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SECURING ADVERSARIAL MACHINE LEARNING IN MEDICAL IMAGING 

APPLICATIONS 

GAURANG M PATEL 

ABSTRACT 

 Deep learning has revolutionized several fields including the medical image 

processing in the past decade. Convolutional Neural Networks can now perform many 

image processing tasks better than humans. As a result, Convolution Neural Networks 

(CNNs) are increasingly used in the automation of diagnosis of life-threatening diseases. 

CNNs perform complex image classification tasks with greater accuracy and output 

quality. However, recent discovery of adversarial attacks raises a significant threat against 

safety and accuracy of the CNNs. CNNs are vulnerable to perturbations in the input image 

that are imperceptible to human eyes, which leads to misclassification of the model output. 

This research work proposes a novel Super Resolution Generative Adversarial Network-

based approach to improve classification robustness of CNN against adversarial attacks 

using MRI dataset as an example. Robustness of proposed novel network model is 

compared with existing state of the art models in the field. The experiment results 

demonstrate that proposed approach improves CNN model robustness by 95% against 

adversarial attacks when compared to state-of-the-art approaches such as context-aware-

models and conventional CNN.  
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that includes 

algorithms which build a model based on sample input data and then this model will be 

used to predict the output using unseen test data. ML lifecycle has three stages: training, 

evaluation, and deployment. First stage is training where ML model learn from the training 

data. In the evaluation stage, model is evaluated for its performance on a never-before-seen 

test dataset. If performance satisfies the requirement, model is deployed for the real life 

usage.  

ML includes various learning algorithms such as linear regression, logistic 

regression, support vector machine, decision tree, deep learning etc. Out of these 

algorithms, Deep Learning (DL) has gained popularity in past decade thanks to the state-

of-the-art performance and availability of affordable GPUs. DL has been applied to many 

complex problems such as financial market prediction [1], image generation from text [2] 

and natural language processing [3]. At the heart of DL is the neural network (NN), a 

network made up of artificial neurons. Deep neural networks contain an input layer, one or 

more hidden layer and a final output layer (Figure 1). 
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Figure 1 A Neural Network 

 For Computer Vision tasks, Convolutional Neural Networks are state-of-the-art 

algorithms. CNNs are NNs with additional convolutional and pooling layers to help with 

feature extractions from images. CNNs have helped rapidly advance the fields such as self-

driving cars [4], handwritten character recognition [5] and image classification [6]. CNN 

architectures have evolved quickly with advances in capability of GPUs and network 

architectures, achieving human level performance in tasks such as image classification [7]. 

1.1 Machine Learning in Medical Image Processing 

Medical image processing is one of the areas where Deep Learning can help solve 

many problems which were previously unsolved or were not scalable due to complexities. 

Scalability of neural networks can help us deal with future shortage of healthcare 

professionals [8]. Once trained, neural networks-based ML systems can be deployed as 

many times as needed. In recent years, Deep Learning has been applied to many medical 

imaging problems such as diagnosis of cervical cancer [9], detection of diabetic retinopathy 

[10] and semantic segmentation of organs , risk for prostate cancer radiotherapy [11]. The 

research community has utilized CNNs on various types of cancers that can be diagnosed 
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from images. Many of the work in medical image processing use the neural networks 

trained on the natural images and train them further to work on medical image processing, 

which saves computing resources as well as time. These neural networks achieve human 

level accuracy even in medical image classification [12]. In 2018, FDA approved 

marketing of artificial intelligence (AI)-based device to detect diabetic retinopathy which 

can be used without the clinician [13]. 

Despite the wide range of applications of deep learning and state-of-the-art 

performance, it has been shown that these ML algorithms are susceptible to adversarial 

attacks. Various approaches are being proposed on how to create adversarial input range 

through simple gradient-based attacks [14] to complex and computation heavy attacks 

presented as optimization problems [15]. Various works have tried to justify existence of 

adversarial examples. Goodfellow et al. [14] use linearity hypothesis, Szegedy et al. [16] 

first explained it using non-linearity hypothesis while Tanay et al. [17] create adversarial 

examples using boundary tilting hypothesis. 

We discussed how deep learning can help revolutionize medical image processing. 

If we were to consider adversarial attacks, it becomes clear that they open door to new 

fraud and harm across healthcare industry. In fact, Ma et al. [18] show that it is easier to 

create adversarial inputs for the medical images than it is to create adversarial inputs for 

natural images. Adversarial attacks affect all areas of healthcare industry where deep 

learning is applied which include diagnose, treatment, insurance, billing and many more. 

Considering that US healthcare industry spending was $4.1 trillion in 2020 and is projected 

to reach $6.2 trillion in 2028 [19], it presents lucrative opportunities for bad actors. There 

have been many defenses proposed to deal with adversarial attacks, but no single solution 
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is effective against all attacks. Given that healthcare systems deal with human lives and are 

difficult to update, they need to be much more robust. This research work aims to address 

the problem of adversarial attacks in medical imaging systems that use brain MRIs. 

1.2 Adversarial Machine Learning 

 This sections provides necessary background and vocabulary for the adversarial 

machine learning. Definition and categories of adversarial input as well as threat models 

based on adversarial attacks and adversarial goals are discussed below. 

1.2.1 Adversarial Input 

As per the definition of adversarial example in [20], let us consider the neural 

network to be a function 𝑓𝑓, which takes input 𝑥𝑥 and maps it to its label y, which we will 

denote as 𝑓𝑓(𝑥𝑥)  =  𝑦𝑦. Adversarial input 𝑥𝑥′ can be created by adding perturbation ∆𝑥𝑥 to the 

original input 𝑥𝑥 such that 𝑥𝑥′ = 𝑥𝑥 +  ∆𝑥𝑥 and 𝑓𝑓(𝑥𝑥) ≠ 𝑓𝑓(𝑥𝑥′). Taxonomy of adversarial 

images can have three different axes: (i) perturbation scope, (ii) perturbation visibility and 

(iii) perturbation measurement.  

Perturbations can either be individually scoped or universally scoped. Individual 

scoped perturbations are more prevalent in research. Universally scoped perturbations are 

applied on all available data or a batch of data. Since universally scoped perturbations are 

image-agnostic, they make it easier to create adversarial input at scale. Perturbation 

visibility relates to the visibility of perturbations to humans and to deep learning models. 

Perturbation is measured using 𝐿𝐿𝑝𝑝 norms. In this experiment, we use p-norms 𝐿𝐿0 and 𝐿𝐿∞ 

to measure perturbation. 𝑝𝑝 norm can be defined as: 

                                                               𝐿𝐿𝑝𝑝 =  �∑ |𝑥𝑥 − 𝑥𝑥′|𝑝𝑝𝑝𝑝  (1) 

Here 𝑝𝑝 is the dimension used to measure the norm. 
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1.2.2 Threat models  

Threat models categorically define how vulnerabilities are exploited by attacker 

that affects the victim. This view of the system from the security perspective helps us in 

implementing defense against possible threats. Here we discuss threat models defined by 

[21] from the perspective of adversarial goals and attacker’s knowledge. 

1.2.2.1 Adversarial Goals 

Main intent of the adversarial attacks is to cause misclassification of the input with 

added perturbation. There are the adversarial goals that affect the functionality of deep 

learning systems: 

1. Confidence reduction: In this type of attack, perturbed input causes the neural 

network to reduce its confidence in predicted class compared to the legitimate 

input. 

2. Misclassification: Goal here is to change the prediction of the neural network 

to entirely different class. 

3. Targeted misclassification: In this type of attack, attacker wants to change the 

prediction of the model to a desired class. 

4. Source/Target misclassification: The attacker tries to create a perturbed image 

in such a way that the neural network changes its prediction from the fixed 

source class of input to the desired target class. 

It is important to mention that the difficulty of creating the desired perturbed image 

increase as we move from top to bottom on the above list. Hence, Source/Target 

misclassification is the most difficult to achieve. In this work, white box attacks aim for 

misclassification and black box attacks aim for targeted misclassification. 
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1.2.2.2 Adversarial knowledge/Adversarial Capabilities 

Complexity and effectiveness of the attack greatly depends on the knowledge an 

attacker has about the system. The attacks can be classified based on attacker’s knowledge 

of the system as shown below. 

White Box Attacks:  

In this category of attack, the attacker possesses knowledge about the entire or a 

part of the system, as defined below: 

1. Architecture and Training Data: When attacker has access to network 

architecture as well as training data, they can poison the training data and use 

knowledge of architecture to their advantage. Gradient-based attacks also fall 

into this category. 

2. Architecture: In this case, the attacker will generate synthetic training data and 

use that data with architecture knowledge to perform the attack. 

3. Training Data: If attackers only have access to training data, they can use 

predictions from original model and train a surrogate model. Adversarial 

attacks are transferable between different architecture of ML models which 

makes this and next type of attacks possible and easy. 

Black Box attacks:  

4. Oracle: When attacker has access to neither network architecture nor training 

data, system is treated as the Oracle and synthetic data is used to make 

prediction. This is a black box attack. Attacker can then train surrogate model 

and perform attack on that model. This attack is hardest among the list but if 
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attacker can create a surrogate model, they can take advantage of transferability 

property. 

1.3 Contributions 

Age detection from patient MRI is an important problem in medical image 

processing [22]. It can be helpful in determining person’s age when birth record is not 

available. CNNs can also predict chronological age of a person which helps in identifying 

deviations from healthy aging [23]. This work proposes a novel approach using a hybrid 

SRGAN and CNN model to predict age of a person from their brain MRI. This approach 

results in a system that is considerably more robust than existing systems. Adversarial 

attacks iteratively introduce minimal perturbations to the input image, which move 

prediction out of the original class boundary. Proposed approach makes use of SRGAN’s 

property of recovering original image from low resolution image to protect against 

adversarial attacks. While recovering high resolution image, SRGAN also learns original 

feature space of the data. This characteristic will help remove the effect of small 

perturbations on each iteration and the generated image will be much closer to original 

input. This results in a highly robust system that can protect against white box as well as 

black box attacks. Contributions of this work can be summarized below: 

• Proposed approach introduces a combination of SRGAN and CNN to predict age 

of the person from their brain MRI and evaluate their performance. 

• We Compare proposed SRGAN-CNN hybrid approach against robustness of 

different CNN architectures including state-of-the-art Context-aware model against 

adversarial examples using white box and black box adversarial attacks. 
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• We demonstrate that our novel approach of using SRGAN with CNN is more robust 

against adversarial attacks than existing approaches. 

1.4 Organization of The Thesis 

 The rest of the thesis is organized as follows: Section 2 discusses related research 

work and their limitations in the area of adversarial machine learning specifically in the 

medical image processing systems context. Section 3 states the research objective of this 

work. Section 4 explains the methodology of the experiment: datasets used, preprocessing 

of the input MRIs, network models used in the experiments, white box, and black box 

attacks. At the end of section 4, proposed new approach to protect from the adversarial 

machine learning attacks is discussed. Section 5 discusses results of the experiment and 

comparison between network models used in the experiment. Section 6 includes lessons 

learned during implementation of this experiment. In section 7 future work 

recommendations are discussed and finally Section 8 concludes this research work. 
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CHAPTER II 

LITERATURE REVIEW 

Unlike natural images, medical images have different modalities such as MRIs, X-

ray, and CT-scan. Each of these modalities are captured with different devices and have 

different formats. As a result, implementation of preprocessing steps, neural networks 

structures, adversarial attacks vary across modalities. In this section, some of the works 

published in the area of adversarial attacks and detection in medical imaging machine 

learning systems are discussed. This provides a context for current research environment 

as well as an idea of a wide range of applications of ML in medical imaging. Table 1 lists 

summary of related works that implement adversarial attacks, their detection and defense 

against the attacks. These works are discussed in section 2.1, 2.2 and 2.3. 

No. Study Models Attack 
Algorithm 

Work Type Image Modality, Work Type, 
Results and Datasets 

1 [24] SegNet, 
U-Net, 
DenseNet 

FGSM,  
DeepFool,  
SMA 

Adversarial 
attacks 
 

Image Modality: MRI 
Datasets: OASIS dataset 
Task: Brain segmentation  
Results:  

- Accuracy drops to 37% 
 

2 [25] U-Net Custom 
algorithm for 
universal 
perturbation 

Adversarial 
attacks 
 

Image Modality: MRI 
Datasets: MICCAI BraTS 2019 
Task: Brain segmentation 
Results:  

- Dice score drops to 0.31 
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3 [26] ResNet-50, 
U-Net 

FGSM, 
PGD, 
DeepFool, 
DAG, 
SMIA 

Adversarial 
attacks 
 

Image Modality: Fundoscopy, 
Endoscopy, CT-scan 
Datasets: Kaggle DR, APTOS-
2019, EAD 2019, Kaggle COVID-
19 CT scans 
Task: Diabetic retinopathy 
detection, Endoscopy artifact 
detection, Infected lung region 
segmentation  
Results:  

- SMIA attack is more 
successful in reducing 
accuracy compared to 
existing attacks 

4 [27] ResNet-50 PGD, 
Patch based 
attacks 

Adversarial 
attacks 
 

Image Modality: X-ray, 
Dermoscopy, Fundoscopy 
Datasets: Kaggle DR, ChestX-
ray14, ISIC 
Task: Diabetic retinopathy 
detection, Lung disease 
classification, Malignant 
melanoma detection  
Results:  

- Accuracy and AUROC 
drops significantly 

5 [18] ResNet-50 FGSM, 
BIM, 
PGD 

Adversarial 
attacks and 
detection 

Image Modality: X-ray, 
Dermoscopy, Fundoscopy 
Datasets: Kaggle DR, ChestX-
ray8, ISIC 
Task: Diabetic retinopathy 
detection, Lung disease 
classification, Malignant 
melanoma detection  
Results:  

- Accuracy drops to 0 
against attacks. 

- AUC score of 100% for 
detection 

6 [28] DenseNet-
121,  
ResNet- 50 

FGSM,  
BIM,  
PGD,  
MIM 

Adversarial 
attacks and 
detection 

Image Modality: X-ray 
Datasets: ChestX-ray14 
Task: Lung disease classification  
Results:  

- Attacks reduce F1 Score 
to 0.5 

- Detection helps recover 
F1 score to ~0.9 

7 [29] Cascaded 
CNN 

FGSM Adversarial 
attacks and 
defense 

Image Modality: MRI 
Datasets: MRBrainS18 dataset 
Task: MRI segmentation  
Results:  

- Defense improves the 
dice score to 83.12% 
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8 [30] FNAF U-
Net, 
FNAF I-
RIM 

FNAF Adversarial 
attacks and 
defense 

Image Modality: MRI 
Datasets: fastMRI knee dataset 
Task: MRI reconstruction  
Results:  

- Successful attack on 92% 
of the dataset 

- Reconstruction improved 
with adversarial training 
(defense) 

Table 1 Related Works in Adversarial ML in medical imaging systems 

2.1 Related works that implement Adversarial Attacks in Medical Imaging 

Applications 

Paschali et al. [24] propose a new approach which uses adversarial examples to 

measure robustness of the model. They argue that current techniques of model evaluation 

give more importance to over-fitting while not paying enough attention to model sensitivity 

to input variations. They craft adversarial attack against classification models (Inception 

V3 [6], Inception V4 [31] and MobileNet [32]) and segmentation models SegNet (SN) 

[33], U-Net (UN) [34] and DenseNet (DN) [35]. To show the effect of adversarial examples 

against classification models Fast Gradient Sign Method (FGSM) [14], DeepFool (DF) 

[36] and Saliency Map Attacks (SMA) [37] are used. For segmentation models, Dense 

Adversarial Generation (DAG) [38] method is used with incorrect segmentation mask to 

create adversarial samples. Results show that adversarial samples are consistently 

misclassified compared to samples perturbed with gaussian noise. Out of all the models 

tested for classification, Inception V4 was more robust against DF and SMA, Inception V3 

was more robust against FGSM. Segmentation experiments showed that DN was more 

robust against adversarial attacks as well as noise. The authors conclude that proposed 

approach accounts for generalizability as well as robustness of the models. 
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Cheng et al. [25] perform adversarial attacks on U-Net used for brain tumor 

segmentation. Brain segmentation models use all four modalities of the brain MRI images 

during training and hence adversarial samples are created for all modalities of brain MRI: 

T1, T2, FlAIR (Fluid-Attenuated Inversion Recovery), and contrast-enhanced T1. They 

use MICCAI BraTS 2019 dataset which provides MRIs from different MRI scanners and 

institutions. Adversarial noise is generated using two components: max norm vector (𝑣𝑣𝑣𝑣𝑣𝑣1) 

and 𝑙𝑙2 norm vector (𝑣𝑣𝑣𝑣𝑣𝑣2). These two vectors are generated randomly using gaussian 

distribution. Total perturbation can be controlled by two hyperparameters: 𝜖𝜖 and 𝑟𝑟𝑟𝑟𝑟𝑟. 

Perturbation is calculated using by below equation 1:  

                                  𝑝𝑝𝑣𝑣𝑟𝑟𝑝𝑝 =  𝜖𝜖 ∗  𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑣𝑣𝑣𝑣1) + 𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣2  (2) 

Their finding suggests that when the single modality of the dataset is attacked, rest 

of the modality help protect the network. If all modalities are attacked, performance of 

network reduces significantly.  

Qi et al. [26] propose a new adversarial attack method named Stabilized Medical 

Image Attack (SMIA). SMIA uses an objective function containing a deviation loss term 

and a stabilized loss term. Perturbations are generated iteratively by taking partial 

derivative of the objective function with respect to the input image. SMIA attack is 

implemented against ResNet-50 trained on fundus images for diabetic retinopathy 

detection and U-Net trained on CT scans of lungs to segment infected lung regions. 

Comparison between FGSM, PGD, DeepFool, DAG and SMIA shows that SMIA was 

successful in reducing accuracy of networks to their lowest. 

Finlayson et al [27] use a RestNet-50 model pretrained on ImageNet dataset. This 

model is then fine-tuned on medical imaging datasets resulting in one model for every task. 
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They implement human imperceptible white box and black box PGD and patch-based 

attack on the model. PGD is an iterative version of FGSM attack. Patch-based attack is 

implemented by finding a patch for the entire training dataset which makes the adversarial 

patch universal. White box version of the attacks is performed directly on the original 

model. Black box attacks are implemented by training a surrogate model, crafting 

adversarial inputs for the surrogate model, and then using the same adversarial inputs on 

the original model. This approach takes advantage of transferability property of the 

adversarial attacks discussed in section 1.2.2.2. The results show that for lung disease 

classification, white box PGD and white box patch-based attacks reduce accuracy of the 

model from 94.9% to 0%. Rest of the patch-based and PGD attacks also bring accuracy to 

< 15%. For Fundoscopy and Dermoscopy datasets, these attacks are successful in lowering 

accuracy and reducing AUROC to 0.  

2.2 Related works that detect Adversarial Attacks in Medical Imaging Applications 

Work presented in [18], aims to answer the question “Is crafting adversarial attacks 

on medical images is as easy as attacks on natural images?”. Their findings suggest that 

adversarial attacks are much more successful on medical images. They argue that this is 

due to complex biological structures present in medical images that result in high gradient 

regions. Also, neural networks designed for natural image processing are not suitable for 

medical images as they are overparameterized. Fine-tuned ResNet-50 model is used for the 

tasks of diabetic retinopathy detection, lung disease classification, malignant melanoma 

detection. Implemented attacks such as FGSM, BIM, PGD and CW reduce accuracy of the 

models close to 0 with very small perturbation value of 0.6/255. BIM and PGD attacks 

were successful in reducing accuracy and AUC to 0 against diabetic retinopathy detecting 
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model. For Dermoscopy model, accuracy reduces to <1 against the attacks. Results shows 

that FGSM is the least successful attack compared to other implemented attacks. They also 

argue that same complex biological structures present in medical images also help with 

detection of adversarial attacks. Methods such as Kernel Density (KD) and Local Intrinsic 

Dimensionality (LID) are used to detect adversarial attacks. Results of attack detection in 

medical images (99% AUC) is significantly better than detection in natural images (less 

than 80% AUC). 

Li et al. [28] introduce a novel detection strategy for adversarial images. They show 

that the small noise in adversarial examples is hard to detect with naked eyes, but it is 

amplified after multiple convolution-pooling layers of a CNN. Based on this observation, 

they add a detection module between final fully connected layer and output layer of the 

CNN. Universal multivariate Gaussian model (MGM) is used for detection. They compare 

their approach with Isolation Forest (ISO) and One-class SVM (OCSVM) methods. 

Performance of the method is evaluated using DenseNet-121 trained on chest X-ray 

dataset, against attacks such as FGSM, Basic Iterative Method (BIM) and Projected 

Gradient Descent (PGD). Proposed approach yields significant improvement in F1 score 

and AUROC values. White box attacks are implemented directly on DenseNet-121 model 

while black attacks make use of surrogate ResNet-50 model to craft attacks and transfer it 

to original DenseNet-121 model. 

2.3 Related works that defend against Adversarial Attacks in Medical Imaging 

Applications 

Ren et al. [29] implement the network model derived from Cascaded Anisotropic 

Convolutional Neural Network. This network is then appended with task reorganization 
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module and adversarial defense module. Adversarial samples are generated using FGSM 

attack. These adversarial samples are then used for adversarial training. Final model 

improves dice score to 83.12% compared to existing dice score of 81.95% for U-Net and 

81.88% for V-Net. 

Calivá et al. [30] perform adversarial attacks on reconstruction network that 

generates MRIs. This work uses Fast-MRI dataset consisting of training/validation split of 

973/199 volumes of knee MRI. They make use of fast negative features to perform 

adversarial attacks. Fast negative features are small perceptible features which are present 

in original images but disappear from the reconstructed images. This suggests that the 

network suffers from hallucination. False Negative Adversarial Features (FNAF) attack is 

used to find small features which are difficult for the network to reconstruct. This small 

abnormalities are then used in the adversarial training to make network robust and reduce 

its sensitivity to adversarial features. 

2.4 Limitations of Existing Works 

 Research works discussed in above section show that adversarial attacks present 

serious threat to medical image processing system. However, many of these works have 

obvious limitations. Ma et al. [18] , Finlayson et al. [27] and other use models that are 

pretrained on ImageNet dataset which is a natural images dataset. Fine tuning a model on 

medical image dataset does not represent the real world medical imaging system. For better 

understanding of the effect of adversarial attacks, neural networks entirely trained on 

medical images are needed. This issue is addressed in this research work, all of the models 

used are trained on 3D brain MRI from scratch. 
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 Some research works ([18], [24]) only implement white box attacks which assumes 

that attacker has some knowledge of the system. Adversarial attacks presented as black box 

attacks ([27] , [28]) are implemented by training a surrogate models making use of 

transferability property of the attacks. While possible in real world, it does not entirely 

cover all the possible black box attack threats. Black box attacks without surrogate models 

are still possible where attacker makes use of access to existing model’s prediction. We 

cover this scenario with Resource Efficient Decision-based (RED) attack [39].  

 Research works that implement defense against adversarial attacks ([29], [30]) 

make use of adversarial training as a defense. While promising, adversarial training has a 

strong coupling with the adversarial attack algorithm used to generate adversarial 

examples. This results in a model that is only robust against adversarial attacks used during 

training. Hence, this work proposes a defense solution that is independent of the adversarial 

attack algorithms. 
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CHAPTER III 

RESEARCH OBJECTIVE 

The main objective of this work is to demonstrate the effect of adversarial attacks 

on MRI processing systems and to propose a novel approach that delivers an MRI 

processing system that is more robust than existing state-of-the-art works. The effect of 

adversarial attacks on prediction of MRI processing systems is demonstrated by 

implementing white box attacks such as FGSM and 𝑙𝑙0 attack [40] as well as black box 

attacks such as RED attack [39]. We wanted to demonstrate that by generating perturbed 

inputs with very small amount of noise, prediction of these medical image processing 

systems can change from highly accurate to completely unreliable. 

To design a robust MRI processing system that protects against adversarial attacks, 

we combine SRGAN and CNN model. Our hypothesis is that SRGAN can be used to 

remove adversarial perturbation from the input. Making use of SRGAN’s ability of 

learning high frequency features and CNN’s ability of high accuracy predictions, we aim 

to remove small perturbation added to the original input by adversarial attacks and recover 

an MRI that is closest to the original input generated by SRGAN.
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CHAPTER IV 

METHODOLOGY 

Figure 1 shows step by step process of this research work. Preprocessing consists 

of brain MRI segmentation using Spatially Localized Atlas Network Tiles (SLANT) [41], 

which has two outputs, normalized brain MRI and anatomical features. Output of 

preprocessing is used to train CNN and Context Aware model proposed in [40] and the 

new proposed model which uses SRGAN [42] and CNN. After training, Gradient-based 𝑙𝑙0 

and 𝑙𝑙∞ adversarial attacks are performed on all three models and compare the deviation 

caused by these attacks. Hypothesis for  our novel approach is that SRGAN can be used to 

remove adversarial noise from the perturbed input. 

 

Figure 2 Methodology of the experiment 
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4.1 Dataset 

The MRI dataset has a total of 2395 T1-weighted brain MRIs from three datasets: 

Autism Brain Imaging Data Exchange I (ABIDE I) [43], Attention Deficit Hyperactivity 

Disorder (ADHD) 200 Sample [44], FCON1000 from ‘1000 Functional Connectomes’ 

Project [45]. These 2395 MRIs consist of 1102, 171, and 1122 MRIs from ABIDE I, 

ADHD 200 and FCON100 respectively. Subject age range vary from 7 to 85. After 

preprocessing with SLANT, each MRI has dimension of (172, 220, 156) and size of 

~14MB. Out of these, patient MRIs with age range of 8 to 30 are selected as it helps 

obtaining more balanced data. 

4.2 Preprocessing: Brain MRI Segmentation 

 MRI preprocessing aims to normalize each MRI in the dataset as well as obtain 

anatomical features from the image. Normalization is necessary as each patient’s brain size 

is different and MRIs have different resolution and orientation depending on the MRI 

scanner used. Anatomical features are used as an input to Context aware model. To obtain 

anatomical features, MRI segmentation is performed. There are various methods to 

perform segmentation on brain MRIs. They can be categorized in 1) Gray level features-

based methods, 2) Texture features-based methods, 3) Model-based segmentation and 4) 

Atlas-based segmentation. Atlas based segmentation methods can be further divided into 

Single Atlas Segmentation and Multi Atlas Segmentation (MAS). Out of these, atlas-based 

method is the latest and provides better accuracy. Figure 3 shows a typical multi atlas 

segmentation pipeline. Typical flow of MAS pipeline consists of acquiring multiple atlases 

segmented by human experts, registering target image to these atlas and solve label 

conflicts resulting from label estimation via label fusion. 
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Figure 3 Multi Atlas Segmentation (MAS) Pipeline 

There are many works involving multi atlas-based segmentation method, which use 

state-of-the-art CNNs to segment brain MRIs [46], [47]. In this work, SLANT [41] method 

is used for multi atlas-based segmentation. One of the limiting factor of traditional MAS 

methods is high computational cost. To reduce it SLANT limits the number of atlases used 

in registration. Deep learning algorithms implementing MAS use CNNs in place of label 

fusion, which eliminates the voting-based mechanism of fusion and uses learned features 

of CNNs instead.  

SLANT divides input brain MRI input into 8 (non-overlapping) or 27 (overlapping) 

3D tiles. Each tile is then trained on a separate CNN. This approach simplifies the tasks of 

each network and helps the network learn features of the small tile better compared to a 

single network. Since SLANT is dividing input into smaller parts, input image and its 

features need to be consistent, for this SLANT uses affine registration as a first step. Using 

Montreal Neurological Institute (MNI-305) template for affine registration, each brain 

MRI is transformed to dimension of (172, 220, 156). Atlases used in SLANT are manually 

labeled using brainCOLOR protocol, hence SLANT segments entire brain MRI into same 

133 labels used in the protocol. Figure 4 shows preprocessing pipeline using SLANT. For 

preprocessing, each 3D brain MRI is fed to slant singularity container 

(https://github.com/MASILab/SLANTbrainSeg). SLANT first applies affine 

normalization to brain MRI. This normalized MRI is used as an input to all three models 

used in this experiment. SLANT outputs anatomical features which are being used as an 

input to Context aware model in addition to normalized MRI.  

https://github.com/MASILab/SLANTbrainSeg
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Figure 4 Preprocessing pipeline using SLANT. 

4.3 Base Network Models 

This work aims to improve the robustness of medical imaging diagnostic process 

which uses DL models. However, before discussing the proposed approach, it is pertinent 

to understand the architecture of the DL models such as CNN, Context-aware model [40] 

that are used as a benchmark and SRGAN [42] model which is used as a submodule for 

the proposed approach. 

4.3.1 Convolutional Neural Network (CNN) 

CNN considered in this work has a standard structure shown in Figure 5. First 

module of network that processes visual features is made up of five layers of convolutional 

layers with increasing filters size that range from 8 to 128. Each convolutional layer is 

followed by max-pooling layer. After convolutional stage, there are two dense layers and 

one activation layer. ReLU is the activation function for hidden dense layers. 
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Figure 5 CNN Architecture 

4.3.2 Context Aware Model 

Context Aware model is a hybrid model which extends CNN shown in Figure 5. 

Context aware model has two branches, one to processes convolutional features which 

includes convolution layers from CNN and the other branch that processes anatomical 

features obtained by SLANT brain MRI segmentation discussed in section 4.2. 

Convolutional branch processes MRI features with same five convolutional layers as CNN 

and appends two sets of dropout layer, dense layer, and activation layer. Anatomical 

features branch only has activation layer. Both branches are concatenated using 

concatenate layer followed by one dropout layer and two more sets of dense and activation 

layer. Input of anatomical branch is normalized using min max scaler and standard scaler 

into value of -1 to 1. To match this magnitude, output of convolutional branch is also 

normalized to value of -1 to 1. Context Aware model architecture is shown in Figure 6. 
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Figure 6 Context Aware Model Architecture 

4.3.3 Super-Resolution Generative Adversarial Network (SRGAN) 

Problem of recovering high-frequency details from a low resolution image has been 

solved by SRGAN [48] and it is designed with residual blocks. It achieves photo realistic 

super resolution images. Residual blocks allow for deeper neural network that don’t suffer 

from the problem of exploding and vanishing gradients. For this research work, SRGAN 

proposed for brain MRIs [42] is used. The Generator includes 6 residual blocks. Each 

residual block is made up of convolutional layer, batch norm layer and ReLUs. Residual 

layers are followed by upsampling blocks and final convolution layer, that generates the 

high resolution image. Discriminator is made up of convolutional layers and dense layers. 

Figure 7 illustrates SRGAN architecture comprised of Generator and Discriminator. 
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Figure 7 SRGAN Architecture 

4.4 White Box Attacks 

Attacks implemented in this experiment are gradient-based attacks based on fast 

gradient sign method (FGSM) attack proposed in [14], [49] and its modification presented 

in [40]. 

4.4.1 FGSM/𝒍𝒍∞ Attack 

FGSM attack exploits linear behavior of neural networks in high-dimensional 

spaces to create the adversarial image. Intuition behind FGSM attack can be explained by 

a digital image that uses 8 bits per pixels. This image will discard any information that can 

be represented only using  more than 8 bits. Similarly, FGSM attack aims to change the 

image by a magnitude that is big enough for neural network to change prediction but not 

enough for human eyes. Consider neural network as a function 𝐹𝐹, which take can input 𝑥𝑥 

and maps it to output 𝑦𝑦. The sign of the gradient of 𝐹𝐹(𝑥𝑥) can be used to create the 

adversarial input 𝑥𝑥′ as, 

                                                       𝑥𝑥′ = 𝑥𝑥 +  𝜖𝜖 ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇�𝐹𝐹(𝑥𝑥)�) (3) 
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where ∇�𝐹𝐹(𝑥𝑥)� is gradient of 𝐹𝐹(𝑥𝑥) with respect to 𝑥𝑥 and 𝜖𝜖 is 𝑙𝑙∞ distance or noise multiplier. 

Algorithm to implement the 𝑙𝑙∞ attack is illustrated in Algorithm 1. 

Algorithm 1 FGSM/𝑙𝑙∞ attack 
input: model 𝐹𝐹, array of 𝑙𝑙∞ distances 𝐸𝐸, legitimate image 𝑥𝑥 
output: adversarial input 𝑥𝑥′ 
𝑦𝑦 =  𝐹𝐹(𝑥𝑥) 
for 𝜖𝜖 in 𝐸𝐸 do 

𝑟𝑟𝑠𝑠𝑟𝑟𝑣𝑣𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�∇(𝐹𝐹(𝑥𝑥),𝑦𝑦)� 
𝑝𝑝𝑣𝑣𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 = 𝑣𝑣𝑙𝑙𝑠𝑠𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚,max)(𝜖𝜖 ∗ 𝑟𝑟𝑠𝑠𝑟𝑟𝑣𝑣𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠) 

 𝑥𝑥′ = 𝑥𝑥 + 𝑝𝑝𝑣𝑣𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 
end for 
 

4.4.2 𝒍𝒍𝟎𝟎 Attack 

The 𝑙𝑙0 attack aims to achieve maximum deviation in prediction by changing the 

minimum number of pixels. For each iteration, the pixel in the input image with maximum 

gradient value is changed. This perturbed image is checked for its prediction. If the changed 

pixel causes deviation, that change is kept otherwise that pixel is restored to its original 

value. To determine, which pixel to change is determined using the gradient of input image 

with respect to output. Pixel with highest gradient value is changed to its maximum value 

and the tested for prediction. This makes 𝑙𝑙0 attack highly efficient causing high deviation 

with fewer than 500 iterations. Algorithm to implement the 𝑙𝑙0 attack is shown in Algorithm 

2. 

Algorithm 2 𝑙𝑙0 attack 
input: model 𝐹𝐹, legitimate image 𝑥𝑥, upper bound of 𝑙𝑙0 distance 𝜖𝜖, range of possible pixel 
values 𝑉𝑉 =  [𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑚𝑚] 
output: adversarial input 𝑥𝑥′ 
𝑥𝑥′ = 𝑥𝑥 
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑠𝑠𝑝𝑝 =  ∇(𝐹𝐹(𝑥𝑥),𝑦𝑦) 
while 𝑠𝑠 <  𝜖𝜖 do 
 𝑝𝑝𝑑𝑑𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑠𝑠𝑎𝑎𝑟𝑟𝑥𝑥(|𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑠𝑠𝑝𝑝|) 
 for 𝑘𝑘 𝐢𝐢𝐢𝐢 𝑉𝑉 do 
  𝑥𝑥′[𝑝𝑝𝑑𝑑𝑠𝑠] = 𝑘𝑘 
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  if not 𝐹𝐹(𝑥𝑥′) > 𝐹𝐹(𝑥𝑥) then 
   𝑥𝑥′[𝑝𝑝𝑑𝑑𝑠𝑠] = 𝑥𝑥[𝑝𝑝𝑑𝑑𝑠𝑠] 
  end if 
 end for 
end while 
 

4.5 Black Box Attacks 

In most real life scenarios, the attacker does not have full knowledge of the model 

and its parameters. This makes black box attacks more realistic. Black box attacks treat 

model as the or- acle and only use predictions from the model to attack the system. In this 

work, robustness of all neural network models is tested against state-of-the-art black box 

attack - Resource Efficient Decision-based (RED) Attack [39].  

4.5.1 Resource Efficient Decision-based (RED) Attack 

 RED attack is a black box attack that is more efficient than existing black box 

attacks such as DeepFool [36]. In the original paper, RED attack was performed on CNN 

models trained on the CIFAR-10 and the GTSR datasets. This work aims to perform the 

same attack on the CNN, Context aware and SRGAN + CNN model trained on brain MRIs. 

This implementation of the attack aims to change prediction of all test dataset MRIs to 

maximum prediction value (age ~ 30) irrespective of their original value. 

RED attack relies on three hyperparameters: 

𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎: represents maximum allowed perturbation for each pixel while finding boundary 

estimated image. Typical value of 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 for an RGB image (pixel value ranges from 0 to 

255) is anywhere between 1 to 5. Normalized brain MRI pixels have magnitude range of 

approximately -4 to 17. Considering this, value of 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 is changed to 0.5 in this 

experiment. 
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𝒎𝒎: defines total number of pixels that are perturbed while generating new adversarial MRI 

(𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀) from boundary estimated MRI. Range of n for RGB image is from 5 to 50 for 

the image of 900 pixels. MRI is a 3D structure and has close to 2.7 million pixels. Hence 

value of n here is scaled to 10000. 

theta (𝜽𝜽): It is multiplied with maximum value of any pixel can have and represents the 

amount of noise that will be added to adversarial image during gradient estimation stage. 

Typical value of 𝜽𝜽 ranges from 0.0196 to 0.196. In current implementation, value of 𝜽𝜽 is 

0.196. 

 Each iteration of RED attack is performed using three algorithms: (i) Boundary 

Estimation, (ii) Gradient Estimation and (iii) Efficient Update. In the first step, boundary 

estimation (Algorithm 3) aims to perturb source image, such that it lies on the boundary of 

the source and target class prediction space distribution. 

Algorithm 3 RED Attack – Boundary Estimation 
input: age classifier model F, MRI from source class 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀,  MRI from target 
class 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, maximum allowed perturbation 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 
output: Adversarial MRI 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 
 
𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 +  𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀) / 2 
𝑘𝑘 = 𝐹𝐹(𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟 = 𝑎𝑎𝑟𝑟𝑥𝑥(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀) 
  
while (𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟 >  𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚) do 
 if 𝐹𝐹(𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀)  ≠ 𝑘𝑘 then 
  𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 
 else 
  𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 
 end if 
 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 +  𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀) / 2 
 𝑘𝑘 = 𝐹𝐹(𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀) 
 𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟 = max(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀) 
end while 
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Gradient estimation (Algorithm 4) takes boundary estimated MRI as an input and 

changes 𝑠𝑠 random pixels of the image to the maximum pixel value. After introducing 

random perturbation, the direction in which MRI has moved from boundary is checked. If 

direction is closer to source MRI, the direction of the change is reversed and vice versa. 

Algorithm 4 RED Attack – Gradient Estimation 
input: MRI from source class 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀,  MRI from target class 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, 
boundary estimated MRI 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀, number of pixels to perturb 𝑠𝑠, perturbation 
multiplication factor 𝑝𝑝ℎ𝑣𝑣𝑝𝑝𝑟𝑟 
output: perturbed MRI 𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀, gradient direction 𝑠𝑠 
 
𝑀𝑀0 = 𝑧𝑧𝑣𝑣𝑟𝑟𝑑𝑑𝑠𝑠 
Set n random pixels of 𝑀𝑀0 to their maximum value 
𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 + (𝑝𝑝ℎ𝑣𝑣𝑝𝑝𝑟𝑟 ∗ 𝑀𝑀0) 
𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓1 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 
𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓2 = 𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 
 
if (𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓2 >  𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓1) then 
 𝑠𝑠 =  1 
else if (𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓2 < 𝑟𝑟𝑠𝑠𝑓𝑓𝑓𝑓1) then 
 𝑠𝑠 =  −1 
else 
 𝑠𝑠 =  0 
end if 
 

Efficient update generates new adversarial MRI, inewMRI based on gradient 

direction g and jump size j. This newly generated MRI will be optimized for its 𝑙𝑙2 

distance from source MRI. Total number of update iterations are constrained by 

maxCount, after which boundary estimated MRI is considered as the adversarial MRI. 

Algorithm 5 RED Attack – Efficient Update 
input: MRI from source class 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀,  MRI from target class 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, 
boundary estimated MRI 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀, randomly perturbed image 𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀, gradient direction 𝑠𝑠, 
jump size 𝑗𝑗, maximum iterations max𝐶𝐶𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 
output: perturbed MRI 𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 
 
𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟 = 𝑠𝑠 ∗ (𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 + (𝑗𝑗 ∗ 𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟) 
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𝑟𝑟1 = �(𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 

𝑟𝑟2 = �(𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 
𝑣𝑣𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 = 0 
while 𝑟𝑟1 > 𝑟𝑟2 and 𝑣𝑣𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 <  𝑎𝑎𝑟𝑟𝑥𝑥𝐶𝐶𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 do 
 𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 + (𝑗𝑗 ∗ 𝑟𝑟𝑣𝑣𝑙𝑙𝑝𝑝𝑟𝑟) 
 𝑟𝑟1 = ∑(𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 
 𝑣𝑣𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 =  𝑣𝑣𝑑𝑑𝑝𝑝𝑠𝑠𝑝𝑝 +  1 

if 𝑟𝑟1 >  𝑟𝑟2 then 
  𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 
 end if 
end while 
 

Algorithm 6 describes how each step of the RED attack is used in a single iteration. 

First, we find an MRI that lies on boundary of source and target class distribution using 

boundary estimation described in Algorithm 3. Next, gradient estimation is done between 

boundary estimated MRI and randomly perturbed MRI (Algorithm 4). Efficient update step 

uses both MRI and returns, whichever is closest to source MRI. 𝑙𝑙2 norm of output MRI is 

compared with minimum norm MRI found till that iteration. If 𝑙𝑙2 has not decreased, we 

discard output of that iteration. The end result of the attack is an MRI that has minimum 𝑙𝑙2 

distance to MRI from the source class but CNN predicts it to target class. 

Algorithm 6 RED Attack – Iteration 
input: MRI from source class 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀,  MRI from target class 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀, 
maximum iterations maxIterations, age classifier model F 
output: perturbed MRI 𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 
 
𝑝𝑝𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 = boundary_estimation(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀)   // Algorithm 3 
𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑡𝑡𝑟𝑟𝑣𝑣𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 =  𝐹𝐹(𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 
𝑎𝑎𝑠𝑠𝑠𝑠𝑙𝑙2𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎 = �(𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 
while i < maxIterations do 
 𝑠𝑠𝑟𝑟, 𝑠𝑠𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 = gradient_estimation(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑝𝑝𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)  // Algorithm 4  

𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 = efficient_update(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑝𝑝𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑠𝑠𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑠𝑠𝑟𝑟) // Algorithm 5  
𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑡𝑡𝑟𝑟𝑣𝑣𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 =  𝐹𝐹(𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀) 
𝑣𝑣𝑝𝑝𝑙𝑙2𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎 = �(𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 
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if 𝑣𝑣𝑝𝑝𝑙𝑙2𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎 < 𝑎𝑎𝑠𝑠𝑠𝑠𝑙𝑙2𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎 then 
 if 𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟𝑙𝑙𝑡𝑡𝑟𝑟𝑣𝑣𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 ≠ 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑡𝑡𝑟𝑟𝑣𝑣𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 then 
  𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀 = boundary_estimation(𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀, 𝑝𝑝𝑟𝑟𝑟𝑟𝑠𝑠𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀) 
 end if 

  𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑣𝑣𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀s 
𝑎𝑎𝑠𝑠𝑠𝑠𝑙𝑙2𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎 = �(𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑠𝑠𝑑𝑑𝑝𝑝𝑟𝑟𝑣𝑣𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀)2 

 end if 
 i = i + 1 
end while 
 
4.6 Proposed Hybrid Architecture: SRGAN with CNN 

SRGAN excels at learning the mapping between low resolution image and high 

resolution image. This property of SRGAN is leveraged in proposed system of combined 

SRGAN and CNN to protect medical imaging system. SRGAN proposed in [42] is 

modified to work with brain MRI resolution of (172, 220, 156). Generator network in 

SRGAN is trained to generate high resolution image 𝑀𝑀𝐻𝐻𝐻𝐻 from low resolution image 𝑀𝑀𝐿𝐿𝐻𝐻. In 

the training phase generator learns the features of training dataset which only contains 

legitimate input MRIs that are compressed. When we feed adversarial input to the 

combination of SRGAN and CNN, first adversarial input is compressed, which remove 

certain degree of noise. Since SRGAN generator is only trained on legitimate input, it 

generates closest legitimate input from the adversarial input and removes large degree of 

adversarial perturbation. As output of SRGAN is closest to legitimate input, CNN 

prediction will also be very close to the legitimate input. Below are the details of 

implementation: 

4.6.1 Model Design 

To train SRGAN generator, normalized MRIs from SLANT output are used. Low 

resolution images 𝑀𝑀𝐿𝐿𝐻𝐻 are obtained by scaling MRIs by a factor of 1/2. Gaussian noise is 

added to 𝑀𝑀𝐿𝐿𝐻𝐻 in order to improve generator performance. Sub-pixel convolution 
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configuration of the generator network is used for upsampling. Each MRI is divided into 8 

patches while training to improve the efficiency and make training possible on a single 

GPU. Generator output is a high resolution image 𝑀𝑀𝐻𝐻𝐻𝐻 which has same resolution as the 

original image. Discriminator network is discarded after training. After training, entire 

dataset is evaluated on the generator network to obtain a new dataset made up of high 

resolution images. CNN model is trained using this dataset of high resolution images. 

Figure 8 shows flow diagram of our training process. 

 

 

Figure 8 Proposed Architecture: Medical imaging system using SRGAN and CNN 

4.6.2 Adversarial Attack Design for SRGAN+CNN Model 

As proposed system is using two separate modules SRGAN and CNN, adversarial 

attack on the system needs to consider both modules while creating adversarial input. All 

three attacks implemented here considers both modules in the implementation. White box 

attacks FGSM and  𝑙𝑙0 are implemented in two stages. In the first stage, adversarial input is 

created for SRGAN generator module. This adversarial input is saved as perturbed high 

resolution MRI 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 along with the gradient of generator module ∇𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹(𝑀𝑀𝐿𝐿𝐻𝐻), 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻).  

Second stage of the attack uses 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻 (output of the first stage) to create adversarial input 

for CNN. FGSM and 𝑙𝑙0 attack use gradient for attack direction as below, 
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              𝑟𝑟𝑠𝑠𝑟𝑟𝑣𝑣𝑣𝑣𝑝𝑝𝑠𝑠𝑑𝑑𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹(𝑀𝑀𝐿𝐿𝐻𝐻), 𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻) ∗  ∇𝐶𝐶𝑆𝑆𝑆𝑆(𝐹𝐹(𝑀𝑀𝑃𝑃𝐻𝐻𝐻𝐻), y) (4) 

Rest of the attack steps are similar to Algorithm 1 and Algorithm 2. RED attack 

follows similar approach where each MRI prediction is passed through SRGAN as well as 

CNN module. 
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CHAPTER V 

EXPERIMENTS AND RESULT 

This experiment was performed on MRI dataset with the age group of 8 to 30. Data 

distribution for age group 8 to 30 is shown in Figure 9 (a). It suggests that data distribution 

is skewed. Random oversampling was used to balance the dataset. Balanced dataset is 

displayed in Figure 9 (b). 

 

Figure 9 Training dataset distribution. a) unbalanced dataset b) balanced dataset 
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5.1 Model Training Results 

All three models were trained on same training dataset for accurate comparison. As 

ML algorithms are computation heavy algorithms, all models in this experiment were 

trained on  Ohio Supercomputer (OSC) [50]. CNN is trained with learning rate of 0.001 

and optimizer selected is Adam. Due to the large size of a single brain MRI, CNN is trained 

parallelly on two NVIDIA V100S 32GB using TensorFlow 2’s distributed 

MirroredStrategy. Large file size limits batch size to maximum of 24. Training took around 

12 hours for 65 epochs using training dataset that consists of 1255 MRIs. Context aware 

model is trained on pretrained CNN and anatomical features. This makes training time for 

Context aware model much shorter, which is 30 minutes for 65 epochs.  

 

Figure 10 Reconstruction of brain MRI using SRGAN 

For SRGAN implementation, SRGAN architecture presented in [42] was modified 

to fit normalized MRI resolution of the dataset. SRGAN is trained with batch size of 1 

MRI, which is divided into 8 patches. So, each epoch trains on 8 patches of a single MRI. 
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This helps in reducing the computation and memory requirement. As a result, SRGAN 

required only a single 32 GB NVIDIA V100s GPU. Training took approximately 8 hours 

for dataset of 275 MRIs. Input brain MRI is downscaled by the factor of 2 and SRGAN 

increases its resolution by 2 providing original image back. Average peak signal to noise 

ratio (PSNR) is 34.25 and PSNR variance is 3.56. SRGAN output is shown in Figure 10. 

After SRGAN training is finished, entire dataset is evaluated on SRGAN. The output of 

SRGAN is then used to train CNN. CNN training and configuration are kept similar to 

CNN discussed above.  

Performance of each model is measured in terms of Root Mean Square Error 

(RMSE) which is displayed in Table 2. Results show that prediction RMSE of hybrid 

SRGAN and CNN model is on a par with existing CNN and Context aware models. 

Model Prediction RMSE 
(Training) 

CNN 3.83 
Context Aware 3.71 
SRGAN + CNN 3.91 

Table 2 Training RMSE values 

5.2 White Box Attacks (𝒍𝒍∞ and 𝒍𝒍𝟎𝟎 attacks) 

 Robustness of the model against adversarial attacks is measured in terms of 

deviation (|𝐹𝐹(𝑥𝑥′) − 𝐹𝐹(𝑥𝑥)|). Noise levels are selected in such a way that they are 

imperceptible to human eyes. Similar to [40], FGSM/𝑙𝑙∞ attack was performed with six 𝑙𝑙∞ 

noise level: 0.0001, 0.0002, 0.0005, 0.001, 0.002, and 0.005. As per definition of 𝑙𝑙∞ norm, 

FGSM attack limits the maximum amount of noise added to the input MRI. 𝑙𝑙0 attack limits 

the number of pixels changed from their original value. Both attacks try to perturb input in 

such a way that predicted age is maximized. 
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Perturbation 
value 

(multiplication 
factor 𝜖𝜖) 

Prediction Error in various age groups (in years) 
CNN model Context Aware model SRGAN + CNN 

model 
<15 15-22 >22 <15 15-22 >22 <15 15-22 >22 

0.0001 24.79 25.99 24.32 11.57 14.78 15.41 0.08 0.09 0.09 
0.0002 40.16 42.35 39.28 19.70 24.62 25.45 0.16 0.19 0.19 
0.0005 64.62 67.92 63.02 33.58 41.78 42.88 0.39 0.47 0.48 
0.001 82.72 87.14 81.29 42.72 54.15 55.55 0.78 0.93 0.95 
0.002 98.05 104.18 97.62 46.84 60.30 62.57 1.53 1.85 1.90 
0.005 112.59 121.01 114.11 44.66 58.86 59.58 3.67 4.53 4.60 

Table 3 Deviation in prediction caused by FGSM attack 

Table 3 shows prediction deviation in various age groups caused by the FGSM 

attack in all network models. Results show that even the lowest noise value of 0.0001 

causes deviation of close to 25 years across all age groups in CNN. This level of error 

would make the system unreliable. With increased noise levels, performance of the system 

only gets worse reaching prediction error of more than 110 years across all age groups for 

noise level 0.005. Context aware model is more robust than CNN thanks to its use of 

anatomical features. For most age groups, prediction error in context aware model reduces 

by close to half, resulting in overall 44.6% less deviation across entire dataset. This is a 

significant improvement over CNN model, but average deviation is still at 13.92 for noise 

level of 0.0001 and 54.37 for noise level 0.005. System would still be unusable at this level. 

Proposed approach of hybrid SRGAN and CNN models improves considerably for CNN 

and Context aware model. Average deviation is 0.09 for noise level of 0.0001 and 4.27 for 

noise level of 0.005. This shows that SRGAN+CNN model is 99.68% and 99.42% more 

robust than CNN and Context aware model respectively for noise level of 0.0001. 

Similarly, for the noise level of 0.005, it is 96.74% and 93.24% more robust than CNN and 

Context aware model respectively. 

𝑙𝑙0 attack was implemented with range of 𝑙𝑙0 noise from 5 pixels to 25 pixels in 

increments of 5. Each MRI in the dataset has dimension of (172, 220, 156), which is 5.9 ∗
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106 pixels. Table 4 shows results of 𝑙𝑙0 attack on all three models. This shows effectiveness 

of the 𝑙𝑙0 attack, by only changing 5 pixels, we were able to add 2.51 years to the predicted 

age in CNN. Context aware is more robust against 𝑙𝑙0 attacks compared to CNN but only 

by 25% compared to 43.74% against FGSM. SRGAN+CNN renders 𝑙𝑙0 attack nearly 

ineffective for given noise values as show in Table 4. SRGAN+CNN model is 96.20% and 

94.91% more robust than CNN and Context aware model respectively. 

Table 3 and Table 4 show that prediction error increases with rising age. For FGSM 

attack, deviation increases with the age. Deviation pattern for 𝑙𝑙0 attack is random but is 

generally higher in ranges of 15 to 22 and >22. 

Perturbation 
value 

(number of 
pixels) 

Prediction Error in various age groups (in years) 
CNN model Context Aware model SRGAN + CNN model 

<15 15-22 >22 <15 15-22 >22 <15 15-22 >22 

5 2.65 2.77 2.12 1.14 2.08 2.42 0.16 0.12 0.12 
10 4.48 4.74 3.72 2.15 3.26 4.26 0.20 0.16 0.15 
15 6.12 6.55 6.54 3.28 4.66 5.61 0.25 0.21 0.19 
20 7.66 8.01 6.54 4.33 5.82 6.56 0.27 0.24 0.21 
25 9.03 9.47 7.76 5.31 7.51 7.78 0.30 0.27 0.25 

Table 4 Deviation in prediction caused by 𝑙𝑙0 attack 

Figure 11 shows average deviation caused by FGSM attack based on various noise 

levels in all models. It shows how SRGAN+CNN model significantly improves the 

robustness across all noise levels. For small noise levels such as 0.0001, 0.0002, and 

0.0005, FGSM attack is rendered ineffective against SRGAN+CNN, causing average 

deviation of 0.23 years. Even for the largest noise level 0.005, deviation in SRGAN+CNN 

model is 96.3% less than that of CNN and 92.1% less than the context aware model. 

Maximum average deviation in the proposed SRGAN+CNN model is 4.22, which is very 

close to prediction RMSE. Similarly, SRGAN+CNN is overall 95.87% more robust against 

𝑙𝑙0 attack. Maximum average deviation of the proposed hybrid SRGAN+CNN model is 
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0.27 years compared to 8.89 years in CNN and 6.73 years in context aware model. Results 

for 𝑙𝑙0 attack is shown in Figure 12 . 

 

Figure 11 Comparison between models - FGSM attack 

 

Figure 12 Comparison between models - 𝑙𝑙0 attack 
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5.3 Black Box Attacks – RED Attack 

 The 𝑙𝑙2 norm was used to measure the effectiveness of RED attack. These are the 

hyperparameter values used: 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5, 𝑠𝑠 = 10000, 𝜃𝜃 = 0.196. Values of 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜃𝜃 is 

same as the related state-of-the-art work [39]. Value of n is scaled to match with close to 6 

million pixels present in MRI compared to 900 pixel images of GTSR dataset used in the 

benchmark state-of-the-art work [39].  

 

Figure 13 RED attack - CNN model 

This implementation of RED attack aims to change the prediction of the source 

MRI to maximum age prediction present in the test dataset. RED attack was performed on 

CNN, Context Aware and SRGAN+CNN model for 1000 queries and results are presented 

in Figure 13, Figure 14 and Figure 15 RED attack - SRGAN+CNN model. Attack on 

Context aware model was performed without changing contextual features of the MRIs. 

For SRGAN+CNN model, each age prediction on MRI was done by first feeding MRI to 

SRGAN model and then feeding output of SRGAN model to CNN for age prediction. 
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Figure 14 RED attack – Context Aware model 

 

Figure 15 RED attack - SRGAN+CNN model 

Effectiveness of the RED attack is measured by 𝑙𝑙2 norm. It can be seen from the 

Figure 13(a) that as number of iterations increase, 𝑙𝑙2 norm of perturbed image decreases 
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for CNN. This suggests that MRI is moving closer to source image. While for Context 

aware model, as shown in Figure 13(b) and SRGAN+CNN model, as show in Figure 14, 

𝑙𝑙2 norm stays constant during the attack. This suggests both models are equally robust 

where RED attack fails to find an image that lies on the source/target boundary but is closer 

to source MRI.  
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CHAPTER VI 

LESSONS LEARNED 

During the implantation and experiments, many technical issues occurred. This 

sections discusses some of the issues and how they were solved.  

All the models and adversarial attacks in this work are implanted in Python using  

TensorFlow and Keras library. To train the network models, training and validation 

datasets needs to be divided into small chucks of respective batch size and then fed to 

neural network. Considering a single MRI is around 17 MB in size, dataset cannot fit in 

RAM during runtime. This meant that dataset has to be read from the disk for each batch. 

To fulfill this requirement, custom dataset generator was designed. During the training of 

CNN, batch size could not be increased more than 16 due to size of the MRI for a machine 

with single 32GB GPU. To address this issue, TensorFlow’s MirroredStrategy from the 

distribute module was used. This allowed increase of batch size up to 24. Batch size value 

of 24 also helped solve the problem of exploding and vanishing gradient that neural 

networks suffer from. 

Early implementations of the setup did not match the prediction RMSE of the 

related state-of-the-art work [40]. For this, entire setup had to be redesigned for  hyperpar- 
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meter optimization. Current implementation includes a JSON configuration file under each 

experiment folder where hyperparameters such as learning rate, batch size, oversampling, 

variable learning rate can be changed. Age range of patient was also made narrower and 

random oversampling was applied to meet the desired RMSE. 
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CHAPTER VII 

FUTURE WORK RECOMMENDATIONS 

Further research in network architectures and model inputs can help make MRI 

processing systems more robust. SRGAN and CNN architectures can be improved using 

newly proposed architectures in natural image processing. SRGAN model can also be 

combined with context aware model to make system more robust. In current 

implementation, CNN training was limited at the batch size of 24 due to GPU size and 

large size of each 3D MRI image. CNN architecture can be improved by increasing batch 

size with the help of more capable GPUs.  

SRGAN architecture [42] was also designed with GPU efficiency in mind, where 

each MRI was divided into 8 patches to training purposes. This can also be improved with 

more computation power and more GPU memory. Robustness of the system can be further 

tested on white box attacks such as Carlini-Wagner attack [15], JSMA attack [51] and black 

box attacks such as DeepFool [36].  

One of the main vulnerability of neural networks is transferability property, where 

perturbed image for one model would also fool another model implementing similar 

functionality. Transferability property can also be tested on new SRGAN+CNN model by 
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training a surrogate model. While performing FGSM, 𝑙𝑙0 and RED attack, anatomical 

features were kept constants for Context aware model due to high computational and time 

cost of obtaining the features for each MRIs. Obtaining new anatomical features after the 

MRI has been altered by the attack would provide more accurate robustness of the Context 

aware model. 
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CHAPTER VIII 

CONCLUSION 

This research aimed to test effectiveness of adversarial attacks against medical 

imaging systems using convolutional neural network and propose a new network 

architecture that protects against implemented attacks. 

Results show that despite rapid progress in network architectures, neural networks 

are still very susceptible to small perturbations. Attacks such as FGSM and 𝑙𝑙0 can change 

prediction of the models with perturbations that are imperceptible to human eyes. Black 

box attacks such as RED attack is very efficient at generating images that are closer to one 

class of image while keeping model prediction to entirely different class. 

The proposed novel SRGAN-based approach to improve the classification 

robustness of a CNN against adversarial attacks is very effective. To simulate real word 

threat models, white box as well as black box attacks were performed against all three 

models that we implemented. Results suggest that SRGAN is indeed successful in 

removing small perturbations from the MRI and moving it close to original image. 

Combination of SRGAN and CNN improves system robustness by more than 95% against 

white box attacks compared to existing CNN and Context aware architectures. For black-
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box attacks, SRGAN+CNN and Context aware model were equally more robust compared 

to regular CNN architecture. 
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