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ON TRAFFIC ANALYSIS OF 4G/LTE TRAFFIC

SEAN W. CALDWELL

ABSTRACT

In this thesis, we draw attention to the problem of cross-service attacks, that is,

attacks that exploit information collected about users from one service to launch an

attack on the same users on another service. With the increased deployment and use of

what fundamentally are integrated-services networks, such as 4G/LTE networks and

now 5G, we expect that cross-service attacks will become easier to stage and therefore

more prevalent. As running example to illustrate the effectiveness and the potential

impact of cross-service attacks we will use the problem of account association in

4G/LTE networks. Account association attacks aim at determining whether a target

mobile phone number is associated with a particular online account. In the case of

4G/LTE, the adversary launches the account association attacks by sending SMS

messages to the target phone number and analyzing patterns in traffic related to the

online account. We evaluate the proposed attacks in both a local 4G/LTE testbed

and a major commercial 4G/LTE network. Our extensive experiments show that the

proposed attacks can successfully identify account association with close-to-zero false

negative and false positive rates. Our experiments also illustrate that the proposed

attacks can be launched in a way that the victim receives no indication of being under

attack.
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Chapter I

Introduction

In this paper, we study the problem of cross-service attacks, that is, attacks that

exploit information collected about users from one service to launch an attack on

the same users on another service. With the increased deployment and use of what

fundamentally are integrated-services networks, such as 4G/LTE networks and now

5G, we expect that cross-service attacks will become easier to stage and therefore more

prevalent. As multiple services share the underlying infrastructure, for example SMS

and IP services on 4G/LTE, information gathered from one service on the network

can disclose information about users of other services.

As running example to illustrate the effectiveness and the potential impact of

cross-service attacks, we will use the problem of account association in 4G/LTE net-

works. The goal of account association is to determine whether a target mobile phone

number is associated with a particular online account for an IP-based service such as

Skype or Netflix. The demand for associating phone numbers with online accounts

may emerge in a variety of settings. For example,any smartphone applications and

services require users to provide their phone numbers during account registration.

If adversaries are able to associate service accounts with their registered telephone

numbers, they may be able to compromise the privacy of the application and that of

their users. For example, an adversary may suspect a particular individual of anony-

mously broadcasting live videos through a smartphone application such as Periscope.
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The adversary can infer the identity of the Periscope account owner by associating

the account with the owner’s phone number. Similarly, this particular form of ac-

count association can be used by an online retailer to prevent purchases made from

unauthorized phones by detecting the association between the account in use and the

phone number authorized during account registration.

4G/LTE networks are particularly susceptible to the type of cross-service attacks

addressed in this paper because all the services provided by 4G/LTE are relying on

the same IP-based communication channels. This includes services that one does

not traditionally think of as IP based, such as voice calls and SMS messages, and

services that are generally built on IP, such as high-definition mobile video, mobile

augmented or virtual reality, mobile cloud computing, and video conferencing. We

will see that the requirement for 4G/LTE to in many cases provide low-delay and

high-bandwidth services generally renders cross-service attacks particularly effective.

The opportunities for this type of attack will grow as well. In January 2017, the

Global Mobile Suppliers Association (GSA) reported that there were 581 LTE or

LTE-Advanced networks across 186 countries [1], and in December 2018 the GSA

reported that there were 3.99 billion LTE subscribers world-wide [2]. Given the

popularity of 4G/LTE and 5G, such attacks will likely become quite prevalent and

impactful.

We will therefore study a class of account association attacks specifically designed

for the 4G/LTE networks. An adversary launches the attacks by sending SMS mes-

sages to the target phone number and by analyzing the traffic related to the account.

If the analysis can find traffic patterns corresponding to the SMS messages, the attack

assumes that the target phone number is associated with the account.

We performed a number of attacks within a local 4G/LTE testbed. The exper-

iment results were very encouraging, indicating that the proposed attacks can suc-

cessfully identify account associations with negligible false-positive and false-negative
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rates. Our local experiments also show that the attacks can be “silent” to the victim,

meaning that the victim receives no indication that it is the target of an account asso-

ciation attack. These “silent” attacks are possible because existing smartphones have

no abilities to process messages in some specific formats, such as CPIM [3]. We will

show that although the victim does not know that a “silent” attack is under way, the

proposed attacks can actually achieve better identification performance when CPIM

or similar message formats are being used compared to attacks with user-visible SMS

messages.

Our experiments show, however, that these attacks in their basic forms are not ef-

fective when deployed in a commercial 4G/LTE network. The main challenge comes

from the fact that the SMS service center and the uplink bandwidth are shared

among many service subscribers. The scheduling algorithm used in this sharing tend

to spread the SMS messages in order to prevent the batching of SMS messages to

any particular subscriber. This makes it hard for the attacker to find the correspon-

dence between the traffic patterns and SMS messages. To overcome this challenge,

we design a new class of account association attacks that is particularly well suited to

be deployed against commercial 4G/LTE networks. These new attacks leverage the

knowledge about how spreading and throttling is realized by network operators, and

take advantage of the spreading and throttling caused by the scheduling for identifi-

cation. We evaluate this new class of attacks using an extensive suite of experiments

over a major commercial 4G/LTE network. The results illustrate the effectiveness

of these attacks and show that we can identify account associations with very high

accuracy on large commercial 4G/LTE networks as well.

The success of the proposed account association attacks should encourage us re-

think the architecture of 4G/LTE networks and integrated-services architectures1 in

1We use the term “integrated services” loosely here, and we include architectures in general that
use the same underlying platform to provide a diverse set of services, much as 4G/LTE uses that
same IP-based communication channels to carry a diverse set of apparently unrelated services for
the user.
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general. As mobile-network providers transitioned from 3G to 4G/LTE networks

they also transitioned to a fully IP-based underlying platform. As a result, a highly

diverse set of services, including voice calls and SMS messages, are now provided over a

shared, IP-based network. Integrating these services over a shared IP-based platform

brings many advantages, such as better scalability and richness of features. It does

expose the services to attacks, primarily side-channel attacks, that span individual

services. As we will show, such attacks are particularly effective against services

that provide Quality-of-Service (QoS) guarantees, such as voice, video, and various

forms of augmented or virtual reality services. As a result, attention must be paid as

we transition to next-generation architectures for mobile network to the importance

preventing cross-service covert channel attacks, much as the attacks proposed in this

paper.

The remainder of this paper is organized as follows. Chapter II reviews back-

ground on the network architecture for 4G/LTE communications. The threat model

is described in Chapter III. Chapter IV presents details of the account association at-

tacks in our local 4G/LTE testbed and performance of the proposed attacks. Chapter

V presents details of the account association attacks in a major 4G/LTE network and

performance of the proposed attacks. We discuss countermeasures and experiments in

the major commercial 4G/LTE network in Chapter VI. Chapter VII reviews related

work on previous attacks on SMS and 4G/LTE networks and related work on traffic

analysis. We conclude the paper in Chapter VIII.
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Chapter II

Background

2.1 Network Architecture for 4G/LTE Communications

4G/LTE networks provide all their services over a flat, all-IP architecture. This is in

contrast to the hierarchical structures used in previous architectures, such as 2G and

3G. The flat, all-IP architecture of 4G/LTE enables constantly higher bandwidths

with significantly lower data-transfer delays than the architecture of previous 2G and

3G networks.

As show in Figure 1, a User Equipment (UE), such as a smartphone, connects

to a 4G/LTE network through one of the base stations, also called Evolved Node B

devices (eNodeBs). The eNodeB devices are elements of the Evolved Universal Ter-

restrial Radio Access Network (E-UTRAN), which is responsible for keeping the UEs

wirelessly connected and which is designed to help improve overall wireless connectiv-

ity. The eNodeBs are connected to the Evolved Packet Core (EPC), which provides

4G/LTE services to a subscribed UE.

The EPC consists of the following components: (1) The Mobile Management En-

tity (MME) is responsible for tracking the UE and for providing the initial connection

and authentication for the UE device. As the MME’s purpose is to maintain a con-

nection, it is responsible for most control-plane functions. Particularly important

for the proposed attacks is the MME’s role in activation and deactivation of bearers,

which uniquely identify traffic flows with specific Quality of Service (QoS) require-
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Figure 1: Architecture of 4G/LTE Mobile Networks

ments. We give more details on bearers in 4G/LTE networks in Figure 2. (2) the

Home Subscriber System (HSS) is a database that maintains user profiles and location

information. It acts as a source for name and address resolution. It is also responsible

for providing the appropriate authentication and authorization information required

for a UE to access the 4G/LTE network services. (3) The Serving Gateway (SGW)

is responsible for managing all IP packets that flow through the network. It is also

responsible for handling handovers whenever UEs move between eNodeBs. (4) The

Packet Data Network Gateway (PGW) is responsible for allocating IP addresses to

the UEs. It provides an interface towards the Internet and to the IP Multimedia

Subsystem (IMS). A PGW often implements a Policy and Charging Rule Function

(PCRF), which is responsible for determining in real-time whether a particular traffic

is to be allowed in the network. It also is responsible for tracking network usage

for billing purposes. Particularly related to the proposed attacks is PGW’s role in

setting up the appropriate bearers to establish the corresponding connections to IMS

services. We note that the EPC is – differently than in 2G/3G mobile networks – an

IP-only core network that supports packet-switching.
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2.2 Voice over LTE

The IP Multimedia Subsystem, or IMS, is the current designated solution for offering

multimedia services in 4G/LTE mobile networks. It shifts the voice communications

of mobile devices from the legacy circuit-switching technology to the IMS-based,

packet-switching design used in 4G/LTE. In comparison to 3G networks and even

Voice over IP (VoIP), voice-over-LTE (VoLTE) packets have smaller packet headers

and therefore save bandwidth [4].

A typical scenario of VoLTE communications is shown in Figure 2. A VoLTE-

capable phone is connected to the 4G/LTE network with two bearers. The default

bearer is established when a UE connects to a 4G/LTE network. It remains established

to provide the UE with always-on IP connectivity. The default bearer is typically

setup without any QoS requirements. It is primarily used for general IP traffic. A

dedicated bearer is used for VoLTE communications. It can be setup during the call

setup or when the UE is attached to 4G/LTE network. Since voice communications

are delay-sensitive, the dedicated bearers established for voice communications have

specific QoS requirements.

SMS is a store-and-forward service with a long history. In most current 4G/LTE

networks, the SMS service is based on IMS. Due to their demand for timeliness, SMS

7



packets are usually sent in a dedicated bearer with QoS requirements that are higher

than those of general IP packets. The IMS service utilizes the Session Initiation

Protocol (SIP) [5] to handle SMS delivery. A SIP session is maintained between the

phone’s SMS application and the IMS server. In turn, the IMS server is responsible

for bridging the SIP session and the SMS center. For compatibility with 2G/3G

networks and protocols, a 4G/LTE UE may also support circuit-switching fallback

[6] for SMS message delivery. In this paper we focus on the IMS-based SMS message

delivery.
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Chapter III

Threat Model

In the following, we assume that the adversary’s goal is to associate a target mobile

phone number with a particular user account of a given IP-based service. As intro-

duced in Section I, this approach can also be used for legitimate purposes, such as

to confirm whether an account is accessed from a registered phone number. Figure

3 shows the threat model. We assume that both the adversary’s and victim’s smart-

phones are connected to commercial 4G/LTE networks. To launch the attack, the

adversary is assumed to have the following capabilities:

1. The attacker can send SMS messages to the suspected phone number. Our ex-

periments show that if the adversary can choose a message format incompatible

with smartphones, for example CPIM [3, 7], the messages sent by the adversary

will not be shown on the victim’s phone. In other words, the victim will likely

not be aware of the messages that enable the adversary’s attack.

2. The adversary can collect traffic generated by the application associated with

the online account. We make no assumptions about whether the application

uses encryption or whether it pads the packets to show a fixed packet size. As

a result, the adversary has no access to either content of the victim’s commu-

nication or payload size.

3. We make no assumptions where the traffic is observed. The attacker can collect

the traffic anywhere along the path from the victim’s smartphone. Obviously,

9
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the closer to the victim’s phone the traffic is collected, the less interference the

collected traffic data show from other traffic in the network.

4. We assume that the traffic collected by the adversary is aggregated. There are

many reasons (the use of VPN is one of them) why the adversary cannot filter

the collected traffic to gain access to the traffic flow of interest. In other words,

the collected traffic includes not only the traffic generated by the application

of interest, but other traffic as well. We note that if the adversary has control

of the traffic destination, such as a Skype party in the call with the victim,

the adversary can separate the traffic generated by the application and so gain

access to the traffic of the flows of interest. In this case, the attack will of

course be more effective. For the sake of generality, we do not assume that the

adversary has control of the traffic destination. So the traffic collected by the

adversary is aggregated.

In the rest of this paper, we will be using Skype as an example for the IP-based

service. In this example attack, the adversary is suspecting that a given Skype name

10



is being used on a smartphone with a suspected phone number. Skype is a par-

ticularly attractive IP-based service for cross-service attacks because on one hand

it is susceptible to timing-based side-channel attacks because of its need to provide

quality-of-service. In the other hand, Skype prides itself to having a unique set of

features to protect privacy of Skype calls, such as strong encryption [8], proprietary

protocols [8], unknown codecs [9], dynamic path selection [10], and constant packet

rates [11].
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Chapter IV

Identifying Account Association on A Local Testbed

In this section, we present our investigation on account association in a local testbed

with 4G/LTE connectivity. We first introduce the setup of the local testbed. We then

describe an approach that an attacker can use to identify if a target phone number

is associated with a given user account for an IP service, in this case Skype. In the

following we will use the term “identification” to denote the process of identifying if

there is an association between a target phone number and a given user account. The

approach to identify whether an association exists is therefore called an identification

appraoch. At the end of this section we will present the performance of the described

identification approach.

4.1 Local Testbed

Figure 4 illustrates the setup of the local testbed. The testbed is built around the

Keysight LTE test solution, including an Agilent PXT E6621A LTE wireless commu-

nications test set, the E6966B IMS-SIP Network Emulator Software, and the N6061A

LTE Protocol Logging and Analysis application. The victim’s phone is connected to

the PXT E6621A through 4G/LTE connections. The VoLTE service, including the

SMS message service, is provided by the IMS server running the Keysight E6966B-

1FP IMS-SIP Server Emulator Software. The adversary sends SMS text messages

through the IMS client running Keysight E6966B-2FP IMS-SIP Client Emulator Soft-

12
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ware. The Skype call comes in through a campus network, and the adversary observes

Skype traffic originating at the victim’s phone by collecting traffic on the farthest hop

of the path of the Skype connection.

4.2 Identifying Account Association

4.2.1 Rationale

The identification of the account association is feasible because of the differences in

the bearers (and their QoS levels in particular) used to transport Skype packets vs.

SMS text messages. As described in Section II, SMS text messages are usually sent

in a bearer with higher Quality of Service (QoS) requirements such as the bearer

for VoLTE calls [12, 13, 14, 15] because of SMS’s close relationship to voice, while

usual IP packets including the Skype packets are sent in the default bearer, which

usually has lower QoS requirements [12, 13, 14, 15]. The adversary identifies the

account association by sending SMS text messages to the victim’s phone. Since the

13



SMS messages are sent with higher QoS, the traffic of other IP services with lower

QoS (Skype in our case) will be disturbed. The IP traffic will therefore display a

inter-packet-time pattern that has been caused by the SMS messages. The adversary

can therefore identify the account association by correlating the timing of the SMS

messages with the timing pattern of IP traffic (Skype in our case) generated by

victim’s phone.

Figure 5 shows an example of the effect on Skype traffic caused by the interfering

SMS messages. The graph shows the throughput of Skype traffic over time. In

this example, three bursts of SMS messages are generated. We observe that each

burst affects the rate of the Skype traffic. The results in this figure are obtained

from the testbed shown in Figure 4. The length of the sampling window for the

computation of the throughput curve is 2.5 seconds. These results illustrate the two

primary challenges with identification: (1) The Skype traffic throughput fluctuates

over time, and some decreases in the throughput curve may not be caused by the

interfering bursts of SMS messages. (2) The size of SMS message bursts may be

limited, and therefore may not be generating easily-detectable interference patterns.

For illustrative purposes, the results in Figure 5 use a large number of SMS messages

(425 messages) in each burst. Obviously, in real 4G/LTE networks it is not possible

to send such large a number of SMS text messages in a burst because the network

operators have limits in place on SMS message sending rates.

4.2.2 Identification Algorithm

To start the identification, the adversary sends a sequence of bursts with n messages

each. The adversary identifies the account association by detecting the pattern using

Algorithm 1. The algorithm can be divided into three steps: data extraction, cross

correlation, and decision, respectively. In the data extraction step, we first store the

number of SMS messages sent within each burst in the array blen. We then store the

14
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number of packets collected during the corresponding time slots at the data collection

point in array traf . We also randomly pick time slots that do not overlap with the

burst periods. The number of SMS messages sent during the randomly picked time

slots is zero and kept in array blen as well. Similarly, the number of packets collected

during the corresponding time slots is kept in array traf .

After the data extraction step, the values in array blen and array traf are cross-

correlated. As show in Figure 5, the SMS message bursts can cause decreases in the

rate of traffic sent from the victim’s smartphone. Therefore, if the pattern caused

by the SMS message bursts is detected, the two arrays will be highly negatively-

correlated. The Cross-Correlation function of two vectors A = [a1, a2, · · · , am] and

B = [b1, b2, · · · , bm] used in Algorithm 1 is defined as follows:

CrossCorrelation(A,B) =

m∑
i=1

(ai − ā)(bi − b̄)√
m∑
i=1

(ai − ā)2
√

m∑
i=1

(bi − b̄)2
(IV.1)

The pattern caused by the bursts of SMS messages may take some time to appear at

the data collection point. This is the case especially when the data collection point

15



input : n - number of SMS message bursts, lentraf - the length of traffic
collected at the data collection point, array blen with blen[i] denoting
the number of messages in the ith SMS message burst, blenavg -
average length of SMS message bursts, array bbegin with bbegin[i]
indicating the start time of the ith SMS message burst, array bend
with bend[i] indicating the end time of the ith SMS message burst,
bound - the bound on the delay between the sending time of a burst
of SMS messages and the arrival time of the corresponding pattern
observed at the data collection point, inc - step increase;

output: dec - Detection decision, 1 means detected, 0 means not;
// counting messages sent in each burst

shift← 0;
t← bend[1];
j ← 1;
while shift + bend[n] < lentraf do

for i← 1 to n do
traf [i] ← the number of packet arrivals at the data collection point
during [bbegin[i] + shift, bend[i] + shift];
// For simplification, we assume that the traffic collected

at the data collection point is long enough so that the

array traf and blen can be of the same length.

randomly pick one duration [trandom, trandom +blenavg] not overlapping
with SMS burst durations;
blen[n + i] ← the number of SMS messages in the duration
[trandom, trandom + blenavg] ;
traf [n + i] ← the number of packets in the duration [trandom +
shift, trandom + blenavg + shift] ;

end
corrval[j]← CrossCorrelation(blen[1..2n], traf [1..2n]);
j ← j + 1;
shift← shift + inc;

end
meancorr ← mean of array corrval;
stdcorr ← stand deviation of array corrval;

mincorr ← the minimum of corrval[1..d bound
inc
e] ;

// de denotes the ceiling function

dec← Decision(mincorr,meancorr, stdcorr);
Algorithm 1: Identification Algorithm for a Local Testbed
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Figure 6: An Example Correlation

is far (in number of hops) from the origin of the Skype call. The delay includes (1)

the delay between when the SMS messages are sent and when they are received by

the victim’s phone, (2) the delay between when the packets are sent by the victim’s

phone and when they are received at the data collection point. Because of this

delay, the algorithm cross-correlates SMS message bursts, i.e., the array blen, with

the delayed versions of traffic, possibly containing the pattern, i.e., the traf array. In

Algorithm 1, the delay is added through the variable shift, and shift is incremented

by inc seconds in each iteration. As a result, the traffic, which possibly contains the

pattern, is essentially shifted in each cross-correlation. In our experiments, we set inc

to be half the amount of time required to send out a burst.

Based on the cross-correlation results obtained in the previous step, the algorithm

calls the function Decision to determine whether the pattern is detected. Figure 6
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shows an example histogram of the cross-correlation results. We can observe from

the figure that the cross-correlation values are close to a normal distribution. We can

also observe that the cross-correlation value is very far away from the mean of the

normal distribution when the pattern is synchronized with the SMS message bursts.

The decision logic is therefore simple: If within the bound of the delay between SMS

message sending time and the arrival time of the corresponding pattern at the data

collection point, the cross-correlation between the SMS message bursts and the traffic

is less than the decision threshold, the algorithm declares the pattern to be found. In

other words, the account association is confirmed. We define the decision threshold

to be three standard deviations of the mean on the left side of the normal distribution

as shown in Figure 6. In our experiments, the bound is roughly 1 second because the

SMS message delay is around 0.3987 seconds and the packet delay between victim’s

phone and the data collection point is about 0.75 seconds. The bound is much smaller

than the length of SMS message bursts, which are about one and a half seconds long.

Function Decision(mincorr, meancorr, stdcorr):
input : mincorr - minimum correlation within the delay bound, meancorr

- mean of correlation, stdcorr - standard deviation of correlation;
output: dec - Detection decision, 1 means detected, 0 means not;
dec← 0;
if mincorr < meancorr − 3 ∗ stdcorr then

dec← 1
end
return dec;

Algorithm 2: Decision Function

4.3 Identification Performance

To evaluate the performance of the identification algorithm, we conducted experi-

ments in the local testbed shown in Figure 4. In these experiments, SMS messages

were sent in two different message formats: 3GPP2 [16] and CPIM [3, 7]. We choose

the 3GPP2 message format because of its popularity [7]. The CPIM message for-
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Figure 7: Identification Performance in A Local 4G/LTE Testbed

mat was chosen because CPIM messages are received but can not be displayed on

current smartphones such as the iPhone 6S Plus with iOS version 11.4 (15F79). We

verified the CPIM message delivery to iPhone and the confirmation from the iPhone

on CPIM message delivery through the N6061A LTE protocol logging and analysis

software in the testbed. In other words, the victim will receive no indication of the

attacks through SMS messages in the CPIM format because the messages will not be

shown on the victim’s phone at all. We evaluate the performance of the identification

algorithm using the following performance metrics: (1) false negative rate defined as

the percentage of tests that do not generate cross-correlation values below the deci-

sion threshold within the bound on the delay when SMS message bursts are sent to

the victim’s phone and (2) false positive rate defined as the percentage of tests that

generates cross-correlation values below the decision threshold when no SMS message

bursts are sent to the victim’s phone.

Figure 7 shows the identification performance for SMS messages sent in the CPIM

format and 3GPP2 format, respectively, for varying lengths of traffic observation. In

both experiments, each burst contains 20 SMS messages and the inter-burst time is
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Figure 8: Effect on Number of Messages per Burst

on average two seconds. We can observe from Figure 7 that for messages sent in the

CPIM format, both false positive rates and false negative rates are close to zero when

the length of traffic is above or equal to 10 minutes. As shown in Figure 7, the false

positive rates for 3GPP2 message format is close to zero and the false negative rate

can reach 9% when the length of traffic is 30 minutes. From Figure 7, we can also

observe the differences in identification performance for the two message formats. We

conjecture that the differences are caused by the handling of SMS messages sent in the

CPIM format in iOS. It seems to us that the handling of SMS messages in the CPIM

format is more resource-consuming and the phone can not interpret the messages

properly. So the phone can not display the messages in the CPIM format although

the messages are received by the phone. This allows the adversary to increase both

the level of stealth and of effectiveness of the attack.

Figure 8 shows the identification performance for different numbers of messages

per burst. (The length of traffic used in these experiments is 75 minutes.) In Fig-

ure 8a, both the false negative rate and the false positive rate are close to zero for

five, 10, and 20 messages per burst when the messages are sent in the CPIM format.

For experiments with messages sent in the 3GPP2 format, we observe the significant

20



2.0 4.0 6.0 8.0 10.0 12.0

Average Time Between Bursts (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

F
a
ls

e
 A

la
rm

 R
a
te

False Negative

False Positive

(a) CPIM

2 4 6 8 10 12

Average Time Between Bursts (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
a
ls

e
 A

la
rm

 R
a
te

False Negative

False Positive

(b) 3GPP2

Figure 9: Effect on Average Time Between Bursts

decrease in false negative rate when the number of messages per burst increases. The

trend indicates that more burstiness leads to better identification performance. In

the same set of experiments, the false positive rate remains close to zero when the

messages are sent in the 3GPP2 format.

Our next set of experiments focuses on the intervals between two successive bursts.

Based on the results from the previous set of experiments, we set the number of

message per burst to 20 in the remaining experiments presented in this section. From

Figure 9, we observe that the false-negative rates increase significantly when the

average amount of time between successive bursts increases. The results are consistent

with intuition: The identification performance degrades as the number of message

bursts decreases. We can also observe that the false-positive rates remain close to

zero for both message formats.

We design a set of experiments to investigate the effect of Inter-Message Time

(IMT) of messages within the same burst. Essentially, a smaller IMT means more

burstiness, and we expect that more burstiness increases identification performance.

This conjecture is verified in this set of experiments. Table 1 shows that both false-

negative rate and the false-positive rate improve as IMT decreases. We set IMT to

zero for all the remaining experiments presented in this section.
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Inter-
Message
Time
(ms)

False
Negative
Rate

False
Positive
Rate

0 0.0000 0.0008
50 0.1000 0.0015

(a) CPIM

Inter-
Message
Time
(ms)

False
Negative
Rate

False
Positive
Rate

0 0.0667 0.0003
50 0.1667 0.0017

(b) 3GPP2

Table 1
Inter-Message Time of Messages within a Burst

Character
Count

False
Negative
Rate

False
Positive
Rate

19 0.0000 0.0077
249 0.0000 0.0007

(a) CPIM

Character
Count

False
Negative
Rate

False
Positive
Rate

19 0.7500 0.0003
249 0.0667 0.0003

(b) 3GPP2

Table 2
Number of Characters Per Message

Table 2 shows the identification performance for messages sent with different num-

bers of characters inside of the SMS for both the CPIM and the 3GPP2 format. We

examined the collected traffic and found that packets containing messages of different

lengths are padded to the same length. The identification performance for the 3GPP2

format, especially the false-negative rate, of the 19 characters per message is worse

than that with 249 characters per message. However, the identification performance

on the CPIM format does not change significantly with the number of characters in

the message. These results indicate that messages in the CPIM format require more

compute resources in general than those in the 3GPP2 format, and longer messages

in both formats also require more computing resources. These differences result in

differences in identification performance.

In the previous experiments, the number of messages in each burst is fixed in each

experiment. We vary the number of messages sent in each burst in the next set of

experiments. Figure 10 shows the identification performance with different averages
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Load False Negative Rate False Positive Rate
10% 0.0000 0.0007
84% 0.3333 0.0006

Table 3
Effect of System Load on Identification Performance (Message Format: CPIM, Time

Between Bursts: 2 Seconds, Number of Message per Burst: 20)

of the number of messages in each burst. We observe from Figure 10 that the perfor-

mance improves with more average numbers of messages. The results are consistent

with results on fixed number of messages per burst as shown in Figure 8. The re-

sults indicate that in general more messages per burst lead to better identification

performance.

Finally, we conduct a set of experiments to investigate the identification perfor-

mance with different loads on the smartphone system. In the experiments, we evaluate

the load on a smartphone system as percentage of load on smartphone system RAM.

The load information is obtained from SYSMonitor, an iOS system monitoring appli-

cation [17]. Table 3 shows the identification performance for different levels of system

load. As shown in Table 3, the identification performance is better when the load

on a smartphone system is low. This is because the differences caused by the SMS

message bursts are more visible to the identification when the system load is low.
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Chapter V

Identifying Account Association in a Major Mobile Network

The experiments in the local testbed show the promising results as follows: (1) The

SMS message bursts sent to the victim’s phone can generate a pattern in the Skype

traffic from the victim’s phone and the pattern can be successfully detected with the

proposed algorithm. (2) The SMS messages sent in the CPIM format will not be

displayed on the victim’s phone. In other words, the victim receives no indication of

being attacked. Given the promising results, we proceed to investigate the account

association identification in a major mobile network. The following experiments were

conducted on one of the four major mobile networks in United States.

5.1 Experiment Setup

Figure 3 shows the experiment setup over a major mobile network in United States.

In this setup, adversary sends SMS message bursts through a LG V20 smartphone.

The victim’s phone is a Motorola Moto Z Play Droid smartphone. The specifications

of both phones are listed in Table 4. Both smartphones are connected to the major

mobile network through 4G/LTE connections. We disabled Wi-Fi capabilities on

both smartphones so that only 4G/LTE connections are used in the experiments.

The version of the Skype software running on the victim’s smartphone is 8.36.0.52.
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Model CPU Memory VoLTE
Support

Android
Version

Motorola Moto Z Play Droid Qualcomm®
Snapdragon™
625

3 GB Yes 7.1.1

LG V20 VS995 Qualcomm®
Snapdragon™
820 MSM8996

4 GB Yes 8.0.0

Table 4
Phone Specifications for Commercial 4G/LTE Network Testing

5.1.1 Challenges

The mechanisms put in place by service operators to address the practicalities of

operating messaging over commercial networks are expected to render the direct ap-

plication of the attack as described in Section IV ineffective. We expect that the major

challenges arise primarily from the need to protect network resources with the help of

scheduling and service throttling in two locations: (1) SMS service centers in mobile

networks are responsible for storing, forwarding, and delivering SMS messages [18].

SMS service centers are also responsible for maintaining the service operation, such

as message delivery reports to message senders. Since SMS service centers are shared

by many service subscribers, messages from different subscribers may get queued, and

their processing may need to be scheduled by the service center. The major mobile

networks also put limits on the message sending rates from their service subscribers

[19, 20, 21]. If subscribers exceed these limits, they find their message delivery rates to

be throttled by the service center. (2) The uplink bandwidth is shared among 4G/LTE

service subscribers, and scheduling protocols are used for resource control [22]. This

leads to queuing and delays. Figure 11 shows the delay between message sending

time at the adversary’s smartphone and corresponding message receiving time at the

victim’s smartphone. The delay in the commercial 4G/LTE network, as shown in Fig-

ure 11a, can vary from 0.2 seconds to about 350 seconds. Similar saw-tooth patterns
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Figure 11: Time Difference Between Sending and Receiving a Text Message

on packet round trip time are also observed in 4G/LTE networks and the saw-tooth

pattern is mainly caused by the scheduling protocols as described in [22]. Similarly,

the saw-tooth patterns in message delays observed in our experiments can be largely

explained by the scheduling in mobile networks. In our experiments, the periodicity

is much longer because the scheduling can also happen at the SMS message level.

The delay in the local testbed, as show in Figure 11b, only varies from about 6.43

seconds to about 6.55 seconds. The small variation in the SMS message delay is

largely because of the small number of smartphones that are connected to the local

4G/LTE network. Figure 12 demonstrates the presence of throttling: Initially, the

SMS burst messages are delivered in a burst of 20. As time progresses, the burst size

is controlled by the service center, reaching a steady-state of 10 messages per burst.

This throttling of the SMS message sending rate has been previously described in

[19, 20, 21]. As a result of the scheduling and throttling, the identification algorithm

presented in Section IV is largely ineffective in commercial 4G/LTE networks. The

main reason why the pattern caused by the SMS message bursts is not detectable in

large networks is that the scheduling and throttling of message delivery spread out

bursts of SMS messages and make them difficult to detect.
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Figure 12: Throttling in A Commercial 4G/LTE Network

5.2 Identification on a Major Mobile Network

Although the scheduling makes the identification algorithm described in Algorithm 1

largely ineffective, the adversary can still take advantage of the scheduling in com-

mercial 4G/LTE networks for the identification on account association. Figure 12

shows that the numbers of the messages actually received by the victim’s smartphone

and the number of messages sent from the adversary’s smartphone is actually 20 per

burst. In Figure 12, the decrease over time in the number of messages received shows

throttling on the SMS message sending rate as described in [19, 20, 21]

But we can also observe from both Figure 12 and Figure 11a that the scheduling

effect and the throttling effect are not happening at the very beginning of SMS mes-
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sage bursts. Instead, the spreading caused by the scheduling effect, as shown in Figure

11a, and the throttling effect will gradually take effect. These effects make sense from

the network operator’s point of view because network operators need some time to

detect the message bursts and then take actions on the SMS messages. Based on these

observations, we re-design our identification algorithm to detect the increase of burst

spreading, rather than the burst interference directly, such as done in Algorithm 1.

The resulting algorithm is described in Algorithm 31. This algorithm leverages infor-

mation about the scheduling in commercial 4G/LTE network and takes advantage of

the spreading and throttling caused by the scheduling for identification.

The major difference between the algorithm for the local testbed (Algorithm 1)

and the algorithm for the commercial 4G/LTE network (Algorithm 3) is the new

variable effduration in Algorithm 3. The variable effduration is the minimal length of

all the SMS message bursts in time. It is essentially the duration during which SMS

messages can possibly generate patterns that can be used for identification. SMS

messages sent in the same burst but beyond the duration effduration are too spread

out and cannot significantly contribute to the pattern generation.

The array blen in Algorithm 3 records the number of SMS messages sent during the

effective duration effduration. Essentially, blen indicates the degree of burstiness of each

SMS message burst. More burstiness can lead to more interference with Skype traffic,

and this in turn leads to more obvious patterns that can be used for the identification.

Similarly as for Algorithm 1, if the pattern is generated by the SMS message bursts,

the array blen and the array traf will be highly negatively correlated. So the Decision

function as presented in Algorithm 2 can detect the pattern in the same way it does

in Algorithm 1. We note that, in contrast to Algorithm 1, Algorithm 3 does not

need to identify intervals without burst interference in order to compute the cross

correlation. Instead, it relies on the later burst intervals, which have been spread

1Both the CrossCorrelation function and the Decision function used in Algorithm 3 are the same
as the corresponding functions used in Algorithm 1.

29



input : lenburst - the length of the SMS message burst traffic available for
detection, lentraf - the length of traffic collected at the data collec-
tion point, array bbegin with bbegin[i] indicating the beginning time
of the ith SMS message burst, array bend with bend[i] indicating the
ending time of the ith SMS message burst, bound - the bound on
the delay between the sending time of a burst of SMS messages and
the arrival time of the corresponding pattern observed at the data
collection point , inc - step increase;

output: dec - Detection decision, 1 means detected, 0 means not;
for i← 1 to the length of array bbegin do

bduration[i]← bend[i]− bbegin[i]
end
effduration ← minimum of the array bduration ;
t← bend(1) ;
i← 1;
while t < lenburst do

blen[i] ← the number of SMS messages sent during interval
[bbegin(i), bbegin(i) + effduration];
i← i + 1;
t← bend[i];

end
// counting number of effective messages sent in each burst

shift← 0;
t← bend[1];
j ← 1;
while shift + bend[n] < lentraf do

for i← 1 to n do
traf [i] ← the number of packet arrivals at the data collection point
during interval [bbegin[i] + shift, bbegin[i] + shift + effduration];
// For simplification, we assume that the traffic collected

at the data collection point is long enough so that the

array traf and blen can be of the same length.

end
corrval[j]← CrossCorrelation(blen[1..n], traf [1..n]);
j ← j + 1;
shift← shift + inc;

end
meancorr ← mean of array corrval;
stdcorr ← stand deviation of array corrval;

mincorr ← the minimum of corrval[1..d bound
inc
e] ;

// de denotes the ceiling function

dec← Decision(mincorr,meancorr, stdcorr);
Algorithm 3: Identification Algorithm for a Commercial 4G/LTE Network (The
Decision function is the same as shown in Figure 2.)
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Figure 13: Identification Performance in A Commercial 4G/LTE Network

enough by the network to lead to the negative correlation values needed to identify

burst interference.

5.3 Identification Performance

We evaluated the identification algorithm in Algorithm 3 with the same set of perfor-

mance metrics described in Section IV. Figure 13 shows the identification performance

when the number of messages per burst is 20 and the average time between message

bursts is two seconds. We can observe from Figure 13 that the false positive rate is

close to zero. The false negative rate can reach around 20% when the traffic length
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Figure 14: Effect on Number of Messages per Burst

is about 7.5 minutes long and the false negative rate can reach around 0% when the

traffic length is 10 minutes or longer.

Figure 14 shows false alarm rates for different number of messages per burst. Both

the false positive rate and the false negative rate can approach zero when the number

of messages per burst is 20. When the the number of messages per burst is 10, the

false negative rate is high because interference caused by the message bursts is not

strong enough. The false negative rate is also high when the number of message per

burst is 40. The high false negative rate is because of a large amount of message losses

due to the limit on the message rate. Figure 15 shows identification performance on

the average time between bursts. The length of traffic used in this set of experiments

is 60 minutes. Figure 15 shows that both the false positive rate and the false negative

rate will be close to zero when the average time between bursts is less than or equal

to 4 seconds. When the average time between bursts is 10 seconds, the false negative

rate is high mainly due to less amount of bursts to interfere with the Skype traffic.
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One interesting, and somewhat unexpected, finding from the experiments on the

commercial mobile network is related to the time between experiments: In this set of

experiments, we keep the length of the traces constant (at 75 minutes), as we do the

number of messages per burst (at 20) and the average time between two successive

bursts (4 seconds). We do, however, vary the time between experiments, that is, the

time after which we repeat the experiment. We notice that the performance of subse-

quent experiments is lower than that of the first experiment. This can be explained

because the service center has detected the sources of high-rate SMS message bursts

and is now throttling them.

Figure 16 shows that, as the time between two experiments increases, the identi-

fication performance actually improves. (We only display false-negative rates, since

false-positive rates are constantly close to zero, as shown in the other experiments.)

When the time between two successive experiments is longer than three hours, the

identification performance largely recovers. This indicates that the commercial mo-

bile network keeps track of their 4G/LTE service subscribers who send SMS messages

at too high a rate. Moreover, the results indicate that this information gets either

largely discarded or flushed after about three hours.
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Chapter VI

Discussion

6.1 Countermeasures

One of the major reasons behind the success of the proposed attacks is the assistance

from the mobile network operator: The throttling on the SMS message sending rate

actually helps the adversary in generating patterns for confirming the identification.

But it is challenging for a commercial 4G/LTE network to defeat the proposed attacks

for two reasons. First, the network needs to throttle SMS message sending bursts

based on a history and some throttling algorithm actually makes throttling decisions

based on weighted average of a sending history [23]. So the network needs some

time to take actions on message bursts from a phone. Second, SMS is a store and

forward service. A commercial mobile network usually has millions of subscribers.

For scalability, it is desired for the network to delivery SMS messages as soon as

possible. Because of the two reasons, it is better to implement countermeasures at

the phone side. The fundamental reason for the success of the proposed attacks

is at the phone side: (1) The phone prioritizes VoLTE packets, more specifically,

SMS packets in the proposed attacks over normal IP packets. The prioritization is

necessary for Quality of Service of VoLTE services. But the prioritization will also

enable the proposed attacks. (2) The SIP protocol used for transporting SMS packets

is a relatively resource-consuming protocol [24, 25]. (3) Smartphones are generally

resource-constrained devices mainly because of its small form factor. In our future

35



work, we plan to investigate approaches to mitigate the attacks and in the mean time

without significant degradation on QoS of VoLTE packets.
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Chapter VII

Related Work

7.1 Vulnerabilities of SMS and 4G/LTE

Traynor et al. [26] and Enck et al.[27] proposed Denial of Service (DoS) attacks using

SMS on a GSM (2G) network. The proposed attacks can be launched by sending

several SMS messages back-to-back in 2G networks. Since 2G and 3G networks were

never originally designed to handle SMS due to their architecture, such an attack

causes a complete denial of service to either the entire network or to the victim phone

if too many SMS messages are sent. It was additionally observed in [26] that SMS

messages could easily suppress voice communication services in 2G and 3G phones

because of how SMS was built into the 2G and 3G architectures. Traynor et al. [26]

and Enck et al.[27] provide recommended solutions to mitigate these DoS attacks,

which include the separation of IMS and control services. Current 4G/LTE networks

separate SMS and voice from the control plane to the data plane and bearers are used

for Quality of Service (QoS) of SMS messages and voice calls [12, 13, 14, 15].

Even without rooting a phone, malicious 4G/LTE users can still preform simple

attacks to a victim through SMS alone over 4G/LTE as described in [21]. Tu et

al. [21] found that despite the shift to 4G/LTE, SMS could be exploited through

malicious applications, send spoofed SMS messages, send unnecessary spam messages

to the IMS service, hijack accounts linked via SMS, make donations through one’s

bill by a rogue SMS-capable application signing up for an unauthorized donation,
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and signing up via a rogue SMS-capable application sending an SMS to initialize an

unauthorized service subscription.

Shaik et al. [28] studied how a rogue Evolved Node Base Station (eNodeB) can be

used to attack unsuspecting victims. With the right equipment and information, an

adversary can set up a fake eNodeB and collect information about the user, such as

the user’s location. The adversary would also have the option of denying certain users

certain network services. In particular, Shaik et al. [28] focused on how connecting

to a rogue eNodeB could easily leak user information, as well as provide information

about the area of coverage of other surrounding eNodeBs. Due to how IMS is set up

in an 4G/LTE network, our experiment could also be applied to a rogue eNodeB and

in essence be even more effective.

Kim et al. [25] focused on the exploits and vulnerabilities of IMS with a focus

on VoLTE. In particular, it was found that early VoLTE adaptations had several

security flaws. Some of these flaws included identification spoofing and potential free

data channels, which can lead to denial of service attacks and over-billing, especially

if a legitimate user has access to control the phone’s application processor.

IP Multimedia Subsystem (IMS) uses the physical downlink and uplink shared

channels to transmit its services. These channels are responsible for sharing downlink

and uplink resources in an 4G/LTE connection that are not control related, nor

Internet related. Lichtman et al. [29] researched on the different channels in 4G/LTE,

including the ones previously mentioned, and the the vulnerabilities of each channel.

They found by targeting certain signals and channels, an adversary could essentially

jam a network connection.

7.2 Remote Traffic Analysis

The attacks proposed in this paper are related to previous research on remote traffic

analysis, which aims at disclosing sensitive information through remote probing. Gong
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et al. [30] showed that traffic patterns leaked through side channels can be used to

recover important semantic information. In particular, Gong et al. found that they

could gather such information remotely by sending probes to relay critical network

timing information without requiring direct access to the connection itself.

Murdoch and Danezis [31] investigated how traffic analysis can also be used for de-

anonymizing the connections between two clients. Murdoch and Danezis used traffic

analysis to reveal the nodes that make up a Tor connection.

Kadloor et al. [32] studied how packet-based networks are vulnerable to remote

traffic analysis attacks, again by using timing probes. Such attacks would be mounted

in any scenario where a shared routing resource exists among users. They found that

a real-world attack successfully compromised the privacy of a user without requiring

significant resources in terms of access, memory, or computational power.
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Chapter VIII

Conclusion

In this paper we direct the attention to an emerging class of attacks that is enabled

by the increase deployment of platforms that run a variety of different services in

an integrated fashion. Such platforms enable attacks to leverage information on one

service to attack, or at least infer information about, users on another service. We call

these attacks “cross-service attacks”. We describe and evaluate an example of such an

attack, the account association attack in 4G/LTE networks. The goal of this attack

is to associate a target mobile phone number with a user account of an IP-based

service. In this example, the adversary launches the account association attack by

sending SMS messages to the target phone number and by analyzing patterns in traffic

related to the IP account. We evaluate the proposed attacks in both a local 4G/LTE

testbed and a major commercial 4G/LTE network. Our extensive experiments show

that the proposed attacks can successfully identify account association with both

false negative and false positive rates close to zero. Our experiments also indicate

that proposed attacks can be launched in a way that the victim receives no indication

of being under such an attack.
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APPENDIX

ACRONYMS

CSU Cleveland State University

LTE Long Term Evolution

4G Fourth Generation

SMS Short Message Service

QoS Quality-of-Service

SIP Session Initiation Protocol

IMS IP Multimedia Subsystem

UE User Equipment

E-UTRAN Evolved Universal

Terrestrial Radio Access Network

eNodeB Evolved Node Base Station

EPC Evolved Packet Core

VOIP Voice over IP

VoLTE Voice over LTE

MME Mobile Management Entity

HSS Home Subscriber System

SGW Serving Gateway

PGW Packet Data Gateway

PCRF Policy and Charging Rule

Function

CPIM Common Presence and Instant

Messaging

3GPP 3rd Generation Partnership

Project

GSA Global Mobile Supplier

Association

5G Fifth Generation

3GPP2 3rd Generation Partnership

Project Message Format 2

DoS Denial of Service
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