
 
 

SPARSE FREQUENCY LASER RADAR SIGNAL MODELING AND 

DOPPLER PROCESSING 

 

 

Thesis 

Submitted to 

The School of Engineering of the 

UNIVERSITY OF DAYTON 

 

 

 

In Partial Fulfillment of the Requirements for 

The Degree of 

Master of Science in Electro-Optics 

 

 

 

Eric Stanton Bailey 

UNIVERSITY OF DAYTON 

DAYTON, OHIO 

May 2010



ii 
 

SPARSE FREQUENCY LASER RADAR SIGNAL MODELING AND 
DOPPLER PROCESSING 

 

 

APPROVED BY: 

 

 

______________________________  ______________________________ 
Peter E. Powers, Ph. D.    Matthew P. Dierking, Ph. D. 
Advisory Committee Chairman   Committee Member 
Professor Physics & Electro-Optics   Technical Advisor 
       AFRL/RYJM, WPAFB, OH 
 

 

______________________________ 
Joseph W. Haus, Ph. D. 
Committee Member  
Professor & Director 
Electro-Optics 
 

 

______________________________  _____________________________  
Malcolm W. Daniels, Ph. D.    Tony E. Saliba, Ph. D. 
Associate Dean     Dean 
School of Engineering    School of Engineering 
  



iii 
 

ABSTRACT 

 
SPARSE FREQUENCY LASER RADAR SIGNAL MODELING AND 
DOPPLER PROCESSING 

 
Bailey, Eric Stanton 
University of Dayton, 2010 
 
Advisor:  Peter E. Powers, Ph.D. 
 

Sparse frequency, linearly frequency modulated laser radar (ladar) signals achieve 

improved range resolution comparable to a larger signal bandwidth.  From basic 

radar/ladar principles it is known that the bandwidth of a signal is inversely proportional 

to range resolution.  Hence, the effective bandwidth of a ladar signal using sparse 

frequency techniques is larger than the bandwidth of each modulated laser frequency.  

Previous experiments have validated range resolution and peak to sidelobe ratio derived 

from models utilizing two segmented bandwidths.  This thesis discusses the modeling 

with three segmented bandwidths.  The model is verified against an experimental setup 

using three frequency offset lasers. 

The two segmented bandwidth, sparse frequency ladar signal is reexamined to 

include Doppler effects.  The new modeling utilizes a coherent on receive setup allowing 

for phase information to be processed from the signal.  The extracted phase information 

can be used to determine characteristics about a target, namely its speed and direction 

with respect to the receiver.  This modeling was experimentally verified for 
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cases where the target was next to the receiver, at a distance (simulated through a fiber 

delay line), and for multiple targets.  As a final check of the modeling, the velocity 

determined from the phase information was compared against the velocity readout of a 

stage with a built in optical encoder.
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CHAPTER 1 - 
INTRODUCTION 

A. Background 

The relationship between techniques in the radar communities and those used in 

the ladar communities can be quite similar if not identical.  It is worth acknowledging 

that much of the research in ladar can be correlated to previous work done in the radar 

community, albeit at much different frequencies.  The goal of this section is to provide a 

brief history for the development of frequency modulated laser radar and laser 

rangefinder signals including the relevance to recent publications. 

In 1943, D. O. North presented his work “Analysis of factors which determine 

signal-to-noise discrimination in radar” [1].  His paper laid the mathematical foundation 

for what an ideal receiver should be.  The process called matched filtering is still in wide 

use today and prevalent throughout this thesis.  The name matched filter comes from 

work done by Van Vleck and Middleton, who first coined the term [2].  Synonymously, 

matched filter is sometimes called a North Filter after D. O. North.  The next major 

realization in radar signals came about one decade later in 1953 when P. M. Woodward 

published a paper entitled “Probability and Information Theory, with Applications to 

Radar” where he detailed how range resolution was not a function of the transmitted 

pulse width but actually a function of the signal’s bandwidth [3].  The work inspected 

how range resolution requirements could be met by coding the transmitted signal with 
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wideband modulation.  Over the next two decades work was done on radar signals, and 

the reader is referred to the publications on radar signals by Cook 1958 and 1959, Fowle 

1963, and Bernfeld 1965 [4, 5, 6, 7]. 

Around the mid 1970’s, works involving CO2 lasers as rangefinders and some 

applications to laser radar were starting to emerge.  One of the earliest papers published 

was by A. J. Hughes in 1972 where he used a CO2 laser to perform range measurements 

at the 10 µm wavelength [8].  Other papers involving CO2 laser started emerging soon 

after, including work by Hulme using heterodyne detection and chirped pulse 

compression, Forrester on laser rangefinders, and Collins, who used a CO2 laser in 

conjunction with an acousto-optic modulator to do heterodyne detection [9, 10, 11].  By 

the mid 1980’s a new subfield had developed based around CO2 lasers for use in 

determining atmospheric conditions (atmospheric lidar).  Since atmospheric lidar is a 

topic of its own and does not have much bearing on this thesis, the reader is referred to 

two recent works on lidar signals.  Adany presents results on chirped lidar that utilizes 

homodyne detection, and Tsuji offers a paper which treats resolution in coherent 

reflectometry [12,13

The last part of this section covers the placement of this work among other related 

works.  It focuses on recent work in the ladar signals field.  The work that is most closely 

related was done by Robert Chimenti on sparse frequency linearly frequency modulated 

laser radar signals.  His papers on theory and experimental verification laid the 

foundation for the derivative work presented here.  His works and mine provide a 

mechanism for increasing the bandwidth of ladar signals by modulating multiple laser 

].  
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lines, which is commonly referred to simply as ‘lines’, simultaneously.  The increased 

bandwidth provides for an increase in the range resolution of the signal [14,15].   

One of the more novel techniques for increasing bandwidth of a signal was 

pioneered by Kevin Holman of MIT’s Lincoln Laboratory.  His technique employs a 5 

GHz modulator to create two signals spaced by 10 GHz, upon which they are 

multiplexed, on/off modulated, and demultiplexed to create a signal that is one frequency 

for half the signal period and another frequency for the other half, where the frequency 

difference is 10 GHz.  The signal is then modulated with 10 GHz twice over the signal 

period.  This creates one large 20 GHz linear chirp.  His work allows for sub millimeter 

range resolution but adds greatly in hardware complexity [16,17]. 

Another technique that has been utilized in recent years is the use of pseudo-

random code or white noise waveforms.  In particular, a group from Spectrum Labs 

associated with the Montana State University has developed a technique to store, 

compare, and read out the waveform at a slower rate to reduce detection and post 

processing requirements.  The process works by taking a transmit laser and encoding it 

via a PN code generator/electro-optic modulator.  The signal is then split where one is 

used as the reference and the other is transmitted to the target.  They are both run through 

a cryogenically cooled, nonlinear material, where the information is stored.  The 

information is read out with a second laser that is linearly frequency modulated.  Since 

the speed at which the signal is read out is proportional to the slope of the linearly 

modulated signal, detector requirements are reduced.  The major advantage of this work 

is the optical correlation done in the nonlinear material.  However, the major drawback is 

the nonlinear material needing to be cooled to 4 degrees Kelvin [18,19]. 
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Furher research on periodic pseudo noise waveforms has been done by Matt 

Dierking of Air Force Research Laboratory.  His work uses a PN code generator and an 

I/Q detection setup with matched filtering to determine the range resolution and sidelobe 

structure of a specific code set.  The code is then altered and the new code is accepted if 

the sidelobe structure is reduced in the area around the target.  The process is iterated 

multiple times to drastically reduce the sidelobe structure around a target.  However, this 

suppression of the sidelobes around the target increases the sidelobes that are not around 

the target.  This technique would be advantageous if looking at a narrow range is desired 

[20]. 

A large body of other work has been published on ladar signals.  To finish this 

background section, the following papers are cited here but not discussed in detail:  

Zheng paper on continuous wave optical frequency modulation interference [21]; 

Duartes’ paper on vessel detection using continuous wave linearly frequency modulated 

radar signals [22]; and range resolution limits of time-of-flight laser radar are presented 

in a conference paper by Khoury [23].  Lastly, three conference papers are worthy of 

mention to the reader from the Lockheed Martin Coherent Technologies group about 

range precision in both coherent ladar and direct detection systems, and micro-Doppler 

lidar signals [24,25,26

B. Thesis Overview 

].  

The research presented in this thesis investigates the use of sparse frequency 

linearly frequency modulated (SF-LFM) ladar signals for use in range-Doppler ladar 

systems.  Chapter 2 explains fundamental concepts in ladar/radar signal processing.  It 

describes the basic concepts one needs to understand in order to comprehend the 
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research, including information on matched filter processing, coherent signals and 

processing, ambiguity functions, and both linear and nonlinear frequency modulation.  

Chapter 3 is a review of SF-LFM signals.  It includes discussion on how the signals are 

generated and detected as well as how the signals are mathematically defined.  The last 

part of the chapter focuses on the metrics (range resolution and peak to sidelobe ratio) 

used to characterize the signal. 

Chapter 4 is the start of continued research and begins with a mathematical form 

of SF-LFM signals defined by Chimenti et al. to create what is called a three chirp SF-

LFM signal [15].  The chapter addresses the modeling of the signal, the experimental 

setup used to determine the validity of the model, the signal processing utilized, and 

finally the results of the actual experimental verification. 

Chapters 5 and 6 introduce Doppler effects into the SF-LFM signals.  They cover 

a new modeling that utilizes matched filter processing, where the phase of the signal can 

be recovered and used to determine both the speed of a target as well as the radial 

direction.  The experimental setup and its requirements are discussed and experimental 

verifications are presented on targets at no range and targets at range.  Chapter 6 

specifically cover the case where there are multiple targets, a close and a distant target, 

and shows both the experimental setup and the results of that experiment. 

Chapter 7 takes a brief look at how nonlinear frequency modulation can be used 

to increase range resolution and peak to sidelobe ratio of ladar signals.  More specifically 

it looks at nonlinearities in the acousto-optic modulator and how they can be exploited to 

improve both the range resolution and the peak to sidelobe ratio simultaneously. 
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CHAPTER 2 - 
LADAR SIGNAL PROCESSING 

 This chapter covers some terminology and basic concepts involved in the 

processing of ladar signals, the most important of which is matched filter processing. 

 In order to recognize how Doppler signal processing is utilized, two essential 

relationships are required governing the time delay and phase impacs associated with the 

targets geometry and motion.  First, the target range 𝑅𝑅 is written as of an object with the 

time delay (𝜏𝜏) of the received signal, 

 𝑅𝑅 = 1
2
𝑐𝑐𝜏𝜏, (2.1) 

where c is the speed of light and 𝜏𝜏 is the propagation delay of the received signal.  The 

factor of one half is due to the round trip travel, where the total distance traversed by the 

signal is twice the actual range of the object.  The second relationship, is the Doppler 

shift due to relative target motion and is written as, 

 𝜐𝜐 ≈ − 2�̇�𝑅
𝜆𝜆

, (2.2) 

where �̇�𝑅 is the target velocity and 𝜆𝜆 is the carrier wavelength.  A more detailed analysis 

of Equations 2.1 and 2.2 can be found in Radar Signals by Levonon and Mozeson’s [27]. 
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A. Matched Filter Processing 

Matched filter processing was developed from optimizing the signal to noise ratio 

(SNR) of an incoming signal.  Most radar signals books, including Levonon’s Radar 

Signals or Cook and Bernfeld’s Radar Signals: An Introduction to Theory and 

Application [27, 28

 ℎ(𝑡𝑡) = 𝐾𝐾𝜇𝜇∗(𝑡𝑡0 − 𝑡𝑡), (2.3) 

], show that in order to maximize the signal-tonoise ratio (SNR), the 

impulse response of the system should be given by, 

where ℎ(𝑡𝑡) is the impulse response, 𝐾𝐾 is a scaling constant, s(𝑡𝑡) is the signal, and 𝑡𝑡0 is a 

time delay/reference point.  To determine the output of a linear system, the input signal is 

convolved with the impulse response, a derivation that can be found in most signals and 

systems books [29, 30, 31

 𝜇𝜇𝑜𝑜(𝑡𝑡) = (𝜇𝜇 ∗ ℎ)(𝑡𝑡) = ∫ 𝜇𝜇(𝜏𝜏)ℎ∗(𝜏𝜏 − 𝑡𝑡)𝑑𝑑𝜏𝜏∞
−∞ . (2.4) 

] 

Equation 2.4 shows the signal output as a function of the input signal and the impulse 

response.  If the assumption is made that there is no time delay for the input signal (i.e. 

𝑡𝑡0 = 0), the output signal can be reduced to the autocorrelation of the signal, 

 𝜇𝜇𝑜𝑜(𝑡𝑡) = 𝐾𝐾 ∫ 𝜇𝜇(𝜏𝜏)𝜇𝜇∗(𝜏𝜏 − 𝑡𝑡)𝑑𝑑𝜏𝜏∞
−∞  (2.5) 

where once again, 𝐾𝐾 is a scaling constant, 𝜇𝜇(𝜏𝜏)is the signal, 𝜏𝜏 is a dummy variable of 

integration, and 𝜇𝜇∗ is the conjugate of 𝜇𝜇.  Later this assumption is dropped in order to 

account for targets at range. 

The simplest example of a matched filter process is a single frequency signal, 

where the signal is defined by, 

 𝜇𝜇(𝑡𝑡) = 1
√𝑇𝑇
𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡

𝑇𝑇
�. (2.6) 
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where 𝑇𝑇 is the period of the signal and 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡
𝑇𝑇
� is the rectangle function which is 1 form 

– 𝑇𝑇
2
≤ 𝑡𝑡 ≤ 𝑇𝑇

2
 and zero elsewhere. 

The results of using Equation 2.6 in Equation 2.5 and assuming 𝐾𝐾 = 1, see [27, 28] for a 

detailed derivation. 

 
Figure 2.1:  Matched filter output of a single tone radar signal. 

The results of using Equation 2.6 in Equation 2.5 and assuming 𝐾𝐾 = 1 is shown in Figure 

2.1, see [27, 28] for a detailed derivation.  Range resolution is defined as the full width 

half max (FWHM) of the primary lobe of the matched filter output.  Figure 2.1 shows a 

FWHM of T corresponding to a range resolution of 𝑐𝑐𝑇𝑇/2.  Remember there is direct 

mapping between the time delay, 𝜏𝜏, and range, R, given in Equation 2.1 and from this, 

range resolution can be deduced. 

For a more detailed analysis of the previous equations and general information 

about matched filter processing, the reader may refer to Radar Signals, Radar Signals:  

An Introduction to Theory and Application, and D. O. North’s work on radar signals [1, 

27, 28]. 
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B. Coherent Processing 

To explain coherent processing, a train of unmodulated pulses is used as an 

example.  It is important note that the Doppler resolution of a radar or ladar signal is 

directly proportional to the duration of the signal.  The Doppler shift is small for most 

target motions for the shot duration of most common radar waveforms.  However, a train 

of pulses can be beneficially used in increasing the Doppler resolution. 

 

 
Figure 2.2:  On(solid)/off(dashed) gating of a radar signal showing two coherent pulses. 

In order to utilize the Doppler information between each of the pulses it is 

necessary for each of the pulses to be coherent with each other.  Figure 2.2 shows an 

example of two pulses that are coherent.  When the pulses are coherent with each other 

and the initial phase of each pulse is known to the receiver, a Doppler-induced phase 

change can be detected. 

For many radar and especially ladar systems it is difficult to be coherent over 

large durations of time.  Because of this, a technique call coherent on receive was 

developed [27].  In a system utilizing coherent on receive, the phase of the transmitted 

pulse is recorded as a reference for the return signal, but it is important to note that the 
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phase is only known for the previous pulse.  Later, additional stipulations are added to the 

definition of coherent on receive to account for differences between radar versus ladar 

detection and processing. 

C. Ambiguity Function 

The ambiguity function, or uncertainty function as it is sometimes called, 

establishes the effectiveness of a matched filter waveform, and is typically used for 

determining the velocity and range of a single pulse or of multiple targets.  Throughout 

this thesis, the ambiguity function is defined by, and was originally developed by P.M. 

Woodward in 1953 [3]. 

 |𝜒𝜒(𝜏𝜏, 𝜈𝜈)| = �∫ 𝑢𝑢(𝑡𝑡)𝑢𝑢∗(𝑡𝑡 + 𝜏𝜏)𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈𝑡𝑡 𝑑𝑑𝑡𝑡∞
−∞ � (2.7) 

Equation 2.7 shows the ambiguity function defined by Woodward, where 𝜏𝜏 

describes an input signal’s time delay, 𝜈𝜈 is the Doppler shifted frequency of the input 

signal, and 𝑢𝑢(𝑡𝑡) is the complex representation of the signal.   

 
Figure 2.3:  Ambiguity function of a single tone radar signal. 
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We proceed with the single frequency example in Section A and using Equation 2.6, an 

example ambiguity function was plotted in Figure 2.3 showing the first two quadrants.  It 

is easy to see that the zero Doppler cut in Figure 2.3 is the same as the matched filter 

output in Figure 2.1.  By removing the Doppler portion of Equation 2.7, the function 

reduces to the autocorrelation of the complex envelope as seen, 

 |𝜒𝜒(𝜏𝜏, 𝜈𝜈)| = �∫ 𝑢𝑢(𝑡𝑡)𝑢𝑢∗(𝑡𝑡 + 𝜏𝜏)𝑑𝑑𝑡𝑡∞
−∞ �. (2.8) 

D. Linear Frequency Modulation 

As mentioned previously, matched filter radar and ladar signals have a range 

resolution proportional to their bandwidth.  With the exception of using shorter transform 

limited pulses, which lower the signal to noise ratio for constant peak power waveforms, 

a common way to add bandwidth is by modulating the frequency of the signal. 

 Of the various forms of modulation techniques, the most common and first to be 

conceived, is linear frequency modulation (LFM) [28].  The main idea behind LFM is to 

sweep the frequency of the pulse linearly over its duration.  The complex envelope of an 

LFM radar pulse is given by,  

 𝑢𝑢(𝑡𝑡) = 1
√𝑇𝑇
𝑟𝑟𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡

𝑇𝑇
� 𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2�, (2.9) 

where 𝑇𝑇 is the pulse duration, 𝑓𝑓 is the carrier frequency, and 𝛽𝛽 is the chirp coefficient 

defined by, 

 𝛽𝛽 = 2𝜋𝜋𝜋𝜋
𝑇𝑇

, (2.10) 

where 𝜋𝜋 is the modulation bandwidth and 𝑇𝑇 is the pulse duration. 
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Figure 2.4:  LFM signal with a time bandwidth product = 50. 

 
Figure 2.5:  LFM spectrum with a time bandwidth product = 50. 

 
Figure 2.6:  Ambiguity function of an LFM radar signal using a time bandwidth product = 10. 

Figure 2.4 and Figure 2.5 show an LFM chirp and its frequency spectrum 

respectively, where both are utilizing a time bandwidth product of 50.  By using Equation 
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2.8 in 2.7, the ambiguity function of an LFM pulse can be shown.  Figure 2.6 shows an 

example of an LFM ambiguity function with a time bandwidth product of 10. 

E. Nonlinear Frequency Modulation 

One of the more significant hurdles with LFM pulse compression is its nature to 

have relatively high sidelobes in the autocorrelation.  Nonlinear frequency modulation 

(NLFM) can simply be defined as a modulation where the instantaneous frequency is not 

linear in time, unlike an LFM pulse.  The idea behind NLFM is to spend more time at the 

frequencies that need to be enhanced and less at those that do not.   

 
Figure 2.7:  Instantaneous frequency of a nonlinear signal (Solid) and linear signal (Dashed). 

Figure 2.7 shows an example of the instantaneous frequency of a nonlinear signal and 

linear signal. 

As an aside, it is known that the inverse Fourier transform of the power spectrum 

is an autocorrelation.  So by applying an amplitude weighted window to the signal, one 

can reduce the sidelobes of the autocorrelation.  A multitude of windowing functions 

already exist, including Rectangular, Hamming, Hann, Cosine, Bartlett, etc., to perform 

various alterations on sidelobes [32].
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CHAPTER 3 - 
SPARSE FREQUENCY LADAR SIGNALS 

The basic concept of sparse frequency, linear frequency modulated signals can be 

developed from a similar one in radar and ladar called synthetic aperture radar (SAR) or 

synthetic aperture ladar (SAL).  The idea behind these two concepts is that by moving 

antennas in radar or apertures in ladar, then one is able to resolve a target with higher 

resolution without the need for a continuous antenna/aperture.  In both SAR and SAL, the 

idea is to physically move antennas/apertures to allow access to higher spatial frequency 

content [33,34

Since the theory for this has been well developed by Chimenti et al, the reader is 

referred to works on theory and experimental results [

].  In sparse frequency ladar, the same concept is applied in the time 

domain instead of the spatial domain.  By taking and modulating the signal so that 

smaller modulated portions are spaced in frequency, the effective bandwidth of the signal 

can be increased.  Remember, the range resolution of a signal is proportional to the 

bandwidth of that signal.  However, just as in SAR and SAL, there is a drawback to using 

a non-continuous aperture, namely a decrease in range resolution, which leads to a 

tradeoff in the peak to side lobe ratio of the signal. 

35,36,37].  The following is a brief 

review of SF-LFM signals, including generation and detection of ladar signals, 

development of theory including the modeling of the complex envelope, and finally the 

metrics used to determine the value of the signal.
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A. Generation & Detection 

When generating LFM signals, there are two common ways of applying the 

modulation to the signal, intracavity and extracavity.  In intracavity modulation, the 

cavity length of the laser is modulated in such a way that the output of the laser is linearly 

swept in frequency.  In extracavity modulation, an additional device such as an acousto-

optic modulator (AOM) is used to linearly modulate the signal.  This work focuses on the 

use of an AOM as an extracavity device for linearly modulating the ladar signal. 

  

Figure 3.1:  Two chirp SF-LFM ladar signal generation, detection, and processing. 

To generate a two chirp sparse frequency signal, two frequency offset locked 

lasers are coupled into a single fiber.  The signal is then linearly modulated by an AOM 

to generate what is called the sparse frequency linearly frequency modulated (SF-LFM) 

ladar signal.  The idea behind combining the signals before the AOM is twofold: first, it 

requires only a single modulator to generate the signal and second, it ensures that the 

noise added by the modulator is correlated for both chirps.  Upon return from the target, 

the signal is mixed with an un-modulated local oscillator that was originally split off from 

one of the sources.  The heterodyned signal, which is mixed on a high speed photodiode, 

is digitized and autocorrelated.  Figure 3.1 shows schematically how an SF-LFM signal is 

generated. 
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B. Complex Envelope 

Using what is defined as an SF-LFM signal, it is easy to develop a model of the 

complex envelope given what is already known about LFM signals [27].  The electric 

field of a single LFM chirp that is generated via an AOM can be defined by 

 𝐸𝐸(𝑡𝑡)|0
𝑇𝑇 = �̃�𝐴𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓+𝑓𝑓0)𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + 𝑐𝑐. 𝑐𝑐, (3.1) 

where 𝑓𝑓 is the carrier frequency of the signal, 𝑓𝑓0 is the frequency offset of the AOM, �̃�𝐴 is 

the complex amplitude of the field, and 𝛽𝛽 represents the chirp coefficient which is 

defined as a function of the AOM modulator bandwidth (𝜋𝜋) and the signal period (𝑇𝑇) as, 

 𝛽𝛽 = 2𝜋𝜋𝜋𝜋
𝑇𝑇

. (3.2) 

The superposition of an electric field is linear, and is therefore additive, so in order to 

create a two chirp SF-LFM signal the electric field is given as 

 𝐸𝐸(𝑡𝑡)|0
𝑇𝑇 = �̃�𝐴1𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓+𝑓𝑓0)𝑡𝑡+1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓+𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + 𝑐𝑐. 𝑐𝑐, (3.3) 

where 𝑑𝑑𝑓𝑓 is the difference frequency between the two offset laser sources. 

 When the SF-LFM field is added to the local oscillator field and mixed on a 

photodiode, the current produced by that photodiode is proportional to the modulus 

squared of the total field given by 

 𝜇𝜇(𝑡𝑡)|0
𝑇𝑇 = ��̃�𝐴1𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓+𝑓𝑓0)𝑡𝑡+1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓+𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + �̃�𝐴𝐿𝐿𝐿𝐿𝑅𝑅𝑖𝑖2𝜋𝜋𝑓𝑓𝑡𝑡 �

2
, (3.4) 

where �̃�𝐴𝐿𝐿𝐿𝐿𝑅𝑅𝑖𝑖2𝜋𝜋𝑓𝑓𝑡𝑡  is the complex field of the local oscillator.  Assuming the complex 

amplitudes of the signal are approximately equal (�̃�𝐴1 ≈ �̃�𝐴2 = �̃�𝐴) and they are 

significantly lower than the amplitude of the local oscillator, then Equation 3.4 can be 

approximated by, 

 𝜇𝜇(𝑡𝑡)|0
𝑇𝑇 = 𝐼𝐼𝐿𝐿𝐿𝐿 + ��̃�𝐴�̃�𝐴𝐿𝐿𝐿𝐿∗ 𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + �̃�𝐴�̃�𝐴𝐿𝐿𝐿𝐿∗ 𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + 𝑐𝑐. 𝑐𝑐. � (3.5) 
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where 𝐼𝐼𝐿𝐿𝐿𝐿  is equal to the modulus squared of the local oscillator’s complex amplitude. 

  

 𝑢𝑢(𝑡𝑡)|0
𝑇𝑇 = �̃�𝐴�̃�𝐴𝐿𝐿𝐿𝐿∗ �𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2� + 𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2�� (3.6) 

The last step is to extract the complex envelope of the signal defined in Equation 3.5.  

This is done in practice through I/Q detection or in the case of a single photodiode, the 

Hilbert transform of the recorded signal.  Equation 3.6 shows the complex envelope of a 

two chirp SF-LFM signal, which is representative of what occurs in Figure 3.1. 

 
Figure 3.2:  SF-LFM spectrum with 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐝𝐝𝐝𝐝 = 𝟔𝟔𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, and T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

Similar to Figure 2.5, Figure 3.2 shows the spectrum of an SF-LFM ladar signal.  

From Figure 3.2 it is easy to see and understand how a two chirp SF-LFM signal results 

in two segmented bandwidths, which in turn results in an increase in effective bandwidth. 

C. Modeling 

Much work has been done by Chimenti et al. in the development of modeling SF-

LFM signals and the verification of the two chirp SF-LFM ladar signal [14, 15, 35, 36, 

37].  In his work, Chimenti chose to utilize the ambiguity function as a modeling tool for 

SF-LFM signals.  During that process he used the analytic expressions to understand the 
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underlying physics while using the numerical models to quickly obtain plots of the 

ambiguity.  Figure 3.3 and Figure 3.4 shows a typical zero Doppler cut of the ambiguity 

function and a zoomed in version of the central peak respectively. 

 
Figure 3.3:  Zero Doppler ambiguity function of an SF-LFM signal with 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 =

𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐝𝐝𝐝𝐝 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, and T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

 
Figure 3.4:  Central peak of a zero Doppler ambiguity function of an SF-LFM signal with 𝒇𝒇𝟎𝟎 =

𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐝𝐝𝐝𝐝 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, and T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

Two of the most important figures of merit in determining the worth of a ladar 

signal are its range resolution (𝛿𝛿𝑅𝑅) and peak to sidelobe ratio (PSLR).  From numerical 
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modeling of SF-LFM signals, range resolution can be calculated via the following 

relationship, 

 𝛿𝛿𝑅𝑅 = 𝛿𝛿𝜏𝜏∗𝑐𝑐
2

 (3.7) 

where 𝛿𝛿𝜏𝜏 is the time delay ambiguity given by the FWHM of the central lobe and 𝑐𝑐 is the 

speed of light.  The other metric, PSLR, is calculated by taking the ratio of the maximum 

sidelobe to the center lobe, or in dB the subtraction of the center lobe from the maximum 

sidelobe, given as, 

 𝑃𝑃𝑃𝑃𝐿𝐿𝑅𝑅 = |𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑖𝑖𝑑𝑑𝑅𝑅𝑆𝑆𝑜𝑜𝑆𝑆𝑅𝑅𝑑𝑑𝜋𝜋 |− |𝐶𝐶𝑅𝑅𝐶𝐶𝑡𝑡𝑟𝑟𝑀𝑀𝑆𝑆 𝑃𝑃𝑅𝑅𝑀𝑀𝑘𝑘𝑑𝑑𝜋𝜋 |. (3.8) 

Figure 3.5 and Figure 3.6 shows a typical range resolution and PSLR curve for an SF-

LFM signal in terms of the difference frequency. 

 
Figure 3.5:  Range resolution of an SF-LFM signal as a function of difference frequency df, with 

𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, and T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 
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Figure 3.6:  PSLR of an SF-LFM signal as a function of difference frequency df,  

with 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, and T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

The range resolution of a common system would generally be around the millimeter 

mark, even less for some applications, and by comparing this to Figure 3.5, the setup 

would fall short.  This is easily redeemable by using a modulator with a higher 

bandwidth.  PSLR of a single chirped waveform is always -13 dB and a good point of 

comparison.  From Figure 3.6, the PSLR is below the -13 dB point when the signals are 

slightly overlapped to slightly separate, showing a small improvement in the region.  

However, outside of this region the PSLR tends to move away from the -13 dB point 

towards 0 dB as the difference frequency is increased.
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CHAPTER 4 - 
VERIFICATION OF THREE CHIRP 

SPARSE FREQUENCY LFM MODEL 

The modeling originally performed by Chimenti et al. has shown that the extra 

bandwidth which results from the segmented signal increases the range resolution when 

compared to an LFM ladar signal [15].  An previously performed experiment verified the 

modeling of a two chirp SF-LFM ladar signal[14].  In this section of the thesis, the focus 

is on further verifying an altered version of the aforementioned model. 

A. Multiple Chirp Sparse Frequency LFM Model 

In the above-mentioned work, models were created to suit higher order SF-LFM 

ladar signals, up to six chirps.  The modeling pointed out that for each superimposed 

chirp, two sidelobes symmetric about the central peak, of great enough value to be 

considered false targets, would appear if the segmented bandwidths overlapped [14].  

Since the idea behind segmented bandwidth is to increase the range resolution, and 

significant sidelobes only occur when the segmented bands are overlapped, then the 

region of interest has been narrowed to where the bandwidths are no longer overlapping.  

The complex envelope is given by, 

 𝑢𝑢(𝑡𝑡)|0
𝑇𝑇 = �̃�𝐴�̃�𝐴𝐿𝐿𝐿𝐿∗ ∑ 𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+(𝐶𝐶−1) 𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2�𝑁𝑁

𝐶𝐶=1  (4.1) 
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where 𝑁𝑁 represents the number of chirps and the remaining nomenclature is the same as 

previously defined.  This model of the complex envelope was developed in such a way 

that the difference frequency between each chrip is a constant.  In order to fully verify 

whether or not the model is valid for higher orders, Equation 4.1 needs to be altered only 

slightly to, 

 𝑢𝑢(𝑡𝑡)|0
𝑇𝑇 = �̃�𝐴�̃�𝐴𝐿𝐿𝐿𝐿∗ ∑ 𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+ 𝑑𝑑𝑓𝑓𝐶𝐶 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2�𝑁𝑁

𝐶𝐶=0 . (4.2) 

The changing of 𝑑𝑑𝑓𝑓 to 𝑑𝑑𝑓𝑓𝐶𝐶  allows the difference frequencies between lines to vary 

between each other.  Also the removal of the (𝐶𝐶 − 1) term makes it easier to see that each 

line’s difference frequency is with respect to what would be considered the local 

oscillator or equivalently, the first chirp has no additional offset frequency, 𝑑𝑑𝑓𝑓0 = 0.   

 
Figure 4.1:  Frequency spectrum of a three chirp SF-LFM signal with 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 

𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, T= 𝟒𝟒 𝝁𝝁𝝁𝝁, 𝐝𝐝𝐝𝐝𝟏𝟏 = 𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, and 𝐝𝐝𝐝𝐝𝟐𝟐 = 𝟏𝟏𝟐𝟐𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴. 

Figure 4.1 shows an example of a three chirp SF-LFM signal with two difference 

frequencies. 

Just as in Figure 3.5 and Figure 3.6 where a model of the range resolution and 

PSLR was created for a two chirp SF-LFM signal, a model was created for a three chirp 

SF-LFM signal.  This time the model was plotted in three dimensions where the x and y 
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axes were each of the difference frequencies with respect to the local oscillator and their 

verticals were range resolution and PSLR respectively. 

 
Figure 4.2:  Range Resolution of a three chirp SF-LFM signal. 

 
Figure 4.3: PSLR of a three chirp SF-LFM signal. 

Figure 4.2 shows the range resolution of a three chirp SF-LFM signal as a 

function of its two difference frequencies.  One should note that as each difference 

frequency is increased, the range resolution of the signal is also increased.  Also, it can be 
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seen that when any chirp completely overlaps with another, a ridge of decreased range 

resolution is seen, i.e. when 𝑑𝑑𝑓𝑓0 = 𝑑𝑑𝑓𝑓1 = 0 or, 𝑑𝑑𝑓𝑓0 = 𝑑𝑑𝑓𝑓2 = 0 or 𝑑𝑑𝑓𝑓1 = 𝑑𝑑𝑓𝑓2.  This is due 

to the fact that range resolution is proportional to the amount of bandwidth in a signal.  

Note, the central ridge is continuous, however Figure 4.2 shows a periodic structure on 

this ridge which come about from the construction of the graphic and is not real.  The 

PSLR model of a three chirp SF-LFM signal can be seen in Figure 4.3.  From it, 

similarities can be deduced between the two chirp and three chirp models.  An unstable 

area, where the PSLR changes rapidly, exists when either chirp is overlapped with the 

𝑑𝑑𝑓𝑓0 chirp, or when 𝑑𝑑𝑓𝑓1 = 𝑑𝑑𝑓𝑓2.  Additionally, one can see a similar double dip followed 

by an asymptotically increasing PSLR. 

B. Experimental Setup 

As previously demonstrated with the two chirp experiments, the entire experiment 

was performed in polarization maintaining (PM) fiber optics [37].  PM fiber optics 

maintains the polarization state in fiber allowing for efficient heterodyne mixing.  In 

order to perform a three chirp experiment, three laser sources were required.  Two laser 

sources came via a custom designed highly stable diode laser system which utilized 

micro-Kelvin ovens and current controllers to set the specific frequency of each of the 

lines.  The third source was an Agilent telecom laser.  Of the sources, the custom 

designed one had the ability to continuously tune over a given frequency range.  In 

addition, the stability of that frequency is sub kilohertz over the recording time and 

sometimes even less.  The Agilent was tunable in frequency in discrete steps.  Its stability 

in frequency was not as well behaved as the custom source, but over the short recording 

intervals was more than sufficient. 
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 To linearly modulate the signal, an acousto-optic modulator was employed.  The 

device, designed by Brimrose, provided for a linear frequency shift from 730 MHz at .0 

V to 850 MHz at 5V [38

 

].   

Figure 4.4:  Waveform applied to the acousto-optic modulator. 

 Due to the high frequency content of the signals, potentially GHz and up, high 

speed detectors needed to be utilized.  Fiber coupled photodetectors (no. SIR5-FC) from 

ThorLabs were utilized.  The detectors, which have a bandwidth of around 6.5 GHz, 

could readily detect the approximately 1 GHz worth of signal bandwidth created by a 

three chirp SF-LFM signal [39

 In order to interpret information about the signal, an Acqiris DC252 high speed 

digitizer recorded the signal, which allowed for digital processing, or post processing, to 

be performed.  The Acqiris is a two channel digitizer that has a maximum sampling rate 

of 4 GS/s when recording on both channels [

]. 

40]. 
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Figure 4.5:  Experimental setup for a three chirp SF-LFM ladar signal’s generation, detection and 

processing. 

 Figure 4.4 shows the experimental setup.  All of the devices in the experiment are 

fiber-coupled, so no free-space optics were involved.  For a three chirp setup, laser 1 

(single output of the custom system) is split to serve two functions.  One, it is used as the 

local oscillator for the heterodyned signal and second, it is used as the first of three lines 

to create the sparse frequency signal.  The outputs of lasers 2 and 3 (one of the outputs of 

the custom system and the other the Agilent) were coupled together to create two more 

lines in the sparse frequency signal.  All laser lines were then combined together to create 

a three line sparse frequency signal.  The three line sparse frequency signal was then sent 

through an AOM, where the lines where shifted by approximately 750 MHz and linearly 

modulated for a total bandwidth of 37 MHz (per chirp) to create a three chirp SF-LFM 

signal.  The SF-LFM signal was combined with the local oscillator and mixed on a 

photodiode.  The signal was then digitized by the Acqiris and sent to a computer for 

processing.  Note, only one photodiode is required to process a signal since the matched 

filter, just like the ambiguity function, reduces to the autocorrelation of the original 

function (ie the three chrip function), when there is not Doppler or time delay. 
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C. Digital Signal Processing 

The amplitude of the three chirp SF-LFM signal is recorded by the digitizer and 

sent to the computer.   

 
Figure 4.6:  Three chirp SF-LFM signal recorded by the Acqiris. 

Figure 4.5 shows the raw, unprocessed amplitude of a 4 µs signal.  When the 

signal in Figure 4.5 is processed with a matched filter (autocorrelated), the output signal 

has significant additive noise. 

 
Figure 4.7:  Autocorrelation of a three chirp SF-LFM signal. 
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Figure 4.8:  Central peak of a three chirp SF-LFM signal (Black)  

with the theoretical overlay (red) 

Figure 4.6 and Figure 4.7 show a full matched filter output (MFO) and the same 

MFO zoomed in on the central peak.  Figure 4.7 also shows the theoretical 

autocorrelation curve for that specific SF-LFM signal.  From Figure 4.7 it is simple to see 

that noise from the raw signal is a limiting factor in performing matched filter processing.  

However, the noisy signal does roughly follow the theory envelope.   

One thing that is important to remember is that in the theory an I/Q detection 

setup was assumed.  In order to compensate for a lack of an I/Q setup, a Hilbert transform 

of the signal is required.  A Hilbert Transform was performed on the signal given in 

Figure 4.5 and then autocorrelated. 
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Figure 4.9:  Central peak of a matched filter output for a three chirp SF-LFM  

signal that has been discrete Hilbert transformed (Black) and theory (Red). 

Figure 4.8 shows the same peak with overlaid theory where the SF-LFM signal 

has been processed with a discrete Hilbert transform (DHT).  By comparing Figure 4.7 

and Figure 4.8, a vast improvement can be seen in the MFO with respect to the noise.   

However, even though the noise has been reduced by a significant amount, it can 

be reduced further.  By looking at the frequency spectrum of the signal, more insight can 

be gained into where the additive noise is originating from. 

 
Figure 4.10:  Frequency spectrum of a three chirp SF-LFM signal from figure 4.5  
with 𝒇𝒇𝟎𝟎 = 𝟔𝟔𝟎𝟎𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, T= 𝟒𝟒 𝝁𝝁𝝁𝝁, 𝐝𝐝𝐝𝐝𝟏𝟏 = 𝟗𝟗𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴, and 𝐝𝐝𝐝𝐝𝟐𝟐 = 𝟏𝟏𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴  

(Black) and window created to further reduce noise (Red). 
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Figure 4.9 shows the positive frequency spectrum of the unprocessed signal. 

 From the spectrum shown in Figure 4.9, sources of additive noise can be seen.  Some of 

the more prominent noise devices are the two difference frequencies (two peaks on the 

left side of the plot) which come about from the heterodyning process.  Also, aliasing 

about the 1000 MHz causes additional noise to be added to the MFO.  In order to 

eliminate as much noise as possible, a windowing function was created about the region 

of interest.  

 
Figure 4.11:  Frequency spectrum of a three chirp SF-LFM signal from Figure 4.5  
with 𝒇𝒇𝟎𝟎 = 𝟔𝟔𝟎𝟎𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, T= 𝟒𝟒 𝝁𝝁𝝁𝝁, 𝐝𝐝𝐝𝐝𝟏𝟏 = 𝟗𝟗𝟐𝟐 𝑴𝑴𝑴𝑴𝑴𝑴, and 𝐝𝐝𝐝𝐝𝟐𝟐 = 𝟏𝟏𝟕𝟕𝟎𝟎 𝑴𝑴𝑴𝑴𝑴𝑴 

The red lines in Figure 4.9 show the window range and Figure 4.10 shows the spectrum 

of the signal post-windowing. 
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Figure 4.12:  Central peak of a matched filter output for a three chirp SF-LFM signal  

that has been digitally filtered with a window function (Black) and theory (Red). 

By applying this digital filter to the signal, a low noise MFO can be obtained.  

Figure 4.11 shows the central peak of the MFO after the digital filter was applied to the 

signal.  Due to the vast improvement of the MFO quality, this type of windowing filter is 

utilized from this point on unless explicitly specified.  Based on this type of processing, a 

large set of three chirp SF-LFM signals with different difference frequencies were 

recorded in order to determine their range resolution and PSLR. 

D. Verification of Range and PSLR Model 

To accurately compare the modeling to the system, a matchup of the number of 

data points used needs to be taken into account.  The figures shown in 4.2 and 4.3 assume 

that the digitizer would be able to produce 100,000 data points in the 4 µs period.  In the 

actual setup the following parameters are used.  A two chirp (𝑁𝑁 = 2) SF-LFM signal is 

given by Equation 4.2, where the pulse duration is 𝑇𝑇 = 4 𝜇𝜇𝜇𝜇, the modulator bandwidth is 

𝜋𝜋 = 37 𝑀𝑀𝑀𝑀𝑀𝑀, and 𝑓𝑓0 = 750 𝑀𝑀𝑀𝑀𝑀𝑀.  The Acqiris digitizer runs at 4 GS/s in two channel 

mode, or 16,000 data points in the 4 µs period [40]. 
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Figure 4.13:  Range resolution model for the actual system setup, plotted for only the points 

measured. 

 
Figure 4.14:  PSLR model for the actual system setup, plotted for only the points measured. 

Figure 4.12 and Figure 4.13 show the model updated to the specific parameters of the 

system. 
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Figure 4.15:  Measured range resolution for a system with parameters 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 

T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

 
Figure 4.16:  Measured PSLR for a system with parameters 𝒇𝒇𝟎𝟎 = 𝟕𝟕𝟕𝟕𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, 𝐁𝐁 = 𝟑𝟑𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴, T= 𝟒𝟒 𝝁𝝁𝝁𝝁. 

The measured data found in Figure 4.14 and Figure 4.15 for the range resolution 

and PSLR shows the general trends of their respective modeling found in Figure 4.12 and 

Figure 4.13 matching very well. 
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Figure 4.17:  Range resolution comparison of each individually measured  

data point (Red) to its corresponding theory (Black). 

 
Figure 4.18:  PSLR comparison of each individually measured  

data point (Red) to its corresponding theory (Black). 

However, in order to make a more accurate comparison, a plot of each data point 

was sorted by its range resolution theory and PSLR theory respectively and yielded more 

insight into how well the model performed.  Figure 4.16 shows the range resolution 

theory and its corresponding measured value.  From the figure it can be seen that the 

model accurately represents the range resolution of the signal.  Note that the discrete 

steps are from the digitization of the signal, where higher sample frequency would mean 
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smaller steps.  Figure 4.17, shows PSLR theory and its measured value, also showing that 

the model accurately represents the PSLR of the signal. 
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CHAPTER 5 - 
DOPPLER SIMULATIONS AND MEASUREMENTS 

One of the most important characteristics of Doppler ladar or radar is its ability to 

detect the speed at which a target is moving.  This ability comes from a well known 

phenomenon called the Doppler Effect, or Doppler shift.  The effect was credited to a 

physicist, Christian Doppler, who in 1842 proposed that the frequency of a wave for a 

moving observer was relative to the source of the wave [41

A. Two Chirp Sparse Frequency LFM Doppler Modeling 

].  The most common example 

of the Doppler Effect is a siren passing by a stationary person.  When the siren is 

approaching, the person hears a higher frequency.  When the siren has passed and is 

receeding from the stationary person, a lower frequency is heard. 

This chapter covers how the Doppler Effect is introduced into SF-LFM ladar 

signal, its detection, and processing.  An experimental setup is described along with 

requirements for system components.  Finally, experimental results are compared with 

the model and with an alternate velocity measurement, which uses a translation stage 

with a built in optical encoder. 

In this heterodyne ladar setup, a matched filter analysis is required in order to 

characterize the effects of the Doppler shift.  Additionally, for reasons which are 

explained later, the setup is required to be a coherent on receive system, i.e. the recorded 

matched filter kernel needs to be coherent with the return signal. 
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Matched filter processing is a means of optimizing the signal to noise ratio.  The 

impulse response of a matched filter is always be given by Equation 2.3, repeated here, 

 ℎ(𝑡𝑡) = 𝐾𝐾𝜇𝜇∗(𝑡𝑡0 − 𝑡𝑡) (5.1) 

where the scaling constant 𝐾𝐾 can be set equal to 1, since in practice a normalization is 

commonly performed on the matched filter output (MFO).  The reference point 𝑡𝑡0 can be 

set equal to zero assuming an appropriate offset range.  These two assumptions applied to 

Equation 5.1 then become, 

 ℎ(𝑡𝑡) = 𝜇𝜇∗(−𝑡𝑡). (5.2) 

The standard two chirp SF-LFM signal is defined as 

 𝜇𝜇(𝑡𝑡) = 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡
𝑇𝑇
� ��̃�𝐴1𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡+1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2��, (5.2) 

where the nomenclature remains consistent with the previous signal equations.  The 

matched filter of the system is then given by 

 ℎ(𝑡𝑡) = 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝑡𝑡
𝑇𝑇
� ��̃�𝐴1

∗𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡−
1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2
∗𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡−1

2𝛽𝛽𝑡𝑡
2��. (5.3) 

As previously stated, the output of a linear system is given by the convolution of the 

input with the impulse response function.  The definition of convolution is given as, 

 (𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡) ≝ ∫ 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞ = ∫ 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏∞

−∞ . (5.4) 

The input of the system is the time delayed Doppler shifted version of Equation 5.2 and is 

given as 

 𝜇𝜇𝑅𝑅(𝑡𝑡) = 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝑡𝑡1
𝑇𝑇
� � �̃�𝐴3𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝑡𝑡1)2� +

�̃�𝐴4𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )(𝑡𝑡−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝑡𝑡1)2�
� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝑡𝑡1), (5.5) 

where 𝑡𝑡1 is the time delay of the signal and 𝜈𝜈 is the Doppler frequency shift, which can be 

defined in terms of the target velocity as given as 

 𝜈𝜈 = 2∗𝑉𝑉
𝜆𝜆

, (5.6) 



38 
 

where �̃�𝐴3 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴4 are complex amplitudes that were �̃�𝐴1 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴2 respectively, but have 

changed because the signal has traveled over a given time.  In general, the relative 

amplitudes of �̃�𝐴1 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴2 will be greater than that of �̃�𝐴3 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴4 because there will be 

attenuation in the interrogating signal.  Equation 5.6 shows the relationship between the 

Doppler frequency shift and the velocity of the target, where 𝑉𝑉 is the velocity of the 

target and 𝜆𝜆 is the carrier wavelength. 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = ∫

1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝜏𝜏−𝑡𝑡1
𝑇𝑇

� � �̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2� +

�̃�𝐴4𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2�
� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝜏𝜏−𝑡𝑡1) ∗

1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏
𝑇𝑇
� ��̃�𝐴1

∗𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜏𝜏−
1
2𝛽𝛽𝜏𝜏

2� + �̃�𝐴2
∗𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2�� 𝑑𝑑𝜏𝜏

∞
−∞  (5.7) 

The convolution of Equations 5.3 and 5.5, or the matched filter output, is given by 

Equation 5.7 and is simplified combining terms and using the substitutions, 

 𝜂𝜂 = 𝑡𝑡 − 𝑡𝑡1 (5.8) 

and 

 𝛾𝛾� = 𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜂𝜂+1
2𝛽𝛽𝜂𝜂

2+2𝜋𝜋𝜈𝜈𝜂𝜂 �, (5.9) 

which yields a simplified MFO 

 (𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
�

⎣
⎢
⎢
⎢
⎡ �̃�𝐴1

∗ �̃�𝐴3𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 +
�̃�𝐴2
∗ �̃�𝐴3𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 +

�̃�𝐴1
∗ �̃�𝐴4𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 +

�̃�𝐴2
∗ �̃�𝐴4𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 ⎦

⎥
⎥
⎥
⎤
𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏𝑇𝑇/2

−𝑇𝑇/2 . (5.10) 

Further simplification of Equation 5.10 can be made by realizing that a relationship exists 

between �̃�𝐴1 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴3 and �̃�𝐴2 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴4 respectively.  This relationship comes from the fact 

that each laser beam is overlapped in space, and therefore the change in optical path 

length between �̃�𝐴1 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴3 and �̃�𝐴2 𝑀𝑀𝐶𝐶𝑑𝑑 �̃�𝐴4 is the same and can be given as, 

 �̃�𝐴3 = 𝜋𝜋��̃�𝐴1 (5.11) 

and 
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 �̃�𝐴4 = 𝜋𝜋��̃�𝐴2 (5.12) 

where 𝜋𝜋�  is a phase chang.  Additionally, an assumption that the complex magnitudes are 

unity and have a phase angle 𝜙𝜙 and a phase difference Δ𝜙𝜙 and each can be seen 

respectively: 

 ��̃�𝐴1� = ��̃�𝐴2 � = 1, (5.13) 

 ∠�̃�𝐴1 = 𝜙𝜙1 𝑀𝑀𝐶𝐶𝑑𝑑 ∠�̃�𝐴2 = 𝜙𝜙2, (5.14) 

 Δ𝜙𝜙 = 𝜙𝜙1 − 𝜙𝜙2. (5.15) 

By applying the additional simplifications, Equation 5.10 is further reduced to, 

 (𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� �

�1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 +
𝑅𝑅𝑖𝑖Δ𝜙𝜙𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏
� 𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏𝑇𝑇/2

−𝑇𝑇/2 . (5.16) 

Performing the integral in Equation 5.16 yields the final matched filter output of the 

system to be, 

 (𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − |𝜂𝜂 |

𝑇𝑇
� ∗

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� ⎭

⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎥
⎤

;  |𝑡𝑡 − 𝑡𝑡1| ≤ 𝑇𝑇 (5.17) 

A complete derivation of Equation 5.17 can be found in Appendix A. 

By looking at the phase term at the beginning of Equation 5.17, it can be seen that 

by holding the frequency offset of the laser, the difference frequencies between the lasers, 

and the velocity of the target constant, that portion of the phase is constant for every 

pulse.  By looking at the phase between two consecutive pulses, i.e. where 𝜂𝜂1 = 𝑡𝑡 − 𝑡𝑡1 

and 𝜂𝜂2 = 𝑡𝑡 − 𝑡𝑡1 − 𝑇𝑇, or alternatively as 

 Δ𝜑𝜑 = 𝜑𝜑1 − 𝜑𝜑2 (5.18) 

where 𝜑𝜑1 is the phase term resulting from 𝜂𝜂1 and 𝜑𝜑2 is the phase term resulting from 𝜂𝜂2. 
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A relation between 𝜑𝜑1 and 𝜑𝜑2 can be given through the velocity of the target as, 

 𝜑𝜑2 = 𝜑𝜑1 + 4𝜋𝜋𝜋𝜋Δ𝑡𝑡
𝜆𝜆𝐶𝐶𝑀𝑀𝑟𝑟𝑟𝑟𝑖𝑖𝑅𝑅𝑟𝑟

, (5.19) 

where Δt is the time difference between the two pulses and 𝜋𝜋 is the target velocity.  The 

phase change can be calculated in terms of the target velocity by using Equation 5.19 in 

Equation 5.18 and is given by, 

 Δ𝜑𝜑 = − 4𝜋𝜋𝜋𝜋Δ𝑡𝑡
𝜆𝜆𝐶𝐶𝑀𝑀𝑟𝑟𝑟𝑟𝑖𝑖𝑅𝑅𝑟𝑟

. (5.20) 

Likewise, from phase change, and slightly generalized, the velocity of the target can be 

calculated as 

 𝑉𝑉 = Δ𝜃𝜃
2𝜋𝜋

𝜆𝜆𝐶𝐶𝑀𝑀𝑟𝑟𝑟𝑟𝑖𝑖𝑅𝑅𝑟𝑟
2𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑀𝑀𝑆𝑆

, (5.21) 

where Δ𝜃𝜃 is the phase change between the first and last pulse and 𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑀𝑀𝑆𝑆  is the time 

difference between the first and last pulse. 

By utilizing matched filtering setup, a time delayed Doppler shifted signal can be 

used to determine the velocity of a target at range.  The next section describes the 

experimental matched filter setup, as dictated by the derivation and requirements on the 

sources. 

B. Experimental Setup and Requirements 

 

Figure 5.1:  Matched filter setup for detecting the Doppler shift  
of a target with respect to a stationary reference. 
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Figure 5.1 shows a schematic of the experimental setup.  Similar to the 

experimental three chirp verification, the experiment was performed with polarization 

maintaining fiber in order to maximize the effects of the heterodyning process.  Like the 

modeling, the signal created was a two chirp SF-LFM signal and therefore requires the 

use of two laser sources.  The first source, which was used as laser two in Figure 5.1, is 

one of the lines from the custom laser system described in the previous chapter.  The 

other source was an NP Photonics (NPP) The Rock single frequency narrow linewidth 

fiber laser [42

For a two chirp setup, laser 1 (NPP) is split to serve two functions.  One, it is used 

as the local oscillator for the heterodyned signals and second, it is used as the first of two 

lines to create the sparse frequency signal.  The output of laser 2 (from the custom 

system) was coupled together with laser 1 to create a two line ladar signal.  The two line 

sparse frequency signal was then directed through an AOM, where the lines were shifted 

by approximately 750 MHz and linearly modulated for a total bandwidth of 37 MHz (per 

chirp) to create a two chirp SF-LFM signal.  The SF-LFM signal was split into two 

separate signals, one to be used as the matched filter kernel (reference) and the other to 

be used to interrogate the target.  The matched filter kernel was mixed with the local 

].  The reason for the change in laser one, or equivalently the local 

oscillator, is explained later in section C. 

Just as before, the linear modulation of the signal was performed by an AOM 

which provided a linear frequency shift from 730 MHz as .5 V to 850 MHz at 10V.  The 

same ThorLabs SIR5-FC 6.5 GHz bandwidth photodetectors were utilized in 

combination with the Acqiris DC252 high speed digitizer, which allowed for a sampling 

rate of 4 GS/s while recording on both channels. 
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oscillator on a photodiode where the signal was digitized and recorded.  The target signal 

was collimated to free space via an output coupler.  The signal passed through a simple 

transmit/receive switch, reflected off a mirror, and returned through the transmit/receive 

switch, after which the signal was collimated back into the fiber mixed with the local 

oscillator and digitized. 

The transmit/receive switch can be characterized by simple Jones matrices.  Each 

of the components in the T/R switch has a corresponding matrix.  The matrices of the 

polarization beam splitters (vertical and horizontal), quarter wave plates, and the target 

(mirror) are [43,44

 𝑃𝑃𝜋𝜋𝑃𝑃𝑉𝑉 = �0 0
0 1� (5.22) 

]: 

 𝑃𝑃𝜋𝜋𝑃𝑃𝑀𝑀 = �1 0
0 0� (5.23) 

 𝑄𝑄𝑄𝑄𝑃𝑃 = �𝑅𝑅
𝑖𝑖𝜋𝜋/4 0
0 𝑖𝑖𝑅𝑅𝑖𝑖𝜋𝜋/4� (5.24) 

 TGT= �1 0
0 −1�. (5.25) 

In the transmit/receive switch the quarter wave plate is rotated by 45° with respect to 

vertical and requires the use of a rotation matrix, where the general form of the rotation 

matrix is given by 

  𝑅𝑅(𝜃𝜃) = �cos(𝜃𝜃) − sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) �, (5.26) 

where 𝜃𝜃 is the angle of rotation.  To find the matrix for the rotated quarter wave plate, the 

rotation matrix is applied with the following relationship, 

 𝑄𝑄𝑄𝑄𝑃𝑃′ = 𝑅𝑅(𝜃𝜃)𝑄𝑄𝑄𝑄𝑃𝑃 𝑅𝑅(𝜃𝜃)−1. (5.27) 

Derivations of the matrices and the rotation matrix can be found in most geometric optics 

books [43, 44].  The final result of the system is given by, 
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 𝐿𝐿𝑢𝑢𝑡𝑡 = 𝑃𝑃𝜋𝜋𝑃𝑃𝑀𝑀 .𝑄𝑄𝑄𝑄𝑃𝑃2.𝑇𝑇𝑇𝑇𝑇𝑇.𝑄𝑄𝑄𝑄𝑃𝑃1.𝑃𝑃𝜋𝜋𝑃𝑃𝑉𝑉 . �01� (5.28) 

or, 

 �10� =

⎩
⎪⎪
⎨

⎪⎪
⎧�1 0

0 0� ��
cos(𝜃𝜃) − sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) � �

𝑅𝑅
𝑖𝑖𝜋𝜋
4 0

0 𝑖𝑖𝑅𝑅−
𝑖𝑖𝜋𝜋
4

� � cos(𝜃𝜃) sin(𝜃𝜃)
− sin(𝜃𝜃) cos(𝜃𝜃)�� ∗

�1 0
0 −1� ��

cos(𝜃𝜃) − sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) � �

𝑅𝑅
𝑖𝑖𝜋𝜋
4 0

0 𝑖𝑖𝑅𝑅
𝑖𝑖𝜋𝜋
4

� � cos(𝜃𝜃) sin(𝜃𝜃)
− sin(𝜃𝜃) cos(𝜃𝜃)�� ∗

�0 0
0 1� �

0
1� ⎭

⎪⎪
⎬

⎪⎪
⎫

. (5.29) 

Equation 5.29 shows the polarization was rotated by 90° with respect to the input 

polarization, and exits the PBS with vertical polarization. 

C. Verification of Doppler Modeling 

To verify that the Doppler processing was correct, multiple cases were 

constructed to test the validity of the model.  The first case was a close target, i.e. zero 

delay, which is stationary for one iteration and moving for the other.  The close target 

case is depicted in Figure 5.1.  The other case considered was a target “at range”, 

approximately a 1 µs round trip delay, and once again for a stationary and moving target.  

For each case, 1 ms worth of data, or 250 pulses, was collected and analyzed.  The pulses 

had a 100% duty cycle, where each was a linear ramped as previously described.  Note, 

the down-chirp has little effect on the matched filter process and is subsequently ignored.  

Each pulse was processed in the same fashion as described in Chapter 4, Section C.  Each 

pulse had its target signal correlated with its matched filter kernel to create a matched 

filter output. 
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Figure 5.2:  Central peak of the matched filter output for a coherent on receive setup (Black)  

and the location where phase and amplitude information is extracted (Red). 

Figure 5.2 shows the MFO of a single pulse, where the target is not moving.  It is 

important to note that the peak is shifted from the center slightly due to an unequal path 

length between the matched filter signal and the target signal.  The red circle at the 

correlation peak in Figure 5.2 shows the data point where the phase information is 

extracted. 

The phase and amplitude information is extracted from each subsequent pulse and 

plotted in Figure 5.3.  As the theory predicts, if the velocity of the target is zero, the phase 

change is constant.  Figure 5.3 is a prime example of how the phase remains stationary in 

the lower left only very slightly drifting about in amplitude and phase, which can be 

accounted for by either amplitude changes in the laser and/or mechanical drift in the free 

space components. 
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Figure 5.3:  Normalized amplitude and phase information obtained from a  
close stationary target being interrogated by a two chirp SF-LFM signal. 

The steps were repeated for a close moving target.  Figure 5.4 shows how the phase 

evolves over all of the pulses.  The phase rotation occurs because the velocity induced 

phase change between consecutive realizations, and since the velocity is approximately 

constant over the entire signal duration, the change between each pulse is approximately 

the same. 



46 
 

 
Figure 5.4:  Normalized amplitude and phase information obtained from a  

close moving target being interrogated by a two chirp SF-LFM signal. 

 

 
Figure 5.5:  Matched filter setup for detecting the Doppler shift  
of a target at a distance with respect to a stationary reference. 

The second case schematically depicted in Figure 5.5 shows an added 1 µs delay 

line to simulate the target being at a distance.  Figure 5.6 shows the zoomed in central 

peak with the added 1 µs delay or .25 normalized delay built into the setup. 
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Figure 5.6:  Central peak of the matched filter output for a coherent on receive setup (Black)  

and the location where phase and amplitude information is extracted (Red). 

It is important to note that when distance is added to the target, the stability of the 

sources starts to come into play.  As stated in the experimental setup, the local oscillator 

line was replaced by a narrow line width laser source.  Linewidth is important because 

there is a direct relationship between the linewidth of a source and its coherence length.  

The coherence length is an important factor for the reason that when a signal is created, a 

reference or matched filter is also created by recording the signal on a photodiode.  This 

reference has a certain phase attributed to it.  The local oscillator does not have a built in 

delay line, which means that if the coherence jumps while the signal is still in the delay 

line, the phase attributed to it is no longer referenced to the matched filter.  This means 

that the phase between each pulse is completely random.  In order to make sure the 

matched filter and the target are coherent with each other, the local oscillator needs to 

have a coherence length longer than that of the delay line or propagation path.  To recap 

these points, the phase must be measure to a fraction of a cycle; laser phase noise 

corrupts the signal and limits the lower bounds on the measurement; linewidth/coherence 

time must be chosen so phase variance is small within the observation time. 
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To demonstrate this concept, Figure 5.7 shows the phase where the local oscillator 

was the first output of the custom laser system by Innovative Photonic Solutions instead 

of the NPP system.  The delay line in the system is approximately 300 m.  The coherence 

length of the custom system is approximately 100 m, which means that the coherence 

length is about three times less than the minimum distance required to perform phase 

retrieval of the signal. 

 
Figure 5.7:  Normalized amplitude and phase information obtained from a distant stationary target 

where the local oscillator has a coherence length less than that of the round trip distance. 

The NPP laser has a coherence length of approximately 95 km, which is more than 

sufficient to retrieve the phase information. 
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Each case, stationary and moving, was processed the same as in the close target 

cases. 

 
Figure 5.8:  Normalized amplitude and phase information obtained from a  
distant stationary target being interrogated by a two chirp SF-LFM signal. 

Figure 5.8 shows the stationary case of a distant target.  The additional broadening comes 

from the fiber delay line.  The delay lines expansion and contraction over time changes 

the phase term slightly between each realization.  However, it is more than sufficient to 

broaden the phase when compared to the close target.  Figure 5.9 shows the moving case, 

which is similar to that of Figure 5.4.  Although the phase noise due to the fiber still 

broadens the resulting signal. 
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Figure 5.9:  Normalized amplitude and phase information obtained from a  

distant moving target being interrogated by a two chirp SF-LFM signal. 

D. Target Directionality 

The target directionality can be deduced from the direction of rotation of the 

phase rotation.  The determination of the target’s direction is extracted from Equations 

5.4 and 5.5.  In Equation 5.4, repeated here, 

 (𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡) ≝ ∫ 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞ = ∫ 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏∞

−∞ , (5.30) 

choosing whether the matched filter kernel is 𝑓𝑓(𝜏𝜏) or 𝑔𝑔(𝑡𝑡 − 𝜏𝜏) changes the rotation 

direction of the phase.  Additionally, the sign of the Doppler exponential term in 

Equation 5.5, defined here with a plus minus sign,  

 𝑅𝑅±𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝑡𝑡1), (5.31) 
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affects the direction of rotation.  Once this is determined and fixed, only the exponential 

term changes in sign, because the velocity term changes sign depending on if the target is 

traveling towards or away from the receiver, and as a direct result, a change the direction 

of rotation in phase.  Given the previous setups described with the negative exponential 

and the matched filter kernel being the recorded reference, it can be seen through Figure 

5.10 and Figure 5.11 that targets approaching the receiver cause the phase to rotate in a 

clockwise direction and targets moving away from the receiver are counter-clockwise.  

Note that the axes were placed to coincide with the first phase recovered. 

 
Figure 5.10:  Phase recovered from a forward moving target (Clockwise rotation). 
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Figure 5.11:  Phase recovered from a backwards moving target (Counter-Clockwise rotation). 

E. Velocity Comparison 

The second part of the modeling described in Section 1 dealt with the ability to 

determine the velocity of a target from the extracted phase information.  To verify the 

modeling of the velocity, a secondary means of measuring velocity was needed.  A 

computer controlled stage, physic instrumente M-413, with an optical encoder built was 

used.  The stage velocity was set by the computer and was controlled by its own circuitry.  

The velocity was calculated via the phase by use of Equation 5.22, where the change in 

phase Δ𝜃𝜃 is the phase change between the first and the last pulse and 𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡𝑀𝑀𝑆𝑆  is the relative 

time change between the first and the last pulse.  Using the first and last pulse to measure 
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speed instead of measuring the speed between each consecutive pulse allows for 

improved resolution and uncertainty.  Figure 5.12 shows the comparison between the 

velocity set by the stage and the velocity calculated via the phase, which are in excellent 

agreement and therefore validate the model.  The uncertainty in the velocity that comes 

from the stage is much greater than that of the uncertainty in the phase measurement.  

This comes mostly from the technique utilized in making the measurement.  The stage 

employs an optical encoder which only has discrete steps, versus an interferometric 

process in the Doppler phase recovery measurement.  In order to more accurately 

compare, a different technique/device could be utilized, such as a Michelson 

interferometer. 

 
Figure 5.12:  Comparison of the stage velocity (Black) to the velocity measured by 

the SF-LFM signal (Red). 
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CHAPTER 6 - 
MULTIPLE TARGET SIMULATION 

A. Experimental Setup and Requirements 

In general, standard ladar or radar systems will illuminate multiple targets.  The 

ability of a system to resolve each target’s characteristics individually is of great interest.  

The multiple target Doppler processing is the same as single target Doppler processing 

with the exception that two correlation peaks have to be processed.  The experiment was 

performed with polarization maintaining fiber to maximize the heterodyning effects.  The 

signal was a two chirp SF-LFM signal, i.e. two sources.  Figure 6.1 schematically depicts 

a multiple target setup being interrogated by a two chirp SF-LFM signal. 

The first source (Laser 1) was an NP Photonics (NPP) The Rock single frequency 

narrow linewidth fiber laser.  The second (Laser 2) was from the custom system 

described in Chapter 4.  Just as before, the linear modulation of the signal was performed 

by an AOM which provided a linear frequency shift from 730 MHz as .5 V to 850 MHz 

at 10V.  The same ThorLabs SIR5-FC 6.5 GHz bandwidth photodetectors were utilized 

in combination with the Acqiris DC252 high speed digitizer, which allowed for a 

sampling rate of 4 GS/s while recording on both channels. 
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Figure 6.1:  Matched filter setup for detecting the phase rotation  

of multiple targets with respect to a stationary reference. 

As shown in Figure 6.1, laser 1 is split.  One line is used to create the local 

oscillator and the other is combined with laser 2 and linearly modulated to create a two 

chirp SF-LFM signal.  The sparse frequency signal is split after the AOM.  The first line 

is split into two more lines. One is mixed with the local oscillator on a photodiode to 

create the matched filter kernel; the other line runs through a variable attenuator to 

become the close target (no delay) and gets combined with the local oscillator.  The 

second line runs through a 1 µs fiber delay line and the transmit/receive switch described 

in the previous chapter before being combined with the local oscillator and close target 

signal.  The multiple target signal is then mixed on the photodiode. 

B. Multiple Target Doppler Processing 

To verify that multiple targets can be Doppler processed, the setup depicted in 

Figure 6.1 was utilized.  From this setup two cases can be constructed.  The first case 

consists of a stationary distant target and a stationary close target.  The second case 

consists of a moving distant target and a stationary close target.  Due to the way the setup 

was designed, the close target is always stationary.  To test a moving close target, the 

transmit/receive switch with moving target would need to be moved from the distant 

target to the close target or an additional transmit/receive switch with moving target 

would need to be added. 
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As done previously, the data was processed as described in Chapter 4, Section 3.  

Each case took 1 ms worth of data, or 250 pulses, which were collected and analyzed.  

Each pulse had its multiple target signal correlated with its respective matched filter 

kernel to produce an MFO.  Figure 6.2 shows the MFO of a single pulse where both 

targets are stationary.  The figure shows two correlation peaks representing the close and 

distant targets respectfully.  The data points at the correlation peaks are where the phase 

and amplitude information is extracted for each target.   

 
Figure 6.2:  Full matched filter output for a coherent on receive setup  

for multiple stationary targets. 

The phase and amplitude information of two stationary targets is extracted from each 

subsequent pulse and plotted in Figure 6.3.  Just like in the single target verification, the 

multiple targets behave in the same way.  Both targets have no phase change, which 

would indicate that neither target has an associated velocity.  There is broadening in 

phase on the distant target from the fiber delay line’s change in optical path length, an 

alteration of the phase, over the recorded duration.  There is also additional broadening 

on both the close and the distant targets in both amplitude and in phase.  This is due to 

correlations of the close target and distant target overlapping.  Overall, these overlapped 
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correlations have little effect on the phase rotation until most of the primary lobe of each 

target is overlapping. 

 
Figure 6.3:  Normalized amplitude and phase information obtained from multiple stationary targets 

being interrogated by a two chirp SF-LFM signal.  Stationary close (Black) and stationary distant 
(Red). 

The moving target case was performed in the same manner.  The phase and amplitude 

information was extracted from the two correlation peaks and plotted in Figure 6.4.  The 

figure shows that the close target has no phase change and therefore no velocity 

associated with it.  Also, it shows that the second targets phase is rotating when the target 

is moving, and one can calculate its velocity via Equation 5.22.  The two targets have 

similar broadening in both phase and amplitude as shown in the stationary case. Again, 

the additional broadening is a result of the correlations overlapping.   
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Figure 6.4:  Normalized amplitude and phase information obtained from multiple targets, being 
interrogated by a two chirp SF-LFM signal.  Stationary close (Black) and moving distant (Red). 
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CHAPTER 7 - 
EFFECTS OF NONLINEAR FREQUENCY MODULATION 

A. Nonlinear Frequency Modulation Background 

In Chapter 2, the definition of nonlinear frequency modulation was kept generic 

and defined as an instantaneous frequency that is a function of time.  One type of 

nonlinear modulation technique is implemented by shaping the pulse amplitude 

temporally to a common weighted window such as Hann or Hamming windows [32].  

Figure 7.1 shows the autocorrelation of an unweighted LFM pulse.  Figure 7.2 shows a 

Hamming weighted LFM pulse.  The effects are a major reduction in the sidelobes, from 

approximately -13 dB to about -50 dB.  However, there is a cost in the range resolution of 

the signal, as can be seen from the broadening of the correlation peak.   

 
Figure 7.1:  Autocorrelation of an unweighted LFM pulse. 
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Figure 7.2:  Autocorrelation of a Hamming weighted LFM pulse. 

Implementation of this technique would require the use of a secondary extracavity 

amplitude modulator to be synced with the generation of the pulse in time.  Although this 

can be done, it would be difficult to get the timing correct. 

The other approach is to change the instantaneous frequency directly in time.  

Figure 7.2 shows a nonlinear frequency profile in time.  The phase of the function is 

given by, 

 𝜙𝜙(𝑡𝑡) = 2𝜋𝜋 ∫ 𝑓𝑓(𝑀𝑀)𝑑𝑑𝑀𝑀𝑡𝑡
0 , (7.1) 

where 𝑓𝑓(𝑀𝑀) is the frequency as a function of 𝑀𝑀 (dummy variable).  Phase is then used in 

the complex envelope function given by, 

 𝑢𝑢(𝑡𝑡) = 𝑔𝑔(𝑡𝑡)𝑅𝑅𝑖𝑖𝜙𝜙(𝑡𝑡), (7.2) 

where 𝑔𝑔(𝑡𝑡) = 1 is the amplitude function.  The autocorrelation of the complex envelope 

given by the frequency in Figure 7.2 is shown in Figure 7.3. 
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Figure 7.3:  Frequency versus time of a nonlinear ladar signal. 

 
Figure 7.4:  Autocorrelation of a nonlinear frequency modulation. 

From Figure 7.4 it is easy to see an immense improvement in the peak to sidelobe ratio. 

B. Nonlinearities of an Acousto-Optic Modulator 

The nonlinear modulation characterized here is not defined by a frequency or an 

amplitude function, but rather be a qualitative look at how nonlinearities in certain 

regimes of the AOM can be exploited to increase range resolution and peak to sidelobe 

ratios of the transmitted waveform.  The AOM itself provides linear modulation over a 4 

µs pulse duration.  If that time duration is increased, the signal goes from linear to 
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nonlinear and the range resolution and PSLR can be characterized.  Figure 7.5 shows the 

schematic setup for determining range resolution and PSLR for nonlinear signals. 

 
Figure 7.5:  Single chirp NLFM ladar signal generation, detection, and processing. 

Just as in the previous experiments, polarization maintaining fiber was used.  

Since this is a single chirp waveform, only one source was needed, which was the NP 

Photonics (NPP) The Rock single frequency narrow linewidth fiber laser.  The 

modulation of the signal was performed by an AOM.  The detectors were ThorLabs 

SIR5-FC 6.5 GHz bandwidth photodetectors.  The signal was digitized by an Acqiris 

DC252 high speed digitizer, which allowed for a sampling rate of 4 GS/s while recording 

on both channels.  The laser was split into two parts, one to be the local oscillator and the 

other to be modulated by the AOM.  The modulated signal and the local oscillator were 

combined and mixed on a photodiode.  The signal was digitized and processed the same 

way described in Chapter 4, Section C.  It was then autocorrelated to attain the range 

resolution and PSLR for the given signal period.  Figure 7.6 shows the spectrum of a 

nonlinear pulse. 
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Figure 7.6:  Spectrum of a nonlinear pulse resulting from the AOM’s nonlinearities. 

Figure 7.7 shows an example of the autocorrelation of a pulse which has a range 

resolution of 2.3 m and a PSLR of -20.4 dB, a significant improvement over the set PSLR 

of -13 dB for a single LFM pulse. 

 
Figure 7.7:  Correlation peak of a nonlinear frequency modulated ladar signal. 

By plotting these two metrics as a function of signal period, an optimized or 

rather preferred nonlinear signal can be established.  Signals were recorded for pulse 

durations of 4 µs to 10 µs in .5 µs steps.  From each pulse, the range resolution and PSLR 
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was calculated.  Figure 7.8 and Figure 7.9 show the range resolution and PSLR 

respectively. 

 
Figure 7.8:  Range resolution as a function of pulse period. 

 
Figure 7.9:  Peak to sidelobe ratio as a function of pulse period. 

Figure 7.8 shows that as the signal period is increased, the range resolution drops because 

the modulator is able to apply more bandwidth to the signal.  Recall that range resolution 

is proportional to bandwidth, so the more bandwidth you have, the better your range 

resolution.  The PSLR in Figure 7.9 shows that by increasing the signal period to 7.5 µs 

results in the signal having its lowest PSLR.  From this, the most logical pulse duration to 

work at is 7.5 µs because it results in the best PSLR and is already very close to the 
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minimum range resolution.  In other words, the gain made in PSLR at 7.5 µs outweighs 

the only .15 m gain in range resolution if one were to pick the PSLR at 10 µs. 



66 
 

CHAPTER 8 - 
CONCLUSIONS 

Sparse frequency ladar signals have been shown previously to increase the 

effective bandwidth and consequently, the range resolution of a ladar signal.  This work 

expanded on the two chirp modeling and experimental verification performed by 

Chimenti et al. [14, 36, 37].  The modeling was expanded to three chirps and 

experimentally tested.  The results showed good agreement with the predicted theory.  

These results show a continuation of the ability of sparse frequency linearly frequency 

modulated ladar signals to increase the bandwidth of a LFM ladar signal by using a single 

low bandwidth modulator.  The cost of segmented bandwidth is the increase in PSLR 

caused by the separating of the segments in frequency.  One needs to weigh the cost of 

increased range resolution against the increase in PSLR. 

New on Doppler processing for segmented bandwidth linearly frequency 

modulated ladar signals was explored.  Models were created utilizing matched filter 

processing to accurately predict the effects of the Doppler frequency shift.  From the 

modeling, the speed at which the target was moving was predicted and experimentally 

verified.  The directionality of the target was also extracted from the sign of the phase 

difference.   

Doppler processing was then applied to targets at a distance.  The results showed 

that at range, the targets could be resolved and their velocities determined by using a 

local oscillator with a coherence length longer than the round trip length between the
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receiver and the target.  This process was further generalized by the addition of a second 

target close to the receiver.  This multiple target realization showed the ability of the 

signal to resolve both targets in range and in velocity. 

The final work presented in this thesis took advantage of the inherent 

nonlinearities in the acousto-optic modulator.  The nonlinearities were characterized in 

terms of the two metrics used throughout the research, namely range resolution and 

PSLR.  It found that by working in a specific nonlinear regime, the range resolution could 

be increased from about 3.3 m to 2.3 m and the PSLR could be improved from about -

14.9 dB to around -23.4 dB. 
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APPENDIX A - 
DERIVATION OF A TWO CHIRP SPARSE FREQUENCY 

DOPPLER MODEL  

A. Baseband Signal 

𝜇𝜇(𝑡𝑡) = 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡
𝑇𝑇
� ��̃�𝐴1𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡+1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡+1

2𝛽𝛽𝑡𝑡
2��  

Where 𝑇𝑇 is the signal period, �̃�𝐴1 & �̃�𝐴2 are the complex amplitudes, 𝑓𝑓0 is the AOM offset, 

𝛽𝛽 is the chirp coefficient given by 𝛽𝛽 = 2𝜋𝜋/𝑇𝑇, and 𝑑𝑑𝑓𝑓 is the difference frequency between 

lines. 

B. Matched Filter Impulse Response 

ℎ(𝑡𝑡) = 𝐾𝐾𝜇𝜇∗(𝑡𝑡0 − 𝑡𝑡)  

Where 𝐾𝐾 is a scaling constant which is set equal to 1 and 𝑡𝑡0 is a reference point which is 

set equal to 0. 

ℎ(𝑡𝑡) = 𝜇𝜇∗(−𝑡𝑡)  

= 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝑡𝑡
𝑇𝑇
� ��̃�𝐴1

∗𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝑡𝑡−
1
2𝛽𝛽𝑡𝑡

2� + �̃�𝐴2
∗𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝑡𝑡−1

2𝛽𝛽𝑡𝑡
2��  

C. Return Signal 

The return signal to be used is a delayed Doppler shifted version of the baseband signal. 
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𝜇𝜇𝑅𝑅(𝑡𝑡) =

1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝑡𝑡1
𝑇𝑇
� ��̃�𝐴3𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝑡𝑡1)2� + �̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)(𝑡𝑡−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝑡𝑡1)2�� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝑡𝑡1)  

D. Matched Filter Output 

The matched filter output is given by the convolution of the return signal with the 

impulse response. 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = ∫ 𝜇𝜇𝑅𝑅(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏∞
−∞ = ∫ 𝜇𝜇𝑅𝑅(𝑡𝑡 − 𝜏𝜏)ℎ(𝜏𝜏)𝑑𝑑𝜏𝜏∞

−∞   

=

∫ 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝜏𝜏−𝑡𝑡1
𝑇𝑇

� ��̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2� +∞
−∞

�̃�𝐴4𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2�� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝜏𝜏−𝑡𝑡1) 1
√2𝑇𝑇

𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏
𝑇𝑇
� ��̃�𝐴1

∗𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜏𝜏−
1
2𝛽𝛽𝜏𝜏

2� +

�̃�𝐴2
∗𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2�� 𝑑𝑑𝜏𝜏  

=

1
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝜏𝜏−𝑡𝑡1

𝑇𝑇
� ��̃�𝐴3𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2� +𝑇𝑇/2

−𝑇𝑇/2

�̃�𝐴4𝑅𝑅
𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2�� ��̃�𝐴1
∗𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜏𝜏−

1
2𝛽𝛽𝜏𝜏

2� +

�̃�𝐴2
∗𝑅𝑅𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2�� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝜏𝜏−𝑡𝑡1)𝑑𝑑𝜏𝜏  

=

1
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �𝑡𝑡−𝜏𝜏−𝑡𝑡1

𝑇𝑇
� ��̃�𝐴1

∗�̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1

2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2+2𝜋𝜋𝑓𝑓0𝜏𝜏−
1
2𝛽𝛽𝜏𝜏

2� +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴2
∗ �̃�𝐴3𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2+2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2� +

�̃�𝐴1
∗�̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2+2𝜋𝜋𝑓𝑓0𝜏𝜏−

1
2𝛽𝛽𝜏𝜏

2� +

�̃�𝐴2
∗ �̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)(𝑡𝑡−𝜏𝜏−𝑡𝑡1)+1
2𝛽𝛽(𝑡𝑡−𝜏𝜏−𝑡𝑡1)2+2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2�� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (𝑡𝑡−𝜏𝜏−𝑡𝑡1)𝑑𝑑𝜏𝜏  
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Substitution:  𝜂𝜂 = 𝑡𝑡 − 𝑡𝑡1. 

=

1
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��̃�𝐴1

∗�̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0(−𝜏𝜏+𝜂𝜂)+1

2𝛽𝛽(−𝜏𝜏+𝜂𝜂)2+2𝜋𝜋𝑓𝑓0𝜏𝜏−
1
2𝛽𝛽𝜏𝜏

2� +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴2
∗ �̃�𝐴3𝑅𝑅

𝑖𝑖�2𝜋𝜋𝑓𝑓0(−𝜏𝜏+𝜂𝜂)+1
2𝛽𝛽(−𝜏𝜏+𝜂𝜂)2+2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2� +

�̃�𝐴1
∗�̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )(−𝜏𝜏+𝜂𝜂)+1
2𝛽𝛽(−𝜏𝜏+𝜂𝜂)2+2𝜋𝜋𝑓𝑓0𝜏𝜏−

1
2𝛽𝛽𝜏𝜏

2� +

�̃�𝐴2
∗ �̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)(−𝜏𝜏+𝜂𝜂)+1
2𝛽𝛽(−𝜏𝜏+𝜂𝜂)2+2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓 )𝜏𝜏−1

2𝛽𝛽𝜏𝜏
2�� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (−𝜏𝜏+𝜂𝜂)𝑑𝑑𝜏𝜏  

= 1
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��̃�𝐴1

∗�̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜂𝜂+1

2𝛽𝛽�𝜂𝜂
2−2𝜂𝜂𝜏𝜏 �� + �̃�𝐴2

∗ �̃�𝐴3𝑅𝑅
𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜂𝜂+2𝜋𝜋𝑑𝑑𝑓𝑓𝜏𝜏 +1

2𝛽𝛽�𝜂𝜂
2−2𝜂𝜂𝜏𝜏 �� +𝑇𝑇/2

−𝑇𝑇/2

�̃�𝐴1
∗�̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)𝜂𝜂−2𝜋𝜋𝑑𝑑𝑓𝑓𝜏𝜏 +1
2𝛽𝛽�𝜂𝜂

2−2𝜂𝜂𝜏𝜏 �� + �̃�𝐴2
∗ �̃�𝐴4𝑅𝑅

𝑖𝑖�2𝜋𝜋(𝑓𝑓0+𝑑𝑑𝑓𝑓)𝜂𝜂+1
2𝛽𝛽�𝜂𝜂

2−2𝜂𝜂𝜏𝜏 ��� 𝑅𝑅𝑖𝑖2𝜋𝜋𝜈𝜈 (−𝜏𝜏+𝜂𝜂)𝑑𝑑𝜏𝜏  

Substitution:  𝛾𝛾� = 𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜂𝜂+1
2𝛽𝛽𝜂𝜂

2+2𝜋𝜋𝜈𝜈𝜂𝜂 �  

= 𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��̃�𝐴1

∗�̃�𝐴3𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + �̃�𝐴2
∗ �̃�𝐴3𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂 )𝜏𝜏 + �̃�𝐴1

∗�̃�𝐴4𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴2
∗ �̃�𝐴4𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 ]𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

E. Assumptions 

0 < 𝑡𝑡1 < 𝑇𝑇  A real return signal can only have a positive value 

An equal change in path length of each laser line results in: 

�̃�𝐴3 = 𝜋𝜋��̃�𝐴1 & �̃�𝐴4 = 𝜋𝜋��̃�𝐴2 ,  where 𝜋𝜋�  is a phase change 

��̃�𝐴1� = ��̃�𝐴2 � = 1  

 ∠�̃�𝐴1 = 𝜙𝜙1 & ∠�̃�𝐴2 = 𝜙𝜙2 

 𝜙𝜙1 − 𝜙𝜙2 = Δ𝜙𝜙 
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F. Simplification 

=

𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� �𝜋𝜋��̃�𝐴1�̃�𝐴1

∗𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + 𝜋𝜋��̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2

−𝑇𝑇/2

𝜋𝜋��̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 + 𝜋𝜋��̃�𝐴2�̃�𝐴2

∗𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 ]𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

= 𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� �𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 + �̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2

−𝑇𝑇/2

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 ]𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

=

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗ 𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏�𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

Three cases now exist: 𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡 < 𝑡𝑡1, & 𝑡𝑡1 < 𝑡𝑡   
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𝜂𝜂 = 𝑡𝑡 − 𝑡𝑡1 = 0  

Case:  𝒕𝒕 = 𝒕𝒕𝟏𝟏 

𝛾𝛾� = 𝑅𝑅𝑖𝑖�2𝜋𝜋𝑓𝑓0𝜂𝜂+1
2𝛽𝛽𝜂𝜂

2+2𝜋𝜋𝜈𝜈𝜂𝜂 � = 1  

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�

2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏
𝑇𝑇
� �2 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜏𝜏 + �̃�𝐴1
∗�̃�𝐴2𝑅𝑅−𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜏𝜏 �𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏

𝑇𝑇/2
−𝑇𝑇/2   

= 𝜋𝜋�

2𝑇𝑇 ∫ 2𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 + �̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−2𝜋𝜋𝜈𝜈 )𝜏𝜏 + �̃�𝐴1

∗�̃�𝐴2𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2
−𝑇𝑇/2   

Integral 1 

𝜋𝜋�

𝑇𝑇 ∫ 𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏𝑇𝑇/2
−𝑇𝑇/2   

= 𝜋𝜋�

𝑇𝑇
1

−𝑖𝑖2𝜋𝜋𝜈𝜈
�𝑅𝑅−𝑖𝑖𝜋𝜋𝜈𝜈𝑇𝑇 − 𝑅𝑅𝑖𝑖𝜋𝜋𝜈𝜈𝑇𝑇 �   

= 𝜋𝜋�

𝑇𝑇
1
𝜋𝜋𝜈𝜈

sin(𝜋𝜋𝜈𝜈𝑇𝑇)  

= 𝜋𝜋� sinc(𝜋𝜋𝜈𝜈𝑇𝑇)  

Integral 2 

𝜋𝜋�

2𝑇𝑇 ∫ �̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2

−𝑇𝑇/2   

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗

2𝑇𝑇
1

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖(𝜋𝜋𝑑𝑑𝑓𝑓 −𝜋𝜋𝜈𝜈 )𝑇𝑇 − 𝑅𝑅−𝑖𝑖(𝜋𝜋𝑑𝑑𝑓𝑓 −𝜋𝜋𝜈𝜈 )𝑇𝑇�  

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗

𝑇𝑇
1

(2𝜋𝜋𝑑𝑑𝑓𝑓 −2𝜋𝜋𝜈𝜈 ) sin�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇�  

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇�  

Integral 3 

𝜋𝜋�

2𝑇𝑇 ∫ �̃�𝐴1
∗�̃�𝐴2𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2

−𝑇𝑇/2   

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2

2𝑇𝑇
1

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖(𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝑇𝑇 − 𝑅𝑅𝑖𝑖(𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝑇𝑇�  

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2
𝑇𝑇

1
(2𝜋𝜋𝑑𝑑𝑓𝑓+2𝜋𝜋𝜈𝜈 ) sin�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇�  
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= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2
2

sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇�  

Combine 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋� sinc(𝜋𝜋𝜈𝜈𝑇𝑇) + 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇� + 𝜋𝜋�𝐴𝐴�1

∗𝐴𝐴�2
2

sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇�  

= 𝜋𝜋� �sinc(𝜋𝜋𝜈𝜈𝑇𝑇) + 𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇� + 𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇��  

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋� �sinc(𝜋𝜋𝜈𝜈𝑇𝑇) + 𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇� + 𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇��   
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(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏�𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

Case:  𝒕𝒕 < 𝒕𝒕𝟏𝟏 

=

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜏𝜏 +𝑇𝑇/2+𝜂𝜂
−𝑇𝑇/2

�̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏  

Integral 1 

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2+𝜂𝜂

−𝑇𝑇/2   

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

1
−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2+𝜂𝜂) − 𝑅𝑅𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

1
−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖�1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜂𝜂 − 𝑅𝑅𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 − 𝑅𝑅𝑖𝑖�

1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�

1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 �  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�

�1+𝜂𝜂
𝑇𝑇�

�1+𝜂𝜂
𝑇𝑇�

  

= �1 + 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋�𝛾𝛾�

2(𝑇𝑇+𝜂𝜂)
𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋�𝛾𝛾�

(𝑇𝑇+𝜂𝜂)
𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) sin ��1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋

�𝛾𝛾�
2
𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋

�

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝜈𝜈 )𝜂𝜂 sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  
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= �1 + 𝜂𝜂
𝑇𝑇
� 𝑅𝑅𝑖𝑖𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 + 𝑅𝑅𝑖𝑖𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋

�

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝜈𝜈 )𝜂𝜂 sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 + 𝜂𝜂
𝑇𝑇
� cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

Integral 2 

= 𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2+𝜂𝜂
−𝑇𝑇/2   

= 𝐴𝐴�1𝐴𝐴�2
∗𝜋𝜋�𝛾𝛾�

2𝑇𝑇
1

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖(𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2+𝜂𝜂) − 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  

= 𝐴𝐴�1𝐴𝐴�2
∗𝜋𝜋�𝛾𝛾�

2𝑇𝑇
1

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜂𝜂 − 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  

=

𝐴𝐴�1𝐴𝐴�2
∗𝜋𝜋�𝛾𝛾�

2𝑇𝑇
𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝜂𝜂 −

𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−

1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝜂𝜂�  

= 𝐴𝐴�1𝐴𝐴�2
∗𝜋𝜋�𝛾𝛾�

2𝑇𝑇
𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�

�1+𝜂𝜂
𝑇𝑇�

�1+𝜂𝜂
𝑇𝑇�

  

= �1 + 𝜂𝜂
𝑇𝑇
� 𝐴𝐴
�1𝐴𝐴�2

∗𝜋𝜋�𝛾𝛾�
2(𝑇𝑇+𝜂𝜂)

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� 𝐴𝐴
�1𝐴𝐴�2

∗𝜋𝜋�𝛾𝛾�
(𝑇𝑇+𝜂𝜂)

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) sin ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1
2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� 𝐴𝐴
�1𝐴𝐴�2

∗𝜋𝜋�

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= 𝜋𝜋��̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 + 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

Integral 3 

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �̃�𝐴1

∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2+𝜂𝜂
−𝑇𝑇/2   

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 1
−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2+𝜂𝜂) − 𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  
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=

𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 1
−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈) �𝑅𝑅

−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜂𝜂 −

𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2�  

=

𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 −

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 �  

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�  

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�

�1+𝜂𝜂
𝑇𝑇�

�1+𝜂𝜂
𝑇𝑇�

  

=

�1 + 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
2(𝑇𝑇+𝜂𝜂) 𝑅𝑅

𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇+𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
(𝑇𝑇+𝜂𝜂) 𝑅𝑅

𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) sin ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= �1 + 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
2

𝑅𝑅−𝑖𝑖�−𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

= 𝜋𝜋��̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 + 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  

Combine 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 + 𝜂𝜂
𝑇𝑇
� cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝜋𝜋��̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 + 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝜋𝜋��̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 + 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)�  
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= 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 + 𝜂𝜂
𝑇𝑇
�

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� ⎭

⎪
⎬

⎪
⎫

  

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 + 𝜂𝜂
𝑇𝑇
�

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� ⎭

⎪
⎬

⎪
⎫
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(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 �−𝜏𝜏+𝜂𝜂

𝑇𝑇
� ��1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝛽𝛽𝜂𝜂𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂 )𝜏𝜏 +𝑇𝑇/2
−𝑇𝑇/2

�̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅𝑖𝑖(−2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂 )𝜏𝜏�𝑅𝑅−𝑖𝑖2𝜋𝜋𝜈𝜈𝜏𝜏 𝑑𝑑𝜏𝜏  

Case:  𝒕𝒕𝟏𝟏 < 𝑡𝑡 

=

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏 + �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜏𝜏 +𝑇𝑇/2
−𝑇𝑇/2+𝜂𝜂

�̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏  

Integral 1 

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2

−𝑇𝑇/2+𝜂𝜂   

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

1
−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 − 𝑅𝑅𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2−𝜂𝜂)�  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

1
−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜂𝜂 �  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 − 𝑅𝑅𝑖𝑖�

1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 �  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋
�𝛾𝛾�
2𝑇𝑇

𝑅𝑅−𝑖𝑖�
1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�

�1−𝜂𝜂𝑇𝑇�

�1−𝜂𝜂𝑇𝑇�
  

= �1 − 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋�𝛾𝛾�

2(𝑇𝑇−𝜂𝜂)
𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�
1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋�𝛾𝛾�

(𝑇𝑇−𝜂𝜂)
𝑅𝑅−𝑖𝑖�

1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

(𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) sin ��1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� �1 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋

�

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0𝜂𝜂+𝜋𝜋𝜈𝜈𝜂𝜂 ) sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝑅𝑅𝑖𝑖𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 �𝑅𝑅−𝑖𝑖𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 + 𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 � 𝜋𝜋

�

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝜈𝜈 )𝜂𝜂 sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
� cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  
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Integral 2 

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �̃�𝐴1�̃�𝐴2

∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2
−𝑇𝑇/2+𝜂𝜂   

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗ 𝛾𝛾�

2𝑇𝑇
1

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 − 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2−𝜂𝜂)�  

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗ 𝛾𝛾�

2𝑇𝑇
1

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−

1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 )𝜂𝜂 �  

=

𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗ 𝛾𝛾�

2𝑇𝑇
𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝜂𝜂 −

𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝜂𝜂 �  

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗ 𝛾𝛾�

2𝑇𝑇
𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= 𝜋𝜋�𝐴𝐴�1𝐴𝐴�2
∗ 𝛾𝛾�

2𝑇𝑇
𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓−𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�

�1−𝜂𝜂𝑇𝑇�

�1−𝜂𝜂𝑇𝑇�
  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1𝐴𝐴�2

∗ 𝛾𝛾�
2(𝑇𝑇−𝜂𝜂)

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−1

2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1𝐴𝐴�2

∗ 𝛾𝛾�
(𝑇𝑇−𝜂𝜂)

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 −
1
2𝛽𝛽𝜂𝜂 −𝜋𝜋𝜈𝜈 �𝜂𝜂

(2𝜋𝜋𝑑𝑑𝑓𝑓 −𝛽𝛽𝜂𝜂−2𝜋𝜋𝜈𝜈 ) sin ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1
2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1𝐴𝐴�2

∗ 𝛾𝛾�
2

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓−
1
2𝛽𝛽𝜂𝜂−𝜋𝜋𝜈𝜈 �𝜂𝜂 sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1𝐴𝐴�2

∗

2
𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0𝜂𝜂+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈𝜂𝜂 ) sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= 𝜋𝜋��̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0𝜂𝜂+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈𝜂𝜂 ) 1

2
�1 − 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

Integral 3 

𝜋𝜋�𝛾𝛾�
2𝑇𝑇 ∫ �̃�𝐴1

∗�̃�𝐴2𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜏𝜏𝑑𝑑𝜏𝜏𝑇𝑇/2
−𝑇𝑇/2+𝜂𝜂   

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 1
−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 − 𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )(𝑇𝑇/2−𝜂𝜂)�  
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=

𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 1
−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2 −

𝑅𝑅𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝑇𝑇/2𝑅𝑅−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 )𝜂𝜂 ]  

=

𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 −

𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝑇𝑇𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 �  

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= 𝜋𝜋�𝐴𝐴�1
∗𝐴𝐴�2𝛾𝛾�
2𝑇𝑇

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�

�1−𝜂𝜂𝑇𝑇�

�1−𝜂𝜂𝑇𝑇�
  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
2(𝑇𝑇−𝜂𝜂) 𝑅𝑅

𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

−𝑖𝑖(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) �𝑅𝑅
−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1

2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂) − 𝑅𝑅𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �(𝑇𝑇−𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
(𝑇𝑇−𝜂𝜂) 𝑅𝑅

𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓 +1
2𝛽𝛽𝜂𝜂 +𝜋𝜋𝜈𝜈 �𝜂𝜂

(2𝜋𝜋𝑑𝑑𝑓𝑓+𝛽𝛽𝜂𝜂+2𝜋𝜋𝜈𝜈 ) sin ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2𝛾𝛾�
2

𝑅𝑅𝑖𝑖2𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂 𝑅𝑅−𝑖𝑖�𝜋𝜋𝑑𝑑𝑓𝑓+1
2𝛽𝛽𝜂𝜂+𝜋𝜋𝜈𝜈 �𝜂𝜂 sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= �1 − 𝜂𝜂
𝑇𝑇
� 𝜋𝜋
�𝐴𝐴�1

∗𝐴𝐴�2
2

𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

= 𝜋𝜋��̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 − 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  
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Combine 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
� cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝜋𝜋��̃�𝐴1�̃�𝐴2
∗𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0𝜂𝜂+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈𝜂𝜂 ) 1

2
�1 − 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝜋𝜋��̃�𝐴1
∗�̃�𝐴2𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 1

2
�1 − 𝜂𝜂

𝑇𝑇
� sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)�  

=

𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
� �cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

�̃�𝐴1�̃�𝐴2
∗ 1

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� + �̃�𝐴1

∗�̃�𝐴2
1
2

sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)��  

=

𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
� �cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� + 𝐴𝐴�1𝐴𝐴�2

∗

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� + 𝐴𝐴�1

∗𝐴𝐴�2
2

sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)��  

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
�

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� ⎭

⎪
⎬

⎪
⎫
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(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋� �sinc(𝜋𝜋𝜈𝜈𝑇𝑇) + 𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 − 𝜋𝜋𝜈𝜈)𝑇𝑇� + 𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc�(𝜋𝜋𝑑𝑑𝑓𝑓 + 𝜋𝜋𝜈𝜈)𝑇𝑇��   

𝑡𝑡 = 𝑡𝑡1 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 + 𝜂𝜂
𝑇𝑇
�

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 + 𝜂𝜂)� ⎭

⎪
⎬

⎪
⎫

  

𝑡𝑡 < 𝑡𝑡1 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 − 𝜂𝜂
𝑇𝑇
�

⎩
⎪
⎨

⎪
⎧cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 − 1

2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 + 1

2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − 𝜂𝜂)� ⎭

⎪
⎬

⎪
⎫

  

𝑡𝑡1 < 𝑡𝑡 

G. Conclusion 

At the limit of 𝑡𝑡 = 𝑡𝑡1, for either the case of 𝑡𝑡 < t1 or 𝑡𝑡1 < 𝑡𝑡, the function reduces to the 

case of 𝑡𝑡1 = 𝜏𝜏.  The functions 𝑡𝑡 < t1 and 𝑡𝑡1 < 𝑡𝑡 case differ only by a sign in two portions 

of the function.  Therefore the final function given the assumptions stated at the 

beginning can be given as: 

 

(𝜇𝜇𝑅𝑅 ∗ ℎ)(𝑡𝑡) = 𝜋𝜋�𝑅𝑅𝑖𝑖(2𝜋𝜋𝑓𝑓0+𝜋𝜋𝑑𝑑𝑓𝑓+𝜋𝜋𝜈𝜈 )𝜂𝜂 �1 −
|𝜂𝜂|
𝑇𝑇
�

⎩
⎪⎪
⎨

⎪⎪
⎧ cos[𝜋𝜋𝑑𝑑𝑓𝑓𝜂𝜂] sinc ��

1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� +

𝑅𝑅𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 −

1
2
𝛽𝛽𝜂𝜂 − 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� +

𝑅𝑅−𝑖𝑖Δ𝜙𝜙

2
sinc ��𝜋𝜋𝑑𝑑𝑓𝑓 +

1
2
𝛽𝛽𝜂𝜂 + 𝜋𝜋𝜈𝜈� (𝑇𝑇 − |𝜂𝜂|)� ⎭

⎪⎪
⎬

⎪⎪
⎫

 

For:  |𝑡𝑡 − 𝑡𝑡1| ≤ 𝑇𝑇 

Remember:  𝜂𝜂 = 𝑡𝑡 − 𝑡𝑡1.   
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As long as the relative phase difference between the two lines, the difference frequency 

between the two lines, the frequency offset of the AOM, the velocity of the target remain 

constant.  By looking exactly one period later a phase difference can be deduced and the 

velocity backed out. 
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APPENDIX B - 
Matlab Code  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                           7/14/09 
% 
%Eric S. Bailey 
%University of Dayton - Ladar and Optical Communications Institute 
% 
%This M-file contains the matlab code for useful functions used in 
%this thesis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Plots the frequency spectrum of a multiple chrip SF-LFM signal. 
  
%Clear variables, command window, & close open figures 
clear; clc; close; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          USER VARIABLES                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Chirp bandwidth, Hz 
B = 37*10^6; 
  
%Signal period, s 
T = 4*10^-6; 
  
%Difference frequency, Hz 
df = 60*10^6; 
  
%AOM frequency shift, Hz 
aoshift = 750*10^6; 
  
%Number of chirps 
chirps = 2; 
  
%Number of datapoints 
datapoints = 16000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 CALCULATED PARAMETERS/CONSTANTS                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Chirp Coeffecient, 1/s^2 
beta = 2*pi*B/T; 
  
%Angular difference frequency, rad/s 
dw = 2*pi*df; 
  
%AOM Angular frequency shift, rad 
aowshift = 2*pi*aoshift; 
  
%Time domain spacing, s 
dt = T/datapoints; 
  
%Frequency domain spacing, Hz 
deltaf = 1/(datapoints*dt); 
  
%Max frequency, Hz 
maxfreq = 1/dt; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          START OF CODE                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Populate time array 
t = 0:dt:T; 
  
%Populate frequency array 
frequency = -maxfreq/2:deltaf:maxfreq/2; 
  
%Initialize data array 
data = zeros(1,datapoints+1); 
  
%Sum each chirp 
for i = 0:chirps-1; 
    data = data + exp(j*((aowshift + i*dw)*t + .5*beta*t.^2)); 
end 
  
%FFT data 
fftdata = fftshift(fft(data)); 
  
%Absolute value FFT 
fftdata = abs(fftdata); 
  
%Normalize FFT 
fftdata = fftdata/max(fftdata); 
  
%Plot FFT 
figure 
plot(frequency,fftdata) 
axis([0 max(frequency) 0 1]) 
xlabel('Frequency (Hz)') 
title('Frequency Spectrum of Signal') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Plots the autocorrelation of a multiple chirp SF-LFM Signal. 
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%Clear variables & command window 
clear; clc; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          USER VARIABLES                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Chirp bandwidth, Hz 
B = 37*10^6; 
  
%Signal period, s 
T = 4*10^-6; 
  
%Difference frequency, Hz 
df = 60*10^6; 
  
%AOM frequency shift, Hz 
aoshift = 750*10^6; 
  
%Number of chirps 
chirps = 2; 
  
%Number of datapoints 
datapoints = 16000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 CALCULATED PARAMETERS/CONSTANTS                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Chirp Coeffecient, 1/s^2 
beta = 2*pi*B/T; 
  
%Angular difference frequency, rad/s 
dw = 2*pi*df; 
  
%AOM Angular frequency shift, rad 
aowshift = 2*pi*aoshift; 
  
%Time domain spacing, s 
dt = T/datapoints; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          START OF CODE                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Populate time array 
t = 0:dt:T; 
  
%Initialize data array 
data = zeros(1,datapoints+1); 
  
%Sum each chirp 
for i = 0:chirps-1; 
    data = data + exp(j*((aowshift + i*dw)*t + .5*beta*t.^2)); 
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end 
  
%Autocorrelation of signal 
[acorr,lag] = xcorr(data,2*length(data)); 
  
%Time displacment array 
tau = dt.*lag; 
  
%Abs auto-correlation 
acorr = abs(acorr); 
  
%Normalize autocorrelation 
acorr = acorr/max(acorr); 
  
%Autocorrelation in dB 
acorr = 20*log10(acorr); 
  
%Plot autocorrelation 
figure 
plot(tau/T,acorr) 
axis([-1 1 -60 0]) 
xlabel('\tau/T') 
ylabel('dB') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Calculates dR & PSLR of a multiple chirp SF-LFM Signal. 
  
%Clear variables & command window 
clear; clc; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          USER VARIABLES                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Chirp bandwidth, Hz 
B = 37*10^6; 
  
%Signal period, s 
T = 4*10^-6; 
  
%Difference frequency, Hz 
df = 60*10^6; 
  
%AOM frequency shift, Hz 
aoshift = 750*10^6; 
  
%Number of chirps 
chirps = 2; 
  
%Number of datapoints 
datapoints = 16000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 CALCULATED PARAMETERS/CONSTANTS                 % 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Chirp Coeffecient, 1/s^2 
beta = 2*pi*B/T; 
  
%Angular difference frequency, rad/s 
dw = 2*pi*df; 
  
%AOM Angular frequency shift, rad 
aowshift = 2*pi*aoshift; 
  
%Time domain spacing, s 
dt = T/datapoints; 
  
%Speed of light, m/s 
c = 299792458; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          START OF CODE                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Populate time array 
t = 0:dt:T; 
  
%Initialize data array 
data = zeros(1,datapoints+1); 
  
%Sum each chirp 
for i = 0:chirps-1; 
    data = data + exp(j*((aowshift + i*dw)*t + .5*beta*t.^2)); 
end 
  
%Autocorrelation of signal 
[acorr,lag] = xcorr(data,2*length(data)); 
  
%Time displacment vector 
tau = dt.*lag; 
  
%Abs auto-correlation 
acorr = abs(acorr); 
  
%Normalized autocorrelation 
acorr = acorr/max(acorr); 
  
%dB 
acorr = 20*log10(acorr); 
  
%Midpoint in autocorrelation 
midpoint = 2*length(data)+1; 
  
%Derivative loop 
for i = midpoint:(length(acorr)-1); 
    d(i) = acorr(i+1)-acorr(i); 
end 
  



89 
 

%Finds first minima 
i = midpoint; 
while d(i) <= 0; 
    i = i+1; 
end 
  
%Find the -3 dB point 
[row,col] = find(acorr(midpoint:i-1) > acorr(midpoint)-3); 
  
%Location of -3 dB point 
arraylocation = max(col)+midpoint; 
  
%FWHM 
fwhm = 2*tau(arraylocation); 
  
%Range Resolution 
range = (fwhm*c)/2; 
  
%Peak (dB) 
center_lobe = max(acorr); 
  
%Side lobe (dB) 
side_lobe = max(acorr(i-1:length(acorr))); 
  
%PSLR 
pslr = side_lobe - center_lobe; 
  
range 
pslr 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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