the proposed network 

 

 

3.3 Design of a Network 

A street network G(N,l)  is a type of directed, weighted graph consisting of the following 

elements: 

 A set of nodes (N): A node is a terminal point or an intersection point of a graph. In 

this study it is the abstraction of a street intersection. 

 A set of links (l): A link is a connection between nodes i and j and it is the 

abstraction of a street segment. 
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 Sub-graph: A sub-graph is a subset of a particular graph. In this study each street 

network consists of many sub-networks. The street network itself is a sub-network of 

regional transportation network. 

 Buckle: A link that makes a node correspond to itself is a buckle. In this study the 

cost (travel time) of the buckles are zero. 

In addition a street network lets the traffic flows move across the network, therefore 

movements should be represented as linkages, which can be considered over several 

aspects: 

 Path: A sequence of links that are traveled in the same direction. For a path to exist 

between two nodes, it must be possible to travel an uninterrupted sequence of links. 

 Length of a link: It is the distance associated with a link, a connection or a path.  

 

It is noteworthy to mention that that the position of nodes or intersections should be 

identified based on the state plane coordinate system. The state plane coordinate system 

is a coordinate systems designed for a specific region of the United States. Each state 

may have one or two state plane coordinate systems (e.g., Ohio south state plane and 

Ohio north state plane coordinate system). In addition, it is a system for specifying 

positions of geodetic stations using Cartesian or plane rectangular coordinates rather than 

spherical coordinates (the geographic coordinate system of latitude and longitude). 
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3.4 Zone Identification and Nodes Selection Algorithm 

The shortest path finding algorithm is a heuristic algorithm that tries to examine a finite 

set of nodes between source and destination points in order to identify the nodes that 

creates the path with the shortest travel time. Due to the large volume of street 

intersections in a network, it is useful to design a zone identification algorithm that limits 

or reduces the number of nodes in order to increase the algorithm efficiency explained in 

Section 3.2. Reference to Figure 3.5, assume that a driver requests a path with a travel 

time less than 5 minutes between a source node s and a destination node d, then the zone 

identification algorithm takes care of the nodes located in the smallest area (blue 

rectangular zone) that encompasses source s(x1,y1) and destination d(x2,y2), the dynamic 

programming technique will examine the selected nodes in order to detect the shortest 

path. If the detected shortest path has a travel time longer than the travel time requested 

by the driver (5 minutes), the dynamic programming technique will incrementally expand 

the search radius (R) and look for the shortest path in a larger sub-area (see Figure 3.6). 

For high speed algorithms there is no real advantage to using search radius. 

 

Figure 3.5 An example of street network 
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Figure 3.6 Extended zone 

 

 

In order to define a strategy to identify the zone in which desired nodes are located, the following 

four possible trip patterns are taken into account: 

 If x1≤ x2 and y1≥ y2 then the location of the selected node Ni(xi,yi) , can be defined by: 

x1-R≤ xi≤ x2+R  and y2-R ≤yi≤ y1+R  (See Figure 3.7a) 

 

 

 

 

 

 

 

Figure 3.7a Travel pattern I 

y1 

y2 

S(x1,y1) 

D(x2,y2) 

x2 x1 
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 If x2 ≤ x1 and y1 ≤ y2 then:   

x2-R ≤ xi≤ x1+R and y1-R ≤yi≤ y2+R (See Figure 3.7b) 

 

 

 

 

 

 

 

 If x1 ≤ x2 and y1 ≤ y2 then: 

x1-R≤ xi≤ x2+R and y1-R≤yi≤ y2+R  (See Figure 3.7c) 

 

 

 

 

 

 

 

 

Figure 3.7b  Travel pattern II 

S(x1,y1) 

D(x2,y2) 

y2 

x1 x2 

y1 

S(x1,y1) 

D(x2,y2) 
y2 

y1 

x2 x1 

Figure 3.7c  Travel pattern III 
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 And finally, If x1≥ x2 and y1≥ y2 then:  

x2-R≤ xi≤ x1+R and y2-R ≤yi≤ y1+R  (See Figure 3.7d) 

 

 

 

 

 

 

 

 

Since each node Ni has its unique address i=1,2,…n, therefore the set of selected nodes in 

the identified zone encompassing the initial point “S” and destination point “D” is: 

 N = {S, N2, N3,…,D},  N1 = S and Nn+1 = D 

A typical pseudo code used for the identification and selection of nodes for solving such 

problems mentioned above is presented in Figure 3.8. 

 

 

 

 

 

 

 

 

D(x2,y2) 
y2 

y1 
S(x1,y1) 

x1 x2 

Figure 3.7d  Travel pattern IV 
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Figure 3.8 A typical pseudo code of zone identification and node selection 

 

 

3.5 Numerical Methods of Optimization 

In mathematics, optimization means finding a value of x which maximizes or minimizes a 

given function f (x) (Gordon, 1998). Some of the commonly used optimization methods 

available include the following: 

Start; 

Declare Source Point, S(xs,ys) 

Declare Destination Point, D(xd,yd) 

Let k=1 

for i=1 to n do 

Declare Point  Pi(xi,yi) 

If (xs-R≤xi≤R+ xd) and (yd-R≤yi≤R+ ys) then 

Nk=i 

Let  k=k+1 

Else if (xd-R ≤xi ≤ R+ xs) and (ys-R≤yi ≤R+ys)  then 

Nk =i; 

Let  k=k+1; 

Else if (xs -R≤xi ≤R+ xd) and (ys-R≤yi ≤ R+yd) then 

Nk =i; 

Let k=k+1; 

Else 

Nk =i; 

Let k=k+1; 

End if 

End 
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(i) Linear programming: studies the case in which the objective function f is linear 

and set A is specified using only linear equalities and inequalities (A is the design 

variable space). 

(ii) Integer programming:  studies linear programs in which some or all variables are 

constrained to take on integer values. 

(iii)  Quadratic programming:  allows the objective function to have quadratic terms, 

while the set A must be specified with linear equalities and inequalities  

(iv)  Nonlinear programming:  studies the general case in which the objective function 

or the constraints or both contain nonlinear parts. 

(v) Stochastic programming:  studies the case in which some of the constraints depend 

on random variables. 

(vi)  Combinatorial optimization:  is concerned with problems where the set of feasible 

solutions is discrete or can be reduced to a discrete one. 

 (vii) Dynamic programming:  studies the case in which the optimization strategy is 

based on splitting the problem into smaller overlapping sub-problems. Dynamic 

programming is the method employed in this research study to find the shortest 

path problem, which is explained in more in details in Section 3.6. 

 

3.6 Dynamic Programming and Real Time Routing 

As previously mentioned, the zone identification algorithm takes into account appropriate 

nodes in order to be used in route finding algorithm, then the route finding algorithm 

examines all possible paths passing through the selected nodes by considering the link 
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weights (travel times) stored in time tables. Furthermore, this algorithm uses a dynamic 

programming (DP) technique implemented by Bellman (1957) in selecting the path with 

shortest travel time based on the estimated travel times. It is noteworthy to mention that 

one of the advantages of dynamic programming is that the travel time modeling concept 

explained in Section 3.7 is applicable to DP technique. 

Dynamic programming was systematized by Bellman (1957) for efficiently solving a 

broad range of search and optimization problems. It can be used when the solution to a 

problem such as shortest path finding problem can be viewed as the result of a sequence 

of decisions (tree) as shown in Figure 3.9 below.    

 

 

     

 

 

 

 

 

Figure 3.9 An example of a decision tree indicating overlapping sub-problems 

                             

                          f3(s,7)+f1(7,d) 

f4(s,d)= min  

                          f3(s,8)+f1(8,d) 

 

                             

                         f2(s,5)+f1(5,8) 

f3(s,8)= min  

                         f2(s,6)+f1(6,8) 

 

                             

                          f2(s,4)+f1(4,7) 

f3(s,7)= min  

                          f2(s,5)+f1(5,7) 

 

f2(s,4)= f1(s,2)+f1(2,4) 

                          

 

f2(s,6)= f1(s,3)+f1(3,6) 

                          

 

       
                        f1(s,2)+f1(2,5) 

f2(s,5)= min  

                          f1(s,3)+f1(3,5) 
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As an important point this method is based on the principle of optimality, expressed in the 

form of a functional equation. According to Chinneck (2010) the overview of the 

dynamic programming method can be outlined as follows: 

1. Break down a complex problem into simpler sub problems and try to solve them. 

2. Enlarge each small part slightly and find the optimum solution to the new problem 

using the previously found optimum solution. 

3. Continue with Step 2 until you have sufficiently enlarged the sub-problem such that 

the current problem encompasses the original problem.  When this problem is solved, 

then the stopping conditions have been met. 

4. Track back the solution to the whole problem from the optimum solutions to the small 

problems solved along the way. 

 

Now by reconsidering Figure 3.9, suppose that a driver is on node s and he/she decides to 

get to node j in n steps. First, the driver needs to proceed optimally in n-1 steps in order 

to get to some node i, and then he/she needs to choose node j to go to; the total travel 

time of going from s to i in n-1 steps using an optimal policy is fn-1(s,i) and the cost of 

going from i to j is T(i,j,tk) which uses just one step. Therefore the shortest travel time 

based on real time data on a dynamic network with a finite set of nodes N = {s,...,d}, 

where the number of nodes are n+1, can be estimated as follows: 

 

For a 1-step path with minimum travel time,     f1(s,j) = T (s,j,tk) 

For a 2-step path with minimum travel time,    f2(s,j) = min i  [f1(s,i)+T(i,j,tk)] 
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For a 3-steps path,    f3(s,j)=min i [f2(s,i)+T(i,j,tk)] 

 

For an n-steps path,   fn(s,j)=min i [fn-1(s,i)+T(i,j, tk)] 

Finally we can develop Equations 3.3 and 3.4 as follows: 

 

  

  

 

 

 

 

 

 

 

As explained in Section 3.1, T(i,j,tk) is a travel time or a weight associated with the street 

segment L(i,j), by replacing T(i,j,tk) with Equation 3.2 in the above equations, we obtain 

Equations 3.5 and 3.6: 

 

 

       f1(s,j) =  

 

 

       

          
                                    

                          if       

                        if                                          

                                                          

                                                                              

                                                                       

 

(3.5) 

 

(3.3) 

 

 

fn(s,j)= min i 

n≥2 

                                                    

                                                                     

                                                                       

 

(3.4) 

 

f1(s,j)= 
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 fn(s,j)=min i  

 

 

It is worthy to note that if  i = j then S(i,j,tk) = ∞ or T(i,j,tk) = 0, and if nodes i and j are two 

different points  not directly connected to each other, then S(i,j,tk) = 0 or T(i,j,tk) = ∞. 

Figure 3.10 represents a typical pseudo code of real time routing algorithm. In General, 

monitoring the traffic changes and consequently getting access to the real time data is 

widely applicable in real time routing evacuation operations or for dynamic logistics 

routing and scheduling. 

 

 

 

 

 

 

 

 

 

 

 

 

          
       

          
                                     

                                         if        

                                             if                            

(3.6) 

 n≥2 
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Figure 3.10 A typical pseudo code of real time routing algorithm 

 

 

 

 

 

Figure 3.10 A typical pseudo code of real time routing algorithm. 

 

 

3.7 Travel Time Modeling 

 

Travel time modeling is used to estimate the travel time associated with each street 

segment by taking into account the events that periodically cause traffic congestion (e.g., 

going to work at a specific time). Here days are categorized, e.g. Sunday, Monday, 

Tuesday, Wednesday, Thursday, Friday, and Saturday. It is reasonable to assume that for 

Start; 

Declare Selected Nodes, N=[s N2 N3 … d]     {N1=s} and {Nn=d} 

Declare Travel Times Matrix, Y 

Declare Clock Time Matrix, Time=[H M S]  {H: hour, M: minute, S=second} 

u=floor[(H*3600)+(M*60)+(S) /20]  {floor rounds the value  element to the nearest integer equal 

or less than  [(H*3600)+(M*60)+(S) /20] , u addresses the last timetable created at the time of 

request}                         

for  j=1:size(N) do        {Size(N) indicates the number of nodes selected} 

    f1(1,j)=Tu (N1,Nj); 

end 

for  j=1:size(N,2) do 

    J(1,j)=1; 

end 

for n=1:size(N)-2 do 

     for d=1:size(N) do 

     a=inf; 

         for j=1:size(N,2) do 

             if fn(1,j)+ Tu(Nj,Nd)≤a then 

                 a= fn(1,j)+ Tu(Nj,Nd); 

                 Jn+1(i)=j 

                 fn+1(1,i)=a; 

             end 

        end 

     end 

end 

v=size(N) 

for k=1:size(N)-1 do 

    vk=J(,v); 

end 

p=fliplr(p) 

 

 



34 
 

two days in the same category, a particular road segment has approximately the same 

traffic volume or travel time at the same time of the day. Furthermore, the travel time can 

be adjusted by employing a multiplier, which will be explained in this section.   

 

By referring to Figure 3.11, assume that a week ago on Monday a driver on point 1 

decided to go to point n. Now, we want to estimate the travel time he/she spent in 

traveling from point 1 at time u1 to point n.  

 

 

 

 

Figure 3.11 An example of street segments traveled by the driver 

 

Segment L(1,2) 

Consider a street segment L(1,2) shown in Figure 3.12 and suppose that a driver was at 

point 1 at time u1 (i.e., t0 < u1 < t1). Therefore,           , which is the time that takes the 

driver to arrive at point 2 at time u2 (tm-1 < u2 < tm), can be shown by Equation 3.7.  Note 

that t0, t1,…,tm ,…,tk  are the times at which timetables and speedtables have been created. 

 

Figure 3.12 Street segment L(1,2) 

 

… 

n 3 

1 

2 

L(1,2) 

L(2,3) 

n-1 

L(n-1,n) 



35 
 

                                                    (3.7) 

                                    

                                                                        

Where: 

                   , and   

        
      

         
 

In these equations t1 and u1 are known but b and m are unknown. First, m should be 

identified in order to find b, finding the value of m allows us to find the time tm, the 

timetable created at time tm and finally, the traffic mean speed            during (tm-tm-1). 

 

Let Sy(1,2,t1) be the average traffic mean speed (miles/hr) and a(1,2) be the distance 

(miles) traveled during (t1 - u1) on segment L(1,2), therefore a(1,2) can be given as 

depicted in Equation 3.9: 

                             a(1,2)=(t1 - u1)*Sy (1,2,t1)                         (3.9) 

Then, let X2(1,2) be the distance traveled during the second time slot (t1 - t2) = 20 seconds 

and Sy(1,2,t2) be the average traffic mean speed on segment L(1,2) during (t2 - t1). Then 

we can get Equation 3.10. 

                               X2(1,2)=20*Sy (1,2,t2)                        (3.10) 
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Finally, let Sy(1,2,tm) be the average traffic mean speed and Xm(1,2) be the distance 

traveled during (tm - tm-1)  on segment L(1,2), then we can get Equation 3.11: 

                            Xm(1,2) =( tm- tm-1)*Sy (1,2,tm)                     (3.11) 

Where m is the smallest possible value such that: 

 

                                        

 

This leads into Equation 3.12. 

                                                       (3.12) 

   

                  

 

   

             

Therefore, by replacing X1(1,2), X2(1,2) and X3(1,2) by Equations 3.9, 3.10 , and 3.11, 

respectively, then b(1,2) can be given as follows: 

            
                        

                 
                 

   

                   
                      

 
                                (3.13) 

 

Thus, if last Monday a driver arrived at point 2 at time u2 = u1+          , now this 

Monday (today) if the driver arrives at point 1 at time u1, it is expected that this driver 

will arrive at point 2 at time   
 = u1+          , where            is forecasted (adjusted) 

travel time, needed to cover street segment L(1,2). 
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Where: 

  (1,2,   ) = computed travel time spent to cover street segment L(1,2) on Monday 

last week.  

λ(1,2,   ) = a travel time adjustment factor associated with street segment L(1,2) at 

the time of requesting the shortest path (u1). 

  (1,2,   ) = the hourly average travel time associated with street segment L(1,2) 

based on the last timetables established today (Monday) before the time 

of requesting the shortest path (u1). Since each time table will be created 

every 20 seconds, the total number of timetables in one hour is 180. 

  (1,2,   ) = the average travel time associated with street segment L(1,2) based on 

the last timetables established before time u1 on Monday last week. 

 

For example, if right now a driver is on point 1 at time 11:30:14, so the last timetable and 

speedtable have been created at =11:30:00, therefore   (1,2,11:30:14) is the hourly 

average travel time related with segment L(1,2) based on the timetables created at 

t1=10:30:00 , t2=10:30:20,…, t180=11:30:00 .  
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Furthermore,   (1,2,11:30:14)  is the hourly average travel time related with segment 

L(1,2) based on the timetables created at t1=10:30:00, t2=10:30:20,…, t180=11:30:00 in 

last week. 

                  
                                   

   

 
 

   
           

    

    

 

If we assume that: 

 L(1,2)=300 meters, 

 (1,2,t1)=  (1,2,t2)=…=  (1,2,t180)=15 m/s, and 

Sy (1,2,t1)= Sy(1,2,t2)=…= Sy(1,2,t180))=10 m/s 

Then: 

T (1,2,t1)= T(1,2,t2)=…= T(1,2,t180)= 
   
  

= 20 sec. 

Y (1,2,t1)= Y(1,2,t2)=…= Y(1,2,t180)= 
   

  
 = 30 sec 

                 
 

   
                

     

       

 

                 
 

   
                

     

       

 

                
                

                
      

Then, using Equation 3.8,                  can be estimated as follows: 
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Where t1 = 11:30:20 and u1 = 11:30:14, then                

In order to find the m value we should look for the smallest possible value such that: 

                                    

The distance traveled by the driver during time period                    i.e., a(1,2) 

is given by: 

a(1,2) = (t1- u1)*Sy (1,2,t1) = 6*10 = 60,   where  a(1,2) = 60 < L(1,2) = 300 

The distance traveled by the driver during time period                  i.e., X2(1,2): 

X2(1,2) = (t2- t1)*Sy (1,2,t2) = 20*10 = 200,  where a(1,2) + X2(1,2) = 260 < L(1,2) = 300 

But, the distance traveled by the driver during time period                  was X3: 

X3(1,2)=(t3- t2)*Sy (1,2,t3)=20*10=200, where a(1,2) + X2(1,2) + X3(1,2) = 460 > 

L(1,2) = 300 

The sum of  a(1,2) + X2(1,2) + X3(1,2) exceeds the length of street segment L(1,2), 

therefore m = 3, and by using Equation 3.12  we can get: 

b = a(1,2) + X2(1,2) + X3(1,2) – L(1,2) = 460 – 300 = 160, therefore the estimated travel 

time is as follows: 

                             
   

  
      

Therefore, as shown in Figure 3.13, the forecasted travel time is given as: 
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2 

a(1,2)  X1(1,2)    X2(1,2)    b(1,2) 

 

 

                                                                                                                                 

      

 

 

  Average travel time                                                        Average travel time 

  From t1=10:30:00 to t180=11:30:00                                From t1=10:30:00 to t180=11:30:00 

                  
                                 

   
                     

                                 

   
  

                 
                

                
                  

Figure 3.13 Forecasted travel time computation 

It is noteworthy to mention that in this study all days are assumed to be normal typical 

days; therefore, calculating the adjustment factor and the expected travel time based on 

historical information allows us to take into account traffic congestion that happens 

during a defined time period, although expected travel time is in our interest for long-

distance trips, but for short-distance trips, it may be better to rely more on real time data 

and real time routing as described in Section 3.6. 

 

Segment L(2,3) 

Referring to Figure 3.14, if last week a driver was at point 2 at time   
 , he/she would 

have arrived at point 3 at time u3 =    
  +          

  , and: 

1 2 

Unknown 11:30:14 11:30:14 11:30:14 

1 

Today (Monday) Monday (Last week) 
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Where q is the possible smallest value such that; 

          
        

         

 

     

                

and: 

                  
        

         

 

     

                               

 

Figure 3.14 Street segment L(2,3) 

 

Hence, the driver arrived at point 3 at time u3=   
  +          

  , but today it is expected 

that the driver will arrive at point 3 at time   
 =   

  +          
  , where          

   is 

forecasted (adjusted) travel time, needed to cover street segment L(2,3) 

 

         
                      

                  

           
          

          
                                     

Segment L(n-1,n) 

Referring to Figure 3.15, assuming the same day last week a driver was at point n-1 at 

time     
 , he/she would arrive at point n at time un=    

  +              
  , and: 
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Where w is the smallest possible value such that: 

              
           

         

 

   

                    

And; 

                        
           

         

 

     

                                 

Or 

                       

 

     

                       

 

Figure 3.15 Street segment L(n,n-1) 

. Therefore, today the driver may arrive at point n at time   
 =     

 +             
  . 
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Consequently, by applying the travel time modeling to Equations 3.3 and 3.4, we can get: 

 

 

  f1(s,j,   ) = 

 

 

 

 

 

 fn(s,j,   )= mini 

 

 

Where                   . A typical pseudo code for route finding algorithm based 

on the travel time modeling is depicted in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

                                                                 

                                                                         

 

n≥2 

                                      

                                                              

                                                      

 

(3.25) 

(3.24) 
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Start; 

Declare Selected Nodes, N=[s N2 N3 … d]     {N2=s} 

Declare Speedtable  Matrix, Sy 

Declare Clock Time Matrix, Time=[H M S]  {H: hour, M: minute, S=second} 

u1=(H*60)+M+(S/60)  {u1 is clock time in terms if Minutes at the time of request} 

u=(ceil(u1*60/20))     {u addresses the speedtable created  at t1>u1 in the same day in last week, ceil 

rounds the element to the nearest integer greater than or equal  to (u1*60/20)} 

t1=u*20/60                 {the time that speedtable created} 

dt=(t1-u1)/3600           

for  j=1:size(N) do        {Size(N) indicates the number of nodes selected} 

    if Yu (N1,Nj)=inf then 

       f1(1,j)=inf 

    elseif Yu (N1,Nj)=0 

     f1(1,j)=0 

    else 

      X=Syu (N1,Nj).dt 

      L=||N1-Nj||                {distance between node 1 and node j} 

    If  X≤ L  then 

         Let  k=u+1 

         Y’(N1,Nj)=dt                          

      while X≤ L do 

           X=X+(20/3600)* Syk (N1,Nj) 

           Y’(N1,Nj)= Y’(N1,Nj)+(20/3600) 

           Let  k=k+1 

      end 

           Let k=k-1 

          Y’(N1,Nj)= Y’(N1,Nj)-[(L-X)/Syk(N1,Nj) 

     end 

          v=u 

               

    for k=v-181:v-1 do 

               + Yk (N1,Nj) 

              + Tk (N1,Nj) 

    end 

  f1(1,j)=    Y’(N1,Nj)*60/   

   end 

for  j=1:size(N) do 

    J(1,j)=1; 

end 

for n=1:size(N)-2 do 

     for d=1:size(N) do 

     a=inf; 
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  Figure 3.16 A typical pseudo code for the route finding algorithm based on the travel 

time modeling  

 

 

               

  for j=1:size(N) do 

    if Yu (Nj,Nd)=inf then 

       f1(j,d)=inf 

    elseif Yu (Nj,Nd)=0 

      f1(j,d)=0 

    else 

        b=fn(1,j) 

        u’=u1+ fn(1,j) 

        u=(ceil(u’*60/20)) 
        t1=u*20/60 

       dt=(t1-u’)/3600 

      X=Syu (Nj,Nd).dt 

      L=||Nj-Nd||                {distance between node j and node d} 

    If  X≤ L 

          k=u+1 

         Y’(Nj,Nd)=dt                          

      while X≤ L 

           X=X+(20/3600)* Syk (Nj,Nd) 

           Y’(Nj,Nd)= Y’(N1,Nj)+(20/3600) 

            k=k+1 

      end 

           k=k-1 

          Y’(Nj,Nd)= Y’(N1,Nj)-[(L-X)/Syk(Nj,Nd) 

    end 

          v=u 

               

    for k=v-181:v-1 

               + Yk (Nj,Nd) 

              + Tk (N1,Nj) 

    end 

               Y’(Nj,Nd)*60/   

   end 

       if fn(1,j)+ f1(j, d)≤a then 

                 a= fn(1,j)+ f1(j, d); 

                 Jn+1(i)=j 

                 fn+1(1,i)=a; 

             end 

        end 

     end 

end 

v=size(N) 

for k=1:size(N)-1 do 

    vk=J(,v); 

end 

p=fliplr(p) 
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CHAPTER 4 

RESULTS AND NUMERICAL EXAMPLE 

 

A simulation process has been designed for the proposed route finding algorithm, which 

can represent the shortest path and estimated travel time. Let’s consider a shortest path 

problem for our proposed network shown in Figure 4.1, within this network the origin-

destination (OD) pair (1,5) is considered and it is assumed that a driver is at point 1 at 

time u1 =11:30:14.  

 

 

Figure 4.1 Proposed street network 

 

From the network it can be seen that 2 paths exist between nodes 1 and 5 if R = 0; these 

are listed in Table 4.1. The characteristics of the links are listed in Table 4.2.  

 



47 
 

Table 4.1 List of paths of OD pair (1,5) 

Path 1 2 

Node 1-2-4-5 1-3-4-5 

 

Table 4.2 Network characteristics 

Link Length, L   

(meters) 

Jam Density, 

J (Veh/500 meters) 

Speed limit,  

Sf 

Adjustment 

Factor, λ 

1-2 500 20 35 mi/hr ≈16 m/sec. 0.9 

1-3 500 20 35 mi/hr ≈16 m/sec. 0.5 

2-4 500 20 35 mi/hr ≈16 m/sec. 0.8 

3-4 500 20 35 mi/hr ≈16 m/sec. 1 

4-5 500 20 35 mi/hr ≈16 m/sec. 1.3 

 

1-step path  

First, we need to find a 1-step path from point 1 to every other node f1(1, j,11:30:14), j = 

1,2,3,4,5 using Equation 3.25: 

f1(1,1,11:30:14) = 0, considering that there is no cost to get from point 1 to itself.  

 If a driver selects point 2, then based on the speedtables created at t1 = 11:30:20, t2 = 

11:30:40, t3 = 11:31:00, and t4 = 11:31:20 (see Table 4.3),                  can be 

estimated as follows: 

a(1,2) = (t1 - u1)*Sy (1,2,t1) = (6)*(13) = 78 m , where a(1,2) = 78 < 500 

X2(1,2) = (t2- t1)*Sy (1,2,t2) = (20)*(9) = 180 m , where a(1,2) + X2(1,2) = 258 < 500 

X3 = (t3- t2)*Sy (1,2,t3) = (20)*(6) = 120 m, where a(1,2) + X2(1,2) + X3(1,2) = 378 < 

500 
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X4 = (t4- t3)*Sy (1,2,t4) = (20)*(8) = 160 m, where 

 a(1,2) + X2(1,2) + X3(1,2) + X4(1,2) = 538 > 500, which renders that m = 4 and      

b(1,2) =538 – 500 =38. 

                               
  

  
                                  

Therefore, by applying the adjustment factor we get: 

 f1(1,2,u1) =            =                           = (0.9)*(61.24) =55 sec. If a driver 

selects point 2, he/she will arrive at point 2 at 11:31:14 + 00:00:55 =11:31:09. 

 If a driver selects point 3, then based on the speedtables created at t1 = 11:30:20, t2 = 

11:30:40, t3 = 11:31:00, and t4 = 11:31:20 (see Table 4.3),                  is 

computed as follows: 

a(1,3) = (t1 - u1)*Sy (1,3,t1) = (6)*(12) = 72 m , where: a(1,3) = 72 < 500 

X2(1,3) = (t2- t1)*Sy (1,3,t2) = (20)*(7) = 140 m , where: a(1,3) + X2(1,3) = 212 < 500 

X3(1,3) = (t3- t2)*Sy (1,3,t3) = (20)*(11) = 220 m, where:  

a(1,3) + X2(1,3) + X3(1,3) = 432 < 500 

X4(1,3) = (t4- t3)*Sy (1,3,t4) = (20)*(11) = 220 m, where: 

 a(1,3) + X2(1,3) + X3(1,3) + X4(1,3) = 652 > 500, which renders that m = 4 and b(1,3) = 

652-500 = 38 
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Therefore, f1(1,3,u1) =            =                      = (0.5)*               This 

means that if a driver selects point 3, he/she will arrive there at time 11:30:14 + 00:00:47 

= 11:30:38. 

 f1(1,4) =    (1,4,  ) = ∞, since no direct connection between points 1 and 4. 

 f1(1,5) =    (1,4,   ) = ∞, since no direct connection between 1 and 5. 

2-step paths 

We need to use Equation 3.26 to establish 2-step paths from point 1 to every other nodes 

based on the 1-step paths. Possible 2-step paths from node 1 to itself are as follows: 

 

 

 

 

 

 

 

Possible 2-step paths from node 1 to 2 are as follows: 

 

 

 

 

 

 

                                                 

                                        

                                       

                                         +0 = 0 

                                        55.13 +     

 

f2(1,1,u1)=min  

                                                      

                                              +0 = 55.13 

                                               =   

                                   +     

                                   +     

 

 

f2(1,2,u1)= min 
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 f1(1,1,u1) = 0,  which means that there is no cost to get from point 1 to itself, therefore 

the driver is still at point 1:  λ(1,2,u1)*    (1,2,          = 55.13 sec.  

 The second choice is f1(1,2,u1) + λ(2,2,u1)*    (2,2,11:31:09), in this case is f1(1,2,u1) 

= 55.13 sec., which means that at time u1 = 11:30:14 the driver is at point 1 and 

he/she will arrive at point 2 in next 55.13 seconds (i.e., at time 11:31:09), and 

                   λ(2,2,u1)*     (2,2,11:31:09) = 0 because there is no cost 

associated with getting from point 2 to itself. 

 Similarly, in the third choice f1(1,3, u1) = 23.5, which means the driver will arrive at 

point 3 at time 11:30:38, but λ(3,2,u1)*    (3,2,11:30:38) = ∞, because there is no 

direct connection between points 3 and 2. 

 In the fourth and fifth choices node 1 is not directly linked to nodes 4 and 5 and as a 

result their estimated travel times are also infinity. 

Possible 2-step paths from node 1 to node 3 are as follows: 

 

 

 

 

 

 

 

 

Possible 2-step paths from node 1 to node 4 are as follows: 

 

                                                    

                                                  

                                                    

                                       

                                  +    

 

f2(1,3,u1)= min 
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 In the second choice f1(1,2,u1) = 55.13 sec., which means that the driver will arrive at 

point 2 at time 11:31:09. At this instant by leaving point 2 at u2 = 11:31:09 in order to 

go to point 4, it takes                    λ(1,2,u1)*    (2,4,11:31:09) seconds to 

arrive at point 4. First, we need to estimate    (2,4,11:31:09) based on the speedtables 

created at times t4 = 11:31:20, t5 = 11:31:40, t6 = 11:32:00 , t7 = 11:32:20, and t8 = 

11:32:40. Then the following computations follow: 

a(2,4) = (t4 - u2)*Sy (2,4,t4) = (11)*(9) = 99 m , where: a(2,4) = 99 < 500 

X5(2,4) = (t5 - t4)*Sy (2,4,t5) = (20)*(8) = 160 m , where: a(2,4) + X5(2,4) = 259 < 500 

X6(2,4) = (t6 - t5)*Sy (2,4,t6) = (20)*(6) = 120 m, where: 

 a(2,4) + X5(2,4) + X6(2,4) = 379 < 500 

X7(2,4) = (t7- t6)*Sy (2,4,t7) = (20)*(5) = 100 m, where: 

a(2,4) + X5(2,4) + X6(2,4) + X7(2,4) = 479 < 500  

X8(2,4) = (t8 - t7)*Sy (2,4,t8) = (20)*(11) = 220 m, where: 

a(2,4) + X5(2,4) + X6(2,4) + X7(2,4) + X8(2,4) = 699 > 500 

                                              

                                                        

                                                         

                                       

                                  +    

 

f2(1,4,u1)= min 
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Which renders that m = 5 and b(2,4) = 699 – 500 = 199, therefore: 

                                         
   

  
               

                  λ(1,2,u1)*    (2,4,11:31:09) =(0.8)*(66.13)=53 

 

 Similarly, in the third choice f1(1,3,u1) =23.5 seconds, which means that if the driver 

selects point 3 he/she will arrive at point 3 at u3 = 11:30:38. Therefore, the forecasted 

travel time from 3 to 4 is                    λ(1,3, u1)*    (3,4, 11:30:38) based on 

the speedtables created at times t2 = 11:30:40, t3 = 11:31:00, t4 =11:31:20, and t5 = 

11:31:40. Then the following computations follow: 

a(3,4) = (t2- u3)*Sy (3,4,t2) = (2)*(5) = 10 m, where: a(3,4) = 10 < 500 

X3(3,4) = (t3- t2)*Sy (3,4,t3) = (20)*(9) = 180 m, where: a(3,4) + X3(3,4) = 190 < 500 

X4(3,4) = (t4- t3)*Sy (3,4,t4) = (20)*(8) = 160 m, where: 

 a(3,4) + X3(3,4) + X4(3,4) = 350 < 500 

X5(3,4) = (t5-t4)*Sy (3,4,t5) = (20)*(8) = 160 m, where: 

 a(3,4) + X3(3,4) + X4(3,4) + X5(3,4) = 510 > 500, therefore, m = 4 and b(3,4) = 10. 

                                         
  

  
               

             λ(3,4,u1)*Y2(2,4,11:30:38) = (1)*(60.75) = 60.75 

Possible 2-steps paths from 1 to 5 are as follows (Note: no direct link from 1 to 5): 
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3-step paths 

 

Here we need to establish 3-step paths from node 1 to every other nodes based on the 2-

step paths previously created. Possible 3-step paths from node 1 to itself are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Possible 3-step paths from node 1 to node 2 are as follows: 

 

 

 

 

 

 

 

 

 

 

                                                 

                       
 
                   

                                       

                                         +0 = 0 

                                        55.13 +     

 

f3(1,1,u1)=min 

minmin 

                                                 

                       
 
                   

                                       

                                         +55.13 = 55.13 

                                       55.13 + 0 =5 5.13 

 

f3(1,2,u1)=min 

minmin 

                                              

                                                  

                                                 

                                   

                                  +    

 

f2(1,5,u1)= min 
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Possible 3-step paths from node 1 to node 3 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

Possible 3-steps paths from 1 to 4 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Possible 3-step paths from node 1 to node 5 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

f3(1,3,u1)=min 

minmin 

                                                 

                       
 
                         

                       
 
                                

                                       

                       
 
                  +    =   

 

f3(1,5,u1)=min 

minmin 

                       
 
                            

                       
 
                   

                                       

                       
 
                  + 23.5 = 23.5 

                      
 
                 55.13 +   =   

 

f3(1,3,u1)=min 

minmin 

                                                       

                       
 
                                 

                                   

                                       

                       
 
                  +    =   

 

f3(1,4,u1)=min 
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 In the fourth choice                   indicates that the driver will arrive at point 4 

at time u4=11:31:38. Then the estimated travel time from node 4 to node 5 is:  

                  λ(1,3, u1)*    (4,5, 11:31:38) based on the speedtables created at 

times t5 = 11:31:40, t6  = 11:32:00, t7 = 11:32:20, t8 = 11:32:40, and t9 = 11:33:00 

a(4,5) = (t5- u4)*Sy (4,5,t5) = (2)*(8) = 16 m, where: a(4,5) = 16 < 500 

X6(4,5) = (t6- t5)*Sy (4,5,t6) = (20)*(7) = 140 m, where: a(4,5) + X6(4,5) = 156 < 500 

X7(4,5) = (t7- t6)*Sy (4,5,t7) = (20)*(6) = 120 m, where:  

a(4,5) + X6(4,5) + X7(4,5) = 276 < 500 

X8(4,5) = (t8- t7)*Sy (4,5,t8) = (20)*(7) = 140 m, where:  

a(4,5) + X6(4,5) + X7(4,5) + X8(4,5) = 416 < 500  

X9(4,5) = (t9- t8)*Sy (4,5,t7) = (20)*(7) = 140 m, where:  

X1 a(4,5) + X6(4,5) + X7(4,5) + X8(4,5) + X9(4,5) = 556 > 500 

Which means that m = 5 and b(4,5) = 556 – 500 = 56 

                                         
  

  
            

             λ(4,5,u1)*Y3(4,511:31:38,) = (1.3)*(53)=69 sec. 

 

 

4-step paths 

 

All possible 4-step paths from node 1 to node 1 are as follows: 
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All possible 4-step paths from node 1 to node 2 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All possible 4-step paths from node 1 to node 3 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

                                                  

                        
 
                         

                        
 
                          

                        
 
                        

   

                        
 
                  +   =   

 

f4(1,1,u1)=min 

minmin 

                                                      

                        
 
                         

                        
 
                          

                        
 
                           

                                           +       =       

 

f4(1,2,u1)=min 

minmin 

                                                  

                        
 
                            

                        
 
                          

                        
 
                           

                        
 
                  +      =      

 

f4(1,3,u1)=min 

minmin 
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All possible 4-step paths from node 1 to node 4 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

All possible 4-step paths from node 1 to node 5 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a final point, the shortest path requested at time u1 = 11:30:14 can be found by using 

the backward approach. From the last solution, f4(1,5,u1), we can find the last segment of 

the shortest path, street segment (4,5), then f3(1,4,u1) indicates that the next segment of 

the shortest path is segment (3,4), and finally, from f2(1,3,u1), we can understand that the 

first segment of the shortest path is segment (1,3). Therefore, the shortest path consists of 

nodes 1, 3, 4, and 5 as shown in Figure 4.2. 

 

 

                                                        

                       
 
                                 

                        
 
                              

                                               

                        
 
                  +    =   

 

f4(1,4,u1)=min 

minmin 

                                                  

                        
 
                         

                        
 
                                

                        
 
                           

                        
 
                  +   =   

 

f4(1,5,u1)=min 

minmin 
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Figure 4.2 Detected shortest path 
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Table 4.3 Observed data at different times 

t1 = 11:30:00 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 5 3 - - 

 

1 
∞ 

11 13 0 0 

 

1 0 0.74 0.65 
∞ ∞ 

2 - - - 6 - 

 

2 0 
∞ 

0 11 0 

 

2 
∞ 

0 
∞ 

0.79 
∞ 

3 - - - 4 - 

 

3 0 0 
∞ 

12 0 

 

3 
∞ ∞ 

0 0.69 
∞ 

4 - - - - 7 

 

4 0 0 0 
∞ 

10 

 

4 
∞ ∞ ∞ 

0 0.85 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t2 = 11:30:20 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 3 4 - - 

 

1 
∞ 

13 12 0 0 

 

1 0 0.65 0.69 
∞ ∞ 

2 - - - 2 - 

 

2 0 
∞ 

0 14 0 

 

2 
∞ 

0 
∞ 

0.62 
∞ 

3 - - - 7 - 

 

3 0 0 
∞ 

10 0 

 

3 
∞ ∞ 

0 0.85 
∞ 

4 - - - - 5 

 

4 0 0 0 
∞ 

11 

 

4 
∞ ∞ ∞ 

0 0.74 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t3 = 11:30:40 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 8 11 - - 

 

1 
∞ 

9 7 0 0 

 

1 0 0.93 1.23 
∞ ∞ 

2 - - - 6 - 

 

2 0 
∞ 

0 11 0 

 

2 
∞ 

0 
∞ 

0.79 
∞ 

3 - - - 13 - 

 

3 0 0 
∞ 

5 0 

 

3 
∞ ∞ 

0 1.59 
∞ 

4 - - - - 5 

 

4 0 0 0 
∞ 

11 

 

4 
∞ ∞ ∞ 

0 0.74 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t4 = 11:31:00 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 12 5 - - 

 

1 
∞ 

6 11 0 0 

 

1 0 1.39 0.74 
∞ ∞ 

2 - - - 6 - 

 

2 0 
∞ 

0 11 0 

 

2 
∞ 

0 
∞ 

0.79 
∞ 

3 - - - 8 - 

 

3 0 0 
∞ 

9 0 

 

3 
∞ ∞ 

0 0.93 
∞ 

4 - - - - 7 

 

4 0 0 0 
∞ 

10 

 

4 
∞ ∞ ∞ 

0 0.85 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

Observed Density at 11:30:00          Speedtable created at 11:30:00           Timetable created at 11:30:00 

Observed Density at 11:30:20          Speedtable created at 11:30:20           Timetable created at 11:30:20 

Observed Density at 11:30:40        Speedtable created at 11:30:40           Timetable created at 11:30:40 

Observed Density at 11:31:00       Speedtable created at 11:31:00            Timetable created at 11:31:00 
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t5 = 11:31:20 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 10 6 - - 

 

1 
∞ 

8 11 0 0 

 

1 0 1.11 0.79 
∞ ∞ 

2 - - - 8 - 

 

2 0 
∞ 

0 9 0 

 

2 
∞ 

0 
∞ 

0.93 
∞ 

3 - - - 9 - 

 

3 0 0 
∞ 

8 0 

 

3 
∞ ∞ 

0 1.01 
∞ 

4 - - - - 8 

 

4 0 0 0 
∞ 

9 

 

4 
∞ ∞ ∞ 

0 0.93 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t6 = 11:31:40 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 11 7 - - 

 

1 
∞ 

7 10 0 0 

 

1 0 1.23 0.85 
∞ ∞ 

2 - - - 9 - 

 

2 0 
∞ 

0 8 0 

 

2 
∞ 

0 
∞ 

1.01 
∞ 

3 - - - 9 - 

 

3 0 0 
∞ 

8 0 

 

3 
∞ ∞ 

0 1.01 
∞ 

4 - - - - 9 

 

4 0 0 0 
∞ 

8 

 

4 
∞ ∞ ∞ 

0 1.01 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t7 = 11:32:00 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 13 5 - - 

 

1 
∞ 

5 11 0 0 

 

1 0 1.59 0.74 
∞ ∞ 

2 - - - 12 - 

 

2 0 
∞ 

0 6 0 

 

2 
∞ 

0 
∞ 

1.39 
∞ 

3 - - - 10 - 

 

3 0 0 
∞ 

8 0 

 

3 
∞ ∞ 

0 1.11 
∞ 

4 - - - - 11 

 

4 0 0 0 
∞ 

7 

 

4 
∞ ∞ ∞ 

0 1.23 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t8 = 11:32:20 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 15 5 - - 

 

1 
∞ 

4 11 0 0 

 

1 0 2.22 0.74 
∞ ∞ 

2 - - - 13 - 

 

2 0 
∞ 

0 5 0 

 

2 
∞ 

0 
∞ 

1.59 
∞ 

3 - - - 11 - 

 

3 0 0 
∞ 

7 0 

 

3 
∞ ∞ 

0 1.23 
∞ 

4 - - - - 12 

 

4 0 0 0 
∞ 

6 

 

4 
∞ ∞ ∞ 

0 1.39 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

Observed Density at 11:31:20       Speedtable created at 11:31:20       Timetable created at 11:31:20 

Observed Density at 11:31:40      Speedtable created at 11:31:40        Timetable created at 11:31:40 

Observed Density at 11:32:00      Speedtable created at 11:32:00            Timetable created at 11:32:00 

Observed Density at 11:32:20     Speedtable created at 11:32:20            Timetable created at 11:32:20 
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t9 = 11:32:40 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 12 5 - - 

 

1 
∞ 

6 11 0 0 

 

1 0 1.39 0.74 
∞ ∞ 

2 - - - 6 - 

 

2 0 
∞ 

0 11 0 

 

2 
∞ 

0 
∞ 

0.79 
∞ 

3 - - - 5 - 

 

3 0 0 
∞ 

11 0 

 

3 
∞ ∞ 

0 0.74 
∞ 

4 - - - - 11 

 

4 0 0 0 
∞ 

7 

 

4 
∞ ∞ ∞ 

0 1.23 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

t10 = 11:33:00 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

 

Node 1 2 3 4 5 

1 - 13 5 - - 

 

1 
∞ 

5 11 0 0 

 

1 0 1.59 0.74 
∞ ∞ 

2 - - - 12 - 

 

2 0 
∞ 

0 6 0 

 

2 
∞ 

0 
∞ 

1.39 
∞ 

3 - - - 10 - 

 

3 0 0 
∞ 

8 0 

 

3 
∞ ∞ 

0 1.11 
∞ 

4 - - - - 11 

 

4 0 0 0 
∞ 

7 

 

4 
∞ ∞ ∞ 

0 1.23 

5 - - - - - 

 

5 0 0 0 0 
∞ 

 

5 
∞ ∞ ∞ ∞ 

0 

 

              

  

Observed Density at 11:32:40        Speedtable created at 11:32:40        Timetable created at 11:32:40 

Observed Density at 11:33:00       Speedtable created at 11:33:00        Timetable created at 11:33:00 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This thesis presented a new method for dynamic vehicle routing in order to find the 

shortest path using real time data and historical data collected from traffic detectors 

installed in all street segments. The raw data provided by these detectors is transferred to 

the control unit, which converts them into traffic mean speeds and needed travel time to 

traverse each street segment. For this purpose speedtables and timetables are used to store 

traffic mean speeds and traffic mean travel times during each time slot. Furthermore, the 

position of each node is defined in a local and Cartesian coordinate system, which allows 

the zone identification and node selection algorithm to look for the desired nodes 

between the source and destination points which reduces the data size and speed up the 

process of finding the shortest path or extend the area that encompasses the source and 

destination points to take into account more nodes. 

 

In this study the solving strategy is based on the dynamic programming, which takes care 

of the speedtable and timetable updating system to find the shortest path among possible 

alternatives, by considering each node toward the destination only once.  
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In this study two different models have been developed based on different decision 

criteria: 

 Finding the shortest path based on the real time data collected from the street 

network. 

 Finding the shortest path using travel time modeling method based on historical and 

real time data that incorporates both concepts of short-term travel time forecasting 

and shortest path finding. Therefore, this research effort opens many interesting and 

practical issues for future work. 

Finally, such algorithms can be implemented in GIS systems such as Google map in 

order to help commercial sectors move goods and services quickly or to better and 

efficiently link health and human service providers with users/customers. 

5.2 Recommendations 

This study opens many practical issues for future works. In this section we provide some 

recommendations that can improve the existing algorithm in order to be implemented in 

the real world.  

Signal timing: In this study we assumed that waiting at intersections is very minimal or 

negligible while in real life this is often not the case. Furthermore, for modern traffic 

activated signals, the detection of vehicles in the approach lanes affects the sequence and 

duration of green phases provided at the intersection and hence the right-of-way 

provision. Therefore, it would be better to state or model an appropriate expected waiting 

time or delay at each intersection in the network. 
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Road hierarchy: The number of intersections within a street network may be a limiting 

factor for route finding algorithms. For this purpose, we employed a heuristic method that 

can limit the number of nodes and consequently increasing the algorithm speed. Another 

way to improve algorithm runtime is to take into account the road hierarchy, where 

highways connect multiple large regions; interstate roads connect locations within a 

region and small roads reach into individual houses. As a result, a vehicle will first be 

routed via major roads to get access to the region in which its destination point is located 

and after that it will be routed via minor roads.  

Implementation: The last challenge will be implementing the algorithms in a software, 

hardware and wireless communication system integrated with traffic detectors, control 

units and monitoring instrumentations in vehicles that work together and share real time 

information and subsequently display and report the route to be taken to the users 

(drivers). 
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APPENDIX 

 

MATLAB Source Code 

 

% Classification method and Route finding Algorithm, Amin Azimian 
% Classification method: 

  
plot([200 400 500 700 900 1100 1300 1500 1700 1900], [2100 2100 2100 

2100 2100 2100 2100 2100 2100 2100],'k-s',... 
[200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100],[1900 1900 

1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],'k-s',... 
[900 1100 1300], [1800 1800 1800], 'k-s',... 
[200 400 600 800 900 1100 1300 1500], [1700 1700 1700 1700 1700 1700 

1700 1700], 'k-s',... 
[1900 2100], [1700 1700], 'k-s', ... 
[1600 1800 1900], [1600 1600 1600],'k-s', ... 
[200 400], [1500 1500],'k-s', ... 
[600 700 900 1000 1100 1300 1500 1700 1900], [1500 1500 1500 1500 1500 

1500 1500 1500 1500], 'k-s',... 
[400 600 700 900 1100],[1300 1300 1300 1300 1300],'k',... 
[1500 1700 1900 2000 2100], [1300 1300 1300 1300 1300],'k',... 
[ 200 400 500 600 900 1100 1300 1500 1700 1900 2100], [1100 1100 1100 

1100 1100 1100 1100 1100 1100 1100 1100], 'k-s',... 
[500 600], [900 900],'k-s',... 
[900 1100], [900 900], 'k-s',... 
[1300 1500 1700], [900 900 900],'k-s',... 
[1900 2000 2100], [900 900 900], 'k-s',... 
[200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100], [700 700 700 

700 700 700 700 700 700 700 700 700], 'k-s',... 
[1500 1700], [600 600], 'k-s',... 
[200 400 500 600 700 900 1100 1300 1500], [500 500 500 500 500 500 500 

500 500], 'k-s',... 
[1700 1900 2000 2100], [500 500 500 500], 'k-s',... 
[200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100], [300 300 300 

300 300 300 300 300 300 300 300 300], 'k-s',... 
[700 1100 1300 1500 1700], [200 200 200 200 200], 'k-s',... 
[400 500 600 700], [100 100 100 100], 'k-s',... 
[200 200],[2100 1900],'k-s',... 
[200 200],[1700 1500], 'k-s',... 
[200 200 200],[1100 900 700],'k-s',... 
[200 200],[500 300], 'k-s',... 
[400 400],[2100 1900],'k-s',... 
[300 400 400 400 400],[1900 1700 1500 1300 1100],'k-s',... 
[400 400 400 400],[700 500 300 100],'k-s',... 
[500 500],[2100 1900],'k-s',... 
[500 500 500 500],[1100 900 700 500],'k-s',... 
[500 500],[300 100],'k-s',... 
[700 700 600 600 600],[2100 1900 1700 1500 1300],'k-s',... 
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[600 600 600 600],[1100 900 700 500],'k-s',... 
[600 600],[300 100],'k-s',... 
[700 700],[1500 1300],'k-s',... 
[700 700 700 700],[500 300 200 100],'k-s',... 
[700 800 900 1000],[1900 1700 1600 1500],'k-s',... 
[900 900 900 900],[2100 1900 1800 1700],'k-s',... 
[900 900 900],[1600 1500 1300], 'k-s',... 
[900 900 900 900],[1100 900 700 500],'k-s',... 
[1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100], [2100 

1900 1800 1700 1500 1300 1100 900 700 500 300 200],'k-s',... 
[1100 1300], [900 700],'k-s',... 
[1300 1300 1300 1300 1300],[2100 1900 1800 1700 1500],'k-s',... 
[1300 1300 1300 1300 1300 1300], [1100 900 700 500 300 200],'k-s',... 
[1500  1600 1700 1800 1900 2000 2100],[2100 1900 1800 1600 1500 1300 

1100],'k-s',... 
[1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500], [1900 1700 

1500  1300 1100 900 700 600 500 300 200],'k-s',... 
 [1500 1600], [1700 1600],'k-s',... 
 [1500 1600], [1500 1600],'k-s',... 
 [1700 1700 1700],[2100 1900 1800],'k-s',... 
 [1700 1700 1700 1700 1700 1700 1700 1700 1700], [1500 1300 1100 900 

700 600 500 300 200],'k-s',... 
 [1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],[2100 1900 

1700 1600 1500 1300 1100 900 700 500 300],'k-s',... 
 [2100 2100 2100 2100 2100 2100],[1900 1700 1300 1100 900 700],'k-

s',... 
 [2100 2100],[500 300],'k-s', 'LineWidth',2,'MarkerEdgeColor','k', 

'MarkerFaceColor','k', 'MarkerSize',4); xlim([0 2300]); ylim([0 2300]) 

  
i=input('What is your starting point?:'); 
j=input('What is your destination?:'); 
coord=[200 400 500 700 900 1100 1300 1500 1700 1900 ... 
    200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100 ... 
    900 1100 1300 1700 ... 
    200 400 600 800 900 1100 1300 1500 1900 2100 ... 
    900 1600 1800 1900 ... 
    200 400 600 700 900 1000 1100 1300 1500 1700 1900 ... 
    400 600 700 900 1100 1500 1700 1900 2000 2100 ... 
    200 400 500 600 900 1100 1300 1500 1700 1900 2100 ... 
    200 500 600 900 1100 1300 1500 1700 1900 2000 2100 ... 
    200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100 ... 
    1500 1700 ... 
    200 400 500 600 700 900 1100 1300 1500 1700 1900 2000 2100 ... 
    200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100 ... 
    700 1100 1300 1500 1700 ... 
    400 500 600 700 ; 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100 

... 
    1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 

... 
    1800 1800 1800 1800 ... 
    1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 ... 
    1600 1600 1600 1600 ... 
    1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 ... 
    1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 ... 
    1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 ... 
    900 900 900 900 900 900 900 900 900 900 900 ... 
    700 700 700 700 700 700 700 700 700 700 700 700 ... 
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    600 600 ... 
    500 500 500 500 500 500 500 500 500 500 500 500 500 ... 
    300 300 300 300 300 300 300 300 300 300 300 300 ... 
    200 200 200 200 200 ... 
    100 100 100 100]; 
m=(coord(2,i)-coord(2,j))/(coord(1,i)-coord(1,j)); 
pm=-1/m; 
xm=(coord(1,i)+coord(1,j))/2; 
ym=(coord(2,i)+coord(2,j))/2; 
nh=1; 
ng=1; 

  
for k=1:size(coord,2) 
    f=pm*(coord(1,k)-xm)+ym; 
    if 

((coord(1,i)<=coord(1,k))&&(coord(1,k)<=coord(1,j)))&&((coord(2,j)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,i))) 
           if coord(2,k)>f 
              h(1,nh)=k; 
              nh=nh+1; 
           else 
              g(1,ng)=k; 
              ng=ng+1; 
           end 
    elseif 

((coord(1,i)<=coord(1,k))&&(coord(1,k)<=coord(1,j)))&&((coord(2,i)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,j))) 
            if coord(2,k)<f 
                h(1,nh)=k; 
                nh=nh+1; 
            else 
                 g(1,ng)=k; 
                 ng=ng+1; 
            end 

         
    elseif 

((coord(1,j)<=coord(1,k))&&(coord(1,k)<=coord(1,i)))&&((coord(2,i)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,j))) 

         
           if coord(2,k)<f 
              h(1,nh)=k; 
              nh=nh+1;  
           else 
               g(1,ng)=k; 
              ng=ng+1; 
           end 
    elseif 

((coord(1,j)<=coord(1,k))&&(coord(1,k)<=coord(1,i)))&&((coord(2,j)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,i))) 
           if coord(2,k)>f 
              h(1,nh)=k; 
              nh=nh+1; 
           else 
              g(1,ng)=k; 
              ng=ng+1; 
           end 
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    end 
end 
mtime=0 
fpath=[] 
h3=h   
h2=h; 
g2=g; 
rnodes=[h g] 
while exist('spath')==0 

  

  
for q=1:size(rnodes,2); 
    disth=sqrt(((coord(1,i)-coord(1,rnodes(1,1)))^2)+((coord(2,i)-... 
        coord(2,rnodes(1,1)))^2)); 
    for k=1:size(rnodes,2); 
           if sqrt(((coord(1,i)-coord(1,rnodes(1,k)))^2)+((coord(2,i)-

... 
                   coord(2,rnodes(1,k)))^2))<=disth 
              eh=k; 
              disth=sqrt(((coord(1,i)-

coord(1,rnodes(1,k)))^2)+((coord(2,i)-... 
                  coord(2,rnodes(1,k)))^2)); 
              th=rnodes(1,k);            
          end 
    end 
    fh(1,q)=th; 
    rnodes(:,eh)=[]; 

         

       
end 
fh; 
H=fh 
N=[fh] 

  
   % Route finding algorithm 
w=1; 
u=0; 
p=0; 
z=1; 
sum=0; 
Tsum=inf; 
T=inf(132,132); 

  
T(1,2)=2 ; T(1,11)=3; 
T(2,1)=3; T(2,13)=3; T(2,3)=4; 
T(3,2)=3; T(3,14)=4; T(2,4)=5; 
T(4,3)=6; T(4,15)=1; T(4,5)=3; 
T(5,4)=4; T(5,16)=7; T(5,6)=8; 
T(6,5)=9; T(6,17)=3; T(6,7)=4; 
T(7,6)=2; T(7,18)=4; T(7,8)=5; 
T(8,7)=6; T(8,20)=7; T(8,9)=6; 
T(9,8)=4; T(9,21)=8; T(9,10)=8; 
T(10,9)=6; T(10,22)=3; 
T(11,1)=4; T(11,12)=inf;  
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T(12,11)=2; T(12,29)=3; T(12,13)=2; 
T(13,12)=2; T(13,14)=4;T(13,2)= 5; 
T(14,13)=6; T(14,3)=5; T(14,15)=9; 
T(15,14)=11; T(15,16)=9; T(15,4)=8; T(15,30)=9; T(15,31)=7; 
T(16,15)=6; T(16,5)=8;  T(16,17)=9; T(16,24)=8; 
T(17,16)=7; T(17,6)=7; T(17,18)=9; T(17,25)=8; 
T(18,17)=9; T(18,19)=6; T(18,7)=6; T(18,26)=10; 
T(19,18)=9 ; T(19,20)=8 ; T(19,35)=4;  
T(20,8)=7; T(20,19)=12; T(20,21)=3; T(20,27)=3; 
T(21,20)=7; T(21,9)=6; T(21,22)=5; T(21,27)=3; 
T(22,21)=12; T(22,10)=7; T(22,23)=7; T(22,36)=5; 
T(23,22)=10; T(23,37)=7; 
T(24,16)=12; T(24,32)=7;T(24,25)=12; 
T(25,17)=6; T(25,24)=7;T(25,33)=9; T(25,26)=7; 
T(26,25)=11; T(26,18)=7;T(26,34)=6; 
T(27,20)=5; T(27,21)=5; 
T(28,42)=6; T(28,29)=3; 
T(29,12)=7; T(29,28)=4; T(29,30)=11; T(29,43)=7; 
T(30,29)=12; T(30,15)=5; T(30,31)=3; T(30,44)=8; 
T(31,30)=7; T(31,15)=6; T(31,32)=3; T(31,38)=4; 
T(32,31)=4; T(32,24)=2; T(32,33)=12;  
T(33,32)=5; T(33,25)=5; T(33,34)=12; T(33,48)=4; 
T(34,33)=3; T(34,26)=2; T(34,35)=11; T(34,49)=4; 
T(35,34)=8; T(35,19)=5; T(35,39)=12; T(35,50)=4; 
T(36,22)=7; T(36,37)=6 ;T(36,41)=12; 
T(37,23)=3; T(37,36)=6;T(37,62)=12; 
T(38,31)=3; T(38,46)=1;T(38,47)=10; 
T(39,35)=2; T(39,50)=3; T(39,40)=9; 
T(40,39)=2; T(40,27)=11;T(40,52)=5;T(40,41)=5; 
T(41,13)=6; T(41,3)=5; T(41,15)=7; 
T(42,28)=5; T(42,43)=6;  
T(43,42)=6; T(43,29)=4;T(43,53)=9;  
T(44,30)=2; T(44,45)=3; T(44,54)=2; 
T(45,44)=2; T(45,55)=4;T(45,46)= 5; 
T(46,45)=6; T(46,38)=5; T(46,47)=3;T(46,56)=4; 
T(47,46)=11; T(47,38)=9; T(47,48)=3;  
T(48,47)=4; T(48,33)=8;  T(48,49)=9; T(48,57)=7; 
T(49,48)=6; T(49,34)=8;  T(49,50)=9; 
T(50,49)=7; T(50,35)=7; T(50,51)=9; T(50,58)=8; T(50,39)=8; 
T(51,50)=6; T(51,52)=8;  T(51,59)=9; 
T(52,51)=7; T(52,41)=3; T(52,60)=9; T(52,40)=6;T(52,61)=8; 
T(53,43)=9; T(53,64)=6; T(53,54)=6;  
T(54,44)=9 ; T(54,53)=8 ; T(54,55)=4;  
T(55,54)=3; T(55,45)=9; T(55,56)=8;  
T(56,55)=7; T(56,46)=6; T(56,57)=5;  
T(57,56)=7; T(57,48)=7; T(57,68)=7; 
T(58,50)=10; T(58,70)=7; T(58,59)=7; 
T(59,58)=10; T(59,51)=7;T(59,71)=10;T(59,60)=5; 
T(60,59)=6; T(60,52)=7;T(60,61)=9; T(60,72)=7; 
T(61,60)=11; T(61,52)=7;T(61,62)=6;T(61,73)=7; 
T(62,61)=5; T(62,37)=5; T(62,73)=5; 
T(63,64)=6; T(63,74)=3; 

  
T(64,63)=11; T(64,53)=9; T(64,65)=8;  
T(65,64)=9; T(65,75)=8;  T(65,66)=9;  
T(66,65)=6; T(66,76)=8;  T(66,67)=9;  
T(67,66)=7; T(67,68)=7; T(67,77)=9;  
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T(68,67)=9; T(68,69)=6; T(68,57)=6; T(68,78)=10; 
T(69,68)=9 ; T(69,70)=8 ; T(69,79)=4;  
T(70,69)=7; T(70,71)=12; T(70,58)=3; T(70,80)=3; 
T(71,70)=7; T(71,72)=6; T(71,59)=5; T(71,81)=3; 
T(72,71)=12; T(72,73)=7; T(72,60)=7; T(72,82)=5; 
T(73,72)=10; T(73,61)=7;T(73,62)=10; T(73,84)=7; 
T(74,63)=12; T(74,85)=7; 
T(75,65)=6; T(75,87)=7;T(75,76)=9;  
T(76,75)=11; T(76,66)=7;T(72,88)=6; 
T(77,67)=5; T(77,78)=5;T(77,89)=5; 
T(78,77)=6; T(78,68)=3;T(78,91)=6; T(78,90)=3; 
T(79,69)=7; T(79,80)=4; T(79,91)=11; 
T(80,79)=12; T(80,70)=5; T(80,81)=3; T(80,92)=8; 
T(81,80)=7; T(81,71)=6; T(81,93)=3;  
T(82,72)=4; T(82,94)=2; T(82,83)=12;  
T(83,82)=5; T(83,84)=5; T(83,95)=12; 
T(84,83)=3; T(84,73)=2; T(84,96)=11; 
T(85,74)=8; T(85,86)=5; 
T(86,85)=7; T(86,87)=6 ;T(86,100)=12; 
T(87,86)=3; T(87,75)=6;T(87,88)=12;T(87,101)=6; 
T(88,87)=3; T(88,76)=1;T(88,89)=6; T(88,102)=3; 
T(89,88)=2; T(89,77)=3; T(89,90)=9;T(89,104)=7;  
T(90,89)=2; T(90,78)=11;T(90,91)=5;T(90,105)=5; 
T(91,90)=6; T(91,78)=5;T(91,79)=7;T(91,92)=6; T(91,106)=3; 
T(92,91)=5; T(92,80)=6; T(92,93)=6; T(92,97)=3; 
T(93,92)=6; T(93,81)=4;T(93,94)=9;T(93,98)=6;  
T(94,93)=2; T(94,82)=3; T(94,95)=7; T(94,109)=3; 
T(95,94)=2; T(95,83)=4;T(95,96)= 5;T(95,110)=6;  
T(96,95)=6; T(96,84)=5; 
T(97,92)=11; T(97,98)=9; T(97,107)=3;  
T(98,97)=4; T(98,93)=8;  T(98,108)=9;   
T(99,100)=6; T(99,112)=3;  
T(100,99)=7; T(100,86)=7; T(100,101)=9; T(100,113)=8;  
T(101,100)=6; T(101,87)=8;  T(101,102)=9; 
T(102,101)=7; T(102,88)=3; T(102,103)=9;  
T(103,102)=9; T(103,104)=6; T(103,116)=6;  
T(104,103)=9; T(104,89)=8 ; T(104,105)=4;  
T(105,104)=3; T(105,90)=9; T(105,106)=8;T(105,117)=6; 
T(106,105)=7; T(106,91)=6; T(106,107)=5;T(106,118)=6;  
T(107,106)=7; T(107,97)=7; T(107,119)=7; 
T(108,98)=10; T(108,109)=7; T(108,120)=7; 
T(109,108)=10; T(109,94)=7;T(109,110)=10;T(109,121)=5; 
T(110,109)=6; T(110,95)=7;T(110,111)=9; T(110,122)=7; 
T(111,110)=11; T(111,123)=7; 
T(112,99)=5; T(112,113)=5;  
T(113,112)=6; T(113,100)=3;T(113,114)=6; T(113,129)=3; 
T(114,113)=3; T(114,115)=2; T(114,130)=11;  
T(115,114)=8; T(115,116)=5; T(115,131)=12; 
T(116,115)=7; T(116,103)=6 ;T(116,117)=12;T(116,124)=12; 
T(117,116)=3; T(117,105)=6;T(117,118)=12;T(117,125)=12; 
T(118,117)=9; T(118,106)=1;T(118,119)=10;T(118,126)=12; 
T(119,118)=2; T(119,107)=3; T(119,120)=9;T(119,127)=12; 
T(120,119)=2; T(120,108)=11;T(120,121)=5;T(120,128)=5; 
T(121,120)=6; T(121,109)=5; T(121,122)=7; 
T(122,121)=5; T(122,110)=6;T(122,123)=9; 
T(123,122)=6; T(123,111)=4; 
T(124,116)=2; T(124,125)=3; T(124,132)=2; 
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T(125,124)=2; T(125,117)=4;T(125,126)= 5; 
T(126,125)=6; T(126,118)=5; T(126,127)=3; 
T(127,126)=11; T(127,119)=9; T(127,128)=3;  
T(128,127)=4; T(128,120)=8; 
T(129,113)=6; T(129,130)=8;   
T(130,129)=7; T(130,114)=7; T(130,131)=9;  
T(131,130)=6; T(131,115)=8;  T(131,132)=9; 
T(132,131)=7; T(132,124)=3;  

  

  
v=w; 
for h=1:2000 

    
    if T(N(1,w),N(1,v+u+1))~=inf 
            p=p+1; 
            c(1,p)=w; 
            c(2,p)=v+u+1; 
            sum=sum+T(N(1,w),N(1,v+u+1)); 
            path(1,z)=N(1,w); 
            path(1,z+1)=N(1,v+u+1) 
            w=v+u+1; 
            z=z+1; 
            if (v+u+1==size(N,2)) 
                    if sum<Tsum  
                       Tsum=sum 
                       spath=path 
                    end 
                    if p~=1 
                        sum=sum-T(N(1,c(1,p)),N(1,c(2,p)))-T(N(1,c(1,p-

1)),N(1,c(2,p-1))); 
                        path(1,z)=0; 
                        path(1,z-1)=0; 
                       w=c(1,p-1); 
                       v=w; 
                       u=c(1,p)-c(1,p-1); 
                       p=p-2; 
                       z=z-2; 
                    else 
                       break  
                    end 
            else 
                u=0; 
                v=w; 
            end 

              
    else 
        if v+u+1==size(N,2) 
            if p~=0 
            w=c(1,p); 
            v=w; 
            u=c(2,p)-c(1,p); 
            sum=sum-T(N(1,c(1,p)),N(1,c(2,p))); 
            npath=path; 
             path(1,z)=0; 
            p=p-1; 
            z=z-1; 
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            else 
                break 

             
            end 
        else 
            u=u+1; 
        end 

     
    end 
end 
time=0 
if exist('spath')==0 
    sizenpath=size(npath,2) 
                     for k=1:sizenpath 
                       if npath(1,k)>0 
                          s_npath(1,k)=npath(1,k); 
                       else 
                         break 
                       end     

      
                     end 
     sizenpath=size(s_npath,2) 
    i=npath(1,sizenpath) 
    h=h3 
    for k=1:(sizenpath-1) 
        time=time+T(s_npath(1,k),s_npath(1,k+1)) 
    end 
    mtime 
    mtime=mtime+time 
    fpath=[fpath s_npath] 
end 
end 
Tsum=Tsum+mtime 
spath=[spath fpath] 
for k=1:size(spath,2) 
        if spath(1,k)>0 
            s_path(1,k)=spath(1,k); 
        else 
            break 
        end     

      
end 

  
disp(['The shortest path includes the following nodes: ', 

num2str(s_path)]); 
disp(['The estimated time is (Minute): ', num2str(Tsum)]); 

  
for k=1:size(spath,2) 
        if spath(1,k)>0 
           vec1(1,k)=coord(1,spath(1,k)); 
           vec2(1,k)=coord(2,s_path(1,k)); 
        else 
            break 
        end     
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end 

  

     
plot([200 400 500 700 900 1100 1300 1500 1700 1900], [2100 2100 2100 

2100 2100 2100 2100 2100 2100 2100],'k-s',... 
[200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100],[1900 1900 

1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],'k-s',... 
[900 1100 1300], [1800 1800 1800], 'k-s',... 
[200 400 600 800 900 1100 1300 1500], [1700 1700 1700 1700 1700 1700 

1700 1700], 'k-s',... 
[1900 2100], [1700 1700], 'k-s', ... 
[1600 1800 1900], [1600 1600 1600],'k-s', ... 
[200 400], [1500 1500],'k-s', ... 
[600 700 900 1000 1100 1300 1500 1700 1900], [1500 1500 1500 1500 1500 

1500 1500 1500 1500], 'k-s',... 
[400 600 700 900 1100],[1300 1300 1300 1300 1300],'k',... 
[1500 1700 1900 2000 2100], [1300 1300 1300 1300 1300],'k',... 
[ 200 400 500 600 900 1100 1300 1500 1700 1900 2100], [1100 1100 1100 

1100 1100 1100 1100 1100 1100 1100 1100], 'k-s',... 
[500 600], [900 900],'k-s',... 
[900 1100], [900 900], 'k-s',... 
[1300 1500 1700], [900 900 900],'k-s',... 
[1900 2000 2100], [900 900 900], 'k-s',... 
[200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100], [700 700 700 

700 700 700 700 700 700 700 700 700], 'k-s',... 
[1500 1700], [600 600], 'k-s',... 
[200 400 500 600 700 900 1100 1300 1500], [500 500 500 500 500 500 500 

500 500], 'k-s',... 
[1700 1900 2000 2100], [500 500 500 500], 'k-s',... 
[200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100], [300 300 300 

300 300 300 300 300 300 300 300 300], 'k-s',... 
[700 1100 1300 1500 1700], [200 200 200 200 200], 'k-s',... 
[400 500 600 700], [100 100 100 100], 'k-s',... 
[200 200],[2100 1900],'k-s',... 
[200 200],[1700 1500], 'k-s',... 
[200 200 200],[1100 900 700],'k-s',... 
[200 200],[500 300], 'k-s',... 
[400 400],[2100 1900],'k-s',... 
[300 400 400 400 400],[1900 1700 1500 1300 1100],'k-s',... 
[400 400 400 400],[700 500 300 100],'k-s',... 
[500 500],[2100 1900],'k-s',... 
[500 500 500 500],[1100 900 700 500],'k-s',... 
[500 500],[300 100],'k-s',... 
[700 700 600 600 600],[2100 1900 1700 1500 1300],'k-s',... 
[600 600 600 600],[1100 900 700 500],'k-s',... 
[600 600],[300 100],'k-s',... 
[700 700],[1500 1300],'k-s',... 
[700 700 700 700],[500 300 200 100],'k-s',... 
[700 800 900 1000],[1900 1700 1600 1500],'k-s',... 
[900 900 900 900],[2100 1900 1800 1700],'k-s',... 
[900 900 900],[1600 1500 1300], 'k-s',... 
[900 900 900 900],[1100 900 700 500],'k-s',... 
[1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100], [2100 

1900 1800 1700 1500 1300 1100 900 700 500 300 200],'k-s',... 
[1100 1300], [900 700],'k-s',... 
[1300 1300 1300 1300 1300],[2100 1900 1800 1700 1500],'k-s',... 
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[1300 1300 1300 1300 1300 1300], [1100 900 700 500 300 200],'k-s',... 
[1500  1600 1700 1800 1900 2000 2100],[2100 1900 1800 1600 1500 1300 

1100],'k-s',... 
[1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500], [1900 1700 

1500  1300 1100 900 700 600 500 300 200],'k-s',... 
 [1500 1600], [1700 1600],'k-s',... 
 [1500 1600], [1500 1600],'k-s',... 
 [1700 1700 1700],[2100 1900 1800],'k-s',... 
 [1700 1700 1700 1700 1700 1700 1700 1700 1700], [1500 1300 1100 900 

700 600 500 300 200],'k-s',... 
 [1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],[2100 1900 

1700 1600 1500 1300 1100 900 700 500 300],'k-s',... 
 [2100 2100 2100 2100 2100 2100],[1900 1700 1300 1100 900 700],'k-

s',... 
 [2100 2100],[500 300],'k-s',vec1, vec2, '-rs', 

'LineWidth',2,'MarkerEdgeColor','k', 'MarkerFaceColor','k', 

'MarkerSize',4); xlim([0 2300]); ylim([0 2300]) 
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