
i

DESIGN OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM

Thesis

Submitted to

The School of Engineering of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree of

Master of Science in Civil Engineering

By

Amin Azimian

Dayton, Ohio

December, 2011

ii

DESIGN OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM

Name: Azimian, Amin

APPROVED BY:

_______________________________ ________________________________

Deogratias Eustace, Ph.D., P.E., PTOE Arthur Busch, Ph.D.

Advisory Committee Chairman Committee Member

Associate Professor Assistant Professor

Department of Civil and Environmental Department of Mathematics

And Engineering Mechanics

________________________________ ________________________________

Maher Qumsiyeh, Ph.D. Paul Goodhue, P.E., PTOE

Committee Member Committee Member

Assistant Professor Transportation Manager

Department of Mathematics CESO, Inc.

____________________________ _____________________________

John G. Weber, Ph.D. Tony E. Saliba, Ph.D.

Associate Dean Dean, School of Engineering

School of Engineering & Wilke Distinguished Professor

iii

ABSTRACT

DESIGN OF AN INTELLIGENT TRAFFIC MANAGEMENT SYSTEM

Name: Azimian, Amin

University of Dayton

Advisor: Dr. Deogratias Eustace

Due to present-day significant increases in population and consequently in traffic

congestion in most metropolitan cities in the world, designing of an intelligent traffic

management system (ITMS) in order to detect the path with the shortest travel time is

critical for emergency, health, and courier services. The aim of this thesis study was to

develop a theoretical traffic detection system and capable of estimating the travel time

associated with each street segment based on the traffic data updated every 20 seconds,

which successively finds the path with the shortest travel time in the network by using a

dynamic programming technique. Furthermore, in this study we model the travel time

associated with each street segment based on the historical and real time data considering

that the traffic speed on each road segment is piecewise constant. It would be useful to

implement such algorithms in GIS systems such as Google map in such a way that the

service delivery drivers can avoid congested routes by receiving real time traffic

information.

iv

ACKNOWLEDGEMENTS

 First, I would like to thank my advisor, Dr. Deogratias Eustace for his support,

advice and endless patience in improving my writing. Without his brilliant guidance, this

thesis could not have been accomplished. I would also like to express my appreciation to

my committee members, Dr. Arthur Busch, Dr. Maher Qumsiyeh and Mr. Paul Goodhue

for their constructive comments and suggestions. Finally, I would like to thank all those

who supported me in one way or another, especially my parents for supporting my goals,

and my brothers and sisters for believing that I could make it through.

v

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………….. iii

ACKNOWLEDGEMENT……………………………………………………………… iv

LIST OF FIGURES……………………………………………………………………... vii

LIST OF TABLES……………………………………………………………………… ix

CHAPTER 1 INTRODUCTION……………………………………………………….. .1

1.1 Problem Statement.. .1

1.2 Data Collection Techniques…………………………………………………...3

1.3 Objectives of Study……………………………………………………………4

1.4 Organization of Thesis...5

CHAPTER 2 LITERATURE REVIEW………………………………………………… 6

2.1 Introduction…………………………………………………………………... 6

2.2 Shortest Path Problem………………………………………………………... 6

2.3 Algorithm Efficiency………………………………………………………... 12

2.4 Summary of Literature Review……………………………………………... 14

CHAPTER 3 PROBLEM FORMULATION………………………………………….. 15

3.1 Traffic Detection ………………………………..……………………………15

3.2 Timetable and Speedtable Updating System………………………………... 20

3.3 Design of a Network………………………………………………………… 21

vi

3.4 Zone Identification and Nodes Selection Algorithm..……...…...…….......…..23

3.5 Numerical Methods of Optimization………………………………………… 27

3.6 Dynamic Programming and Real Time Routing…………..………………….28

3.7 Travel Time Modeling…………………………………….…………………..33

CHAPTER 4 RESULTS AND NUMERICAL EXAMPLE…………………………… 46

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS………………………. 62

5.1 Conclusions…………………………………………………………………... 62

5.2 Recommendations……………………………………………………………. 63

REFERENCES..…………………………………………………………………………65

APPENDIX……………………………………………………………………...………70

vii

LIST OF FIGURES

Figure 3.1: Work flow of a typical detection and routing system………………………. 15

Figure 3.2: The components of a loop detector…………………………………………. 17

Figure 3.3: Traffic mean speed and the average travel time related to each lane………. 19

Figure 3.4: Speedtable and timetable in the proposed network………………………… 21

Figure 3.5: An example of street network………………………………………………. 23

Figure 3.6: Extended Zone…..………………………………………………………….. 24

Figure 3.7a: Travel pattern I..…………………………………………………………… 24

Figure 3.7b: Travel pattern II…..……………………………………………………….. 25

Figure 3.7c: Travel pattern III…………………………………………………………... 25

Figure 3.7d: Travel pattern IV……..……………………………………………………. 26

Figure 3.8: A typical pseudo code of zone identification and node selection…………... 27

Figure 3.9: An example of a tree indicates overlapping sub-problems…………………. 29

Figure 3.10: A typical pseudo code of real time routing algorithm…………………….. 33

Figure 3.11: An example of street segments traveled by the driver…………………….. 34

Figure 3.12: Street segment L(1,2)……………………………………………………... 34

Figure 3.13: Forecasted travel time……………………………………………………... 40

Figure 3.14: Street segment L(2,3)……………………………………………………... 41

Figure 3.15: Street segment L(n,n-1)…………………………………………………… 42

viii

Figure 3.16: A typical pseudo code for the route finding algorithm based on the travel

time modeling..…………………………………………………………………………. 44

Figure 4.1: Proposed street network……...……………………………………………... 46

Figure 4.2: Detected shortest path………………………...…………………………….. 58

ix

LIST OF TABLES

Table 1.1: The causes of traffic jams……………………………………………………...2

Table 2.1: Interpretation of some growth-rate functions...13

Table 2.2: Completion time for algorithms with different values of n………………….. 14

Table 4.1: List of paths of OD pair (1,5)………………………………………………... 47

Table 4.2: Network characteristics……………………………………………………… 47

Table 4.3: Observed data at different times…………………………………………….. 59

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Over several decades, traffic congestion has become a serious problem in the U.S. major

cities. Congestion is particularly associated with motorization and the diffusion of the

automobile, which has increased the demand for transportation infrastructure. However,

the supply of the transportation infrastructure has often not been able to keep up with the

growth of mobility.

Traffic congestion problems consist of incremental delay, vehicle operating costs such as

fuel consumption, pollution emissions and stress that result from interference among

vehicles in the traffic stream, particularly as traffic volumes approach a road’s capacity.

Across the U.S., more people are spending more time sitting in traffic jams than ever

before. According to the U.S. Census Bureau (2000), nationwide, the average commute

increased 14 percent in the last ten years, from 22.4 minutes in 1990 to 25.5 minutes in

2000.

Dear et al. (2001) reported that California already has five of the nation's 20 most

congested metro areas. In California, traffic congestions statewide cost $21 billion due to

lost time and wasted fuel every year. In this regard the state's official forecast shows the

2

number of miles driven on Los Angeles and Orange County roads will increase 40

percent by 2020. Furthermore, Wasserman reported that in Sacramento, even with $15

billion in planned road improvements, congestion will increase by 400 percent in the next

20 years.

According to American Society of Civil Engineers, “2001 Report Card for America's

Infrastructure”, in Texas, 26 percent of freeways is congested and traffic volumes on the

state's highways have increased by one-third in ten years. Also Rubin and Cox (2001)

reported that Texas traffic is growing so quickly that even if public transit use were to

double, the gain would be canceled out by population growth in as little as three months.

Traffic congestion occurs when the demand is greater than the available road capacity.

There are many reasons that cause congestion; most of them reduce the capacity of the

road at a given point or over a certain length, for example people parking on the roads or

increase in the number of vehicles. As shown in Table 1.1, below the Federal Highway

Administration, (Margiotta et al, 2009) mentioned that about half of U.S. traffic

congestion is recurring,

Table 1.1 The causes of traffic jams
Bottlenecks 40% of total congestion

Traffic Incidents 25% of total congestion

Work zones 10% of total congestion

Bad weather 15% of total congestion

Poor signal timing 5% of total congestion

Special events/Other 5% of total congestion

3

and is attributed to sheer volume of traffic; most of the rest depends on crashes, road

construction works and severe weather events. Consequently, all of these factors affect

our communities both mentally as well as economically. The Ohio Department of

Transportation (2009) reported that traffic congestion prevents Honda’s employees from

arriving on time which may threaten Honda’s low-inventory strategy in Ohio. There are

always concerns that traffic congestion may delay emergency vehicles during critical

moments when they need to arrive at the scenes as quickly as possible.

1.2 Data Collection Techniques

According to the Federal Highway Administration (Turner et al., 1998), the travel time

data collection techniques can be categorized into the following groups:

1) Test vehicle technique: in this technique an observer records cumulative travel

time at predefined checkpoints along a travel route, then this information can be

converted to travel time, speed for each segment along the proposed route. In this

technique it is not possible to store a large amount of data. In addition, it requires

quality control considering that it is associated with human or electric errors.

2) License plate matching technique: in this method the plate numbers and arrival

times will be recorded at various checkpoints, and finally the travel times will be

computed by matching the license plate numbers or from the difference in arrival

times. This method allows us to obtain travel times from a large sample of

motorists, and it is possible to find out the variability of travel times among

vehicles within the traffic stream. Furthermore, it is possible to transport data

4

collection equipment between observation sites. However the travel time data is

only available to the area where video cameras are installed.

3) ITS probe vehicle technique: this technique can collect travel times data by

employing passive instrumented vehicles in the traffic stream and remote sensing

devices. By using this technique it is possible to collect data electronically for 24

hours, but such system requires skilled software designer and high

implementation cost, furthermore this technique is not recommended for small

scale data collection efforts.

4) Emerging technique: this technique estimates travel times by using a variety of

methods, such as inductance loops, weigh-in-motion stations or aerial video.

Some of the methods used in this technique are still in testing stages.

1.3 Objectives of Study

Developing a new system such as an intelligent traffic management system in order to

reduce traffic problems is essential. The objectives of this study are three-fold:

1- Developing traffic detection and estimation of traffic mean speeds and travel times

associated with each street segment based on the data provided by traffic detectors;

2- Identifying specific zones in which all possible (or reasonable) routes are located

(classification method and defining a coordinate system); and

3- Designing of a route-finding algorithm.

5

1.4 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 presents a literature review on

previous research studies concerning with shortest path finding problems. Chapter 3

presents a description of the timetable and speedtable updating system and the

mathematical formulation of the dynamic programming and travel time modeling.

Chapter 4 presents the results and a numerical example. Finally, Chapter 5 presents the

conclusions and recommendations of the study.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Dynamic shortest path finding problems are a subset of dynamic transportation problems

including dynamic traffic assignment, dynamic fleet management, etc. The term

“dynamic” is also called “online” or “real-time,” which means the problem-related

solutions are time-dependent. A shortest path problem is a problem of finding the shortest

path from one source point to every other node in a directed graph in which each link has

a particular weight. Every node and link stands for street intersection and road segment

respectively. Yen (1975) split the shortest path algorithms into the following three

groups.

1- Finding the shortest path from a particular point to every other node in a directed

network.

2- Finding the shortest path between all pairs of the nodes in the directed network.

3- Finding the short path between two particular nodes. This group is the most

popular in the transportation area.

2.2 Shortest Path Problem

In the last few years, some research efforts have focused on developing different

algorithms for Dynamic Vehicle Routing Problems (DVRPs); many of these applications

7

can be found in practice, for example dial-a-ride systems for transportation-on-demand,

courier services, emergency services, pick-up and delivery of goods, and many others.

As a pioneering work, Bertsimas and Van Ryzin (1991) reported a model for stochastic

and dynamic vehicle routing with a single vehicle, traveling at a constant velocity in its

region of service, whose time of arrival, location and on-site service are stochastic. The

objective was to find a policy to determine service demands over an infinite horizon that

minimizes the expected system time, however a challenging problem in a different

direction is to investigate dynamic routing in a network environment rather than under

some Euclidean metric.

Gendreau et al. (2006) developed an algorithm for a pick-up and delivery problem in

which vehicles travel at a constant velocity in regard to new request locations that uses

heuristic and numerical calculations to minimize the expected system time. Their

numerical results show the benefits of such techniques in real-time situation.

Taniguchi and Shimamoto (2004) cited a comprehensive planning strategy for dynamic

routing of traffic in a city. They proposed a routing system, which uses a routing

algorithm based on the ant colony optimization algorithm. This algorithm follows the

behavior of living ants that lay pheromone trail on the ground in order to find shortest

way from the nest toward the food location. In their proposed model pheromone is a time

function related to the vehicles that travel across the networks. The time function can be

affected by congestion. Each node has a probability table in which there are entries for

8

each neighboring node that can be reached via one connecting link, therefore the

probabilities influence the driver's selection of the next route. Each time the driver will be

notified about next route (node) and this process is repeated until the driver reaches his

destination. In Taniguchi and Shimamoto’s model congestion can be detected using

detectors and since its algorithm is based on the ant colony it takes a long time to find the

shortest route.

Bellman (1957) developed an algorithm that calculates the shortest path to all nodes from

a single source in the graph with non-negative edge weights which are constant functions.

His approach seeks to solve each sub problem only once, thus reducing the number of

computations. This is especially useful when the number of repeating sub problems is

exponentially large.

Some of the research efforts (e.g., Bertsekas and Tsitsiklis, 1991; Frank, 1969; Loui,

1983; Ji, 2005) focused on stochastic shortest path problems on static road network. The

stochastic shortest path problem is a generalization where either the network isn't

completely known to the driver, and each link is associated with a probability of

independently being in the network, while in deterministic process the weight associated

with each link is known. Bertsekas and Tsitsiklis (1991) defined a stochastic shortest path

problem in which each node has a transition matrix consisting of probability distributions

over the set of successor nodes so as to reach the destination node with the minimum

expected cost. Moreover, Frank (1969) applied shortest-path probability distributions in

graphs in which the weights associated with each link are replaced with their expected

9

values; subsequently Loui (1983) improved this model by using a “utility function” to

determine the optimal path.

Ji (2005) studied the shortest path problem with stochastic arc length. She proposed the

following three concepts of stochastic shortest path and formulated three models for the

stochastic shortest path according to different decision criteria:

(1) Expected shortest path that finds a path with the minimum expected time to help them

make a decision; (2) alpha-shortest path that finds a path, which satisfies some chance

constraints with at least some, given confidence level α; (3) the most shortest path that

finds a path which maximizes the chance functions of some events (i.e., the probabilities

of satisfying the events). Furthermore, it was assumed that there is only one directed arc

(i,j) from i to j.

Orda et al. (1993) formulated a stochastic model for the shortest path problem on a

dynamic network whose link delays change probabilistically according to Markov chains

and they assumed that the routing decisions at a node are based on the current state of

links emanating from that node and on the statistics of other links. However their

stochastic model considers the change of network to be predictable.

Gonzalez et al. (2007) presented an adaptive fastest path algorithm based on the (1)

hierarchy of roads, (2) path segments traveled frequently, and (3) significant speed

advantage. Major roads are more preferable than minor roads except if there are minor

roads with significant speeds over the major ones. They defined different speed patterns

for various conditions such as time of day, weather or vehicle type. They employed A*

10

algorithm to find the shortest path. A* is a shortest path finding algorithm that uses

a best-first search algorithm to find the least-cost path from a given initial node to

one destination node.

Similarly, Kanoulas et al. (2006) developed another method based on the A* algorithm to

find the fastest paths on a road network with speed patterns for any time interval. For

example, it can find the shortest path for a person who wants to go to work sometime

between 7:00 and 7:45 AM. In their proposed method each day belongs to exactly one

category; workday or non-workday and for the days in the same category a road segment

has the same speed at the same time of the day. However, they assumed that speed on

each street segment is piecewise constant. In addition, Ding et al (2008) studied a time

dependent shortest path problem in which a graph (or a road network) has an edge-delay

function (travel time function) associated with each edge. They proposed a new Dijkstra-

based algorithm to find the least total travel time.

Peeta et al. (2011) studied the problem of dynamic routing operations in the emergency

response context of the routing of response vehicles and evacuees. The study focuses on

identifying the paths used for routing response vehicles and the evacuees in disaster

situations, as a result two modules are developed: (1) the K-shortest paths module that

allows more flexible options for routing response vehicles under the dynamic network

conditions due to a disaster, and (2) the multiple-stop routing module that enables the

delivery of relief resources to several locations using a single response vehicle.

11

Orda and Rom (1990) formulated a model of shortest path problem for communication

systems in which link weights changes over the time according to arbitrary functions.

They developed algorithms for finding the shortest-path and minimum-cost under various

weighting constraints and investigated the properties of the derived path.

Effati and Jafarzadeh (2007) presented a nonlinear neural network for solving the shortest

path on a static network. In their research effort they defined a directed graph, whose

edges have fixed costs; the cost coefficient can be either positive or negative. A positive

cost coefficient represents a loss, whereas a negative one represents a gain.

Chitra and Subbaraj (2010) presented a non-dominated sorting genetic algorithm for

shortest path routing problem. They used a multiobjectives evolutionary algorithm based

on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic

shortest path routing problem in computer networks. The problem is formulated as a

multiobjective mathematical programming that attempts to minimize both delay and cost

simultaneously. In their research effort the topology of the network was specified by an

undirected graph and the cost associated with each link is predefined. Furthermore, Ahn

and Ramakrishna (2002) used the same method, but the topology of the network was

specified by a directed graph.

As mentioned by Wang (2003), shortest path problems are mostly studied by computer

scientists, and almost none of them present a proper method of finding the weights

associated with each link. However, in some GPS technologies speed limits posted on

each street segment are used in estimating the travel times, but we cannot ignore the

12

traffic changes or congestion in the street networks. Today intelligent transportation

systems (ITS) applications can run over the wireless broadband network, which can allow

us to measure the number of vehicles successively, transfer data, and consequently find

the average travel times related to each link. Definitely such technologies can improve

the efficiency of vehicle movement throughout the entire urbanized area.

2.3 Algorithm Efficiency

In computer science, efficiency is used to describe properties of an algorithm relating to

how much of various types of resources it consumes. Yen (1975) explained the following

factors that can be used to evaluate algorithm efficiency:

 The number of operations required to execute an algorithm (i.e. additions,

subtractions, comparisons, etc.)

 The running time that each computer requires to execute the algorithm

 The amount of memory that each computer requires to store the raw data or results

 The amount of memory that each computer requires to store the computer program of the

algorithm.

Although the efficient use of both runtime and space (memory) is important, runtime is

usually more important than space. Wang (2003) mentioned that the runtime can be

evaluated in two ways: (1) the asymptotic or worst-case runtime: the time that an

algorithm requires to run if it were given the most insidious of all possible inputs, and (2)

the average-case runtime: the average time that an algorithm requires to run if it were

given all possible inputs. In computer science the Big-O notation represents the

13

asymptotic time class of an algorithm, which provides an upper bound on the growth rate

of the function. For example if a problem of size n requires time that is directly

proportional to n, the upper bound on the number of operations for that problem is in

class g(n) and O(g(n)) stands for an algorithm that has order g(n). Table 2.1 shows the

intuitive interpretations for some growth-rate functions (Rinker, 2002).

Table 2.1 Interpretation of some growth-rate functions

O(1)

The time requirement for this growth rate function is constant and independent of

the problem’s size.

O(log n)

The time requirement increases slowly as the problem size increases. The binary

search algorithm has this behavior.

O(n) The time requirement increases directly with the size of the problem.

O(n.log n) The time requirement increases more rapidly than a linear algorithm.

O(n
2
)

The time requirement increases rapidly with the size of the problem. Algorithms

that use two nested loops are often quadratic.

O(n
3
)

Compared to the quadratic algorithm the time requirement for the cubic algorithm

increases more rapidly with the size of the problem. Algorithms that use three

nested loops are often cubic and are practical only for small problems.

O(2
n
)

As the size of a problem increases, the time requirement for an exponential

algorithm usually increases too rapidly.

For a supercomputer that performs 21 trillion operations per second, the approximate

completion time for the following algorithms with different values of n are as given in

Table 2.2.

14

Table 2.2 Completion time for algorithms with different values of n

n g(n)

 N n log n n
2
 n

3
 n

4
 2

n

10

4.8*10-11 4.8*10-13 4.8*10-13 4.8*10-12 4.8*10-11 4.8*10-10

20

7.6*10-9

5.0*10-8 9.5*10-13 1.2*10-12 1.9*10-11 3.8*10-10

30

3.90*10-8

5.1*10-5 1.4*10-12 2.1*10-12 4.3*10-11 1.3*10-9

40

1.2*10-7

5.2*10-2 1.9*10-12 3.1*10-12 7.6*10-11 3.0*10-9

50

3.0*10-7

5.0*101 2.4*10-12 4.0*10-12 1.2*10-10 6.0*10-9

10
2

4.8*10-7

6.0*1016 4.8*10-12 9.5*10-12 4.8*10-10 4.8*10-8

10
3

4.80*10-2

5*10287 4.8*10-11 1.4*10-12 4.8*10-8 4.8*10-5

10
4

4.8*10-2
 5*102

 4.8*10-10 1.9*10-12 4.8*10-6

10
5

48 5*106

 4.8*10-9 2.4*10-12 4.8*10-4

10
6

4.8*104
5*1010

 4.8*10-8 2.9*10-12 4.8*10-2

2.4 Summary of Literature Review

According to the literature review, it is known that the study of the shortest path finding

problems has been extensively conducted. Most of the computer scientists focused on

developing stochastic or deterministic models in transportation and particularly in

communication systems, and a limited part of research was found to formulate the travel

time associate with each street segment and also they mostly do not take into account the

events that may affect traffic condition periodically.

15

CHAPTER 3

PROBLEM FORMULATION

3.1 Traffic Detection

The ultimate objective of this thesis is to develop a comprehensive system to route the traffic in

an urbanized area. The development of this system stems from the combination of two distinctive

sections namely traffic detection and routing system. The typical work flow is depicted in Figure

3.1.

Figure 3.1 Work flow of a typical detection and routing system

In order to route the traffic within a city, it is required to access dynamic data that shows

traffic flow condition using detectors located in all possible routes within a street

network. According to the Federal Highway Administration (Mimbela et al, 2000), there

are different forms of traffic detectors that include:

Traffic Detection

Traffic Detectors Controller

Timetable

updating system

Real-time

Data

Route-finding Algorithm

 Zone

Identification

Dynamic

programming

Routing

16

 Inductive Loop Detection System: The loop detector forms a tuned electrical circuit

of which the loop wire is the inductive element. When a vehicle passes over the loop,

it results in a decrease in loop inductance. The detector senses the change in

inductance and causes the electronics unit to send a pulse to the controller, indicating

the presence or passage of a vehicle.

 Video Image Processing System: It allows the user to define a limited number of

linear detection zones on the roadway in the field-of-view of the video camera. When

a vehicle crosses one of these zones, it is identified by noting changes in the

properties of the affected pixels relative to their state in the absence of a vehicle. it

estimates vehicle speed and then measure the time that an identified vehicle needs to

traverse a detection zone of known length.

 Microwave Radar Based Traffic Detection System: It transmits energy toward an area

of a roadway and when a vehicle crosses the roadway, a portion of the transmitted

energy is reflected back toward the receiver and consequently it calculates volume,

speed, vehicle length and occupancy.

 GPS-Based Vehicle Tracking System: A GPS data logger can be used to collect a

vehicle’s position data periodically. Typically, a GPS data logger comprises of three

parts: data storage media, GPS receivers, and power supply devices

 Acoustic Traffic Detection System: it measures vehicle passage, presence, and speed

by detecting acoustic energy or audible sounds produced by vehicular traffic from a

variety of sources within each vehicle and from the interaction of a vehicle tires with

the road.

17

 Infrared Traffic Detection System: it detects the changes of temperature due to

vehicle presence.

 Magnetic traffic detection system: magnetic sensors are passive devices that detect

the changes in magnetic field due to presence of a metal object.

All of the above mentioned detector systems can provide both the number of vehicles

(volume) and speed of each vehicle in order to calculate the time each vehicle needs to

cover a particular route. Currently, loop detectors are still the dominant detectors in use,

because they have been commodity-priced while the alternative detectors have not due to

the short history of these detectors (Lees, 2008). Hence in this research study it is

assumed that inductance loop detectors are installed on each street segment. The

components of a loop detector shown in Figure 3.2 are as follows:

 One or more turns of insulated loop wire wound in a shallow slot sawed in the

pavement.

 A lead-in cable from the curbside pull box to the controller cabinet.

 A detector electronic unit (DEU) housed in the controller.

Figure 3.2 The components of a loop detector

18

An inductance loop detector will measure two important parameters for each 20 seconds

time interval, namely:

 Occupancy; proportion of time during which the loop is occupied by a vehicle, (sec)

 Number of vehicles entering (I) or exiting (E) a street segment, (Veh/20 sec/ln)

Let’s consider a model in which the average traffic speed associated with each street

segment, L(i,j) can be measured every 20 seconds and it is assumed that traffic detectors

measure the number of vehicles every day for 24 hours continuously.

Let D(i,,j,tk) be density or the number of vehicles on street segment, L(i,j), also let

I(i,,j,tk) and E(i,,j,tk) be the number of vehicles (observed volumes), entering and exiting

the street segment during time slot Δtk=tk - tk-1 respectively. Now if we assume that there

is no vehicle on each street segment at t = t0, the number of vehicles during a defined

time slot Δtk = 20 seconds can be given as follows:

 Δt1= (t1-t0) = 20 sec. ; D(i,j,t1) = I (i,j,t1) –E (i,j,t1) , I(i,j,t1) ≥ E (i,j,t1)

Δt2= (t2-t1) = 20 sec. ; D(i,j,t2) = D(i,j,t1) + I(i,j,t2) –E(i,j,t2), D(i,j,t2) + I (i,j,t2) ≥ E2(i,j,t2)

.

.

.

Δtk= (tk-tk-1) = 20 sec. ; D(i,j,tk)=D(i,j,tk-1)+ I (i,j,tk) – E(i,j,tk) , D(i,j,tk-1) + I(i,j,tk) ≥ E(i,j,tk)

Hence the average traffic speed S(i,j,tk) on each street segment at time tk can be expressed

as shown in Equation 3.1:

19

Where:

 J(i,j) = Jam density on street segment i, j, Veh/L(i,j)

Sf

(i,j) = Speed limit on street segment i, j, mi/h

Consequently the needed time to cover the street segment L(i,j) can be defined by

Equations 3.2:

Where:

 tk= the time at which the latest time table has been created

T

(i,j,tk) = Average travel time on street segment i,j at time slot Δtk

S

(i,j,tk) = Traffic mean speed on street segment i,j at time slot Δtk, mi/h

 L(i,j) = Length of street segment i,j, miles

It is noteworthy to mention that the traffic mean speeds or the average travel times related

to different directions of a particular street segment as shown in Figure 3.3 are not

identical.

 Figure 3.3 Traffic mean speed and the average travel time related to each lane

 (3.2)

T (i,j,tk)=

T1(i,j,tk), S1(i,j,tk)

T2(i,j,tk), S2(i,j,tk)

20

3.2 Timetable and Speedtable Updating System

As shown in Figure 3.4 timetable and speedtable updating system stores all estimated

travel times and traffic mean speeds related to each route in previous days. A new time

table and speed table with updated data will be created every 20 seconds. On the other

hand the time interval between two timetables or speedtables is 20 second, hence in this

study t0, t1,…,tk are the times at which timetables and speedtables have been created. Such

tables involve the characteristics of a street network, for example travel time and traffic

mean speed are set to ∞ and 0 respectively for nodes not directly linked to each other

(T(i,j,tk)= ∞, S(i,j,tk)= 0 for i ≠ j) . In additions the estimated travel time and traffic mean

speed from one node to itself are equal to 0 and ∞ respectively (T(i,j,tk)=0, S(i,j,tk)= ∞ for

i=j). Therefore each vehicle driver located at a node can communicate with the route

finding system and ask for the shortest path toward his/her destination. This system will

take care of the information provided by the timetable and speedtable updating systems

and will select the shortest route among all possible routes. In this study T(i,j,t) and

S(i,j,t) respectively stand for the travel time and traffic mean speed in current day and

Y’(i,j,t) and Sy(i,j,t) respectively represent the travel time and traffic mean speed for the

same day and same time in last week.

21

 Speed Table, S(i,j,tk) mi/hr Time Table, L(i,j) mile, T(i,j,tk) minute

Figure 3.4 Speedtable and timetable in the proposed network

3.3 Design of a Network

A street network G(N,l) is a type of directed, weighted graph consisting of the following

elements:

 A set of nodes (N): A node is a terminal point or an intersection point of a graph. In

this study it is the abstraction of a street intersection.

 A set of links (l): A link is a connection between nodes i and j and it is the

abstraction of a street segment.

22

 Sub-graph: A sub-graph is a subset of a particular graph. In this study each street

network consists of many sub-networks. The street network itself is a sub-network of

regional transportation network.

 Buckle: A link that makes a node correspond to itself is a buckle. In this study the

cost (travel time) of the buckles are zero.

In addition a street network lets the traffic flows move across the network, therefore

movements should be represented as linkages, which can be considered over several

aspects:

 Path: A sequence of links that are traveled in the same direction. For a path to exist

between two nodes, it must be possible to travel an uninterrupted sequence of links.

 Length of a link: It is the distance associated with a link, a connection or a path.

It is noteworthy to mention that that the position of nodes or intersections should be

identified based on the state plane coordinate system. The state plane coordinate system

is a coordinate systems designed for a specific region of the United States. Each state

may have one or two state plane coordinate systems (e.g., Ohio south state plane and

Ohio north state plane coordinate system). In addition, it is a system for specifying

positions of geodetic stations using Cartesian or plane rectangular coordinates rather than

spherical coordinates (the geographic coordinate system of latitude and longitude).

23

3.4 Zone Identification and Nodes Selection Algorithm

The shortest path finding algorithm is a heuristic algorithm that tries to examine a finite

set of nodes between source and destination points in order to identify the nodes that

creates the path with the shortest travel time. Due to the large volume of street

intersections in a network, it is useful to design a zone identification algorithm that limits

or reduces the number of nodes in order to increase the algorithm efficiency explained in

Section 3.2. Reference to Figure 3.5, assume that a driver requests a path with a travel

time less than 5 minutes between a source node s and a destination node d, then the zone

identification algorithm takes care of the nodes located in the smallest area (blue

rectangular zone) that encompasses source s(x1,y1) and destination d(x2,y2), the dynamic

programming technique will examine the selected nodes in order to detect the shortest

path. If the detected shortest path has a travel time longer than the travel time requested

by the driver (5 minutes), the dynamic programming technique will incrementally expand

the search radius (R) and look for the shortest path in a larger sub-area (see Figure 3.6).

For high speed algorithms there is no real advantage to using search radius.

Figure 3.5 An example of street network

24

Figure 3.6 Extended zone

In order to define a strategy to identify the zone in which desired nodes are located, the following

four possible trip patterns are taken into account:

 If x1≤ x2 and y1≥ y2 then the location of the selected node Ni(xi,yi) , can be defined by:

x1-R≤ xi≤ x2+R and y2-R ≤yi≤ y1+R (See Figure 3.7a)

Figure 3.7a Travel pattern I

y1

y2

S(x1,y1)

D(x2,y2)

x2 x1

25

 If x2 ≤ x1 and y1 ≤ y2 then:

x2-R ≤ xi≤ x1+R and y1-R ≤yi≤ y2+R (See Figure 3.7b)

 If x1 ≤ x2 and y1 ≤ y2 then:

x1-R≤ xi≤ x2+R and y1-R≤yi≤ y2+R (See Figure 3.7c)

Figure 3.7b Travel pattern II

S(x1,y1)

D(x2,y2)

y2

x1 x2

y1

S(x1,y1)

D(x2,y2)
y2

y1

x2 x1

Figure 3.7c Travel pattern III

26

 And finally, If x1≥ x2 and y1≥ y2 then:

x2-R≤ xi≤ x1+R and y2-R ≤yi≤ y1+R (See Figure 3.7d)

Since each node Ni has its unique address i=1,2,…n, therefore the set of selected nodes in

the identified zone encompassing the initial point “S” and destination point “D” is:

 N = {S, N2, N3,…,D}, N1 = S and Nn+1 = D

A typical pseudo code used for the identification and selection of nodes for solving such

problems mentioned above is presented in Figure 3.8.

D(x2,y2)
y2

y1
S(x1,y1)

x1 x2

Figure 3.7d Travel pattern IV

27

Figure 3.8 A typical pseudo code of zone identification and node selection

3.5 Numerical Methods of Optimization

In mathematics, optimization means finding a value of x which maximizes or minimizes a

given function f (x) (Gordon, 1998). Some of the commonly used optimization methods

available include the following:

Start;

Declare Source Point, S(xs,ys)

Declare Destination Point, D(xd,yd)

Let k=1

for i=1 to n do

Declare Point Pi(xi,yi)

If (xs-R≤xi≤R+ xd) and (yd-R≤yi≤R+ ys) then

Nk=i

Let k=k+1

Else if (xd-R ≤xi ≤ R+ xs) and (ys-R≤yi ≤R+ys) then

Nk =i;

Let k=k+1;

Else if (xs -R≤xi ≤R+ xd) and (ys-R≤yi ≤ R+yd) then

Nk =i;

Let k=k+1;

Else

Nk =i;

Let k=k+1;

End if

End

28

(i) Linear programming: studies the case in which the objective function f is linear

and set A is specified using only linear equalities and inequalities (A is the design

variable space).

(ii) Integer programming: studies linear programs in which some or all variables are

constrained to take on integer values.

(iii) Quadratic programming: allows the objective function to have quadratic terms,

while the set A must be specified with linear equalities and inequalities

(iv) Nonlinear programming: studies the general case in which the objective function

or the constraints or both contain nonlinear parts.

(v) Stochastic programming: studies the case in which some of the constraints depend

on random variables.

(vi) Combinatorial optimization: is concerned with problems where the set of feasible

solutions is discrete or can be reduced to a discrete one.

 (vii) Dynamic programming: studies the case in which the optimization strategy is

based on splitting the problem into smaller overlapping sub-problems. Dynamic

programming is the method employed in this research study to find the shortest

path problem, which is explained in more in details in Section 3.6.

3.6 Dynamic Programming and Real Time Routing

As previously mentioned, the zone identification algorithm takes into account appropriate

nodes in order to be used in route finding algorithm, then the route finding algorithm

examines all possible paths passing through the selected nodes by considering the link

29

weights (travel times) stored in time tables. Furthermore, this algorithm uses a dynamic

programming (DP) technique implemented by Bellman (1957) in selecting the path with

shortest travel time based on the estimated travel times. It is noteworthy to mention that

one of the advantages of dynamic programming is that the travel time modeling concept

explained in Section 3.7 is applicable to DP technique.

Dynamic programming was systematized by Bellman (1957) for efficiently solving a

broad range of search and optimization problems. It can be used when the solution to a

problem such as shortest path finding problem can be viewed as the result of a sequence

of decisions (tree) as shown in Figure 3.9 below.

Figure 3.9 An example of a decision tree indicating overlapping sub-problems

 f3(s,7)+f1(7,d)

f4(s,d)= min

 f3(s,8)+f1(8,d)

 f2(s,5)+f1(5,8)

f3(s,8)= min

 f2(s,6)+f1(6,8)

 f2(s,4)+f1(4,7)

f3(s,7)= min

 f2(s,5)+f1(5,7)

f2(s,4)= f1(s,2)+f1(2,4)

f2(s,6)= f1(s,3)+f1(3,6)

 f1(s,2)+f1(2,5)

f2(s,5)= min

 f1(s,3)+f1(3,5)

30

As an important point this method is based on the principle of optimality, expressed in the

form of a functional equation. According to Chinneck (2010) the overview of the

dynamic programming method can be outlined as follows:

1. Break down a complex problem into simpler sub problems and try to solve them.

2. Enlarge each small part slightly and find the optimum solution to the new problem

using the previously found optimum solution.

3. Continue with Step 2 until you have sufficiently enlarged the sub-problem such that

the current problem encompasses the original problem. When this problem is solved,

then the stopping conditions have been met.

4. Track back the solution to the whole problem from the optimum solutions to the small

problems solved along the way.

Now by reconsidering Figure 3.9, suppose that a driver is on node s and he/she decides to

get to node j in n steps. First, the driver needs to proceed optimally in n-1 steps in order

to get to some node i, and then he/she needs to choose node j to go to; the total travel

time of going from s to i in n-1 steps using an optimal policy is fn-1(s,i) and the cost of

going from i to j is T(i,j,tk) which uses just one step. Therefore the shortest travel time

based on real time data on a dynamic network with a finite set of nodes N = {s,...,d},

where the number of nodes are n+1, can be estimated as follows:

For a 1-step path with minimum travel time, f1(s,j) = T (s,j,tk)

For a 2-step path with minimum travel time, f2(s,j) = min i [f1(s,i)+T(i,j,tk)]

31

For a 3-steps path, f3(s,j)=min i [f2(s,i)+T(i,j,tk)]

For an n-steps path, fn(s,j)=min i [fn-1(s,i)+T(i,j, tk)]

Finally we can develop Equations 3.3 and 3.4 as follows:

As explained in Section 3.1, T(i,j,tk) is a travel time or a weight associated with the street

segment L(i,j), by replacing T(i,j,tk) with Equation 3.2 in the above equations, we obtain

Equations 3.5 and 3.6:

 f1(s,j) =

 if

 if

(3.5)

(3.3)

fn(s,j)= min i

n≥2

(3.4)

f1(s,j)=

32

 fn(s,j)=min i

It is worthy to note that if i = j then S(i,j,tk) = ∞ or T(i,j,tk) = 0, and if nodes i and j are two

different points not directly connected to each other, then S(i,j,tk) = 0 or T(i,j,tk) = ∞.

Figure 3.10 represents a typical pseudo code of real time routing algorithm. In General,

monitoring the traffic changes and consequently getting access to the real time data is

widely applicable in real time routing evacuation operations or for dynamic logistics

routing and scheduling.

 if

 if

(3.6)

 n≥2

33

Figure 3.10 A typical pseudo code of real time routing algorithm

Figure 3.10 A typical pseudo code of real time routing algorithm.

3.7 Travel Time Modeling

Travel time modeling is used to estimate the travel time associated with each street

segment by taking into account the events that periodically cause traffic congestion (e.g.,

going to work at a specific time). Here days are categorized, e.g. Sunday, Monday,

Tuesday, Wednesday, Thursday, Friday, and Saturday. It is reasonable to assume that for

Start;

Declare Selected Nodes, N=[s N2 N3 … d] {N1=s} and {Nn=d}

Declare Travel Times Matrix, Y

Declare Clock Time Matrix, Time=[H M S] {H: hour, M: minute, S=second}

u=floor[(H*3600)+(M*60)+(S) /20] {floor rounds the value element to the nearest integer equal

or less than [(H*3600)+(M*60)+(S) /20] , u addresses the last timetable created at the time of

request}

for j=1:size(N) do {Size(N) indicates the number of nodes selected}

 f1(1,j)=Tu (N1,Nj);

end

for j=1:size(N,2) do

 J(1,j)=1;

end

for n=1:size(N)-2 do

 for d=1:size(N) do

 a=inf;

 for j=1:size(N,2) do

 if fn(1,j)+ Tu(Nj,Nd)≤a then

 a= fn(1,j)+ Tu(Nj,Nd);

 Jn+1(i)=j

 fn+1(1,i)=a;

 end

 end

 end

end

v=size(N)

for k=1:size(N)-1 do

 vk=J(,v);

end

p=fliplr(p)

34

two days in the same category, a particular road segment has approximately the same

traffic volume or travel time at the same time of the day. Furthermore, the travel time can

be adjusted by employing a multiplier, which will be explained in this section.

By referring to Figure 3.11, assume that a week ago on Monday a driver on point 1

decided to go to point n. Now, we want to estimate the travel time he/she spent in

traveling from point 1 at time u1 to point n.

Figure 3.11 An example of street segments traveled by the driver

Segment L(1,2)

Consider a street segment L(1,2) shown in Figure 3.12 and suppose that a driver was at

point 1 at time u1 (i.e., t0 < u1 < t1). Therefore, , which is the time that takes the

driver to arrive at point 2 at time u2 (tm-1 < u2 < tm), can be shown by Equation 3.7. Note

that t0, t1,…,tm ,…,tk are the times at which timetables and speedtables have been created.

Figure 3.12 Street segment L(1,2)

…

n 3

1

2

L(1,2)

L(2,3)

n-1

L(n-1,n)

35

 (3.7)

Where:

 , and

In these equations t1 and u1 are known but b and m are unknown. First, m should be

identified in order to find b, finding the value of m allows us to find the time tm, the

timetable created at time tm and finally, the traffic mean speed during (tm-tm-1).

Let Sy(1,2,t1) be the average traffic mean speed (miles/hr) and a(1,2) be the distance

(miles) traveled during (t1 - u1) on segment L(1,2), therefore a(1,2) can be given as

depicted in Equation 3.9:

 a(1,2)=(t1 - u1)*Sy (1,2,t1) (3.9)

Then, let X2(1,2) be the distance traveled during the second time slot (t1 - t2) = 20 seconds

and Sy(1,2,t2) be the average traffic mean speed on segment L(1,2) during (t2 - t1). Then

we can get Equation 3.10.

 X2(1,2)=20*Sy (1,2,t2) (3.10)

36

Finally, let Sy(1,2,tm) be the average traffic mean speed and Xm(1,2) be the distance

traveled during (tm - tm-1) on segment L(1,2), then we can get Equation 3.11:

 Xm(1,2) =(tm- tm-1)*Sy (1,2,tm) (3.11)

Where m is the smallest possible value such that:

This leads into Equation 3.12.

 (3.12)

Therefore, by replacing X1(1,2), X2(1,2) and X3(1,2) by Equations 3.9, 3.10 , and 3.11,

respectively, then b(1,2) can be given as follows:

 (3.13)

Thus, if last Monday a driver arrived at point 2 at time u2 = u1+ , now this

Monday (today) if the driver arrives at point 1 at time u1, it is expected that this driver

will arrive at point 2 at time
 = u1+ , where is forecasted (adjusted)

travel time, needed to cover street segment L(1,2).

37

Where:

 (1,2,) = computed travel time spent to cover street segment L(1,2) on Monday

last week.

λ(1,2,) = a travel time adjustment factor associated with street segment L(1,2) at

the time of requesting the shortest path (u1).

 (1,2,) = the hourly average travel time associated with street segment L(1,2)

based on the last timetables established today (Monday) before the time

of requesting the shortest path (u1). Since each time table will be created

every 20 seconds, the total number of timetables in one hour is 180.

 (1,2,) = the average travel time associated with street segment L(1,2) based on

the last timetables established before time u1 on Monday last week.

For example, if right now a driver is on point 1 at time 11:30:14, so the last timetable and

speedtable have been created at =11:30:00, therefore (1,2,11:30:14) is the hourly

average travel time related with segment L(1,2) based on the timetables created at

t1=10:30:00 , t2=10:30:20,…, t180=11:30:00 .

38

Furthermore, (1,2,11:30:14) is the hourly average travel time related with segment

L(1,2) based on the timetables created at t1=10:30:00, t2=10:30:20,…, t180=11:30:00 in

last week.

If we assume that:

 L(1,2)=300 meters,

 (1,2,t1)= (1,2,t2)=…= (1,2,t180)=15 m/s, and

Sy (1,2,t1)= Sy(1,2,t2)=…= Sy(1,2,t180))=10 m/s

Then:

T (1,2,t1)= T(1,2,t2)=…= T(1,2,t180)=

= 20 sec.

Y (1,2,t1)= Y(1,2,t2)=…= Y(1,2,t180)=

 = 30 sec

Then, using Equation 3.8, can be estimated as follows:

39

Where t1 = 11:30:20 and u1 = 11:30:14, then

In order to find the m value we should look for the smallest possible value such that:

The distance traveled by the driver during time period i.e., a(1,2)

is given by:

a(1,2) = (t1- u1)*Sy (1,2,t1) = 6*10 = 60, where a(1,2) = 60 < L(1,2) = 300

The distance traveled by the driver during time period i.e., X2(1,2):

X2(1,2) = (t2- t1)*Sy (1,2,t2) = 20*10 = 200, where a(1,2) + X2(1,2) = 260 < L(1,2) = 300

But, the distance traveled by the driver during time period was X3:

X3(1,2)=(t3- t2)*Sy (1,2,t3)=20*10=200, where a(1,2) + X2(1,2) + X3(1,2) = 460 >

L(1,2) = 300

The sum of a(1,2) + X2(1,2) + X3(1,2) exceeds the length of street segment L(1,2),

therefore m = 3, and by using Equation 3.12 we can get:

b = a(1,2) + X2(1,2) + X3(1,2) – L(1,2) = 460 – 300 = 160, therefore the estimated travel

time is as follows:

Therefore, as shown in Figure 3.13, the forecasted travel time is given as:

40

2

a(1,2) X1(1,2) X2(1,2) b(1,2)

 Average travel time Average travel time

 From t1=10:30:00 to t180=11:30:00 From t1=10:30:00 to t180=11:30:00

Figure 3.13 Forecasted travel time computation

It is noteworthy to mention that in this study all days are assumed to be normal typical

days; therefore, calculating the adjustment factor and the expected travel time based on

historical information allows us to take into account traffic congestion that happens

during a defined time period, although expected travel time is in our interest for long-

distance trips, but for short-distance trips, it may be better to rely more on real time data

and real time routing as described in Section 3.6.

Segment L(2,3)

Referring to Figure 3.14, if last week a driver was at point 2 at time
 , he/she would

have arrived at point 3 at time u3 =
 +

 , and:

1 2

Unknown 11:30:14 11:30:14 11:30:14

1

Today (Monday) Monday (Last week)

41

Where q is the possible smallest value such that;

and:

Figure 3.14 Street segment L(2,3)

Hence, the driver arrived at point 3 at time u3=
 +

 , but today it is expected

that the driver will arrive at point 3 at time
 =

 +
 , where

 is

forecasted (adjusted) travel time, needed to cover street segment L(2,3)

Segment L(n-1,n)

Referring to Figure 3.15, assuming the same day last week a driver was at point n-1 at

time
 , he/she would arrive at point n at time un=

 +
 , and:

42

Where w is the smallest possible value such that:

And;

Or

Figure 3.15 Street segment L(n,n-1)

. Therefore, today the driver may arrive at point n at time
 =

 +
 .

43

Consequently, by applying the travel time modeling to Equations 3.3 and 3.4, we can get:

 f1(s,j,) =

 fn(s,j,)= mini

Where . A typical pseudo code for route finding algorithm based

on the travel time modeling is depicted in Figure 3.16.

n≥2

(3.25)

(3.24)

44

Start;

Declare Selected Nodes, N=[s N2 N3 … d] {N2=s}

Declare Speedtable Matrix, Sy

Declare Clock Time Matrix, Time=[H M S] {H: hour, M: minute, S=second}

u1=(H*60)+M+(S/60) {u1 is clock time in terms if Minutes at the time of request}

u=(ceil(u1*60/20)) {u addresses the speedtable created at t1>u1 in the same day in last week, ceil

rounds the element to the nearest integer greater than or equal to (u1*60/20)}

t1=u*20/60 {the time that speedtable created}

dt=(t1-u1)/3600

for j=1:size(N) do {Size(N) indicates the number of nodes selected}

 if Yu (N1,Nj)=inf then

 f1(1,j)=inf

 elseif Yu (N1,Nj)=0

 f1(1,j)=0

 else

 X=Syu (N1,Nj).dt

 L=||N1-Nj|| {distance between node 1 and node j}

 If X≤ L then

 Let k=u+1

 Y’(N1,Nj)=dt

 while X≤ L do

 X=X+(20/3600)* Syk (N1,Nj)

 Y’(N1,Nj)= Y’(N1,Nj)+(20/3600)

 Let k=k+1

 end

 Let k=k-1

 Y’(N1,Nj)= Y’(N1,Nj)-[(L-X)/Syk(N1,Nj)

 end

 v=u

 for k=v-181:v-1 do

 + Yk (N1,Nj)

 + Tk (N1,Nj)

 end

 f1(1,j)= Y’(N1,Nj)*60/

 end

for j=1:size(N) do

 J(1,j)=1;

end

for n=1:size(N)-2 do

 for d=1:size(N) do

 a=inf;

45

 Figure 3.16 A typical pseudo code for the route finding algorithm based on the travel

time modeling

 for j=1:size(N) do

 if Yu (Nj,Nd)=inf then

 f1(j,d)=inf

 elseif Yu (Nj,Nd)=0

 f1(j,d)=0

 else

 b=fn(1,j)

 u’=u1+ fn(1,j)

 u=(ceil(u’*60/20))
 t1=u*20/60

 dt=(t1-u’)/3600

 X=Syu (Nj,Nd).dt

 L=||Nj-Nd|| {distance between node j and node d}

 If X≤ L

 k=u+1

 Y’(Nj,Nd)=dt

 while X≤ L

 X=X+(20/3600)* Syk (Nj,Nd)

 Y’(Nj,Nd)= Y’(N1,Nj)+(20/3600)

 k=k+1

 end

 k=k-1

 Y’(Nj,Nd)= Y’(N1,Nj)-[(L-X)/Syk(Nj,Nd)

 end

 v=u

 for k=v-181:v-1

 + Yk (Nj,Nd)

 + Tk (N1,Nj)

 end

 Y’(Nj,Nd)*60/

 end

 if fn(1,j)+ f1(j, d)≤a then

 a= fn(1,j)+ f1(j, d);

 Jn+1(i)=j

 fn+1(1,i)=a;

 end

 end

 end

end

v=size(N)

for k=1:size(N)-1 do

 vk=J(,v);

end

p=fliplr(p)

46

CHAPTER 4

RESULTS AND NUMERICAL EXAMPLE

A simulation process has been designed for the proposed route finding algorithm, which

can represent the shortest path and estimated travel time. Let’s consider a shortest path

problem for our proposed network shown in Figure 4.1, within this network the origin-

destination (OD) pair (1,5) is considered and it is assumed that a driver is at point 1 at

time u1 =11:30:14.

Figure 4.1 Proposed street network

From the network it can be seen that 2 paths exist between nodes 1 and 5 if R = 0; these

are listed in Table 4.1. The characteristics of the links are listed in Table 4.2.

47

Table 4.1 List of paths of OD pair (1,5)

Path 1 2

Node 1-2-4-5 1-3-4-5

Table 4.2 Network characteristics

Link Length, L

(meters)

Jam Density,

J (Veh/500 meters)

Speed limit,

Sf

Adjustment

Factor, λ

1-2 500 20 35 mi/hr ≈16 m/sec. 0.9

1-3 500 20 35 mi/hr ≈16 m/sec. 0.5

2-4 500 20 35 mi/hr ≈16 m/sec. 0.8

3-4 500 20 35 mi/hr ≈16 m/sec. 1

4-5 500 20 35 mi/hr ≈16 m/sec. 1.3

1-step path

First, we need to find a 1-step path from point 1 to every other node f1(1, j,11:30:14), j =

1,2,3,4,5 using Equation 3.25:

f1(1,1,11:30:14) = 0, considering that there is no cost to get from point 1 to itself.

 If a driver selects point 2, then based on the speedtables created at t1 = 11:30:20, t2 =

11:30:40, t3 = 11:31:00, and t4 = 11:31:20 (see Table 4.3), can be

estimated as follows:

a(1,2) = (t1 - u1)*Sy (1,2,t1) = (6)*(13) = 78 m , where a(1,2) = 78 < 500

X2(1,2) = (t2- t1)*Sy (1,2,t2) = (20)*(9) = 180 m , where a(1,2) + X2(1,2) = 258 < 500

X3 = (t3- t2)*Sy (1,2,t3) = (20)*(6) = 120 m, where a(1,2) + X2(1,2) + X3(1,2) = 378 <

500

48

X4 = (t4- t3)*Sy (1,2,t4) = (20)*(8) = 160 m, where

 a(1,2) + X2(1,2) + X3(1,2) + X4(1,2) = 538 > 500, which renders that m = 4 and

b(1,2) =538 – 500 =38.

Therefore, by applying the adjustment factor we get:

 f1(1,2,u1) = = = (0.9)*(61.24) =55 sec. If a driver

selects point 2, he/she will arrive at point 2 at 11:31:14 + 00:00:55 =11:31:09.

 If a driver selects point 3, then based on the speedtables created at t1 = 11:30:20, t2 =

11:30:40, t3 = 11:31:00, and t4 = 11:31:20 (see Table 4.3), is

computed as follows:

a(1,3) = (t1 - u1)*Sy (1,3,t1) = (6)*(12) = 72 m , where: a(1,3) = 72 < 500

X2(1,3) = (t2- t1)*Sy (1,3,t2) = (20)*(7) = 140 m , where: a(1,3) + X2(1,3) = 212 < 500

X3(1,3) = (t3- t2)*Sy (1,3,t3) = (20)*(11) = 220 m, where:

a(1,3) + X2(1,3) + X3(1,3) = 432 < 500

X4(1,3) = (t4- t3)*Sy (1,3,t4) = (20)*(11) = 220 m, where:

 a(1,3) + X2(1,3) + X3(1,3) + X4(1,3) = 652 > 500, which renders that m = 4 and b(1,3) =

652-500 = 38

49

Therefore, f1(1,3,u1) = = = (0.5)* This

means that if a driver selects point 3, he/she will arrive there at time 11:30:14 + 00:00:47

= 11:30:38.

 f1(1,4) = (1,4,) = ∞, since no direct connection between points 1 and 4.

 f1(1,5) = (1,4,) = ∞, since no direct connection between 1 and 5.

2-step paths

We need to use Equation 3.26 to establish 2-step paths from point 1 to every other nodes

based on the 1-step paths. Possible 2-step paths from node 1 to itself are as follows:

Possible 2-step paths from node 1 to 2 are as follows:

 +0 = 0

 55.13 +

f2(1,1,u1)=min

 +0 = 55.13

 =

 +

 +

f2(1,2,u1)= min

50

 f1(1,1,u1) = 0, which means that there is no cost to get from point 1 to itself, therefore

the driver is still at point 1: λ(1,2,u1)* (1,2, = 55.13 sec.

 The second choice is f1(1,2,u1) + λ(2,2,u1)* (2,2,11:31:09), in this case is f1(1,2,u1)

= 55.13 sec., which means that at time u1 = 11:30:14 the driver is at point 1 and

he/she will arrive at point 2 in next 55.13 seconds (i.e., at time 11:31:09), and

 λ(2,2,u1)* (2,2,11:31:09) = 0 because there is no cost

associated with getting from point 2 to itself.

 Similarly, in the third choice f1(1,3, u1) = 23.5, which means the driver will arrive at

point 3 at time 11:30:38, but λ(3,2,u1)* (3,2,11:30:38) = ∞, because there is no

direct connection between points 3 and 2.

 In the fourth and fifth choices node 1 is not directly linked to nodes 4 and 5 and as a

result their estimated travel times are also infinity.

Possible 2-step paths from node 1 to node 3 are as follows:

Possible 2-step paths from node 1 to node 4 are as follows:

 +

f2(1,3,u1)= min

51

 In the second choice f1(1,2,u1) = 55.13 sec., which means that the driver will arrive at

point 2 at time 11:31:09. At this instant by leaving point 2 at u2 = 11:31:09 in order to

go to point 4, it takes λ(1,2,u1)* (2,4,11:31:09) seconds to

arrive at point 4. First, we need to estimate (2,4,11:31:09) based on the speedtables

created at times t4 = 11:31:20, t5 = 11:31:40, t6 = 11:32:00 , t7 = 11:32:20, and t8 =

11:32:40. Then the following computations follow:

a(2,4) = (t4 - u2)*Sy (2,4,t4) = (11)*(9) = 99 m , where: a(2,4) = 99 < 500

X5(2,4) = (t5 - t4)*Sy (2,4,t5) = (20)*(8) = 160 m , where: a(2,4) + X5(2,4) = 259 < 500

X6(2,4) = (t6 - t5)*Sy (2,4,t6) = (20)*(6) = 120 m, where:

 a(2,4) + X5(2,4) + X6(2,4) = 379 < 500

X7(2,4) = (t7- t6)*Sy (2,4,t7) = (20)*(5) = 100 m, where:

a(2,4) + X5(2,4) + X6(2,4) + X7(2,4) = 479 < 500

X8(2,4) = (t8 - t7)*Sy (2,4,t8) = (20)*(11) = 220 m, where:

a(2,4) + X5(2,4) + X6(2,4) + X7(2,4) + X8(2,4) = 699 > 500

 +

f2(1,4,u1)= min

52

Which renders that m = 5 and b(2,4) = 699 – 500 = 199, therefore:

 λ(1,2,u1)* (2,4,11:31:09) =(0.8)*(66.13)=53

 Similarly, in the third choice f1(1,3,u1) =23.5 seconds, which means that if the driver

selects point 3 he/she will arrive at point 3 at u3 = 11:30:38. Therefore, the forecasted

travel time from 3 to 4 is λ(1,3, u1)* (3,4, 11:30:38) based on

the speedtables created at times t2 = 11:30:40, t3 = 11:31:00, t4 =11:31:20, and t5 =

11:31:40. Then the following computations follow:

a(3,4) = (t2- u3)*Sy (3,4,t2) = (2)*(5) = 10 m, where: a(3,4) = 10 < 500

X3(3,4) = (t3- t2)*Sy (3,4,t3) = (20)*(9) = 180 m, where: a(3,4) + X3(3,4) = 190 < 500

X4(3,4) = (t4- t3)*Sy (3,4,t4) = (20)*(8) = 160 m, where:

 a(3,4) + X3(3,4) + X4(3,4) = 350 < 500

X5(3,4) = (t5-t4)*Sy (3,4,t5) = (20)*(8) = 160 m, where:

 a(3,4) + X3(3,4) + X4(3,4) + X5(3,4) = 510 > 500, therefore, m = 4 and b(3,4) = 10.

 λ(3,4,u1)*Y2(2,4,11:30:38) = (1)*(60.75) = 60.75

Possible 2-steps paths from 1 to 5 are as follows (Note: no direct link from 1 to 5):

53

3-step paths

Here we need to establish 3-step paths from node 1 to every other nodes based on the 2-

step paths previously created. Possible 3-step paths from node 1 to itself are as follows:

Possible 3-step paths from node 1 to node 2 are as follows:

 +0 = 0

 55.13 +

f3(1,1,u1)=min

minmin

 +55.13 = 55.13

 55.13 + 0 =5 5.13

f3(1,2,u1)=min

minmin

 +

f2(1,5,u1)= min

54

Possible 3-step paths from node 1 to node 3 are as follows:

Possible 3-steps paths from 1 to 4 are as follows:

Possible 3-step paths from node 1 to node 5 are as follows:

f3(1,3,u1)=min

minmin

 + =

f3(1,5,u1)=min

minmin

 + 23.5 = 23.5

 55.13 + =

f3(1,3,u1)=min

minmin

 + =

f3(1,4,u1)=min

55

 In the fourth choice indicates that the driver will arrive at point 4

at time u4=11:31:38. Then the estimated travel time from node 4 to node 5 is:

 λ(1,3, u1)* (4,5, 11:31:38) based on the speedtables created at

times t5 = 11:31:40, t6 = 11:32:00, t7 = 11:32:20, t8 = 11:32:40, and t9 = 11:33:00

a(4,5) = (t5- u4)*Sy (4,5,t5) = (2)*(8) = 16 m, where: a(4,5) = 16 < 500

X6(4,5) = (t6- t5)*Sy (4,5,t6) = (20)*(7) = 140 m, where: a(4,5) + X6(4,5) = 156 < 500

X7(4,5) = (t7- t6)*Sy (4,5,t7) = (20)*(6) = 120 m, where:

a(4,5) + X6(4,5) + X7(4,5) = 276 < 500

X8(4,5) = (t8- t7)*Sy (4,5,t8) = (20)*(7) = 140 m, where:

a(4,5) + X6(4,5) + X7(4,5) + X8(4,5) = 416 < 500

X9(4,5) = (t9- t8)*Sy (4,5,t7) = (20)*(7) = 140 m, where:

X1 a(4,5) + X6(4,5) + X7(4,5) + X8(4,5) + X9(4,5) = 556 > 500

Which means that m = 5 and b(4,5) = 556 – 500 = 56

 λ(4,5,u1)*Y3(4,511:31:38,) = (1.3)*(53)=69 sec.

4-step paths

All possible 4-step paths from node 1 to node 1 are as follows:

56

All possible 4-step paths from node 1 to node 2 are as follows:

All possible 4-step paths from node 1 to node 3 are as follows:

 + =

f4(1,1,u1)=min

minmin

 + =

f4(1,2,u1)=min

minmin

 + =

f4(1,3,u1)=min

minmin

57

All possible 4-step paths from node 1 to node 4 are as follows:

All possible 4-step paths from node 1 to node 5 are as follows:

As a final point, the shortest path requested at time u1 = 11:30:14 can be found by using

the backward approach. From the last solution, f4(1,5,u1), we can find the last segment of

the shortest path, street segment (4,5), then f3(1,4,u1) indicates that the next segment of

the shortest path is segment (3,4), and finally, from f2(1,3,u1), we can understand that the

first segment of the shortest path is segment (1,3). Therefore, the shortest path consists of

nodes 1, 3, 4, and 5 as shown in Figure 4.2.

 + =

f4(1,4,u1)=min

minmin

 + =

f4(1,5,u1)=min

minmin

58

Figure 4.2 Detected shortest path

59

Table 4.3 Observed data at different times

t1 = 11:30:00

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 5 3 - -

1
∞

11 13 0 0

1 0 0.74 0.65
∞ ∞

2 - - - 6 -

2 0
∞

0 11 0

2
∞

0
∞

0.79
∞

3 - - - 4 -

3 0 0
∞

12 0

3
∞ ∞

0 0.69
∞

4 - - - - 7

4 0 0 0
∞

10

4
∞ ∞ ∞

0 0.85

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t2 = 11:30:20

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 3 4 - -

1
∞

13 12 0 0

1 0 0.65 0.69
∞ ∞

2 - - - 2 -

2 0
∞

0 14 0

2
∞

0
∞

0.62
∞

3 - - - 7 -

3 0 0
∞

10 0

3
∞ ∞

0 0.85
∞

4 - - - - 5

4 0 0 0
∞

11

4
∞ ∞ ∞

0 0.74

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t3 = 11:30:40

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 8 11 - -

1
∞

9 7 0 0

1 0 0.93 1.23
∞ ∞

2 - - - 6 -

2 0
∞

0 11 0

2
∞

0
∞

0.79
∞

3 - - - 13 -

3 0 0
∞

5 0

3
∞ ∞

0 1.59
∞

4 - - - - 5

4 0 0 0
∞

11

4
∞ ∞ ∞

0 0.74

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t4 = 11:31:00

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 12 5 - -

1
∞

6 11 0 0

1 0 1.39 0.74
∞ ∞

2 - - - 6 -

2 0
∞

0 11 0

2
∞

0
∞

0.79
∞

3 - - - 8 -

3 0 0
∞

9 0

3
∞ ∞

0 0.93
∞

4 - - - - 7

4 0 0 0
∞

10

4
∞ ∞ ∞

0 0.85

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

Observed Density at 11:30:00 Speedtable created at 11:30:00 Timetable created at 11:30:00

Observed Density at 11:30:20 Speedtable created at 11:30:20 Timetable created at 11:30:20

Observed Density at 11:30:40 Speedtable created at 11:30:40 Timetable created at 11:30:40

Observed Density at 11:31:00 Speedtable created at 11:31:00 Timetable created at 11:31:00

60

t5 = 11:31:20

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 10 6 - -

1
∞

8 11 0 0

1 0 1.11 0.79
∞ ∞

2 - - - 8 -

2 0
∞

0 9 0

2
∞

0
∞

0.93
∞

3 - - - 9 -

3 0 0
∞

8 0

3
∞ ∞

0 1.01
∞

4 - - - - 8

4 0 0 0
∞

9

4
∞ ∞ ∞

0 0.93

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t6 = 11:31:40

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 11 7 - -

1
∞

7 10 0 0

1 0 1.23 0.85
∞ ∞

2 - - - 9 -

2 0
∞

0 8 0

2
∞

0
∞

1.01
∞

3 - - - 9 -

3 0 0
∞

8 0

3
∞ ∞

0 1.01
∞

4 - - - - 9

4 0 0 0
∞

8

4
∞ ∞ ∞

0 1.01

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t7 = 11:32:00

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 13 5 - -

1
∞

5 11 0 0

1 0 1.59 0.74
∞ ∞

2 - - - 12 -

2 0
∞

0 6 0

2
∞

0
∞

1.39
∞

3 - - - 10 -

3 0 0
∞

8 0

3
∞ ∞

0 1.11
∞

4 - - - - 11

4 0 0 0
∞

7

4
∞ ∞ ∞

0 1.23

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t8 = 11:32:20

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 15 5 - -

1
∞

4 11 0 0

1 0 2.22 0.74
∞ ∞

2 - - - 13 -

2 0
∞

0 5 0

2
∞

0
∞

1.59
∞

3 - - - 11 -

3 0 0
∞

7 0

3
∞ ∞

0 1.23
∞

4 - - - - 12

4 0 0 0
∞

6

4
∞ ∞ ∞

0 1.39

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

Observed Density at 11:31:20 Speedtable created at 11:31:20 Timetable created at 11:31:20

Observed Density at 11:31:40 Speedtable created at 11:31:40 Timetable created at 11:31:40

Observed Density at 11:32:00 Speedtable created at 11:32:00 Timetable created at 11:32:00

Observed Density at 11:32:20 Speedtable created at 11:32:20 Timetable created at 11:32:20

61

t9 = 11:32:40

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 12 5 - -

1
∞

6 11 0 0

1 0 1.39 0.74
∞ ∞

2 - - - 6 -

2 0
∞

0 11 0

2
∞

0
∞

0.79
∞

3 - - - 5 -

3 0 0
∞

11 0

3
∞ ∞

0 0.74
∞

4 - - - - 11

4 0 0 0
∞

7

4
∞ ∞ ∞

0 1.23

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

t10 = 11:33:00

Node 1 2 3 4 5

Node 1 2 3 4 5

Node 1 2 3 4 5

1 - 13 5 - -

1
∞

5 11 0 0

1 0 1.59 0.74
∞ ∞

2 - - - 12 -

2 0
∞

0 6 0

2
∞

0
∞

1.39
∞

3 - - - 10 -

3 0 0
∞

8 0

3
∞ ∞

0 1.11
∞

4 - - - - 11

4 0 0 0
∞

7

4
∞ ∞ ∞

0 1.23

5 - - - - -

5 0 0 0 0
∞

5
∞ ∞ ∞ ∞

0

Observed Density at 11:32:40 Speedtable created at 11:32:40 Timetable created at 11:32:40

Observed Density at 11:33:00 Speedtable created at 11:33:00 Timetable created at 11:33:00

62

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This thesis presented a new method for dynamic vehicle routing in order to find the

shortest path using real time data and historical data collected from traffic detectors

installed in all street segments. The raw data provided by these detectors is transferred to

the control unit, which converts them into traffic mean speeds and needed travel time to

traverse each street segment. For this purpose speedtables and timetables are used to store

traffic mean speeds and traffic mean travel times during each time slot. Furthermore, the

position of each node is defined in a local and Cartesian coordinate system, which allows

the zone identification and node selection algorithm to look for the desired nodes

between the source and destination points which reduces the data size and speed up the

process of finding the shortest path or extend the area that encompasses the source and

destination points to take into account more nodes.

In this study the solving strategy is based on the dynamic programming, which takes care

of the speedtable and timetable updating system to find the shortest path among possible

alternatives, by considering each node toward the destination only once.

63

In this study two different models have been developed based on different decision

criteria:

 Finding the shortest path based on the real time data collected from the street

network.

 Finding the shortest path using travel time modeling method based on historical and

real time data that incorporates both concepts of short-term travel time forecasting

and shortest path finding. Therefore, this research effort opens many interesting and

practical issues for future work.

Finally, such algorithms can be implemented in GIS systems such as Google map in

order to help commercial sectors move goods and services quickly or to better and

efficiently link health and human service providers with users/customers.

5.2 Recommendations

This study opens many practical issues for future works. In this section we provide some

recommendations that can improve the existing algorithm in order to be implemented in

the real world.

Signal timing: In this study we assumed that waiting at intersections is very minimal or

negligible while in real life this is often not the case. Furthermore, for modern traffic

activated signals, the detection of vehicles in the approach lanes affects the sequence and

duration of green phases provided at the intersection and hence the right-of-way

provision. Therefore, it would be better to state or model an appropriate expected waiting

time or delay at each intersection in the network.

64

Road hierarchy: The number of intersections within a street network may be a limiting

factor for route finding algorithms. For this purpose, we employed a heuristic method that

can limit the number of nodes and consequently increasing the algorithm speed. Another

way to improve algorithm runtime is to take into account the road hierarchy, where

highways connect multiple large regions; interstate roads connect locations within a

region and small roads reach into individual houses. As a result, a vehicle will first be

routed via major roads to get access to the region in which its destination point is located

and after that it will be routed via minor roads.

Implementation: The last challenge will be implementing the algorithms in a software,

hardware and wireless communication system integrated with traffic detectors, control

units and monitoring instrumentations in vehicles that work together and share real time

information and subsequently display and report the route to be taken to the users

(drivers).

65

REFERENCES

Ahn, W.C., Ramakrishna, R.S., 2002. “Genetic Algorithm for Shortest Path Routing

Problem and the Sizing of Populations.” In IEEE Transactions on Evolutionary

Computation. 6(6), pp. 566-579.

Bellman, R.E., 1957. “Dynamic Programming.” Princeton University Press, Princeton,

NJ.

Bertsekas, D.P., Tsitsiklis, J.J., 1991. “An Analysis of Stochastic Shortest Path

Problems.” In Mathematics of Operations Research. 16(3), pp. 580-595.

Bertsimas D.J. and Van Ryzin G., 1991. “A Stochastic and Dynamic Vehicle Routing

Problem in the Euclidean Plan.” In Operations Research, 39(4), pp. 601-615.

Bonet, B., Geffner, H., 2002. “Solving Stochastic Shortest-path Problems with Real Time

Dynamic Programming.” Online publication accessed on October 2011 at

http://ldc.usb.ve/ ~bonet/reports/rtdp.pdf.

Chinneck, W., 2010. “Practical Optimization: A Gentle Introduction.” Carleton University,

Ottawa, Canada.

66

Chitra, C., Subbaraj. C., 2010. “A Nondominated Sorting Genetic Algorithm for Shortest

Path Routing Problem.” In International Journal of Electrical and Computer

Engineering, 5(1), pp. 53-63.

Dear, M., Fulton, W., Wolch, J., 2001. “Sprawl Hits the Wall. ” Southern California

Studies Center, University of Southern California, Los Angeles, CA.

Dean, B.C., 2004. “Algorithms for Minimum-Cost Paths in Time-Dependent Networks

with Waiting Policies.” In Networks. 44(1), pp. 41-46.

Ding, B., Yu, J.Y., Qin, L., 2008. “Finding Time-dependent Shortest Paths over Large

Graphs.” In Proceedings of The 11th International Conference & Extending Database

Technology: Advances In Database Technology, Nantes, France, March 25-30.

Effati, S., Jafarzade, M., 2007. “Nonlinear Neural Networks for Solving the Shortest Path

Problem.” In Journal of Applied Mathematics and Computation, 189(1), 567-574.

Frank, H., 2009. “Shortest Paths in Probabilistic Graphs.” In Operations Research, 17(4),

pp. 583-599.

Gendreau, M., Guertin, F., Potvin, J.Y., Seguin, R., 2006. “Neighborhood Search

Heuristics for Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries.” In

Transportation Research Part C, Emerging Technology, 14(3), pp. 157–174.

Gonzales, H., Han, J., Li, X., Myslinska, M., Sondag, J.P., 2007. “Adaptive Fastest Path

Computation on a Road Network: A Traffic Mining Approach.” In Proceedings of the

33rd International Conference on Very Large Data Bases. pp. 794-805, Vienna, Austria.

67

Rodrigue, J., Comtois, C., Slack, B., 2009. “The Geography of Transport Systems.” Routledge,

New York, NY.

Ji, X., 2005. “Models and Algorithm for Stochastic Shortest Path Problem.” In Applied

Mathematics and Computation, 170(1), pp. 503-514.

Kanoulas, E., Du, Y., Xia, T., Zhang, D., 2006. “Finding Fastest Paths on A Road

Network with Speed Patterns.” In Proceedings of the 22nd International Conference on

Data Engineering, Atlanta, GA.

Lees, B., 2008. “Below the Line.” In ITS International, May-June 2008. Online

publication accessed on October 2011 at http://www.itsinternational.com/Features/

article.cfm?recordID=3216.

Loui, R.P., 1983. “Optimal Paths in Graphs with Stochastic or Multidimensional

Weights.” In Communications of the ACM, 26(9), pp. 670-676.

Margiotta, R.A., Spiller, N., 2009. “Recurring Traffic Bottlenecks: A Primer Focus on

Low-Cost Operational Improvements.” Federal Highway Administration, US Department

of Transportation, Washington, DC.

Martin, H., 2001. “No Idle Boast: L.A. Traffic Worst Again.” Los Angeles Times, Los

Angeles, CA. Online publication accessed on October 2011 at

http://articles.latimes.com/2002/jun/21/local/me-traffic21.

Mimbela L.E.Y., Klein, L.A., Kent, P., 2000. “A Summary of Vehicle Detection and

Surveillance Technologies used in Intelligent Transportation Systems.” Federal Highway

Administration, US Department of Transportation, Washington, DC.

http://articles.latimes.com/2002/jun/21/local/me-traffic21

68

Norman, J.M., 1975. “Elementary Dynamic Programming.” Crane, Russak & Company,

Inc. New York, NY.

Orda, A., Rom, R., 1990. “Shortest-Path and Minimum Delay Algorithms in Networks

with Time Dependent Edge Length.” In Journal of ACM, 37(3), pp. 607-625.

Orda, A., Rom, R., Sidi, M., 1993. “Minimum Delay Routing in Stochastic Networks.” In

IEEE/ACM Transactions on Networking, 1(2), pp.187-198.

Peeta, S., Sharma, S., Hsu, Y., 2011. “Dynamic Real-Time Routing for Evacuation

Response Planning and Execution.” Transportation Research Program, Purdue

University, West Lafayette, IN.

Potvin J.Y., Xu Y., Benyahia I., 2006. “Vehicle Routing and Scheduling with Dynamic

Travel Times.” In Computers & Operations Research, 33(4), 1129-1137.

Rinker, R., 2002. “Measuring the Efficiency of the Algorithms.” University of Idaho,

Moscow, ID.

Rubin, T.A., Cox, W., 2001. “The Road Ahead: Innovations for Better Transportation in

Texas.” Texas Public Policy Foundation, Austin, TX.

Smyth, G.K., 1998. “In Optimization and Nonlinear Equations.” John Wiley & Sons,

Ltd, Chichester, UK.

Taniguchi E., Shimamoto H., 2004. “Intelligent Transportation System Based Dynamic

Vehicle Routing and Scheduling with Variable Travel Times.” In Transportation

Research Part C, Emerging Technology, 12(3-4), pp. 235-250.

69

Turner, S.M., Eisele, W.L., Benz, R.J., Holder, D.J., 1998. “Travel Time Data Collection

Handbook.” Federal Highway Administration, US Department of Transportation,

Washington, DC.

Ohio Department of Transportation, 2009. “Ohio's 21st Century Transportation

Priorities Task Force.” Final Report, Ohio Department of Transportation, Columbus,

OH.

U.S. Census Bureau, 2001. “Profile of General Demographic Characteristics: 2000

Census of Population and Housing” Technical Documentation. US Department of

Commerce, Washington DC.

Wasserman, J., 2002. “2020 Traffic Report: Growth Means More Time Behind the Wheel

for Everyone.” Associated Press. Online publication accessed on October 2011 at

http://www.fairus.org/site/PageServer?pagename=iic_immigrationissuecenters64c1.

Yen, J.Y., 1975. “Shortest Path Network Problems.” Verlag Anton Hain, Konigstein

Germany.

70

APPENDIX

MATLAB Source Code

% Classification method and Route finding Algorithm, Amin Azimian
% Classification method:

plot([200 400 500 700 900 1100 1300 1500 1700 1900], [2100 2100 2100

2100 2100 2100 2100 2100 2100 2100],'k-s',...
[200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100],[1900 1900

1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],'k-s',...
[900 1100 1300], [1800 1800 1800], 'k-s',...
[200 400 600 800 900 1100 1300 1500], [1700 1700 1700 1700 1700 1700

1700 1700], 'k-s',...
[1900 2100], [1700 1700], 'k-s', ...
[1600 1800 1900], [1600 1600 1600],'k-s', ...
[200 400], [1500 1500],'k-s', ...
[600 700 900 1000 1100 1300 1500 1700 1900], [1500 1500 1500 1500 1500

1500 1500 1500 1500], 'k-s',...
[400 600 700 900 1100],[1300 1300 1300 1300 1300],'k',...
[1500 1700 1900 2000 2100], [1300 1300 1300 1300 1300],'k',...
[200 400 500 600 900 1100 1300 1500 1700 1900 2100], [1100 1100 1100

1100 1100 1100 1100 1100 1100 1100 1100], 'k-s',...
[500 600], [900 900],'k-s',...
[900 1100], [900 900], 'k-s',...
[1300 1500 1700], [900 900 900],'k-s',...
[1900 2000 2100], [900 900 900], 'k-s',...
[200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100], [700 700 700

700 700 700 700 700 700 700 700 700], 'k-s',...
[1500 1700], [600 600], 'k-s',...
[200 400 500 600 700 900 1100 1300 1500], [500 500 500 500 500 500 500

500 500], 'k-s',...
[1700 1900 2000 2100], [500 500 500 500], 'k-s',...
[200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100], [300 300 300

300 300 300 300 300 300 300 300 300], 'k-s',...
[700 1100 1300 1500 1700], [200 200 200 200 200], 'k-s',...
[400 500 600 700], [100 100 100 100], 'k-s',...
[200 200],[2100 1900],'k-s',...
[200 200],[1700 1500], 'k-s',...
[200 200 200],[1100 900 700],'k-s',...
[200 200],[500 300], 'k-s',...
[400 400],[2100 1900],'k-s',...
[300 400 400 400 400],[1900 1700 1500 1300 1100],'k-s',...
[400 400 400 400],[700 500 300 100],'k-s',...
[500 500],[2100 1900],'k-s',...
[500 500 500 500],[1100 900 700 500],'k-s',...
[500 500],[300 100],'k-s',...
[700 700 600 600 600],[2100 1900 1700 1500 1300],'k-s',...

71

[600 600 600 600],[1100 900 700 500],'k-s',...
[600 600],[300 100],'k-s',...
[700 700],[1500 1300],'k-s',...
[700 700 700 700],[500 300 200 100],'k-s',...
[700 800 900 1000],[1900 1700 1600 1500],'k-s',...
[900 900 900 900],[2100 1900 1800 1700],'k-s',...
[900 900 900],[1600 1500 1300], 'k-s',...
[900 900 900 900],[1100 900 700 500],'k-s',...
[1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100], [2100

1900 1800 1700 1500 1300 1100 900 700 500 300 200],'k-s',...
[1100 1300], [900 700],'k-s',...
[1300 1300 1300 1300 1300],[2100 1900 1800 1700 1500],'k-s',...
[1300 1300 1300 1300 1300 1300], [1100 900 700 500 300 200],'k-s',...
[1500 1600 1700 1800 1900 2000 2100],[2100 1900 1800 1600 1500 1300

1100],'k-s',...
[1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500], [1900 1700

1500 1300 1100 900 700 600 500 300 200],'k-s',...
 [1500 1600], [1700 1600],'k-s',...
 [1500 1600], [1500 1600],'k-s',...
 [1700 1700 1700],[2100 1900 1800],'k-s',...
 [1700 1700 1700 1700 1700 1700 1700 1700 1700], [1500 1300 1100 900

700 600 500 300 200],'k-s',...
 [1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],[2100 1900

1700 1600 1500 1300 1100 900 700 500 300],'k-s',...
 [2100 2100 2100 2100 2100 2100],[1900 1700 1300 1100 900 700],'k-

s',...
 [2100 2100],[500 300],'k-s', 'LineWidth',2,'MarkerEdgeColor','k',

'MarkerFaceColor','k', 'MarkerSize',4); xlim([0 2300]); ylim([0 2300])

i=input('What is your starting point?:');
j=input('What is your destination?:');
coord=[200 400 500 700 900 1100 1300 1500 1700 1900 ...
 200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100 ...
 900 1100 1300 1700 ...
 200 400 600 800 900 1100 1300 1500 1900 2100 ...
 900 1600 1800 1900 ...
 200 400 600 700 900 1000 1100 1300 1500 1700 1900 ...
 400 600 700 900 1100 1500 1700 1900 2000 2100 ...
 200 400 500 600 900 1100 1300 1500 1700 1900 2100 ...
 200 500 600 900 1100 1300 1500 1700 1900 2000 2100 ...
 200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100 ...
 1500 1700 ...
 200 400 500 600 700 900 1100 1300 1500 1700 1900 2000 2100 ...
 200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100 ...
 700 1100 1300 1500 1700 ...
 400 500 600 700 ; 2100 2100 2100 2100 2100 2100 2100 2100 2100 2100

...
 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900

...
 1800 1800 1800 1800 ...
 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 ...
 1600 1600 1600 1600 ...
 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 ...
 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 ...
 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 ...
 900 900 900 900 900 900 900 900 900 900 900 ...
 700 700 700 700 700 700 700 700 700 700 700 700 ...

72

 600 600 ...
 500 500 500 500 500 500 500 500 500 500 500 500 500 ...
 300 300 300 300 300 300 300 300 300 300 300 300 ...
 200 200 200 200 200 ...
 100 100 100 100];
m=(coord(2,i)-coord(2,j))/(coord(1,i)-coord(1,j));
pm=-1/m;
xm=(coord(1,i)+coord(1,j))/2;
ym=(coord(2,i)+coord(2,j))/2;
nh=1;
ng=1;

for k=1:size(coord,2)
 f=pm*(coord(1,k)-xm)+ym;
 if

((coord(1,i)<=coord(1,k))&&(coord(1,k)<=coord(1,j)))&&((coord(2,j)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,i)))
 if coord(2,k)>f
 h(1,nh)=k;
 nh=nh+1;
 else
 g(1,ng)=k;
 ng=ng+1;
 end
 elseif

((coord(1,i)<=coord(1,k))&&(coord(1,k)<=coord(1,j)))&&((coord(2,i)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,j)))
 if coord(2,k)<f
 h(1,nh)=k;
 nh=nh+1;
 else
 g(1,ng)=k;
 ng=ng+1;
 end

 elseif

((coord(1,j)<=coord(1,k))&&(coord(1,k)<=coord(1,i)))&&((coord(2,i)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,j)))

 if coord(2,k)<f
 h(1,nh)=k;
 nh=nh+1;
 else
 g(1,ng)=k;
 ng=ng+1;
 end
 elseif

((coord(1,j)<=coord(1,k))&&(coord(1,k)<=coord(1,i)))&&((coord(2,j)<=coo

rd(2,k))&&(coord(2,k)<=coord(2,i)))
 if coord(2,k)>f
 h(1,nh)=k;
 nh=nh+1;
 else
 g(1,ng)=k;
 ng=ng+1;
 end

73

 end
end
mtime=0
fpath=[]
h3=h
h2=h;
g2=g;
rnodes=[h g]
while exist('spath')==0

for q=1:size(rnodes,2);
 disth=sqrt(((coord(1,i)-coord(1,rnodes(1,1)))^2)+((coord(2,i)-...
 coord(2,rnodes(1,1)))^2));
 for k=1:size(rnodes,2);
 if sqrt(((coord(1,i)-coord(1,rnodes(1,k)))^2)+((coord(2,i)-

...
 coord(2,rnodes(1,k)))^2))<=disth
 eh=k;
 disth=sqrt(((coord(1,i)-

coord(1,rnodes(1,k)))^2)+((coord(2,i)-...
 coord(2,rnodes(1,k)))^2));
 th=rnodes(1,k);
 end
 end
 fh(1,q)=th;
 rnodes(:,eh)=[];

end
fh;
H=fh
N=[fh]

 % Route finding algorithm
w=1;
u=0;
p=0;
z=1;
sum=0;
Tsum=inf;
T=inf(132,132);

T(1,2)=2 ; T(1,11)=3;
T(2,1)=3; T(2,13)=3; T(2,3)=4;
T(3,2)=3; T(3,14)=4; T(2,4)=5;
T(4,3)=6; T(4,15)=1; T(4,5)=3;
T(5,4)=4; T(5,16)=7; T(5,6)=8;
T(6,5)=9; T(6,17)=3; T(6,7)=4;
T(7,6)=2; T(7,18)=4; T(7,8)=5;
T(8,7)=6; T(8,20)=7; T(8,9)=6;
T(9,8)=4; T(9,21)=8; T(9,10)=8;
T(10,9)=6; T(10,22)=3;
T(11,1)=4; T(11,12)=inf;

74

T(12,11)=2; T(12,29)=3; T(12,13)=2;
T(13,12)=2; T(13,14)=4;T(13,2)= 5;
T(14,13)=6; T(14,3)=5; T(14,15)=9;
T(15,14)=11; T(15,16)=9; T(15,4)=8; T(15,30)=9; T(15,31)=7;
T(16,15)=6; T(16,5)=8; T(16,17)=9; T(16,24)=8;
T(17,16)=7; T(17,6)=7; T(17,18)=9; T(17,25)=8;
T(18,17)=9; T(18,19)=6; T(18,7)=6; T(18,26)=10;
T(19,18)=9 ; T(19,20)=8 ; T(19,35)=4;
T(20,8)=7; T(20,19)=12; T(20,21)=3; T(20,27)=3;
T(21,20)=7; T(21,9)=6; T(21,22)=5; T(21,27)=3;
T(22,21)=12; T(22,10)=7; T(22,23)=7; T(22,36)=5;
T(23,22)=10; T(23,37)=7;
T(24,16)=12; T(24,32)=7;T(24,25)=12;
T(25,17)=6; T(25,24)=7;T(25,33)=9; T(25,26)=7;
T(26,25)=11; T(26,18)=7;T(26,34)=6;
T(27,20)=5; T(27,21)=5;
T(28,42)=6; T(28,29)=3;
T(29,12)=7; T(29,28)=4; T(29,30)=11; T(29,43)=7;
T(30,29)=12; T(30,15)=5; T(30,31)=3; T(30,44)=8;
T(31,30)=7; T(31,15)=6; T(31,32)=3; T(31,38)=4;
T(32,31)=4; T(32,24)=2; T(32,33)=12;
T(33,32)=5; T(33,25)=5; T(33,34)=12; T(33,48)=4;
T(34,33)=3; T(34,26)=2; T(34,35)=11; T(34,49)=4;
T(35,34)=8; T(35,19)=5; T(35,39)=12; T(35,50)=4;
T(36,22)=7; T(36,37)=6 ;T(36,41)=12;
T(37,23)=3; T(37,36)=6;T(37,62)=12;
T(38,31)=3; T(38,46)=1;T(38,47)=10;
T(39,35)=2; T(39,50)=3; T(39,40)=9;
T(40,39)=2; T(40,27)=11;T(40,52)=5;T(40,41)=5;
T(41,13)=6; T(41,3)=5; T(41,15)=7;
T(42,28)=5; T(42,43)=6;
T(43,42)=6; T(43,29)=4;T(43,53)=9;
T(44,30)=2; T(44,45)=3; T(44,54)=2;
T(45,44)=2; T(45,55)=4;T(45,46)= 5;
T(46,45)=6; T(46,38)=5; T(46,47)=3;T(46,56)=4;
T(47,46)=11; T(47,38)=9; T(47,48)=3;
T(48,47)=4; T(48,33)=8; T(48,49)=9; T(48,57)=7;
T(49,48)=6; T(49,34)=8; T(49,50)=9;
T(50,49)=7; T(50,35)=7; T(50,51)=9; T(50,58)=8; T(50,39)=8;
T(51,50)=6; T(51,52)=8; T(51,59)=9;
T(52,51)=7; T(52,41)=3; T(52,60)=9; T(52,40)=6;T(52,61)=8;
T(53,43)=9; T(53,64)=6; T(53,54)=6;
T(54,44)=9 ; T(54,53)=8 ; T(54,55)=4;
T(55,54)=3; T(55,45)=9; T(55,56)=8;
T(56,55)=7; T(56,46)=6; T(56,57)=5;
T(57,56)=7; T(57,48)=7; T(57,68)=7;
T(58,50)=10; T(58,70)=7; T(58,59)=7;
T(59,58)=10; T(59,51)=7;T(59,71)=10;T(59,60)=5;
T(60,59)=6; T(60,52)=7;T(60,61)=9; T(60,72)=7;
T(61,60)=11; T(61,52)=7;T(61,62)=6;T(61,73)=7;
T(62,61)=5; T(62,37)=5; T(62,73)=5;
T(63,64)=6; T(63,74)=3;

T(64,63)=11; T(64,53)=9; T(64,65)=8;
T(65,64)=9; T(65,75)=8; T(65,66)=9;
T(66,65)=6; T(66,76)=8; T(66,67)=9;
T(67,66)=7; T(67,68)=7; T(67,77)=9;

75

T(68,67)=9; T(68,69)=6; T(68,57)=6; T(68,78)=10;
T(69,68)=9 ; T(69,70)=8 ; T(69,79)=4;
T(70,69)=7; T(70,71)=12; T(70,58)=3; T(70,80)=3;
T(71,70)=7; T(71,72)=6; T(71,59)=5; T(71,81)=3;
T(72,71)=12; T(72,73)=7; T(72,60)=7; T(72,82)=5;
T(73,72)=10; T(73,61)=7;T(73,62)=10; T(73,84)=7;
T(74,63)=12; T(74,85)=7;
T(75,65)=6; T(75,87)=7;T(75,76)=9;
T(76,75)=11; T(76,66)=7;T(72,88)=6;
T(77,67)=5; T(77,78)=5;T(77,89)=5;
T(78,77)=6; T(78,68)=3;T(78,91)=6; T(78,90)=3;
T(79,69)=7; T(79,80)=4; T(79,91)=11;
T(80,79)=12; T(80,70)=5; T(80,81)=3; T(80,92)=8;
T(81,80)=7; T(81,71)=6; T(81,93)=3;
T(82,72)=4; T(82,94)=2; T(82,83)=12;
T(83,82)=5; T(83,84)=5; T(83,95)=12;
T(84,83)=3; T(84,73)=2; T(84,96)=11;
T(85,74)=8; T(85,86)=5;
T(86,85)=7; T(86,87)=6 ;T(86,100)=12;
T(87,86)=3; T(87,75)=6;T(87,88)=12;T(87,101)=6;
T(88,87)=3; T(88,76)=1;T(88,89)=6; T(88,102)=3;
T(89,88)=2; T(89,77)=3; T(89,90)=9;T(89,104)=7;
T(90,89)=2; T(90,78)=11;T(90,91)=5;T(90,105)=5;
T(91,90)=6; T(91,78)=5;T(91,79)=7;T(91,92)=6; T(91,106)=3;
T(92,91)=5; T(92,80)=6; T(92,93)=6; T(92,97)=3;
T(93,92)=6; T(93,81)=4;T(93,94)=9;T(93,98)=6;
T(94,93)=2; T(94,82)=3; T(94,95)=7; T(94,109)=3;
T(95,94)=2; T(95,83)=4;T(95,96)= 5;T(95,110)=6;
T(96,95)=6; T(96,84)=5;
T(97,92)=11; T(97,98)=9; T(97,107)=3;
T(98,97)=4; T(98,93)=8; T(98,108)=9;
T(99,100)=6; T(99,112)=3;
T(100,99)=7; T(100,86)=7; T(100,101)=9; T(100,113)=8;
T(101,100)=6; T(101,87)=8; T(101,102)=9;
T(102,101)=7; T(102,88)=3; T(102,103)=9;
T(103,102)=9; T(103,104)=6; T(103,116)=6;
T(104,103)=9; T(104,89)=8 ; T(104,105)=4;
T(105,104)=3; T(105,90)=9; T(105,106)=8;T(105,117)=6;
T(106,105)=7; T(106,91)=6; T(106,107)=5;T(106,118)=6;
T(107,106)=7; T(107,97)=7; T(107,119)=7;
T(108,98)=10; T(108,109)=7; T(108,120)=7;
T(109,108)=10; T(109,94)=7;T(109,110)=10;T(109,121)=5;
T(110,109)=6; T(110,95)=7;T(110,111)=9; T(110,122)=7;
T(111,110)=11; T(111,123)=7;
T(112,99)=5; T(112,113)=5;
T(113,112)=6; T(113,100)=3;T(113,114)=6; T(113,129)=3;
T(114,113)=3; T(114,115)=2; T(114,130)=11;
T(115,114)=8; T(115,116)=5; T(115,131)=12;
T(116,115)=7; T(116,103)=6 ;T(116,117)=12;T(116,124)=12;
T(117,116)=3; T(117,105)=6;T(117,118)=12;T(117,125)=12;
T(118,117)=9; T(118,106)=1;T(118,119)=10;T(118,126)=12;
T(119,118)=2; T(119,107)=3; T(119,120)=9;T(119,127)=12;
T(120,119)=2; T(120,108)=11;T(120,121)=5;T(120,128)=5;
T(121,120)=6; T(121,109)=5; T(121,122)=7;
T(122,121)=5; T(122,110)=6;T(122,123)=9;
T(123,122)=6; T(123,111)=4;
T(124,116)=2; T(124,125)=3; T(124,132)=2;

76

T(125,124)=2; T(125,117)=4;T(125,126)= 5;
T(126,125)=6; T(126,118)=5; T(126,127)=3;
T(127,126)=11; T(127,119)=9; T(127,128)=3;
T(128,127)=4; T(128,120)=8;
T(129,113)=6; T(129,130)=8;
T(130,129)=7; T(130,114)=7; T(130,131)=9;
T(131,130)=6; T(131,115)=8; T(131,132)=9;
T(132,131)=7; T(132,124)=3;

v=w;
for h=1:2000

 if T(N(1,w),N(1,v+u+1))~=inf
 p=p+1;
 c(1,p)=w;
 c(2,p)=v+u+1;
 sum=sum+T(N(1,w),N(1,v+u+1));
 path(1,z)=N(1,w);
 path(1,z+1)=N(1,v+u+1)
 w=v+u+1;
 z=z+1;
 if (v+u+1==size(N,2))
 if sum<Tsum
 Tsum=sum
 spath=path
 end
 if p~=1
 sum=sum-T(N(1,c(1,p)),N(1,c(2,p)))-T(N(1,c(1,p-

1)),N(1,c(2,p-1)));
 path(1,z)=0;
 path(1,z-1)=0;
 w=c(1,p-1);
 v=w;
 u=c(1,p)-c(1,p-1);
 p=p-2;
 z=z-2;
 else
 break
 end
 else
 u=0;
 v=w;
 end

 else
 if v+u+1==size(N,2)
 if p~=0
 w=c(1,p);
 v=w;
 u=c(2,p)-c(1,p);
 sum=sum-T(N(1,c(1,p)),N(1,c(2,p)));
 npath=path;
 path(1,z)=0;
 p=p-1;
 z=z-1;

77

 else
 break

 end
 else
 u=u+1;
 end

 end
end
time=0
if exist('spath')==0
 sizenpath=size(npath,2)
 for k=1:sizenpath
 if npath(1,k)>0
 s_npath(1,k)=npath(1,k);
 else
 break
 end

 end
 sizenpath=size(s_npath,2)
 i=npath(1,sizenpath)
 h=h3
 for k=1:(sizenpath-1)
 time=time+T(s_npath(1,k),s_npath(1,k+1))
 end
 mtime
 mtime=mtime+time
 fpath=[fpath s_npath]
end
end
Tsum=Tsum+mtime
spath=[spath fpath]
for k=1:size(spath,2)
 if spath(1,k)>0
 s_path(1,k)=spath(1,k);
 else
 break
 end

end

disp(['The shortest path includes the following nodes: ',

num2str(s_path)]);
disp(['The estimated time is (Minute): ', num2str(Tsum)]);

for k=1:size(spath,2)
 if spath(1,k)>0
 vec1(1,k)=coord(1,spath(1,k));
 vec2(1,k)=coord(2,s_path(1,k));
 else
 break
 end

78

end

plot([200 400 500 700 900 1100 1300 1500 1700 1900], [2100 2100 2100

2100 2100 2100 2100 2100 2100 2100],'k-s',...
[200 300 400 500 700 900 1100 1300 1500 1600 1700 1900 2100],[1900 1900

1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],'k-s',...
[900 1100 1300], [1800 1800 1800], 'k-s',...
[200 400 600 800 900 1100 1300 1500], [1700 1700 1700 1700 1700 1700

1700 1700], 'k-s',...
[1900 2100], [1700 1700], 'k-s', ...
[1600 1800 1900], [1600 1600 1600],'k-s', ...
[200 400], [1500 1500],'k-s', ...
[600 700 900 1000 1100 1300 1500 1700 1900], [1500 1500 1500 1500 1500

1500 1500 1500 1500], 'k-s',...
[400 600 700 900 1100],[1300 1300 1300 1300 1300],'k',...
[1500 1700 1900 2000 2100], [1300 1300 1300 1300 1300],'k',...
[200 400 500 600 900 1100 1300 1500 1700 1900 2100], [1100 1100 1100

1100 1100 1100 1100 1100 1100 1100 1100], 'k-s',...
[500 600], [900 900],'k-s',...
[900 1100], [900 900], 'k-s',...
[1300 1500 1700], [900 900 900],'k-s',...
[1900 2000 2100], [900 900 900], 'k-s',...
[200 400 500 600 900 1100 1300 1500 1700 1900 2000 2100], [700 700 700

700 700 700 700 700 700 700 700 700], 'k-s',...
[1500 1700], [600 600], 'k-s',...
[200 400 500 600 700 900 1100 1300 1500], [500 500 500 500 500 500 500

500 500], 'k-s',...
[1700 1900 2000 2100], [500 500 500 500], 'k-s',...
[200 400 500 600 700 1100 1300 1500 1700 1900 2000 2100], [300 300 300

300 300 300 300 300 300 300 300 300], 'k-s',...
[700 1100 1300 1500 1700], [200 200 200 200 200], 'k-s',...
[400 500 600 700], [100 100 100 100], 'k-s',...
[200 200],[2100 1900],'k-s',...
[200 200],[1700 1500], 'k-s',...
[200 200 200],[1100 900 700],'k-s',...
[200 200],[500 300], 'k-s',...
[400 400],[2100 1900],'k-s',...
[300 400 400 400 400],[1900 1700 1500 1300 1100],'k-s',...
[400 400 400 400],[700 500 300 100],'k-s',...
[500 500],[2100 1900],'k-s',...
[500 500 500 500],[1100 900 700 500],'k-s',...
[500 500],[300 100],'k-s',...
[700 700 600 600 600],[2100 1900 1700 1500 1300],'k-s',...
[600 600 600 600],[1100 900 700 500],'k-s',...
[600 600],[300 100],'k-s',...
[700 700],[1500 1300],'k-s',...
[700 700 700 700],[500 300 200 100],'k-s',...
[700 800 900 1000],[1900 1700 1600 1500],'k-s',...
[900 900 900 900],[2100 1900 1800 1700],'k-s',...
[900 900 900],[1600 1500 1300], 'k-s',...
[900 900 900 900],[1100 900 700 500],'k-s',...
[1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100], [2100

1900 1800 1700 1500 1300 1100 900 700 500 300 200],'k-s',...
[1100 1300], [900 700],'k-s',...
[1300 1300 1300 1300 1300],[2100 1900 1800 1700 1500],'k-s',...

79

[1300 1300 1300 1300 1300 1300], [1100 900 700 500 300 200],'k-s',...
[1500 1600 1700 1800 1900 2000 2100],[2100 1900 1800 1600 1500 1300

1100],'k-s',...
[1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500], [1900 1700

1500 1300 1100 900 700 600 500 300 200],'k-s',...
 [1500 1600], [1700 1600],'k-s',...
 [1500 1600], [1500 1600],'k-s',...
 [1700 1700 1700],[2100 1900 1800],'k-s',...
 [1700 1700 1700 1700 1700 1700 1700 1700 1700], [1500 1300 1100 900

700 600 500 300 200],'k-s',...
 [1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900],[2100 1900

1700 1600 1500 1300 1100 900 700 500 300],'k-s',...
 [2100 2100 2100 2100 2100 2100],[1900 1700 1300 1100 900 700],'k-

s',...
 [2100 2100],[500 300],'k-s',vec1, vec2, '-rs',

'LineWidth',2,'MarkerEdgeColor','k', 'MarkerFaceColor','k',

'MarkerSize',4); xlim([0 2300]); ylim([0 2300])

		2011-12-07T11:31:43-0500
	University of Dayton

