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A LOW-MEMORY SPECTRAL-CORRELATION ANALYZER FOR DIGITAL

QAM-SRRC WAVEFORMS

DYLAN JACOB GORMLEY

ABSTRACT

Cyclostationary signal processing (CSP) provides the ability to estimate received

waveforms’ statistical features blindly. Quadrature amplitude modulated (QAM)

waveforms, when filtered by the square-root-raised cosine (SRRC) pulse shape func-

tion, have cyclic features that CSP can exploit to detect waveform parameters such

as symbol rate (SR) and center frequency (CF). The estimation of these SR-CF pairs

enables a cognitive radio (CR) to perform spectrum sensing techniques such as spec-

trum sharing and interference mitigation. Here, we investigate a field-programmable

gate array (FPGA) application of a blind symbol rate-center frequency estimator.

First, this study provides a background on the theory behind the cyclic spectral

density function (CSD), spectral correlation analyzers (SCA), and spectrum sensing.

Following this is a discussion on the motivation for CubeSat spectrum sensing. An

SCA implementation for low-memory devices, such as FPGA-based CubeSat, is then

describes. The paper concludes by reporting the performance characteristics of the

newly developed streaming-based SCA.
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CHAPTER I

INTRODUCTION

Modulated radio-frequency (RF) communication signals exhibit probabilistic pa-

rameters that vary periodically with time. These statistical properties are known

as cyclostationarity. This thesis is interested in estimating the cycle frequencies of

second-order cyclostationary (SOC) signals. In this work, we perform temporal anal-

ysis using the cyclic autocorrelation function (CAF). Further, we perform spectral

analysis using the cyclic spectral density function (CSD) [1].

Some of the standard CSD estimation techniques are the frequency-smoothing

method (FSM), time-smoothing method (TSM), strip spectral correlation analyzer

(SSCA), and the fast Fourier transform (FFT) accumulation method (FAM) [1]. The

realization of a CSD estimator is called a spectral correlation analyzer (SCA) [1][2].

This paper investigates SCA techniques and evaluates their ability to be used with

severely resource-constrained platforms, such as cube satellites (CubeSats).

Terrestrial receivers have few constraints to consider with regard to size, weight,

and power (SWaP). High-SWaP systems such as multi-core central processing units

(CPU), graphics processing units (GPU), and large-cell-count field-programmable

gate arrays (FPGA) are deployed to perform complex digital signal processing (DSP)

routines.

For CubeSat cognitive radios (CR), however, resources are scarce. These CRs
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are tasked to collect data, process signals, receive commands, report status, pro-

cess overhead, and store data, among multiple other advanced functions. All of this

functionality must operate under severe SWaP constraints. Hence, the utilization

of low-SWaP devices such as low-cell-count FPGAs are deployed to meet these con-

straints.

In the current state-of-the-art, SCA algorithms utilize large amounts of block

random access memory (BRAM) due to the extensive use of the FFT. This paper

studies an SCA algorithm’s design with a low reliance on BRAM by processing in

the time domain. The low-BRAM design operates entirely on a sample-by-sample

(”streaming”) basis, thus significantly reducing the BRAM required. As a result of

the decreased need for BRAM, a streaming-based SCA can be deployed onto CubeSat

CRs.

Chapter II begins by reviewing the basic notation and concepts of stochastic

processes, also known as random signals. We then develop the intuition and math-

ematics behind cyclostationary signal processing (CSP). Following, we discuss the

challenges associated with calculating the power spectral density (PSD) of random

signals. PSD estimation techniques are discussed, followed by CSD estimation tech-

niques for cyclostationary signals. After this, we evaluate several SCAs and discuss

their appropriateness for our low-BRAM objective. Finally, we conclude with an

overview of a technique that leverages CSP to intelligently reused spectral bands,

known as spectrum sensing.

In Chapter III, we first provide commentary on the motivation for performing

spectrum sensing in space. Following, we discuss a set of assumptions necessary for

the design of our low-BRAM SCA. We model a previously studied SCA, which we

will refer to as the CAF - discrete Fourier transform (DFT) (CAF-DFT) algorithm,

in matrix laboratory (MATLAB) to validate its use on M-order quadrature amplitude

modulated waveforms (QAM) with square-root-raised-cosine (SRRC) pulse-shaping
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(M-QAM-SRRC). Due to CubeSat CR limitations, we simplify parts of the design

using a single-point estimator with little BRAM. We conclude this chapter with com-

prehensive look into the digital architecture for such a design, which we will refer to

as the streaming-SCA, due to its BRAM-reducing stream-based approach.

In Chapter IV, we perform a characterization of our newly created streaming-

SCA. Experiments will stress-test various parameters, including bit widths, symbol

rates, center frequencies, capture lengths, noise, and SRRC roll-offs. We conclude

this thesis in Chapter V with an overall summary and a discussion of opportunities

for future work.

3



CHAPTER II

BACKGROUND

In this chapter, we review the concept of a random signal. We then briefly discuss

the autocorrelation function (AF), followed by the CAF. After this, we describe the

challenges of PSD and CSD estimation. Finally, we conclude with an overview of a

technique that leverages CSP to reuse free spectral bands, known as spectrum sensing.

2.1 Cyclostationary Signal Processing

In this section, we summarize random signal notation and concepts as described

in W. A. Gardner’s book Introduction to Random Processes with Applications to

Signals and Systems [3]. We begin with the AF and then build on this groundwork

to introduce the concept of the CAF.

2.1.1 The Autocorrelation Function

We begin with a review of stochastic processes. For digital communications these

are typically referred to as random signals. The random signal X(t) is an infinite

collection of individual signals plus probability density functions (PDF). A member

of X(t) is the sample path or time-series, denoted as x(t). We will declare X(t) a

complex-valued random signal such that X(t) ∼ N (t;µX(t), σX(t)), where N is the

Gaussian PDF of the form:

4



p(d) =
1

σ
√

2π
e−

1
2

(
d−µ
σ

)2
(1)

Moreover, it has the shape shown in Figure 1.

Figure 1: Example of a Gaussian PDF. Here, Equation (1) is evaluated for 500 values
of d, with a mean of µ = 5, and a standard deviation of σ = 1.

We generally characterize a random signal by specifying all nth-order joint PDFs

for its values, known as probabilistic parameters. To properly define a signal’s prob-

abilistic parameters, we start with the expected value Ep{X(t)}. If X(t) is only a

function of time, we find that we can model the PDFs under a framework known as

fraction-of-time probability [1]. Assuming X(t) is modeled under the fraction-of-time

framework E{X(t)} is defined as

Ep{X(t)} = lim
T→∞

1

T

∫ T/2

−T/2
X(t, s)p(s)ds (2)

Using Equation (2), we can determine probabilistic functions, known as moments.

The first moment, defined as Ep{X(t)}, is known as the mean of X(t), denoted

µX(t). Assuming no skew, the mean is equivalent to the expected value for a Gaussian

5



random signal [3].

The second moment, defined as Ep{(X(t)−µX(t))2}, is known as the variance of

X(t), denoted σ2
X(t). The variance is commonly expressed as its square-root, known

as the standard deviation σX(t). The standard deviation is used to express the the

spread of values for X(t) [3].

The second joint moment of X(t) with itself is defined as Ep{X(t1)X∗(t2)} at

times (t1, t2), and is known as the AF, denoted RX(t1, t2). For WSS random signals,

the AF is expressed as RX(τ), where τ = t1− t2. Intuitively, variable τ is the amount

of time that t2 lags behind t1 and is thus typically referred to as the lag variable [3].

If X(t) exhibits time-invariance of its probabilistic parameter functions, then it is

said to be stationary. If all probability densities up to order n are time-invariant, the

process is said to be nth-order stationary. A process that is nth-order stationary for

all possible values of n is said to be strict-sense stationary. If only the mean function

and AF are time-invariant, the process is said to be 2nd-order stationary (SOS) or

wide-sense stationary (WSS) [1][3].

Let us further develop X(t) by assuming it is a WSS random signal. The WSS

AF of X(t) is defined as,

RX(t, τ) = lim
T→∞

1

T

∫ T/2

−T/2
X

(
t+

τ

2

)
X∗
(
t− τ

2

)
dt (3)

For a WSS AF, the mean function and standard deviation function values are the

same for all possible points in time [3], as illustrated in Figure 2.
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Figure 2: Example of a WSS Gaussian random signal. Here, we observe Equation (1)
for 100 points in time, with X(t) ∼ N (t;µX(t), σX(t)) and µx(t) = 0.1, σx(t) = 0.25
for all x(t).

Most real-world random signals– such as digital communications waveforms– are

not WSS. In this context, we will define waveform as any modulated signal. One

such digital waveform, known as QAM, transmits information by modulating the

amplitude and phase of two carrier signals creating what is known as symbols. The

number of combinations possible for a QAM waveform is defined by its modulation

order (M), denoted M-QAM. The simplest case of M-QAM is M = 2, where the

waveform alternates between two phases, 180◦ apart. The rate at which these symbols

alternate is known as the waveform’s symbol rate (SR), denoted Rs. The modulated

carrier frequency is known as the waveforms center frequency (CF), denoted fc. An

example of an arbitrary 2-QAM time series is shown in Figure 3.

7



Figure 3: Example of a 2-QAM waveform x(t). Here, we modulate 200 random bits,
followed by rectangular pulse-shaping of length 10. Our waveforms parameters are
Rs = 0.1MBd and fc = 0.05MHz.

An M-QAM waveform has the mathematical representation,

X(t) =
∞∑

k=−∞

akp(t− kT0 − t0)ej2πf0t+jθ0 (4)

where ak is the kth symbol, p(t) is the pulse-shaping filter (PSF), and f0 is the CF.

This definition also covers the general representation of phase-shift keying (PSK)

and pulse modulation (PM) waveforms. These M-QAM-SRRC waveforms are of

keen interest to communication systems that use link adaptation, such as DVB-S2,

WiMAX, HSDPA, and UMTS. Thus for this thesis, we will narrow the scope of our

investigation to the M-QAM-SRRC class of waveforms.

To conclude this section, Figure 4 plots RX(τ) versus τ as what is known as an

autocorellogram.
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Figure 4: Autocorrelogram of the example waveform x(t) shown in Figure 3. Here,
we evaluate Equation (3) for 31 evenly-spaced values of τ .

2.1.2 The Cyclic Autocorrelation Function

If the probabilistic parameters of X(t) vary periodically with time, X(t) is said

to exhibit cyclostationarity. If only the mean and autocorrelation vary periodically,

it is said to be SOC or wide-sense cyclostationary (WSC) [1][3]. The WSC CAF for

X(t) is defined as

R̃αX(τ) = lim
T→∞

1

T

∫ T/2

−T/2
RX(t, τ)e−j2παtdt (5)

Equation (5) can be thought of as the cross-correlation between the AF RX(t, τ)

and the periodic sinusoid e−j2παt, where α is called the cycle frequency parameter.

The expected value of a cyclostationary process is denoted as Eα{X(t)}. Further, cy-

cloergodicity is a random signal property that is used to relate E{X(t)} to Eα{X(t)}

when we wish to relate fraction-of-time probability to conventional random-process

ensemble probability [1]. These assumptions together create the cycloergodic WSC
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CAF of X(t). The equation for such a function is written as,

RαX(τ) = lim
T→∞

1

T

∫ T/2

−T/2
X

(
t+

τ

2

)
X∗
(
t− τ

2

)
e−j2παtdt (6)

Figure 5 plots the Equation (6) as what is known as the cyclic autocorrelogram.

Figure 5: Cyclic autocorrelogram of the waveform x(t) shown in Figure 3. Here, we
evaluate Equation (6) for 31 evenly-spaced values of τ and 6 evenly spaced values of
α.

Each of the (α, τ) peaks in Figure 5 is a cycle feature of X(t), telling us more

information than the AF can alone. We will build on this concept in the following

three sections to explain the significance of cyclic features.

2.2 Spectral Density

This section will continue to the summary of notation and concepts described in

[3]. We first review the periodogram, the challenges faced when estimating the PSD

from the periodogram, and a PSD estimation method known as frequency-smoothing.

Then we will build upon this work to develop the concept of the CSD.
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2.2.1 The Power Spectral Density Function

A rectangular pulse is defined as

Π(t) =


0, if |t| > 1

2

1, if |t| ≤ 1
2

(7)

The Fourier transform of Π(t) is denoted as Π̂(f). Since Π(t) is a finite-energy signal,

we can measure the distribution of the signal’s energy over frequency using Parseval’s

theorem:

ΨΠ(f) =
∣∣∣Π̂(f)

∣∣∣2 (8)

Figure 6: Example of an ESD plot. Here, we evaluate the the Fourier transform of the
finite-energy signal Π(t) for 150 time instances, resulting in the spectral components
expressed as ΨΠ.

Equation (8) is known as the energy spectral density (ESD) function [3].

Our QAM waveform X(t) is an random signal and as such does not meet the
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criterion to perform a Fourier transform, and therefore an ESD does not exist [3].

However, by time limiting X(t) with window size T , the periodogram of X(t) can be

expressed as:

PX(f) =
1

T

∣∣∣X̂T (t, f)
∣∣∣2 (9)

where the Fourier transform of X(t) is denoted as X̂(f). Equation (9) measures

the distribution of power over frequency. As a result of time-variance, PX(f) is an

extremely poor estimate with low signal-to-noise ratios [3]. Figure 7 illustrates the

periodogram of our 2-QAM signal from 3.

Figure 7: Periodogram of the waveform X(t) shown in Figure 3. Here, we perform
an FFT of length 128.

Notice that the periodogram is roughly centered at fc and roughly the width of

two times the RS, as expected. However, without previous knowledge, it would be

challenging to determine the true CF and SR. Thus, we must find a way to improve

upon the periodogram to determine our signal’s parameters accurately.

One of the techniques used to mitigate this erratic behavior is the FSM [1]. A
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rectangular smoothing window h(t) is applied to filter PX(f), which results in the

estimate:

SX(f) = h(t) ∗ PX(t, f) (10)

where ∗ is the convolution operator. The frequency-smoothed periodogram has much

higher determinism and more closely resembles the actual PSD. Notice in Figure 8

we can estimate the true CF with precision. Smoothing also helps us find the actual

SR, however smoothing also widens SX(f), creating difficulties in detecting the true

SR. Therefore, to maximize accuracy a minimal amount of smoothing should always

be applied.

Figure 8: PSD of the waveform x(t) shown in Figure 3. Here, we perform a 128-point
FFT of x(t) and a apply a smoothing window of length 8.

2.2.2 The Cyclic Spectral Density Function

In the previous subsection, we found that a random signal’s PSD is obtained by

applying Parseval’s theorem with some smoothing technique to force convergence.

13



Using this same concept, we can obtain what is known as the cyclic periodogram:

Pα
X(f) =

1

T
X̂T

(
f +

α

2

)
X̂∗T

(
f − α

2

)
(11)

where X̂∗ is the conjugate of X̂. Its corresponding CSD estimate expressed as:

SαX(f) = h(t) ∗ Pα
X(t, f) (12)

Equation (12) completely characterizes X(t) for all values of cycle frequency α and

frequency f [3]. The CSD estimate of X(t) is shown in Figure 9.

Figure 9: CSD of the waveform x(t) shown in Figure 3. Here, we perform a 128-point
FFT of Rαx(τ) and a apply a smoothing window of length 8.

For α = 0, the result is simply the PSD and is always expected to produce a

strong result. For α 6= 0, patterns can be exploited to reveal statistical features of

the received waveform.
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2.3 Spectral Correlation Analyzers

In this section, we move onto realizations of the CSD. The process of producing the

CSD of received waveform with no previous information is called blind estimation.

Realizations of a blind estimator are often called SCAs. First, we will discuss an

example of TSM-SCA as described by W. A. Gardner in his article, Cyclostationary:

Half a Century of Research [2]. This TSM-SCA is used to blindly estimate the CSD

of arbitrary (α, f) pairs.

We then discuss the case where the α we wish to estimate blindly is equal to SR

of interest. M. V. Koch describes an SCA technique to accomplish this in his techni-

cal report, Interference Mitigation Using Cyclic Autocorrelation and Multi-Objective

Optimization [4], which he refers to as the CAC-FFT algorithm. For consistency with

our definitions and notations, we will refer to the CAC-FFT as the CAF-DFT in this

thesis. Using the CAF-DFT, we can blindly estimate SR-CF pairs for M-QAM-SRRC

waveforms by letting α = Rs and f = fc.

2.3.1 Blind Cycle Frequency-Frequency Estimation

The most basic realization of the time-smoothed CSD is the TSM-SCA. Rewriting

Equation (12) as,

SαX(t, f)T =
1

T

∫ t+T/2

t−T/2
∆fX̂T

(
u, f +

α

2

)
X̂∗T

(
u, f − α

2

)
du (13)

We find that the TSM-SCA can decompose into simple multipliers, mixers, filters,

and accumulators. To establish a baseline implementation, the block diagram of the

TSM-SCA, based on Equation (13), is diagrammed in Figure 10 [2].
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Figure 10: As described by Gardner in [2], this baseline SCA is realized by frequency
shifting the signal x(t) by two amounts differing by α/2, passing such frequency-shifted
versions through two low-pass filters h∆f (t) with bandwidth ∆f and unity pass-band
height, and then correlating the output signals. The CSD SαX(f) is obtained by
normalizing the output by ∆f , and taking the limit as the correlation time T → ∞
and the bandwidth ∆f → 0.

While Figure 10 works for any arbitrary waveform and gives the blind CSD esti-

mate for any (α, f) pair, much of this search space is not helpful for most applications.

If we can intelligently limit this search space, we can significantly improve the utility

of the TSM-SCA.

2.3.2 Blind Symbol Rate - Center Frequency Point Estimation

Several common SCAs such as the FSM, TSM, SSCA, and FAM are discussed

in [1]. While these techniques provide speed, they are FFT dependent and therefore

memory dependent. Although high-memory allocation is acceptable for terrestrial

receivers, we must prioritize memory conservation for a CubeSat CR and explore

alternative SCA designs.

In [4], M. A. Koch proposed a modified realization of the SCA, which we will refer

to as the CAF-DFT algorithm. Koch reports that if we limit our random signal to only

M-QAM-SRRC waveforms, then the CSD peaks are always equal to the waveform’s

actual Rs and fc [4]. This is proven in [3] and will be summarized below. The discrete

AF of Equation (4) is expressed as:
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RX(t, τ) = σ2
∞∑

k=−∞

p(t+ τ − kT0)p∗(t− kT0) (14)

Because Equation (14) is periodic with T0, we can express the CAF as:

RαX(τ) =
σ2

T0
p(τ) ∗

(
p∗(−τ)ej2π

n/T0

)
(15)

And the CSD as:

SαX(f) =
σ2

T0
P (f)P ∗(f − n

T0
) (16)

Lastly, if P (f) is an SRRC PSF, then only α = −Rs, 0, Rs have non-zero cyclic

frequencies. Since α = 0 is the trivial case, and we do not wish to evaluate the

negative symbol rate α = Rs = −1, we are left with SRsX (f) as the only spectral

density with nonzero points. Evaluating the CSD slice of SRsX (f), we find that peak

is at exactly f = fc, perfectly matching the true (Rs, fc) of X(t). This finding is

illustrated in Figure 11.
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Figure 11: CSD of the waveform x(t) shown in Figure 3, with various values of M .
The PSD for α = 0 is the spectral density of the conventional AF, which will always
return a strong correlation. Barring this trivial case, we notice a strong correlation
for α = 0.1MBd, which is the same as atual Rs of x(t)’s. Additionally, the peak of
the PSD for α = 0.1MBd is equal to actual fc of x(t). Therefore, by finding the
nontrivial (α, f) peaks of the CSD for a M-QAM-SRRC waveform, we also find the
waveform’s actual (Rs, fc), even with no previous information.

The discrete CAF-DFT is written as,

SvX [k] =
1

N

N−1∑
n=0

|(X[n]e−j2πkn) ∗ h[n]|2e−j2πvn (17)

Where v = dRsfsNe+ 1, k = d fcfsNe+ 1, and n = t
T . The realization of Equation (17)

is shown in Figure 12 [4].
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Figure 12: This SCA is realized by frequency-shifting the waveform x[n] by various
candidate ks in parallel, passing each frequency-shifted version through a LPF h∆v[n]
with bandwidth ∆v and unity-passband height, in a process referred to as channel-
ization. The autocorrelation of the channelized signal is then performed at τ = 0,
which simplifies as the magnitude squared. The DFT of is then performed using a
kernel value of v. The CSD SvX [k] is obtained by normalizing the output by 1/N.

As shown in Figure 12, the CAC-DFT has a narrowed search space to estimate

only the SR-CF of M-QAM-SRRC waveforms. This assumption uses a constant value

of τ = 0, thus avoiding the need to be processed in the frequency domain. Therefore,

the CAC-DFT lends itself well to time-domain processing.

2.4 Spectrum Sensing

Spectrum sensing is the process of periodically monitoring a specific frequency

band to infer the presence or absence of users. Monitoring is typically performed by

a secondary user (SU) to reuse inactive frequencies allocated/licensed to a primary

user (PU) [5][6]. These allocated, inactive areas of a band are referred to as spectral

holes [5]. In this section, we discuss several detection techniques and the strengths of

CSP for spectrum sensing.
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Figure 13: Example of an RF spectrum over time. PUs occupy various bands accord-
ing to their allocation. However, they may not always need to utilize a band at every
moment in time. These gaps in the spectrum use are known as spectral holes. If a SU
can maintain awareness of active PUs, the SU can frequency hop between the holes
and dynamically change it is SR based on the current hole’s allotted bandwidth.

2.4.1 The Binary Hypothesis

Let us consider a SU that is monitoring a narrow RF band for the presence of a

PU. There are two hypotheses: H0, the PU is inactive and H1, the PU is active [6].

The received signal is written as,

H0 : Y (t) = η (18)

H1 : Y (t) = G(t) ∗X(t) + η (19)

where X(t) denotes the transmitted signal from the primary user, G(t) is the channel

response, and η is independent and identically distributed (IID) additive Gaussian

white noise (AWGN). According to the binary hypothesis problem, we know that
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either H0 or H1 is true. Our objective is to correctly choose H0 or H1, based on

the samples received [6]. For every observation we shall define the likelihood of four

possible outcomes:

1. Probability of Correct Rejection Pcr = P (H0|H0): H0 is true; choose H0.

2. Probability of Miss Pm = P (H0|H1): H1 is true; choose H0.

3. Probability of False Alarm Pfa= P (H1|H0): H0 is true; choose H1.

4. Probability of Detection Pd = P (H1|H1): H1 is true; choose H1.

Outcomes Pd and Pcr correspond to correct choices, while outcomes Pm and Pfa

correspond to erroneous choices. Each of these four probabilities have a corresponding

physical meaning in the context of spectrum sensing:

1. Pcr defines the likelihood that the SU will transmit.

2. Pm defines the likelihood that the SU will interfere with the PU.

3. Pfa defines the likelihood that the SU will miss an opportunity to transmit.

4. Pd defines the likelihood that the SU will not interfere with the PU.

In general, a detection method is said to be optimal if it achieves the lowest Pfa

for a given Pd. In many physical situations, it is not easy to know the probabilities

in advance. The Neyman-Pearson theorem [6][7] states that we can constrain Pfa to

maximize the probability of detection with a likelihood ratio defined as

Λ(Y (t)) =
PY |H1

(Y (t)|H1)

PY |H0
(Y (t)|H0)

(20)

We can compare Λ(Y (t)) to a threshold γ to form a likelihood ratio test [6][7] denoted

as
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Λ(Y (t))
H1

≷
H0

γ (21)

Using the likelihood ratio test, if Λ(Y ) exceeds γ, choose H1, otherwise choose H0

[6]. Figure 14 illustrates this concept:

Figure 14: Illustration of the binary hypothesis. The left distribution is the proba-
bility that H0 will occur. The right distribution is the probability that H1 will occur.
The vertical line in the middle is the decision threshold, γ.

2.4.2 Classical Detection Methods

There are many spectrum sensing detection methods available. They are broadly

categorized as cooperative– where coordination between many receivers is leveraged to

detect a waveform– or non-cooperative– where the receiver detects based only on what

it can sense [5]. In this subsection, we will discuss three non-cooperative methods for

detection.

2.4.2.1 Matched Filter Detector

If we assume the signal sourceX(t) is deterministic and known to the receiver, then

22



matched filtering is the optimal detection technique [5][6]. The matched filter, also

known as a coherent detector, maximizes the signal-to-noise ratio (SNR) by correlating

the received signal with the known waveform to determine the presence of the PU.

While this technique performs well with AWGN, in the case of interference from a

modulated signal, this technique performs poorly [5].

2.4.2.2 Energy Detector

If X(t) and η are IID, then energy detection is the optimal detection technique.

The energy detector treats H0 and H1 as varying levels of noise and determines

the absence of a PU based on a defined threshold. This threshold is based on the

noise power [5][6]. If there is no previous knowledge known about the signal source,

this detector performs well. However, it performs poorly when classifying a signal’s

features, and it is vulnerable to unknown or changing noise levels.

2.4.2.3 Cyclostationary Feature Detector

Cyclostationary feature detectors (CFD) are able to differentiate between a mod-

ulated signal and noise, even at very low SNR values [5]. Let us reexamine Equation

(18) and Equation (19) using Equation (17):

H0 : SvX [k] = 0 (22)

H1 : SvX [k] 6= 0 (23)

Now H0 and H1 can now be determined depending only on the CSD amplitude.

If H1 is nonzero at any k for a fixed v, a PU is active and exhibiting cyclostation-

ary behavior of SR Rs = v. If H0 is true, the PU is not active or not exhibiting

cyclostationary behavior of SR Rs = v. Further, for each fixed v, the maximum k

corresponds to the PUs CF fc = k. In other words, the CFD allows us to distinguish

between modulated signals and noise.
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2.4.3 Test Statistic and Detection Threshold

There is no information known about the signal to be detected in a spectrum

sensing environment, the probability it will be active, or if a signal even exists [6].

In this case, we cannot use our likelihood ratio developed in Equation (20); instead,

we use what is known as a sufficient statistic. The sufficient statistic l(SvX [k]), or

simply l, is a special case of the likelihood ratio that depends explicitly on SvX [k].

That is, knowing l is just as good as knowing the likelihood ratio [7]. For hypotheses

Equations (22) and Equation (23) this results in the sufficient statistic for each (v, k)

point of:

l = |SvX [k]|2 (24)

Notice that we still have not developed a threshold γ. Intuitively, γ should be

proportional to the noise power σ2
η. However, it is difficult to acquire noise power in a

realistic spectrum sensing environment [6]. Many test statistics/thresholds have been

studied for the CSD. Here, we will apply one of the simplest thresholds by generating

the sufficient statistic of our received signal power and multiplying it by β.

σ2
η =

1

N

N−1∑
n=0

|X[n]|2 (25)

The threshold is thus γ = βσ4
η, where β is a scalar to adjust the sensitivity of false

alarm [6]. The result of our threshold and the sufficient statistic leaves us with the

test,

|SvX [k]|2
H1

≷
H0

β

(
1

N

N−1∑
n=0

|X[n]|2
)2

(26)

Any cycle frequency with values above the threshold in Equation (26) is considered

a detected waveform SR. Finally, a peak detection algorithm is employed for each SR

to determine the CF of each waveform. This concept is illustrated in Figure 15.
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Figure 15: The application of Equation (26) to our waveform x(t) from Figure 3. The
sufficient statistic l produces the estimations for each candidate SR. To differentiate
from noise, a threshold γ is applied using a β of 10−2. PSD estimates with values
above this threshold are determined to be detected SR slices. To determine the CF,
the index of the peak of each detected SR slice is taken. The result is a detected
waveform with indices (v, k), which map to the parameters (Rs, fc).
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CHAPTER III

IMPLEMENTATION

Our goal is to have the ability to perform spectrum sensing with an on-orbit

CubeSat CR. To accomplish this, the CR must detect all waveform SRs and CFs

for a received band. To differentiate these detected waveforms from noise, CFD is

used. CFD can be realized using what is known as an SCA. Currently, SCAs are

deployed for terrestrial applications. SCAs are computationally complex, so many

FFTs are leveraged to increase performance. Each FFT needs BRAM for both the

input and output equal to the number of frequencies N to be evaluated, resulting in

high-BRAM use of 4N . This high memory use is acceptable for terrestrial receivers,

where memory is cheap and plentiful. In space, however, resources are minimal.

Since BRAM is overwhelmingly the limiting factor preventing the application of an

SCA onto a CubeSat CR, if we can design an SCA with a low reliance on BRAM, we

can perform spectrum sensing on-orbit. Time-domain processing reduces performance

but allows for pipelined sample-by-sample processing techniques. To offset this speed

reduction, instead of detecting all cyclic frequencies for all waveforms, we limit our

application to only detect the SR and CF of M-QAM-SRRC waveforms. For this

blind SR-CF estimator, we borrow the communications term streaming. Thus, this

design will be referred to as the streaming-SCA.
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3.1 Motivation

Traditional orbital architectures use either a single satellite or a constellation of

satellites. Modern satellites increasingly use distributed orbital architectures such as

fractionated, clustered, and trailing formations. These architectures operate using

many coordinated small satellites instead of one large satellite. The launch of these

small satellites, particularly CubeSats becoming increasingly common [8].

As space becomes more crowded with CubeSats that utilize crosslink and relay

technology, the notion of inter-satellite interference is quickly realized as a concern.

As with terrestrial applications, spectrum sensing is an efficient, low-cost technique

to detect and avoid interference automatically.

As discussed in the previous chapter, SCAs are a fast, reliable, and effective

method to perform spectrum sensing [1]. One significant weakness of SCAs, as noted

in [1][6], is the requirement of large sample sizes, and therefore a large amount of

memory to store those samples. The ability to quickly perform CFD is due to the

high utilization of the memory-intensive FFT.

For example, if we evaluate the SSCA [1] for a complex-valued sample with a bit-

width of 32b and 216-point FFTs, we find that we need at least 67Mb of memory per

cycle frequency evaluated. Evaluating an nominal CubeSat CR FPGA’s resources,

the xc7z045fbg676-1, we find that it has 19.2Mb of BRAM– far below the SSCA’s

memory requirement of 67Mb. Thus, a low-memory SCA is in need of design.

3.2 The Streaming-SCA

Let us assume that we wish to sense the waveforms present in a channel. As

discussed in Chapter II, the CAF-DFT SCA is desirable because it does not rely on

the FFT. In order to create a design that will fit onto a CubeSat CR, we will alter

the CAF-DFT such that it:

� Evaluates only one pipelined (v, k) pair at a time, called a point. This is equiv-

alent to one branch in Figure 12. If our SCA is well designed, branches are
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reconfigurable such that if extra resources are available on the platform, many

instances can be used in parallel.

� Utilizes a minimum amount of BRAM. The CAF-DFT stores samples from the

analog to digital converter (ADC) into BRAM. This is done to ensure every

evaluation of a (v, k) pair is consistent when processed. For this design, we

continuously acquire data directly from the ADC. Sample-by-sample acquisi-

tion risks inconsistency from one (v, k) to another, but as long as a signal is

reasonably stable, this offers a massive savings of our CRs resources.

� Is designed for FPGA use. FPGAs offer greater SWaP efficiency, higher deter-

minism and are more resilient in space environments.

� Does not evaluate the trivial case of v = 0, which is the spectral density of the

conventional AF.

� Uses a fixed lowpass-filter (LPF) width of 2, corresponding to taps [0.5, 0.5].

The CAF-DFT utilizes a filter that dynamically changes with v. On an FPGA,

this overhead is expensive, and therefore only 2 taps are used for the streaming-

SCA.
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Figure 16: In this example we reproduce Figure 12, with the additional restrictions
discussed above. We find that the peak of (v, k) perfectly matches the true SR and CF
of x(t) from Figure 3. Moreover, the peak exceeds the threshold γ = βσ4

η, resulting
in correct detection.

The streaming-SCA was modeled in MATLAB to produce Figure 16. We find

that the streaming-SCA produces the same results as the TSM-SCA shown in Figure

4 with a scaling factor. The scaling results from the design choice to ensure the

maximum possible value is never above one. This is necessary to prevent overflow in

our digital design. MATLAB code for the streaming-SCA is provided in Appendix

A.

In exchange for this low-memory utilization, the processing time is increased. This

amounts to a design trade– parameters are determined depending on the SU’s allotted

time to move away from the PU. Delay is proportional to:

� SR step size– A larger step size increases processing speed, but also increases

Pm.

� CF step size– A larger step size increases processing speed, but also increases
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Pm.

� Sample size– A smaller sample size increases processing speed, but also increases

Pm and Pfa.

3.3 Digital Design

To describe the implement of the streaming-SCA as a digital circuit, we will walk

through each component and its subcomponents. This design uses no third-party

intellectual property, which improves platform portability, reconfigurability, trans-

parency of operation, and troubleshooting. There are minor references to VHDL

functions, such as resize(), however, this chapter is intended to be language agnos-

tic.

3.3.1 Center Frequency Estimator

The purpose of the center frequency estimator (CFE) is to produce a sufficient

statistic distribution for each SR, CF candidate. This module produces the estimate of

a (v, k) pair, which maps to some (Rs, fc). Mathematically, this module corresponds

to Equation (17), rewritten below, for some X, v, k, n,.

SvX [k] =
1

N

N−1∑
n=0

|(X[n]e−j2πkn) ∗ h[n]|2e−j2πvn

The mixer is controlled by FCWk, corresponding to the heterodyned expression

X[n]e−j2πkn. Next, a LPF module smooths the mixed signal with the fixed taps

[0.5, 0.5], corresponding to the channelized expression (X[n]e−j2πkn) ∗ h[n]. After

this, the CAF is applied, corresponding to the CFE equation

SvX [k] = 1
N

∑N−1
n=0 |(X[n]e−j2πkn) ∗ h[n]|2e−j2πvn. Lastly, the magnitude squared is

calculated, resulting in one poiny of the sufficient statistic summation l = |Svx[k]|2 for

one set of X, v, k, n values.

30



Figure 17: Digital design of the CFE module.

Figure 18: Timing diagram of the CFE module.
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Table 1: Pinout of the CFE module.

Port Name Direction Data Type Description

N SAMPLES Generic natural Number of samples accumulated.

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Delineates between CF, SR pairs being pro-

cessed.

CenterFrequencyFcw Input signed(16) CF to estimate.

SymbolRateFcw Input signed(16) SR to to estimate.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Delineates between CF, SR pairs being pro-

cessed.

OverflowStatus Output std logic vector(4) [3]: CF mixer I

[2]: CF mixer Q

[1]: SR mixer I

[0]: SR mixer Q

SampleOut Output signed(BIT WIDTH) Real-valued result.

3.3.2 Symbol Rate Estimator

The purpose of the SR estimator (SRE) is to estimate the correlation between a

waveform and the SR cycle frequency v. Mathematically, this module corresponds to

the CAF equation evaluated at τ = 0.

RvX [0] =
1

N

N−1∑
n=0

|X[n]|2e−j2πvndt

The instantaneous power module corresponds to the magnitude squared |X[n]|2.

After, the DFT is applied, corresponding to the CAFRvX [0] = 1
N

∑N−1
n=0 |X[n]|2e−j2πvndt.
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Figure 19: Digital design of the SRE module.

Figure 20: Timing diagram of the SRE module.
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Table 2: Pinout of the SRE module.

Port Name Direction Data Type Description

N SAMPLES Generic natural Number of samples accumulated.

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Delineates between SRs being processed.

OscillatorFcw Input signed(16) SR to to estimate.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Delineates between SRs being processed.

OverflowStatus Output std logic vector(2) [1]: mixer I

[0]: mixer Q

SampleOut I Output signed(BIT WIDTH) Real component of sample.

SampleOut Q Output signed(BIT WIDTH) Imaginary component of sample.

3.3.3 Discrete Fourier Transform

The DFT is used to perform frequency-domain analysis of discrete-time signals.

For this implementation, the below expression is evaluated for one particular k at a

time, as opposed to the FFT, which calculates all values of k simultaneously. The

DFT of X[n] is expressed mathematically as:

X̂[k] =
N−1∑
n=0

X[n]e−j2πvn

Here, X̂[k] is the series of Fourier coefficients of the signal X[n]. The mixer

is controlled by FCWk, corresponding to the heterodyned expression X[n]e−j2πkn.

The heterodynes are then accumulated for N samples, corresponding to the DFT
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X̂[k] =
∑N−1

n=0 X[n]e−j2πkn.

Figure 21: Discrete Fourier transform block diagram module.

Figure 22: Timing diagram of the DFT module.
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Table 3: Pinout of the DFT module.

Port Name Direction Data Type Description

N SAMPLES Generic natural Number of samples accumulated.

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Delineates between frequencies being pro-

cessed.

OscillatorFcw Input signed(16) Frequency to estimate.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Delineates between frequencies being pro-

cessed.

OverflowStatus Output std logic vector(2) [1]: mixer I

[0]: mixer Q

SampleOut I Output signed(BIT WIDTH) Real component of sample.

SampleOut Q Output signed(BIT WIDTH) Imaginary component of sample.

3.3.4 Frequency Mixer

A heterodyne is a signal frequency that is produced by mixing the frequencies of

two signals. In this context, frequency mixing is performed by element-wise multipli-

cation of an signal with a digital numerically controlled local oscillator (NCO). The

frequency mixer is mathematically expressed as:

e−j2π(k1+k2)n = e−j2πk1n · e−j2πk2n
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Figure 23: Digital design of the frequency mixer module.

Figure 24: Timing diagram of the frequency mixer module.
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Table 4: Pinout of the frequency mixer module.

Port Name Direction Data Type Description

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Pass through.

OscillatorFcw Input signed(16) Frequency to estimate.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Pass through.

OverflowStatus Output std logic vector(2) [1]: I

[0]: Q

SampleOut I Output signed(BIT WIDTH) Real component of sample.

SampleOut Q Output signed(BIT WIDTH) Imaginary component of sample.

3.3.5 Low-Pass Filter

A finite impulse response (FIR) is a filter whose response to any finite-duration

input settles to zero in a finite amount of time. Filter coefficients are calculated given

the desired properties of the filter in MATLAB or python. The FIR implements the

convolution sum as defined by the equation:

Y [n] =
N−1∑
i=0

b[i]X[n− i]

Here, b[k] are the filter coefficients for an N th-order filter with 0 ≤ i < N and

X[n] is the series of input samples. For this design a fixed tap length of 2 is used,

which corresponds to the low-pass filter coefficients b[0] = 0.5, b[1] = 0.5.
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Figure 25: Digital design of the LPF module.

Figure 26: Timing diagram of the low-pass filter module.
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Table 5: Pinout of the low-pass filter module.

Port Name Direction Data Type Description

TAP COUNT Generic natural Number of Coeffs.

TAP WIDTH Generic natural Format of coeffecients is s0.(TAP WIDTH-1)

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

Coeffs Input signed array(TAP LENGTH) Fixed-values of b[0] = 0.5, b[1] = 0.5 for this

application.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Pass through.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Pass through.

SampleOut I Output signed(BIT WIDTH) Real component of sample.

SampleOut Q Output signed(BIT WIDTH) Imaginary component of sample.

3.3.6 Instantaneous Power

This module serves as a special case of the AF for τ = 0. This special case

is equivalent to one index of Parseval’s theorem |X[n]|2, which is expressed as the

magnitude squared. This is mathematically expressed as:

PX [n] = |X[n]|2

= ((<{X[n]}2 + ={X[n]}2)
1
2 )2

= <{X[n]}2 + ={X[n]}2

Here, the real and imaginary components are squared in parallel and then added.
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Figure 27: Digital design of the instantaneous power module.

Figure 28: Timing diagram of the instantaneous power module.
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Table 6: Pinout of the instantaneous power module.

Port Name Direction Data Type Description

BIT WIDTH Generic natural Format of samples is

s0.(BIT WIDTH-1)

LATENCY Generic natural Control total latency of opera-

tion.

TRUNC Generic natural Remove extraneous MSBs.

RND Generic natural Round LSB.

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream mod-

ule is ready to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Pass through.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to

accept input.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Pass through.

SampleOut Output signed(2*BIT WIDTH

-RND-TRUNC)

Real-valued output.

3.3.7 Complex Multiplier

The product of two complex numbers can be expressed in terms of pairs of real

and imaginary components as follows:

X1[n]X2[n] = (A+Bj)(C +Dj)

<{X1[n]X2[n]} = AC −BD

={X1[n]X2[n]} = AD +BC

Here, the multiplication of complex values X1[n]X2[n] simplifies to four real mul-

42



tiplications, one real addition, and one real subtraction.

Figure 29: Digital design of the complex multiplier module.

Figure 30: Timing diagram of the complex multiplier module.
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Table 7: Pinout of complex multiplier module.

Port Name Direction Data Type Description

LEN A Generic natural Format of samples is s0.(BIT WIDTH-1)

LEN B Generic natural Format of samples is s0.(BIT WIDTH-1)

LATENCY Generic natural Control total latency of operation.

TRUNC Generic natural Remove extraneous MSBs.

RND Generic natural Round LSB.

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Pass through.

SampleIn I A Input signed(LEN A) Real component of sample A.

SampleIn Q A Input signed(LEN A) Imaginary component of sample A.

SampleIn I B Input signed(LEN B) Real component of sample B.

SampleIn Q B Input signed(LEN B) Imaginary component of sample B.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Pass through.

SampleOut I Output signed(LEN A

+LEN B

-RND-TRUNC+1)

Real component of sample.

SampleOut Q Output signed(LEN A

+LEN B

-RND-TRUNC+1))

Imaginary component of sample.

3.3.8 Multiplier

There are many real multipliers used throughout this design. Although multipliers

exist as a primitive operation in HDL languages, a module is used to ensure proper

timing, handshaking, bit-widths, delays, fixed-point control, and rounding. Mathe-

matically, this module performs the multiplication of two real values, expressed as:

Y [n] = X1[n]X2[n] (27)
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Figure 31: Digital design of the multiplier module.

Figure 32: Timing diagram of the multiplier module.
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Table 8: Pinout of multiplier module.

Port Name Direction Data Type Description

LEN A Generic natural Format of samples is s0.(BIT WIDTH-1)

LEN B Generic natural Format of samples is s0.(BIT WIDTH-1)

LATENCY Generic natural Control total latency of operation.

TRUNC Generic natural Remove extraneous MSBs.

RND Generic natural Round LSB.

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Pass through.

SampleIn A Input signed(LEN A) Real-valued sample A.

SampleIn B Input signed(LEN B) Real-valuedsample B.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Pass through.

SampleOut Output signed(LEN A

+LEN B-RND

-TRUNC)

Real-valued sample out.

3.3.9 Accumulator

The accumulator is the most important module in the design concerning flow con-

trol. This module has three core functions: Acting as the summation component of

all previous modules, acting as the normalization component of all previous compo-

nents, and acting as the reset between sample sets. Mathematically, the accumulator

is expressed as the difference equation:

Y [n] =

 Y [n] = X[n], if n = 0

Y [n] = Y [n− 1] +X[n], otherwise
(28)

Where X[n] and Y [n] are the input and output, respectively, at the discrete point
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in time n, and Y [n − 1] is the sum of all previous discrete samples in X[n]. This

implementation accumulates discrete samples until a control signal is received, in-

structing the accumulator to reset the running sum. Notably, this is performed with

a zero-clock delay between the last sample of one sequence and the first sample of the

following sequence.

Figure 33: Digital design of the accumulator module.

Figure 34: Timing diagram of the accumulator module.
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Table 9: Pinout of the accumulator module.

Port Name Direction Data Type Description

N SAMPLES Generic natural Number of samples accumulated.

BIT WIDTH Generic natural Format of samples is s0.(BIT WIDTH-1)

Clock Input std logic Synchronous clock.

Reset Input std logic Asynchronous reset.

SampleOutReady Input std logic Asserted when downstream module is ready

to accept input.

SampleInValid Input std logic High when input is valid.

SampleInLast Input std logic Delineates between CF, SR pairs being pro-

cessed.

SampleIn I Input signed(BIT WIDTH) Real component of sample.

SampleIn Q Input signed(BIT WIDTH) Imaginary component of sample.

SampleInReady Output std logic Asserted when module is ready to accept in-

put.

SampleOutValid Output std logic High when output is valid.

SampleOutLast Output std logic Delineates between CF, SR pairs being pro-

cessed.

SampleOut Output signed(BIT WIDTH) Real-valued result.
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CHAPTER IV

PERFORMANCE CHARACTERIZATION

This chapter will characterize the performance of the streaming SCA’s ability to

correctly sense and classify the CF and SR of signals in a monitored spectrum. First,

we generate a transmit M-QAM-SRRC waveform in software using python. The

waveform is then passed through a software channel and saved to a file in a fixed-

point format using python. The receiver is a VHDL testbench that reads the file,

processes the in-phase and quadrature (IQ) samples using the streaming SCA, then

saves CSD results to a new file. We then plot the CSD in MATLAB, along with its

corresponding threshold. A detected SR is any spectral slice v above the threshold.

A detected CF is a peak k for a detected SR slice. Finally, these bins are mapped to

their true values (Rs, fc), respectively.

4.1 Experiments

Characterization is performed by first establishing baseline parameters for the

transmitter and receiver. While baseline parameters provide results that are easy to

be accurately detected, they may not reflect real-world constraints such as hardware

restrictions or channel impairments. Each subsequent experiment is a parametric

analysis of the effect of modifying a given parameter. The parameters evaluated are

shown in Table 10 and Table 11.
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Table 10: Python transmitter & channel
Here, fs = 1MHz for all experiments, and r is rolloff.

Expt. M r Rs (MBd) fc (MHz) Eb

N0
(dB)

I 4 0.35 0.10 0.05 14.00

II 16 0.35 0.10 0.05 14.00

III 4 0.20 0.10 0.05 14.00

IV 4 0.35 0.01 0.05 14.00

V 4 0.35 0.10 −0.05 14.00

VI 4 0.35 0.10 0.05 9.00

VII 4 0.35 0.10 0.05 14.00

VIII 4 0.35 0.10 0.05 14.00

IX 4 0.35 0.10 0.05 14.00

X 4 0.35 0.10 0.05 14.00

XI 4 0.35 0.10 0.05 14.00

XII 4; 16 0.35; 0.35 0.10; 0.25 −0.20; 0.20 14.00

XIII 4; 16 0.35; 0.35 0.10; 0.25 0.05; 0.10 14.00
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Table 11: VHDL receiver
Here, BW is bit-width, (v, k) are the search space.

Expt. fs (MHz) N BW v k

I 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

II 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

III 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

IV 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

V 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

VI 1.00 216 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

VII 10.00 216 16 [1MHz : 1MHz : Fs2 ] [−Fs
2 : 50kHz : Fs2 ]

VIII 1.00 212 16 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

IX 1.00 216 8 [Rs : Rs : Fs2 ] [−Fs
2 : fc : Fs2 ]

X 1.00 216 16 Rs [−Fs
2 : 10kHz : Fs2 ]

XI 1.00 216 16 [99.9kHz : 1Hz : 100.1kHz] fc

XII 1.00 216 16 [50kHz : 50kHz : Fs2 ] [−Fs
2 : 50kHz : Fs2 ]

XIII 1.00 216 16 [50kHz : 50kHz : Fs2 ] [−Fs
2 : 50kHz : Fs2 ]
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Figure 35: CSD estimate plot for experiment I
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Figure 36: CSD estimate plots for experiments II-VII
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Figure 37: CSD estimate plots for experiments VIII-XIII
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4.2 Results

From our experimentation, we were able to produce the results shown in Table

12 and Table 13. We find that every test surpasses the threshold and is successfully

detected.

Table 12: Performance Results
Here, β = 10−4. (Rs, fc) are detected waveforms.

Expt. Delay (ns) σ4
η Rs (MBd) fc (MHz)

I 6881440500 0.0390605536703082500 0.1 0.05

II 6881440500 0.0398833126975169200 0.1 0.05

III 6881440500 0.0298027449329316400 0.1 0.05

IV 6881440500 0.0117707270580887540 0.1 0.05

V 6881440500 0.0296904514781464350 0.1 −0.05

VI 6881440500 0.0230728422450306340 0.1 0.05

VII 6881440500 0.0394264003727182250 0.1 0.05

VIII 430240500 0.0613674210127828100 0.1 0.05

IX 6881440500 0.0323822252535604900 0.1 0.05

X 6619200500 0.0390605536703082500 0.1 0.04

XI 13243153500 0.0390605536703082500 0.1 0.05

XII 13762840500 0.0353091800682484900 0.1; 0.25 −0.2; 0.2

XIII 13762840500 0.034193338983871176 0.1; 0.25 0.05; 0.25
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Table 13: Resource Utilization Results

Expt. LUT LUTRAM FF BRAM DSP IO

I 814 3 391 15 16 108

II 814 3 391 15 16 108

III 814 3 391 15 16 108

IV 814 3 391 15 16 108

V 814 3 391 15 16 108

VI 814 3 391 15 16 108

VII 814 3 391 15 16 108

VII 814 3 391 15 16 108

IX 674 3 319 15 16 100

X 814 3 391 15 16 108

XI 814 3 391 15 16 108

XII 814 3 391 15 16 108

XIII 814 3 391 15 16 108
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CHAPTER V

CONCLUSION

We investigated a low-memory FPGA implementation of an SCA for M-QAM-

SRRC SR-CF detection. We began by developing a set of assumptions that limited

the scope of existing SCA paradigms. We then discussed the HDL design used to

construct such a system, which did not rely on FFTs and used no proprietary tools.

Following this, we presented the performance characterization results of the newly

formed streaming-SCA.

As discussed in section 3.2, one of the shortcomings of this design is that perfor-

mance scales poorly with higher resolutions when compared to other methods. This

difficulty in scaling is the main disadvantage when compared to the SSCA. Instead

of blindly sweeping across all SRs with a high resolution, Koch instead uses a pre-

processor to turn the SCA from blind to semi-blind. The concept is to use an FFT

to produce the CAF then a threshold is applied. Values that meet the threshold are

known as SR candidates fed into the streaming SCA to evaluate. This preprocessing

can reduce the detection from thousands of (Rs, fc) pairs to hundreds or even dozens.

This thesis does not cover preprocessing due to the memory requirements of the FFT.

However, preprocessor use is highly encouraged if the platform can afford the extra

memory.

Another way to increase performance is through decimation. While this thesis
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does not cover the algorithm to sweep through (Rs, fc) values, the general data flow

is to determine the symbol rate to be checked, then decimate by Fs/Rs. Potential

difficulties may be keeping track of bin’s mapping to actual values and scheduling

issues when using multiple streaming SCAs in parallel.

The threshold used in this algorithm is a basic example. This example threshold

has several unsolved problems. The primary issue for some Rs, only one fc can be

detected by finding the maxima of a given spectral density. To solve this issue, an

algorithm to detect local CF maxima above the threshold is needed. This enhance-

ment would allow for the ability to detect multiple CFs sharing the same SR. The

second issue is that when very fine values of α are used, there will be false detection

for values close to the true SR. To solve this issue, an algorithm to detect local SR

maxima above the threshold is needed. This enhancement would decrease the proba-

bility of SR false alarms. For now, peak detection is the best solution, but a study on

the optimal detection for digital circuits would greatly expand this design’s utility.

Lastly, M-QAM-SRRC is simply the easiest waveform to detect. Other PSFs,

such as rectangular, can be support, in addition to other waveforms such as FSK,

OOK, MSK, DSSS, DPSK, and encodings such as Manchester, are all supported

by the streaming-SCA. However, optimal detection is much more difficult on these

waveforms, and are not covered in this thesis.
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APPENDIX A

SOURCE CODE

%% RX RF Frontend

norm_factor = modnorm(syms_noisy,’peakpow’,1);

agc = syms_noisy*norm_factor;

%% Receiver: SCA

Ncapture = length(agc);

% valid alpha range is [0 Fs/2]

a_step = Rs; % only evaluate harmonics of Rs

a_array = (Rs:a_step:Fs/2)’;

Na = length(a_array);

% valid fc range is [-Fs/2 Fs/2]

fc_step = fc; % only evaluate harmonics of fc

fc_array = (-Fs/2:fc_step:Fs/2)’;

Nfc = length(fc_array);

% two tap low-pass filter

hlpf = [0.5,0.5];

% allocate memory for results

S = zeros(Na,Nfc);

% search cycle freqs

for idx_a = 1:Na
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% search center freqs

for idx_fc = 1:Nfc

% channelizer

lo = exp(1j*2*pi*fc_array(idx_fc)/Fs*(1:Ncapture))’;

channelized = filter(hlpf,1,syms_pb(1:Ncapture).*lo);

% symbol rate estimation

R = abs(channelized).^2;

S(idx_a,idx_fc) =

goertzel(R,round(a_array(idx_a)/Fs*Ncapture)+1)/Ncapture;

end

end

T = abs(S).^2;

Pfa = 1e-3;

sigma = Pfa*(sum(abs(agc).^2)/Ncapture)^2;

threshold = ones(Na,Nfc)*sigma
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APPENDIX B

ACRONYMS

ADC analog to digital converter

AF autocorrelation function

AWGN additive white Gaussian noise

BRAM block random access memory

CAF cyclic autocorrelation function

CF center frequency

CFD cyclostationary feature

detector

CFE center frequency estimator

CPU central processing unit

CR cognitive radio

CSD cyclic spectral density

CSP cyclostationary signal

processing

CubeSat cube satellite

DC direct current

DFT discrete Fourier transform

DSP digital signal processor

DVB-S2 digital video broadcasting -

satellite generation two

ESD energy spectral density

FAM FFT accumulation method

FCW frequency control word

FFT fast Fourier transform

FIR finite impulse response

FPGA field-programmable gate array

FAM FFT accumulation method

FSM FFT accumulation method

GPU graphics processing unit

HDL hardware description language

HSDPA high speed downlink packet

access

IID independent and identically

distributed

IQ in-phase and quadrature

LPF low-pass filter

M modulation order

MATLAB matrix laboratory

NCO numerically-controlled

oscillator

PDF probability density function

PM pulse modulation

PSD power spectral density

PSF pulse-shape filter

PU primary user

PSK phase-shift keying

QAM quadrature amplitude

modulation
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RF radio frequency

SCA spectral correlation analyzer

SNR signal to noise ratio

SOC second-order cyclostationary

SOS second-order stationary

SR symbol rate

SRE symbol rate estimator

SRRC square-root-raised-cosine

SSCA split spectral correlation

analyzer

SU secondary user

SWaP size, weight, and power

TSM time-smoothing method

UMTS universal mobile

telecommunications system

VDHL VHSIC-HDL

VHSIC very high speed integrated

circuit

WSC wide-sense cyclostationary

WiMAX worldwide interoperability for

microwave access

WSS wide-sense stationary
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