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OLD WORLD IN THE NEW ECONOMY: 

SHAPING METROPOLITAN AMERICA’S INNOVATION LANDSCAPE THROUGH 

A HALF CENTURY OF PATENTED TRADITIONAL TECHNOLOGIES 

RUORAN LIU 

ABSTRACT 

This dissertation investigates the restructuring process of regional economic 

development in US metropolitan areas through detailed analyses of the persistence of 

traditional technological innovations and their complex interplay with high-tech 

innovations. The dissertation is structured into three interconnected essays that address 

key issues: the sustainability of innovation in traditional fields, the impact of regional 

knowledge structures around traditional fields on high-tech innovation, and the potential 

for high-tech innovation capabilities to foster innovation in traditional fields.  

The first essay examines whether regions historically specialized in traditional 

technological fields can sustain innovation in these fields amidst stagnant population and 

economic growth. Contrary to the conventional wisdom that economic and population 

declines necessarily lead to diminished innovation, the findings reveal the enduring 

significance of traditional technological innovation for regional economies.  

The second essay investigates how diverse knowledge structures surrounding 

traditional fields can bolster a region’s capacity to innovate within high-tech fields. This 

chapter highlights that, regions with a broader mix of patenting activities across both 

related and unrelated traditional technological sub-categories tend to exhibit higher 

innovation growth in high-tech fields, thereby demonstrating a stronger capacity for 

economic restructuring. Conversely, a high level of specialization in patenting within 
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specific traditional sub-categories may hinder a region’s ability to restructure effectively. 

The third essay assesses the potential for robust innovation capabilities in high-

tech fields to enhance innovation in traditional fields. This notion challenges the 

traditional linear perspective of technological progression from traditional to high-tech 

fields. The results suggest instead a relationship where strong high-tech innovation 

capabilities stimulate innovation within traditional fields. However, traditional innovation 

is primarily shaped by path dependency, with the influence of high-tech fields serving a 

more complementary role. 

Overall, this dissertation critiques existing economic development theories that 

focus predominantly on growth and the prioritization of high-tech industries at the 

expense of traditional sectors. It provides policy recommendations for regions aiming to 

leverage their established industrial strengths within a knowledge-driven economy. The 

research underscores the necessity of integrating industrial policy with prevalent place-

based strategies to achieve sustainable economic growth and revitalization, particularly in 

regions struggling with the effects of de-industrialization and economic transition.   
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CHAPTER I 

INTRODUCTION 

Urban decision-makers and regional scientists have long recognized that 

innovative industries significantly facilitate a region’s economic development in the 

knowledge era. Most contemporary scholarship regarding innovation-led development 

centers around a few emerging high-tech industries, such as IT and life sciences, and a 

few growing regions, such as Silicon Valley and Boston (Mayer, 2011; Saxenian, 1996). 

By contrast, the decline of traditional industries, especially in regions like the US Rust 

Belt, is often cited as the root cause of widespread regional decline, notably in population 

loss (Partridge et al., 2015; Wiechmann & Pallagst, 2012). There is also broad agreement 

that policymakers in these regions have struggled to shift these de-industrialized 

economies towards competing with high-tech centers (Bingham & Eberts, 1990; Cooke, 

1995; Neumann, 2016). 

This perspective stems from mainline economic development theories. For 

instance, theorists observe the growth and decline of regional economies and conclude 

that innovation, productivity, and population change tend to reinforce each other, such as 

what endogenous growth theory has suggested (Krugman, 1991b; Lucas, 1988; Romer, 

1986). Agglomeration theory also focuses on the relationship between overall or sector-
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specific industrial structure and overall or sector-specific innovation growth (Feldman & 

Audretsch, 1999; Glaeser et al., 1992; Jacobs, 1969). Nevertheless, I suggest that the 

dynamics among these economic factors are more complex in the process of economic 

restructuring, in that innovation may be sustained without population growth, new 

industrial strengths could arise from entirely different older industrial structures, and 

high-tech industries can drive knowledge creation within traditional industries. 

My dissertation employs patented technological innovations as a lens to examine 

regions and industries that underwent major restructuring over the last half-century, with 

patent data sourced from the US Patent and Trademark Office (USPTO). Based on the 

United States Patent Classification (USPC) scheme used by the USPTO, this study 

identifies Chemical (excluding Drugs), Electrical and Electronics; Mechanical; and 

Others as traditional (technological) fields, or traditional (technological) categories, while 

classifying Computers and Communications, along with Drugs and Medical, as high-tech 

(technological) fields, or high-tech (technological) categories. A region’s knowledge 

structure is evaluated in terms of its diversity, where patenting can show strong 

specialization in its top technological sub-categories, or a broad range of patenting 

activity across various technological sub-categories.  

This dissertation comprises three interconnected essays, which offer in-depth 

analyses into the following questions: 1) Can metropolitan regions historically 

specialized in traditional technological fields sustain significant traditional innovation 

without notable population growth? 2) What effect does the traditional knowledge 

structure of metropolitan regions have on their ability to innovate within high-tech fields? 

3) Does a metropolitan region’s specialization in high-tech fields enhance its capacity to 



3 
 

innovate in traditional fields?  

While certain regions with distinct advantages – such as substantial economic 

size, strategic geographic location, and robust connectivity – may navigate industrial 

restructuring without severe population loss, job reduction, or economic stagnation, the 

majority of regions and cities are grappling with increasing uncertainties. These 

economic uncertainties stem from factors like technological advancements, global 

outsourcing, and the resultant demographic shifts and urban decline. A prominent 

example is that the widespread and systematic decline of manufacturing and industrial 

activities has posed significant economic development challenges across various regional 

economies, particularly in the United States and European Union. This phenomenon has 

been extensively documented in the urban decline and urban shrinkage literature, 

highlighting the profound adverse effects of de-industrialization on economic and urban 

landscapes (Hollander et al., 2009; Martinez-Fernandez et al., 2012; Pallagst et al., 2013).  

 In the context of the United States, the emergence of “Shrinking Cities” 

illustrates a significant consequence of de-industrialization, with approximately 80 US 

cities, primarily in the Midwestern and Northeastern regions, experiencing notable 

population declines (Ganning & Tighe, 2021). The timeline of de-industrialization 

usually extends over several decades (Cochrane et al., 2014; Mallach, 2014), drastically 

altering the geographic and economic fabric of affected regions and influencing the lives 

of multiple generations of local residents. One potential explanation for this 

transformation is the deep entrenchment of regional economies, institutions, and local 

cultures in their former industrial specialization, leading to substantial challenges in 

adapting to the new demands of a knowledge-based economy (Weaver et al., 2017).  
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The extensive nature of demographic changes has triggered many secondary 

effects, including diminished productivity and innovation, increased job losses, shrinking 

tax bases, rising inequality, urban decay, deterioration of public services, land 

abandonment, property decay, and even social unrest (Mallach, 2023; Martinez-

Fernandez et al., 2012; 2016; Wiechmann & Pallagst, 2012). These developments have 

posed substantial challenges, especially for those unable to relocate to other cities or 

secure employment in emerging industries. Cities and regions that were once bustling 

centers of industry now grapple with the complex task of reinventing their economic 

identities, often further hindered by outdated infrastructures and skill sets that are 

incompatible with nascent industries (Taft, 2016). Consequently, it is imperative to 

address the multifaceted impacts of de-industrialization and to formulate effective 

strategies for economic recovery and sustainable growth. 

Given the complexity of restructuring industrial bases, limited resources and 

capital, and negative outlook for future economic growth, place-based development 

strategies are often recommended for these economically lagging regions and cities (Betz 

& Partridge, 2013; Partridge et al., 2015). These strategies aim to improve the quality of 

life for residents who remain, embodying a broad spectrum of scholarship on quality of 

place, downtown revitalization, smart growth, and smart decline (Harrison, 2017; 

Herrmann et al., 2016; Hollander & Németh, 2011; Neumann, 2016; Schilling & Logan, 

2008). Such policies are widely supported and institutionalized by entities like the 

Appalachian Regional Commission. Additionally, improving the quality of place has 

become a prevalent strategy for economic development planning in many Rust Belt or 

shrinking cities. In contrast, industrial policies, particularly those concerning advanced 
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industries, receive less attention in academic research focused on these areas, 

highlighting a gap in the exploration of comprehensive development approaches for these 

regions and cities. 

This dissertation advocates for a renewed emphasis on industrial policy as a vital, 

complementary approach for these economically lagging regions and cities. Such an 

approach may not be universally applicable, particularly in smaller towns and rural areas 

that lack the essential economic and industrial infrastructure necessary for initiating 

economic diversification and industrial restructuring. However, it holds significant 

promise for regions and medium-to-large cities endowed with substantial industrial 

resources and capabilities. Unlike place-based strategies, which primarily target 

immediate improvements in living conditions and employment opportunity for current 

residents, industrial policy aims for a more comprehensive economic revitalization. It 

seeks to cultivate or attract new industries and workforce talent, thereby offering a 

sustainable path for economic resilience and revitalization over the long term. Through 

the adoption of industrial strategies, regions can harness their latent industrial strengths to 

stimulate innovation and ultimately transform their economic landscape.  

The first essay “Reinforcing the Role of Older Industrial Centers? The 

Persistence of Traditional Technological Innovation in US Metropolitan Regions” 

(Chapter 2) investigates the technological innovation activities in traditional fields in 

US’s metropolitan areas between 1976-2014. Compared to high-tech fields, traditional 

fields demonstrate less innovative momentum in the knowledge economy era (Hall et al., 

2001; Rigby, 2015). The economic challenges of some established industrial centers, 

such as the US Rust Belt regions, are hence attributed to their less-innovative industrial 
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specializations, along with other reasons such as uncompetitive wages and population 

loss (Alder et al., 2014). However, I claim that though regions specializing in traditional 

technological fields may experience economic decline and population loss, they can 

sustain innovation activities in their traditional specializations. I test the following 

hypothesis: regions with higher original patenting levels in traditional technological 

fields experienced greater patenting levels in those fields from 1976 to 2014, and 

investigate the economic factors that have led to those sustained innovation activities. 

Mainstream economic development literature, such as endogenous growth theory 

(Krugman, 1991; Lucas, 1988; Romer, 1986), industry life cycle theory (Hekman, 1980; 

Norton & Rees, 1979), and the stage theory of economic development (Parr, 1999), tends 

to suggest that incubating the more innovative high-tech industries is the preferable 

strategy for economic development. Nevertheless, recent empirical studies reveal that 

certain Rust Belt regions remain as innovation hotspots of traditional industries, even 

after their production activities and population declined (Hannigan et al., 2015; Mudambi 

et al., 2017). The perspective of evolutionary economic geography and industry-based 

economic development also provides potential explanations for the persistence of 

significant traditional innovations in these established industrial regions, despite a 

reduction in production activities (Boschma et al., 2015; Dumais et al., 2002; Klepper, 

2002; 2010; 2016; Rigby, 2015). However, the broad applicability of these empirical 

findings requires further examination. This study also investigates the economic factors 

that have led to those sustained innovation activities by testing two sub-samples of 

regions experiencing population loss and slow economic growth during the study period. 

The findings first indicate that traditional technological innovation continues to 
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thrive even in regions undergoing population and economic downturns. Nevertheless, the 

resilience of innovation diminishes as regional populations decrease. Furthermore, the 

research posits that the existence of large manufacturing establishments and a large 

overall size of the manufacturing industry may contribute to the lower innovation 

performance of some Shrinking City regions. Subsequent to these observations, the study 

offers targeted policy recommendations to tackle the identified challenges and suggests 

new directions of academic inquiry.  

Essay 2 “Regional Innovation and Transformation: High Tech Innovation Growth 

and the Knowledge Structure around Traditional Technologies” (Chapter 3) delves into 

the mechanism by which cultivating a diverse knowledge base not only enhances 

innovation growth but also supports the emergence of entirely new industrial capabilities 

within a region. Significant progress has been made in agglomeration research regarding 

the relationship between the industrial structure of a region’s economy and its innovation 

growth, including the theory of MAR externalities (Arrow, 1962; Marshall, 1920; Romer, 

1986), Jacobian externalities (Feldman & Audretsch, 1999; Glaeser et al., 1992; Jacobs, 

1969), and related and unrelated variety (Castaldi et al., 2015; Frenken et al., 2007; 

Miguelez & Moreno, 2018). However, previous studies have mainly focused on how a 

region’s overall or sector-specific industrial structure impacts its aggregate or sector-

specific innovation growth. Fewer studies have explored how preexisting industrial 

structure is associated with the emergence of new industrial strengths, which could 

provide valuable insights for regions seeking to reinvent their export base.  

This essay instead relates the topic to the processes of economic restructuring, 

asking whether a more specialized or diversified knowledge structure within traditional 
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technological fields better encourages high-tech innovation growth from 1986 to 2014. 

By examining metropolitan areas that were innovating in traditional fields in 1986, this 

study finds that regions with greater diversity across both related and unrelated traditional 

technological sub-categories demonstrated higher levels of innovation in high-tech fields, 

thus exhibiting a stronger capacity to restructure their knowledge base. In contrast, a high 

degree of specialization in specific traditional technological sub-categories negatively 

impacts a region’s ability to undergo restructuring. The trend remains consistent across 

multiple time periods from 1986 to 2014.  

This study further clarifies the nuances in existing scholarship that propose 

reasons for how knowledge diversity can lead to innovation within technological fields 

that significantly diverge from a region’s historical specialization. Based on its findings, 

this study posits, first, that regions with a broad array of traditional technologies – 

whether related or unrelated – offer more opportunities for high-tech companies to 

uncover new market needs among local industries. Second, regions marked by greater 

diversity, often correlating with larger economies and populations, foster economies of 

scale that better support high-tech start-ups, including those that deviate from their initial 

technological specializations. Third, while scholars may argue that regions historically 

focused on specific traditional technological fields have successfully integrated high-tech 

expertise, this study challenges this view, positing that most of these regions actually 

exhibit a high degree of related variety rather than a high degree of specialization. 

Essay 3 “High-tech Regions as Innovators of Traditional Technologies: Can 

High-tech Innovation Capability Foster Traditional Innovation?” (Chapter 4) examines 

the potential for high-tech innovation to foster innovation within traditional fields. Given 
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the role of innovation in economic development (Lucas, 1988; Romer, 1986; Solow, 

1956), people have imagined technological progress as a linear process moving away 

from traditional fields and tending toward high-tech fields. Hence, pursuing innovation 

capacity in the more advanced high-tech fields has been a major direction of economic 

development. Besides high-tech regions and companies, scholars have also investigated 

how firms and regions specialized in the traditional fields have started to develop 

innovation capacity in high-tech fields (Hannigan et al., 2015; Mendonça, 2009; 

Robertson & Patel, 2007).  

However, drawing from Schumpeter’s (1942) theory of innovation and 

entrepreneurship, through the lens of evolutionary economics (Dosi et al., 1988; Nelson 

& Winter, 1982), to insights from the evolutionary economic geography community 

(Asheim et al., 2011; Asheim et al., 2017), a long line of theorists has consistently 

highlighted that technological progress is virtually never linear. Instead, there exists a 

symbiotic relationship between high-tech fields and non-high-tech fields, with 

innovations impacting across various economic activities. Despite this, there has been a 

scarcity of research investigating whether regions with stronger innovation capabilities in 

high-tech fields also contribute to innovation in traditional fields.  

This study aims to address this research gap by testing the hypothesis that regions 

with higher patenting levels in high-tech fields had greater patenting levels in traditional 

fields from 1996 to 2014, while accounting for the impact of historical traditional 

specializations and other confounding variables. Additionally, this study replaces general 

patenting levels in the high-tech and traditional fields with specific technological 

categories, thereby providing a more detailed view of the hypothesized relationship. The 



10 
 

results of this study support the primary hypothesis, and uncovers a positive association 

between the overall patenting levels in traditional categories and both of the two high-

tech categories. This study also finds that among the traditional categories, the 

Mechanical category seems to have been the least influenced by advancements in overall 

high-tech innovation. The analysis further indicates that regional innovation, including in 

the traditional fields, is predominantly influenced by path dependency, with the high-tech 

fields’ impact being more complementary. 

The study delves into potential explanations for main findings, linking them with 

insights from both the current study’s results and existing literature. First, innovating in 

traditional fields increasingly requires similar economic catalysts as does innovating in 

high-tech fields, such as human capital, research institutions, innovation infrastructure, 

and global competition (Acs et al., 2014; Berry & Glaeser, 2005; Furman et al., 2002; 

Glaeser & Hausman, 2020). Second, due to a stronger absorptive capacity, it is generally 

easier for a high-tech region to innovate in traditional fields compared to a region more 

specialized in a specific traditional category attempting innovation in a different 

traditional category (Boschma et al., 2015; Hidalgo et al., 2007). 

Chapter 5 integrates the overarching theme of this dissertation along with the key 

findings from the three essays. It offers a concluding summary of common threads 

linking each essay, highlighting the theoretical contributions and policy implications that 

emerge from the research. 
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CHAPTER II 

REINFORCING THE ROLE OF OLDER INDUSTRIAL CENTERS? THE 

PERSISTENCE OF TRADITIONAL TECHNOLOGICAL INNOVATION IN US 

METROPOLITAN REGIONS 

2.1 Introduction 

Since the rise of the knowledge economy, most conversations regarding 

innovation-led economic development have centered around growing metropolitan 

regions. Much attention has been given to a few leading regions, such as Silicon Valley, 

Boston, Austin, and Portland, which are known to be specialized in highly innovative 

industries including semiconductors, information technology, life sciences and 

pharmaceuticals (Mayer, 2011; Saxenian, 1996). By contrast, the traditional industrial 

strengths of some established industrial centers are largely blamed for the downward 

spiral of regional development in almost all social aspects, among which the population 

drop is perhaps the most noticeable (Wiechmann & Pallagst, 2012). Moreover, in public 

perception, the policymakers from these regions have struggled to restructure their de-

industrialized economic bases in order to “catch up with” the high-tech centers (Bingham 

& Eberts, 1990; Cooke, 1995; Neumann, 2016).  

Canonical economic development theories, such as product cycle theory 



12 
 

(Hekman, 1980; Norton & Rees, 1979) and endogenous growth theory (Krugman, 1991b; 

Lucas, 1988; Romer, 1986), could be a possible root of these policy choices and public 

perceptions. According to these canonical theories, the level of output/income a region 

achieves, the population it attracts, the “technological intensity” of the industries it 

specializes in (usually measured by STEM jobs), and the knowledge (especially patented 

innovation) it produces can reinforce each other. These mainline development theories 

represent the current rationale of growth-oriented development: a region can thrive in 

every dimension in a knowledge economy by advancing any one of those dimensions. By 

the same token, a retreat in any of those dimensions most often indicates the same in the 

others. 

Recent scholarship, though, argues that the economic development and 

restructuring of established industrial regions is much more complex than these canonical 

explanations allow. For instance, some urban shrinkage scholars have started to challenge 

the equivalence between economic advancement (or industrial restructuring) and 

population gain after looking into older industrial cities in Europe and the US 

(Bartholomae et al., 2017; Hartt, 2018). One stream of the literature includes detailed 

case studies investigating the innovation activities of single US Rust Belt regions’ 

established industries. The empirical evidence shows that, though usually without 

substantial population gains, these regions have sustained patenting activities in their 

traditional specializations. The studies cover industries such as opto-electronics, steel, 

automobiles, and synthetic rubber (Hannigan et al., 2015; Mudambi et al., 2017; Safford, 

2004; Treado, 2010).  

This study aims to explore the innovation dynamics in traditional technological 
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fields in the US’s metropolitan regions. The past four to five decades are usually 

considered as the period during which the innovation gap between traditional fields and 

modern high-tech fields widened (Hall et al., 2001; Rigby, 2015). This process, as 

mentioned before, coincided with the economic struggles of the host regions. However, 

with the latest progress in academic conversations, this study questions the equivalence 

between regional economic growth and the innovative capacity of the region’s 

historically specializations. I examine the generalizability of recent empirical evidence, 

and contend that regions specializing in traditional fields can sustain innovation activities 

in their traditional specializations, even for regions experiencing population loss and 

economic decline.  

Using regression analyses and primarily US Patent and Trademark Office 

(USPTO) patent data, this study tests the hypothesis that, ceteris paribus, regions with 

higher original patenting levels in in traditional technological fields experienced greater 

patenting levels in those fields from 1976-1980 to 2010-2014. This study further 

investigates the economic factors that have led to those sustained innovation activities by 

testing two sub-samples of regions experiencing population loss and slow economic 

growth during the study period. The findings first show that innovation often persists 

even when regions experience population and economic decline. Nevertheless, the 

persistence of innovation is reduced by regional population decline. Second, this study 

contends that the presence of large manufacturing establishments and a large overall size 

of the manufacturing industry could be factors contributing to the lower innovation 

performance of some Shrinking City regions. These findings are followed by specific 

policy recommendations to address the identified issues. Last, this study advocates for 
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further research to explore the interactions between major economic factors, such as 

innovation, productivity, and population change, which canonical development theories 

have not yet thoroughly explained.  

2.2 Literature Review 

Regional scientists have long realized that the capability of a region’s dominant 

industries to spawn new economic activities impacts the growth of the region. Also, the 

innovative activities are driven by new knowledge in its various forms (Booth, 1986; 

Chinitz,1961). The knowledge ranges from being aware of the locational advantages of 

natural resources and transportation to becoming familiar with the skills and scientific 

technologies needed for production.  

Scholars find that industries where skilled labor and R&D input serve as 

important sources of innovative activities have a higher propensity to cluster in certain 

regions than other industries (Audretsch & Feldman, 1996a). These industries include 

both traditional manufacturing industries (Ellison & Glaeser, 1997; Ellison et al., 2010; 

Rosenthal & Strange, 2001) and more advanced high-tech industries (Mayer, 2011; 

Saxenian,1996). The concentration of these innovation-generating industries makes the 

regions that hold the industries enjoy increasing returns to scale and thus sustained 

economic growth (Arrow, 1962; Arthur, 1990; Jacobs, 1969; Krugman, 1991a; 1991b; 

1994; Marshall, 1920; Romer, 1986). Besides saving costs on operations, firms in these 

industries co-locate because the economic knowledge is usually produced through 

intensive interaction and tacit transmission (Bathelt et al., 2004; Maskell & Malmberg, 

1999; Morgan, 1997).  

Nevertheless, compared to the more advanced high-tech industries, the traditional 
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industries are considered to have lost their innovative momentum in the knowledge 

economy era. According to the canonical economic development stage theory (Parr, 

1999), the dominant (export) industries of a region undergo structural change as the 

region develops. The change largely follows a systematic, thus predictable, sequence of 

stages – from resource-based, to manufacturing, and finally to the most innovative 

information-processing sectors. It is also pointed out by Parr (1999) that since older 

industries are inevitably subject to decline, it may be more prudent for a region to redirect 

economic resources towards industrial transformation instead of attempting to sustain 

innovation or competitiveness in declining industries.  

Indeed, since 1975, new patents are increasingly concentrating in fewer patent 

classes, and not surprisingly the advanced high-tech classes. Hence, the share of patents 

in the traditional classes is shrinking simultaneously (Hall et al., 2001; Rigby, 2015). 

Also, in contrast to emerging high-tech regions/cities, many older industrial regions/cities 

in the US that specialize in these “less-innovative” traditional industries, such as Detroit, 

Cleveland, Akron, Pittsburgh, and Buffalo, have endured painful economic and social 

transitions over the last four to five decades (Cochrane et al., 2014; Farley et al., 2000; 

Fee & Hartley, 2014).  

The discussions on urban decline and shrinkage primarily take place at the 

municipal level, and center around several usually interchangeable terminologies: “older 

industrial city” or “Rust Belt city”, “shrinking city”, and “legacy city” (Ganning & Tighe, 

2021; Hollander, 2010; Mallach, 2010; 2012). The concept of “older industrial city”, or 

“Rust Belt city” captures the difficulties of these cities in transforming their economies. 

In a similarly negative tone, “shrinking city” places more emphasis on the population loss 
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these cities usually experience, which usually is, in turn, the precursor of other forms of 

social decay (Wiechmann & Pallagst, 2012). The “legacy city” concept is weighted more 

toward the upside of these “challenged” cities, highlighting their assets, including dense 

and diverse downtown characters, manufacturing bases, and anchor institutions, as the 

seeds of smart economic revitalization (Mallach, 2012).  

The level of municipality is more often adopted in that the literature primarily 

centers the depopulated urban cores, rather than including the suburban areas of a region 

(Ganning & Tighe, 2021). Nevertheless, when economic activities are the primary 

variables, some scholars use shrinking/legacy-city-centered regions. This is primarily 

because business location, labor, and even housing markets usually operate at a regional 

scale (Van Leuven & Hill, 2021). Given that this study primarily concerns the economic 

and innovation data, shrinking/legacy-city-centered region (termed “Shrinking City 

region” or “shrinking region” in this study) is chosen as the unit of analysis. Among the 

various definitions for region, Core-based Statistical Areas (CBSAs), including 

Metropolitan or Micropolitan Statistical Areas, are commonly used in scholarly research, 

and will also be used in this study. 

Scholars have tried to explain what has led to the weakened innovation of the 

traditional industries in which the Rust Belt regions specialize. From the perspective of 

market competition, Alder et al. (2014) argue that innovative capacity declined because 

in the 1950s, the manufacturing industries in these regions lacked competitive pressure in 

the labor (e.g., high unionization level, high wage premium) and the output market. This 

devastatingly depressed the incentives of the lead firms to innovate. The innovation 

deficiency of US firms began to show its detrimental impact on the regional economy as 
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US firms faced competition from labor-intensive developing countries and innovation-

intensive firms from other developed countries in the 1970s. As a result, Rust Belt 

regions encountered severe urban problems, including high unemployment rates, severe 

outmigration, weakened land and housing markets, and deteriorated local infrastructure 

(Partridge et al., 2015; Wiechmann & Pallagst, 2012).  

Economists also use the knowledge from industrial and regional studies to explain 

the failure of these regions to regenerate their industrial innovation. Audretsch and 

Feldman (1996b), Hekman (1980), and Norton and Rees (1979) apply the life cycle 

theory of industrial production, which is first proposed by Vernon (1966), to approach the 

question. According to them, the traditional industries in the Rust Belt regions were 

highly developed and innovative previously. However, the innovative capacity gradually 

diminished to the point where it failed to offset the continuous dispersion of standardized 

production to less developed regions.  

Building on the life cycle theory of industry, evolutionary economists introduce 

the life cycle theory of industrial clusters. Menzel and Fornahl (2010) hold that if 

industrial clusters maintain high knowledge heterogeneity, they can sustain their 

innovative capacity and even initiate new industrial life cycles by spawning new 

industries. This idea resonates with Jacobian externalities (1969) and other works on 

regional economics (Booth, 1986; Carbonara & Tavassoli, 2013; Chinitz,1961; Duranton 

& Puga, 2001; Feldman & Audretsch, 1999; Glaeser, 2005; Glaeser et al., 1992). 

However, they argue that some industrial clusters in the Rust Belt, such as the automobile 

industry in Detroit, have made their regions mono-structured “company towns” with too 

little knowledge diversity. They further elaborate that, even though these clusters 
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sometimes maintain high innovation rates, the innovations usually arise within the 

existing and exhausted technology path. Recent scholarship tends to agree (e.g., Sweeney 

et al., 2020). 

It can be concluded that mainstream literature challenges the idea that traditional 

industries in established industrial regions can innovate significantly. However, recently, 

scholars find that in some US Rust Belt regions, the innovation activities related to their 

specialized industries persist and even grow after the decline of corresponding 

manufacturing activities. Some notable examples include the automobile industry of 

Detroit, Michigan (Hannigan et al., 2015), the polymer industry of Akron, Ohio 

(Mudambi et al., 2017), the steel industry of Pittsburgh, Pennsylvania (Treado, 2010), 

and the photonics industry of Rochester, New York (Safford, 2004). Another group of 

studies explores the geography of knowledge-based industrial clusters, innovation 

activities, and high-tech employment in US. They demonstrate that many older industrial 

regions remain as innovation hotspots for traditional industries including chemicals, 

transportation equipment, and machinery (Buzard & Carlino, 2013; Fallah et al., 2014; 

Koo, 2005). 

Ideas from evolutionary economic geography offer us one possible theory to 

explain the new evidence, which does not fit well into the canonical theories mentioned 

above. The economic geography community admits that regions did move their 

knowledge base toward more complex and valuable technologies along the development 

path (Hidalgo et al., 2007; Petralia et al., 2017). The scholars also agree that the most 

complex and valuable technologies usually appear in regions with the largest growth 

(Balland & Rigby, 2017). However, the theory differs from previous theories, such as the 
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stage theory of economic development (Parr, 1999), because the evolutionary theory 

emphasizes that the knowledge base of each region tends not to converge to a similar mix 

eventually. On the contrary, the evolution of the knowledge base mostly follows the 

region’s industrial specialization; though some regions transition rapidly from one 

knowledge core to another, for most regions the process of technological transition is 

relatively slow (Boschma et al., 2015; Essletzbichler, 2015; Rigby, 2015). Thus, it is 

suggested that any “one-size-fits-all” economic development policies on enhancing 

regional R&D should be reassessed (Asheim et al., 2011).  

From a microeconomic perspective, regional economists also investigate the 

mechanisms behind the sustainability of mature industries and their innovative activities 

in previous industrial centers. After looking at individual manufacturing industries in the 

US, Dumais et al. (2002) argued that when an industry emerges, the new firms tend to 

locate away from established industry centers. However, as an industry matures, it 

experiences a firm closure process which disproportionately preserves firms located in or 

near the original industrial centers. Similarly, Klepper (2002; 2007; 2010; 2011; 2016) 

argues that industry and industrial innovation expand geographically through spinoff 

activities from the lead firms. When an industry declines, the few most innovative lead 

firms and their early local spinoffs are favored relative to the later entrants located 

elsewhere. These theories resonate with recent empirical evidence (Hannigan et al., 2015; 

Mudambi et al., 2017; Safford, 2004; Sturgeon et al., 2008; Treado, 2010), and support 

the main hypothesis that traditional innovation favors especially leading older industrial 

centers. 
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2.3 Methods and Data 

This study uses regression analyses to examine whether and to what extent 

regions that were historically specialized in traditional technological fields sustained their 

patenting capacities and achieved higher patenting levels in these fields even after 

industrial decline. I also focus on the sample of shrinking regions – regions with 

shrinking populations and slow-growth economies over the study period – and explore 

the factors that led to sustained innovation activities. Hence, this study further tests 

whether factors like a shrinking population, a slow-growing economy, and the presence 

of large manufacturing establishments contribute to the increase or decrease of a region’s 

innovation capability in traditional fields. Traditional manufacturing industries in the US 

started to decline before the 1970s and the decline process has continued (Cochrane et al., 

2014; Farley et al., 2000; Fee & Hartley, 2014). This study collects USPTO patent data 

from 1976-2014 to construct the main innovation variables. USPTO patent data provides 

rich detail about patent information, including the technological classification and 

granted (or application) date of the invention, the name and location of inventors, and the 

ownership of the intellectual property of the invention (Hall et al., 2001)1. 

For every patent granted between 1976-1980 and 2010-2014 respectively, this 

study uses the location of the first-named inventor as the patent’s location. As a result, 

this study only includes patents whose first-named inventor is in the US. Moreover, out 

of the three patent types – Utility patents, Design patents, and Plant patents, only Utility 

patents are included in the sample. This is because they contain the necessary National 

Bureau of Economic Research (NBER) technological groupings and United States Patent 

 
1 https://patentsview.org/download/data-download-tables 

https://patentsview.org/download/data-download-tables
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Classification (USPC) information about what technological field they should be 

categorized into, which is the standard I refer to when deciding whether a patent belongs 

to traditional fields. Moreover, about 90% of the patent documents issued by USPTO in 

recent years have been Utility patents2. 

According to Hall et al. (2001), all patents can be aggregated into 6 main 

technological categories: Chemical (excluding Drugs); Computers and Communications; 

Drugs and Medical; Electrical and Electronics; Mechanical; and Others. As shown in 

Table A.1 in the Appendix, the 6 categories can be further divided into 36 two-digit sub-

categories. Of the 6 categories, Chemical, Mechanical, and Others are usually considered 

as the three traditional fields (this study uses “traditional fields” and “traditional 

categories” interchangeably). By contrast, Computers and Communications and Drugs 

and Medical are the high-tech fields (this study uses “high-tech fields” and “high-tech 

categories” interchangeably), because their patent count grew much more slowly than 

that of the traditional fields before 1980s, but has significantly surpassed the latter since 

early 1980s (Hall et al., 2001). It is worth pointing out that regions specializing in 

traditional fields, like automobiles, are increasingly patenting in high-tech categories such 

as computers and communications, due to the growing prevalence of the Internet of 

Things (IoT). Nevertheless, it is important to clarify that this study’s outcome variables 

do not encompass the high-tech patents filed by these regions. 

This study further defines the Electrical and Electronics category as the fourth 

traditional field. Within this category, the sub-category Semiconductor Devices largely 

 
2 USPTO description of patent types: 
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm  

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm
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emerged alongside the Computers and Communications category. However, due to the 

techniques and human capital requirements of Semiconductor Devices being more 

aligned with traditional rather than high-tech fields, this study classifies the sub-category 

as part of the traditional fields (Table 2.1, expanded upon in Appendix Table A.1). It 

should be also noted that this sub-category had not been established in 1976 yet so it is 

not included in the samples of this study. 

Table 2.1 Traditional Tech Categories and Their Sub-categories Established by 1976 

Category Code 
and Name Sub-category Code and Name 

1 Chemical 11 Agriculture, Food, Textiles; 12 Coating; 13 Gas; 14 Organic Compounds; 15 Resins; 19 Miscellaneous-
Chemical 

4 Electrical & 
Electronics 

41 Electrical Devices; 42 Electrical Lighting; 43 Measuring & Testing; 44 Nuclear & X-rays; 45 Power 
Systems; 49 Miscellaneous-Electrical & Electronics 

5 Mechanical 51 Materials Processing & Handling; 52 Metal Working; 53 Motors, Engines & Parts; 54 Optics; 55 
Transportation; 59 Miscellaneous-Mechanical 

6 Others 
61 Agriculture, Husbandry, Food; 62 Amusement Devices; 63 Apparel & Textile; 64 Earth Working & 
Wells; 65 Furniture, House Fixtures; 66 Heating; 67 Pipes & Joints; 68 Receptacles; 69 Miscellaneous-
Others 

 

Using the US Census Bureau’s 2015 delineation for Core-based Statistical Areas 

(CBSAs), which includes both Metropolitan and Micropolitan Statistical Areas, and 

taking the data availability for covariates into consideration, this study identifies 705 

CBSAs that produced at least one patent in any of the then-existing sub-categories in the 

four traditional fields at the beginning of the timeframe (1976). To enhance the reliability 

of the results, this study compares the patenting levels between two periods instead of 

two points in time. Therefore, this study computes the average of annual patent counts 

from 1976 to 1980 for the first period and from 2010 to 2014 for the second period. As 

for the patent counts after 1976, this study only focuses on each region’s traditional 

patents belonging to their respective patenting sub-categories in 1976. In other words, for 

patent counts from 1977 to 1980 and from 2010 to 2014, this study ignores each region’s 
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traditional patents belonging to the traditional sub-categories not found in each region in 

197634. The 705 CBSAs produced an annual average of 21,334.6 traditional patents from 

1976 to 1980, and 36953.2 traditional patents from 2010 to 2014.  

It is also important to note that after May 2016, the USPC classification is no 

longer assigned to Utility patents (though it is still used for Design and Plant patents)5. 

Instead, USPTO replaces the USPC schemes with the Cooperative Patent Classification 

(CPC) classification jointly developed by the European Patent Office (EPO) and USPTO 

to ensure it is understood by a wide international audience. Most of the CPC’s 

subdivisions stem directly from current International Patent Classification (IPC) and 

World Intellectual Property Organization (WIPO) technological fields used in over 100 

countries around the world and managed by WIPO6.  

However, this study still chooses to use USPC classification because a clearer 

distinction between traditional and high-tech fields is provided under this scheme (Hall et 

al., 2001). As a result, this study finds that for the patent data reported under the USPC 

classification, the count of 2014 data peaked, and the count went down year by year since 

after. This is because there is usually a time gap between when an innovation is granted 

and when it is organized into the database. For instance, even though USPTO had still 

 
3 For instance, if a region patented in sub-category 12 and 15 in 1976, and patented in sub-
category 12, 14, and 15 in 2014, this study only includes the patents for sub-category 12 and 15 
as the patent count of this region in 2014. This is because this study is more interested in testing 
whether regions were able to sustain innovation in their original specialization. If all traditional 
patents produced from 2010 to 2014 are counted, the 705 CBSAs would have produced an annual 
average of 49475.2 traditional patents during 2010-2014. 
4 This sample selection method might miss economic activities in some sub-categories that could 
potentially drive innovations in other sub-categories. The Discussions section includes results for 
a model covering all patents in traditional technological sub-categories in later years, regardless 
of their presence in 1976. 
5 https://patentsview.org/forum/generalfaq 
6 https://patentsview.org/classification  

https://patentsview.org/classification
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been reporting patent data under USPC classification until May 2016, some patents 

granted in 2015 might not yet been included in the database before May 2016 due to the 

time lag. This leads to the conclusion that the patent data in and before 2014 are 

complete, because the overall US patent count has kept growing every year, especially 

since 2008. Hence, I choose 2014 as the end point of the study period.  

This study also conducts analyses on two shrinking region sub-samples. First, 

among the 705 innovating CBSAs, 136 regions are shrinking regions in terms of 

population, which have experienced a region-wide population loss during 1976-2014. 

The second sub-sample contains 42 slow-growth regions in terms of regional total 

income. This is because this study defines the latter group as regions with above-median 

total income in 1976 and below-median total income increase between 1976 and 20147. 

Additionally, if we define Rust Belt regions as those located in any of the eight states: 

New York, Pennsylvania, West Virginia, Ohio, Michigan, Indiana, Illinois, Wisconsin, 

65% of the population-shrinking regions and 83% of the slow-growth regions can be 

classified as Rust Belt regions. Interestingly, as shown in Appendix Table A.2, 29 of the 

regions in both samples overlap, and almost all of the overlapping regions (27 regions, 

i.e., 93%) are Rust Belt regions.  

Moreover, this study further defines growing regions in terms of population as 

regions having experienced population growth (569 regions) and growing regions in 

terms of economy as regions with above-median total income increase (352 regions) from 

1976 to 2014. This study runs additional regression models on these two comparative 

 
7 Data source: Bureau of Economic Analysis. To calculate the total income of each region, this 
study multiplies the per capita income of each region by its respective population.   
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sub-samples to provide stronger evidence for the results of the two shrinking region sub-

samples. It is also noteworthy that about 91% of the growing regions in terms of total 

income are also growing regions in terms of population. However, only about 56% of the 

growing regions in terms of population are also growing regions in terms of total income. 

It seems reasonable to speculate that an increase in population does not always lead to an 

increase in total income. These facts reinforce a major argument of this study – progress 

or regression in any of the dimensions of innovation, population, and economy does not 

necessarily indicate the same trend in the other dimensions. 

This study runs Linear Regression models8 to examine the main hypotheses: 

holding all else constant, a region’s patenting level in traditional technological fields 

during 2010-2014 was positively associated with the region’s patenting level in these 

fields in during 1976-1980.9 Additionally, literature suggests that regions even with a 

shrinking population or slow-growth economy are also able to sustain innovation 

activities, and the leading manufacturing firms are likely to be the main contributor. 

 
8 Although a Panel Regression approach may provide more reliable results, it is not applied in this 
study. This is because the patent data show that regional innovation demonstrates very strong 
serial autocorrelation even within a relatively long timeframe, such as 10-year blocks, so using 
panel data may require more complex Time-series Regression techniques to adjust for the strong 
autocorrelation. Given the study compares the innovation level before and after a nearly-40-year 
time period, OLS Regression is appropriate. 
9 Technological category by region is not chosen as the unit of analysis because many regions 
have zero observations in more than one technological category, which can lead to biased 
regression results. Also, using technological category as the unit of analysis might overlook the 
cross-category influences within each region. Furthermore, assigning category-specific dummy 
variables to each region is challenging, as the patents of many regions span multiple 
technological categories. Given the potential for different patterns of innovation evolution across 
various technological categories, future research could consider conducting in-depth analyses 
within specific categories or sub-categories. Additionally, incorporating category-specific 
covariates, such as establishing a crosswalk between technological categories and covariates 
categorized by industries, poses a considerable challenge that warrants careful consideration in 
these studies. 
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Therefore, this study conducts the same regression analyses on the two sub-samples of 

shrinking regions and further investigates if the large manufacturing corporations indeed 

lead to the sustained innovation activities in these regions. Two comparative emerging 

region sub-samples are also tested. This study collects data for each CBSA’s population 

and income covariates from the Bureau of Economic Analysis, and educational 

attainment and business covariates from the US Census Bureau.  

This study uses Equation (1) to fit six sets of models:  

ln (PatCt)2010-2014 = β0 + β1ln (PatCt)1976-1980 + β2PopGr1976-2014 + β3IncGr1976-2014 

+ β4MfgEstd2014 + β5HumCap2014 + Division’ + e (1) 

Model 1 contains all 705 CBSAs. Models 2 and 3 compare shrinking and growing 

regions in terms of population. Model 2 contains the 136 CBSAs identified as shrinking 

regions in terms of population – regions recorded smaller population in 2014 than in 

1976. On the contrary, Model 3 is comparative model including the 569 CBSAs with an 

increased population during 2014-1976. Model 4 and 5 compare slow-growth regions 

with growing regions in terms of total income. Similarly, Model 4 is the main model 

containing the 42 CBSAs which had above-median total income in 1976, but experienced 

a lower-than-median total income increase between 1976 and 2014. By contrast, Model 5 

includes the 352 CBSAs that experienced above-median total income increase from 1976 

to 2014.  

The models control for covariates which may also influence regional 

innovation10. The first covariate controls for the contribution of large manufacturing 

 
10 To address concerns of potential endogeneity in the main independent variable, i.e., Patent 
Count Average 1976-1980 (ln), due to possible reverse causality with the error term, I employed 
a Two-Stage Least Squares (2SLS) analysis. The instrumental variable chosen for this analysis 
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corporations on traditional innovation, measured by the count of each region’s 

manufacturing establishments with greater than 1,000 employees in 2014. This study 

defines manufacturing businesses with the classification of North American Industry 

Classification System (NAICS) codes (2-digit code: 31-33). Contrary to high-tech 

industries, where smaller startups play a more important role in patenting activities, 

literature suggests that traditional patents tend to concentrate in large manufacturing 

corporations (e.g., Hannigan et al., 2015; Mudambi et al., 2017).  

The second control variable is human capital, measured by each region’s 

percentage of adults age 25+ with a bachelor’s degree or above in 201511. Human capital 

is a strong predictor of innovation growth (e.g., Florida et al., 2008). Other covariates 

include regional population growth between 1976 and 2014 and each region’s per capita 

income growth during the same period. These two covariates serve as the measure for 

agglomeration and urbanization economies. The last set of covariates includes dummy 

 
was the Patent Count Average 1971-1975 (ln). This variable is significantly correlated with the 
potentially endogenous independent variable but does not have a direct connection to the 
dependent variable. Notably, comprehensive datasets on US patent data before 1975 are 
unavailable in digital format via the USPTO. As a result, I utilized the HistPat dataset, compiled 
by Petralia et al. (2016) from digitized records of original patent documents issued by the USPTO 
from 1836 to 1975. This unique dataset provides geographical locations of patents but lacks 
information on technological categories and sub-categories, leading to the inclusion of all existing 
patents within each CBSA as the instrumental variable. 
The Wald test’s F-statistic confirms the chosen instrumental variable’s strength. In the second-
stage regression, the coefficients and significance levels for both the primary independent 
variable (Patent Count Average 1976-1980 (ln)), and key control variables – including Population 
Growth 1976-2014 (%), Per Capita Income Growth 1976-2014 (%), Count of Manufacturing 
Establishment with > 1,000 Employees in 2014, and Human Capital 2015-2019 (%) – aligned 
with those observed in the initial regression model. Moreover, the coefficient for the primary 
independent variable was 1.155, surpassing its original model value, which underscores the 
study’s argument regarding its “pure” direct impact. Additionally, the residual plot from the 
second-stage model demonstrated homoscedasticity. 
11 Data source: Census Bureau 2015-19 American Community Survey (ACS) 5-year estimates. 
This study uses 5-year instead of 1-year estimates because the latter leave out many smaller regions 
in the sample. 
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variables indicating which one of the 9 US Census Divisions each region is in12. 

Table 2.2 Descriptive Statistics13 

Variable Obs. Mean Std. Dev. Min Max 

Patent Count Average 2010-2014 (ln) 705 2.169 1.893 -2.000 8.057 

Patent Count Average 1976-1980 (ln) 705 1.710 1.646 -1.609 7.768 

Population Growth 1976-2014 (%) 705 0.428 0.563 -0.472 4.515 

Per Capita Income Growth 1976-2014 (%) 705 5.635 1.133 2.434 15.246 

Count of Manufacturing Establishment with > 1,000 Employees in 2014 705 1.045 2.513 0.000 35.000 

Human Capital 2015-2019 (%) 705 24.020 8.377 10.200 67.400 

Census Division East North Central (0/1; Baseline) 705 0.213 0.410 0.000 1.000 

Census Division New England (0/1) 705 0.037 0.189 0.000 1.000 

Census Division Middle Atlantic (0/1) 705 0.087 0.281 0.000 1.000 

Census Division West North Central (0/1) 705 0.119 0.324 0.000 1.000 

Census Division South Atlantic (0/1) 705 0.152 0.359 0.000 1.000 

Census Division East South Central (0/1) 705 0.087 0.281 0.000 1.000 

Census Division West South Central (0/1) 705 0.123 0.329 0.000 1.000 

Census Division Mountain (0/1) 705 0.082 0.275 0.000 1.000 

Census Division Pacific (0/1) 705 0.101 0.301 0.000 1.000 

 

 
12 For CBSAs that cross the border between two Census Divisions, this study uses the location of 
the first-named state in the name of each CBSA.  
13 This study employs logarithm transformation to adjust for the right-skewed distribution of the 
dependent variables and the main patent independent variables. Given that these variables 
primarily involve count data, Generalized Linear Model (GLM) Regression techniques may be 
suitable. This study also examines the data with GLM Poisson regression, but the models fail to 
pass diagnostic tests. It is important to note that this study sets the results of ln (0) as -2 for the 
patent count average 2010-2014 dependent variables. This adjustment is made to ensure that all 
observations are computable even in regions with 0 patent counts for each year from 2010 to 
2014. Consequently, these regions have the minimum value across all regions. The next smallest 
value for this variable would be the regions that had only 1 patent in any single year during 2010-
2014. In such case, the 5-year patent count average is 0.2, resulting in a natural logarithm value of 
ln (0.2) = -1.609.     
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Table 2.3 Correlation Matrix 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Patent Count Average 
2010-2014 (ln) 1.000              

2 Patent Count Average 
1976-1980 (ln) 0.879 1.000             

3 Population Growth 
1976-2014 (%) 0.320 0.108 1.000            

4 Per Capita Income 
Growth 1976-2014 (%) 0.100 0.010 0.111 1.000           

5 

Count of Manufacturing 
Establishment with > 
1,000 Employees in 
2014 

0.551 0.585 0.079 0.026 1.000          

6 Human Capital 2015-
2019 (%) 0.546 0.380 0.275 0.298 0.188 1.000         

7 
Census Division East 
North Central (0/1; 
Baseline) 

0.033 0.112 -0.279 -0.226 0.054 -0.127 1.000        

8 Census Division New 
England (0/1) 0.145 0.124 -0.062 0.164 -0.001 0.260 -0.102 1.000       

9 Census Division Middle 
Atlantic (0/1) 0.104 0.181 -0.174 -0.014 0.000 0.040 -0.160 -0.060 1.000      

10 Census Division West 
North Central (0/1) -0.095 -0.110 -0.138 0.141 -0.028 0.075 -0.191 -0.072 -0.113 1.000     

11 Census Division South 
Atlantic (0/1) 0.024 -0.004 0.214 0.055 -0.025 -0.014 -0.220 -0.083 -0.130 -0.156 1.000    

12 Census Division East 
South Central (0/1) -0.105 -0.127 -0.021 0.055 -0.004 -0.130 -0.160 -0.060 -0.095 -0.113 -0.130 1.000   

13 Census Division West 
South Central (0/1) -0.155 -0.133 0.000 0.171 -0.008 -0.203 -0.195 -0.073 -0.115 -0.138 -0.159 -0.115 1.000  

14 Census Division 
Mountain (0/1) 0.023 -0.051 0.269 0.030 -0.049 0.170 -0.156 -0.059 -0.092 -0.110 -0.127 -0.092 -0.112 1.000 

15 Census Division Pacific 
(0/1) 0.088 0.036 0.249 -0.265 0.043 0.097 -0.174 -0.065 -0.103 -0.123 -0.142 -0.103 -0.126 -0.100 
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2.4 Results and Findings 

Table 2.4 shows the regression results. Due to the heteroskedasticity problem in 

some of the models, this table presents the robust errors for each model. In addition, since 

both the dependent and key independent variables have been transformed using the 

natural logarithm, the coefficients can be interpreted as the elasticity of the dependent 

variable with respect to the key independent variable. In other words, the coefficient 

shows the percentage change in the dependent variable expected from a 1% difference in 

the key independent variable. 

We see from Model 1 that for all US regions that produced at least one patent in 

any of the traditional fields in 1976, their patenting level in those technological sub-

categories during 2010-2014 was positively associated with their 1976-1980 patenting 

level. Specifically, a 1% increase in the patenting level during 1976-1980 was associated 

with a 1.069% increase in patenting level in 2010-2014. Therefore, the results support the 

main hypothesis of this study – regions with higher original patenting levels in traditional 

fields achieved greater innovation levels in their respective specializations during 2010-

2014. 

Models 2 and 3 use the same regression models as Model 1 to compare the results 

of shrinking and growing regions in terms of population. Model 2 shows that for regions 

losing population between 1976 and 2014 (among which 65% are Rust Belt regions), 

their traditional patenting levels during 2010-2014 were lower than their patenting levels 

during 1976-1980 – a 1% higher original patenting level during 1976-1980 was 

associated with a 0.862% higher patenting level during 2010-2014. By contrast, Model 3 

shows that the sub-sample of regions gaining population yielded similar results as the full 
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sample – regions with higher levels of traditional innovation during 1976-1980 also 

achieved higher traditional patenting levels during 2010-2014.  

Models 4 and 5 instead compare the results of slow-growth and growing regions 

in terms of regional total income. Model 4 shows that for regions that had an above-

median total income in 1976 but a below-median increase in total income between 1976 

and 2014 (among which 83% are Rust Belt regions), their traditional patenting level 

during 2010-2014 was still positively associated with their patenting level during 1976-

1980, and the coefficient was even higher than the full sample. A 1% increase in 

patenting level during 1976-1980 was associated with a 1.150% increase in patenting 

level during 2010-2014. Model 5 further demonstrates that regions with an above-median 

increase in total income during 1976-2014 produced a similar result as the full sample. 

Therefore, it appears that neither a slow-growth nor a growing total income had a 

significant impact on changes in traditional innovation.  

Focusing on the coefficients for the covariate Count of Manufacturing 

Establishment with > 1,000 Employees, we see from Model 1 that the presence of large 

manufacturing corporations with greater than 1,000 employees was not associated with 

the level of traditional innovations during 2010-2014. Like the full sample, the sub-

samples that had higher patenting levels during 2010-2014 than the patenting levels 

during 1976-1980 (i.e., growing regions in terms of population, slow-growth regions in 

terms of total income, and growing regions in terms of total income) also indicate that the 

presence of large manufacturing corporations did not significantly contribute to their 

traditional innovation during 2010-2014. Nevertheless, the opposite is true for shrinking 

regions in terms of population, which is the only sub-sample that did not produce more 
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traditional patents during 2010-2014 than during 1976-1980. In these population-

shrinking regions, large manufacturing establishments with more than 1,000 employees 

made a statistically significant contribution to the traditional innovation during 2010-

2014.  

This study replaces the original business covariate Count of Manufacturing 

Establishment with more than 1,000 Employees with the count of manufacturing 

establishments with more than 500 employees, more than 100 employees, and the count 

of all manufacturing establishments, and re-tests the models. Once again, the covariates 

consistently show significance only in the sub-sample of shrinking regions in terms 

population. The coefficients for the three alternative covariates are 0.0485***, 

0.0045***, and 0.0004***, respectively. To facilitate cross-model coefficient 

comparison, I standardized them by calculating the product of each coefficient and the 

standard deviation ratio of the corresponding independent and dependent variables. Table 

2.5 presents these standardized coefficients. The findings indicate that, in population-

shrinking regions, larger manufacturing establishments have a marginally more 

significant role in traditional innovations compared to medium and smaller firms. The 

results also highlight the need for future studies to investigate whether it is the size of 

larger establishments or the broader scale of the local industry that influences future 

patent activity. 

Interestingly, the presence of large manufacturing corporations in the 1980s 

(1986) did not significantly contribute to traditional innovation during 2010-2014 for 

growing regions in terms of population, slow-growth regions in terms of total income, 

growing regions in terms of total income. In contrast, for population-shrinking regions, 
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the count of large manufacturing establishments in the1980s is significantly and 

positively associated with their traditional innovation during 2010-2014, with a 

coefficient of 0.035***. Again, the same condition is also found if the covariate is 

replaced with the count of manufacturing establishments with more than 500 employees, 

more than 100 employees, and the count of all manufacturing establishments. Hence, it is 

plausible to suggest that among population-shrinking regions, those that had a 

concentration of large manufacturing businesses and a large size of manufacturing 

industry in 1980s may have produced more traditional innovations during 2010-2014.  

These findings partially resonate with the arguments made by recent empirical 

studies about traditional innovation in some Rust Belt regions. First, one generalizable 

finding is that regions that historically specialized in traditional fields have continued to 

innovate in these specializations at the same or slightly higher level over the last 40 years 

of industrial decline. Second, it should be noted that the performance of regions with 

declining populations was less satisfactory than other regions, even including those had a 

slow-growth regional total income. Specifically, the coefficient shows that population-

shrinking regions exhibited no significant growth in the patent level of traditional fields 

from 1976-1980 to 2010-2014.  

However, a note of caution is warranted as the raw patent count data indicates that 

population-shrinking regions collectively produced an average of 3,286.2 patents 

annually between 2010 and 2014, representing a 19.60% increase from the 2,747.6 

annual patents recorded during 1976-1980. Although this growth rate in annual patent 

counts for these regions was significantly lower than the overall regional growth rate 

(which experienced a 73.21% increase from 21,334.6 annual patents during 1976-1980 to 
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36,953.2 annual patents during 2010-2014), there was still an increase in patent output in 

traditional fields in these population-shrinking regions. In the regression models, this 

increase has been accounted for by the change in other covariates such as educational 

attainment. 

Third, recent empirical studies have emphasized the role of large manufacturing 

firms in some Rust Belt regions in sustaining regional traditional innovation (e.g., 

Hannigan et al., 2015; Mudambi et al., 2017). This study also reaches a similar finding. 

However, this study highlights that the role of these large corporations is less significant 

in most other regions that produce traditional patents. Furthermore, future research could 

delve deeper and explore whether the presence of large establishments, a large overall 

industry size, a combination of both factors, or other factors that leads to the lower 

innovation performance of population-declining regions. 

The regression results seem to support that population does play a role in 

fostering traditional innovation, and it is possible they are endogenous to each other. 

First, again, regions with a shrinking population over the study timeframe invented fewer 

traditional patents than other regions. Second, in almost every model, population growth 

over 1976-2014 was positively associated with the level of regional traditional innovation 

during 2010-2014. This conclusion also applies to the human capital covariates – most 

models show a positive association between the percentage of adults (over 25 years old) 

with a bachelor’s degree or above in each region and each region’s traditional patenting 

level. This finding indicates that like innovation in high-tech fields, higher education has 

also been relevant to innovation in traditional fields. 

On the contrary, regional per capita income growth does not appear to 
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significantly impact innovation in the traditional fields. This finding is understandable 

because not all regions that are experiencing economic growth prioritize innovation as a 

development strategy. Last, it is surprising that the geographic location of CBSAs in 

general does not have a significant impact on the current landscape of traditional 

innovation. The only exception seems to be the Middle Atlantic Census Division, which 

also contains many Rust Belt regions but exhibited a lower level of traditional innovation 

during 2010-2014 compared to the East North Central Census Division. 
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Table 2.4 Regression Results 

Model 1 2 3 4 5 

Sample All 
CBSAs 

Population-shrinking 
CBSAs 

Population-growing 
CBSAs 

Slow-growth CBSAs in Total 
Income 

Growing CBSAs in Total 
Income 

Patent Count Average 1976-1980 
(ln) 

1.069*** 0.862*** 1.099*** 1.150*** 1.096*** 

(0.021) (0.054) (0.021) (0.119) (0.026) 

Population Growth 1976-2014 (%) 
0.558*** 2.155* 0.534*** 1.174 0.470*** 

(0.057) (0.967) (0.060) (1.060) (0.059) 

Per Capita Income Growth 1976-
2014 (%) 

0.026 -0.046 0.027 0.495* -0.013 

(0.031) (0.119) (0.031) (0.241) (0.040) 

Count of Manufacturing 
Establishment with > 1,000 
Employees in 2014 

0.029 0.106*** 0.015 0.139 0.002 

(0.016) (0.030) (0.016) (0.145) (0.012) 

Human Capital 2015-2019 (%) 
0.031*** 0.045* 0.030*** -0.015 0.030*** 

(0.005) (0.020) (0.005) (0.032) (0.005) 

Census Division East North 
Central (0/1; Baseline) 

     

     

Census Division New England 
(0/1) 

-0.026 -0.493 -0.063 0.707* -0.135 

(0.135) (0.345) (0.136) (0.343) (0.166) 

Census Division Middle Atlantic 
(0/1) 

-0.236 0.241 -0.480** 0.243 -0.301* 

(0.124) (0.211) (0.156) (0.376) (0.120) 

Census Division West North 
Central (0/1) 

0.018 0.162 -0.059  -0.138 

(0.107) (0.221) (0.121)  (0.133) 

Census Division South Atlantic 
(0/1) 

-0.140 0.224 -0.208 -0.331 -0.089 

(0.106) (0.252) (0.117) (0.390) (0.115) 

Census Division East South 
Central (0/1) 

-0.099 0.123 -0.173 -0.184 -0.037 

(0.147) (0.250) (0.163) (0.339) (0.213) 

Census Division West South 
Central (0/1) 

-0.051 -0.154 -0.046 0.473 0.038 

(0.119) (0.293) (0.125) (0.475) (0.143) 

Census Division Mountain (0/1) -0.141 -0.729** -0.160 0.170 0.074 
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Model 1 2 3 4 5 

Sample All 
CBSAs 

Population-shrinking 
CBSAs 

Population-growing 
CBSAs 

Slow-growth CBSAs in Total 
Income 

Growing CBSAs in Total 
Income 

(0.171) (0.226) (0.181) (0.411) (0.219) 

Census Division Pacific (0/1) 
-0.140  -0.186 0.426 -0.160 

(0.110)  (0.114) (0.759) (0.123) 

Constant 
-1.358*** -1.098 -1.282*** -3.185 -0.958*** 

(0.165) (0.565) (0.174) (1.363) (0.213) 

Number of Observations 705 136 569 42 352 

Adjusted R-squared 0.886 0.828 0.895 0.727 0.905 

Note: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05. Values in parentheses are standard errors. 
 

Table 2.5 Cross-model Coefficients Comparison for Covariate Manufacturing Establishments  

Covariate More than 1,000 
Employees 

More than 500 
Employees 

More than 100 
Employees 

All Manufacturing 
Establishments 

Standardized Coefficient 0.117 0.116 0.105 0.103 
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2.5 Discussions and Conclusion 

The first conclusion this study wants to draw is that innovation often persists even 

in regions facing population decline or sluggish economic growth, and this conclusion 

perhaps applies more to regions that lead in innovation. This study also demonstrates that 

even though population-shrinking regions were unable to achieve significant growth in 

innovation, they were still able to sustain their traditional patenting level in their 

historical specializations for an extended period. Hence, it comes as no surprise that 

recent empirical studies have identified several prominent examples of Rust Belt regions 

that continue to actively engage in patenting activities within traditional fields (Hannigan 

et al., 2015; Mudambi et al., 2017; Safford, 2004; Treado, 2010). With appropriate 

investments and improvements in the educational attainment of the local population, 

these regions hold the potential for growth in future innovation. 

Nevertheless, this study acknowledges the broader context of the increasing 

innovation gap between traditional and high-tech fields. As previously demonstrated, 

traditional fields have experienced a much slower rate of innovation growth over the last 

half century compared to the rapid growth of innovation in high-tech fields. The results 

of this study also show that despite the ability of traditional fields to sustain patenting for 

a long time amid industrial decline, their growth rate is not particularly high (not far from 

unit elasticity). Moreover, when one includes all patents in traditional technological sub-

categories in subsequent years regardless of whether we observed patents in those sub-

categories back in 1976 and retest Model 1, the coefficient for the main independent 

variable becomes smaller than 1 (0.856***) and even smaller for Model 2 (0.733***). 

This is consistent with mainstream economic development theories in that traditional 
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fields should embrace the changes brought by the emergence of high-tech fields and 

continually adopt new knowledge to remain competitive. It is equally important to 

recognize that the concept of traditional fields is constantly evolving over time. Today’s 

high-tech fields may eventually become traditional fields as newer fields are invented. 

The second objective of this study is to examine the role of large manufacturers. It 

was observed that regions with declining populations had the least satisfactory innovation 

performance and were the only sample in which large manufacturing establishments 

played a significant role in traditional patenting. While recent empirical studies have 

highlighted the importance of large manufacturing firms in sustaining traditional 

innovation, this study raises questions about this idea. It suggests that the presence of 

large manufacturing establishments might be a contributing factor to the lower innovation 

performance observed in some Rust Belt regions. Moreover, this study reveals that the 

overall size of the manufacturing industry, though slightly less, also plays a significant 

role in traditional patenting. Exploring whether these factors, or others, lead to reduced 

innovation performance in population-shrinking regions can be insightful. Here, the 

standpoint of this study resonates with Menzel and Fornahl’s (2010) life cycle theory of 

industrial clusters and Markusen’s (1996) theory on “hub-and-spoke” industrial districts. 

The third and last takeaway of this study is the non-parallelism between 

innovation, economy, and population growth. While economic development scholarship 

often emphasizes the reinforcing relationship between the three economic factors, this 

study contends that their interaction may vary, particularly during economic decline. For 

instance, this study finds that regions experiencing economic decline did not necessarily 

experience population or innovation decline. This may be because economic 
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development involves complex factors beyond human capital and technological 

innovation. By contrast, population and human capital seem to play a more important role 

in fostering innovation. This study demonstrates that population decline can lead to 

reduced innovation, and vice versa.  

In conclusion, this study suggests that for many established industrial regions, 

completely abandoning traditional expertise in favor of pursuing high-tech industries may 

not be the most efficient use of resources. Instead, regions could integrate their existing 

industrial strengths into their regional revitalization strategies. For instance, besides 

designating industrial parks that solely attract and incubate high-tech start-ups, 

governments can identify and support competitive traditional corporations or clusters that 

are capable of investing in advanced technologies. Policy-makers may also consider 

minimizing the potential adverse impact of large or potentially monopolistic traditional 

firms, as well as the impact of an overly dominant traditional industry on the regional 

innovation atmosphere. 

While patent data is a widely-adopted proxy for innovation in many studies, it has 

several limitations that merit attention. Three major limitations are worth highlighting. 

First, patent data does not cover all kinds of traditional innovation, particularly those that 

are related to process innovation instead of production innovation, and those that are not 

patented due to company strategies. This could affect the generalizability of the findings. 

Second, this study assumes equal weight for all patents. However, it is recognized that 

breakthrough patents typically contribute more significantly than those representing 

minor improvements. Future research might explore the feasibility of assigning greater 

weights to patents with a higher number of citations. 



41 
 

Third, there is potential for geographical bias in patent data, as the location of the 

first-named inventor may not necessarily reflect the major resources utilized in 

developing the patent, or the locations of companies using the patent or production-

related products. Often, this location is chosen based on legal or administrative reasons. 

In this study, the first-named inventor’s location was chosen because they play a pivotal 

role in the patent’s conceptualization and development, and their location typically 

reflects the place of this work. As the study focuses on regional innovation activity, this 

approach aids in identifying the geographic distribution of innovation and the leading 

region in cases of collaborative networks. However, future extended studies might 

consider including all associated locations of a patent to more comprehensively represent 

the collaborative nature of modern innovation processes. 
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CHAPTER III 

REGIONAL INNOVATION AND TRANSFORMATION: HIGH TECH 

INNOVATION GROWTH AND THE KNOWLEDGE STRUCTURE AROUND 

TRADITIONAL TECHNOLOGIES 

3.1 Introduction 

Although always striving for long-run economic competitiveness, regions rarely 

experience perpetual growth. One primary challenge leading to the economic decline of a 

region is that the region specializes in certain industries but these industries decline 

(Glaeser, 2005). Rust Belt regions in the US are such examples (Martinez-Fernandez et 

al., 2012; 2016). Regions respond to industry-led decline with different economic 

revitalization strategies, and one goal is to reinvent their export base and become 

competitive again (Bingham & Eberts, 1990; Neumann, 2016). Developing 

specializations in emerging industries, which refers to the most advanced industries in 

need of high R&D inputs, is a popular strategy. These so-called “emerging” or “high-

tech” industries include, for instance, computers, pharmaceuticals, and biotechnology 

(Hecker, 2005; Mendonça, 2009). Regions seeking to reinvent their export base often 

pursue increased innovation capacity in these emerging industries (Fogarty & Garofalo, 

2014).  
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Many modern development theories explain the economic factors leading to 

regional innovation growth. Agglomeration research argues that regional economic or 

knowledge structure ushers in new industrial expertise (Feldman & Audretsch, 1999; 

Glaeser et al., 1992). Two major competing viewpoints within agglomeration research 

stimulate much discussion. One view explains that agglomeration enables this new 

industrial expertise through Jacobian externalities, wherein innovation growth occurs 

through novel combinations of inter-industrial knowledge (Jacobs, 1969). For instance, in 

their observation of the evolution of regional industries, Menzel and Fornahl (2010) 

argue that regions can spawn new industries with high innovation rates if local industrial 

clusters maintain high knowledge heterogeneity. This development pathway is usually 

considered in contrast to the thesis of Marshall (1920)-Arrow (1962)-Romer (1986) 

(MAR) externalities, which claims that higher innovation growth is made possible by the 

intra-industry knowledge spillovers between similar firms. Recent meta-analyses show 

that both arguments find empirical support (De Groot et al., 2016; Melo et al., 2009). 

Despite the fruitful academic discussions, one research gap still exists within this 

body of literature. Most studies look at the relationship between overall or industry-

specific knowledge structure and aggregate or industry-specific innovation growth in a 

region’s economy. This is because their main interest lies in the process of economic and 

industrial growth. However, few relate the topic to the process of economic and industrial 

restructuring. Put differently, agglomeration research rationalizes why agglomeration 

economies and knowledge spillovers play an important role in spurring regional 

innovation growth. Nevertheless, as suggested by Martin and Sunley (2003), it usually 

lacks a dynamic perspective regarding how agglomeration is associated with the 
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transformation of regional economies and the emergence of new industrial strengths. To 

address the research gap, this study instead tests an asymmetric relationship by 

investigating whether a region’s innovation growth in high-tech industries is associated 

with the pre-existing knowledge structure of its traditional industries.  

This study employs the US Patent and Trademark Office (USPTO) technological 

classification and patent data to define high-tech and traditional technological fields. 

Through regression analyses, the hypotheses are tested to determine whether a more 

specialized or diversified knowledge structure of traditional technological fields better 

encourages high-tech innovation growth from 1986 to 2014. The findings indicate that 

regions with greater diversity in both related and unrelated traditional technological sub-

categories tend to perform better in restructuring their knowledge base and fostering 

high-tech innovation. Conversely, a high degree of specialization in specific traditional 

technological sub-categories negatively impacts a region’s ability to undergo 

restructuring. The conclusions remain consistent across multiple time periods from 1986 

to 2014.  

This study also delves into the underlying mechanism of how fostering a diverse 

knowledge base not only benefits innovation growth but also facilitates the development 

of entirely new industrial expertise within the region. Scholarship has offered various 

potential explanations for the observation that knowledge diversity can lead to innovation 

emerging from radically new industries. One primary objective of this study is to clarify 

the nuances among these arguments. 

Based on the results presented, this study posits, first, that regions with more 

diverse traditional technologies – whether related or unrelated – offer more opportunities 
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for high-tech companies to identify potential new areas of demand among local 

industries. Second, more diversified regions, often characterized by larger economies and 

populations, foster economies of scale that are more supportive for high-tech start-ups, 

even those that deviate from their initially specialized industries. Third, while scholars 

may argue that regions known for highly specializing in certain traditional fields have 

successfully incorporated high-tech expertise, this study contends that the majority of 

these regions actually belong to the category characterized by high related variety rather 

than high specialization. 

3.2 Literature Review 

This paper tests the relationship between a region’s industrial or knowledge 

structure and its capacity to innovate. The research question derives from the theoretical 

framework concerning the relationship between agglomeration economies and regional 

innovation growth. This literature serves as an important part of the extensive studies 

exploring economic factors that generate regional innovation. This review first delves 

deeper into the three most discussed industrial structure-innovation arguments exploring 

different aspects of regional knowledge structure (specialization, related variety, and 

unrelated variety) and their impacts on regional innovation growth. Next, this review 

identifies the research gap which leads to the main hypotheses. Last, this review briefly 

introduces the scholarship explaining the plausible mechanisms that the main hypotheses 

of this study try to capture. 

A vast literature examines the economic factors that could lead to a region’s 

innovation growth. Some of the most discussed and interrelated factors include the 

agglomeration of innovating businesses, the presence of leading R&D institutions, and 
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the pool of educated workers. Macrolevel research finds that businesses tend to 

agglomerate because knowledge spillovers are facilitated through the co-location of 

supplier, competitor, and consumer firms, as well as research and economic development 

institutions (Audretsch & Feldman, 1996; Ellison et al., 2010; Porter, 1998; Saxenian, 

1996). Similarly, Morgan (1997), Maskell and Malmberg (1999), and Bathelt et al. 

(2004) argue that these industrial agglomerations foster the formation of an interactive 

learning and joint problem-solving environment where businesses can innovate more 

effectively.  

At the micro level, scholarship highlights the role of anchor institutions, including 

research universities (Anselin et al., 2000; Audretsch et al., 2012; Mayer, 2011), leading 

innovating corporations (Agrawal & Cockburn, 2003; Klepper, 2016; Mayer, 2011) and 

government-led industrial initiatives (Bingham, 1998; Klepper, 2016) in developing and 

commercializing technological innovation. Furthermore, researchers stress that for 

regions aiming to promote technological innovation, attracting skilled and educated 

workers is an essential part of all development strategies (Florida, 2003; Glaeser & 

Hausman, 2020; Glaeser & Resseger, 2010).    

The literature on agglomeration research has long debated whether a more 

specialized or diversified economy (usually measured by the employment of different 

industries in the region) better encourages regional innovation growth (De Groot et al., 

2016; Glaeser et al., 1992). Using patents and patent citation data, scholars also study the 

issue through directly investigating to what extent intra-industrial and inter-industrial 

knowledge spillovers, or externalities, impact the creation of new knowledge (Acemoglu 

et al., 2016; Kekezi et al., 2021). The theory of MAR externalities underlines that a 
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region’s innovative capacity particularly benefits from the intra-industrial knowledge 

spillovers, especially those that occur within the region’s industrial specializations. 

Economists have reasoned that experience gained with one product can make it easier for 

firms to produce new products incorporating similar technologies (Arthur, 1989; 1990; 

Patel & Pavitt, 1997). In addition, co-located firms from the same industry can lower 

operation costs and innovate more efficiently because the industrial agglomeration 

provides them industry-specific infrastructure and assets (Feldman, 1999; Krugman, 

1991; Marshall,1920).  

In contrast to MAR externalities, Jacobian (1969) externalities emphasizes that 

knowledge spillovers are not confined to businesses from the same industries. Rather, 

important knowledge transmits across industries. Therefore, industrial diversity facilitates 

the exchange and combination of cross-industry knowledge and in turn fosters regional 

innovation (Acs, 2002; Duranton & Puga, 2000; Feldman & Audretsch, 1999; Glaeser et 

al., 1992). Similarly, by exploring patent citation data, Jaffe (1993) finds that a significant 

portion of the knowledge flow affecting co-located firms’ research productivity comes 

from outside of their immediate technological neighborhood. Recent empirical evidence 

further suggests that inter-industry knowledge externalities rather than MAR externalities 

play a significant role in the knowledge creation of US manufacturing industries (Kekezi 

et al., 2021).  

Studies from the evolutionary economic geography community rephrase the term 

“Jacobian externalities” with the term “related variety”, which highlights the kind of 

regional industrial portfolio in which industries are not only diverse but also 

technologically proximate (Frenken et al., 2007). In other words, a region with high 
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related variety indicates that the region has diverse sub-level industries within its broad-

level industries. As an illustration, consider a region known for its strong manufacturing 

base in the automotive sector. In addition to hosting manufacturers producing different 

types of vehicles, it is also home to a multitude of suppliers engaged in the production of 

diverse automotive components, such as roofs, fenders, tires, and wheels. 

This stream of literature further finds that regional economies usually grow by 

innovating in the industries that are technologically close to the pre-existing industries 

(i.e., under the same broad-level industries) (Balland et al., 2019; Boschma et al., 2015; 

Essletzbichler, 2015; Hidalgo et al., 2007; Neffke et al., 2011; Petralia et al., 2017; 

Rigby, 2015). As a result, it is not surprising that growing evidence shows that regions 

with higher industrial variety across related industries experience stronger innovation 

growth (Aarstad et al., 2016; Carbonara & Tavassoli, 2013; Castaldi et al., 2015; Ejdemo 

& Örtqvist, 2020; Liang & Goetz, 2018; Miguelez & Moreno, 2018; Zhang et al., 2020).  

Therefore, two primary insights can be drawn from the regional agglomeration 

research and the evolutionary economic geography community so far. First, scholars 

argue that both MAR externalities and Jacobian externalities (or related variety) can be 

associated with higher innovation growth. Second, MAR externalities and Jacobian 

externalities (or related variety) exist as two distinct constructs and are measured 

differently. On the one hand, MAR externalities capture a region’s specialization 

(measured by, for instance, employment share or patenting share) in certain broad-level 

industries or sub-level industries compared to corresponding national averages. On the 

other hand, Jacobian externalities, or related variety, focuses on whether a region has a 

diverse range of sub-level industries under its broad-level industries. Therefore, scholars 
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usually measure the former with location quotient and the latter with variants of an 

entropy index (Liang & Goetz, 2018). Specifically, an entropy index quantifies the 

distributional characteristics of elements within a system, determining whether these 

elements are predominantly concentrated in a limited number of categories or are more 

uniformly dispersed across a broader array of categories.  

Besides the two types of industrial structure, evolutionary economic geography 

scholars also point out that many technologically-unrelated industries may concentrate in 

regions with dense population and economic activities. Correspondingly, they see regions 

with such industrial structure as one with “unrelated variety” (Frenken et al., 2007). 

There is little theoretical reason to suspect that unrelated variety engenders inter-

industrial knowledge spillovers. However, scholars still find that in a few occasions the 

combination of radically different knowledge fields can lead to break-through 

innovations or even the birth of entirely new fields (Barbieri & Consoli, 2019; Castaldi et 

al., 2015; Miguelez & Moreno, 2018). These studies also measure “unrelated variety” 

with the variants of an entropy index at the broad industrial level. 

A notable gap in this literature is the focus on economic or industrial growth, with 

less attention to economic or industrial restructuring. Most studies examine either the link 

between a region’s overall industrial structure and its aggregate innovation growth, or the 

connection between a region’s industry-specific structure and innovation in 

corresponding industries. Evolutionary economic geographers point out that mainstream 

agglomeration research often overlooks the relationship between agglomeration and the 

transformation of regional economies or the development of new industrial strengths 

(Martin and Sunley, 2003). This study aims to bridge this gap by exploring 
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economic/industrial restructuring, specifically investigating how the knowledge structure 

of traditional technological fields in a region influences its innovation capacity in 

technologically unrelated, high-tech fields. 

Most scholarship utilizes the level of R&D intensity of an industry to distinguish 

these high-tech, science-based industries from the more traditional, non-high-tech 

industries. For instance, the Organization for Economic Cooperation and Development 

(OECD) uses the ratio of R&D expenditures to output to categorize industries into four 

groups – high-technology, medium-high-technology, medium-low-technology, and low-

technology industries. High-tech industries are therefore defined as those with the highest 

R&D intensity, covering industries including pharmaceuticals, aerospace, computers, 

communications, and scientific instruments (Hansen & Winther, 2011; Mendonça, 2009). 

The identified industries highly overlap with the “Level I” high-tech industries classified 

by the US Bureau of Labor Statistics. The BLS defines Level I as industries with the 

highest R&D employment intensity, or with the highest occupation proportions of 

scientists, engineers, and technicians (Hecker, 2005). Other scholars employ the concept 

of technological proximity to categorize industrial patents into distinct groups. They 

further identify high-tech technological categories based on their observation of higher 

innovation output (i.e., patent) growth in recent decades when compared to traditional 

categories (e.g., chemicals and mechanicals) (Hall et al., 2001). This study follows the 

approach of Hall et al. (2001). The identified high-tech technological categories are 

shown in the Methods and Data section. 

To reiterate, the main objective of this study is to see if the industrial/knowledge 

structure-innovation hypotheses developed by canonical agglomeration research and 
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furthered by economic geography scholars explain the process of industrial restructuring. 

To achieve this goal, this paper studies whether the knowledge structure around US 

metropolitan areas’ traditional technological fields is associated with their innovation 

capacity in the high-tech fields. In order to innovate in the high-tech fields, regions need 

to absorb drastically different high-tech knowledge and integrate it into their industrial 

base. Hence, this study investigates whether a more specialized or a more diversified 

industrial/knowledge structure encourages the growth of innovation which is new to a 

region.  

Connecting to pre-existing scholarship, it is conventional to speculate that 

established industrial regions with a more diversified structure of traditional fields should 

perform better than their counterparts which are too specialized in a few traditional sub-

categories. The rationale can be that businesses in regions with diverse and even 

unrelated technological sub-categories have better opportunity to integrate high-tech 

knowledge into the regional knowledge base (Ebert et al., 2019; Tsvetkova et al., 2020). 

Moreover, existing literature provides other plausible explanations regarding why regions 

can take advantage of a diversified knowledge structure to develop radical innovation. 

For instance, scholars argue that industrial diversity provides the entrepreneurial climate 

that benefits the entry and survival of innovative start-ups (Capozza et al., 2018; Renski 

et al., 2011).  

However, recent scholarship also finds that regions with a very strong 

specialization in certain traditional industries, such as Detroit, have started to integrate 

technologies from high-tech industries into their regional innovation portfolio (Hannigan 

et al., 2015). One explanation is that in order to stay competitive, traditional monopolistic 
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corporations are more willing to and capable of investing in advanced technologies 

(Hannigan et al., 2015; Mendonça, 2009).   

3.3 Methods and Data 

This study uses regression analyses to explore the relationship between the 

knowledge structure of traditional technological fields and innovative capacity in high-

tech fields within US metropolitan areas. More specifically, this study investigates 

whether a more specialized or a more diversified knowledge structure of traditional 

technological fields better encourages industrial restructuring, or the development of 

high-tech fields that are entirely different than the traditional fields in a region. Among 

the different approaches to measuring knowledge structure and defining traditional and 

high-tech fields, this study primarily uses innovation output data, i.e., patent data, from 

the USPTO. This study chooses 1986-2014 as the timeframe, taking the availability of 

patent data into account. USPTO patent data provides rich detail about patent 

information, including the technological classification and granted (or application) date 

of the invention, the name and location of inventors, and the ownership of the intellectual 

property of the invention (Hall et al., 2001)14. 

The location of the first-named inventor on patents granted in 1986, 1996, 2006, 

and 2014 (with 1996 and 2006 chosen as midpoints within the timeframe to analyze 

long-, mid-, and short-term effects) is used to designate the patent’s geographic origin. 

Hence, the analysis is limited to patents with their first-named inventor based in the US. 

Moreover, out of the three patent types – Utility patents, Design patents, and Plant 

patents, only Utility patents are included in the sample. According to USPTO definitions, 

 
14 https://patentsview.org/download/data-download-tables 

https://patentsview.org/download/data-download-tables
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a Utility patent is issued for the invention of new and useful process, machine, 

manufacture, or composition of matter, or a new and useful improvement. Therefore, they 

contain the necessary United States Patent Classification (USPC) information about what 

technological field they should be categorized into, which is the standard I refer to when 

deciding whether a patent belongs to traditional or high-tech fields. Moreover, about 90% 

of the patent documents issued by USPTO in recent years have been Utility patents15. 

Table 3.1 Traditional and High-tech Technological Categories and Their Sub-categories 

Traditional Category 
Code and Name Traditional Sub-category Code and Name 

1 Chemical 11 Agriculture, Food, Textiles; 12 Coating; 13 Gas; 14 Organic Compounds; 15 Resins; 19 
Miscellaneous-Chemical 

4 Electrical & Electronics 41 Electrical Devices; 42 Electrical Lighting; 43 Measuring & Testing; 44 Nuclear & X-rays; 45 
Power Systems; 46 Semiconductor Devices; 49 Miscellaneous-Electrical & Electronics 

5 Mechanical 51 Materials Processing & Handling; 52 Metal Working; 53 Motors, Engines & Parts; 54 Optics; 55 
Transportation; 59 Miscellaneous-Mechanical 

6 Others 
61 Agriculture, Husbandry, Food; 62 Amusement Devices; 63 Apparel & Textile; 64 Earth Working 
& Wells; 65 Furniture, House Fixtures; 66 Heating; 67 Pipes & Joints; 68 Receptacles; 69 
Miscellaneous-Others 

  

High-tech Category Code 
and Name High-tech Sub-category Code and Name 

2 Computers & 
Communications 

21 Communications; 22 Computer Hardware & Software; 23 Computer Peripherals; 24 Information 
Storage 

3 Drugs & Medical 31 Drugs; 32 Surgery & Medical Instruments; 33 Biotechnology; 39 Miscellaneous-Drugs & 
Medical 

 

According to Hall et al. (2001), all patents can be aggregated into 6 main 

technological categories: Chemical (excluding Drugs); Computers and Communications; 

Drugs and Medical; Electrical and Electronics; Mechanical; and Others. As shown in 

Table A.1 in Appendix, the 6 categories can be further divided into 36 two-digit sub-

categories and 431 three-digit patent classes. Of the 6 categories, Chemical, Mechanical, 

 
15 USPTO description of patent types: 
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm  

https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm
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and Others are usually considered as the three traditional fields (this study uses 

“traditional fields” and “traditional categories” interchangeably). By contrast, Computers 

and Communications and Drugs and Medical are the high-tech fields (this study uses 

“high-tech fields” and “high-tech categories” interchangeably). Their patent count grew 

much more slowly than that of the traditional fields before 1980s, but has significantly 

surpassed the latter since early 1980s (Hall et al., 2001). This study further classifies the 

Electrical and Electronics category as the fourth traditional field. Within this category, 

the sub-category Semiconductor Devices largely emerged alongside the Computers and 

Communications category. However, due to the techniques and human capital 

requirements of Semiconductor Devices being more aligned with traditional rather than 

high-tech fields, this study classifies the sub-category as part of the traditional fields 

(Table 3.1, expanded upon in Appendix Table A.1). 

This study utilizes the US Census Bureau’s 2015 delineation for Core-based 

Statistical Areas (CBSAs). This geographic scale is chosen as it effectively represents the 

operational sphere of regional economic activities and captures the socio-economic 

integration within these areas. Nevertheless, when constructing the spatial lagged 

covariates for regression analyses, I find that the lack of high-tech patents in many 

Micropolitan Statistical Areas may lead to biases in model estimations. This is because 

the substantial zero values may skew the distribution and violate the underlying 

assumptions of the regression models. Hence, this study only includes Metropolitan 

Statistical Areas (MSAs). Moreover, due to the lack of data for the other regression 

covariates for some MSAs, this study only includes 357 MSAs in the three main 

regression models. The earliest available USPTO patent data dates back to 1976. 
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However, again, considering the scarcity of high-tech patents (which are used to 

construct spatial lagged covariates) before 1980s, choosing 1986 as the earliest year for 

data collection helps minimize potential bias in regression results. In total, these regions 

produced 54,054 high-tech patents in 2014, which is the end year of the study period. 

Table 3.2 Definition of Primary Independent Variables 

Variable Description  

Specialization 
(SPEC) 

The SPEC index for each region is calculated as the location quotient of each region’s most specialized 
traditional technological sub-category. The below equation shows how to calculate the location quotient of 
each traditional sub-category within each region. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 is the patent count of traditional sub-category s 
within region i; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 is the total patent count of all traditional sub-categories within region i; 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 is the total patent count of traditional sub-category s in all regions; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the total patent 
count of all traditional sub-categories in all regions. A higher SPEC index indicates a greater level of 
innovation specialization for each traditional sub-category. 

SPEC = �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

� / �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 

 

Related 
Variety (RV) 

The RV index for region is calculated as the weighted sum of the entropy at the three-digit patent class level 
within each two-digit technological sub-category for each region. The below equation shows how to 
calculate the weighted-sum entropy for traditional sub-categories for each region. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 is the patent 
count of traditional sub-category s within region i; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 is the total patent count of all traditional sub-
categories within region i; 𝑒𝑒𝑠𝑠 is the entropy at the three-digit patent class level within every two-digit 
traditional sub-category s within region i; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐 is the patent count of patent class c within traditional 
sub-category s within region i. Note that the entropy for each traditional sub-category within each region is 
a sum of values across all patent classes within each sub-category. The RV index for each region is a 
weighted sum of entropy values across all traditional sub-categories within each region. A higher RV index 
indicates a greater innovation variety within traditional sub-categories for each region. This suggests a more 
balanced distribution of patents among interconnected patent classes within sub-categories, rather than 
concentration in just a few unrelated patent classes. 

RV = � �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

�
𝑛𝑛

𝑠𝑠=1
𝑒𝑒𝑠𝑠, where: 𝑒𝑒𝑠𝑠 = � �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐
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Unrelated 
Variety (UV) 

The UV index for each region is calculated as the entropy at the two-digit technological sub-category level 
within each region. The below equation shows how to calculate the entropy for traditional sub-categories 
for each region. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 is the patent count of traditional sub-category s within region i; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 is the 
total patent count of all traditional sub-categories within region i. Note that the entropy for each region is a 
sum of values across all traditional sub-categories within each region. A higher UV index indicates a 
greater innovation variety of unrelated traditional sub-categories for each region. This suggests a more 
balanced distribution of patents across various sub-categories, rather than concentration in just a few sub-
categories. 

UV = � �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

� ln � 1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖⁄
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It is also important to note that after May 2016, the USPC classification is no 

longer assigned to Utility patents (though it is still used for Design and Plant patents)16. 

 
16 https://patentsview.org/forum/generalfaq 
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Instead, USPTO replaces the USPC schemes with the Cooperative Patent Classification 

(CPC) classification jointly developed by the European Patent Office (EPO) and USPTO 

to ensure it is understood by a wide international audience. Most of the CPC’s 

subdivisions stem directly from current International Patent Classification (IPC) and 

World Intellectual Property Organization (WIPO) technological fields used in over 100 

countries around the world and managed by WIPO17.  

However, I still choose to use USPC classification because a clearer distinction 

between traditional and high-tech fields is provided under this scheme (Hall et al., 2001). 

As a result, this study finds that for the patent data reported under the USPC 

classification, the count of 2014 data had peaked, and the count went down year by year 

after. This is because there is usually a time gap between when an innovation is granted 

and when it is organized into the database. For instance, even though USPTO had still 

been reporting patent data under USPC classification until May 2016, some patents 

granted in 2015 might not yet have been included in the database before May 2016 due to 

the time lag. This suggests that the patent data in and before 2014 are complete, because 

the overall US patent count has grown every year, especially since 2008. Hence, I choose 

2014 as the end point of the study period. 

Again, the primary goal of this study is to examine which type(s) of knowledge 

structure is more likely to lead regions with traditional expertise to restructure their 

economy and innovate in the high-tech fields. Three main hypotheses are tested: holding 

all else constant, regions 1) with a higher traditional technological specialization, 2) that 

have a traditional knowledge structure with higher related variety, and 3) that have a 

 
17 https://patentsview.org/classification  

https://patentsview.org/classification
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traditional knowledge structure with higher unrelated variety at the beginning of the 

timeframes were associated with higher patenting level in high-tech fields in 2014. As 

discussed in the literature review section, theoretical foundations exist to support each of 

the three hypotheses presented. To determine the temporal variation in the association 

between traditional knowledge structure and high-tech innovation, this study employs 

three linear regression models using different starting points and the same end point: 

1986-2014, 1996-2014, and 2006-201418. Table 3.2 describes how to measure the three 

primary independent variables for each model19. 

This study uses Equation (1) to fit three regression models: 

ln (PatTech)2014 = β0 + β1SPEC1986 + β2RV1986 + β3UV1986 + β4PopGr1986-2014 + 

β5IncGr1986-2014 + β6EduGr1986-2014 + β7ln (PatTech)1986 + β8Spatlag1986 + Division’ + e (1) 

The models have a common dependent variable – the patent count in high-tech 

fields in 2014 – and vary in the timing of independent variables. Models (1), (2), and (3) 

 
18 This study examines the traditional patent counts in each region during the periods of 1 and 2 
years leading up to 1986, 1996, and 2006 respectively and finds that the patent counts largely 
remain stable. In other words, the standard deviation of patent counts across multiple years is not 
dispersed for more than half of the regions. According to standard power analysis, a sample size 
of 26 is sufficient for accurate estimation, and the sample of this study contains 357 MSAs. 
Hence, constructing the variables using one-year patent counts should be acceptable. 
19 In my analysis, I utilized the location quotient of a region’s most specialized traditional 
technological sub-category to measure its level of specialization. The location quotient was 
selected for its capacity to underscore the regional concentration in specific technological sub-
categories relative to the average of all studied regions. While this method aligns well with 
regional economic analysis, I acknowledge the potential utility of alternative measures like the 
Herfindahl-Hirschman Index (HHI) or the market share of the four largest firms or inventors 
within a sub-category. These metrics, commonly used to assess industry concentration and market 
dominance, could offer additional insights into the intensity of regional specialization.  
The reason for not adopting the HHI in this study is its conceptual proximity to the entropy index, 
which I used to assess related and unrelated variety, essentially measuring diversification rather 
than concentration. Regarding the market share of the top four firms or inventors, this was not 
used due to the absence of inventor-specific data in the patent information collected for this 
analysis. However, I recognize the value of exploring these alternative metrics in future research 
to validate and enhance the findings of this study.   
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test the relationship between high-tech patent level in 2014 and traditional knowledge 

structure in 1986, 1996, and 2006, respectively. The timing of control variables, such as 

population growth, income growth, human capital growth, high-tech patent spatial lag, 

and original high-tech patenting level, change accordingly. 

The first set of covariates control for the contribution of population growth, per 

capita income growth, and human capital growth on high-tech innovation during the 

study timeframes. More specifically, human capital growth is measured by the difference 

of each region’s percentage of adults age 25+ with a bachelor’s degree or above between 

the starting and end time20. The second set of covariates includes dummy variables 

indicating which one of the 9 US Census Divisions each region is in21. The models also 

account for each region’s high-tech patenting level at the beginning of the timeframes 

studied.  

This study takes into account the impact of high-tech innovation from 

neighboring regions by creating a spatial lagged variable for each region. The purpose is 

to control for the potential spillover effects of high-tech innovation within nearby 

regions. To begin, shapefiles for all MSAs were obtained from the Census Bureau. These 

shapefiles were then projected to the World Geodetic System 1984 (WGS84) coordinate 

reference system using R programming language within RStudio. Next, in order to 

construct the spatial weights matrices for calculating spatial lagged variables, two 

 
20 I collect data for population and income covariates from the Bureau of Economic Analysis, and 
for educational attainment covariates from the Census Bureau. To construct educational 
attainment covariates, this study uses 1980, 1990, 2000 Population Censuses, and the 2015-19 
American Community Survey (ACS) 5-year estimates. This study uses 5-year instead of 1-year 
estimates because the latter leave out many smaller regions in the sample. 
21 For MSAs that cross the border between two Census Divisions, this study uses the location of 
the first-named state in the name of each MSA.  
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approaches were considered: the k-nearest neighbors (KNN) approach and distance-based 

neighbors (DBN) approach. 

For the KNN approach, the scenarios tested include k values of 1 and 4, meaning 

the high-tech patenting level of the 1 and 4 nearest neighboring regions are taken into 

account for each region. For the DBN approach, a cut-off distance of 200km (~124mile) 

and 400km (~248mile) was chosen, indicating that the high-tech patenting levels of all 

neighboring regions within the respective buffer distances are considered22. I chose these 

proximity ranges because the spillover effects under study might no longer be relevant 

beyond these distance thresholds (Ganning et al., 2013; Partridge & Rickman, 2008). The 

spatial lagged variable for each region was computed as the weighted sum of high-tech 

patents from included neighbors. The weights were given by the corresponding spatial 

weights matrix, allocating greater weight to nearer neighbors. This approach aligns with 

Tobler’s First Law of Geography, which asserts that nearby entities are more likely to 

influence each other than those that are farther apart.  

 
22 In this study, Great Circle distance is used instead of Euclidean distance for all involved 
distance measurements. In addition, the obtained distances are converted into row-standardized 
inverse distances when constructing the spatial weights matrices. The high-tech patenting counts 
of all neighboring regions are collected at the beginning of each study timeframe. Additionally, it 
should be noted that in the DBN approach, a cut-off distance of 200km results in 12 regions with 
no neighboring regions. Similarly, for the cut-off distances of 400km and 600km, there are 2 
regions with no neighboring regions, respectively.  
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Table 3.3 Descriptive Statistics23 

Variable Obs. Mean Std. Dev. Min Max 

High-tech Patent Count in 2014 (ln) 357 2.507 2.191 -1.000 8.984 

Traditional Fields Specialization (SPEC) Index 1986 357 11.094 15.504 1.636 171.056 

Traditional Fields Specialization (SPEC) Index 1996 357 8.463 5.981 1.716 35.965 

Traditional Fields Specialization (SPEC) Index 2006 357 10.479 11.315 1.761 140.732 

Traditional Fields Related Variety (RV) Index 1986 357 0.572 0.526 0.000 2.134 

Traditional Fields Related Variety (RV) Index 1996 357 0.687 0.520 0.000 2.105 

Traditional Fields Related Variety (RV) Index 2006 357 0.635 0.482 0.000 2.037 

Traditional Fields Unrelated Variety (UV) Index 1986 357 1.862 0.728 0.000 2.983 

Traditional Fields Unrelated Variety (UV) Index 1996 357 2.093 0.649 0.000 3.059 

Traditional Fields Unrelated Variety (UV) Index 2006 357 2.028 0.702 0.000 3.040 

Population Growth 1986-2014 (%) 357 0.396 0.367 -0.181 2.509 

Population Growth 1996-2014 (%) 357 0.199 0.174 -0.120 0.853 

Population Growth 2006-2014 (%) 357 0.068 0.060 -0.075 0.283 

Per Capita Income Growth 1986-2014 (%) 357 2.027 0.379 1.167 5.497 

Per Capita Income Growth 1996-2014 (%) 357 0.885 0.229 0.475 3.329 

Per Capita Income Growth 2006-2014 (%) 357 0.246 0.089 0.007 0.946 

Human Capital Growth 1986-2014 (%) 357 12.45 4.228 3.30 25.70 

Human Capital Growth 1996-2014 (%) 357 9.600 3.192 1.800 20.000 

Human Capital Growth 2006-2014 (%) 357 6.251 2.018 1.400 11.950 

High-tech Patent Spatial Lag 1986 (KNN = 1) 357 5.779 18.138 0.000 157.000 

High-tech Patent Spatial Lag 1996 (KNN = 1) 357 25.680 83.004 0.000 701.000 

High-tech Patent Spatial Lag 2006 (KNN = 1) 357 80.540 350.070 0.000 3949.000 

High-tech Patent Count in 1986 (ln)  357 0.412 1.558 -1.000 6.231 

High-tech Patent Count in 1996 (ln) 357 1.386 1.923 -1.000 7.033 

High-tech Patent Count in 2006 (ln) 357 2.013 2.135 -1.000 8.281 

Census Division East North Central (0/1; Baseline) 357 0.163 0.369 0.000 1.000 

Census Division New England (0/1) 357 0.042 0.201 0.000 1.000 

Census Division Middle Atlantic (0/1) 357 0.092 0.290 0.000 1.000 

Census Division South Atlantic (0/1) 357 0.207 0.406 0.000 1.000 

Census Division West North Central (0/1) 357 0.087 0.282 0.000 1.000 

Census Division East South Central (0/1) 357 0.078 0.269 0.000 1.000 

Census Division West South Central (0/1) 357 0.106 0.309 0.000 1.000 

Census Division Mountain (0/1) 357 0.092 0.290 0.000 1.000 

Census Division Pacific (0/1) 357 0.132 0.339 0.000 1.000 

 
23 This study employs logarithm transformation to adjust for the right-skewed distribution of the 
dependent variable using patent count in 2014, and sets the results of ln (0) as -1.  
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3.4 Results and Findings 

Table 3.4 shows the correlation matrix, and Table 3.5 shows the regression 

results24. We see from Table 3.5 that all three models that the results support the second 

and the third main hypotheses but not the first hypothesis of this study. In other words, 

holding all else constant, regions that have a traditional knowledge structure with higher 

related variety, and that have a traditional knowledge structure with higher unrelated 

variety at the beginning of the timeframes were associated with higher patenting level in 

high-tech fields in 2014. By contrast, regions with a higher traditional specialization were 

associated with a lower patenting level in high-tech fields in 2014. 

For the included 357 US MSAs, their patenting level in high-tech fields in 2014 

was positively associated with their preexisting related diversity level and unrelated 

diversity level of traditional fields in 1986, 1996, and 2006. According to Model (1), after 

accounting for other variables in the model, each unit increase in the traditional fields RV 

index in 1986 was associated with a 0.864% increase in high-tech patent count in 2014. 

In addition, each unit increase in the traditional fields UV index in 1986 was associated 

with a 0.684% increase in high-tech patent count in 2014.  

The results show that regions with a traditional knowledge structure characterized 

by either a greater diversity of related technological sub-categories producing patents or a 

greater diversity of unrelated sub-categories producing patents tended to patent more in 

high-tech fields in later periods. By contrast, regions that focused more heavily on their 

top technological sub-category in terms of patenting level (as suggested by the first 

 
24 Due to the heteroskedasticity problem in the models, the robust errors for each model are 
presented. All models pass diagnostic tests. 
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hypothesis) ended up with lower high-tech patenting levels in the future. This point will 

be considered in more detail later. 

The regression results also indicate the consistency and stability of the 

relationship across various time periods. Model (2) and Model (3) show that as the 

beginning time approached 2014, the coefficients for both the traditional fields RV index 

and the traditional fields UV index consistently maintained a positive and statistically 

significant sign. These models were also retested after replacing the dependent variable 

(the high-tech patent count in 2014) with the high-tech patent growth between the starting 

and end time25. The new models produced consistent coefficients for all explanatory 

variables as the reported three models, except for the high-tech patent count variables at 

the baseline time, which exhibited negative coefficients26. This additional information 

indicates that even though more innovative high-tech regions in general recorded higher 

patent counts during the periods studied, their growth tended to be slower.  

 
25 As for the dependent variables using patent growth during different timeframes, this study 
measures them by calculating the log difference between the patent count at the end time and the 
beginning time.  
26 This group of three models is not reported in this study due to their relatively smaller r-squared 
values (0.427; 0.286; 0.160) compared to the reported three models. 
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Table 3.4 Correlation Matrix 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 
High-tech 
Patent Count 
in 2014 (ln) 

1.000                 

2 

Traditional 
Fields 
Specialization 
(SPEC) Index 
1986 

-0.283 1.000                

3 

Traditional 
Fields Related 
Variety (RV) 
Index 1986 

0.737 -0.229 1.000               

4 

Traditional 
Fields 
Unrelated 
Variety (UV) 
Index 1986 

0.721 -0.314 0.720 1.000              

5 
Population 
Growth 1986-
2014 (%) 

0.207 0.028 -0.086 -0.058 1.000             

6 

Per Capita 
Income 
Growth 1986-
2014 (%) 

0.000 -0.079 -0.058 -0.089 -0.034 1.000            

7 
Human Capital 
Growth 1986-
2014 (%) 

0.590 -0.185 0.437 0.447 0.074 0.106 1.000           

8 

High-tech 
Patent Spatial 
Lag 1986 
(KNN = 1) 

0.105 0.073 0.067 0.066 -0.065 -0.060 0.073 1.000          

9 
High-tech 
Patent Count 
in 1986 (ln) 

0.814 -0.209 0.788 0.688 0.029 -0.039 0.505 0.124 1.000         

10 

Census 
Division East 
North Central 
(0/1; Baseline) 

0.009 -0.097 0.165 0.157 -0.307 -0.204 -0.006 0.024 0.077 1.000        

11 
Census 
Division New 
England (0/1) 

0.138 -0.064 0.169 0.140 -0.138 0.028 0.312 0.122 0.142 -0.092 1.000       
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

12 

Census 
Division 
Middle 
Atlantic (0/1) 

0.011 0.060 0.109 0.086 -0.196 -0.092 0.139 0.055 0.119 -0.141 -0.067 1.000      

13 
Census 
Division South 
Atlantic (0/1) 

-0.060 0.050 -0.109 -0.071 0.195 -0.075 0.069 -0.117 -0.082 -0.225 -0.107 -0.163 1.000     

14 

Census 
Division West 
North Central 
(0/1) 

0.026 0.004 -0.084 -0.022 -0.066 0.143 0.115 0.001 -0.060 -0.136 -0.065 -0.098 -0.158 1.000    

15 

Census 
Division East 
South Central 
(0/1) 

-0.130 0.021 -0.045 -0.092 -0.033 0.058 -0.083 -0.061 -0.129 -0.128 -0.061 -0.093 -0.149 -0.090 1.000   

16 

Census 
Division West 
South Central 
(0/1) 

-0.111 0.069 -0.079 -0.104 -0.014 0.395 -0.295 -0.042 -0.077 -0.152 -0.072 -0.110 -0.176 -0.106 -0.101 1.000  

17 
Census 
Division 
Mountain (0/1) 

0.036 0.007 -0.078 -0.092 0.342 -0.030 -0.063 -0.030 -0.030 -0.141 -0.067 -0.102 -0.163 -0.098 -0.093 -0.110 1.000 

18 
Census 
Division 
Pacific (0/1) 

0.123 -0.056 0.000 0.022 0.152 -0.125 -0.085 0.106 0.076 -0.171 -0.082 -0.124 -0.199 -0.120 -0.114 -0.134 -0.124 

Note: Only the correlation matrix for Model (1) (1986-2014) is reported in this paper. The correlation matrices for Model (2) 
(1996-2014) and Model (3) (2006-2014) demonstrate no significant variation from the correlation matrix for Model (1).
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Table 3.5 Regression Results 

Model (1) (2) (3) 

Timeframe 1986-2014 1996-2014 2006-2014 

Dependent Variable Patent Count in 2014 (ln) 

Traditional Fields Specialization (SPEC) Index 1986 
-0.007*   

(0.003)   

Traditional Fields Specialization (SPEC) Index 1996 
 0.002  

 (0.010)  

Traditional Fields Specialization (SPEC) Index 2006 
  0.002 

  (0.004) 

Traditional Fields Related Variety (RV) Index 1986 
0.864***   

(0.176)   

Traditional Fields Related Variety (RV) Index 1996 
 0.552**  

 (0.179)  

Traditional Fields Related Variety (RV) Index 2006 
  0.624** 

  (0.189) 

Traditional Fields Unrelated Variety (UV) Index 1986 
0.684***   

(0.120)   

Traditional Fields Unrelated Variety (UV) Index 1996 
 0.782***  

 (0.122)  

Traditional Fields Unrelated Variety (UV) Index 2006 
  0.491*** 

  (0.111) 

Population Growth 1986-2014 (%) 
1.055***   

(0.173)   

Population Growth 1996-2014 (%) 
 1.239**  

 (0.375)  

Population Growth 2006-2014 (%) 
  1.240 

  (0.968) 

Per Capita Income Growth 1986-2014 (%) 
 0.069   

(0.211)   

Per Capita Income Growth 1996-2014 (%) 
 0.241  

 (0.311)  

Per Capita Income Growth 2006-2014 (%) 
  -0.294 

  (0.570) 

Human Capital Growth 1986-2014 (%) 
0.105***   

(0.018)   

Human Capital Growth 1996-2014 (%) 
 0.070***  

 (0.021)  

Human Capital Growth 2006-2014 (%) 
  0.083** 

  (0.032) 

High-tech Patent Spatial Lag 1986 (KNN = 1) 0.003   
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Model (1) (2) (3) 

Timeframe 1986-2014 1996-2014 2006-2014 

Dependent Variable Patent Count in 2014 (ln) 

(0.002)   

High-tech Patent Spatial Lag 1996 (KNN = 1) 
 

 0.000  

 (0.001)  

High-tech Patent Spatial Lag 2006 (KNN = 1) 
  0.000 

  (0.000) 

High-tech Patent Count in 1986 (ln) 
0.538***   

(0.061)   

High-tech Patent Count in 1996 (ln) 
 0.607***  

 (0.052)  

High-tech Patent Count in 2006 (ln) 
  0.652*** 

  (0.052) 

Census Division East North Central (0/1; Baseline) 
   

   

Census Division New England (0/1) 
-0.110 0.134 0.016 

(0.249) (0.225) (0.182) 

Census Division Middle Atlantic (0/1) 
-0.273 -0.272 -0.133 

(0.229) (0.195) (0.179) 

Census Division South Atlantic (0/1) 
0.057 0.009 0.019 

(0.216) (0.185) (0.173) 

Census Division West North Central (0/1) 
0.609* 0.461* 0.224 

(0.251) (0.227) (0.245) 

Census Division East South Central (0/1) 
0.001 -0.063 -0.133 

(0.246) (0.199) (0.206) 

Census Division West South Central (0/1) 
0.319 -0.127 0.123 

(0.263) (0.261) (0.230) 

Census Division Mountain (0/1) 
0.454. 0.381 0.190 

(0.258) (0.247) (0.209) 

Census Division Pacific (0/1) 
0.610** 0.507* 0.310. 

(0.204) (0.202) (0.174) 

Constant 
-1.478** -1.619*** -0.824* 

(0.458) (0.391) (0.323) 

Number of Observations 357 357 357 

Adjusted R-squared 0.801 0.838 0.860 

Note: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05; “.” p < 0.10. Values in parentheses 
are standard errors. 
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It is important to note that in the retest models, the correlations between the high-

tech patent count independent variables at the initial time and the dependent variables of 

high-tech patent growth in 2014 (e.g., the correlation coefficient for the 1986 model is 

0.174) were much lower compared to the correlations with the dependent variables of 

high-tech patent count in 2014 (as shown in the Correlation Matrix in Table 3.4, for 

instance, the correlation coefficient for the 1986 model is 0.814) in the original models. 

As a result, the coefficients of the independent variables that are of primary interest in the 

original models are not affected by autocorrelation concerns. 

Regarding the last type of regional knowledge structure (the first hypothesis of 

this paper), two of the three models detected no significant association between the 

traditional fields specialization index and the high-tech patenting level for the US MSAs 

analyzed. The third detected only a slight negative correlation, it was statistically 

significant but economically insignificant and therefore contains no meaningful 

information. Consequently, the first main hypothesis of this study is not supported, 

indicating that a region’s patenting in high-tech fields does not generally benefit from 

strong specialization in its most specialized traditional technological sub-category. As 

further discussed in the next section, high-tech innovations in regions with strong 

specialization in specific traditional industries, as highlighted in recent scholarship, are 

likely driven by knowledge spillovers among lower-tier industries within their area of 

strong specialization, or related variety, rather than by strong specialization in a broader 

sense general.  

Table 3.4 reveals a negative correlation between the traditional fields SPEC index 

and both the RV and UV indexes. This suggests that regions with a high SPEC index, 
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denoting a concentration in top traditional technological sub-categories, typically do not 

align with regions having high RV and UV indexes, which represent a diversified 

traditional knowledge structure. Evidently, regions with larger populations, typically 

characterized by expansive market and labor pools, are associated with higher RV and 

UV indexes, reflecting a variety of patenting industries, but show a low SPEC index27. In 

contrast, smaller regions, possibly due to resource constraints or historical factors, often 

show specialization in a few technological sub-categories, indicated by a high SPEC 

index. This trend may explain the more frequent occurrence of industrial restructuring in 

larger, economically diversified regions compared to smaller, highly specialized ones.  

The coherence of these empirical observations become evident upon considering 

the mathematical relationships among the SPEC, RV, and UV indexes. The SPEC index 

derives from the location quotient of a region’s most specialized traditional technological 

sub-category. In essence, the SPEC index shows how concentrated the most specialized 

sub-category of a region is compared to the national average. Hence, a high SPEC index 

indicates a proportionally smaller share of other technological sub-categories. 

Conversely, elevated UV and RV indexes both signify more evenly distributed shares 

among diverse technological sub-categories and among diverse patent classes within each 

sub-category. Therefore, it is reasonable to observe a negative correlation between the 

SPEC index and both the UV and RV indexes. 

Moreover, the decomposable nature of entropy measures enhances our 

 
27 The correlation coefficients between population size and traditional fields RV index are 0.590, 
0.582, and 0.582 for the years 1986, 1996, and 2006, respectively. Those between population size 
and traditional fields UV index are 0.381, 0.377, and 0.373 for the same respective years. In 
contrast, the correlation coefficients between population size and traditional fields SPEC index 
are -0.121, -0.255, and -0.181, respectively, for the years 1986, 1996, and 2006. 
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understanding of the connection between the UV and RV indexes. Again, the RV index 

captures the variety of 3-digit patent classes within each 2-digit sub-category (using a 

weighted sum), and the UV index captures the variety across different 2-digit sub-

categories. Hence, the RV index and the UV index of a region sum up to the entropy 

value of 3-digit patent classes (without a weighted sum). In other words, the total 

innovation variety of 3-digit patent classes within a region’s economy can be expressed 

as a combination of the innovation variety among related patent classes under each 

unrelated technological sub-category (RV index) and the innovation diversity across 

those unrelated technological sub-categories (UV index). In this study, the total 

innovation variety of 3-digit patent classes within each region is also calculated. It has 

been demonstrated that this total variety index equates to the sum of the RV index and the 

UV index for each region. 

Additionally, in my analysis, I replaced the RV and UV indexes with a single total 

variety index across each of the three models. I observed that the regression coefficient 

for this total variety index does not match the sum of the coefficients of the RV and UV 

indexes; it was generally smaller, but still significant. There are several potential 

explanations for this. First, the RV and UV indexes may exhibit a high degree of 

correlation. When both are in the model, their individual coefficients are usually adjusted 

for the shared variance. This adjustment might differ when the total variety index, a 

combination of both, is used instead. Second, there could be interaction effects between 

the RV and UV indexes that are not captured when they are simply combined to create a 

total variety index. Such interactions might influence the coefficients in non-linear ways. 

Third, merging two variables into one alters the variable’s scale, potentially impacting the 
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size of the coefficient.    

One surprising finding revealed in the regression results is the lack of statistical 

significance in the coefficients for the high-tech patent spatial lag variables. This study 

only reports the results of the K =1 scenario in the KNN approach. Despite testing 

various scenarios, such as the K = 1 and K = 4 scenarios in the KNN approach, as well as 

cut-off distances of 200km and 400km in the DBN approach, none of these scenarios 

demonstrate significant coefficients. This suggests that a region’s ability to restructure its 

knowledge base through proximity to high-tech innovative neighboring regions and the 

associated spillover effects is limited.  

In addition to the primary findings, the regression results indicate a positive 

correlation between high-tech innovation and both regional population growth and human 

capital development. This is consistent with existing regional economics literature. In 

contrast, this study finds no significant association between regional per capita income 

growth and high-tech innovation, echoing the minimal correlation observed between 

income growth and the level of high-tech patenting in Table 3.4. Last, in terms of 

geographic location, the regression results show that MSAs situated in the Pacific Census 

Division and West North Central Census Division experienced higher levels of high-tech 

innovation growth during the study periods in comparison to MSAs located in the East 

North Central Census Division. 

3.5 Discussions and Conclusion 

This study aims to establish several generalizable arguments regarding the 

relationship between the knowledge structure of US MSAs in traditional fields and their 

innovation capacity in high-tech fields. First, the findings of this study provide support 
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for the notion that regions with greater diversity in related traditional technological sub-

categories tend to excel in restructuring their knowledge base and fostering high-tech 

innovation. Second, this study suggests that the colocation of diverse unrelated traditional 

technological sub-categories also contributes positively to regional economic 

restructuring and the development of high-tech fields. Third, this study asserts that a high 

degree of specialization in specific traditional technological sub-categories has a negative 

impact on a region’s ability to undergo restructuring.  

The benefits of cultivating a diverse economic or knowledge base have long been 

recognized as a fundamental strategy in regional or local economic development. 

Previous studies have extensively explored the advantages that economic and knowledge 

diversity bring to a region, such as increased productivity, employment opportunities, and 

growth in innovation (De Groot et al., 2016). However, most of the existing literature has 

primarily focused on the process of economic development and recovery. This study 

seeks to contribute further to the scholarship by examining the context of economic 

restructuring. I contend that fostering a diverse knowledge base is not only beneficial for 

the economic development process but also facilitates the development of entirely new 

industrial expertise within the region. In other words, maintaining a more diversified 

knowledge structure encourages regions to assimilate knowledge from emerging 

industries that may be vastly different and subsequently integrate this new knowledge 

into their industrial base.  

This study also refers to pre-existing scholarship and discusses the potential 

mechanism underlying the presented arguments. First, regions with diverse industries are 

more likely to provide ample opportunities for high-tech companies to identify new 
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market demands and niches among local industries, as opposed to specialized regions. 

Additionally, diversified regions often benefit from larger economies and populations, 

which lead to economies of scale by virtue of their increased market size and access to 

financial and human resources. This environment is highly conducive to the 

establishment and success of high-tech start-ups. Recent empirical studies have 

highlighted instances where regions known for their specialization in traditional 

industries have begun to develop innovation capacity in high-tech industries and 

revitalize their regional industrial base (Hannigan et al., 2015; Mudambi et al., 2017). 

This study posits that such regions typically do not belong to the category of most 

specialized regions. Instead, they are often regions with strong related diversity, which 

enables them to adapt novel knowledge from high-tech industries into their existing 

economic landscape. Furthermore, I infer that regions characterized by strong 

specialization but low related variety are unlikely to witness significant growth in high-

tech innovation. 

It is important to note that the identification of traditional and high-tech industries 

in this study is based on the classification of technological rather than industrial 

categories. As a result, only two categories – Computers & Communications and Drug & 

Medical – are included as high-tech fields. Readers might perceive that certain advanced 

manufacturing technologies included in the traditional fields should be considered high-

tech, as they require extensive human intelligence. This study acknowledges the progress 

made in traditional fields and recognizes potential shortcomings in the selected 

classification. However, I contend that adhering to this classification ensures that the 

identified high-tech fields are “radically new” to regions specialized in traditional fields. 
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Moreover, other categorizations of high-tech industries are not comprehensive as well. 

For instance, defining high-tech industries based on the highest R&D intensity may 

include only those technologies driven by endogenous industry R&D activities, while 

neglecting those influenced by exogenous factors. 

Relatedly, achieving an exceptionally diverse knowledge base and pursuing 

expertise in the most popular high-tech industries may not be feasible for every region. 

For many regions, a more prudent approach would be to leverage their existing industrial 

strengths and diversify into related, more advanced industries. By doing so, these regions 

also enhance their possibilities of adopting high-tech industries in the future. Moreover, 

even regions located near high-tech centers should be prepared to compete with other 

regions if they aim to restructure their knowledge base for high-tech industries. 

The regression results of this study also underscore the role of regional population 

growth and human capital growth in fostering high-tech innovation. On the other hand, 

regional per capita income growth does not have a significant impact on high-tech 

innovation. These findings are reasonable, as regions can pursue economic growth 

without necessarily specializing in high-tech industries, and high levels of wealth do not 

automatically translate into suitable conditions for high-tech development. Also, the 

economic benefits of innovation are not always shared with the workforce. 

Admittedly, there are several limitations when using patent data, although it is one 

of the most widely-adopted proxies for innovation in relevant studies. Two major 

weaknesses worth highlighting. First, patent data does not cover all kinds of innovation, 

particularly those that are related to process innovation instead of production-related 

innovation, and those that are not patented due to company strategies. Hence, my findings 
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primarily reflect a subset of innovations, specifically those that are patentable and have 

been patented. Future studies, utilizing surveys, case studies, or industry reports to 

quantify non-patentable innovations, might uncover different relationships between 

traditional technological fields structuring and high-tech innovation.  

Second, there is potential for geographical bias in patent data, as the location of 

the first-named inventor may not necessarily reflect the major resources utilized in 

developing the patent, or the locations of companies using the patent or manufacturing 

related products. Often, this location is chosen based on legal or administrative reasons. 

In this study, the first-named inventor’s location was chosen because they play a pivotal 

role in the patent’s conceptualization and development, and their location typically 

reflects the place of this work. As the study focuses on regional innovation activity, this 

approach aids in identifying the geographic distribution of innovation and the leading 

region in cases of collaborative networks. However, future extended studies might 

consider including all associated locations of a patent to more comprehensively represent 

the collaborative nature of modern innovation processes. 

The possibility of including additional covariates that could influence high-tech 

patenting level was also considered in this study. These covariates encompassed the 

quantity of R&D public institutions and private labs, as well as the levels of R&D 

expenditure and venture capital within each region. However, collecting complete 

datasets, particularly concerning R&D institutions and labs, presented impractical 

challenges. Moreover, certain data, such as R&D expenditure and venture capital, were 

not available early enough prior to the end point of the study timeframes, and it was also 

unavailable at a geography smaller than the MSA.   
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CHAPTER IV 

HIGH-TECH REGIONS AS INNOVATORS OF TRADITIONAL 

TECHNOLOGIES: CAN HIGH-TECH INNOVATION CAPABILITY FOSTER 

TRADITIONAL INNOVATION? 

4.1 Introduction 

In the knowledge economy, a region’s economic development often hinges on the 

innovation capacity of its specialized industries. Therefore, regions specializing in high-

tech industries such as information technology and bioscience receive much attention 

from urban researchers and practitioners (Mayer, 2011; Saxenian,1996). Other popular 

research interests broaden the scope of innovation beyond high-tech industries to include 

cultural and professional service industries, examining the locations where these 

industries thrive. In contrast, studies on innovation- and especially technology-led 

development have largely overlooked traditional industries and regions specializing in 

these industries. Instead, the academic focus for these industries and regions centers on 

employment decline and urban shrinkage (Doussard & Schrock, 2015; Ganning & Tighe, 

2021; Wiechmann & Pallagst, 2012). However, besides labor and output, technology also 

represents one of the evolving characteristics of traditional industries and their host 

regions (Vanchan et al., 2015).  
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Perhaps regions prefer high-tech industries because they believe it represents 

progress in both technological advancement and economic standing. Indeed, high-tech 

industries are characterized by higher knowledge intensity (Hall et al., 2001; Rigby, 

2015), experience greater market demand (NRC, 1996) and consequently, offer higher 

compensation to their employees. However, generations of scientists have commented 

that technological progress or economic development is more complex than moving away 

from traditional fields and toward high-tech fields. Rather, the high-tech and the non-

high-tech industries are highly symbiotic and their innovation impacts cut across 

economic activities. These theorists come from different schools of thought, including 

but not limited to evolutionary economics (Dosi et al., 1988; Nelson & Winter, 1982) and 

evolutionary economic geography (Asheim et al., 2011; Asheim et al., 2017). Recent 

empirical evidence also indicates that companies and regions specializing in traditional 

industries have been engaging in innovation within high-tech industries. This shift is 

leading to a revitalization of their traditional expertise through the integration of cutting-

edge knowledge (Hannigan et al., 2015; Mendonça, 2009; Mudambi et al., 2017).  

There remains a research gap regarding the regional innovation dynamics between 

high-tech and traditional fields. Relatively few studies have studied whether or how 

regions with more “advanced” specialized industries innovate in traditional industries. To 

my understanding, the only existing analyses similar to this proposed study are focused 

either on the national level or differentiating between urban and rural areas. For example, 

Robertson & Patel (2007) discovered that countries exhibiting robust innovation in high-

tech industries tend to outperform less innovative countries in traditional industries as 

well. Similarly, Hansen et al., (2014) found that, compared to less innovative rural 
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regions, urban regions with higher innovation levels also demonstrated stronger 

innovation in traditional industries. They further argue that this is perhaps because 

innovations in both high-tech emerging industries and non-high-tech traditional industries 

are increasingly influenced by some common factors, such as human capital and global 

competition, that transcend industrial influences (Berry & Glaeser, 2005; Glaeser & 

Hausman, 2020). Nevertheless, relevant studies are still scarce and inconclusive.  

This study aims to address this research gap by exploring whether US regions 

with more robust innovation capabilities in high-tech fields also demonstrate elevated 

patenting activity in traditional fields from 1996 to 2014. Utilizing technological 

classifications and patent data from the US Patent and Trademark Office (USPTO), the 

study tests a key hypothesis: regions with higher patenting levels in high-tech fields 

between 1996-2000 had greater patenting levels in traditional fields between 2010-2014, 

while accounting for the impact of historical traditional specializations and other 

confounding variables. Additionally, this study replaces general patenting levels in the 

high-tech and traditional fields with specific technological categories, thereby providing a 

more detailed view of the hypothesized relationship. 

This study enriches the growing body of research on innovation development 

processes beyond the extensively studied high-tech and cultural industries. Firstly, the 

regression analysis results support the primary hypothesis – regions that demonstrated 

higher patenting levels in high-tech fields during 1996-2000 subsequently exhibited 

greater patenting levels in traditional fields between 2010 and 2014. The study delves 

into potential explanations for these findings, linking them with insights from both the 

current study’s results and existing literature.  
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Secondly, when examining the relationship by technological category, the study 

uncovers a positive association between the overall patenting levels in traditional 

categories and both of the two high-tech categories: Computers & Communications, and 

Drugs & Medical. Additionally, this study investigates the correlation between overall 

patenting in high-tech categories and three individual traditional technological categories: 

Chemical, Electrical & Electronics, and Mechanical. Although the relationships are 

positive across all three traditional categories, the Mechanical category seems to have 

been the least influenced by advancements in high-tech innovation. Lastly, the analysis 

indicates that regional innovation, including in traditional fields, is predominantly 

influenced by path dependency, with the high-tech fields’ impact being more 

complementary. 

4.2 Literature Review 

This literature review starts with background information regarding the 

mainstream innovation studies within the domain of regional economic development. The 

main body of this review synthesizes the important academic milestones (both theoretical 

and empirical) exploring innovation activities in the traditional industries. Most studies 

have focused on how regions and firms from traditional industries have maintained or 

developed innovation capacity in both traditional and high-tech industries. However, 

fewer studies cover how regions with specializations in more advanced and innovative 

high-tech industries have chosen to innovate in traditional industries. Last, this review 

introduces scholarship which might shed light on the mechanisms behind the hypothesis 

of this paper, i.e., regions with higher innovation capacity in high-tech fields are more 

likely to innovate in traditional fields. 
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From neoclassical growth theory (Solow, 1956; 1962) to endogenous growth 

theory (Lucas, 1988; Romer, 1986), economists have attributed long-term economic 

growth to technological innovation. Schumpeter’s (1942) innovation and 

entrepreneurship theory holds that innovation introduces entirely new products and new 

markets to the regional production system, facilitating economic development rather than 

merely incremental economic growth. Particularly in the face of various macro-economic 

trends like mechanization, neoliberal corporate strategies, global outsourcing, and the de-

concentration of domestic production, high-wage industrialized countries have been 

pressured to uphold their competitive advantage by fostering innovation. As a result, 

discussions on regional economic development have predominantly centered on high-

tech industries and a limited number of high-tech regions (David & Foray, 2002; 

Freeman, 2004; Mayer, 2011; Saxenian,1996).  

Indeed, since the 1990s, high-tech fields have out-performed traditional fields in 

terms of patent growth rates, which shows their superior capacity for innovation (Hall et 

al., 2001; Rigby, 2015). This trend in patenting often correlates with increased levels of 

research and development (R&D) intensity in research-intensive high-tech industries. 

Hence, research institutions and academics rely on both R&D intensity-related metrics 

and patenting levels as criteria to differentiate high-tech industries from traditional 

industries.  

For instance, the Organization for Economic Cooperation and Development 

(OECD) divides industries into four categories: high-technology, medium-high-

technology, medium-low-technology, and low-technology industries, based on their R&D 

expenditures (input) to output ratio. Industries with lower R&D intensity, such as basic 
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metals, rubber and plastic products, food products, and chemicals, are classified as non-

high-tech (Hansen & Winther, 2011; Mendonça, 2009). Similarly, the US Bureau of 

Labor Statistics (BLS) categorizes industries into Levels I, II, III, using criteria such as 

R&D employment intensity or the proportion of scientists, engineers, and technicians in 

the workforce (Hecker, 2005). Scholars at the National Bureau of Economic Research 

(NBER) refer to high-tech fields as “emerging” fields, acknowledging their growing 

innovation output, particularly in terms of patents, relative to traditional fields (Hall et al., 

2001).  

Considering innovation’s impact in economic development, technological 

progress is often envisioned as a linear process toward preferred outcomes. However, 

generations of economists have argued against this viewpoint. In Schumpeter’s (1942) 

model of innovation, entrepreneurs rearrange pre-existing factors of production, thereby 

creating markets that align new production methods with consumer preferences. In other 

words, innovation stems from novel combinations of knowledge and is propelled by 

emerging market demand, rather than being solely the product of individual knowledge 

with greater technology intensity. Likewise, evolutionary economists argue that the 

advancement of technological innovations is more likely rooted in firm-specific routines 

and practices than in R&D strategies aimed at finding optimal solutions (Amin & 

Cohendet, 2004; Dosi et al., 1988; Edquist, 1997; Nelson & Winter, 1982; Patel & Pavitt, 

1997).  

Furthermore, evolutionary economic geographers contend that innovations in 

traditional fields are just as crucial as those in high-tech fields, despite their reliance on 

distinct knowledge bases. Innovations in high-tech fields typically stem from the creation 



81 
 

of knowledge through scientific research, whereas those in traditional fields are more 

frequently the result of re-combining existing knowledge (Asheim et al., 2011; Asheim et 

al., 2017). 

Scholars highlight the importance of the synthesis-based innovation method used 

by traditional industries, as it enhances the innovative capacity of not only these 

industries but also the broader economy. Traditional industries utilize innovation from 

high-tech industries in two primary ways. First, they adopt high-tech products or 

sophisticated machinery to enhance their production processes. This adoption not only 

improves their efficiency but also spurs further R&D activities, contributing to the 

sustainable growth of high-tech industries (Hansen & Winther, 2011; Heidenreich, 2009; 

Kirner et al., 2009; Robertson & Patel, 2007). Second, these industries may incorporate 

new high-tech components into their products, leading to market-oriented modifications 

that enhance their offerings (Hirsch-Kreinsen, 2015; Mulhall, 2015). Some traditional 

companies also gain competitive advantages through innovations in design and service, 

often targeting adaptations in response to evolving dynamics within the supply chain 

(Vanchan et al., 2015; Walcott, 2015; Warren & Gibson, 2015).  

Another set of empirical studies reveals that firms in traditional industries are 

taking an increasingly proactive role in regional innovation. They not only patent 

products in their own fields but also venture into high-tech fields. For instance, some 

firms in traditional industries like optics and photonics, metal processing, automotive, 

textiles, and synthetic rubber continue to vigorously patent in their traditional specialties 

(Hannigan et al., 2015; Mudambi et al., 2017; Ronayne, 2015; Safford, 2004; Treado, 

2010). Simultaneously, major companies in traditional industries like food, chemicals, 
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and machinery are increasingly engaging in knowledge creation within advanced fields 

like biotechnology and information technology (Mendonça, 2009; Robertson & Patel, 

2007).  

The literature reviewed above discusses how companies and regions specializing 

in traditional industries contribute to high-tech innovation in two ways: 1) by integrating 

these innovations into their production processes and 2) by acting as innovators in high-

tech industries alongside their traditional areas of expertise. This body of work clarifies 

that technological progress goes beyond moving from traditional to high-tech industries. 

Rather, a significant symbiotic relationship exists between high-tech and non-high-tech 

industries, with their innovations having impacts across various economic activities. 

Despite this understanding, there is a notable research gap: the investigation into how 

regions known for advanced and innovative high-tech fields innovate within traditional 

fields. Addressing this gap is the primary focus of this study. The following paragraphs 

offer several explanations to support the main hypothesis of this paper, namely, why 

regions known for high-tech patenting also engage in traditional innovation. 

Attempts have been undertaken to explore why regions with greater innovation 

capacity in high-tech industries are also capable of innovating within traditional 

industries. Researchers suggest that innovations in both high-tech and non-high-tech 

industries are not separate entities requiring entirely different catalysts. Common factors, 

such as human capital, which are not bound by industrial boundaries or technology 

intensity levels, can be crucial for the innovation capacity of traditional industries as well 

(Autor & Dorn, 2013; Berry & Glaeser, 2005; Glaeser & Hausman, 2020; Hansen et al., 

2014). This reasoning aligns with observations that regions heavily investing in education 
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tend to produce higher levels of overall patenting compared to other regions (Glaeser & 

Hausman, 2020). Other shared factors affecting innovation encompass a region’s 

innovation infrastructure, which includes elements like R&D spending, intellectual 

property rights protection, openness to international trade, and research activities 

conducted by academic institutions with funding and commercialization efforts 

undertaken by the private sector (Acs et al., 2014; Fagerberg & Srholec, 2008; Furman et 

al., 2002). 

The evolutionary economic geography literature offers another explanation for 

why regions strong in high-tech innovation can also excel in innovation within traditional 

fields. Their theories of path dependency suggest that when regions expand their 

innovation into more complex technologies, they usually opt for industrial categories that 

are technologically similar to their existing industrial strengths (Balland et al., 2019; 

Boschma et al., 2015; Essletzbichler, 2015; Hidalgo et al., 2007; Neffke et al., 2011; 

Petralia et al., 2017; Rigby, 2015). One reason can be that prior related knowledge equips 

firms with the ability to recognize and utilize technological opportunities effectively 

(Cohen & Levinthal, 1990, Zahra & George, 2002). Hence, it is challenging for a typical 

region to assimilate and make use of knowledge that is significantly different from its 

existing expertise. However, this finding applies less clearly to very innovative regions. 

Here, researchers find that regions with rich technological resources, sophisticated 

research facilities, skilled workforce, and strong collaboration networks, can develop new 

technologies that diverge from their current knowledge bases (Petralia et al., 2017). 

To summarize, while there is a scarcity of research on whether and how regions 

proficient in high-tech innovation also develop innovation capabilities in traditional 
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fields, various theoretical frameworks offer insights into the potential mechanisms 

underlying this interaction. In brief, first, innovations in both high-tech and traditional 

fields are increasingly influenced by common factors such as education, research 

institution, innovation infrastructure, and global competition. Second, due to a stronger 

absorptive capacity, it is generally easier for a high-tech region to innovate in traditional 

fields compared to a region more specialized in a specific traditional category innovating 

in a different traditional category. In the discussion section, I will explore the potential 

mechanisms further, linking them with findings from this study and existing literature. 

4.3 Methods and Data  

This study investigates the hypothesis that US metropolitan areas with higher 

patenting levels in high-tech fields have been more likely to patent in traditional fields 

since the 1996-2000 period. The period has traditionally been thought of as the first high-

growth period of the US high-tech fields. According to USPTO patent data, the period 

between 1996 and 2000 marked a significant shift in patent trends, with high-tech fields 

beginning to exceed traditional fields in annual patent filings (Hall et al., 2001).  

Additionally, this study replaces general patenting levels in the high-tech and 

traditional fields with patenting in specific technological categories, providing a more 

detailed examination of the hypothesized relationship. It specifically assesses whether 

higher patenting levels in the two high-tech categories (Computers & Communications, 

and Drugs & Medical) result in increased overall patenting levels in traditional fields. It 

also investigates whether elevated overall patenting in high-tech fields translates into 

greater patenting levels in the three individual traditional technological categories: 

Chemical, Electrical & Electronics, and Mechanical. This study further evaluates whether 
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the effect of high-tech on traditional technological innovation is consistent across these 

various technological categories. These additional analyses are conducted because, to the 

best of my knowledge, there are no definitive conclusions about how patenting in 

individual high-tech sub-technologies may impact traditional technologies differently, or 

how high-tech technologies may have varied effects on patenting in individual traditional 

technological sub-categories. 

Among the different approaches to defining traditional and high-tech fields, this 

study primarily uses the NBER categorization, which is also used by the USPTO under 

the United States Patent Classification (USPC) scheme. USPTO patent data provides rich 

detail about patent information, including the technological classification and granted (or 

application) date of the invention, the name and location of inventors, and the ownership 

of the intellectual property of the invention (Hall et al., 2001)28.  

This study uses 2010-2014 as the end period due to the availability of complete 

patent data after this date. After May 2016, the USPC classification is no longer assigned 

to Utility patents2930 (though it is still used for Design and Plant patents)31. Instead, 

USPTO replaces the USPC scheme with the Cooperative Patent Classification (CPC) 

classification jointly developed by the European Patent Office (EPO) and USPTO to 

 
28 https://patentsview.org/download/data-download-tables 
29 USPTO description of patent types: 
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm  
30 Out of the three patent types – Utility patents, Design patents, and Plant patents, only Utility 
patents are included in the sample. According to USPTO definitions, a Utility patent is issued for 
the invention of new and useful process, machine, manufacture, or composition of matter, or a 
new and useful improvement. Therefore, they contain the necessary USPC information about 
what technological field they should be categorized into, which is the standard I refer to when 
deciding whether a patent belongs to traditional or high-tech fields. Moreover, about 90% of the 
patent documents issued by USPTO in recent years have been Utility patents. 
31 https://patentsview.org/forum/generalfaq 

https://patentsview.org/download/data-download-tables
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/data/patdesc.htm
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ensure it is understood by a wide international audience3233. However, this study still 

chooses to use USPC scheme due to the clearer distinction between traditional and high-

tech fields provided under this scheme (Hall et al., 2001)34. 

As a result, this study finds that for the patent data reported under the USPC 

classification, the count of 2014 data peaked, and the count went down year by year since 

after. This is because there is usually a time gap between when an innovation is granted 

and when it is organized into the database. For instance, even though USPTO had still 

been reporting patent data under USPC classification until May 2016, some patents 

granted in 2015 might not yet been included in the database before May 2016 due to the 

time lag. This leads to the conclusion that the patent data in and before 2014 are 

complete, because the overall US patent count has kept growing every year, especially 

since 2008. Hence, I choose 2014 as the end point of the study period. For every patent 

granted between 1996-2000 and 2010-2014 respectively, this study uses the location of 

 
32 https://patentsview.org/classification  
33 Most of the CPC’s subdivisions stem directly from current International Patent Classification 
(IPC) and World Intellectual Property Organization (WIPO) technological fields used in over 100 
countries around the world and managed by WIPO. 
34 It is important to note that the most common distinctions between traditional and high-tech 
industries typically rely on industrial and occupation classifications, rather than patent categories. 
Bridging industrial classifications with patent categories is challenging due to its complexity. (A 
crosswalk for this purpose is available on the USPTO website.) Given the primary interest in 
patent data, this study uses patent categorization, specifically focusing on emerging technologies 
as defined by NBER scholars Hall et al. (2001). The most recent and relevant update by NBER 
scholars, which utilizes the CPC scheme to analyze patents in areas such as software, 
communication, cloud computing, artificial intelligence, semiconductor, self-driving and drone 
technology, pharmaceuticals, medical technology, and other related emerging technologies, is 
documented in Webb et al., 2018. It should be noted, however, that these identified categories 
may not fully encompass all emerging technologies. Nevertheless, given the fast-paced evolution 
of high-tech fields, it would be insightful to revisit and conduct this study using the CPC scheme 
in the future. 
Additionally, alternative high-tech industry classifications have their own limitations. For 
example, defining high-tech industries solely based on high R&D intensity might only capture 
technologies driven by internal industry R&D efforts, overlooking those influenced by external 
factors. 

https://patentsview.org/classification
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the first-named inventor as the patent’s location35. As a result, this study only includes 

patents whose first-named inventor is in the US.  

Table 4.1 Traditional and High-tech Technological Categories and Their Sub-categories 

Traditional Category 
Code and Name Traditional Sub-category Code and Name 

1 Chemical 11 Agriculture, Food, Textiles; 12 Coating; 13 Gas; 14 Organic Compounds; 15 Resins; 19 
Miscellaneous-Chemical 

4 Electrical & Electronics 41 Electrical Devices; 42 Electrical Lighting; 43 Measuring & Testing; 44 Nuclear & X-rays; 45 
Power Systems; 46 Semiconductor Devices; 49 Miscellaneous-Electrical & Electronics 

5 Mechanical 51 Materials Processing & Handling; 52 Metal Working; 53 Motors, Engines & Parts; 54 Optics; 55 
Transportation; 59 Miscellaneous-Mechanical 

6 Others 
61 Agriculture, Husbandry, Food; 62 Amusement Devices; 63 Apparel & Textile; 64 Earth Working 
& Wells; 65 Furniture, House Fixtures; 66 Heating; 67 Pipes & Joints; 68 Receptacles; 69 
Miscellaneous-Others 

  

High-tech Category Code 
and Name High-tech Sub-category Code and Name 

2 Computers & 
Communications 

21 Communications; 22 Computer Hardware & Software; 23 Computer Peripherals; 24 Information 
Storage 

3 Drugs & Medical 31 Drugs; 32 Surgery & Medical Instruments; 33 Biotechnology; 39 Miscellaneous-Drugs & 
Medical 

 

According to Hall et al. (2001), all patents can be aggregated into 6 main 

technological categories: Chemical (excluding Drugs); Computers and Communications; 

Drugs and Medical; Electrical and Electronics; Mechanical; and Others. As shown in 

Table 4.1, the 6 categories can be further divided into 36 two-digit sub-categories. Of the 

6 categories, Chemical, Mechanical, and Others are considered as the three traditional 

 
35 Patent data may exhibit geographical bias, as the location associated with the first-named 
inventor might not accurately represent the primary resources involved in the patent’s 
development, or the locations of companies utilizing the patent or manufacturing related products. 
Often, this location is selected for legal or administrative reasons. In this study, the first-named 
inventor’s location was used because it often reflects where the conceptualization and 
development of the patent occurred, and this individual plays a crucial role in these processes. 
Given the study’s focus on regional innovation activity, this method helps in mapping the 
geographic spread of innovation and identifying dominant regions in collaborative networks. 
Nevertheless, future in-depth research could benefit from incorporating all associated locations of 
a patent, providing a more complete picture of the collaborative characteristic inherent in 
contemporary innovation processes. 
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fields (Hall et al., 2001). These fields are considered as traditional in the context of 

USPTO patent data because they have a long history of patenting activities that predates 

and underpins many modern technological advancements. Furthermore, unlike newer 

fields that may emerge or evolve rapidly due to technological changes, the filing rates of 

these categories have remained relatively stable over time. This stability allows for 

consistent classification and analysis of patents within these fields36. While the main 

focus of this study is on “traditional technologies”, underscored by the use of patent data, 

it also refers to these technological fields as “traditional categories”.  

This study further classifies the Electrical and Electronics category as the fourth 

traditional field. As noted by Hall et al. (2001), this category has shown a slightly greater 

growth compared to the three previously mentioned traditional fields. However, the field 

has been central to technological innovations since the late 19th and early 20th centuries, 

paving the way for the emergence and advancement of contemporary technologies such 

as information technology, nanotechnology, and quantum computing. Yet, compared to 

the high-tech fields, the classification of this field in the patent database has also 

remained stable and the patenting activities have been less frequent in recent decades. 

An example illustrates. The sub-category Semiconductor Devices rapidly 

emerged alongside the Computers and Communications category. However, the inclusion 

of Semiconductor Devices within the Electrical and Electronics category stems from their 

historical development and core role in controlling, amplifying, and generating electrical 

signals within electronic circuits and systems, a foundational aspect of electrical and 

 
36 Hall et al. (2001) note that the process of developing an aggregation system and categorizing 
patent classes into technological categories involves some inherent arbitrariness, potentially 
limiting this study. 
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electronic engineering. Patents related to semiconductors predominantly pertain to 

manufacturing techniques (e.g., wafer fabrication, doping, etching, and lithography) and 

essential building blocks of electronic devices (e.g., integrated circuits, transistors, and 

diodes). Initially, these components found their applications in simple electronic systems, 

power systems, and industrial machinery, later extending to encompass computer and 

communication devices37. Therefore, due to the techniques and human capital 

requirements of Semiconductor Devices, this study classifies the sub-category as part of 

the traditional fields (Table 4.1, expanded upon in Appendix Table A.1)38. This example 

illustrates the challenge of categorizing technological sub-categories as either traditional 

or high-tech, while simultaneously illustrating that the rise of high-tech likely increased 

patenting activities within a traditional field—precisely the scenario this study tests for.  

By contrast, Computers and Communications and Drugs and Medical are the 

emerging fields, because their patent count grew much more slowly than that of the 

traditional fields before the 1980s, but has significantly surpassed the traditional fields 

since the early 1980s (Hall et al., 2001). These two emerging fields mainly include high-

tech patenting in information and communication technologies, computer software, 

artificial intelligence, medical technologies, pharmaceuticals, and biotechnology. 

Therefore, these two emerging fields are collectively referred to as “high-tech fields” or 

 
37 Additionally, patents related to the design, simulation, and verification of semiconductors fall 
under the “Computers and Communications” category because of their reliance on advanced 
software and computing techniques. Therefore, Computer-aided design and analysis of circuits 
and semiconductor masks (Patent Class 716) is classified under the Computers and 
Communications technological category.  
38 As mentioned in Appendix Table A.1, several other advanced technologies that might be 
categorized under the Electrical and Electronics category or other traditional fields, such as robots 
(Patent Class 901), electric vehicles (Patent Class 903), nuclear technology (Patent Class 976), 
and nanotechnology (Patent Class 977), were not included in this dataset due to the unavailability 
of such data on the USPTO database at the time of data collection. 
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“high-tech categories” within this research. The term “emerging fields” also reflect the 

common pattern of rapid development evolution associated with these advanced 

technologies. 

Using the US Census Bureau’s 2015 delineation for Core-based Statistical Areas 

(CBSAs), which includes both Metropolitan and Micropolitan Statistical Areas, and 

taking the data availability for covariates into consideration, this study identifies 425 

CBSAs that produced at least one patent in any of the sub-categories in the two 

traditional fields at the beginning of the timeframe (1996). To enhance the reliability of 

the results, this study compares the patenting levels between two periods instead of two 

points in time. Therefore, this study computes the average of annual patent counts from 

1996 to 2000 for the first period and from 2010 to 2014 for the second period. 

Collectively, the 425 CBSAs produced an annual average of 18,517.8 high-tech patents 

from 1996 to 2000, and 48,238.2 traditional patents from 2010 to 2014.  

This study employs Linear Regression models to test the extent to which the 

variation in regional patenting levels in traditional fields from 2010 to 2014 are explained 

by variation in patenting levels in high-tech fields between 1996 and 2000. In addition to 

the primary model, this study examines five supplementary models to understand the 

dynamics within various technological categories.  

The first two of these additional models exclusively consider regions that 

generated patents in the Computers & Communications and Drugs & Medical (“high-

tech”) categories at the beginning of the timeframe (1996). The objective here is to 

investigate whether an increase in traditional patents is positively linked to a rise in the 

number of patents in each of these high-tech categories. The remaining three models 
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differ in their dependent variables; they focus on patents in three of the four traditional 

categories – Chemical, Electrical & Electronics, and Mechanical categories – rather than 

encompassing all traditional patents39. The goal is to understand the causal relationship 

between these specific traditional technological categories and high-tech patenting 

activity. This study uses Equation (1) to calibrate the six models.   

ln (PatTrad)2010-2014 = β0 + β1ln (PatTech)1996-2000 + β2ln (PatTrad)1996-2000 + 

β3PopGr1996-2014 + β4IncGr1996-2014 + β5EduChg1996-2014 + Division’ + e (1) 

Model 1 contains all 425 CBSAs. The dependent variable uses the logarithmic 

transformation of the average annual number of traditional patents in each region from 

2010 to 2014. The primary independent variable is the logarithmic form of the average 

annual count of all high-tech patents in each region during the period from 1996 to 2000. 

Models 2 to 6, while structurally similar to Model 1, differ specifically in terms of their 

dependent and primary independent variables. 

Models 2 and 3 retain the same dependent variable as Model 1. However, they 

differ in their primary independent variable. Model 2 includes only the average annual 

count of patents filed in the Computers & Communications category from 1996 to 2000, 

while Model 3 focuses on the Drugs & Medical category for each region. Consequently, 

these models only consider regions that produced patents in these specific high-tech 

categories in 1996. As a result, Model 2 analyzes 270 CBSAs, and Model 3 includes 351 

CBSAs. Models 4 through 6 maintain the same primary independent variable and the 

 
39 The traditional category “Others” is excluded from the analysis because this field is designed to 
cover a wide range of inventions that do not neatly fit into the more narrowly defined categories 
such as Chemical, Mechanical, and Electrical & Electronics. This diversity results in a lower 
relevance for policy reference purposes.   
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same sample size as Model 1. However, their dependent variables differ, each 

concentrating on the average annual count of patents in one of the three traditional 

categories – Chemical for Model 4, Electrical & Electronics for Model 5, and Mechanical 

for Model 6 – during the 2010-2014 period. Table 4.2 summarizes the dependent variable 

and the primary independent variable for each of the six models. 

Table 4.2 Summary of Regression Models  

Model 1 2 3 4 5 6 

Dependent 
variable 

Traditional 
Patent Count 

Average 
2010-2014 

(ln) 

Traditional 
Patent Count 

Average 2010-
2014 (ln) 

Traditional 
Patent Count 

Average 2010-
2014 (ln) 

Chemical 
Category Patent 
Count Average 
2010-2014 (ln) 

Electrical & 
Electronics 

Category Patent 
Count Average 
2010-2014 (ln) 

Mechanical 
Category Patent 
Count Average 
2010-2014 (ln) 

Primary 
Independent 
Variable  

High-tech 
Patent Count 

Average 
1996-2000 

(ln) 

Computers & 
Communications 
category Patent 
Count Average 
1996-2000 (ln) 

Drugs & 
Medical 

Category Patent 
Count Average 
1996-2000 (ln) 

High-tech 
Patent Count 

Average 1996-
2000 (ln) 

High-tech 
Patent Count 

Average 1996-
2000 (ln) 

High-tech 
Patent Count 

Average 1996-
2000 (ln) 

 

Each of the six models incorporates a set of covariates to account for factors that 

may impact patenting levels in traditional fields. The first control variable across all 

models is the logarithmic transformation of the average annual count of all traditional 

patents in each region from 1996 to 2000. This covariate is included to control for the 

influence of a region’s historical patenting specialization in traditional fields on its 

subsequent patenting levels within these fields. In Models 4 to 6, where the dependent 

variable is the patenting level in the specific categories of Chemical, Electrical & 

Electronics, and Mechanical, the first control variable is adapted to reflect the earlier 

patenting levels in these respective categories. 

The second to fourth covariates in the models are designed to control for the 

impact of population growth, per capita income growth40, and changes in education 

 
40 Considering the potential endogeneity problem between the dependent variable and the 
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attainment on traditional innovation during the study timeframe (1996-2014). 

Specifically, the change in educational attainment is quantified by the difference in the 

percentage of adults aged 25 and over with at least a bachelor’s degree in each region, 

measured between the start and end of the study period41. These three covariates are used 

to gauge the effects of agglomeration and urbanization economies and regional human 

capital. Additionally, the models include a set of dummy variables that identify the 

specific US Census Division each region falls into, making up the final set of 

covariates42.  

This study further tests two joint models combined with the Wald test to evaluate 

whether the influence of high-tech innovation on traditional innovation remains 

consistent across different technological categories. The first joint model combines the 

key explanatory variables from Models 2 and 3, including the patenting levels from 1996-

2000 in the high-tech categories of Computers & Communications and Drugs & Medical, 

along with other shared covariates. This model aims to determine if one high-tech 

 
explanatory variables of Population Growth 1996-2014 (%) and Per Capita Income Growth 1996-
2014, I conducted a Two-Stage Least Squares (2SLS) analysis. This involved using Population 
Growth 1976-1996 (%) and Per Capita Income Growth 1976-1996 (%) as instrumental variables 
for the corresponding explanatory variables. The F-statistics from the Wald test indicate that these 
are strong instruments for the potentially endogenous variables. In the second-stage model, the 
coefficients and significance levels of the primary independent variable (High-tech Patent Count 
Average 1996-2000 (ln)) and main control variables, including Traditional Patent Count Average 
1996-2000 (ln), Population Growth 1996-2014 (%), Education Attainment Change 1996-2014 
(%), and Per Capita Income Growth 1996-2014 (%), remain consistent with those in the original 
regression model. Further discussions of the results are provided in the results and discussions 
section. The residual plot from the second-stage model exhibits homoscedasticity. 
41 This study collects data for population and income covariates from the Bureau of Economic 
Analysis, and for educational attainment covariates from the Census Bureau. To construct 
educational attainment covariates, this study uses 1990 Population Censuses, and the 2015-19 
American Community Survey (ACS) 5-year estimates. This study uses 5-year instead of 1-year 
estimates because the latter leave out many smaller regions in the sample. 
42 For CBSAs that cross the border between two Census Divisions, this study uses the location of 
the first-named state in the name of each CBSA.  
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category exerts a more substantial influence on traditional patenting activity compared to 

the other. This model contains all 425 CBSAs, with the patenting levels for the two high-

tech categories are set to 0 in regions that did not patent in either or both of these 

categories between 1996 and 2000. Equation (2) is employed to calibrate the first joint 

model, facilitating a structured approach to this comparative analysis. 

ln (PatTrad)2010-2014 = β0 + β1ln (PatCom)1996-2000 + β2ln (PatMed)1996-2000 + β3ln 

(PatTrad)1996-2000 + β4PopGr1996-2014 + β5IncGr1996-2014 + β6EduChg1996-2014 + Division’ + e 

(2) 

The second joint model, building on Models 4, 5, and 6, examines the 2010-2014 

patenting levels in the individual traditional categories of Chemical, Electrical & 

Electronics, and Mechanical. It considers these dependent variables alongside their 

respective historical patenting levels from 1996-2000 (as category-specific covariates), 

the aggregate high-tech patenting levels from 1996-2000, and other common covariates, 

to test if high-tech patenting differentially impacts the patenting levels in these traditional 

categories. Notably, the dependent variable in this model is the natural logarithm of the 

average annual traditional patent counts for each of the three traditional categories in 

each region during 2010-2014. Therefore, this model contains 1,275 observations, 

representing three observations for each of the 425 CBSAs. Within this model, Category 

acts as a factor variable that signifies the technological category. Hence, the interaction 

term quantifies the variance in the effect of the main independent variable on the 

dependent variable across different technological categories, or in comparison to the 

baseline category (Chemical). Equation (3) is used to calibrate the second joint model.   

ln (PatTrad’)2010-2014 = β0 + β1ln (PatTech)1996-2000 * Category’ + β2ln 
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(PatChem)1996-2000 + β3ln (PatElec)1996-2000 + β4ln (PatMech)1996-2000 + β5PopGr1996-2014 + 

β6IncGr1996-2014 + β7EduChg1996-2014 + Division’ + e (3) 

Table 4.3 Descriptive Statistics43 

Variable Obs. Mean Std. Dev. Min Max 

Traditional Patent Count Average 2010-2014 (ln) 425 2.993 1.840 -2.000 8.057 

High-tech Patent Count Average 1996-2000 (ln) 425 1.591 1.951 -1.609 7.768 

Traditional Patent Count Average 1996-2000 (ln) 425 3.121 1.694 -2.000 8.048 

Population Growth 1996-2014 (%) 425 0.176 0.189 -0.239 1.177 

Per Capita Income Growth 1996-2014 (%) 425 0.902 0.231 0.475 3.329 

Education Attainment Change 1996-2014 (%) 425 9.716 3.404 0.700 22.100 

Census Division East North Central (0/1; Baseline) 425 0.207 0.406 0.000 1.000 

Census Division New England (0/1) 425 0.049 0.217 0.000 1.000 

Census Division Middle Atlantic (0/1) 425 0.096 0.295 0.000 1.000 

Census Division West North Central (0/1) 425 0.099 0.299 0.000 1.000 

Census Division South Atlantic (0/1) 425 0.165 0.371 0.000 1.000 

Census Division East South Central (0/1) 425 0.078 0.268 0.000 1.000 

Census Division West South Central (0/1) 425 0.096 0.296 0.000 1.000 

Census Division Mountain (0/1) 425 0.092 0.289 0.000 1.000 

Census Division Pacific (0/1) 425 0.118 0.323 0.000 1.000 

 
43 This study employs logarithm transformation to adjust for the right-skewed distribution of the 
dependent variables and the main patent independent variables. It is important to note that this 
study sets the results of ln (0) as -2 for the patent count average 2010-2014 dependent variables. 
This adjustment is made to ensure that all observations are computable even in regions with 0 
patent counts for each year from 2010 to 2014. Consequently, these regions have the minimum 
value across all regions. The next smallest value for this variable would be the regions that had 
only 1 patent in any single year during 2010-2014. In such case, the 5-year patent count average 
is 0.2, resulting in a natural logarithm value of ln (0.2) = -1.609.     
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Table 4.4 Correlation Matrix 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Traditional Patent Count 
Average 2010-2014 (ln) 1.000              

2 High-tech Patent Count 
Average 1996-2000 (ln) 0.909 1.000             

3 Traditional Patent Count 
Average 1996-2000 (ln) 0.957 0.904 1.000            

4 Population Growth 1996-
2014 (%) 0.255 0.204 0.184 1.000           

5 Per Capita Income Growth 
1996-2014 (%) -0.074 -0.095 -0.115 0.099 1.000          

6 Education Attainment 
Change 1996-2014 (%) 0.475 0.455 0.411 0.273 0.051 1.000         

7 Census Division East North 
Central (0/1; Baseline) -0.008 -0.077 -0.001 -0.319 -0.252 -0.076 1.000        

8 Census Division New 
England (0/1) 0.138 0.149 0.133 -0.116 0.073 0.213 -0.117 1.000       

9 Census Division Middle 
Atlantic (0/1) 0.075 0.081 0.114 -0.242 -0.047 0.053 -0.167 -0.074 1.000      

10 Census Division West North 
Central (0/1) -0.080 -0.045 -0.122 -0.042 0.074 0.079 -0.169 -0.075 -0.108 1.000     

11 Census Division South 
Atlantic (0/1) -0.004 0.015 0.005 0.229 -0.141 0.116 -0.227 -0.101 -0.145 -0.147 1.000    

12 Census Division East South 
Central (0/1) -0.117 -0.097 -0.108 0.004 -0.079 -0.131 -0.148 -0.066 -0.095 -0.096 -0.129 1.000   

13 Census Division West South 
Central (0/1) -0.080 -0.082 -0.062 0.063 0.455 -0.259 -0.167 -0.074 -0.107 -0.108 -0.145 -0.095 1.000  

14 Census Division Mountain 
(0/1) 0.023 0.003 -0.009 0.385 0.078 0.115 -0.162 -0.072 -0.104 -0.105 -0.141 -0.092 -0.104 1.000 

15 Census Division Pacific 
(0/1) 0.078 0.101 0.068 0.069 -0.016 -0.059 -0.187 -0.083 -0.119 -0.121 -0.162 -0.106 -0.119 -0.116 
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4.4 Results and Discussions  

Table 4.5 displays the regression results, addressing the heteroskedasticity via 

robust errors for each model. Diagnostic graphs indicated that extreme outliers in the 

sample skewed these results. By calculating Cook’s Distances for Model 1, 21 influential 

outliers were identified. However, re-evaluating Model 1 after their exclusion showed 

minimal impact on the regression coefficients’ value and significance, as well as the 

adjusted R-squared44. Notably, 18 of these outliers are micropolitan statistical areas, 

typically generating fewer patents than metropolitan statistical areas. Given the minor 

influence of these outliers and no compelling reasons for their exclusion, Table 4.5 

incorporates all regions in the respective models. 

The inclusion of the variable representing earlier patenting levels in both the 

overall traditional fields and individual traditional categories results in very high R-

squared values for each model. Consequently, I performed a block entry analysis on 

Model 1 to more clearly identify the explanatory power of other variables. This analysis 

was conducted to verify that the high-tech patent counts (overall and in specific sub-

categories) significantly contribute to the model by improving its fit as indicated by the 

R-squared value. 

The results of block entry analysis presented in Table 4.6 offer several key 

insights. Initially, the 1st Block Model, which only includes the independent variable of 

past traditional patenting levels, accounts for 91.7% (adjusted R-squared) of the variance 

in traditional patenting levels.  However, the introduction of the main variable of interest, 

 
44 After eliminating influential outliers, the model successfully met all diagnostic criteria. The 
sample size remains adequate for model fitting after the removal of influential observations.  
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i.e., the overall levels of high-tech patents, in the 2nd Block Model, further enhances the 

model’s fit (compared to 1st Block Model), as evidenced by the increase in R-squared 

from 91.7% to 92.5%. The ANOVA F-test statistic validates the statistical significance of 

this enhancement. Furthermore, adding other covariates to the model also leads to 

additional improvements, as shown in 3rd and 4th Block Models45.  

These results suggest that while the main independent variable, i.e., overall high-

tech patenting levels, does account for a portion of the explained variance, the most 

significant explanatory factor is the covariate representing previous patenting levels in 

the traditional fields. This conclusion is supported by comparing the standardized 

coefficients of the two predictors in Model 1 (Table 4.5), where the standardized 

coefficient for the covariate of previous traditional patenting levels is 0.736, in contrast to 

0.206 for high-tech patenting levels. This disparity underscores the critical influence of 

historical trends or path dependency in regional patent production.  

Referring to the regression results in Table 4.5, where both the dependent and key 

independent variables are transformed using the natural logarithm, the coefficients should 

be interpreted as the elasticities of the dependent variable in relation to the key 

independent variable. This means that each coefficient represents the expected percentage 

change in the dependent variable resulting from a 1% change in the key independent 

variable. 

 

 
45 Table 4.6 also includes a Baseline Model, which incorporates solely the primary independent 
variable. The purpose is to further show the independent effect of the high-tech patenting levels 
on traditional patenting levels. This model demonstrates that the primary independent variable 
alone explains 82.7% (adjusted R-squared) of the variance in the dependent variable.  



99 
 

We see from Model 1 that for CBSAs that produced at least one high-tech patent 

in 1996, there was a positive correlation between their patenting levels in traditional 

categories from 2010-2014 and their high-tech patenting levels from 1996 to 2000. 

Specifically, a 1% increase in the high-tech patenting level during 1996-2000 

corresponded to a 0.195% rise in traditional patenting level from 2010 to 2014. These 

findings affirm the primary hypothesis of this study: regions with higher initial patenting 

in high-tech fields tend to exhibit increased patenting in traditional fields in the second 

period. 

Models 2 and 3 explore the influence of specific high-tech categories on the 

subsequent overall patenting levels in traditional categories for each region. Table 4.5 

indicates that a 1% increase in the Computers & Communications category’s patenting 

level during 1996-2000 is associated with a 0.082% increase in traditional patenting from 

2010 to 2014. Furthermore, a 1% increase in the Drugs & Medical category’s patenting 

level in the same period corresponds to a 0.130% rise in traditional patenting from 2010 

to 2014.  

Models 4 to 6 focus on the effects of each region’s overall high-tech patenting 

levels from 1996 to 2000 on the subsequent patenting levels in specific traditional 

categories. Table 4.5 shows that, even after accounting for earlier patenting levels in each 

traditional category and other covariates, a positive association persists between high-

tech patenting levels and patenting in the Chemical, Electrical & Electronics, and 

Mechanical categories. Specifically, a 1% increase in high-tech patenting levels during 

1996-2000 is linked to respective increases of 0.310%, 0.336%, and 0.205% in the 

patenting levels of these three traditional categories from 2010 to 2014. 
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The two joint models combined with the Wald test enable a consistent comparison 

of coefficients across different models. Again, the first joint model incorporates the main 

explanatory variables from Models 2 and 3, specifically, the 1996-2000 patenting levels 

of the individual high-tech categories, Computers & Communications and Drugs & 

Medical, alongside other common covariates. The regression results are demonstrated in 

Table 4.7. The p-value of the Wald test’s F-statistic, which is 0.694, indicates that the two 

high-tech categories had statistically equivalent impacts on traditional patenting levels 

observed from 2010 to 2014.  

Where the first joint model tested whether either high-tech category influences 

traditional patenting more, the second joint model tests whether any of the traditional 

categories experience more impact from high-tech patenting than do others. To reiterate, 

the second joint model includes the dependent variables from Models 4, 5, and 6, 

specifically, the 2010-2014 patenting levels of the individual traditional categories, 

Chemical, Electrical & Electronics, and Mechanical, along with their respective historical 

(1996-2000) patenting levels (as a category-specific covariate), the shared independent 

variable of 1996-2000 high-tech patenting levels, and other shared covariates.  

As shown in Table 4.7, analysis of the interaction terms’ regression coefficients 

reveals that the effect of high-tech patenting on the Electrical & Electronics category 

(0.038) is statistically comparable to its effect on the Chemical category. Its impact on the 

Mechanical category (the coefficient of the interaction term is -0.117*) is modestly yet 

significantly lower than on the Chemical category (the coefficients for the primary 

independent variable and other covariates remain consistent as the original individual 

models). The significance of the difference is supported by a p-value of 0.006 for the 
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Wald test’s F-statistic, suggesting that the Mechanical category is the least affected by 

high-tech patenting levels among the traditional fields. 

In an extended comparative analysis, I investigate the relationship between the 

patenting levels in high-tech and traditional fields during 2010-2014 across the six 

models. This analysis reveals that the regression coefficients, indicative of tandem 

relationships, are generally slightly higher than those in the original models, which 

depicted longer-term relationships. Nonetheless, the significance levels of the main 

variables remain consistent across all models. While these findings are not explicitly 

detailed in the report, they serve to strengthen the conclusions drawn from the original 

regression analysis. 

It is important to reiterate that, in all of the six analyzed models, the regression 

coefficients for the covariates representing earlier patenting levels in the traditional fields 

– both overall and in each specific traditional category – consistently exceed those for the 

primary variables related to high-tech patenting levels. This observation aligns with the 

results obtained from the block entry analysis, which shows that the explanatory power of 

previous traditional patenting levels on the current traditional patenting is more 

pronounced than the influence of the high-tech patenting levels. Essentially, this further 

suggests that historical patterns in traditional fields have a stronger impact on current 

traditional patenting trends than the high-tech fields’ influence. 

The regression findings further suggest that population growth contributes to the 

advancement of traditional innovation. In all six models, population growth from 1996 to 

2014 exhibited a positive correlation with the level of regional traditional innovation 

during 2010-2014. This conclusion extends to the covariates related to education 
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attainment changes – the majority of the models demonstrate a positive link between the 

change in the percentage of adults (aged 25 and above) with at least a bachelor’s degree 

in each region and the region’s traditional patenting level. This result indicates that, akin 

to the high-tech industry, higher education plays a significant role in fostering innovation 

in traditional fields.  

Conversely, regional per capita income growth between 1996 and 2014 does not 

seem to have a significant effect on innovation in the traditional fields during 2010-2014. 

This observation can be rationalized by considering that regions undergoing economic 

growth may not necessarily focus on innovating within the traditional industries as a part 

of their broader development strategy. Additionally, regions that specialize in traditional 

innovation do not always align with those experiencing growth in other socioeconomic 

areas. For example, the economic benefits derived from traditional innovation may not be 

equitably distributed among the workforce. This could lead to a scenario where the 

financial gains from such innovation are concentrated at the top, without a corresponding 

increase in the per capita income of the region. 

Furthermore, in each of the six models, I examined the interaction terms between 

the primary independent variables and factors such as population growth, income growth, 

and changes in education attainment. However, no systematic effects were observed. 

Finally, the geographic location of CBSAs appears to influence the contemporary 

landscape of traditional innovation. The Middle Atlantic Census Division, encompassing 

many Rust Belt regions, showed a lower level of traditional innovation during 2010-2014 

compared to the East North Central Census Division. A similar trend is observed in 

several southern Census Divisions, namely the South Atlantic, East South Central, and 
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West South Central Census Divisions46. Figure 1 illustrates the geographical locations of 

all US Census Divisions. 

Figure 4.1 Census Divisions of the United States47  

 
46 However, in 2SLS analysis, only the South Atlantic Census Division is statistically significant. 
Therefore, we should interpret the regression results for the regional dummy variables with 
caution. 
47 The map was retrieved from the U.S. Census Bureau. 
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Table 4.5 Regression Results 

Model 1 2 3 4 5 6 

Dependent Variable 
Traditional Patent 

Count Average 
2010-2014 (ln) 

Traditional Patent 
Count Average 
2010-2014 (ln) 

Traditional Patent 
Count Average 2010-

2014 (ln) 

Chemical Category 
Patent Count 

Average 2010-2014 
(ln) 

Electrical & 
Electronic Category 

Patent Count 
Average 2010-2014 

(ln) 

Mechanical Category 
Patent Count Average 

2010-2014 (ln) 

High-tech Patent Count 
Average 1996-2000 (ln) 

0.195***   0.310*** 0.336*** 0.205*** 

(0.038)   (0.042) (0.051) (0.035) 

Computers & 
Communications category 
Patent Count Average 
1996-2000 (ln) 

 0.082*     

 (0.032)    
 

Drugs & Medical Category 
Patent Count Average 
1996-2000 (ln) 

  0.130***    

  (0.035)    

Traditional Patent Count 
Average 1996-2000 (ln) 

0.800*** 0.940*** 0.873***    

(0.047) (0.039) (0.044)    

Chemical Category Patent 
Count Average 1996-2000 
(ln) 

   0.626***   

   (0.042)   

Electrical & Electronics 
Category Patent Count 
Average 1996-2000 (ln) 

    0.663***  

    (0.051)  

Mechanical Category Patent 
Count Average 1996-2000 
(ln) 

     0.750*** 

     (0.046) 

Population Growth 1996-
2014 (%) 

0.806*** 0.940*** 0.684*** 0.640* 0.937*** 0.910*** 

(0.165) (0.172) (0.187) (0.248) (0.203) (0.203) 

Per Capita Income Growth 
1996-2014 (%) 

0.268* 0.453* 0.169 0.405* 0.115 0.220 

(0.109) (0.202) (0.110) (0.164) (0.187) (0.163) 

Education Attainment 
Change 1996-2014 (%) 

0.029*** 0.024* 0.028** 0.042*** 0.036** 0.009 

(0.008) (0.011) (0.009) (0.013) (0.013) (0.010) 

Census Division East North 
Central (0/1; Baseline) 
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Model 1 2 3 4 5 6 

Dependent Variable 
Traditional Patent 

Count Average 
2010-2014 (ln) 

Traditional Patent 
Count Average 
2010-2014 (ln) 

Traditional Patent 
Count Average 2010-

2014 (ln) 

Chemical Category 
Patent Count 

Average 2010-2014 
(ln) 

Electrical & 
Electronic Category 

Patent Count 
Average 2010-2014 

(ln) 

Mechanical Category 
Patent Count Average 

2010-2014 (ln) 

Census Division New 
England (0/1) 

-0.131 -0.108 0.008 -0.408* 0.152 -0.043 

(0.099) (0.110) (0.101) (0.170) (0.158) (0.104) 

Census Division Middle 
Atlantic (0/1) 

-0.209* -0.266** -0.101 -0.487*** -0.061 -0.104 

(0.091) (0.102) (0.092) (0.134) (0.129) (0.121) 

Census Division West 
North Central (0/1) 

-0.081 -0.184 0.082 -0.416** -0.138 -0.008 

(0.098) (0.106) (0.112) (0.133) (0.150) (0.131) 

Census Division South 
Atlantic (0/1) 

-0.300*** -0.297** -0.121 -0.288* -0.141 -0.268* 

(0.084) (0.101) (0.083) (0.133) (0.134) (0.105) 

Census Division East South 
Central (0/1) 

-0.227* -0.276* -0.050 -0.294 -0.193 -0.412** 

(0.099) (0.126) (0.099) (0.159) (0.172) (0.136) 

Census Division West 
South Central (0/1) 

-0.306* -0.443*** -0.206 -0.455* -0.164 -0.494** 

(0.123) (0.128) (0.136) (0.183) (0.175) (0.163) 

Census Division Mountain 
(0/1) 

-0.241* -0.257 -0.085 -0.231 -0.099 -0.426** 

(0.105) (0.131) (0.107) (0.172) (0.155) (0.149) 

Census Division Pacific 
(0/1) 

-0.141 -0.122 0.023 -0.215 0.103 -0.261* 

(0.089) (0.105) (0.090) (0.126) (0.143) (0.112) 

Constant 
-0.307* -0.600** -0.363* -0.665*** -0.613*** -0.317 

(0.150) (0.185) (0.164) (0.179) (0.176) (0.169) 

Number of Observations 425 270 351 425 425 425 

Adjusted R-squared 0.935 0.948 0.938 0.867 0.893 0.882 

Note: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05. Values in parentheses are standard errors. 
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Table 4.6 Block Entry Analysis Results 

Model Baseline 1st Block 2nd Block 3rd Block 4th Block 

Dependent Variable Traditional Patent Count Average 2010-2014 (ln) 

High-tech Patent Count Average 1996-2000 (ln) 
0.857***  0.229*** 0.189*** 0.195*** 

(0.019)  (0.029) (0.028) (0.029) 

Traditional Patent Count Average 1996-2000 
(ln) 

 1.039*** 0.801*** 0.805*** 0.800*** 

 (0.015) (0.034) (0.032) (0.033) 

Population Growth 1996-2014 (%) 
   0.574*** 0.806*** 

   (0.128) (0.158) 

Per Capita Income Growth 1996-2014 (%) 
   0.171 0.268* 

   (0.101) (0.119) 

Education Attainment Change 1996-2014 (%) 
   0.033*** 0.029*** 

   (0.008) (0.009) 

Census Division East North Central (0/1; 
Baseline) 

     

     

Census Division New England (0/1) 
    -0.131 

    (0.119) 

Census Division Middle Atlantic (0/1) 
    -0.209* 

    (0.090) 

Census Division West North Central (0/1) 
    -0.081 

    (0.093) 

Census Division South Atlantic (0/1) 
    -0.300*** 

    (0.082) 

Census Division East South Central (0/1) 
    -0.227* 

    (0.099) 

Census Division West South Central (0/1) 
    -0.306** 

    (0.110) 

Census Division Mountain (0/1) 
    -0.241* 

    (0.024) 



107 
 

Model Baseline 1st Block 2nd Block 3rd Block 4th Block 

Dependent Variable Traditional Patent Count Average 2010-2014 (ln) 

Census Division Pacific (0/1) 
    -0.141 

    (0.088) 

Constant 
1.629*** -0.251*** 0.130 -0.401** -0.307* 

(0.048) (0.055) (0.071) (0.129) (0.138) 

Number of Observations   425   

Adjusted R-squared 0.827 0.917 0.925 0.934 0.935 

ANOVA F-test Statistic 

 61.069***   

  18.457***  

   2.390* 

Note: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05. Values in parentheses are standard errors. 
 

Table 4.7 Joint Models Regression Results 

Model 1 2 

Dependent Variable Traditional Patent Count Average 2010-2014 (ln) Traditional Patent Count Average 2010-2014 (ln) 

High-tech Patent Count Average 1996-2000 (ln) 
 0.307*** 

 (0.035) 

Computers & Communications category Patent Count Average 1996-
2000 (ln) 

0.094***  

(0.025)  

Drugs & Medical Category Patent Count Average 1996-2000 (ln) 
0.079**  

(0.026)  

Traditional Patent Count Average 1996-2000 (ln) 
0.852***  

(0.031)  

High-tech Patent Count Average 1996-2000 (ln) * Category (Chemical 
Category Patent Count Average 2010-2014 (ln)) (Baseline) 

  

  

High-tech Patent Count Average 1996-2000 (ln) * Category (Electrical 
& Electronics Category Patent Count Average 2010-2014 (ln)) 

 0.038 

 (0.053) 
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Model 1 2 

Dependent Variable Traditional Patent Count Average 2010-2014 (ln) Traditional Patent Count Average 2010-2014 (ln) 

High-tech Patent Count Average 1996-2000 (ln) * Category 
(Mechanical Category Patent Count Average 2010-2014 (ln)) 

 -0.117* 

 (0.048) 

Category Chemical Category Patent Count Average 2010-2014 (ln) 
(Baseline) 

  

  

Category Electrical & Electronics Category Patent Count Average 
2010-2014 (ln) 

 -0.037 

 (0.063) 

Category Mechanical Category Patent Count Average 2010-2014 (ln) 
 -0.021 

 (0.065) 

Chemical Category Patent Count Average 1996-2000 (ln) 
 0.627*** 

 (0.034) 

Electrical & Electronics Category Patent Count Average 1996-2000 
(ln) 

 0.669*** 

 (0.039) 

Mechanical Category Patent Count Average 1996-2000 (ln) 
 0.753*** 

 (0.040) 

Population Growth 1996-2014 (%) 
0.841*** 0.828*** 

(0.162) (0.134) 

Per Capita Income Growth 1996-2014 (%) 
0.243* 0.247* 

(0.122) (0.102) 

Education Attainment Change 1996-2014 (%) 
0.033*** 0.029*** 

(0.009) (0.007) 

Census Division East North Central (0/1; Baseline) 
  

  

Census Division New England (0/1) 
-0.130 -0.100 

(0.122) (0.101) 

Census Division Middle Atlantic (0/1) 
-0.198* -0.218** 

(0.092) (0.077) 

Census Division West North Central (0/1) 
-0.043 -0.185* 

(0.095) (0.079) 



109 
 

Model 1 2 

Dependent Variable Traditional Patent Count Average 2010-2014 (ln) Traditional Patent Count Average 2010-2014 (ln) 

Census Division South Atlantic (0/1) 
-0.294*** -0.231** 

(0.084) (0.070) 

Census Division East South Central (0/1) 
-0.211* -0.298*** 

(0.101) (0.084) 

Census Division West South Central (0/1) 
-0.304** -0.370*** 

(0.112) (0.094) 

Census Division Mountain (0/1) 
-0.262* -0.251** 

(0.110) (0.090) 

Census Division Pacific (0/1) 
-0.126 -0.123 

(0.091) (0.075) 

Constant 
-0.361* -0.513*** 

(0.143) (0.106) 

Number of Observations 425 1275 

Adjusted R-squared 0.933 0.882 

Note: “***” p < 0.001; “**” p < 0.01; “*” p < 0.05. Values in parentheses are standard errors. 
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4.5 Conclusion 

Urban and economic development practitioners often focus on advancing high-

tech industries in their industrial and business policies, driven by the assumption that 

these industries catalyze higher market demand, better worker compensation, and 

ultimately, regional prosperity. Consequently, regions specializing in high-tech industries 

have garnered more attention from scholars in urban and economic development than 

those in traditional industries. This trend might stem from a prevailing belief that 

innovation progresses in a unidirectional manner, moving from less advanced to more 

advanced industries. Despite a general scientific consensus that technological progress is 

nonlinear, empirical evidence demonstrating the symbiotic relationship and cross-

industrial interplay between high-tech and traditional technologies remains limited. 

Specifically, research on whether the patenting levels of regions in advanced 

specialized fields lead to increased patenting activities in traditional fields is currently 

limited. This gap persists despite some studies exploring this relationship at various 

geographic scales, including countries and urban/rural areas. This study seeks to fill this 

gap by examining U.S. CBSAs and investigating whether regions with a stronger 

innovation capacity in high-tech fields also show higher patenting levels in traditional 

fields between 1996 and 2014. Utilizing USPTO patent data and regression analysis that 

accounts for various covariates, including the impact of historical traditional 

specializations, the models support the main hypothesis: regions with higher patenting 

levels in 1996-2000 in high-tech fields tend to have increased patenting in traditional 

fields in 2010-2014. 
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I concur with insights from existing literature, as previously discussed, that 

innovations in both high-tech fields and traditional fields are increasingly influenced by 

common factors such as human capital and global competition, transcending industrial 

boundaries (Berry & Glaeser, 2005; Glaeser & Hausman, 2020). As a result, traditional 

innovation now requires higher levels of educational attainment, positioning regions with 

a strong capacity for high-tech innovation at an advantage. This perspective is also 

supported by the regression analysis variables related to population growth and changes 

in educational attainment in this study.  

I further propose that despite the continuous decline in the employment share of 

traditional industries, strategically supporting these industries is meaningful for balanced 

economic growth. As the workforce increasingly moves towards cutting-edge industries 

like information technology and biotechnology, there emerges a reciprocal demand for 

traditional industries. Policy interventions should therefore specifically aim to enhance 

collaborations between advanced and traditional industries. This could involve creating 

platforms for knowledge exchange, joint research and development projects, and cross-

industrial training programs to foster innovation and leverage the strengths of both 

industries. The viability and sustainability of all industries hinge on their ability to adapt 

to market needs effectively. Therefore, developing policies that encourage collaborative 

innovation and adaptation in high-tech and traditional industries could play a vital role in 

maintaining a dynamic and diverse economic landscape. 

Future research might consider whether the link between information technology 

and traditional industries has strengthened with the rising adoption of AI and cloud 

technologies. Additionally, the emergence of electric vehicles, self-driving cars, and 
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drones in the last decade might introduce new dynamics between high-tech industries and 

mechanical-related technologies in traditional industries. Furthermore, the analyses and 

models employed in this study could be expanded to evaluate each pairing of high-tech 

and traditional categories. This extension would facilitate a deeper understanding of the 

influence of specific high-tech categories on specific traditional categories, yielding more 

nuanced insights that can inform policies and strategies for economic and business 

development.  

It is important to note that the identification of traditional industries and high-tech 

emerging industries in this study is based on the classification of technological rather 

than industrial categories. Consequently, only two categories – Computers & 

Communications and Drug & Medical – are classified as high-tech industries. This might 

lead to the perception that certain advanced manufacturing technologies within traditional 

fields, demanding significant human intelligence, ought to be categorized as high-tech. 

This study acknowledges advancements in traditional industries and is aware of possible 

limitations in the chosen classification. Nevertheless, I maintain that this classification is 

essential to ensure the identified high-tech industries represent innovations that are 

distinctly different from traditional industries, which lends a more conservative approach 

to the study’s results.  

Although patent data is a commonly used proxy for innovation in numerous 

studies, it presents several notable limitations. Firstly, patent data may not encompass all 

types of manufacturing innovation, especially those related to process innovations or 

those not patented due to specific corporate strategies. This limitation could impact the 

broader applicability of the study’s findings. Secondly, the study treats all patents as 
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equal, which overlooks the fact that groundbreaking patents often have a more substantial 

impact than those representing minor advancements. Future research should consider the 

potential benefits of attributing greater significance to patents that receive a higher 

number of citations, thereby acknowledging their relative importance. 
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CHAPTER V 

CONCLUSION 

This dissertation expands the current understanding of innovation-led economic 

development, which has predominantly centered on high-tech industries and their host 

regions, to also encompass traditional industries and their specialized regions. It adopts 

the lens of patented technological innovations to reexamine these regions and industries, 

particularly those that have undergone significant restructuring in the past fifty years. The 

core thesis posits that the interplay among key economic factors – such as population, 

income, and innovation – as well as the relationship between high-tech and traditional 

technologies is more complex during economic restructuring than mainline economic 

development theories fully capture. In what follows, I synthesize three common themes 

emerging from the analyses presented in the three essays. 

The first theme addresses the lack of parallelism among major economic factors – 

population, income, and technological innovation – within a region during its economic 

development and restructuring. This observation is supported by all three essays. 

Specifically, the first essay reveals that innovation can continue in regions undergoing 

population decline or sluggish economic growth, challenging the mainstream 

scholarship’s emphasis on a reinforcing relationship among these economic factors. 
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Furthermore, regression analyses across the essays indicate that while population and 

human capital appear to contribute to innovation in regions, the presence of economic 

growth in regions does not necessarily lead to an increase in population or innovation. 

This suggests that the dynamics among key economic factors are not yet fully 

comprehended. 

Mainline economic development theories have largely aimed at identifying the 

types of economic factors or activities that drive population and income growth. This 

focus has naturally drawn scholarly attention towards regions experiencing a positive 

cycle of economic development, spurred by technological advancements and innovations 

that not only attract people and financial investment but also create a feedback loop that 

further fuels innovation. However, this concentration overshadows the need for research 

into the resilience mechanisms at play in regions facing population and overall income 

declines as they navigate the complex process of economic restructuring. These 

overlooked economic dynamics are key to informing successful economic restructuring 

strategies. The sustained technological innovation highlighted in this dissertation serves 

as one of the potential factors capable of providing good employment opportunities and 

improving quality of life for local residents even amidst less favorable conditions.  

Some regions may continue to experience growth and avoid significant population 

declines during periods of industrial restructuring, thanks to enduring regional advantages 

such as substantial economic size, strategic location, and strong connectivity. 

Nevertheless, the majority of regions and cities confront uncertainties due to 

technological changes and demographic shifts. Therefore, this dissertation supports a 

broader and more inclusive view of economic development that includes restructuring 
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and adaptability as key components for regional success. In addition, it is heartening to 

observe a growing body of research focused on urban shrinkage and restructuring, which 

explores how regions and cities can leverage their strengths in specialized knowledge 

bases, community development, land repurposing, and innovative governance strategies 

to adapt and flourish, even in the face of adversities.  

Nevertheless, this study also acknowledges the broader context of the widening 

innovation gap between traditional and high-tech fields, despite the enduring capacity of 

traditional fields to maintain patenting activities amid industrial decline. Consequently, 

regions like Gary (IN), Flint (MI), and Wheeling (WV), have experienced significant 

economic downturns as their foundational industries have contracted and efforts to 

diversify beyond these deeply entrenched sectors have faltered. This observation aligns 

with mainstream economic development theories, which argues that traditional industries 

should adapt to the market shifts prompted by the emergence of high-tech technologies 

and advance innovation within traditional fields to stay competitive. It is equally 

important to adopt a dynamic perspective, acknowledging that the definition of traditional 

fields is constantly evolving over time. What is considered high-tech fields today may 

eventually become tomorrow’s traditional fields as newer technologies are invented. 

The second theme highlights that the trajectory of economic and technological 

development is inherently non-linear and is deeply influenced by path dependency. The 

third essay especially illustrates this, where the interaction between high-tech and 

traditional technologies is shown to be symbiotic rather than one-directional, 

predominantly moving from traditional towards high-tech. Technological innovations in 

high-tech industries do, in fact, spur technological innovations in traditional industries. 
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Additionally, this essay points out that regional innovation, including that within 

traditional industries, is significantly shaped by path dependency. This means that 

historical trends in traditional innovation play a more significant role in shaping current 

patenting trends in these fields than the influence of the high-tech fields. This observation 

echoes the findings of the first essay, which demonstrates that regions, regardless of their 

performance in terms of population and income growth, can maintain innovation in their 

historical areas of specialization for prolonged periods. 

This second theme provides implications for economic development planning 

aimed at restructuring older industrial regions through a balance between high-tech 

advancements and leveraging the inherent strength of traditional fields. It suggests that 

policymakers should recognize the symbiotic relationship between high-tech and 

traditional technologies and introduce interventions which would capitalize on the 

combined strength of both. Entirely abandoning traditional technological strengths to 

chase a narrow range of high-tech technologies may not be the most resource-efficient 

strategy. Hence, this approach extends beyond the establishment of industrial parks solely 

for high-tech startups. Instead, it entails identifying and backing competitive traditional 

firms or clusters that have the potential to integrate advanced technologies as well as to 

invent technologies that high-tech fields require to meet market demands. To further this 

integration, policy interventions could include establishing platforms for knowledge 

sharing, joint research and development initiatives, and workforce training programs 

across high-tech and traditional fields.  

Regions such as Pittsburgh, St. Louis, and Baltimore have transitioned from their 

traditional manufacturing bases to become hotbeds of innovation in fields like robotics, 
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artificial intelligence, and biotechnology, and autonomous vehicles. This transformation 

has been largely facilitated by the development of synergistic relationships between 

cutting-edge technologies and their respective established fields such as steel production, 

automotive manufacturing, and mechanical engineering. In Pittsburgh, for example, the 

Benjamin Franklin Technology Partners significantly contributed to bridging academia 

and industries like robotics and advanced manufacturing. Similarly, supporting 

collaborative research centers focused on technologies with direct applications to sectors 

like Detroit’s automotive industry can strengthen the innovation ecosystem within 

traditionally specialized regions. Moreover, establishing specialized training programs in 

community colleges to upskill the existing workforce in digital literacy, robotics 

maintenance, health technologies, and green energy solutions is crucial. Such strategies 

require a comprehensive understanding of the distinct strengths and economic fabric of 

each region, along with an exploration into a broader spectrum of cutting-edge 

technologies. Through making appropriate investments and enhancing the workforce’s 

skills, regions with a legacy in traditional fields can stimulate innovation growth and 

generate new employment opportunities locally.  

Furthermore, technological progress is more effectively fostered through a 

regional governance model that prioritizes collaboration over competition, especially 

given the importance of collaboration across high-tech and traditional fields. This 

perspective also broadens the academic discourse on innovation, which moves beyond 

the confines of high-tech sectors alone. It is vital to acknowledge that high-tech 

inventions often rely on the foundational elements provided by traditional technologies, 

which in turn can open new opportunities for advancements in these technologies. 
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Recognizing the interconnectedness of innovations significantly contributes to economic 

resilience of regions with specializations in traditional fields, and it helps counteract the 

negative impact associated with a narrowly focused pro-growth development mindset. 

The third theme posits that promoting economic diversity is the preferable 

approach for regional economic development and restructuring. The key findings of the 

second essay indicate that regions with a diversified knowledge structure are better 

positioned to integrate knowledge from emerging industries, even those markedly distinct 

from the region’s traditional area of specialization, into their current knowledge base. 

This insight is reinforced by observations from the first essay, which reveals that regions 

where large traditional establishments or a substantial overall industrial size played a 

significant role in traditional innovation exhibited the lowest levels of innovation 

performance across all studied regions. This underscores the importance of economic 

diversity in fostering a resilient and innovation regional economy.  

For economic developers and decision makers, this theme advocates that regions 

should refrain from concentrating solely on one or two targeted industrial areas, and 

should place greater emphasis on broader sectors that encompass a variety of related sub-

industries. This strategy not only diversifies their economic activities but also positions 

them to more readily adopt high-tech industries or other new opportunities as they arise 

in the future. Policy measures might include creating incentives to adopt and develop 

technologies adjacent to but outside the traditional economic stronghold of the region, 

and investing in education and training programs that equip the workforce with versatile 

skills applicable across various sectors. By promoting an ecosystem that values 

strategically diverse economic activities, regions can lessen their dependency on any 
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single focused area and mitigate the risks associated with economic downturns in 

specialized sectors. 

This dissertation opens several pathways for future research. The first direction 

involves delving into the inventing organizations responsible for significant 

advancements in traditional technologies and those leading the transition towards high-

tech knowledge creation. Moving beyond the aggregate perspective of this work, future 

studies could examine innovation at a more granular level. This would entail exploring 

whether patents in traditional fields have consistently been held by a particular set of 

innovative institutions or corporations, or if there has been a dynamic shift, incorporating 

a diverse mix of inventors including new entrants from research institutions and high-tech 

corporations. Utilizing USPTO patent data, which provides detailed information about 

inventors and assignees, would facilitate tracking the evolution of patent ownership and 

the key players in innovation over time.  

This analysis could also extend to regions known for their strength in traditional 

fields but are now actively revitalizing their knowledge bases and venturing into high-

tech knowledge creation. A potential focus could be to investigate whether patents in 

high-tech domains originate from traditional innovators or through partnerships with 

high-tech firms. Additionally, the investigation could delve into the geographic or 

cognitive proximity of these partnerships, exploring whether and how physical closeness 

and shared knowledge bases influence the progress in traditional technologies, and the 

innovation process at the intersection of traditional and high-tech knowledge.  

This research trajectory could further explore the complexity of innovation-

related institutions in these regions. For instance, the analyses could extend to cover 
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stakeholders from the public, private and nonprofit sectors who, while not directly 

engaged in patenting, have facilitated innovation and industrial transformation. Examples 

include local venture capital organizations and entities involved in the recruiting 

businesses that innovate or supply products in both traditional and high-tech fields, or in 

training and attracting the relevant workforce in these regions. These inquiries are 

particularly intriguing given the substantial institutional innovations within the realms of 

economic and community development in these regions. In addition, related policy 

domains such as state and local economic development policies, training and educational 

policies, and land use policies are also highly pertinent to these regions and warrant 

examination.  

The second avenue for future research involves conducting deeper analyses into 

specific characteristics of regions that significantly impact their innovation capabilities in 

both traditional and high-tech fields. This dissertation has identified several factors, such 

as population decline and the presence of large corporations or significant industrial size, 

that may impede technological innovation. Further studies could use case studies chosen 

from the data used in this dissertation to investigate regions with these characteristics. 

Moreover, this study has observed that some micropolitan areas, while sustaining 

innovation in traditional fields, encounter barriers in fostering new innovative capabilities 

within high-tech domains. Detailed studies could also assess whether a region’s economic 

size plays a role in the cultivation of new specializations. Conversely, exploring the 

conditions under which innovations in both the traditional and high-tech fields can 

symbiotically reinforce each other’s growth could provide valuable guidelines for 

crafting more effective and inclusive economic development policies.  
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The third potential research trajectory proposes a more forward-looking 

examination of regions that have transitioned from highly specialized to more 

economically diversified portfolios. This involves conducting in-depth analysis into 

whether such regions have achieved their diversification goals, such as increasing 

innovation, drawing in a more educated workforce, and generating high-paying jobs 

within the new industries. Moreover, there is a need to scrutinize how the interplay 

between high-tech and traditional technologies evolves with the emergence of 

technologies like artificial intelligence, cloud computing, autonomous vehicles, and 

drones, which were not covered by the patent data in this study. This inquiry would also 

explore the extent to which older industrial regions have managed to integrate high-tech 

innovations into their traditional knowledge base, and the impact of this integration on 

their overall restructuring endeavors.   
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APPENDIX 

Table A.1 Classification of Patent Classes into Tech Categories and Sub-Categories 

Category 
Code Category Name 

Sub-
Category 

Code 

Sub-Category 
Name Patent Classes 

1 Chemical 

11 Agriculture, Food, 
Textiles 8, 19, 71, 127, 442, 504 

12 Coating 106, 118, 401, 427 

13 Gas 48, 55, 95, 96 

14 Organic 
Compounds 

532, 534, 536, 540, 544, 546, 548, 549, 552, 554, 556, 558, 
560, 562, 564, 568, 570 

15 Resins 520, 521, 522, 523, 524, 525, 526, 527, 528, 530 

19 Miscellaneous-
Chemical 

23, 34, 44, 102, 117, 149, 156, 159, 162, 196, 201, 202, 
203, 204, 205, 208, 210, 216, 222, 252, 260, 261, 349, 366, 
416, 422, 423, 430, 436, 494, 501, 502, 506, 510, 512, 516, 
518, 585, 588 

 

2 Computers & 
Communications 

21 Communications 178, 333, 340, 342, 343, 358, 367, 370, 375, 379, 385, 398, 
455 

22 
Computer 
Hardware & 
Software 

341, 380, 382, 395, 700, 701, 702, 703, 704, 705, 706, 707, 
708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 726 

23 Computer 
Peripherals 345, 347 

24 Information 
Storage 360, 365, 369, 711 

 

3 Drugs & Medical 

31 Drugs 424, 514 

32 
Surgery & 
Medical 
Instruments 

128, 600, 601, 602, 604, 606, 607 

33 Biotechnology 435, 800 

39 Miscellaneous-
Drugs & Medical 351, 433, 623 

  

4 Electrical & 
Electronics 

41 Electrical Devices 174, 200, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 
392, 439 

42 Electrical Lighting 313, 314, 315, 362, 372, 445 

43 Measuring & 
Testing 73, 324, 356, 374 

44 Nuclear & X-rays 250, 376, 378 

45 Power Systems 60, 136, 290, 310, 318, 320, 322, 323, 361, 363, 388, 429 

46 Semiconductor 
Devices 257, 326, 438, 505 

49 
Miscellaneous-
Electrical & 
Electronics 

191, 218, 219, 307, 346, 348, 377, 381, 386, 725 
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Category 
Code Category Name 

Sub-
Category 

Code 

Sub-Category 
Name Patent Classes 

5 Mechanical 

51 
Materials 
Processing & 
Handling 

65, 82, 83, 125, 141, 142, 144, 173, 209, 221, 225, 226, 
234, 241, 242, 264, 271, 407, 408, 409, 414, 425, 451, 493 

52 Metal Working 29, 72, 75, 76, 140, 147, 148, 163, 164, 228, 266, 270, 413, 
419, 420 

53 Motors, Engines & 
Parts 

91, 92, 123, 185, 188, 192, 251, 303, 415, 417, 418, 464, 
474, 475, 476, 477 

54 Optics 352, 353, 355, 359, 396, 399, 720, 850 

55 Transportation 104, 105, 114, 152, 180, 187, 213, 238, 244, 246, 258, 280, 
293, 295, 296, 298, 301, 305, 410, 440 

59 Miscellaneous-
Mechanical 

7, 16, 42, 49, 51, 74, 81, 86, 89, 100, 124, 157, 184, 193, 
194, 198, 212, 227, 235, 239, 254, 267, 291, 294, 384, 400, 
402, 406, 411, 453, 454, 470, 482, 483, 492, 508 

 

6 Others 

61 Agriculture, 
Husbandry, Food 43, 47, 56, 99, 111, 119, 131, 426, 449, 452, 460 

62 Amusement 
Devices 273, 446, 463, 472, 473 

63 Apparel & Textile 2, 12, 24, 26, 28, 36, 38, 57, 66, 68, 69, 79, 87, 112, 139, 
223, 450 

64 Earth Working & 
Wells 37, 166, 171, 172, 175, 299, 405, 507 

65 Furniture, House 
Fixtures 4, 5, 30, 70, 132, 182, 211, 256, 297, 312 

66 Heating 110, 122, 126, 165, 237, 373, 431, 432 

67 Pipes & Joints 138, 277, 285, 403 

68 Receptacles 53, 206, 215, 217, 220, 224, 229, 232, 383 

69 Miscellaneous-
Others 

1, 14, 15, 27, 33, 40, 52, 54, 59, 62, 63, 84, 101, 108, 109, 
116, 134, 135, 137, 150, 160, 168, 169, 177, 181, 186, 190, 
199, 231, 236, 245, 248, 249, 269, 276, 278, 279, 281, 283, 
289, 292, 300, 368, 404, 412, 428, 434, 441, 462, 503 

Note: The list of patent classes as of the date of data collection includes 9 additional new 
classes that are not to be found in the data: 901, 902, 903, 930, 968, 976, 977, 984, and 
987.  
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Table A.2 Shrinking Regions in terms of Population and in terms of Per Capita Income 

Shrinking Regions in terms of Population (136 Obs.) Slow-growth Regions in terms of Total Income (42 Obs.) 

GEOID CBSA Name GEOID CBSA Name 

10660 Albert Lea, MN Micro Area 10300 Adrian, MI Micro Area 

10980 Alpena, MI Micro Area 11780 Ashtabula, OH Micro Area 

11020 Altoona, PA Metro Area 13020 Bay City, MI Metro Area 

11220 Amsterdam, NY Micro Area 13180 Beaver Dam, WI Micro Area 

11780 Ashtabula, OH Micro Area 14100 Bloomsburg-Berwick, PA Metro Area 

12180 Auburn, NY Micro Area 17220 Clarksburg, WV Micro Area 

12380 Austin, MN Micro Area 18500 Corning, NY Micro Area 

12820 Bastrop, LA Micro Area 19060 Cumberland, MD-WV Metro Area 

12860 Batavia, NY Micro Area 19180 Danville, IL Metro Area 

12980 Battle Creek, MI Metro Area 20180 DuBois, PA Micro Area 

13020 Bay City, MI Metro Area 21300 Elmira, NY Metro Area 

13220 Beckley, WV Metro Area 23460 Gadsden, AL Metro Area 

13620 Berlin, NH-VT Micro Area 24500 Great Falls, MT Metro Area 

13700 Big Spring, TX Micro Area 25840 Hermiston-Pendleton, OR Micro Area 

13720 Big Stone Gap, VA Micro Area 26860 Indiana, PA Micro Area 

13780 Binghamton, NY Metro Area 29020 Kokomo, IN Metro Area 

14180 Blytheville, AR Micro Area 30340 Lewiston-Auburn, ME Metro Area 

14420 Borger, TX Micro Area 30620 Lima, OH Metro Area 

14620 Bradford, PA Micro Area 31820 Manitowoc, WI Micro Area 

15340 Bucyrus, OH Micro Area 31980 Marion, IN Micro Area 

15380 Buffalo-Cheektowaga-Niagara Falls, NY Metro Area 32100 Marquette, MI Micro Area 

15460 Burlington, IA-IL Micro Area 32740 Meadville, PA Micro Area 

15580 Butte-Silver Bow, MT Micro Area 33220 Midland, MI Metro Area 

15740 Cambridge, OH Micro Area 34620 Muncie, IN Metro Area 

15780 Camden, AR Micro Area 35260 New Castle, PA Micro Area 

16460 Centralia, IL Micro Area 35420 New Philadelphia-Dover, OH Micro Area 

16620 Charleston, WV Metro Area 36300 Ogdensburg-Massena, NY Micro Area 

16660 Charleston-Mattoon, IL Micro Area 36340 Oil City, PA Micro Area 

17220 Clarksburg, WV Micro Area 36460 Olean, NY Micro Area 

17380 Cleveland, MS Micro Area 37140 Paducah, KY-IL Micro Area 

17460 Cleveland-Elyria, OH Metro Area 37620 Parkersburg-Vienna, WV Metro Area 

17540 Clinton, IA Micro Area 38220 Pine Bluff, AR Metro Area 

17700 Coffeyville, KS Micro Area 39500 Quincy, IL-MO Micro Area 

18220 Connersville, IN Micro Area 39980 Richmond, IN Micro Area 

18500 Corning, NY Micro Area 40660 Rome, GA Metro Area 

19060 Cumberland, MD-WV Metro Area 40700 Roseburg, OR Micro Area 

19180 Danville, IL Metro Area 41400 Salem, OH Micro Area 

19340 Davenport-Moline-Rock Island, IA-IL Metro Area 43740 Somerset, PA Micro Area 
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Shrinking Regions in terms of Population (136 Obs.) Slow-growth Regions in terms of Total Income (42 Obs.) 

19500 Decatur, IL Metro Area 44580 Sterling, IL Micro Area 

19820 Detroit-Warren-Dearborn, MI Metro Area 44980 Sunbury, PA Micro Area 

19940 Dixon, IL Micro Area 48260 Weirton-Steubenville, WV-OH Metro Area 

20260 Duluth, MN-WI Metro Area 49780 Zanesville, OH Micro Area 

21300 Elmira, NY Metro Area   

21500 Erie, PA Metro Area   

21540 Escanaba, MI Micro Area   

21900 Fairmont, WV Micro Area   

22420 Flint, MI Metro Area   

22700 Fort Dodge, IA Micro Area   

22800 Fort Madison-Keokuk, IA-IL-MO Micro Area   

23300 Freeport, IL Micro Area   

23380 Fremont, OH Micro Area   

23660 Galesburg, IL Micro Area   

24100 Gloversville, NY Micro Area   

24460 Great Bend, KS Micro Area   

24500 Great Falls, MT Metro Area   

24820 Greenville, OH Micro Area   

24900 Greenwood, MS Micro Area   

25760 Helena-West Helena, AR Micro Area   

25820 Hereford, TX Micro Area   

26340 Houghton, MI Micro Area   

26700 Huron, SD Micro Area   

26860 Indiana, PA Micro Area   

26940 Indianola, MS Micro Area   

27420 Jamestown, ND Micro Area   

27460 Jamestown-Dunkirk-Fredonia, NY Micro Area   

27780 Johnstown, PA Metro Area   

28820 Kinston, NC Micro Area   

29020 Kokomo, IN Metro Area   

30620 Lima, OH Metro Area   

30660 Lincoln, IL Micro Area   

30900 Logansport, IN Micro Area   

31380 Macomb, IL Micro Area   

31820 Manitowoc, WI Micro Area   

31900 Mansfield, OH Metro Area   

31980 Marion, IN Micro Area   

32020 Marion, OH Micro Area   

32100 Marquette, MI Micro Area   

32260 Marshalltown, IA Micro Area   

32380 Mason City, IA Micro Area   



155 
 

Shrinking Regions in terms of Population (136 Obs.) Slow-growth Regions in terms of Total Income (42 Obs.) 

32740 Meadville, PA Micro Area   

33020 Mexico, MO Micro Area   

33060 Miami, OK Micro Area   

34020 Morgan City, LA Micro Area   

34620 Muncie, IN Metro Area   

35220 New Castle, IN Micro Area   

35260 New Castle, PA Micro Area   

35580 New Ulm, MN Micro Area   

35660 Niles-Benton Harbor, MI Metro Area   

36300 Ogdensburg-Massena, NY Micro Area   

36340 Oil City, PA Micro Area   

36460 Olean, NY Micro Area   

36860 Ottawa-Peru, IL Micro Area   

36900 Ottumwa, IA Micro Area   

37420 Pampa, TX Micro Area   

37620 Parkersburg-Vienna, WV Metro Area   

37660 Parsons, KS Micro Area   

37780 Pecos, TX Micro Area   

38220 Pine Bluff, AR Metro Area   

38300 Pittsburgh, PA Metro Area   

38340 Pittsfield, MA Metro Area   

38380 Plainview, TX Micro Area   

38620 Ponca City, OK Micro Area   

38700 Pontiac, IL Micro Area   

39060 Pottsville, PA Micro Area   

39500 Quincy, IL-MO Micro Area   

39980 Richmond, IN Micro Area   

40260 Roanoke Rapids, NC Micro Area   

40980 Saginaw, MI Metro Area   

41400 Salem, OH Micro Area   

41780 Sandusky, OH Micro Area   

42380 Sayre, PA Micro Area   

42540 Scranton--Wilkes-Barre--Hazleton, PA Metro Area   

42820 Selma, AL Micro Area   

43660 Snyder, TX Micro Area   

43740 Somerset, PA Micro Area   

43980 Spencer, IA Micro Area   

44220 Springfield, OH Metro Area   

44580 Sterling, IL Micro Area   

44980 Sunbury, PA Micro Area   

45020 Sweetwater, TX Micro Area   
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Shrinking Regions in terms of Population (136 Obs.) Slow-growth Regions in terms of Total Income (42 Obs.) 

45380 Taylorville, IL Micro Area   

45460 Terre Haute, IN Metro Area   

45660 Tiffin, OH Micro Area   

45780 Toledo, OH Metro Area   

46460 Union City, TN-KY Micro Area   

46540 Utica-Rome, NY Metro Area   

46740 Valley, AL Micro Area   

46980 Vicksburg, MS Micro Area   

47340 Wabash, IN Micro Area   

47420 Wahpeton, ND-MN Micro Area   

47620 Warren, PA Micro Area   

47940 Waterloo-Cedar Falls, IA Metro Area   

48260 Weirton-Steubenville, WV-OH Metro Area   

48540 Wheeling, WV-OH Metro Area   

48700 Williamsport, PA Metro Area   

49660 Youngstown-Warren-Boardman, OH-PA Metro Area 
  

Note: Overlapping regions are highlighted in the table. 
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