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ABSTRACT 

 

DEVELOPMENT OF HIGH POWER FIBER LASER TECHNOLOGIES 

 

Name: Zhou, Renjie 

University of Dayton 

 

Co-advisor: Dr. Joseph W. Haus and Qiwen Zhan 

 

 The development of high power fiber laser and technologies are covered 

in this thesis. The first part of the thesis simulates the signal gain spectrum in an 

erbium-ytterbium fiber amplifier, which can be implemented in fiber laser systems 

to generate high power output. The second part proposes the use of gain-guided 

(GG) optical fibers to achieve high power mode-locked fiber lasers. The spatial-

temporal pulse propagation in the GG fiber is simulated; self-focusing, and self-

phase-modulation in this type of fiber is studied. The third part discusses phase-

locked fiber laser designs. Self-imaging in optical fibers is simulated; the results 

provide a guide to the phase-locking fiber laser system design.  

 The last part of the thesis investigates theoretically and experimentally 

cylindrical vector (CV) beams generation from fiber laser system using a 

birefringent crystal. Radial and azimuthal polarization output can be switched 
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easily in this fiber cavity design. More interestingly, lasing with radial and 

azimuthal polarization can be achieved simultaneously. By introducing 

misalignment in the cavity, a beam with different polarization distributions is 

generated.  
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INTRODUCTION 

 This thesis focuses on the development of high power fiber lasers 

technologies. The study is based on both numerical simulation and experimental 

works. 

 Er-Yb fiber and GG fiber, which are suitable for high power fiber lasers, 

are introduced. For the Er-Yb fiber amplifier, the signal gain and pump 

dissipation are computed by solving the rate equations for the system. The 

results give information on optimization of the fiber laser system for high power 

output. For the GG fiber, the spatial-temporal pulse propagation is simulated. We 

studied self-focusing and self-phase modulation in the fiber, and proposed using 

this fiber device with a single mode fiber for a mode-locked fiber lasers design 

which is capable of generating short pulses with high peak power.  

 Besides simulation of signal gain and pulse propagation in the fibers, a 

phase-locked fiber laser design which can coherently combine fiber laser arrays 

for high power output is also presented. This system is based on self-imaging 

effect in Large-Mode-Area (LMA) fibers. In the simulation, four 2-D Gaussian 

beams are coupled to the LMA fiber, and the evolution of the beam with self-

imaging effect is simulated numerically.  The simulation results provide a guide 
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for the cavity design.  

 Finally, an Er-fiber laser system which can generate radial, azimuthal 

polarization and generalized cylindrical vector beams is proposed and 

experimentally demonstrated. The cavity design features the use of a birefringent 

crystal which provides polarization discrimination. The polarization evolution is 

investigated, and it is found the fiber acts as a polarization convertor in the cavity. 

Additionally, more general vector beams are also generated when misalignment 

of the optical components is introduced in the cavity. This fiber laser provided a 

CV beam output power that is far beyond the reported record. Possible design 

strategies that can further improve the output power is also proposed.   
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CHAPTER I 

MODELING OF ERBIUM-YTTERBIUM CO-DOPED FIBER AMPLIFIER 

  

    

           In this chapter, Er-Yb fiber amplifier is introduced including the co-doped 

system energy levels and rate equations. Then the dynamic rate equations are 

solved numerically. By solving the rate equations, the pump and signal power 

evolution in the fiber is obtained.  

 

1.1 Introduction of Erbium-Ytterbium fiber amplifier 

 Recently, rare-earth doped fiber lasers and amplifiers have attracted 

increasing interest. These types of fiber amplifier show high gain with high pump 

efficiency, good beam quality, high reliability, and compactness. Thus, they are 

find potential applications for fiber communication, remote sensing, medicine, 

and fabrication.  

 Among all the rare-earth fiber amplifiers, erbium–ytterbium co-doped fiber 

amplifiers have received great attention during the past few years. The main 

reason is its potential application in fiber telecommunication and the generation 

of high power lasers at 1.55 µm [1, 2]. Compared with an Er-doped fiber amplifier, 

the co-doping with Yb ions improves the pump absorption significantly while at 
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the same time, detrimental clustering of Er3+ ions is reduced because the Yb3+ 

concentration is normally higher than the Er3+ concentration. Thus, with this kind 

of fiber it is possible to make a short- cavity fiber laser [3]. Recently, Er-Yb fiber 

lasers with high slope efficiency and high output power have been demonstrated 

[4].  
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1.2 Erbium-Ytterbium fiber amplifier dynamics 

 The Energy level diagram which describes the photo absorption and 

transfer in Er-Yb co-doped is drawn in Figure 1-1[5]. The pump photons centered  

 

 

 

       

at 975 nm are first absorbed by the 2F7/2 state of Yb3+, exciting the Yb3+ ion from 

the 2F7/2 state into the 2F5/2 of the Yb3+. From there, a cooperative energy transfer 

process happens that the excited Yb3+ ions excite the Er3+ ions to the 4I11/2 state 

from the ground state 4I15/2 while dropping back Yb3+ ions to their ground state 

2F7/2. This process is described by the energy transfer coefficient ktr. Note that 

the Er3+ ions can also absorb photons around 975 nm, but the absorption 

efficiency is much lower compared with Yb3+. 

Kbtr 

Ktr 

n2(z,t) 

n1(z,t) 

 

n3(z,t) 

 

n4(z,t) 

 

2
F5/2 

 

2
F7/2 

 

4
I15/2 

 

4
I13/2 

 

4
I11/2 

 

4
I9/2 

 

4
S3/2 

 

Pump@975 nm Emission@1.55 µm 

Cup 

Er
3+ 

Yb
3+

 

Figure 1-1. Energy diagram describes the absorption and transfer in Er–Yb co-

doped system.[5] 
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 In order to simplify the rate equations of this co-doped fiber amplifier 

system, I made some assumptions and give some explanations for the energy 

level diagram [5-7]. Firstly, we assume that the signal depletion time is much 

shorter than the upper level lifetime. Secondly, since level 4F11/2 has a very short 

lifetime (1 µs) in phosphosilicate which is the usual host in Er3+/ Yb3+ doped glass 

laser systems, rapid de-excitation to the laser upper level 4I13/2 occurs, the 

probability of back transfer (kbtr) is markedly reduced due to this fast de-excitation 

and therefore is usually considered negligible. Thirdly, due to Er3+-Er3+cross 

relaxation, cooperative up-conversion (Cup) occurs, promoting an excited Er3+ ion 

from 4I13/2   to level 4I9/2. Also, interaction between a ground level Er3+ ion and two 

excited Yb3+ ion can create cumulative excitation of Er3+ ion to level 4S3/2. 

However, since the population of level 4I11/2 is very low, both cumulative energy  

transfer and back transfer from Er3+ to Yb3+ are considered negligible in the 

present work. Finally, excited Yb3+ ions (donors) transfer energy to nearby 

ground state Er3+ ions (acceptors),whereby the Er3+ becomes excited to the 

pump level 4I11/2, while the Yb3+ drop to its ground state 2F7/2 . 

 Neglecting back-transfer, and only the ground state (4I15/2,
 2F7/2) and the 

excited level (4I13/2, 
2F5/2) of Er3+/ Yb3+, the rate equations for the coupled Er3+ 

/Yb3+ can be written as [5-7]: 

  
𝑑𝑛2(𝑟,𝑧,𝑡)

𝑑𝑡
= 𝑊12 . 𝑛1 𝑟, 𝑧, 𝑡 − 𝑊21 . 𝑛2 𝑟, 𝑧, 𝑡 + 𝑘𝑡𝑟𝑛4 𝑟, 𝑧, 𝑡 . 𝑛1 𝑧, 𝑡 −

𝑛2(𝑟,𝑧,𝑡)

𝜏𝑒𝑟
−

𝐶𝑢𝑝 . 𝑛2
2 𝑟, 𝑧, 𝑡   ,                                                                                  (1.1) 
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𝑑𝑛4(𝑟,𝑧,𝑡)

𝑑𝑡
= 𝑅34𝑛3 𝑟, 𝑧, 𝑡 − 𝑅43𝑛4 𝑟, 𝑧, 𝑡 −

𝑛4(𝑟,𝑧,𝑡)

𝜏𝑦𝑏
− 𝑘𝑡𝑟𝑛4 𝑟, 𝑧, 𝑡 . 𝑛1 𝑟, 𝑧, 𝑡  , (1.2)  

 𝑛𝑒𝑟 = 𝑛1 𝑟, 𝑧, 𝑡 + 𝑛2 𝑟, 𝑧, 𝑡  ,                                     (1.3)                              

   𝑛𝑦𝑏 = 𝑛3 𝑟, 𝑧, 𝑡 + 𝑛4 𝑟, 𝑧, 𝑡  ,                                     (1.4)                                                           

where 𝑊12  , 𝑊21   and 𝜏𝑦𝑏  are the signal absorption rate, stimulated emission rate, 

and the spontaneous emission lifetime for Yb3+; 𝑅12  and 𝑅21and 𝜏𝑒𝑟are the pump 

absorption rate; stimulated emission rate, and spontaneous emission lifetime for 

Er3+  respectively; Cup is the upconversion coefficient. 𝑘𝑡𝑟  is the transfer 

coefficient from excited level Yb3+ to ground level Er3+;  𝑛𝑒𝑟  and  𝑛𝑦𝑏  are the total 

ion concentrations of erbium and  ytterbium;l  𝑛1 and  𝑛2  are the ytterbium ion 

concentration in the ground state 4I15/2 and the excited state  4I13/2;  𝑛3 and  𝑛4 are 

the erbium ion concentration in the ground state 2I7/2 and the excited state 2I5/2 

respectively. 

 For signal and pump absorption and stimulated emission rate, ignoring the 

amplified spontaneous emission (ASE), we have the following equations [8]:  

𝑊12 (𝑟, 𝑧, 𝑡) =
𝜍12 𝑣𝑠 𝑃𝑠 𝑧,𝑡 ΓS

𝑕𝑣𝑠𝐴
  ,                                       (1.5) 

 𝑊21 (𝑟, 𝑧, 𝑡) =
𝜍21 𝑣𝑠 𝑃𝑠 𝑧,𝑡 ΓS

𝑕𝑣𝑠𝐴
  ,                                       (1.6) 

and  

                    𝑅34 =
𝜍34 𝑣𝑃  𝑃𝑃 𝑧,𝑡 ΓP

𝑕𝑣𝑝𝐴
   ,                                            (1.7) 

𝑅43 =
𝜍43 𝑣𝑃  𝑃𝑃  𝑧,𝑡 ΓP

𝑕𝑣𝑝𝐴
   ,                                            (1.8)                   

where 𝜍12 𝑣𝑠  and 𝜍21 𝑣𝑠  are the absorption and stimulated emission cross 

sections of Yb3+ ions from the 4I15/2  to the  4I13/2 level; 𝜍34 𝑣𝑃  and 𝜍43 𝑣𝑃  are the 
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absorption and emission cross sections of Er3+ ions; ΓP and ΓS are the pump and 

signal overlap factor; A is the core area; 𝑃𝑃  and 𝑃𝑠  are the pump power and 

signal power respectively.  

 

1.3 Numerical modeling of signal gain in Er-Yb fiber amplifier 

 In this section, I will first simplify the rate equations which describe the 

dynamics of Er-Yb fiber amplifiers. Then, incorporating the pump dissipation and 

signal gain equation, I solve the rate equations as the beams propagate in the 

fiber.  With this information, one can determine the optimum fiber length, and the 

extractable power from the fiber amplifier. 

 

1.3.1 Simplification of rate equations 

 At steady state, from Eq. (1.1)-(1.4), one can have: 

𝑊12 𝑛𝑒𝑟 − 𝑛2 − 𝑊21𝑛2 +𝐾𝑡𝑟𝑛4 𝑛𝑒𝑟 − 𝑛2 −
𝑛2

𝜏𝑒𝑟
− 𝐶𝑢𝑝𝑛2

2 = 0 .          (1.9) 

𝑅34 𝑛𝑦𝑏 − 𝑛4 − 𝑅43𝑛4 −
𝑛4

𝜏𝑦𝑏
−𝐾𝑡𝑟𝑛4 𝑛𝑒𝑟 − 𝑛2 = 0 .               (1.10) 

From Eqs. (1.9) and (1.10), the ion concentration of the exited states n2, n4 can 

be solved as function of  𝑊12  , 𝑊21   𝑅34  and 𝑅43 . Directly from Eq. (1.10), one 

can have: 

𝑛4 =
𝑅34𝑛𝑦𝑏

𝑅34 +𝑅43 +
1

𝜏𝑦𝑏
+𝐾𝑡𝑟 𝑛𝑒𝑟−𝐾𝑡𝑟 𝑛2

     .                               (1.11) 

Insert the expression of 𝑛4  into Eq. (1.9), and after simplifications, a cubic 

equation of 𝑛2 can be obtained as: 
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𝐶𝑢𝑝𝐾𝑡𝑟𝑛2
3 +   𝑊12 +𝑊21 +

1

𝜏𝑒𝑟
 𝐾𝑡𝑟 −  𝑅34 + 𝑅43 +

1

𝜏𝑦𝑏
+ 𝐾𝑡𝑟𝑛𝑒𝑟 𝐶𝑢𝑝  𝑛2

2 

+ −𝑊12𝐾𝑡𝑟𝑛𝑒𝑟 −  𝑊12 + 𝑊21 +
1

𝜏𝑒𝑟
  𝑅34 + 𝑅43 +

1

𝜏𝑦𝑏
+𝐾𝑡𝑟𝑛𝑒𝑟 − 𝐾𝑡𝑟𝑅34𝑛𝑦𝑏  𝑛2 

+  𝑊12𝑛𝑒𝑟  𝑅34 + 𝑅43 +
1

𝜏𝑦𝑏
+𝐾𝑡𝑟𝑛𝑒𝑟 + 𝐾𝑡𝑟𝑅34𝑛𝑦𝑏𝑛𝑒𝑟  = 0 .                             

(1.12) 

This cubic equation has 3 roots for 𝑛2that can be solved with a standard method. 

It is found that only one root is physically allowed. With Eqs. (1.5)-(1.8), equation 

(1.11), and (1.12) can be written as: 

𝑛4 =
𝑃𝑃(𝑧)𝑛𝑦𝑏 𝐶1

𝑃𝑃 (𝑧)𝐶2+
1

𝜏𝑦𝑏
+𝐾𝑡𝑟 𝑛𝑒𝑟−𝐾𝑡𝑟 𝑛2

     ,                               (1.13) 

and  

𝑛2
3 +  −𝑛𝑒𝑟 +

 
1
𝜏𝑒𝑟

+ 𝑊12(𝑧) + 𝑊21(𝑧) 

𝐶𝑢𝑝
−

 𝑃𝑃 𝑧 𝐶2 +
1
𝜏𝑦𝑏

 

𝐾𝑡𝑟
 𝑛2

2 

−

 

 
 𝑛er

𝐶𝑢𝑝 𝜏𝑒𝑟
+

2𝑛er𝑊12 z 

𝐶𝑢𝑝
+
𝑛er𝑊21 𝑧 

𝐶𝑢𝑝
+
𝐶1𝑃𝑃 𝑧 

𝐶𝑢𝑝

+

 𝑃𝑃 𝑧 𝐶2 +
1
𝜏𝑦𝑏

  
1
𝜏𝑒𝑟

+𝑊12 z + 𝑊21 z  

𝐶𝑢𝑝𝐾𝑡𝑟

 
𝑛 + 

𝐶1𝑛er𝑃𝑃 𝑧 

𝐶𝑢𝑝
+
𝑊12 z 𝑛er

2

𝐶𝑢𝑝
+

𝑊12 z 𝑛er (𝑃𝑃 𝑧 𝐶2 +
1
𝜏𝑦𝑏

)

𝐶𝑢𝑝𝐾𝑡𝑟
= 0 

, 

(1.14) 
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where 𝐶1 and 𝐶2 are: 

𝐶1 =
ΓP𝜍34 𝑣𝑝  𝑛er

𝑕𝑣𝑝𝐴
,                                              (1.15)  

and 

 𝐶2 =
ΓP (𝜍34 𝑣𝑃  +𝜍43 𝑣𝑃  )

𝑕𝑣𝑝𝐴
   ,                                     (1.16) 

For a cubic equation that is in the form of 

𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0  .                                     (1.17) 

The solution that is physically allowed for Eq. (1.14) takes the form of  

𝑥 = −
𝑎

3
−  0.5 + 0.5 3𝑖  −

𝑞

2
+  

𝑞2

4
+

𝑝3

27

3

+  −0.5 + 0.5 3𝑖  −
𝑞

2
− 

𝑞2

4
+

𝑝3

27

3

 , 

(1.18) 

where  

𝑝 = 𝑏 −
𝑎2

3
       ,                                             (1.19) 

𝑞 = 𝑐 +
2𝑎3−9𝑎𝑏

27
  .                                             (1.20) 

after n2  is solved, n4 can be find from Eq. (1.13). Then from Eqs. (1.3) and (1.4), 

the ground state and excited state population densities of erbium and ytterbium 

can easily be computed.     

 

1.3.2 Pump dissipation and signal gain simulation 

 The pump dissipation and signal gain as function of propagation distance 

z are numerically simulated here. Ignoring excess losses, the pump dissipation is 

governed by the differential equation as [8]: 
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𝑑𝑃𝑃(𝑧)

𝑑𝑧
= ΓP(𝜍43 𝑣𝑃 𝑛4 𝑧 − 𝜍34 𝑣𝑃 𝑛3 𝑧 )𝑃𝑃(𝑧)    ,               (1.21) 

and the signal gain is governed by the differential equation as: 

𝑑𝑃𝑆(𝑧)

𝑑𝑧
= ΓS(𝜍21 𝑣𝑠 𝑛2 𝑧 − 𝜍12 𝑣𝑠 𝑛1 𝑧 )𝑃𝑆(𝑧)  .                  (1.22) 

Eqs. (1.3), (1.4), (1.13), (1.14), (1.21) and (1.22) can be combined together to 

solve the pump dissipation and signal gain. The parameters used in this 

simulation are listed in Table 1-1 [5, 8].  

Symbol Value 
ner 7.1×1026 m3 

nyb 0.9×1027 m3 

𝜏𝑦𝑏  1.5×10-3 s 

𝜏𝑒𝑟  1.1×10-2 s 

ktr 5.0×10-22 m3/s 

Cup 1.0×10-24 m3/s 

A 1.52×10-11 m2 

𝜍43 4.9×10-25 m2 

𝜍34 2.1×10-25 m2 

λP 990 nm 

λS 1.54 µm 

𝜍12 5.63×10-25 m2 

𝜍21 5.75×10-25 m2 

ГP 0.7 

ГS 0.27 

 

Table 1-1. Parameters of the Er/Yb amplifier 

  

 The flow chart for the simulation of signal gain and pump dissipation as 

the signal and pump propagate in the fiber is shown in Figure 1-2.               
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 Initially the pump power is set at 0.1 W, and the signal at 10 nW for the 

simulation. The upper level ion concentrations of ytterbium and erbium are 

shown is Figure 1-3 and 1-4. And it can be seen that initially the upper-level 

populations remain constant which means the pump is still very strong. Then the 

upper-level populations drop due to the stimulated emission of photons. The 

pump dissipation is shown in Figure 1-5. It can be seen that the pump power 

decreases exponentially. The point where the pump remains about 3% is used ti 

determine the optimum fiber length. From Figure 1-6, it can be seen that the 

signal increases, and reaches the maximum at the optimum fiber length, after 

which the signal power drops owing to the absorption of the signal by the fiber 

itself. In Figure 1-7, the signal gain is plotted in dB. This plot again shows the 

Initialize PP(0) and 

PS(0), and z=0,  

Solve for n2, and n4 

Solve for PP and PS 

n2(z), n4(z), PP(z), PS(z) 

Final results 

z<zmax, z=z+dz 

Figure 1-2. Flow chart of the signal gain and pump dissipation calculation. 
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importance of optimum fiber length. 

 

  

 

 

 

 

 

Figure 1-3. Upper-level population concentration of Erbium. 

Figure 1-4. Upper-level population concentration of Ytterbium. 
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Figure 1-5. Pump power dissipation vs. propagation distance. 

Figure 1-6. Signal power vs. propagation distance. 
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Figure 1-7. Signal gain in dB vs. propagation distance. 
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1.4 Summary 

 In this chapter an erbium-ytterbium co-doped fiber amplifier system is 

introduced. I studied the dynamics of this type of fiber amplifier and simulated the 

signal gain and pump dissipation in the fiber system. The simulation results can 

be used to determine how various factors such as dopants concentration, fiber 

core size, fiber length etc would affect the gain in the fiber.  The simulation 

results serve a guided for further development of high power fiber lasers with 

wavelength tunability.  
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CHAPTER II 

MODELING OF BEAM PROPAGATION IN GAIN-GUIDED FIBER  

 

 

 In this Chapter, I theoretically examine self-focusing, and self-phase 

modulation effects in gain-guided (GG) optical fibers. The effects are investigated 

by propagating a spatial-temporal pulse in GG fibers. By looking at the pulse at 

different distances in the fiber, those effects are analyzed. After propagation in 

the GG fiber, the pulse is coupled into a standard single mode fiber (SMF). The 

power transmission characteristics and the dispersion in the single mode fiber 

are investigated. 

 

2.1 Introduction to gain-guided fiber 

 Gain-guiding effects have been discussed for more than forty years. In 

1965, Kogelnik analyzed the wave propagation in media with gain variations [9]. 

Later on, experiments with semiconductor lasers demonstrated gain-guiding in 

laser resonators [10]. At the same time, media with different gain profiles have 

been investigated both in literature and experiments [11-13]. In 2003, Siegman 

proposed a complete description of gain-guiding in slab-waveguide, and optical 
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fibers [14]. Lasing in gain-guided, index anti-guided (GG+IAG) fiber has been 

demonstrated recently by several researchers [15-17].  Lasing in GG+IAG fibers 

possess a transverse profile with single mode characteristics. Thus, fiber with 

gain and an extremely large core radius is a good candidate in developing of high 

power fiber lasers. With fiber lasers in mind, recent papers have studied gain-

saturation effects in slab wave guided and optical fibers [18, 19]. In this Chapter, 

GG+IAG fiber with self-phase modulation is studied for self-focusing. 

 Large mode area (LMA) fibers can suppress nonlinear effects such as 

Stimulated Brillouin Scattering (SBS) or Stimulated Raman Scattering (SRS) [20, 

21] while still exhibiting single mode output and this is desired for many 

applications. Fiber designs have been proposed to achieve single transverse 

mode lasing. For instance, the multi-core fiber with phase-locked modes has 

been demonstrated [22]. Also, exploiting index-matched core-cladding fiber 

designs has been shown to improve higher-order mode suppression in solid or 

microstructured fibers [23].  
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2.2 Theoretical analysis 

 The propagating modes in gain-guided fiber are described in section 2.2.1. 

In section 2.2.2, I present the spatial-temporal pulse propagation equation 

governed by Nonlinear Schrödinger equation (NLSE) in the GG fiber. The 

nonlinear refractive index effects the pulse propagation and will lead to self-

focusing and self-phase modulation in GG fibers. In section 2.2.3 we present the 

numerical algorithm for solving the NLSE. 

 

2.2.1 Modes in gain-guided fiber 

 In traditional step index-guided fibers, the modes are described by 

Bessel’s functions of the first and second kind in the core and cladding 

respectively. The mathematical description of the fiber modes in GG fibers are 

analogous, except the V number is replaced with complex 𝑉 number by Siegman 

[24], where the imaginary part comes from the contribution of  the gain in the 

core. The real part is the conventional V number, and its square is given as: 

  𝑉2 = ∆𝑁 = 2𝑛𝑜  
2𝜋𝑎

𝜆
 

2

Δ𝑛  ,                                       (2.1) 

where a is the core radius,  Δ𝑛 is the index contrast of the core and the cladding 

region, n0 is the average index of the core-cladding materials, and 𝜆  is the signal 

wavelength. The complex 𝑉  number is obtained by: 

𝑉 2 = ∆𝑁 + 𝑖𝐺 .                                                  (2.2) 

The imaginary part of the complex 𝑉 number is defined as: 
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𝐺 =
𝑛𝑜𝜆

2𝜋
 

2𝜋𝑎

𝜆
 

2

𝑔 ,                                               (2.3) 

where g is the power gain coefficient in the core. If  Δ𝑛 > 0 and g = 0, the fiber 

corresponds to the usual guided fiber geometry, and if Δ𝑛 < 0 and g>0, the fiber 

is called GG+IAG fiber.  

 The field profile for LP01 and LP11 mode are given as: 

𝐸0𝑙 𝑟 =  

𝐽𝑙  
𝑢 𝑟

𝑎
 ,                       𝑟 ≤ 𝑎

𝐽 𝑙 𝑢  𝐾𝑙 
𝑤 𝑟

𝑎
 

𝑤 𝐾𝑙 𝑤  
,                 𝑟 > 𝑎

       ,                           (2.4) 

where l = 0 and l = 1 correspond to the LP01  and LP11 mode respectively. 𝑢  and  

𝑤  are related by the propagation equation: 

𝑢 2 +𝑤 2 = 𝑉 2 .                                                (2.5) 

Since 𝑉  is a complex number, 𝑢  and  𝑤  both are also complex numbers, so 𝑤  

can be written as: 

 𝑤 = 𝑤𝑟 + 𝑗𝑤𝑖  .                                               (2.6) 

By using the continuity of the field at the cladding/core interface, 𝑢  and 𝑤  can be 

approximated as: 

𝑤𝑟 ≅  
𝑗0𝑙

2

−∆𝑁
 × [

𝐺

𝐺𝑡𝑕
− 1]  ,                                       (2.7) 

𝑤𝑖 ≅  −∆𝑁 ,                                              (2.8) 

and  

𝑢 ≅ 𝑗0𝑙(𝑤 − 1)/𝑤  .                                         (2.9) 
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For LP01 mode, l=0, 𝐺𝑡𝑕 ≅  
133.8

−∆𝑁
  ; for LP11, l=1, and 𝐺𝑡𝑕 ≅  

862.2

−∆𝑁
.  𝑗01 ≅ 2.405, 

and 𝑗11 ≅ 3.8317 are the cut off value of Bessel function, and they correspond to 

LP01 and LP11 mode respectively. 

 

2.2.2 Nonlinear Schrödinger equation (NLSE) 

 The spatial-temporal pulse propagation in the fiber is determined by the 

NLSE. Assuming a slowly varying amplitude A(x, y, z, 𝜏), and using the paraxial 

approximation, NLSE can be written as: 

𝜕𝐴(𝑥,𝑦,𝑧,𝜏)

𝜕𝑧
=

𝑖

2𝑘
∇⊥

2𝐴 𝑥, 𝑦, 𝑧, 𝜏 +
𝑖

2𝑘
 
𝜔

𝑐
 

2
 𝑛𝑐𝑜

2 − 𝑛𝑐𝑙
2  𝐴 𝑥, 𝑦, 𝑧, 𝜏 − 𝑖

𝛽2

2

𝜕2𝐴

𝜕𝜏2 +

𝑖𝛾 𝐴 𝑥, 𝑦, 𝑧, 𝜏  2𝐴(𝑥, 𝑦, 𝑧, 𝜏) −
𝛼

2
𝐴(𝑥, 𝑦, 𝑧, 𝜏) ,                  (2.10) 

where ∇⊥
2  is the 2-D Laplacian operator which describes the diffraction. In 

cylindrical coordinate, we have  𝑟2 = 𝑥2 + 𝑦2, so the operator  becomes: 

∇⊥
2 =

𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
  ,                                            (2.11) 

𝑛𝑐𝑜  is the core index, including the gain induced index 𝑛𝑖,  it is written as: 

𝑛𝑐𝑜 = 𝑛𝑟 + 𝑖𝑛𝑖   ,                                          (2.12) 

where 𝑛𝑖 = −(
𝑔

2𝑘0
) , 𝑔  is the power gain coefficient, 𝑘0 = 2𝜋/𝜆vac   is the wave 

number in vacuum, where 𝜆vac  is the central wavelength of the pulse in vacuum. 

k is the wave number in the cladding of the fiber which is given by  
𝜔

𝑐
 𝑛𝑐𝑙 ,where 

𝜔 is the central frequency of the pulse, c is the velocity of light, 𝑛𝑐𝑙  is the cladding 

refractive index. It can also include gain or loss terms as its imaginary part. 𝛽2 is 
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the group velocity dispersion parameter; in silica glass it is -26 fs2/mm and in 

single mode fiber it is -20 fs2/mm [25]. The nonlinearity coefficient  𝛾 = 𝑘0𝑛2 , 

where  𝑛2 is the nonlinear index in silica, which is 3.0×10-8 µm2/Watt [25, 26], and 

𝛼   is an absorption coefficient which is assumed to be negligible in our 

simulations.  

 

2.2.3 Numerical algorithm solving pulse propagation  

 Since the fiber is circularly symmetric; assuming a cylindrical symmetry for 

the pulse amplitude, i.e.𝐴(𝑥, 𝑦, 𝑧, 𝜏) → 𝐴(𝑟, 𝑧, 𝜏), is suitable and will simplify the 

simulation.  In the transverse direction, we apply a 1-D Hankel transform instead 

of a 2-D Fourier transform, making the numerical simulations run much faster 

and saving computational memory. In the time domain, a 1-D Fourier transform 

is applied. In order to solve Eq. (10), we write the equation with operators:  

𝜕𝐴(𝑧)

𝜕𝑧
= ℒ𝑟𝐴(𝑧) + ℒ𝐷𝐴(𝑧) + ℒ𝐼𝐴(𝑧) + 𝒩(𝐴(𝑧)) ∙ 𝐴(𝑧) ,             (2.13) 

where  ℒ𝑟 =
𝑖

2𝑘
∆⊥

2  is the diffraction operator,  ℒ𝐷 = −𝑖
𝛽2

2

𝜕2

𝜕𝜏2 is the dispersion term, 

ℒ𝐼 =
𝑖

2𝑘
 
𝜔

𝑐
 

2

(𝑛𝑐𝑜
2 − 𝑛𝑐𝑙

2 ) is the complex index term, which includes gain guiding in 

the core, and 𝒩 𝐴(𝑧) = 𝑖𝛾 𝐴(𝑧) 2 is the nonlinear self-phase modulation term. 

By solving Eq. (2.13), the field at 𝑧 + ∆𝑧 is obtained: 

𝐴 𝑧 + ∆𝑧 = 𝑍{𝑒 (ℒ𝑟+ℒ𝐷+𝒩(𝐴 𝑧 )+ℒ𝐼)
𝑧+∆𝑧
𝑧

𝑑𝑧 }𝐴 𝑧   ,                     (2.14)                                                  

where Z{…} is the normal order of operators with respect to z. Eq. (2.14) can be 

approximately written as: 
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𝐴 𝑧 + ∆𝑧 = 𝑒 ℒ𝑟+ℒ𝐷 
∆𝑧

2 ∙ 𝑒ℒ𝐼∆𝑧 ∙ 𝑒𝒩 𝐴 ∆𝑧 . 𝑒 ℒ𝑟+ℒ𝐷  
∆𝑧

2 𝐴 𝑧  .               (2.15)                                              

Write Eq. (2.14) in the split-step method form: 

𝐴 𝑧 + ∆𝑧 = 𝑒ℒ𝑟
∆𝑧

2 𝑒ℒ𝐷
∆𝑧

2 ∙ 𝑒ℒ𝐼∆𝑧 ∙ 𝑒𝒩 𝐴 ∆𝑧 . 𝑒ℒ𝑟
∆𝑧

2 𝑒ℒ𝐷
∆𝑧

2 𝐴 𝑧  .             (2.16)                                           

This form is the second approximation to Eq. (2.13), thus give more accuracy for 

the numerical simulation. In the following part, the action of each operator in Eq. 

(2.16) is described from the right the left for the operator actions.  

 The pulse propagation under temporal dispersion can be described as: 

𝐴(𝜏, 𝑧 +
∆𝑧

2
) = 𝑒ℒ𝐷

∆𝑧

2 𝐴 𝜏, 𝑧 = 𝑒
−𝑖
𝛽2
2

𝜕2

𝜕𝜏2∙(
∆𝑧

2
)
𝐴 𝜏, 𝑧  .                    (2.17)                                                  

Eq. (2.17) is solved by using a 1-D fast Fourier transform (FFT) with respect to 𝜏. 

Use Fourier transform property of derivatives, we have: 

𝜕2𝐴 𝜏,𝑧 

𝜕𝜏2

𝐹𝐹𝑇
   −𝜔2𝐹𝐹𝑇(𝐴(𝜏, 𝑧)) ,                                    (2.18) 

where 𝜔 denotes the temporal angular frequency in the Fourier space. Thus, the 

solution of Eq. (2.18) is:  

𝐴 𝜏, 𝑧 +
∆𝑧

2
 = 𝐹𝐹𝑇−1  𝑒−𝑖

(−𝛽2)𝜔2

4
∆𝑧𝐹𝐹𝑇 𝐴 𝜏, 𝑧    ,                      (2.19) 

For propagation with diffraction, we apply the Fast Hankel Transform (FHT). 

Write 2-D Laplacian operator in the cylindrical coordinate as described in Eq. 

(2.11), the propagation equation can be written as: 

𝐴 𝑟, 𝑧 +
∆𝑧

2
 = 𝑒ℒ𝑟

∆𝑧

2 𝐴 𝑟, 𝑧 = 𝑒
𝑖

2𝑘
 
𝜕2

𝜕𝑟2+
1

𝑟

𝜕

𝜕𝑟
 ∙(

∆𝑧

2
)
𝐴 𝑟, 𝑧 .                 (2.20)                                           

The FHT of the Laplacian operator with respect to r is: 

𝑖

2𝑘
(
𝜕2

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
) 𝐴 𝑟, 𝑧 

𝐹𝐻𝑇
   −

𝑖

2𝑘
4𝜋2𝜌2𝐹𝐻𝑇{𝐴 𝑟, 𝑧 } .                   (2.21)                                                
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Thus, Eq. (2.20) is expressed as [27]:  

𝐴 𝑟, 𝑧 +
∆𝑧

2
 = 𝐹𝐻𝑇−1{exp⁡(−𝑖

𝜋2

𝑘
𝜌2∆𝑧) ∙ 𝐴ℋ(𝜌, 𝑡) }  ,                  (2.22)                                                  

where 𝐴ℋ(𝜌, 𝑧) is 𝐹𝐻𝑇{𝐴 𝑟, 𝑧 }, the Hankel transform of 𝐴 𝑟, 𝑧  with respect to r, 

and the Hankel transform 𝐴ℋ(𝜌, 𝑡)  is defines as: 

𝐴ℋ(𝜌, 𝑧)  = 2𝜋  𝐴 𝑟, 𝑧 𝐽0(𝜌 ∙ 𝑟)𝑑𝑟
∞

0
 ,                                (2.23) 

where 𝐽0(…) denote the zero-order of Bessel function of the first kind. Also, note 

that the forward and inverse Hankel transform take the same form as Eq. (2.23), 

and the quasi-discrete Hankel transform is used to evaluate the zero-order 

transform [28, 29].  

 The propagation with gain guiding is described as: 

𝐴 𝑧 + ∆𝑧 = exp  ⁡
𝑖

2𝑘
 
𝜔

𝑐
 

2

(𝑛𝑐𝑜
2 − 𝑛𝑐𝑙

2 )∆𝑧  ∙ 𝐴 𝑧  .               (2.24)                                       

With nonlinear index, the field at 𝑧 + ∆𝑧 is: 

 𝐴 𝑧 + ∆𝑧 = exp⁡(𝑖𝛾 ∙  𝐴(𝑧) 2 ∙ ∆𝑧) ∙ 𝐴 𝑧  .                     (2.25) 

The pulse propagation under dispersion and diffraction needs another ∆𝑧/2 

propagation in order to find the field at  𝑧 + ∆𝑧.  For the remaining ∆𝑧/2 step, we 

use the start field obtained through the calculation above, and the process of 

solving the field is the same as Eqs. (2.16-2.25). By repeating all the processes 

described from Eqs. (2.16-2.25), one can propagate the beam for a desired 

distance in the fiber.  

 In summary, the NLSE is solved by incorporating the Fast Hankel 
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Transform and The Fast Fourier transform method. There are also many other 

numerical methods for solving the NLSE. For example, for non-cylindrical 

symmetric pulse or waveguide, one can use 2D FFT in for the transverse spatial 

direction. Also, the Crank-Nicolson algorithm combined with transparent 

boundary condition can be applied to solve the pulse propagation in the 

transverse spatial direction [30, 31]. Those methods have been used for 

checking our FHT algorithm.  
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2.3 Simulation results 

 The GG fiber used in the simulation has core index 1.579, and cladding 

index 1.5689, they are taken from Ref. [15], (we notice that index-guiding or anti-

index guiding doesn’t change our simulation results at all), the gain we chose is g 

= 0.7cm-1, and the nonlinear refractive index is 3.0×10-8 µm2/Watt [25, 26], and 

the signal wavelength is 1.55 µm. We use three different core radii which are 50 

µm, 75 µm, and 100 µm respectively for the GG fiber. The input pulse to the GG 

fiber is defined as a Gaussian function in space and time:  

𝐴 𝑟, 𝑡, 𝑧 = 0 = 𝐴0𝑒
−(1+𝑗 ∙ 𝑃𝑐𝑢𝑟𝑣𝑒 )∙𝑟2/2𝑤0

2
∙ 𝑒−𝑡

2 /2𝜏2
 ,                       (2.26) 

where 𝐴0  is the initial field amplitude which has units of 2.0 𝑊1/2 ∙ 𝜇𝑚−1, 𝑤0  is 

the transverse pulse width which is taken as 50 𝜇𝑚, and 𝜏= 1ps is the pulse 

width, and the initial temporal phase curvature is 𝑃𝑐𝑢𝑟𝑣𝑒 = 0, which means the 

initial pulse is not chirped. With enough initial pulse energy, the pulse will begin 

focusing after propagating about 10 centimeters. The numerical simulation stops 

before the pulse completely collapses, since our numerical technique cannot 

capture the high frequencies introduced by further collapse. At the end of the GG 

fiber the pulse is coupled into a standard single mode fiber, where we study the 

power transmission and the phase of the pulse. 

 

2.3.1 Self-focusing and collapsing in GG fiber  

 The pulse propagation is simulated in GG fiber with three different core 
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radii which are 50 µm, 75 µm, and 100 µm respectively.  Figure 2-1(a) is the 

initial pulse at the input of the GG fiber. Figures 2(b)-(d) show pulse propagation 

in the 50 µm core radius of the fiber at positions 10 cm, 11 cm and 11.2 from the 

input, resp. Figures 2(e)-(g) are three snapshots for pulse propagation in the 75 

µm core radius fiber at are 8.4 cm, 9.0 cm, and 9.2cm, resp. Figures 8(h)-(j) are 

for the pulse propagation in the 100 µm core radius fiber at 8.2 cm, 8.8 cm, and 

9.0 cm, resp. These figures have confirmed self-focusing, and collapsing of the 

pulses in the GG fibers. For different core size the distance the pulses need to 

propagate to start self-focusing and collapsing are different. For smaller core size 

the distance is bigger, this is because the critical power to collapse [32] is almost 

a constant parameter for different core sizes, however, for smaller core sizes the 

transverse gain is smaller, therefore the pulse must propagate a greater distance.    
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(b) (c) (d) 

(a) 

(j) (i) 

(g) (f) (e) 

(h) 

Figure 2-1. Field amplitudes of the spatial-temporal pulse propagations in GG fiber. (a) is 

the initial pulse; (b)-(d) correspond to the pulse propagation in the 50 µm core radius of 

the fiber, and the distances are 10 cm, 11 cm, 11.2cm, respectively; (e)-(g) correspond to 

the pulse propagation in the 75 µm core radius of the fiber, and the distances are 8.4 cm, 

9.0 cm, 9.2cm, respectively; (h)-(j) correspond to the pulse propagation in the 100 µm 

core radius of the fiber, and the distances are 8.2 cm, 8.8 cm, 9.0cm, respectively. 
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2.3.2 Self-phase modulation In GG fiber 

 For this section, the on-axis (r=0) phase for the pulse propagating in the 

GG fiber is investigated. Figure 2-2 displays the on-axis phase evolutions as the 

pulses propagate in three fibers with three different core radii. Figure 2-2(a) is 

the on-axis phase of the initial start pulse. It is a flat phase without any curvature. 

Figures 2-2(b)-(d), (e)-(g), and (h)-(j) are the on-axis phase evolutions for 50 µm, 

75 µm, and 100 µm core radii, respectively. The locations are chosen as the 

same in Figures 2-1. In the figures, it shown as the pulse start to focus quickly in 

space, it will develop a phase curvature in time equivalently. For the 50 µm core 

radius, the phase is higher than other cases, this is because the pulse has 

propagated more distance in this fiber, thus has accumulated more phase 

contrast.      
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2.3.3 Pulse coupling into single mode fiber 

 The pulses are coupled into a standard single mode fiber with 4.5 µm core 

radius at the end of the GG fiber span; see the illustration in Figure 2-3. The 

(a) 

(b) (c) (d) 

(e) (g) (f) 

(i) (j) 

Figure 2-2. On-axis phase evolution for the pulses propagation in the GG fiber. (a) is the 

phase for the initial pulse; (b)-(d) are the phases corresponding to pulse propagation in the 

50 µm core radius of the fiber, and the distances are 10 cm, 11 cm, 11.2cm, respectively; (e)-

(g) are the phases corresponding to pulse propagation in the 75 µm core radius of the fiber, 

and the distances are 8.4 cm, 9.0 cm, 9.2cm, respectively; (h)-(j) are the phases 

corresponding to pulse propagation in the 100 µm core radius of the fiber, and the distances 

are 8.2 cm, 8.8 cm, 9.0cm, respectively. 
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Gaussian width of the single mode fiber is calculated through Eq. (2.26) [25]:  

 

 

 

 

𝑤 ≈ 𝑎  0.65 + 1.619𝑉−
3

2 + 2.879𝑉−6   ,                          (2.27) 

where a is the core radius of the single mode fiber, the V number is taken as 2.4 

in the simulation. Thus, the width is found to be 4.95 µm. The field and power 

coupling is calculated through Ref [33]. The phase and amplitude of the pulse 

are extracted after the field is coupled into the fiber. The power in the GG fiber 

and single-mode fiber is calculated by integrating the field intensity over the 

transverse direction at each time point. Multiply the field at the end of the GG 

fiber at each time point with the corresponding single-mode fiber mode profile, 

the power and phase transmitted into the single mode fiber is obtained. The 

power transmission is defined as the transmission from the start of the GG fiber 

to the single mode fiber, since we are interested how the pulse input in the GG 

fiber would affect the pulses in the single mode fiber. Figures 2-4(a), (c), (e), are 

the transmitted power for the single-mode fiber as a function of the input to the 

GG fiber. From the results, we found at lower input power, the slope efficiency is 

small and stable, which indicates the coupling efficiency from GG fiber to single 

mode fiber is inefficient. The reason is at smaller input power, the GG fiber mode 

GG fiber Single mode fiber 

Figure 2-3. GG fiber is spliced to a single mode fiber. 
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beam width is much wider than the single-mode fiber mode profile. As the input 

power into the GG fiber increases, the pulse will focus at the end of the GG fiber 

and the overlap between the field profile in GG fiber and single mode fiber profile 

improves, thus giving rise to a higher coupling efficiency. However, as the input 

power continues to increase, the pulse at the end of the GG fiber continues to 

collapse which will lead to a precipitous drop in the coupling efficiency, which is 

due to a mode mismatch between the GG fiber and the SM fiber. The coupling 

efficiency becomes erratic near the critical collapse power and results are not 

followed beyond this point. Figure 2-4(b), (d), (f) are the phases in the single 

mode fiber versus the input power. The phase curves follow the transmission 

curves. The phase contrast is bigger for the 50 µm GG fiber core radius than for 

the other core radii, this is the same as Figure 2-2, because the pulse 

propagated a longer distance in the GG fiber and accumulated a bigger phase 

contrast.      

 These results are used to infer the spread of the pulse in the single mode 

fiber. A phase change of 12 radians from the pulse center to the 1/e intensity 

point corresponds to a chirp parameter, C ( 𝜙 𝑡 =
𝐶

2
 
𝑡

𝑇0
 

2

) of 24. The fiber length 

for dispersion compensation for shorter pulses is reduced and the compensation 

fiber could be inserted in a fiber laser cavity to balance the dispersion in each 

round trip. 
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(a) (b) 

(c) 

(e) (f) 

(d) 

Figure 2-4. Power in the single mode fiber versus input power coupled into the GG fiber. 

(a), (c), and (e) are power the transmission curves for 50 µm, 75 µm, and 100 µm core 

size respectively, and the GG fiber lengths are 11.2 cm, 9.2 cm, and 9.0 cm accordingly. 

(b), (d), and (f) are the phase curves for 50 µm, 75 µm, and 100 µm core size respectively.  
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2.4 Kerr-lens mode-locking with gain-guided fiber 

 Kerr-lens mode-locking (KLM) can be used to generate short pulse with 

high peak power. To achieve KLM, self-focusing which requires high enough 

power is necessary, thus KLM operate at the pulse power close to critical power. 

 

 

 

 

 

 Figure 2-5 illustrates Kerr-lens mode-locking with the GG and SMF fiber 

device.  When the input power to the GG fiber is too low, then the GG fiber output 

mode width will be wider than the mode in the SMF. So the power coupling 

efficiency will be low. While if the input power to the GG fiber is too high, the GG 

fiber output mode width will be narrow than the mode in the SMF, which will still 

Figure 2-5. Illustration of Kerr-lens mode-locking with GG fiber and SMF fiber device. 
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result in low coupling efficiency. Only when the GG fiber output mode width 

matched with the SMF mode width, the coupling will be optimized. And this is 

where achieves KLM.  Besides, mode size matching, dispersion caused by self-

phase modulation also need to considered. Thus, additional dispersion 

compensation device such Fiber-Bragg grating and a standard single mode fiber 

may be needed to compensate the phase accumulated in the GG fiber.    
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2.5 Summary 

 Self-focusing, collapsing, and self-phase modulation effect in the GG fiber 

is studied by propagating a spatial-temporal pulse in the fiber and look at the 

pulse evolution at different distances. It is found that the temporal dispersion is 

caused by the spatial focusing and collapsing of the pulse. Following the GG 

fiber section, the pulse is coupled into a single mode fiber, the transmission 

characteristics of the power and phase are investigated. As the power launched 

into the GG fiber increases, the power coupling efficiency in the single mode 

fiber at low intensities is steady, then at intermediate intensities the coupling 

efficiency increases, and finally it becomes unstable as the field profile collapses 

at high intensities. The phase in the single-mode fiber is developed as the input 

power increases. A saturable absorber action of the transmission can be 

exploited to create mode-locking in a fiber cavity, i.e. Kerr lens mode-locking in 

fiber lasers for generating short pulses. Since the dispersion in the simulation is -

20 fs2/mm, and the pulse width is 1 ps, the temporal dispersion length can be 

computed to be 50 meters, see Ref [25]. This is much longer than the fiber 

length we used. By shortening the pulse width to tens of fs the material 

dispersion length will be comparable or smaller than the GG fiber length, for 

example, a 10 fs half-width pulse has a dispersion length of 5mm. This situation 

will be explored in the context of a mode-locked fiber laser with a GG fiber 

section in the cavity. 
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CHAPTER III 

DEVELOPMENT OF PHASE-LOCKING FIBER LASERS 

 

 Fiber lasers have many advantages over other type of lasers such as 

compactness, reliability, high-quality beams etc. Recently, fiber lasers also found 

to be suitable for the development of high power lasers. However, in a single 

fiber the power is limited by nonlinear effects such as stimulated Raman 

scattering and stimulated Brillouin scattering [20, 21], and also the optical 

surface damage. In this chapter, we propose an all fiber-based phase-locking 

fiber laser which coherently combines four fiber lasers together. The self-imaging 

which is caused by the tabolt effect in the fiber array cavity is studied, and the 

cavity design is proposed. 

 

3.1 Self-imaging in waveguides 

 Self-imaging was first observed while people were studying the laser 

damage and power handling in optical fibers [34, 35]. Full-modal propagation 

analysis is probably the most comprehensive method to study self-imaging in 
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muti-mode waveguide. Let an input field profile be  [36] 

𝜓(𝑦,0) =  𝑐𝑣𝜓𝑣(𝑦)𝑣  ,                                            (3.1) 

where 𝑣  is the mode number, and the field excitation co-efficient 𝑐𝑣  can be 

estimated using overlap integrals based on the field-orthogonality relations. 

𝑐𝑣 =
 𝜓 𝑦,0 𝜓𝑣 𝑦 𝑑𝑦

  𝜓𝑣
2(𝑦)𝑑𝑦

  .                                            (3.2) 

Assuming the input field do not exicite unguided modes, the input mode can be 

decomposed to: 

 𝜓(𝑦,0) =  𝑐𝑣𝜓𝑣(𝑦)𝑣=𝑚−1
𝑣=0                                             (3.3) 

Then the field at a distance z can be written as the superpostion of all the guided 

mode components, i.e., 

 𝜓(𝑦,𝑧) =  𝑐𝑣𝜓𝑣(𝑦)exp⁡[𝑗 𝜔𝑡 − 𝛽𝑣𝑧 ]
𝑣=𝑚−1
𝑣=0                              (3.4) 

where 𝛽𝑣  is the propagation constant of mode 𝑣  . Taking the phase of the 

fundamental mode as a common factor for all the modes, pull it out from the 

summation. Also, drop the time dependent phase . Then Eq. (3.4) can be write as: 

𝜓(𝑦,𝑧) =  𝑐𝑣𝜓𝑣(𝑦)exp⁡[𝑗 𝛽0 − 𝛽𝑣 𝑧]𝑣=𝑚−1
𝑣=0                              (3.5) 

where  
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𝛽0 − 𝛽𝑣 ≅
𝑣(𝑣+2)𝜋

3𝐿𝜋
,                                            (3.6) 

and 

 𝐿𝜋 =
𝜋

𝛽0−𝛽1
,                                                 (3.7) 

 is the the beating length of the lowest two mode. With Eq. (3.6) (3.7), at z=L, the 

field can be write as: 

𝜓(𝑦,𝑧) =  𝑐𝑣𝜓𝑣(𝑦)exp⁡[𝑗  
𝑣(𝑣+2)𝜋

3𝐿𝜋
 𝐿]𝑣=𝑚−1

𝑣=0        .                       (3.8) 

Now, let  

exp  𝑗  
𝑣 𝑣+2 𝜋

3𝐿𝜋
 𝐿 = 1 𝑜𝑟 (−1)𝑣                   .                (3.9) 

The first conditions means at L, the field will repeat itself the same as its initial 

field, which is the so call self-imaging length. If the second condition is satisfied, 

the field at those L will be the direct replica for even modes and the mirror image 

of the intial field with respect to y=0 plane when the modes are odd. It can be 

shown that the first and second condition can be fullfilled at 

𝐿 = 𝑝(3𝐿𝜋), p=0,1,2,3,...                                  (3.10) 

for p even and p odd respectively.                                                                           

 The formation of multi-image is also possible. And the distance for multi-

images are found to be at: 
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𝐿 =
𝑝

2
(3𝐿𝜋), p=1,3,5,...                                   (3.11) 

 

 

 

 Until now the self-imaging has been demonstrated with full-modal 

propagation method, graphic illustration of the self-imaging is shown in Figure 3-

1 [36]. The next section, we will numerically simulate the self-imaging in multi-

mode waveguide. 

  

 

 

Figure 3-1. Multimode waveguide with mirror image at 3𝐿𝜋 , direct image at 

2(3𝐿𝜋 ), and two fold images at 
1

2
 3𝐿𝜋  and 

3

2
(3𝐿𝜋). [36] 
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3.2 Numerical simulation of self-imaging in fiber 

In this section, I investigate self-imaging in optical fibers.  Two Gaussian beams 

are couple into a multi-mode fiber; see Figure 3-2 for illustration. The fields for 

the beams are defined as: 

𝐴 𝑥, 𝑧 = 0 = 𝐴01,2𝑒
−1(𝑥−𝑥1,2)2/2𝑤01,2

2
 ,                       (3.12) 

where 𝑥1,2 denote the locations of the beam centers, and w01,2 denote the beam 

width. 𝐴01,2 are the initial field amplitudes which have units of 2 𝑊1/2 ∙ 𝜇𝑚−1 

                               

 

 

 The beam propagation uses standard FFT, see Chapter 2 for details. The 

fiber parameters and the beam parameters are listed in Table 3-1. We propagate 

the beam for 14 mm in the fiber. The numerical simulation of beam evolution in 

the fiber is plotted in Figure 3-3. It is seen that both beams single self-image at 

about z=14 mm, and two self-image at about z=7 mm. The results confirmed the 

theoretical prediction of self-image in multi-mode fiber.   

x 

z 

x1 

x2 

Figure 3-2. Illustration of two beams coupled into a multi-mode fiber. The beam centers 

are located at x1 and x2 respectively. 
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Parameter Symbol Value 
Core index nco 1.5734 

Cladding index ncl 1.5689 

Core radius rco 100 µm 

Cladding radius rcl 250 µm 

Beam “1” center x1 30 µm 

Beam “2” center x2 -30 µm 

Beam “1” width w01 10 µm 

Beam “2” width w02 10 µm 

Initial field amplitudes “1” A01 2 w
1/2

 /µm 

Initial field amplitudes “2” A02 2 w
1/2

 /µm 

 

 

 

 

 

 

 

 

 

 

Table 3-1. The parameter of the multi-mode fiber and the beams coupled into the fiber 

for self-imaging.  

Figure 3-3. Self-imaging in MMF. The initial two Gaussian beams formed single self-

imaging at about z=14 mm, and 2 double self-imaging at about z=7 mm. 



43 
 

3.3 Phase-locking fiber laser design 

 In this section a passive phased array fiber laser design based on self-

imaging is proposed. This laser system design can be applied to develop Er-Yb 

doped phase-locking fibers lasers which can be pumped by the 50W diode laser 

with 975nm central emission wavelength available in our labs. The laser system 

can operate either in CW, active Q-switched, or passive mode-locked modes of 

operation. For this fiber laser system we need to fabricate a microstructured 

mirror on the end to control the cavity mode. The following chapter will show the 

modeling and simulation study for this phase-locking fiber laser system.  

 

 

 

 

 In Figure 3-4, a phase-locking fiber laser system is illustrated that is 

capable of phase-locking N fiber amplifiers. N fiber amplifiers are spliced together 

and coupled into a Large-mode-area fiber which served as the self-imaging 

device. Fiber Bragg-Gratings (FBGs) which pass the pump and reflect the signal 

serve as one end of the cavity mirror while the micro-structured mirror which 

reflect the self-images servers as the other end cavity mirror which also couples 

Amplifier 1 

Amplifier N 

LMA fiber 

Micro-structured mirror 

Output 

Collimation lens 

coupler 

FBG 

FBG 

Pump 1 

Pump N 

Figure 3-4. Phase-locked fiber laser system designs. 
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the signal out.  The collimation lens is used to collimate the signal comes from 

the LMA fiber. 

 For the simulation, I use 4 fiber amplifiers, and model the beam evolution 

in the LMA fiber, which is assumed to have a 200 micron core diameter. The 

simulation results are shown in Figures 3-5. We assume the starting beams in 

the LMA fiber are 4 Gaussian beams with the same parameters as the beams 

defined in section 3.2, see Figure 3-5(a). After propagating about 4.88 cm, the 

input beam profile is self-imaged; see Figure 3-5(c). I also plot the beam at 

z=2.44 cm (see Figure 3-5(b) for the beam distribution), and this is where we 

want to end the LMA fiber and put the micro-structured mirror. So in this way a 

self-consistent cavity for the phase-locking fiber laser system is formed. 

 

 

 

 

 

(a) (b) (c) 

Figure 3-5. Simulation of self-imaging in LMA fiber of the phase-locking fiber laser 

system.  
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3.4 Summary 

 An all fiber-based phase-locking fiber laser is proposed in this chaper. 

This fiber laser is capable of generate high power output by coherent 

combination of signal from several fiber amplifiers. Self-imaging is simulated in 

the LMA fiber, the simulation result can be used to fabricate the micro-structured 

mirror. Furthermore, the amplfier might be made tunable along z direction to 

control the phase of each amplifier to change the position of self-imaging. 

Another possibility is to use wave-plates to rotate the polarization, which 

changes the coupling among the amplifers to achieve lasing with single 

longitudial modes [37].  
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CHAPTER IV 

ERBIUM FIBER LASER GENERATING VECTORIAL BEAMS 

 

 In this chapter, I report the generation of CV beams using a c-cut calcite 

(calcium carbonate) crystal within a three-lens telescope in an erbium-doped 

fiber laser cavity. The use of a c-cut crystal generating azimuthal polarization was 

first demonstrated by Pohl in a Ruby laser cavity [38]. The author used hard stop 

in the cavity to stabilize the cavity which could reduce the efficiency of the laser 

system. However, it is not clear whether this method could be applied to a fiber 

laser cavity, since nonlinear and high birefringence in the fiber can aberrate the 

beam polarization state.  

 This chapter also investigates the polarization modes’ behavior of this 

fiber laser cavity in details. The evolution of the mode polarization inside of the 

cavity is observed and reported. It is found that the mode polarization inside of 

the cavity can be spatially homogeneous in one section of the cavity while 

spatially inhomogeneous in another section of the cavity. This could open 

opportunities for other specifically nonlinear optical related processes that 

require polarization and phase matching. In addition, by translating the lens to 
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collimate rays between the ordinary and extraordinary foci, a generalized CV 

beam output that consists of a linear superposition of the radial and azimuthal 

polarizations has been obtained. Vectorial modes with more complicated spatial 

polarization distributions are also observed by creating angular misalignment of 

the axially symmetric birefringent element. 

 

4.1 Introduction and development of Cylindrical Vector Beams 

 Unlike the commonly known spatially homogeneous polarizations such as 

linear, circular and elliptical polarizations, the state of polarization of laser beams 

with spatially variant polarizations depends on the spatial location of the beam 

cross section. Two special examples of spatially variant polarization that have 

attracted significant interest recently are radial polarization (RP) and azimuthal 

polarization (AP) with axially symmetric polarization distributions. The beams with 

such polarizations states have rotational symmetry in both field amplitude and 

polarization state. Due to its cylindrical symmetry, these beams are also called 

cylindrical vector (CV) beams. CV beams are solutions to Maxwell’s equations 

that can exist in laser resonators, cylindrical waveguides, and free space [39].  

 When radially polarized beams are tightly focused by a high numerical 

aperture objective lens, spatially separated transverse and longitudinal field 

components are created and the longitudinal component is a nonpropagating 
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wave. The transverse spot size of the longitudinal component is found to smaller 

than the conventional diffraction limit. This unique focusing property has attracted 

interest and has led to many proposed applications. One category of application 

is high resolution imaging, by various means, such as, creating an ultra-small 

focal spot [40], using second-harmonic generation [41] third-harmonic generation 

[42] microcopies, dark field imaging [43], and coherent anti-Stokes Raman 

scattering (RP-CARS) microscopy [44]. Another important application of CV 

beams is optical trapping [45, 46]. At the same time, CV beams are also found 

suitable for material processing [47], and free space communications [48]. 

Recently, nonlinear optics with radially polarized beams has also been explored 

[49-52]. 

 Various methods have been demonstrated to generate radially and 

azimuthally polarized beams. They can be categorized into active and passive 

methods. Active methods use polarization discrimination elements in the laser 

cavities to achieve the selection of radially or azimuthally polarized modes. The 

uses of birefringence crystals [38, 53-55] and conical Brewster angle prism [56] 

have been reported. For passive generation of circularly polarized vortex beams, 

the use of dichroic material [57], and a spiral phase plate to compensate the 

geometry phase have also been demonstrated [58-60]. 

 Optical fibers have been widely used in many applications ranging from 

optical communications, electro-optics devices to sensor technologies. Recently, 
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generating CV beams with optical fiber has attracted increasing interests. Extra-

cavity generation is relatively easy.  Intra-cavity generation of CV beams is 

relatively difficult due to the strong nonlinearity of the fiber and strong field 

intensity in the cavity. The uses of a dual conical prism [61], an axicon [62, 63], 

and a spatially variable retarder [64] in a fiber laser cavity have been 

demonstrated. However, those polarization selection elements do not support 

high power, and they are not commercially available. In most of the cases, only 

one type of polarization is generated. Also, the beams quality is relatively poor.  
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4.2 Theoretical analysis 

 The generation of radial and azimuthal polarization in optical fiber laser 

cavity requires carefully choosing of fiber and the birefringent crystal. In the 

following sections, the fiber mode theory is revisited and the requirements on the 

optical fiber are analyzed. The birefringent crystal needs to provide sufficient 

spatial separation for the radial and azimuthal polarizations so that good 

discrimination can be achieved. Birefringent ray tracing results will be given to 

determine the optimal incident angle into the crystal in order to obtain the optimal 

separation. 

 

4.2.1 Fiber modes 

 The modes that could be supported by fiber can be analyzed though the 

V-number which is defined as: 

𝑉 =
2𝜋𝑎

𝜆
𝑁𝐴   ,                                                  (4.1) 

where a is the core radius of the fiber, 𝜆 is the signal wavelength, NA is the 

numerical aperture of the fiber. Under weakly guided conditions, the modes can 

be described as linear polarized pseudo modes, i.e. LP modes. For a single 

mode fiber supporting only the fundamental mode, i.e., LP01 mode has a V-

number smaller than 2.405. The fundamental mode has an axially symmetric 

circular intensity distribution, and the field can be approximated as a Gaussian 

distribution if V < 2.405. This mode actually consists of two orthogonal linearly 
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polarized modes, i.e. HE11 modes.  If the V-number is bigger than 2.405 and 

smaller than 3.83, the fiber can also support the LP11 mode groups. The 

degenerate modes of LP11 are TE01, TM01, and HE21. The intensity distributions 

for those modes have annular ring structures. The difference of the effective 

index of the modes in the fiber is very small under weakly guiding, so it is very 

hard to distinguish the modes through the intensity distributions. However, they 

have different polarization states. TE01 denotes the azimuthally polarized mode; 

TM01 denotes the radially polarized mode; and HE21 denotes the hybrid mode 

without a symmetric polarization distribution. Under weakly guided condition, by 

solving the Maxwell’s equation, the LP modes in the fiber can be approximated 

as [65]: 

𝐸 𝑟,𝜙 =

 
 
 

 
 𝐴𝐽 𝑙 

𝑈𝑟

𝑎
 

𝑈𝐽 𝑙 𝑈 
 

cos⁡(𝑙𝜙)

sin⁡(𝑙𝜙)
 , 𝑟 ≤ 𝑎

𝐴𝐾𝑙 
𝑊𝑟

𝑎
 

𝑊𝐾𝑙 𝑊 
 

cos⁡(𝑙𝜙)
sin⁡(𝑙𝜙)

 , 𝑟 > 𝑎

   ,                                 (4.2) 

where 𝐽𝑙(𝑥) is the 𝑙th order of Bessel function of the first kind, and 𝐾𝑙(𝑥) is the 𝑙th 

order of Bessel function of the second kind.  𝑈 = 𝑉 1 − 𝑏, and 𝑊 = 𝑉 𝑏, where 

b is the normalized propagation constant, and is given by the eigenvalue 

equation: 

𝐽 𝑙 𝑉 1−𝑏 

𝑈𝐽 𝑙−1 𝑉 1−𝑏  
+ 

1−𝑏

𝑏

𝐾𝑙 𝑊 

𝑊𝐾𝑙−1 𝑊 
= 0   .                               (4.3) 

 From Eq. (4.3), if V is given, the normalized propagation constant b for 

LP01 and LP11 can be found. So the field and intensity distributions can be 
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computed through Eq. (4.2). 

 The fiber used in our experiment is LIEKKI’s Er120-20/125DC fiber with 

emission spectrum centered near 1.6 µm. The numerical aperture NA=0.09, and 

the core radius is 10 µm. Thus the V-number can be found though Eq. (4.1) 

which is about 3.534. Thus, it can support the LP01 and LP11 modes. From Eq. 

(4.3), the b values are calculated to be 0.725, and 0.333 respectively. The 

intensity distributions of the modes in the fiber is plotted by using Eq. (4.2), see 

Figure 4-1 for the intensity distributions for LP01, and LP11 mode. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4-1. Intensity distributions of the fiber modes of erbium-doped fiber used in the 

experiment. (a): LP01 mode intensity distribution; (b): LP11 mode intensity distribution. 

The unit for x, and y axis is µm. 
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 The LP01 modes are linearly polarized modes with a central peak in the 

transverse plane. The LP11 mode consists of three degenerate modes: TE01, 

TM01, and HE21. All the degenerate2) by dropping the angular dependence when 

l =1. The intensity and the polarizations distributions are shown in Figure 4-2. 

Note that the HE21 mode consists of two degenerate modes, and the other one 

has a polarization distribution rotated by 45 degrees compared with the one 

shown in Figure 4-2(c).  

 The intensity distributions for LP01 and LP11 modes can also be 

approximated by the Laguerre-Gaussian function, which is used to describe the 

modes in free space. At the beam waist the field distribution can be written as [66] 

𝐸 𝑟, 𝑧 = 0 = 𝐸0( 2
𝑟

𝑤0
)𝑙𝐿𝑝

𝑙   2
𝑟2

𝑤0
2 e

−𝑖 −
𝑘

2𝑞0
−𝑙𝜙 

⁡         ,                (4.4) 

where 𝑤0 is the beam size at the beam waist,  𝐿𝑝
𝑙 (x) is the Laguerre polynomials, 

Figure 4-2. Intensity and polarization distributions for the degenerated LP11 modes. (a): 

representation of TE01 mode with azimuthal polarization; (b): representation for the TM01 

mode with radial polarization; (c): representation for the hybrid mode with mixed 

polarization. The polarization distributions are indicated by white arrows. The unit for x, 

and y axis is µm. 

(a) (b) (c) 
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𝑞0 is the beam parameter at the beam waist which is 𝑞0 =
𝑗𝜋𝑤0

2

𝜆
 . When l=p=0, this 

is reduced to the LP01 mode. For l=0, p=1, it is reduced to the degenerated LP11 

modes. 

 

4.2.2 Birefringence crystal for polarization selection 

 From the analysis of the fiber modes, it can be seen that the selection of 

radial or azimuthal polarization from the LP11 modes group is intrinsically difficult, 

since the three degenerate modes have very slight difference in spatial 

distributions. Fortunately, those modes have different spatially variant polarization 

states that can be explored for mode selection. In this work, this selection is done 

with a c-cut uniaxial crystal. A c-cut (or z-cut) uniaxial crystal has different index 

for extraordinary and ordinary polarizations. When those beams are focused 

through the crystal, they will be spatially separated, see Figure 4-3(a) for 

illustration.  
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 In order to spatially separate different polarizations, the incident angle at 

the crystal interface is of great importance. At low incident angle, both 

polarizations will be focused far away from the calcite crystal and the separation 

of the two foci will be large. However, the depth of focus of both foci will be 

extremely large too, making the two foci connected and indistinguishable. In 

addition, we don’t want the foci to be too far away from the crystal which may 

result in an extremely long cavity. As the incident angle increases, the two foci 

are closer to the crystal and the distinction becomes clearer due to the reduced 

depth of focus. However, the separation between the foci also drops. The 

separation between the two foci cannot be too small which will make the 

switching between the polarizations hard. Thus, there should exist an optimal 

incident angle for the optimal foci separation.  

 For ordinary ray, the refractive index is 𝑛𝑜 , while for extraordinary ray, the 

(a) (b) 

Figure 4-3. Illustration of birefringence crystal angular separation of radial and 

azimuthal polarizations. (a): The ray traces through the birefringence crystal; (b): The 

index ellipsoid of the calcite crystal. The calcite crystal is negative uniaxial crystal with 

no =1.633, and ne = 1.478 at 1.6 µm wavelength.  
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refractive index depends on the internal angle between the wavefront direction 

and the optical axis for a c-cut crystal. From the index ellipsoid equation, we have 

[67]: 

1

𝑛𝑒
2(𝜃𝑒 )

=
𝑐𝑜𝑠 2(𝜃𝑒)

𝑛𝑜
2 +

𝑠𝑖𝑛 2(𝜃𝑒 )

𝑛𝑒
2      .                                  (4.5) 

At the incident interface, from Snell’s law of refraction, we have: 

𝑛𝑎𝑖𝑟 𝑠𝑖𝑛(𝜃𝑖𝑛 ) = 𝑛𝑜𝑠𝑖𝑛(𝜃𝑜) = 𝑛𝑒(𝜃𝑒)sin⁡(𝜃𝑒)                      (4.6) 

From Eq. (4.5) and Eq. (4.6), the wavefront directions for ordinary and 

extraordinary rays can be obtained as: 

𝜃0 = sin−1 𝑠𝑖𝑛(𝜃𝑖𝑛  /𝑛𝑜)    ,                                   (4.7) 

and 

𝜃𝑒 = 𝑠𝑖𝑛−1(
𝑠𝑖𝑛 (𝜃𝑖𝑛 )∙𝑛𝑒

 𝑛𝑜
2𝑛𝑒

2+𝑛𝑒
2−𝑛𝑜

2
)  .                                      (4.8) 

 

 

 

 

 

 

 

 

 However, the wavefront direction for the extraordinary ray is not the same 

𝑧 

𝑛𝑒  

𝑛𝑜  

𝑛𝑜  𝑺𝒐 , 𝒌𝒐 

 

𝒌𝒆  

 

𝑺𝒆  

 

𝜃𝑒  

𝜃𝑒 ′ 𝛽 

𝑧′ 

𝜃𝑜  

𝑥 

Figure 4-4. Normal surface of the calcite crystal used for describe the wavefront 

and energy flow directions. 
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direction as the energy flow direction, i.e. the Poynting vector direction. In order 

to calculate the energy flow direction for the extraordinary ray, the normal surface 

is used as shown in Figure 4-4. In the figure, the energy flow for the extraordinary 

ray has a walk-off angle 𝛽 with respect to its k vector which further separate this 

ray way from the ordinary ray. While for the ordinary ray, the wavefront and the 

energy flow travel in the same direction. The actual ray goes in the energy flow 

direction, thus the walk-off angle is important for knowing the actual separation of 

the extraordinary and ordinary beams. From the boundary conditions we have: 

tan⁡(𝜃𝑒
′ ) =

𝑛𝑜
2

𝑛𝑒
2 𝑡𝑎𝑛(𝜃𝑒)  ,                                       (4.9) 

where 𝜃𝑒
′  is the angle between the energy flow and the z-axis, and 𝜃𝑒   is the 

angle between the wavefront and the z-axis of the extraordinary ray. The walk-off 

angle is: 

tan( 𝛽) = tan 𝜃𝑒
′ − 𝜃𝑒 =

tan  𝜃𝑒
′  −tan  𝜃𝑒 

1+tan  𝜃𝑒
′  tan  𝜃𝑒  

=  
𝑛𝑜

2

𝑛𝑒
2 − 1 

tan  𝜃𝑒 

1+
𝑛𝑜

2

𝑛𝑒
2𝑡𝑎𝑛

2 𝜃𝑒  
    .  (4.10)                                 

 It can be shown that the walk-off angle is always much bigger than the 

separation angle of the wavefronts of the extraordinary and ordinary ray. The 

total separation angle of the energy flow directions for extraordinary and ordinary 

rays is: 

𝛼 = 𝑑𝜃 + 𝛽,                                               (4.11) 

where 𝑑𝜃 is the wavefront separation angle which is: 

𝑑𝜃 = 𝜃𝑒 − 𝜃𝑜 .                                             (4.12) 
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 In Figure 4-5(a), the separation angle of the wavefront, energy flow, and 

the walk off angle are plotted as a function of the incident angle. The green curve 

is the total separation angle (energy flow separation), the blue curve is the wall-

off angle, and the red curve is the wavefront separation angle. It can be seen that 

the walk-off angle is much higher than the wavefront separation angle. 

 The angle of the energy flow for the extraordinary is 𝜃𝑒 + 𝛽 and energy 

flow direction for ordinary rays is the same as the wavefront direction. Refer to 

Figure 4-3(a), and through simple trigonometry, the separation of foci can be 

calculated as: 

Δ𝑓 =
2×𝐿∙(tan  𝜃𝑒+𝛽   −tan  𝜃0 )

tan ⁡(𝜃𝑖𝑛 )
 ,                                  (4.13) 

 

 

 

 

(b) (a) 

Figure 4-5. Plot of separation angle of the wavefronts and energy flows for ordinary and 

extraordinary rays, and the foci separation as a function of incident angle. (a): Plot of the 

separation and wavefronts and the energy flow, and the walk-off angle as a function of 

function. The unit of x and y axis is radian; (b): Plot of the foci separation as a function of 

incident angle. The x axis unit is radian, and the y axis unit is mm. 
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where L is the crystal length which is 20 mm (the length of the c-cut calcite cube 

we use in this work). The foci separation is plotted as a function of the incident 

angle in Figure 4-5(b). From the plot, it is found that, the separation falls as 

incident angle increases. However, if the incident angle is too small, the rays 

after the crystal will be converged to points very far away from the crystal which 

makes the cavity too long, thus less compact and hard to align. If the incident 

angle is too large, then the separation will be too small which would require a fine 

translation stage for the collimation lens to achieve polarization switching.   

 

 

4.3 Experimental generation of Vectorial Beams  

 In this chapter, we first demonstrate generation of radially and azimuthally 

polarized beams from the fiber laser cavity. And the polarization output can be 

made interchangeable between radial and azimuthal polarization. The maximum 

output power exceeds the reported record of fiber laser CV beams generations. 

Additionally, we studied the polarization evolution throughout the cavity. And it is 

found that the polarization at one end of the cavity is CV beams output while the 

other end is linearly polarized output. Moreover, when both radial polarization 

and azimuthal polarization in the cavity achieve lasing simultaneously,   

interesting polarization patterns are obtained. 
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4.3.1 Experimental generation of Cylindrical Vectorial Beams 

 The experimental setup is illustrated in Figure 4-6. A 4-meter long Erbium 

doped double cladding fiber with NA=0.090.01 and 20 µm core diameter 

(LIEKKI Er120-20/125DC, emission spectrum centered near 1.6 µm) is used as 

the gain medium in the laser cavity. The fiber is carefully chosen so that it can 

support the fundamental mode, and the second higher order modes, i.e., the 

radially polarized mode (TM01), azimuthally polarized mode (TE01), and the 

hybrid mode (HE21). A 976 nm diode pump laser (Visotek DL series) is end-

coupled into the Erbium doped fiber using lens L1 (f1=25 mm) and lens L2 (f2=8 

mm) with the dichroic mirror inserted in between. The dichroic mirror is highly 

transmissive for the pump and highly reflective for the signal. Mirror M1 (100% 

reflectance at 1.6 µm) and the output coupler M2 (80% reflectance at 1.6 µm) 

are the end mirrors for the laser cavity. Lens L3 (f3=6 mm) is used to collimate 

the output from the fiber. Negative lens L4 (f4=-25 mm), lens L5 (f5=38.1 mm), 

and lens L6 (f6=19 mm) form a telescope system with the c-cut calcite crystal 

inserted between L5 and L6. The crystal axis of the c-cut calcite is aligned with 

the optical axis of the cavity to select either radial or azimuthal polarization 

modes in the cavity. Due to the negative birefringence of calcite and the 

rotational symmetry, ordinary (azimuthal polarization) and extraordinary (radial 

polarization) modes will be focused to different foci after the calcite crystal. Lens 

L4 is used to expand the beam such that we can use lens L5 to focus the beam 
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into the calcite crystal with a larger incident angle. This is necessary to generate 

a sufficiently large refractive index difference for the extraordinary (radial 

polarization) and ordinary (azimuthal polarization) beams with respect to the 

calcite crystal, consequently producing a larger separation of the foci for radial 

and azimuthal polarization.  By translating L6 along the optic axis (indicated in 

Figure 4.6), we can select either the radially or azimuthally polarized modes to 

be collimated. The collimated polarization will experience lower loss in the cavity 

and can thus start to oscillate.  Illustrated in Figure 4-6, the azimuthally polarized 

beam is collimated and consequently selected as the output mode. If we simply 

move L6 slightly to the right along the optical axis, then the radially polarized 

mode will be collimated instead and the output will be switched from the 

azimuthal polarization to the radial polarization.  

 

 

 

 Beam profiles are recorded at the pump power of 2.8 W. The images of 

the beam profiles are recorded with an InGaAs NIR Camera (Indigo MerlinTM). 

Figure 4-6. Experiment setup of an Erbium doped fiber laser generating radially or 

azimuthally polarization. The solid rays indicate ordinary beams (azimuthal polarization), 

and the dashed rays indicates extraordinary rays (radial polarization).  
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The azimuthally polarized output is represented in Figures 4-7. Figure 4-7(a) is 

the output mode intensity distribution. A linear polarizer is put before the camera 

to check the polarization; the modes after the polarizer are shown in Figures 4-7 

(b)-(e). The transmission axis of the linear polarizer is indicated by the white 

arrows. It can be concluded from Figures 4-7, an azimuthally polarized mode is 

generated from the fiber laser cavity. A line scan across the center of the 

generated mode is also plotted with comparison to the theoretical radially 

polarized LG01 mode profile. The diameter of the beam is measured to be 1.0 

mm. Then we moved L6 in the setup about 0.6 mm to the left to collimate the 

extraordinary beam, i.e. radially polarized beam, the measurements of the beam 

is shown in Figures 4-8(a)-(e) which indicate a radially polarized beam has been 

obtained. The beam diameter measured is 0.8 mm instead. The switching 

between radial and azimuthal polarizations has been successfully demonstrated. 
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(a) 

(b) (c) (d) (e) (f) 

(a) 

(b) 
   
(c) (d) (e) (f) 

Figure 4-8. Measurements of the radially polarized mode, and linescan comparisons 

between the experiment and theory. (a): Intensity distribution of the output beam; (b)-

(e): intensity distributions after a linear polarizer. The polarizer transmission axis is 

indicated by white arrows; (f) linescans comparison between the experimental result 

and the theoretical prediction. The theoretical curve is calculated with Laguerre-

Gaussian distribution. The units of x axis is mm, and the y axis intensity peak is 

normalized to unity.  

 

Figure 4-7. Measurements of the azimuthally polarized mode, and linescan 

comparisons between the experiment and theory. (a): Intensity distribution of the 

output beam; (b)-(e): intensity distributions after a linear polarizer. The polarizer 

transmission axis is indicated by white arrows; (f) linescans comparison between the 

experimental result and the theoretical prediction. The theoretical curve is calculated 

with a  Laguerre Gaussian distribution. The unit of x axis is mm, and the y axis 

intensity peak is normalized to unity. 
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 The signal output power as a function of the launched pump power for 

both azimuthally and radially polarized modes is also measured (Figure 4-9).  

 

During the measurement, the mode profiles for radial and azimuthal polarization 

are maintained at good quality. The maximum output power for radial polarization 

is about 135 mW and 140 mW for azimuthally polarization. To our best 

knowledge, this is the highest output power level for a fiber laser that produces 

CV beams. The threshold of the fiber laser is found to be about 0.2 W and the 

slope efficiency of our fiber laser is 2.85% and 3.09% for radial and azimuthal 

polarization respectively. The slope efficiency may be further improved by 

optimizing the fiber laser cavity design in the future. For example, optimal fiber 

length needs to be determined in order to improve the slope efficiency. If the fiber 

is too long, the signal will be absorbed by the fiber when it travels in the 

backward direction in the fiber. While if the fiber is too short, the pump power will 

Figure 4-9. Output power vs. the launched pump power.  
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be wasted. Also, the pump coupling system needs to be improved to make the 

numerical aperture and the beam size to be matched between the pump laser 

and the erbium-doped fiber. Other design parameters that could be further 

optimized to include the reflectance of the output coupler, the wavelength of the 

diode pump laser, etc. 

 

4.3.2 Polarization evolution in fiber laser cavity 

 The fiber system used in the experiment is illustrated in Figure 4-10. The 

details of the setup are described in Chapter 4.3.1. In Figure 4-10, radial 

polarization output mode intensity as measured by an infrared camera (Indigo 

MerlinTM) is donut shaped, which is shown as inset. Azimuthal polarization output 

intensity was also observed by translating L6 to the right about 1 mm to collimate 

the rays near the ordinary focus. The polarization evolution in the cavity is 

Figure 4-10. Illustration of the vectorial fiber laser design with a c-cut calcite 

crystal and a three-lens telescope in the cavity. An example of radial polarization 

mode intensity generated with this laser is shown at the top right inset photo. A 

series of four photos after inserting a linear polarizer is short on the top left inset.  
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studied when the laser produces radial or azimuthal polarization outputs. Besides 

measuring the output polarization, the polarization states in front and after the 

fiber are also measured. The measurements are done by putting a pellicle in the 

cavity at different locations (indicated in Figure 4-10). With an IR camera and a 

linear polarizer, the polarization states at those locations are analyzed.                 

 I first examine the polarization in the cavity when the output is radially 

polarized.  A pellicle is inserted between L3 and L4 with the surface of the pellicle 

is rotated by about 45° with respect to the optical axis. Ideally this angle needs to 

be very small to reduce the difference in reflectance for s- and p-polarizations. 

However, this was not possible for us due to the relatively large aperture size of 

the pellicle (2 inches) and a very tight space between L3 and L4. The incident 

angle we use is very close to the Brewster’s angle (for polymer with index of 

refraction of 1.47, the Brewster’s angle is 55.8°) where the p-polarization has 

reflectance nearly zero. This needs to be taken into considerations for the 

polarization analysis in this part.         

 The beam profile is recorded with the infrared camera and the polarization 

is analyzed by rotating a linear polarizer in front of the camera (shown in Figures 

4-10). Figures 4-11(a)-(c) are the measurements for the beam exiting from the 

fiber end. Figure 4-11(a) is the beam profile without passing through the linear 

polarizer, and Figures 4-11(b) and (c) are the beams with a linear polarizer. The 

polarizer transmission axis is indicated by the white arrow. For radial polarization 

the right and left sides of the beam are p-polarized will be extinguished by the 

pellicle at an incident angle near Brewster’s angle, leaving the top and bottom 
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parts that are s-polarized. Figures 4-11(b) and (c) further confirm that the 

polarization of the beam reflected by the pellicle is mostly vertical. Similarly, the 

polarization state of the beam back to the fiber is measured, and the results are 

shown in Figures 4-11(d)-(f). From these measurements we conclude that, 

between L3 and L4, the polarization states in both directions between the fiber 

and the output mirror are radial polarizations, which is expected from the self-

consistent requirement of laser theory.   

          

 

 

 

 Similarly, the polarization states between L3 and L4 are examined for 

azimuthal polarization output (shown in Figures 4-12). Compared with Figures 4-

(a) (b) (c) 

(d) (e) (f) 

Figure 4-11. Polarization states between L3 and L4 when the output is radial 

polarization. (a)-(c) represent the beam from the fiber; (a) the initial the beam from 

the fiber, (b) and (c) are the beams  after a linear polarizer; (d)-(f) represent the 

beam from the crystal back into the fiber; (d) the initial beam without linear 

polarizer, (e) and (f) are the beams after a linear polarizer. The linear polarizer 

axes are indicated by white arrows.  
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11, the beam profile without passing through linear polarizer becomes two 

horizontal spots. This is because for azimuthal polarization the top and bottom 

parts are p-polarized with respect to the pellicle. Thus, at incident angle close to 

the Brewster’s angle, the left and right parts are reflected. The polarization 

direction measurements with a linear polarizer confirmed this conclusion.      

             

 

 

 

 For radial and azimuthal polarization output, the polarization states 

between M1 and the dichroic mirror (see Figure 4-10) are also measured by 

using the same pellicle. In this case the incident angle on the pellicle is adjusted 

to be very small to minimize the difference in reflectance for s-polarization and p-

polarization since there is sufficient space between M1 and the dichroic mirror. 

(a) (b) (c) 

(d) (f) (e) 

Figure 4-12. Polarization states between L3 and L4 when the output is 

azimuthal polarization. (a)-(c) represent the beam from the fiber; (a) the initial 

the beam from the fiber, (b) and (c) are the beams  after linear polarizers; (d)-

(f) represent the beam from the crystal; (d) the initial beam from the crystal, 

(e) and (f) are the beams after linear polarizers. The linear polarizer axes are 

indicated by white arrows. 
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The experimental results show the beam profile for both cases are nearly a 

Gaussian and the polarization states are linear (see Figures 4-13). Figures 4-

13(a)-(c) show the measurements corresponding to radial polarization output and 

Figures 4-13(d)-(f) are for azimuthal polarization output. Notice that the 

orientations of the linear polarization corresponding to the radial and azimuthal 

polarization outputs have approximately 45° angle with respect to each other. 

The linear polarization state near M1 is also verified by directly inserting a linear  

polarizer between M1 and the dichroci mirror. When the polarizer axis is rotated 

to be the same as the measured axis of linear polarization, the CV beams output 

profile and polarization at M2 is maintained to be either radial or azimuthal, which 

again  confirms the linearly polarized beam at this end of the cavity.  
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4.3.3 Generation of generalized cylindrical vector output 

 In Figure 4-10, we used the rim rays to draw two distinctively separated 

foci corresponding to the radial and azimuthal polarization to illustrate the 

working principle of this fiber laser design. In reality, the two foci are connected 

as a continuous caustic zone with the near axis rays being included. If we 

translate lens L6 such that its front focal point is located in the middle of the two 

foci for the rim rays, then both radial and azimuthal polarization could oscillate 

simultaneously in the cavity, producing a generalized cylindrical vector beam with 

the local polarization pointing with certain angle between the radial and 

azimuthal directions. This is confirmed experimentally (see Figures 4-14). The 

(a) (b) (c) 

(d) (e) (f) 

Figure 4-13. Polarization states in the cavity in front of M1 for radial and 

azimuthal polarization outputs. (a)-(c) and (d)-(f) represent the polarization states 

for radial and azimuthal polarization outputs respectively. The linear polarizer 

axes are indicated by white arrows. 
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overall beam intensity profile is shown in Figure 4-14(a). The beam profiles after 

a linear polarizer are shown in Figures 4-14(b)-(d). From these measurements 

we can calculate the local polarization direction which is illustrated with those 

black arrows superimposed on Figure 4-14(a). In this case, it is found that the 

local polarization points at approximated 30° away from the radial direction and 

the polarization distribution maintains cylindrical symmetry. The radial and 

azimuthal components superimpose to each other and result in a generalized 

polarization state as we expected. 

4.3.4 Vectorial vortex mode generation with angular misalignment 

 For the experiments described above, the c-cut calcite crystal is carefully 

aligned with the three-lens telescope and the cavity. However, if the calcite 

crystal is intentionally misaligned angularly while lens L6 focuses in the middle of 

the two foci, complicated polarization vortex structures are observed. One of 

(a) 

(b) (c) 

(d) (e) 

Figure 4-14. Generation of generalized cylindrical vector polarization. (a) the 

output beam intensity profile; (b)-(e) the intensity profiles after a linear polarizer 

whose transmission axis is indicated by the white arrows.  
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such example is shown in Figure 4-15. Figure 4-15(a) is the output beam profile 

which still exhibits a donut shape with larger dark core. However, the beam after 

a linear polarizer has a 4-lobe pattern and the pattern does not follow the rotation 

of the linear polarizer (Figures 4-15(b)-(e)). Apparently, the polarization of this 

output mode is no longer cylindrically symmetric.      

 The observed patterns can be phenomenological explained by the linear 

superposition of radially polarized and azimuthally polarized modes with opposite 

topological charges [66].  Assuming the radial and the azimuthal polarizations 

have the same Laguerre Gaussian profile with opposite topological charges +1 

and -1 respectively; these two components can be written as: 

𝐸r 𝑟, 𝑧 = 0 = 𝐴ra   2
𝑟

𝑤0
 𝑒𝑥𝑝  −

𝑟2

𝑤0
2 e+𝑖φ⁡e𝑖φ1𝐞 𝑟 ,                        (4.14) 

𝐸φ 𝑟, 𝑧 = 0 = 𝐴az   2
𝑟

𝑤0
 𝑒𝑥𝑝  −

𝑟2

𝑤0
2 e−𝑖φ⁡e𝑖φ2𝐞 𝜑⁡,                      (4.15) 

where 𝑤0  is the beam size at the beam waist; 𝜑  is the azimuthal angle with 

respect to the positive x-axis direction; e−𝑖φ and e+𝑖φ are the spiral phase terms 

and e𝑖φ1  and e𝑖φ2  take account the phase differences due to the wavelength 

difference and path difference for each polarization in the cavity [68]. In our 

simulation we choose φ
1

= π/4  and φ
2

= −π/4. In order to perform coherent 

addition of both fields, the radial and azimuthal polarizations are decomposed 

into x- and y-axis as: 

𝐸r = cosφ ∙ 𝐸r 𝑟, 𝑧 = 0 𝐞 𝑥 + sinφ ∙ 𝐸r 𝑟, 𝑧 = 0 𝐞 𝑦 ,                        (4.16) 
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𝐸φ = sinφ ∙ 𝐸φ 𝑟, 𝑧 = 0 𝐞 𝑥 − 𝑐𝑜𝑠φ ∙ 𝐸φ 𝑟, 𝑧 = 0 𝐞 𝑦 .                        (4.17) 

 The simulation results are shown in Figures 4-15. Figure 4-15(a) is the 

simulated output beam profile, while Figures 4-15(b)-(e) show the beam profiles 

after passing through a linear polarizer with transmission axis indicated by the 

white arrow. The simulation is able to repeat the general pattern of the 

experimental results shown in Figures 4-16.  

 

 

 

 

 

 

 

 

 

 

Figure 4-15. Experimental results of output mode with angular misalignment 

and four-spot patterns after polarizer. (a) the intensity profile of the output 

mode; (b)-(e) the beam intensity profiles after a linear polarizer whose 

transmission axis is indicated by the white arrow. 

 

(a) 

(b) (c) 

(d) (e) 
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 Experiment results of donut output modes with 6-lobe pattern after the 

linear polarizer have also been observed, see Figures 4-17. Numerical simulation 

of a linear superposition of radial and azimuthal polarizations with positive and 

negative spiral phase with topological charge of 2 are consistent with 

experimental observations, see Figure 4-18. However, the physical explanation 

of this observation is still under investigation.  

 

(a) 

(b) (c) 

(d) (e) 

Figure 4-16. Numerical simulation results of the linear superposition of radial and 

azimuthal polarization with one opposite topological charge. (a) shows the overall 

intensity profile; (b)-(e) are the beam profiles after linear polarizer whose 

transmission axis is indicated by white arrows. 
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Figure 4-17. Experimental results of output mode with angular misalignment and six-

spot patterns after polarizer. (a) the intensity profile of the output mode; (b)-(e) the 

beam intensity profiles after a linear polarizer whose transmission axis is indicated by 

the white arrow. 

 

Figure 4-18. Numerical simulation results of the linear superposition of radial and 

azimuthal polarization with two opposite topological charges. (a) shows the overall 

intensity profile; (b)-(e) are the beam profiles after linear polarizer whose 

transmission axis is indicated by white arrows. 
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4.4 Summary 

 In this Chapter, a fiber laser with spatially variant polarization states has 

been experimentally constructed and the field distributions for radial and 

azimuthal polarizations in the cavity have been obtained. Our fiber laser cavity 

can be switched between the two polarization states by adjusting one lens. The 

ordinary ray (azimuthal polarization) and the extraordinary ray (radial polarization) 

behaviour in a c-cut calcite crystal have been studied with birefringence ray 

tracing and the foci separation of the rays after the crystal has been determined 

as a function of the incident angle.  These forms the theoretical foundation of a 

fiber laser cavity design that can produce switchable radially and azimuthally 

polarized output modes. The maximum radial and azimuthal polarization power 

output is about 140 mW. The output power can be further improved by optimizing 

the pump laser wavelength, using an optimal fiber length, and choosing an 

optimal output coupler, as well as improving the pump coupling efficiency, etc.  

 I also reported the producing of reconfigurable vectorial output modes. 

The evolution of the mode polarization in the laser cavity has been investigated. 

The vectorial self-consistency condition within this cavity is confirmed by 

observing the polarization in both directions between the output mirror and the 

erbium doped fiber. It is also found that the erbium doped fiber performs a 

polarization mode conversion function in the cavity that allows the conversion 
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between a spatially homogeneous polarization state on one end of the fiber and 

a spatially inhomogeneous polarization states on the other end of the fiber [69]. 

 In addition, by translating one of the intracavity lenses, both radial and 

azimuthal polarizations can oscillate simultaneously, producing generalized CV 

beam output directly. If angular misalignment is introduced to the birefringent 

crystal at this point, more complicated vectorial output modes have also been 

observed. We phenomenologically explained the observed complex polarization 

patterns of these donut shape vectorial modes as linear combinations of 

orthogonally polarized vectorial vortex beams with different topological charges. 

However, the exact underlying physical process that gives rise to such 

phenomena needs further investigation.       

 The findings reported here contribute to the understanding of the 

polarization dynamics and design issues of vectorial fiber lasers and demonstrate 

the rich polarization phenomena within a fiber laser cavity that could be exploited 

for applications. For example, the spatial separation of the spatially 

homogeneous and inhomogeneous polarization states in the same laser cavity is 

very interesting. Such a spatial separation may enable new fiber laser cavity 

designs. Vectorial laser modes with shorter wavelengths could be achieved by 

inserting nonlinear optical crystal in the part of cavity with linear polarization 

states to perform frequency conversion such as frequency doubling, a nonlinear 

optical process cannot be directly performed to the spatially inhomogeneous 
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states due to the requirements on polarization and phase matching. 

 Sources with such unusual beam polarizations can be suitable for 

applications in fiber communication, free space communication, and remote 

sensing technologies. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK  

 

 In the first chapter, I studied the Er-Yb fiber amplifiers. The pump 

dissipation and the signal amplification are simulated in the fiber by solving the 

rate equations. In the future, for the Er-Yb fiber laser system, the signal 

saturation effects also need to be considered. The simulation results can also be 

applied to wavelength tunable fiber laser development.  

 In the second chapter, GG fiber is introduced. The self-focusing, 

collapsing and self-phase modulation effects are investigated by propagating a 

spatial-temporal pulse in the fiber. Self-focusing of the pulse in the GG fiber 

makes this fiber possible for mode-locking. A GG fiber with a standard SMF is 

used to construct a fiber ring cavity which is proposed for making a Kerr-lens 

mode-locking fiber laser. It is found that by shortening the pulse, the temporal 

dispersion becomes significant in a very short GG fiber section. This temporal 

dispersion gives opportunities to balance the phase from the self-phase 

modulation in the GG fiber. Fiber Bragg-grating can also be added to this fiber 

laser cavity for flattening the phase of the pulse to avoid collapsing of the pulse. 

In the future, a more detailed mode-locked fiber laser system will be developed, 
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and the numerical algorithm for pulse propagation in the whole cavity will also be 

made complete. 

 In Chapter 3, a all fiber based phase-locked fiber laser is proposed. Self-

imaging is simulated in the LMA fiber, and the result can be used to guided the 

fabricattion of the micro-structured cavity mirrors in the future. In order to achive 

lasing and change the output charactericstics, the pump lasers can also be 

maded tunable along z direction, and the polarization can also be  controled by 

using waveplates.  

 In Chapter 4, CV beams generation is covered. A fiber laser system that is 

capable of generating both radial and azimuthal polarization output is 

demonstrated. The superposition of both radial and azimuthal polarization as an 

output is also achieved from this fiber laser cavity. Misalignment in the cavity 

which introduces opposite topological charges to both of the polarization 

components, and more generalized polarization patterns are obtained. Sources 

of these generalized CV beams will found applications in free space 

communications, remote sensing, etc.  The polarization evolution throughout the 

fiber laser cavity is carefully investigated while the output is radial or azimuthal 

polarization. The founding that at the other end of the cavity, the polarization is 

linear will open access to nonlinear processes such as second harmonic 

generations. So in future studies, a nonlinear crystal like BBO crystal can be put 

at the cavity end where the signal is linearly polarized and the phase matching 
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conditions is satisfied, it is expected that the doubled frequency signal will be 

guided in the cavity and at the output end exhibited the same polarization as the 

original signal.  

 Also note that the current slope efficiency of the laser system is low, 

improving the pump coupling efficiency is desired in the future for more output 

power. In Figure 34 shows an updated design. This proposed design has one 

extra fiber section attached to the erbium fiber; L1 and L2 to be the same lens; 

angle cleave the erbium fiber end. The extra fiber section has core size and 

numerical aperture matched to the pump laser, also it is size is taped down at 

one end to match the erbium fiber. In this way, it is expected the coupling 

efficiency would be significantly improved. The angle cleave of the Er fiber can 

reduce the parasite oscillations induced by ASE. The taping, splicing, and angle 

cleave can be done with the Vytran GPX 2000 fiber treating device available in 

the lab.  

 

 

 

Figure 5-1. Updated fiber laser system design for further improve the slope efficiency. 
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