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COST OPTIMIZATION OF CONCENTRIC LOADED RECTANGULAR COMBINED 

FOOTINGS USING DIFFERENT MATLAB SOLVERS  

MUATH AMRO 

ABSTRACT 

Conventional design methods for combined footings comprise a series of iterations. 

Generally, this involves an initial guess for the dimensions which are evaluated as guided 

by the existing design code. This is then followed by several iterations to reduce the cost 

without any detriment to structural safety.  In most cases, the result from the final iteration 

does not reflect the minimum cost design. This necessitates optimization models capable 

of establishing efficient and accurate designs within a short period, especially under several 

design variables. 

For this purpose, an optimization model for concentric loaded rectangular combined 

footings was developed in this research. The model was built in a general form and can 

perform optimization with different soil and material properties. The model encompasses 

an accurate objective function, subjected to the structural, geotechnical, and logical 

constraints to satisfy the requirements of the strength and serviceability limit states in 

accordance with ACI 318-11M specifications. The model works to find the minimal 

construction cost of the structure, adequate dimensions, and steel areas in different sections 

that correspond to that minimal cost. 

The model was developed using five solvers available within the MATLAB Global 

Optimization toolbox. Model capabilities were investigated by optimizing a case of 

concentric loaded rectangular combined footing with a known solution. The model 

capabilities were also assessed by testing the effect of using different material properties 
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and varying site conditions on the resulting objective function. The optimization results 

showed identical results compared to the conventional design methodology. The results 

also showed the cost tends to decrease with the use of higher steel grades for all load 

variations. Moreover, there was no major effect for the concrete compressive strength in 

the range of 20 to 35 MPa on the value of the objective function. However, for higher 

concrete strengths >35MPa, the objective function value increased significantly.  

The influence of changing the foundation depth was significant in terms of cost 

reduction for the depth ranges between 0.5 to 2.0m, then the cost remained almost constant 

with the depth increase. Finally, the results showed no significant impact of the column 

shape on the total cost. 
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INTRODUCTION 

1.1 PROBLEM OVERVIEW 

Reinforced concrete foundations are structural members used to support other load-

bearing members such as walls and columns by transmitting and distributing their loads to 

the soil. Like any other structural member, foundations should be designed to transfer the 

load safely. Foundations are generally divided into two groups, (i) shallow foundations and 

(ii) deep foundations. Common shallow foundations include spread or isolated footings, 

strip footings, combined footings, wall footings, and mat or raft slab. Common deep 

foundations include piles, piers, and caissons [1]. The traditional objective of structural 

analysis and design is to come up with a design that can safely maintain the applied loads 

under the defined boundary conditions without failure or excessive deformation that may 

affect the serviceability of the structure for the intended lifetime of the project. Advances 

in engineering technology have led to much more complex structures than ever. Designing 

a structure solely on the bases of safety is no longer satisfying; rather, several other 

considerations became as much important as safety nowadays. Foundation design must 

consider the following: (1) safety against collapse or failure of the soil; (2) settlements and 
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movements are controlled; (3) factors related to the environment are considered (including 

frost action, shrinking, swelling of the soil, underground waters and adjacent structures or 

excavations), and (4) economically rational in regards to its function and the overall cost 

[2].  

A good engineering solution or design is the one that finds the right balance between 

safety, time, and cost. However, finding such a balance could be very costly and time-

consuming when using traditional or conventional design methods. Conventional design 

methods involve a series of iterations. Generally, an initial guess will be made and 

evaluated, then several iterations are made in a trial to minimize the cost as much as 

possible. The number of iterations performed depends on how much time is allocated for 

the design job and also on the quality of the initial guess, which relies solely on the 

engineering intuition, assumptions, and experience of the designer. This iteration process 

usually will be terminated after a few attempts to save time. 

The idea of the structural optimization process is to identify the optimal values of the 

design variables that give the best value of the objective function while meeting the 

imposed bounds and constraints. The objective function is a function of the design 

variables; this could be cost, weight, stiffness, or any function that could be written in terms 

of the design variables. The design code requirements and workability or availability 

limitations are introduced through sets of explicit and implicit constraints that govern the 

design to ensure the safety and applicability of the design. In other words, conventional 

design methods evaluate the economics of a design after satisfying all the constraints. On 

the other hand, formulating design jobs as optimization problems from the beginning will 
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ensure the results will be safe and the cost will be minimum. Thus, it saves both money 

and time. 

The optimization process is based on performing series of iterations, which, with 

each iteration, the value of the objective function will move in the desirable direction (i.e., 

minimization or maximization). The number of iterations performed to reach the optimal 

values could be very high. Therefore, there is a need for a specific procedure and algorithm 

that can be written in terms of a computer program to solve the problem in a timely manner. 

In the search for the most economical, safe solution for concentric loaded 

rectangular combined footings, this research introduces a cost optimization model that can 

find the optimum values for the design variables and the corresponding value of the cost 

function easily and effectively. This optimization scheme considers a comprehensive cost 

analysis of the footing and constraints that ensure the solution will adhere to the 

geotechnical and structural requirements of the structure. The main challenge in 

implementing the optimization model is that establishment of global optimum for non-

linear, non-convex functions with tens of nonlinear inequalities could be a very lengthy 

process and the results do not necessarily reflect the global optimum in many cases. 

However, this problem could be overcome by using several algorithms and solvers with 

adequate constraint and optimality tolerances that increase the chance of finding the global 

optimum. 

The present research was motivated by the fact that the construction industry uses 

the most material by weight among all other industries which can lead to a shortage of 

domestic resource supplies and severe environmental impact [3]. Achieving the optimum 

design could significantly reduce the material used and thus the total cost and 
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environmental impact. To this end, design optimization is performed using five different 

existing solvers from MATLAB Global Optimization Toolbox. Global Optimization 

Toolbox provides functions that search for global solutions to problems that contain 

multiple maxima or minima. Toolbox solvers include surrogate, pattern search, genetic 

algorithm, particle swarm, simulated annealing, multistart, and global search [4]. That 

being said, the optimization was conducted using all the applicable solvers available for 

this type of problem in the Toolbox. Different options and search functions of each solver 

were tuned and adjusted to improve the effectiveness of the solver, and the results were 

compared. 

1.2 OBJECTIVES  

          The main objective of this study was to come up with an optimization model that 

can find the optimum values for the following design variables (also defined in Figures 4 

and 5). These are: (a) the length from the left edge to the centre of the left column, i.e.,  

x(1) in Figure 4,  (b) the length from the right edge to the centre of the right column, x(2), 

the width of the foundation ,i.e., x(3) in Figure 5, the effective depth, x(4), and the area of 

steel reinforcement in different sections denoted as x(5) to x(10) in Figure 5. It is anticipated 

that once the equations are set rightly, the corresponding objective function value can be 

effectively and easily evaluated, while accounting for geotechnical, structural, and logical 

constraints. The specific objectives of the study were:  

1. To develop a cost optimization model for a concentrically loaded rectangular 

combined footing using Matlab optimization solvers. 

2. To calibrate the Matlab model dimensional parameters with a known conventional 

design solution. 
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3. To compare the computational efficiency of the various available optimization 

methods for cases involving high number of variables and non-linear constraints. 

4. To investigate the effect of material properties on the total cost of design. 

5. To investigate the effect of changing the foundation depth on the total cost of 

design. 

6. To investigate the effect of the column shape on the total cost of the footing. 

1.3 SCOPE OF WORK 

The scope of this research is to develop optimization model for concentrically 

loaded concrete rectangular combined footings using existing MATLAB solvers. A total 

of five solvers will be used and tested. The developed model should account for the 

geotechnical limitations of bearing capacity and primary consolidation settlement, all the 

applicable structural constraints based on the ACI 318-11M code, and any workability 

limitations. 

Once the optimization model is developed, the model will be tested against a design 

example, the example which shown on appendix G is a design example of a concentrically 

loaded rectangular combined footing with a limited space on one of the sides (neighbor 

column),the chosen length must ensure uniform pressure distribution along the footing 

length, also the chosen area must satisfy the maximum allowable settlement of 2 inches 

and also a bearing capacity factor of safety equals to 3. The results from the five solvers 

will be compared to determine the most effective solver for optimization cases with non-

linear, non-convex functions with several nonlinear inequalities. The chosen solver should 

yield the global optimum solution in the least time possible.  This selected solver will then 

be used for several optimization scenarios. This includes cases that investigate the effect 
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of changing reinforcement steel yield strength, concrete compressive strength under 

varying load percentages, and the foundation depth on the total cost. Another optimization 

scenario will be conducted to investigate the effect of changing the columns shape on the 

overall objective function. 

The outline of the remaining part of the thesis is as follows. First, a background 

review of combined footings and the presently available optimization methods is given in 

chapter 2. The optimization model development is discussed in chapter 3. In chapter 4, the 

optimization model capabilities are investigated by optimizing a concentric loaded 

rectangular combined footing example. In chapter 5, the model capabilities are assessed by 

testing the effect of using different material properties, varying the depth, and using 

different column shapes on the optimization process results. The results and findings are 

summarized in the final chapter 6. 
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BACKGROUND 

2.1 COMBINED FOOTINGS 

A combined footing is a long footing supporting two or more columns in one row 

[5]. Usually, combined footings are used when two columns are close to each other or 

where soil bearing capacity is low and causing overlap of adjacent isolated footings. In 

other cases, the proximity of a property line or existing building or sewer, adjacent to a 

building column might necessitate combined footings [6]. Combined footings can take 

many shapes depending on the site conditions and the loads coming from the substructure. 

For instance, when one of the columns lies adjacent to the property line the combined 

foundations will be trimmed on the property line and extended on the other side. Moreover, 

when one of the column loads is much larger than the other column, the common practice 

is to use a trapezoidal shape for the footing, which makes it makes more economical. 

Different shapes for the combined footings are shown in figures 1 and 2. 
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Figure 1. Rectangular combined footings [7]. 

 

Figure 2. Rectangular property line and trapezoidal combined footings [8]. 
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Usually combined and mat foundations are assumed rigid for design purposes.  The 

rigid design method assumes that the footing or mat is infinitely rigid, and therefore, the 

deflection of the footing or mat does not influence the pressure distribution.   Moreover, 

the soil pressure is linearly distributed and the pressure distribution will be uniform if the 

geometric centroid of the footing coincides with the location of the resultant of the applied 

loads acting on the foundation [6, 9, 10]. Also, almost exclusively dimensions of footings 

are designed based on the allowable stress design method where the dimensions will be 

based on the allowable stresses acting on the soil at service loads [8]. 

The reinforced concrete design is based on the Strength Design Method. The strength 

design method requires the conditions of static equilibrium and strain compatibility across 

the depth of the RC section to be satisfied. These strains in reinforcement and concrete are 

directly proportional to the distance from the neutral axis. This implies that the variation 

of strains across the section is linear. Concrete sections are considered to have reached their 

flexural capacities when they develop a strain of 0.003 in the extreme compression fiber. 

The stress in the reinforcement varies linearly with strain up to the specified yield strength. 

Hence, the strain hardening of steel is ignored. Also, the tensile strength of concrete is 

neglected, and the compressive stress distribution in concrete may be simplified by a 

rectangular stress distribution. 

Comprehensive design of footings follows these general steps: (1) determining the 

required area of the footing and selecting the dimensions so that the centroids coincide; (2) 

drawing the shear diagram along the length of the footing using the factored loads; (3) 

determining the depth required for one-way shear and checking its adequacy for two-way 

shear; (4) designing the reinforcing bars in the longer direction; (5) designing the 
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reinforcing steel in the short direction;  (6) Checking and selecting the minimum amount 

of steel for temperature and shrinkage for parts of the footing required [6]. It is satisfactory 

to assume that each column load is spread over a width equal to the column width plus d/2 

on each side [44-46]. 

2.2 OPTIMIZATION IN STRUCTURAL ENGINEERING 

Structural optimization has been studied by many researchers, Stolyarov (1974) 

presented a method for minimization of the volume of foundations. However, it was 

realized that the least volume design did not necessarily correlate to the best design in terms 

of cost. This is because the total cost of the foundation is a function of several other 

variables such as the weight of reinforcing steel, area of formwork, excavation volume, 

insulation, and blinding concrete volume [11]. Another model for optimization for isolated 

footings has been presented by Bhavikatti and Hegde (1979) and the results showed that 

there is about 8–10% cost reduction when their method is used. However, the proposed 

model was based on linear optimization which affects the accuracy of the results [12]. In 

(1982) Naaman presented an optimized design for a prestressed concrete tensile member. 

The optimization was to minimize the cost of materials which includes the concrete and 

the prestressed steel [13]. Desai et.al (1984) presented an optimization design of an isolated 

sloped square footing resting on dry granular medium. The results showed significant 

savings in cost compared to the conventional design approach [14]. 

Namiq and Al-Ani (1985) presented cost optimization of spread footings subjected 

to eccentricity in both axes by using graphical and Rosenbrock's s method. The main 

findings were that the optimum ratio of footing length to width (L/B) is directly 

proportional to the ratio of the difference between the eccentricities in both directions to 
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the eccentricity in the short direction (eL-eB/eB),  and the ratio of the steel to concrete price 

does not affect the optimum L/B ratio [15]. Basudhar (2006), used nonlinear programming 

optimization techniques successfully to determine the optimum cost analysis of the rigid 

raft foundation and found that the variation in the cost is due to variation in area ratios [16].  

Madan Mohan (2006) developed an optimization program for settlement controlled 

shallow isolated footings based on allowable differential settlements, the results showed 

(10% to 40%) savings in cost [17]. Wang and Kulhawy (2008) presented a design approach 

that explicitly considers construction economics in the design of isolated footings with the 

goal is to minimize construction costs [18].  

Although there have been substantial efforts exerted towards the optimization of 

geotechnical structures, the studies on the combined footings are limited. Eman M. Farhan 

Al-Douri(2007) presented a study of optimizing the cost of trapezoidal combined footings 

based on the Hooke and Jeeves model, the structural constraints used in their model did 

not represent all of the structural requirements and the steel area was not treated as a design 

variable [19]. Muhammed Rizwan (2013) presented combined footing optimization using 

a modified complex method. The model was limited to a property line combined footing 

and the reinforcement area calculation and the cost function was not comprehensive [20]. 

Chavarría and Sandra (2017) presented an optimization model for corner combined 

footings considering real soil pressure. In their study, they considered real soil pressure 

with eccentrically loaded columns. However, the model was based on optimizing the 

contact area with the soil and does not necessarily reflect a cost optimization [21]. 

Francisco Velázquez-Santillán et al. (2018) presented numerical experimentation on 

optimization of eccentrically loaded rectangular footings based on real soil pressures and 
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under varying loading conditions. The model was limited in capacity to property line 

foundation type where one of the columns lies on the property line.  The constraints did 

not take into account the spacing limitations for reinforcement steel, and the cost function 

was limited to concrete and reinforcement steel costs [22]. 
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PROBLEM FORMULATION AND METHODOLOGY 

3.1 PROBLEM FORMULATION 

A local minimum of a function is a point where the function value is smaller than 

at nearby points but possibly greater than at a distant point. On the other hand, 

a global minimum is a point where the function value is smaller than at all other feasible 

points. The local minimum could be also the global minimum, but if not, it has no 

significant meaning. 

In general, optimization problems should take the form of: 

 
��� �(�), �ℎ��� �

�(�) ≤ 0
��� = 0

�� ≤ � ≤ ��

 (G1) 

where c(x) and ceq(x) are functions that return vectors, and f(x) is a function that returns a 

scalar. Here, f(x), c(x), and ceq(x) can be nonlinear functions. Also, x, lb, and ub can be 

passed as vectors or matrices [23]. 

3.2 METHODOLOGY 

The search for the global optimum for non-linear, non-convex with tens of 

nonlinear inequalities could be a very lengthy process and the results do not necessarily 
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reflect the global optimum in many cases. However, using several algorithms and solvers 

with adequate constraints and optimality tolerances could increase the chance of finding 

the global optimum. The optimization was performed using five different existing solvers 

from MATLAB Global Optimization Toolbox. This global optimization toolbox provides 

functions that search for global solutions to problems that contain multiple maxima or 

minima. Toolbox solvers include surrogate, pattern search, genetic algorithm, particle 

swarm, simulated annealing, multistart, and global search [23]. 

The optimization was conducted using all the applicable solvers available for this 

type of problem on the Toolbox. Different options and search functions of each solver were 

tuned and adjusted to improve the effectiveness of the solver. 

3.2.1 Optimization solvers 

In our research, five different solvers have been utilized in trying to find the global 

minimum efficiently, each algorithm has its advantages and disadvantages. An overview 

and comparison of the different algorithms used are stated below. 

3.2.1.1 Derivative based optimization: GlobalSearch and MultiStart 

GlobalSearch and MultiStart are both algorithms that start a local solver from 

different points to find the global optimum. The algorithms use multiple starting points to 

sample multiple basins of attraction.  
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Figure 3.Sketch of the GlobalSearch and MultiStart algorithms [24]. 

“GlobalSearch uses a scatter-search mechanism for generating start 
points then analyzes these points and rejects those points that are unlikely to 
improve the best local minimum found so far. MultiStart uses uniformly 
distributed start points within bounds, or user-supplied start points and then 
runs all these points” [24]. 

 
 There are multiple available local solvers. However, globalsearch can only be used with 

Fmincon. So Fmincon will be the choice for both algorithms. 

Fmincon is a nonlinear programming solver provided in MATLAB's optimization 

Toolbox. Fmincon performs nonlinear constrained optimization and supports linear and 

nonlinear constraints. Solver options including algorithms, convergence criteria, maximum 

Global Search Algorithm

Run fmincon from x0

generate trial points  

(Potential starting points)

Stage 1:Run best start point among 
the first trial points

Stage 2:Loob through remaining 
trial points,run fmincon if point 

satisfies basin,score, and constraint 
filters

Create Global Otimaization 
Solution vector

Multisearch Algorithm

Generate starting points

Run starting points

Create Global Otimaization 
Solution vector
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iterations, and the method to calculate the gradients can be specified. Several algorithms 

can be used with fmincon, for constrained nonlinear optimization problems the options are 

interior-point and sequential quadratic programming (SQP). The interior-point 

algorithm handles both large, sparse problems and small dense problems. 'SQP’ is a 

medium-scale algorithm, but both algorithms satisfy bounds at all iterations [25].  

Large scale optimization algorithms use linear algebra that does not need to store, 

nor operate on full matrices. This is done by storing sparse matrices, and sparse linear 

algebra for computations whenever possible. In contrast, medium-scale methods use full 

matrices and dense linear algebra. For large problems, full matrices take up a significant 

amount of memory, and the dense linear algebra may require a long time to run [25-29]. 

3.2.1.2 Derivative-free optimization 

1. Genetic algorithm 

The genetic algorithm is based on natural selection and is used for both constrained 

and unconstrained optimization problems, it is built similarly to the process that drives 

biological evolution. It repeatedly modifies a population of individual solutions. The 

genetic algorithm works to select random individual points as parents at each step from the 

current population and uses them to produce the children for the next generation. With the 

repeated process, the population advance toward the optimal solution. 

A major difference between genetic and derivative-based algorithms is that the 

genetic algorithms generate a population of points at each iteration and the best point of 

the population approaches the optimal solution. While the later generates a single point at 

each iteration and the sequence of the points approaches an optimal solution. 
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Another difference between them is that the genetic algorithm selects the next 

population by computation using random numbers. While the classic algorithms select the 

next point by deterministic computation. [30-32]. 

2. Pattern search algorithm 

The pattern search algorithm uses the initial starting point to search for a set of points 

such as the value of the objective function in the new point is lower than the initial point. 

And by computing a sequence of points the solution approach the optimal point. With every 

step the algorithm searches different points around the current point, these points are called 

a mesh. “The mesh is formed by adding the current point to a scalar multiple of a set of 

vectors called a pattern. If the pattern search algorithm finds a point in the mesh that 

improves the objective function at the current point, the new point becomes the current 

point at the next step of the algorithm” [33]. 

There are several used pattern search algorithms i.e. the generalized pattern search 

(GPS) algorithm, the generating set search (GSS) algorithm, and the mesh adaptive search 

(MADS) algorithm. Both GPS and GSS algorithms use fixed direction vectors. For 

optimization with nonlinear constraints GSS and GPS algorithms are identical. The MADS 

algorithm uses a random selection of vectors to define the mesh [34][35]. 

3.2.2 Optimization model 

Following the above solvers’ formulations, the optimization model was developed. 

To put the model in great use, it was developed in general form, such that the optimization 

can be performed for any concentric rectangular combined footing. Thus, it applies to a 

foundation with or without a property line and for different soil properties, different vertical 

loads, different material properties, and rates. The model comprises of an accurate 
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objective function that reflects all of the material fabrication and working hands costs, 

subjected to the structural, geotechnical, and logical constraints to satisfy the requirements 

of the strength and serviceability limit states in accordance with ACI 318-11 specifications.  

MATLAB code was developed with an excel sheet for data inputs/outputs. The 

optimization model consists of input data (constants for every optimization process), 

design variables (that changes along the process), and cost objective function (see Table 

1), which is subjected to several sets of implicit and explicit constraints. 

All the symbols used in the optimization model are illustrated in Table 1 and 

Figures 4 and 5. 

 

Figure 4. Plan view of the combined footing. 
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Figure 5.Section of the combined footing. 

 

 

1. Inputs 

Summary of the design parameters and analysis results essential for the design of 

the combined footing are listed in the table below. Moreover, one excel sheet was used to 

feed the bearing capacity factors Nc, Nq and N � to the model. These factors vary as a 

function of the friction angle and are calculated using Terzaghi equations [42]. 

2. Design variables 

Design variables are represented as vector x(i) with 10 elements as shown in  Figures 4 

and 5 and described as follows: x(1) is the length from the left edge to the centre of the 

left column, x(2) is the length from the right edge to the centre of the right column, x(3) 

is the width of the foundation, x(4) is the effective depth, x(5) to x(10) is the area of steel 

reinforcement for the -ve moment at mid-span, +ve moment under column 1, +ve moment 

under column 2, transverse beam under column 1, transverse beam under column 2 and 

temperature and shrinkage reinforcement respectively.  



 20

Table I. Optimization examples input data. 

 Description Unit Symbol 

Clear cover m C 

Depth of footing m hf 

Excavation Margin m E 

Soil initial void ratio   e0 

Dead load on column 1 KN PD1 

LIVE load on column 1 KN PL1 

Dead load on column 2 KN PD2 

LIVE load on column 2 KN PL2 

Column 1 length m cl1 

Column 1 width m cb1 

Column 2 length m cl2 

Column 2 length m cb2 

Center to center column spacing m l 

Diameter for longitudinal reinforcement m dpl 

Diameter for transverse reinforcement  m dpt 

Diameter for dowels m dpd 

Moist nit weight of soil  KN/�� Ws 

Unit weight of concrete KN/�� Wc 

Surcharge KN/�� qanet 

Factor of safety for bearing capacity   FS 

Allowable settlement m Sca 

Depth of water table from surface m Dw 

Depth of soil layer m D 

Cohesion of soil KN/�� C 

Soil friction angle degree ø 

Compression index   Cc 

Recompression index  Cs 
 

3. Objective function 

A feasible solution is any solution that satisfies all the system constraints. However, 

not all feasible solutions have significant meaning. An objective function is necessary to 

compare all the feasible solutions to determine the optimum solution or design which has 
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the best objective function value. Typically, an objective function will be a function of the 

variables that define the design [36].  

In structural engineering, some typical objective statements, and their associated objective 

functions are selecting the least cost member (minimizing cost) and selecting the least 

weight member (minimizing weight) [37].  A cost objective function should calculate the 

total cost of the footing by calculating the volume and areas of the subcomponents of the 

foundation and multiplying them with the corresponding rate.  

Table II. Cost calculation. 

Item Calculation   
Concrete (x(1)+x(2)+l)*(x(4)+C+(dpl/2))*x(3) Volume(m3) 
Blinding 
Concrete 

(x(1)+x(2)+l+0.2)*(x(3)+0.2)*0.1 
 

Volume(m3) 

Excavation (x(1)+x(2)+l+2*E)*(x(3)+2*E)*hf Volume(m3) 
Reinforcement 
steel 

((x(5)*(x(1)+x(2)+l))+(x(6)*(x(4)+cl1))+(
x(7)*(x(4)+cl2))+(x(8)*x(3))+(x(9)*x(3))+
(x(10)*x(3)))*7.85 

Weight (metric 
ton) 

Insulation ((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/2))*2)
+((x(1)+x(2)+l)*x(3))-(cl1*cb1)-(cl2*cb2) 

Area(m2) 

Form Work (x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/2))*2 Area(m2) 
 

��������� �������� = � ����� ���� (G2) 

��������� �������� = � ������ ∗ ���� (G3) 

��������� ��������
= (������� ������ ∗ ����)
+ (�������� �������� ������ ∗ ��)
+ (���������� ������ ∗ ����)
+ (������������ ����� ����ℎ� ∗ ���)
+ (���������� ���� ∗ ����) + (���� ���� ���� ∗ ���) 

(G4) 

��������� �������� =((((x(1)+x(2)+l+2*E)*(x(3)+2*E)*hf)*Rexc)+(((x
(1)+x(2)+l+0.2)*(x(3)+0.2)*0.1)*Rb)+(((x(1)+x(2)+l+x(3))*(x(4)+C
+(dpl/2))*2)*Rfw)+(((x(1)+x(2)+l)*(x(4)+C+(dpl/2))*x(3))*Rcon)+((
((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/2))*2)+((x(1)+x(2)+l)*x(3))-
(cl1*cb1)-
(cl2*cb2))*Rins)+(((x(5)*(x(1)+x(2)+l))+(x(6)*(x(4)+cl1))+(x(7)*(x(
4)+cl2))+(x(8)*x(3))+(x(9)*x(3))+(x(10)*x(3)))*7.85*Rst)) 

(G5) 
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4. Constraints 

In structural design, design constraints are frequently referred to as limit states. The 

limit states are the potential failure conditions, where failure is any state that makes the 

design infeasible (will not work for its intended purpose). Two categories of Limit states 

are generally considered in structural engineering, i.e., strength, and serviceability [38]. 

Strength limit states are potential modes of structural failure. For reinforced 

concrete combined footings, the failure may be by yielding of the reinforcement steel 

(permanent deformation), one-way shear and punching shear. These limit states are 

represented by the general form: Required Strength < Nominal Strength. The required 

strength is the internal force obtained from the structural analysis of the structure or system. 

nominal strength is the capacity of the member [39-41]. The serviceability limit states are 

conditions that are not strength-based but may affect the intended use of the structure. 

deflection, vibration, and slenderness are common serviceability limit states. Serviceability 

limit states may be written in the general form: actual behaviour < allowable behaviour.  

Constraints also are divided into two groups of explicit and implicit as described 

below: 

a.  Explicit constraints 

Explicit constraints or bounds (lower and upper bounds) are rules that restrict each 

xi to take on values only from a given set. These constraints are imposed by either code 

requirements or applicability considerations.  Each design variable x(i) can have lower and 

upper bounds. The bounds are passed as two arrays lb and ub, where each array contains 

10 elements corresponding to each design variable. 
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Since x(1) and x(2) are measured from column centres, these values could not be 

less than half the column length.  Hence, the lower bounds for x(1) and x(2) are cl1/2 and 

cl2/2, respectively. Although there is no mandatory upper bound for these variables, in 

most of the common applications there will be a limit for these values based on the site 

circumstances and it can be passed to ub array. x(3) cannot be less than the largest of the 

column’s width cb1 and cb2 and the upper limit can be also specified. The lower limits of 

x (4) are imposed by a minimum thickness required for the design of foundations as 

prescribed in Section 15.7 of the  ACI 318-11, and the fact that enough compression 

development length has to be provided for the column dowels as stated in Section 12.3, 

ACI 318-11. 

�(4) ≥ 150                                                                               Section 15.7, ACI 318M-11 

�(4)   ≥ ( 0.24 ∗ �� ∗
���

�∗���́
) + ��� + ��� + ���/2               Section 12.3, ACI 318M-11 

�(4)    ≥ (0.043 ∗ �� ∗ ���) + ��� + ��� + ���/2              Section 12.3, ACI 318M-11 
�(4)   ≥ 0.2 + ��� + ��� + ���/2                                          Section 12.3, ACI 318M-11 
�(4)   ≤ ℎ�                                                                                       Logical bound 
 

X(5) to x(10) has no bounds since the minimum reinforcement requirements by 

the ACI Code and the spacing requirements are both functions of the design variables, 

instead, these limitations are introduced as nonlinear constraints. 

The complete lower and upper bounds arrays are as follows: 

�� = [��1/2, ��2/2, ��1 ≥ ��2, �(4)���, 0,0,0,0,0,0]  
�� = [�1, �2, �3, ℎ�, ���, ��� , ���, ���, ���, ���]  

 

b. Implicit constraints 

Implicit constraints are the rules that determine which of the variable’s values in 

the solution space satisfy the criterion function and describe how the xis or variables must 

relate to each other. These constraints are imposed by the applicable codes and practices to 
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ensure the safety of the design, both in terms of geotechnical and structural constraints are 

described below with the reference for each one. 

a)  The first constraint is equality constraint to ensure a uniform pressure distribution 

between the soil and the foundation base. This constraint is based on moment 

equilibrium around column 1 and its set to limit the total length of the footing to be 

equal to twice the distance from the left edge to the center of force. 

 ∑��� = 0 

(G1) 

 ∑��� = (��1 + ��2) ∗ � − (��1 + ��1 + ��2 + ��2) ∗ � = 0 

(G2) 

 
� =

(��1 + ��2) ∗ �

(��1 + ��1 + ��2 + ��2)
 

(G3) 

 
�(1) + �(2) + � = 2 ∗ ��

(��1 + ��2) ∗ �

(��1 + ��1 + ��2 + ��2)
� + �(1)� 

(G4) 

 

�(1) + �(2) + � − �2 ∗ ��
(��1 + ��2) ∗ �

(��1 + ��1 + ��2 + ��2)
� + �(1)�� = 0 (C1) 

 

b) The second set of constraints is imposed by the geotechnical requirements. It 

guarantees that the pressure does not to exceed the allowable bearing capacity of the 

soil, and the settlements calculated does not to exceed the specified allowable 

settlement. 
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The bearing capacity for continuous or strip foundations according to Terzaqhi method 

can be calculated as per the following equation [42]: 

 �� = � ∗ �� + � ∗ ℎ� ∗ �� + 0.5 ∗ � ∗ � ∗ �� 

(G5) 

where  
Nc, Nq and N �: Bearing capacity factors according to Terzaghi. 

 

An approximate procedure to adjust the bearing capacity to take into account the 

presence of the water table is by multiplying the established qu by a factor Cw [43]: 

�� = 0.5 + 0.5(
��

ℎ� + �
) 

(G6) 

����� =
�� − ��

��
 

(G7) 

�����

=

�0.5 + 0.5 �
��

ℎ� + �
�� ∗ (��� + �ℎ��� + 0.5����) − (�ℎ�) − ����ℎ���

��
 

(G8) 

����� ������� ����  

�����
≤ ���� 

(G9) 

((��1 + ��1 + ��2 + ��2) ∗ ��)/((0.5 + 0.5(��/(ℎ� + �(3)))) ∗ (�

∗ �� + � ∗ ℎ� ∗ �� + 0.5 ∗ � ∗ �(3) ∗ ��) − (� ∗ ℎ�)

− ����ℎ���) ≤ ((�(1) + �(2) + �) ∗ �(3) )) 

(G10) 
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((��1 + ��1 + ��2 + ��2) ∗ ��)/((0.5 + 0.5(��/(ℎ� + �(3)))) ∗ (�

∗ �� + � ∗ ℎ� ∗ �� + 0.5 ∗ � ∗ �(3) ∗ ��) − (� ∗ ℎ�)

− ����ℎ���) − ((�(1) + �(2) + �(3)) ∗ �(3) )) ≤ 0 

(C2) 

 

The primary consolidation settlement can be calculated using the following equations 

If Dw=0 : 

��
� = (�� − ��) ∗

� + ℎ�

2
 (G11) 

If 0<Dw<hf : 

��
� = (�� ∗ ��) + �(�� − ��) ∗ (ℎ� − ��)� + �(�� − ��) ∗

� − ℎ�

2
� 

(G12) 

If hf<Dw<(D+hf)/2 : 

��
� = (�� ∗ ��) + �(�� − ��) ∗ �

�

2
+

ℎ�

2
− ���� 

(G13) 

Else: 

��
� = (��) ∗ �

�

2
+

ℎ�

2
� 

 

    
(G14) 

∆����
� =

1

6
∗ (∆��

� + 4∆��
� + ∆��

� ) 
(G15) 

∆��
� =

��1 + ��1 + ��2 + ��2

(�(1) + �(2) + �) ∗ �(3)
 

(G16) 

∆��
� =

��1 + ��1 + ��2 + ��2

��(1) + �(2) + � +
� − ℎ�

2
� ∗ ��(3) +

� − ℎ�
2

�
 

(G17) 



 27

∆��
� =

��1 + ��1 + ��2 + ��2

��(1) + �(2) + � + (� − ℎ�)� ∗ ��(3) + (� − ℎ�)�
 

(G18) 

For normally consolidated clay ��
� = ��

�   : 

�� =
�� ∗ ��

1 + ��
∗ log (

��
� + ∆����

�

��
� ) 

(G19) 

For over consolidated clay where ��
� + ∆�� ≤ ��

�  : 

�� =
�� ∗ ��

1 + ��
∗ log (

��
� + ∆����

�

��
� ) 

(G20) 

For over consolidated clay where ��
� ≤ ��

� ≤ ��
� + ∆��  : 

�� =
�� ∗ ��

1 + ��
∗ log (

��
�

��
�) + 

�� ∗ ��

1 + ��
∗ log (

��
� + ∆����

�

��
� ) 

(G21) 

�� − ����� ≤ 0 

(C3) 

 

c) The third set of constraints is imposed by the ACI code and it takes care of the failure 

caused by flexural shear. According to Section 11.1.3.1 of ACI 318-M11, the critical 

section for flexure shear is at a distance d “x(4)” from the face of the support. 

∅�� ≥ �� ACI 318M-11 

�� = �� + �� ACI 318M-11 

It is a common practice not to provide shear reinforcement in foundations, therefore 

in this model, it is assumed there is no provided shear reinforcement and the nominal 

strength of the section is solely provided by the concrete.  
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Figure 6. Critical area for flexural shear. 

�� = �� =  0.17���� � ∗ �� ∗ � ACI 318M-11 

�� = �� =  0.17���� � ∗  �(3) ∗ �(4) ACI 318M-11 

And the factored shear force at the section can be calculated as follows: 

 
��1 = �

��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) − �

��1

2
� − �(4)� (G22) 

 
��1′ = ��1 − (�

��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) + �

��1

2
� + �(4)�) (G23) 

 

��2 = ��
��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) + � − �

��2

2
� − �(4)�� − ��1 (G24) 

 
��2′ = �

��1 + ��2

�(1) + �(2) + �
� ∗ ��(2) − �

��2

2
� − �(4)� (G25) 
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��3 = �

��1 + ��2

�(1) + �(2) + �
� ∗ ��(3) − �

��2

2
� − �(4)� ∗ (�(1) + �(2) + �) (G26) 

 
�

��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) − �

��1

2
� − �(4)� − � ∗ 0.17���� � ∗  �(3)

∗ �(4) ≤ 0 

(C4) 

 
��1 − (�

��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) + �

��1

2
� + �(4)�) −  � ∗ 0.17���� �

∗  �(3) ∗ �(4) ≤ 0 

(C5) 

 

��
��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) + � − �

��2

2
� − �(4)�� − ��1 −  �

∗ 0.17���� � ∗  �(3) ∗ �(4) ≤ 0 

(C6) 

 
�

��1 + ��2

�(1) + �(2) + �
� ∗ ��(2) − �

��2

2
� − �(4)� −  � ∗ 0.17���� � ∗  �(3)

∗ �(4) ≤ 0 

(C7) 

 
�

��1 + ��2

�(1) + �(2) + �
� ∗ ��(3) − �

��2

2
� − �(4)� ∗ (�(1) + �(2) + �) −  �

∗ 0.17���� � ∗ (�(1) + �(2) + �) ∗ �(4) ≤ 0 

(C8) 

where  
PU1: Total factored load for column 1. 
PU2: Total factored load for column 2. 

 

According to Section 1.1.3.11 , ACI 318M-11 the total factored loads for each column is 

the greatest of: 
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�� = 1.4�� (G27) 

�� = 1.2�� + 1.6�� (G28) 

d) The fourth set of constraints is also imposed by the ACI Code and its concerned about 

punching shear failure: 

∅�� ≥ �� 
ACI 318M-11 

�� = �� + �� 
ACI 318M-11 

It is also a common practice not to provide punching shear reinforcement in 

foundations, therefore the nominal strength of the section will be solely provided by the 

concrete. 

 

Figure 7. Critical area for Punching shear. 

Section 11.11.2 allows a shear strength  Vc in footings without shear 

reinforcement for two-way shear action, the smallest of 
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�� ≤ �
1

6
� ∗ �1 + �

2

�
�� ∗ � ∗ ��� � ∗ �� ∗ � ACI 318M-11 

 

�� ≤ �
1

12
� ∗ ��

�� ∗ �

��
� + 2� ∗ � ∗ ��� � ∗ �� ∗ � 

ACI 318M-11 

�� ≤ �
1

3
� ∗ � ∗ ��� � ∗ �� ∗ � 

ACI 318M-11 

where  
β : ratio of long side to short side of the rectangular column. 
��: perimeter of the critical section taken at from the loaded area. 
d: effective depth of footing x(4). 
� : for normal-weight concrete 1. 
�� is assumed to be 40 for interior columns, 30 for edge columns, and 20for 
corner columns. 
 
For column 1 when its interior column; 

�� = (��1 + �(4) + ��1 + �(4)) ∗ 2 
(G29) 

For column 1 when its edge column; 

�� = (��1 + �(4)) + ��(1) +
��1

2
+

�(4)

2
� ∗ 2 

(G30) 

For column 2 when its interior column;  

�� = ���2 + �(4) + ��2 + �(4)� ∗ 2 
(G31) 

For column 2 when its edge column; 

�� = (��2 + �(4)) + ��(2) +
��2

2
+

�(4)

2
� ∗ 2 

(G32) 

��1 − �
��1 + ��2

�(1) + �(2) + �
� ∗ ���1 + �(4)� ∗ ���1 + �(4)� − ��� ≤ 0 (C9) 
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��1 − �
��1 + ��2

�(1) + �(2) + �
� ∗ ��(1) +

��1

2
+

�(4)

2
� ∗ ���1 + �(4)� − ��� ≤ 0 (C10) 

��2 − �
��1 + ��2

�(1) + �(2) + �
� ∗ ���2 + �(4)� ∗ ���2 + �(4)� − ��� ≤ 0 (C11) 

��2 − �
��1 + ��2

�(1) + �(2) + �
� ∗ ��(2) +

��2

2
+

�(4)

2
� ∗ ���2 + �(4)� − ��� ≤ 0 (C12) 

 

Figure 8. Critical section for flexural moment. 

e) Another set of constraints are also imposed by the ACI Code and its concerned about 

flexural failure due to bending moments: 

�� =
��1 + ��2

(�(1) + �(2) + �) ∗ �(3)
 

(G33) 

�′ =
���1 − ��� ∗ � ∗ �(1)�� ∗ �

�� ∗ � ∗ �
 

(G34) 

The factored moment at each section can be calculated as follows: 
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��1 = ��1 ∗ �′ − 0.5 ∗ �� ∗ �(3) ∗ ��(1) + �′�
�
 

(G35) 

��2 = 0.5�� ∗ �(3) ∗ (�(1) −
��1

2
)� 

(G36) 

��2′ = ��� ∗ �(3) ∗
��(1) +

��1
2 �

�

2
� −

��1 ∗ ��1

2
 

(G37) 

��3 = −��1 ∗ �� −
��2

2
� + ��� ∗ �(3) ∗

��(1) + � −
��2
2 �

�

2
� 

(G38) 

��3′ = −��1 ∗ �� +
��2

2
� − ���2 ∗

��2

2
�

+ ��� ∗ �(3) ∗
��(1) + � +

��2
2 �

�

2
� 

(G39) 

��4 =
��1

2�(3)
∗ (

�(3)

2
−

��1

2
)� 

(G40) 

��5 =
��2

2�(3)
∗ (

�(3)

2
−

��2

2
)� 

(G41) 

where  
Mu1-5: the factored moment at each section  
 
Based on section 10.3.1, ACI 318M-11. Design of cross-sections subject to flexure 

or axial loads, or to combined flexure and axial loads, shall be based on stress and strain 

compatibility using assumptions in section 10.2. 

� = � 
(G42) 
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�� ∗ �� = 0.85��′ ∗ � ∗ � 
(G43) 

� =
��

� ∗ �
 

(G44) 

� ∗ � ∗ � ∗ �� = 0.85��′ ∗ � ∗ � 
(G45) 

� =
 � ∗ � ∗ � ∗ ��

0.85 ∗ ��′ ∗ �
 

(G46) 

�� = �(� −
�

2
) 

(G47) 

�� =  � ∗ � ∗ � ∗ �� ∗ �� −
� ∗ �� ∗ �

2 ∗ 0.85 ∗ ��′
� 

(G48) 

� =
��

0.85 ∗ ��′
 

(G49) 

�� =
��

� ∗ ��
= ��� �1 − � ∗

�

2
� 

(G50) 

� ≥
1

�
∗ �1 − �1 − �

2���

��
�� 

(G51) 

��

� ∗ �
≥

1

�
∗ �1 − �1 − �

2���

��
�� 

(G52) 

��

� ∗ �
≥

0.85 ∗ ��′

��
∗ �1 − �1 − �

2���

�� ∗ � ∗ ��
�� 

(G53) 
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��

� ∗ �
≥

0.85 ∗ ��′

��
∗ �1 − �1 − �

2���

�� ∗ ∅ ∗ � ∗ ��
�� 

(G54) 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��

0.85��′ ∗ ∅ ∗ � ∗ ��
�� −

��

� ∗ �
 

(G55) 

Moreover, section 10.5.4 and section 7.12.2.1 of the ACI require the area of 

reinforcement not to be less than: 

       �� ≥ 0.0018 ∗
420

��
∗ � ∗ ℎ ACI 318M-11 

 

0 ≥ 0.0018 ∗
420

��
∗ � ∗ ℎ − �� 

(G56) 

The constraints will be: 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��1

0.85��′ ∗ ∅ ∗ �(3) ∗ �(4)�
��

−
�(5)

�(3) ∗ �(4)
 

(C13) 

 
0 ≥ �0.0018 ∗

420

��
∗ �(3) ∗ ��(4) + � +

���

2
�� − �(5) (C14) 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��2

0.85��′ ∗ ∅ ∗ �(3) ∗ �(4)�
��

−
�(6)

�(3) ∗ �(4)
 

(C15) 
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0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��2′

0.85��′ ∗ ∅ ∗ �(3) ∗ �(4)�
��

−
�(6)

�(3) ∗ �(4)
 

(C16) 

 
0 ≥ �0.0018 ∗

420

��
∗ �(3) ∗ ��(4) + � +

���

2
�� − �(6) (C17) 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��3

0.85��′ ∗ ∅ ∗ �(3) ∗ �(4)�
��

−
�(7)

�(3) ∗ �(4)
 

(C18) 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��3′

0.85��′ ∗ ∅ ∗ �(3) ∗ �(4)�
��

−
�(7)

�(3) ∗ �(4)
 

(C19) 

   

 
0 ≥ �0.0018 ∗

420

��
∗ �(3) ∗ ��(4) + � +

���

2
�� − �(7) (C20) 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��4

0.85��′ ∗ ∅ ∗ (�(4) + ��1) ∗ �(4)�
��

−
�(8)

�(4) ∗ (�(4) + ��1)
 

(C21) 
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0 ≥ �0.0018 ∗

420

��
∗ (�(4) + ��1) ∗ ��(4) + � +

���

2
�� − �(8) (C22) 

 

0 ≥
0.85 ∗ ��′

��
∗ �1 − �1 − �

2��5

0.85��
′ ∗ ∅ ∗ (�(4) + ��2) ∗ �(4)�

��

−
�(9)

�(4) ∗ (�(4) + ��2)
 

(C23) 

 
0 ≥ �0.0018 ∗

420

��
∗ (�(4) + ��2) ∗ ��(4) + � +

���

2
�� − �(9) (C24) 

 
0 ≥ �0.0018 ∗

420

��
∗ (�(1) + �(2) + �) ∗ ��(4) + � +

���

2
�� − �(10) (C25) 

 

f) Another set of constraints are also imposed by the ACI Code, Section 10.3. This defines 

the concept of tension or compression-controlled sections in terms of net tensile strain 

in the reinforcement closest to the tension face. Tension-controlled sections are those 

sections in which the �� is equal to or greater than 0.005 just as the concrete in the 

compression reaches its assumed strain limit of 0.003. 

 
�� = 0.003(

� − �

�
) ≥ 0.005 (G57) 

 � = �/� 
ACI 318M-11 

 
� =

�� ∗ ��

0.85�� ∗ �
 (G58) 

 � = 0.85 − 0.007(��� − 28) (G59) 
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   0.65 ≤ � ≤ 0.85         
ACI 318M-11 

 
0.003(

0.85� ∗ � ∗ � ∗ ��

�� ∗ ��
− 1) ≥ 0.005 (G60) 

 
0 ≥ 0.005 − 0.003(

0.85� ∗ � ∗ � ∗ ��

�� ∗ ��
− 1) 

(G61) 

 
0 ≥ 0.005 − 0.003 �

0.85�(3) ∗ �(4) ∗ � ∗ ��

�(5) ∗ ��
− 1� (C26) 

 
0 ≥ 0.005 − 0.003 �

0.85�(3) ∗ �(4) ∗ � ∗ ��

�(6) ∗ ��
− 1� (C27) 

 
0 ≥ 0.005 − 0.003 �

0.85�(3) ∗ �(4) ∗ � ∗ ��

�(7) ∗ ��
− 1� (C28) 

 
0 ≥ 0.005 − 0.003 �

0.85(�(1) + �(2) + �) ∗ �(4) ∗ � ∗ ��

�(8) ∗ ��
− 1� (C29) 

 
0 ≥ 0.005 − 0.003 �

0.85(�(1) + �(2) + �) ∗ �(4) ∗ � ∗ ��

�(9) ∗ ��
− 1� (C30) 

g) The last set of constraints are also imposed by the ACI Code and its concerned about 

spacing between the reinforcement bars. According to ACI 7.6, the minimum clear 

spacing between parallel bars in a layer shall be dp, but not less than 25mm. And the 

maximum spacing should be less than three times the thickness but not more than 

450mm. 

 ≤ 3ℎ (G62) 
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 � ≤ 0.45 (G63) 

 � ≥ �� (G64) 

 � ≥ 0.025 (G65) 

 
# �� ���� =

��

�������
 (G66) 

 
� =

� − 2� − #�� ���� ∗ ��

#�� ���� − 1
 (G67) 

 

�
�(3) − 2� − �

�(5)
����

� ∗ ���

�
�(5)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C31) 

 

�
�(3) − 2� − �

�(5)
����

� ∗ ���

�
�(5)
����

� − 1
� − 0.45 ≤ 0 (C32) 

 

��� − �
�(3) − 2� − �

�(5)
����

� ∗ ���

�
�(5)
����

� − 1
� ≤ 0 (C33) 

 

0.025 − �
�(3) − 2� − �

�(5)
����

� ∗ ���

�
�(5)
����

� − 1
� ≤ 0 (C34) 

 

�
�(3) − 2� − �

�(6)
����

� ∗ ���

�
�(6)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C35) 
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�
�(3) − 2� − �

�(6)
����

� ∗ ���

�
�(6)
����

� − 1
� − 0.45 ≤ 0 (C36) 

 

��� − �
�(3) − 2� − �

�(6)
����

� ∗ ���

�
�(6)
����

� − 1
� ≤ 0 (C37) 

 

0.025 − �
�(3) − 2� − �

�(6)
����

� ∗ ���

�
�(6)
����

� − 1
� ≤ 0 (C38) 

  

 

 

�
�(3) − 2� − �

�(7)
����

� ∗ ���

�
�(7)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C39) 

 

�
�(3) − 2� − �

�(7)
����

� ∗ ���

�
�(7)
����

� − 1
� − 0.45 ≤ 0 (C40) 

 

��� − �
�(3) − 2� − �

�(7)
����

� ∗ ���

�
�(7)
����

� − 1
� ≤ 0 (C41) 

 

0.025 − �
�(3) − 2� − �

�(7)
����

� ∗ ���

�
�(7)
����

� − 1
� ≤ 0 (C42) 

 

�
�(1) +

��1
2 +

�(4)
2 − � − �

�(8)
����

� ∗ ���

�
�(8)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C43) 
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�
�(1) +

��1
2 +

�(4)
2 − � − �

�(8)
����

� ∗ ���

�
�(8)
����

� − 1
� − 0.45 ≤ 0 (C44) 

 

��� − �
�(1) +

�1
2 +

�(4)
2 − � − �

�(8)
����

� ∗ ���

�
�(8)
����

� − 1
� ≤ 0 (C45) 

 

0.025 − �
�(1) +

��1
2 +

�(4)
2 − � − �

�(8)
����

� ∗ ���

�
�(8)
����

� − 1
� ≤ 0 (C46) 

  

 

 

�
�(2) +

��2
2 +

�(4)
2 − � − �

�(9)
����

� ∗ ���

�
�(9)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C47) 

 

�
�(2) +

��2
2 +

�(4)
2 − � − �

�(9)
����

� ∗ ���

�
�(9)
����

� − 1
� − 0.45 ≤ 0 (C48) 

 

��� − �
�(2) +

��2
2 +

�(4)
2 − � − �

�(9)
����

� ∗ ���

�
�(9)
����

� − 1
� ≤ 0 (C49) 

 

0.025 − �
�(2) +

��2
2 +

�(4)
2 − � − �

�(9)
����

� ∗ ���

�
�(9)
����

� − 1
� ≤ 0 

(C50) 
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�
(1) + �(2) + � − 2� − �

�(10)
����

� ∗ ���

�
�(10)
����

� − 1
� − 3 ��(3) + � +

���

2
� ≤ 0 (C51) 

 

�
�(1) + �(2) + � − 2� − �

�(10)
����

� ∗ ���

�
�(10)
����

� − 1
� − 0.45 ≤ 0 (C52) 

 

��� − �
�(1) + �(2) + � − 2� − �

�(10)
����

� ∗ ���

�
�(10)
����

� − 1
� ≤ 0 (C53) 

 

0.025 − �
�(1) + �(2) + � − 2� − �

�(10)
����

� ∗ ���

�
�(10)
����

� − 1
� ≤ 0 (C54) 
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NUMERICAL EXPERIMENTATION 

The optimization process was formulated in MATLAB and operated using 5 

different solvers and algorithms. The MATLAB code is found in the appendices. First, an 

example case of concentric loaded rectangular combined footing (see appendix G) which 

involves a restricted side dimension (property line column) with known optimum solution 

was optimized.  Next, the variables which that were considered to affect the cost was 

modified in various cases and then their respective effect on the objective function was 

recorded. The design parameters are given in Table 3 below.  

 The material properties and ranges used in the optimization  as upper bounds for 

some of the variables are shown in Tables 4 and 5, and the cost data based on the US 

national average for the used materials are shown in Table 6. The conventional design 

solution is shown in Table 7.  
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Table III. Input data used in optimization. 

   Unit Symbol 
Clear cover 7.50E-02 m C 

Depth of footing 1.52E+00 m hf 
Excavation Margin 5.00E-01 m E 

Soil initial void ratio 7.50E-01   e0 

Dead load on column 1 7.56E+02 KN PD1 

LIVE load on column 1 3.34E+02 KN PL1 

Dead load on column 2 8.90E+02 KN PD2 
LIVE load on column 2 5.56E+02 KN PL2 

Column 1 length 4.57E-01 m cl1 

Column 1 width 4.57E-01 m cb1 

Column 2 length 4.57E-01 m cl2 

Column 2 length 4.57E-01 m cb2 

Center to center column spacing 9.14E+00 m l 

Diameter for longitudinal reinforcement 2.50E-02 m dpl 

Diameter for transverse reinforcement  2.50E-02 m dpt 

Diameter for dowels 1.60E-02 m dpd 

Moist nit weight of soil  1.81E+01 KN/�� Ws 

Unit weight of concrete 2.50E+01 KN/�� Wc 

Surcharge 0.00E+00 KN/�� qanet 

Factor of safety for bearing capacity 3.00E+00   FS 
Allowable settlement 5.08E-02 m Sca 
Depth of water table from surface 1.83E+00 m Dw 
Depth of soil layer 3.05E+00 m D 
Cohesion of soil 3.35E+01 KN/�� C 

Soil friction angle 2.00E+01 degree ø 
Compression index 1.50E-01   Cc 
 

Table IV. Material properties. 

Concrete compressive strength fc’ 27.579 MPa 

Steel yield strength fy 413.68 MPa 

Specific gravity of steel, γs 7.86 t/m3 
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Table V. Ranges used in optimization. 

  Unit Symbol 
Upper value for Distance between left edge to 
center column 1, x(1) 

0.6096  m r1 

Upper value for Distance between right edge to 
center column 2, x(2) 

10 m r2 

Upper value for width (B), x(3) 10 m r3 
 

Table VI. Cost data as taken from (Rsmeans 2011) based on national average. 

Item Price Unit symbol 
Excavation 19.80   $/ �� Rexc 
Form work 77.18   $/ �� Rfw 
Concrete(4000psi)  182.56   $/ �� Rcon  
Insulation 13.35   $/ �� Rins 
Blinding Concrete (2500 psi)  169.41   $/ �� Rb  

Reinforcement Steel labor 2524.29   $/ ���  Rst  
 

 
Table VII. Conventional design. 

  Unit Symbol 
Distance between left edge to center column 1 6.10E-01 m x(1) 
Distance between right edge to center column 2 1.89E+00 m x(2) 
Width (B) 3.07E+00 m x(3) 
Effective depth (d) 5.80E-01 m x(4) 
As for -ve moment 1.33E-02 �� x(5) 
As for +ve moment under column 1 3.75E-03 �� x(6) 
As for +ve moment under column 2 3.75E-03 �� x(7) 
As for transverse moment under column 1 1.91E-03 �� x(8) 
As for transverse moment under column 2 2.88E-03 �� x(9) 
As for temp and shrinkage 1.42E-02 �� x(10) 
Objective function value 6.10E-01 $  
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RESULTS AND DISCUSSION 

Optimum results for the example are given in Tables 8. All optimum dimensions and 

reinforcements were found using several algorithms. The results from three algorithms 

(Global search: sqp and interior point, and Multistart: interior point) were identical  and 

the results from the other two solvers (genetic and pattern search) were slightly higher as 

both solvers got trapped in a local optimum. The solution found by the former three solvers 

is identical to the conventional design optimum solution.  

For instance, in the global search and Multistart optimization approaches, the length 

from the left edge to the centre of the left column, i.e., x(1) was evaluated to be 0.61m 

(which was equal to the conventional design case). The results from the genetic and pattern 

search were 0.373 m and 0.390 m, respectively (which corresponded to a difference of 

almost 37%).  Moreover, the calculated values for the effective depth was 0.58 m for all 

the optimization solvers except the genetic algorithm, which reported a slightly lesser value 

of 0.572 m. 
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Table VIII. Optimization results. 

Algorithm 
Global 

search: sqp 

Global 
search: 
interior 

point 

Multistart: 
interior 

point 
genetic 

pattern 
search 

Function 
value 1.32E+04 1.32E+04 1.32E+04 1.36E+04 1.34E+04 

time 1.97E+04 1.97E+04 1.19E+05 1.62E+05 1.86E+01 

x(1) 6.10E-01 6.10E-01 6.10E-01 3.73E-01 3.90E-01 

x(2) 1.89E+00 1.89E+00 1.89E+00 1.66E+00 1.67E+00 

x(3) 3.07E+00 3.07E+00 3.07E+00 3.30E+00 3.21E+00 

x(4) 5.80E-01 5.80E-01 5.80E-01 5.72E-01 5.80E-01 

x(5) 1.33E-02 1.33E-02 1.33E-02 1.46E-02 1.43E-02 

x(6) 3.75E-03 3.75E-03 3.75E-03 3.98E-03 3.94E-03 

x(7) 3.75E-03 3.75E-03 3.75E-03 3.98E-03 3.94E-03 

x(8) 1.91E-03 1.91E-03 1.91E-03 2.85E-03 2.06E-03 

x(9) 2.88E-03 2.88E-03 2.62E-03 3.10E-03 2.93E-03 

x(10) 1.42E-02 1.42E-02 1.42E-02 1.35E-02 1.43E-02 

Exit Flag 1 1 1 1 1 

 
Table IX. Properties of the optimization process. 

Algorithm GS: sqp 
GS: 

interior 
point 

Multistart: 
interior 

point 
genetic 

pattern 
search 

Num trial points 400000 400000       
Num stage points 80000 80000       
Max Function 
evaluation     

100000 
  

5000000 

Max Iteration     10000   100000 
Num trial points     1000     
pop size       40000   
Max generation       16000   
Max stall       2000   

 

Summary of the design variables for the conventional design and the optimization 

are shown in Table 10. The optimization results from Global Search solver with the interior 

point algorithm were selected for the rest of the experimentation as the time for the 
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mentioned solver is the minimum in comparison to the other solvers which were able to 

find the global minimum. 

Table X. Conventional design and optimization results. 

  
Conventional 

design 
optimization 

Distance between left edge to center column 1 6.10E-01 6.10E-01 

Distance between right edge to center column 2 1.89E+00 1.89E+00 

Width (B) 3.07E+00 3.07E+00 

Effective depth (d) 5.80E-01 5.80E-01 

As for -ve moment 1.33E-02 1.33E-02 

As for +ve moment under column 1 3.75E-03 3.75E-03 

As for +ve moment under column 2 3.75E-03 3.75E-03 

As for transverse moment under column 1 1.91E-03 1.91E-03 

As for transverse moment under column 2 2.62E-03 2.62E-03 

As for temp and shrinkage 1.42E-02 1.42E-02 
 

Several optimization processes were performed for the same example using multiple 

steel grades (grade 420, 520, and 550) and for different loads ratios to investigate the 

overall effect of using higher-grade materials. Here, the research investigated whether the 

reinforcement steel or concrete grade tremendously affected the total construction cost or 

not. The load ratios were chosen such that the load varies as a percentage of the original 

load (100%,150%, and 200%) as shown on table 11. 

Table XI. Load ratios. 

Load ratio 100% 150% 200% Unit 
Dead load on column 1 7.56E+02 1.13E+03 1.51E+03 KN 
LIVE load on column 1 3.34E+02 5.01E+02 6.68E+02 KN 
Dead load on column 2 8.90E+02 1.34E+03 1.78E+03 KN 
LIVE load on column 2 5.56E+02 8.34E+02 1.11E+03 KN 

 

The influence of using higher steel grade on the objective function can be seen in 

Figure 11. For the three load percentages (i.e., 100%,150%, and 200%), the objective 
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function value decreased slightly with the increase of steel yield strength. In particular, at 

the 100% load ratio, the total cost dropped from a value of 13194 to a value of 12287 $. It 

is worth taking note that this is valid due to the fact that the optimization model allows all 

the other design variables (which contribute to the cost) to change once the material 

properties change.    

 

Figure 9. Function value ($) vs Steel grade (MPa). 

Several other optimization processes were performed for the same example to 

investigate the effect of concrete grade on the total cost of the structure. In this case, 

different concrete grades with compressive strength range from 20 to 82 MPa and for 

different load ratios were used. The influence of using higher strength concrete on cost can 

be seen in Figure 12, and for 100%,150%, and 200% load percentages. For compressive 

strength from 20 to 35 MPa, it does not seem to have a major impact on the total cost of 

the structure. 
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For higher-strength concrete, the objective function value tends to increase 

significantly with the increase of compressive strength. A critical look at all load ratios 

show that the rise in the objective function was very gentle between 20MPa and 42MPa 

but rises sharply between 55MPa and 85MPa. This is because concrete with compressive 

strength above 55MPa is significantly more expensive than concrete with lower strengths.  

 

Figure 10. Function value ($) vs Concrete compressive strength (MPa). 

 

A different optimization scenario was performed for the same examples to 

investigate the effect of foundation depth on the overall cost of the combined footing. In 

this case, different depths were selected for the combined footing, the depth varied from 

0.6096 to 3.048m. The influence of changing the depth on cost can be seen in Figure 12. It 

seems that the cost decreased significantly in the range between 0.5 to 2.0m, then the cost 
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remained almost constant with the depth increase. The exhibited behavior is due to the fact 

that the settlement constraint was active until reaching a point where the settlement is no 

longer controlling, and the constraint is inactive.  

 

Figure 11. Function value ($) vs Foundation depth (m). 

 

Different optimization design scenario was carried out to investigate the effect of 

column shape on the total cost.  The same parameters in the previous examples were 

assumed to ensure that circular columns instead of their original square columns were used 

(but had an equivalent magnitude of the area). The results are illustrated in Table 12 and 

figure 13. There results showed negligible increase in cost for the combined footing with 

the circular columns 

 

Table XII. Function value for circular and rectangular columns. 
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Figure 12. Function value for circular and rectangular columns. 

 

Few assumptions were made in this particular model. For instance, the strain in the 

extreme steel fibers is assumed to be more than 0.005 (i.e., tension-controlled). Moreover, 

no shear reinforcement is provided to resist both flexural and punching shear and the shear 

resistance is solely provided by concrete since it is the most common practice. This model 

was limited to concentric loaded rectangular footings with uniform soil pressure 

distribution.   

 

 

 

 

 

 

 

 

 

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

Obj function Value $

Circular vs Square columns

Series1 Series2



 53

 

                                                                        

CONCLUSION 

The main goal of the research was to formulate an optimization model that can solve 

concentric loaded rectangular footings in a general manner. This stems from the advantages 

accrued from using this approach in design jobs instead of the traditional methods. 

Particularly, it ensures a safe design with the least possible cost in time. The optimization 

model developed works to find the value of optimization variables, i.e. foundation 

dimensions and steel reinforcement areas, that gives the minimum value of the objective 

function (a comprehensive cost function).  These values bounded with upper and lower 

limits and constrained with several sets of inequality constraints that represent the 

structural, geotechnical, and logical requirements. 

Five solvers were applied on one example using MATLAB computer program with 

the global optimization toolbox. Two solvers did not find the global minima and got 

trapped in local minima and therefore eliminated. Three solvers showed identical results 

for the global optimum. However, optimization time varied significantly, and the quickest 

of the three solvers was used for the rest of the experimentation. The comparison between 

the conventional design and the optimization results showed identical results. Charts for 
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steel yield strength, concrete compressive strength and foundation depth against the 

objective function value was built to show the variation of cost for different loads to column 

spacing ratios. It was found that the cost tended to decrease with the use of higher steel 

grades for all load cases. There was no major effect for the concrete compressive strength 

in the range of 20 to 35 MPa on the value of the objective function. However, for higher 

concrete strengths >35MPa, the objective function value increased significantly for most 

cases. 

The influence of changing the depth on the total cost was significant in terms of cost 

reduction for the depth ranges between 0.5 to 2.0m, then the cost remained almost constant 

with the depth increase.  

There is no significant impact of the column shape on the cost function value for the 

combined footings. The optimization model made it easier to investigate the effect of 

changing material properties and site conditions on the overall cost since you can compare 

the global minimum for different optimization processes with different material properties. 

Future studies will be conducted to extend the model capability to cases of optimization in 

eccentrically loaded foundations with real soil pressure, as well as incorporate material 

properties as design variables. 
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APPENDIX A                                                                                         

OPTIMIZATION MATLAB CODE 

 clear 
clc 
tic 
%Input variables in the accompaying excel sheet 
data = xlsread('opt.xls'); 
  
%------------------------------------------------------ 
  
%Choose solver 
Solver=1; 
%1 for GlobalSearch-sqp 
%2 for GlobalSearch-Intpoint 
%3 for Multistarrt 
%4 for GENETIC 
%5 for Pattern Search 
  
%------------------------------------------------------ 
  
Cshape=data(1,1);% column shape,0 for circular,1 for 
rectangular or square 
C =data(3,1);%clear cover 
hf =data(4,1);%footing depth in (m) 
E =data(5,1);%excavation margin in (m) 
Rexc=data(6,1);%rate for excavation ($/m3) 
Rfw=data(7,1);%rate for form work ($/m2) 
Rcon=data(8,1);%rate for concrete ($/m3) 
Rins=data(9,1);%rate for insulation ($/m2) 
Rb=data(10,1);%rate for blinding concrete ($/m3) 
Rst=data(11,1);%rate for reinforcment steel ($/TON) 
e0=data(12,1);%Soil initial void ratio 
PD1=data(13,1);%Column 1 -Dead load (KN) 
PL1=data(14,1);%Column 1 -Live load (KN) 
PD2=data(15,1);%Column 2 -Dead load (KN) 
PL2=data(16,1);%Column 2 -Live load (KN) 
c1=data(17,1);%Column 1 diameter (m) 
c2=data(18,1);%Column 2 diameter (m) 
cl1=data(19,1);%Column 1 dim along the long axis in (m) 
cb1=data(20,1);%Column 1 dim along the short axis in 
(m) 
cl2=data(21,1);%Column 2 dim along the long axis in (m) 
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cb2=data(22,1);%Column 2 dim along the short axis in 
(m) 
fc=data(23,1);%concrete compressive strength in (MPa) 
fy=data(24,1);%steel yield stress in (MPa) 
l=data(25,1);%center to center spacing between columns 
in(m) 
phi1=data(26,1);%one way shear reduction factor 
phi2=data(27,1);%two way shear reduction factor 
phi3=data(28,1);%flexture reduction factor 
r1=data(29,1);%upper bound for x1 
r2=data(30,1);%upper bound for x2 
r3=data(31,1);%upper bound for B 
dpl=data(32,1);%diameter for longitudenal bars in (M) 
dpt=data(33,1);%diameter for transverse bars in (M) 
dpd=data(34,1)%diameter for the dowels in (M) 
FS=data(35,1);%Factor of safety for bearing capacity 
Sca=data(36,1);%Allowable settelment 
lam=data(37,1);%lightweight-aggregate-concrete factor 
surcharge=data(38,1);%surcharge in (kn/m2) 
Dw=data(39,1);%Depth of water taple from surface 
D=data(40,1);%Depth of soil layer 
GAMA=data(41,1);%Moist unit weight of soil  
CO=data(42,1);%Cohesion of soil 
angle=data(43,1);%Soil friction angle 
Cc=data(44,1);%Consolidation coefficant 
  
HC=D-hf; 
  
%------------------------------------------------------ 
  
%starting point  
x0(1)=data(45,1); 
x0(2)=data(46,1); 
x0(3)=data(47,1); 
x0(4)=data(48,1); 
x0(5)=data(49,1); 
x0(6)=data(50,1); 
x0(7)=data(51,1); 
x0(8)=data(52,1); 
x0(9)=data(53,1); 
x0(10)=data(54,1); 
  
%------------------------------------------------------ 
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%Bars Area import 
X= xlsread('ReinforcmentArea.xls'); 
V= X(X(:,1) == dpl,:);  
N= X(X(:,1) == dpt,:);  
Adpl= V(2);%area for longitudenal bars in (m2) 
Adpt= N(2);%area for transverse bars in (m2) 
  
%------------------------------------------------------ 
  
%Bearing capacity factores import 
FNC= xlsread('Nc.xls'); 
FFNC= FNC(FNC(:,1) == angle,:);  
NC= FFNC(2); 
  
FNQ= xlsread('Nq.xls'); 
FFNQ= FNQ(FNQ(:,1) == angle,:);  
NQ= FFNQ(2); 
  
FNG= xlsread('Ng.xls'); 
FFNG= FNG(FNG(:,1) == angle,:);  
NG= FFNG(2); 
  
%------------------------------------------------------ 
  
%Minimum effective depth (d) 
dmin=max([0.15,(0.24*fy*dpd/(lam*((fc)^0.5)))+(dpd+dpt+
(dpl/2)),((0.043*fy*dpd)+(dpd+dpt+(dpl/2))),(0.2+(dpd+d
pt+(dpl/2)))]); 
  
%------------------------------------------------------ 
  
%load combination 
ff1=[1.4*PD1,((1.2*PD1)+(1.6*PL1))]; 
ff2=[(1.4*PD2),((1.2*PD2)+(1.6*PL2))]; 
PU1=max(ff1);%Factored load for column 1 
PU2=max(ff2);%Factored load for column 2 
  
%------------------------------------------------------ 
  
%sigma0 calculation 
if Dw==0 
    sigma0=(GAMA-9.807)*((D+hf)/2) 
else 
    if 0<Dw<hf 
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        sigma0=(Dw*GAMA)+((hf-Dw)*(GAMA-9.807))+((GAMA-
9.807)*((D-hf)/2)) 
    else 
        if hf<Dw<((D+hf)/2) 
               sigma0=(Dw*GAMA)+((GAMA-
9.807)*((D/2)+(hf/2)-Dw)) 
        else sigma0=GAMA*((D/2)+(hf/2)) 
        end 
    end 
end 
  
%------------------------------------------------------ 
  
%beta calculation 
Beta=0.85-0.007*(fc-28); 
if Beta >=0.85 
    Beta=0.85; 
else 
    if Beta<=0.65 
        Beta=0.65; 
    end 
end 
%------------------------------------------------------ 
if Cshape==1 
  
%two way shear variables 
ff3=[cl1/cb1,cb1/cl1]; 
ff4=[cl2/cb2,cb2/cl2]; 
B1=max(ff3); 
B2=max(ff4); 
%Minimum width (B) 
Bmin=max([cb1,cb2]); 
  
%------------------------------------------------------ 
  
%objective function  
fun = @(x) 
objfunr(x,l,E,hf,Rb,Rfw,Rcon,Rins,Rst,Rexc,C,cl1,cl2,cb
1,cb2,dpl); 
fun(x0) 
  
%------------------------------------------------------ 
  
%linear constrains 
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A=[]; 
b=[]; 
Aeq=[]; 
beq=[]; 
  
%------------------------------------------------------ 
  
%variables bounds 
lb=[cl1/2,cl2/2,Bmin,dmin,0,0,0,0,0,0]; 
ub=[r1,r2,r3,hf,inf,inf,inf,inf,inf,inf]; 
  
%------------------------------------------------------ 
  
%nonlinear constrains 
nonlincon=@(x) 
constr(x,l,fc,fy,PU1,PU2,phi1,phi2,phi3,B1,B2,C,cl1,cl2
,cb1,cb2,Cc,HC,e0,sigma0,Sca,FS,Dw,CO,NC,NQ,GAMA,NG,PD1
,PL1,PD2,PL2,dpl,dpt,Adpl,Adpt,hf,Beta,surcharge) 
  
%-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 
if Solver==1 
    % fmincon options 
options = 
optimoptions(@fmincon,'algorithm','sqp','Display','fina
l-detailed','ConstraintTolerance',1e-
8,'MaxFunctionEvaluations',5000,'MaxIterations',2000,'O
ptimalityTolerance',1e-6); 
%[c,ceq]=nonlincon(x0); 
  
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options); 
  
% fmincon SOLVER 
%[x,fval,eflag,output] = fmincon(problem); 
  
% Global search solver 
gs = 
GlobalSearch('Display','final','FunctionTolerance',0,'N
umTrialPoints',400000,'NumStageOnePoints',80000) 
rng default % for reproducibility 
[xg,fg,exitflag,output,solutions] = run(gs,problem) 
  



 66

else if Solver==2 
        % fmincon options 
options = optimoptions(@fmincon,'Display','final-
detailed','ConstraintTolerance',1e-
8,'MaxFunctionEvaluations',5000,'MaxIterations',2000,'O
ptimalityTolerance',1e-6); 
%[c,ceq]=nonlincon(x0); 
  
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options); 
  
% fmincon SOLVER 
%[x,fval,eflag,output] = fmincon(problem); 
  
% Global search solver 
gs = 
GlobalSearch('Display','final','FunctionTolerance',0,'N
umTrialPoints',100000,'NumStageOnePoints',20000) 
rng default % for reproducibility 
[xg,fg,exitflag,output,solutions] = run(gs,problem) 
  
    else if Solver==3 
            % fmincon options 
options = optimoptions(@fmincon,'Display','off', 
'MaxFunctionEvaluations',10000,'MaxIterations',1000) 
%'Algorithm','sqp' 
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options) 
  
%Multistart solver 
ms = 
MultiStart('PlotFcn',@gsplotbestf,'UseParallel',true) 
[xg,fg,exitflag,output,solutions] = 
run(ms,problem,100000) 
  
        else if solver==4 
                
options=optimoptions('ga','InitialPopulationMatrix',x0,
'PlotFcn',{@gaplotbestf,@gaplotmaxconstr},'Display','it
er','PopulationSize',40000,'ConstraintTolerance',0.0000
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001,'FunctionTolerance',0.0000001,'MaxGenerations',1600
0,'UseParallel',true,'MaxStallGenerations',2000); 
nvars=10; 
  
rng(1,'twister'); 
[xg,fg,exitflag,output,solutions]=ga(fun,nvars,[],[],[]
,[],lb,ub,nonlincon,options); 
            else 
                options = 
optimoptions('patternsearch','InitialMeshSize',100,'Dis
play','iter','PlotFcn',@psplotbestf,'MaxFunctionEvaluat
ions',5000000,'MaxIterations',100000,'UseParallel',true
,'ConstraintTolerance',1.0000e-
20,'FunctionTolerance',1.0000e-
20,'MeshTolerance',1.0000e-20); 
 %x = 
patternsearch(fun,x0,[],[],[],[],lb,ub,nonlincon,option
s) 
 [x,fval,exitflag,output] = 
patternsearch(fun,x0,[],[],[],[],lb,ub,nonlincon,option
s) 
            end 
        end 
    end 
end 
  
%++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++ 
else 
  %two way shear variables 
B1=1; 
B2=1; 
%Minimum width (B) 
Bmin=max([c1,c2]); 
  
%objective function  
fun = @(x) 
objfunc(x,l,E,hf,Rb,Rfw,Rcon,Rins,Rst,Rexc,C,c1,c2,dpl)
; 
fun(x0) 
disp(['initial objective;' num2str(fun(x0))]) 
  
%linear constrains 
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A=[]; 
b=[]; 
Aeq=[]; 
beq=[]; 
  
%variables bounds 
lb=[c1/2,c2/2,Bmin,dmin,0,0,0,0,0,0]; 
ub=[r1,r2,r3,hf,inf,inf,inf,inf,inf,inf]; 
  
%nonlinear constrains 
nonlincon=@(x) 
constc(x,l,fc,fy,PU1,PU2,phi1,phi2,phi3,B1,B2,C,c1,c2,C
c,HC,e0,sigma0,Sca,FS,Dw,CO,NC,NQ,GAMA,NG,PD1,PL1,PD2,P
L2,dpl,dpt,Adpl,Adpt,hf,Beta,surcharge) 
  
%-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
=-=- 
if Solver==1 
    % fmincon options 
options = 
optimoptions(@fmincon,'algorithm','sqp','Display','fina
l-
detailed','ConstraintTolerance',0.000001,'MaxFunctionEv
aluations',10000,'MaxIterations',4000,'OptimalityTolera
nce',1e-5); 
%[c,ceq]=nonlincon(x0); 
  
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options); 
  
% fmincon SOLVER 
%[x,fval,eflag,output] = fmincon(problem); 
  
% Global search solver 
gs = 
GlobalSearch('Display','final','FunctionTolerance',0,'N
umTrialPoints',1000000,'NumStageOnePoints',200000) 
rng default % for reproducibility 
[xg,fg,exitflag,output,solutions] = run(gs,problem) 
  
else if Solver==2 
        % fmincon options 
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options = optimoptions(@fmincon,'Display','final-
detailed','ConstraintTolerance',1e-
14,'MaxFunctionEvaluations',5000,'MaxIterations',2000,'
OptimalityTolerance',1e-8); 
%[c,ceq]=nonlincon(x0); 
  
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options); 
  
% fmincon SOLVER 
%[x,fval,eflag,output] = fmincon(problem); 
  
% Global search solver 
gs = 
GlobalSearch('Display','final','FunctionTolerance',0,'N
umTrialPoints',100000,'NumStageOnePoints',20000) 
rng default % for reproducibility 
[xg,fg,exitflag,output,solutions] = run(gs,problem) 
  
    else if Solver==3 
            % fmincon options 
options = optimoptions(@fmincon,'Display','off', 
'MaxFunctionEvaluations',10000,'MaxIterations',1000) 
%'Algorithm','sqp' 
%problem defenition 
problem = 
createOptimProblem('fmincon','x0',x0,'objective',fun,'l
b',lb,'ub',ub,'nonlcon',nonlincon,'options',options) 
  
%Multistart solver 
ms = 
MultiStart('PlotFcn',@gsplotbestf,'UseParallel',true) 
[xg,fg,exitflag,output,solutions] = 
run(ms,problem,100000) 
  
        else if solver==4 
                
options=optimoptions('ga','InitialPopulationMatrix',x0,
'PlotFcn',{@gaplotbestf,@gaplotmaxconstr},'Display','it
er','PopulationSize',40000,'ConstraintTolerance',0.0000
001,'FunctionTolerance',0.0000001,'MaxGenerations',1600
0,'UseParallel',true,'MaxStallGenerations',2000); 
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nvars=10; 
  
rng(1,'twister'); 
[xg,fg,exitflag,output,solutions]=ga(fun,nvars,[],[],[]
,[],lb,ub,nonlincon,options); 
            else 
                options = 
optimoptions('patternsearch','InitialMeshSize',100,'Dis
play','iter','PlotFcn',@psplotbestf,'MaxFunctionEvaluat
ions',5000000,'MaxIterations',100000,'UseParallel',true
,'ConstraintTolerance',1.0000e-
20,'FunctionTolerance',1.0000e-
20,'MeshTolerance',1.0000e-20); 
 %x = 
patternsearch(fun,x0,[],[],[],[],lb,ub,nonlincon,option
s) 
 [x,fval,exitflag,output] = 
patternsearch(fun,x0,[],[],[],[],lb,ub,nonlincon,option
s) 
            end 
        end 
    end 
end 
end 
  
toc 
tt=toc 
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APPENDIX B                                                                                                            

COMBINED FOOTING WITH CIRCULAR COLUMNS OBJECTIVE 

FUNCTION MATLAB CODE 

function 
o=objfunc(x,l,E,hf,Rb,Rfw,Rcon,Rins,Rst,Rexc,C,c1,c2,dpl) 
o=((((x(1)+x(2)+l+2*E)*(x(3)+2*E)*hf)*Rexc)+(((x(1)+x(2)+l+
0.2)*(x(3)+0.2)*0.1)*Rb)+(((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/
2))*2)*Rfw)+(((x(1)+x(2)+l)*(x(4)+C+(dpl/2))*x(3))*Rcon)+((
((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/2))*2)+((x(1)+x(2)+l)*x(3)
)-(c1*0.78571428)-
(c2*0.78571428))*Rins)+(((x(5)*(x(1)+x(2)+l))+(x(6)*(x(4)+c
1))+(x(7)*(x(4)+c2))+(x(8)*x(3))+(x(9)*x(3))+(x(10)*x(3)))*
7.85*Rst)) 
end 
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APPENDIX C                                                                                                  

COMBINED FOOTING WITH RECTANGULAR COLUMNS OBJECTIVE 

FUNCTION MATLAB CODE 

 

function 
o=objfunr(x,l,E,hf,Rb,Rfw,Rcon,Rins,Rst,Rexc,C,cl1,cl2,cb1,
cb2,dpl) 
o=((((x(1)+x(2)+l+2*E)*(x(3)+2*E)*hf)*Rexc)+(((x(1)+x(2)+l+
0.2)*(x(3)+0.2)*0.1)*Rb)+(((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/
2))*2)*Rfw)+(((x(1)+x(2)+l)*(x(4)+C+(dpl/2))*x(3))*Rcon)+((
((x(1)+x(2)+l+x(3))*(x(4)+C+(dpl/2))*2)+((x(1)+x(2)+l)*x(3)
)-(cl1*cb1)-
(cl2*cb2))*Rins)+(((x(5)*(x(1)+x(2)+l))+(x(6)*(x(4)+cl1))+(
x(7)*(x(4)+cl2))+(x(8)*x(3))+(x(9)*x(3))+(x(10)*x(3)))*7.85
*Rst)) 
end 
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APPENDIX D                                                                                                   

COMBINED FOOTING WITH CIRCULAR COLUMNS CONSTRAINTS 

FUNCTION 

 
function [c,ceq] 
=constc(x,l,fc,fy,PU1,PU2,phi1,phi2,phi3,B1,B2,C,c1,c2,
Cc,HC,e0,sigma0,Sca,FS,Dw,CO,NC,NQ,GAMA,NG,PD1,PL1,PD2,
PL2,dpl,dpt,Adpl,Adpt,hf,Beta,surcharge) 
%Bearing Capacity 
c(1)=((((PL1+PD1+PL2+PD2)*FS)/(((0.5+(0.5*(Dw/(hf+x(3))
)))*((CO*NC)+(hf*NQ*GAMA)+(0.5*GAMA*x(3)*NG)))-
(GAMA*hf)-(surcharge)))-((x(1)+x(2)+l)*x(3))); 
%settelments 
c(2)=(((Cc*HC)/(1+e0))*log10((sigma0+((PD1+PL1+PD2+PL2)
/((x(1)+x(2)+l+(HC/2))*(x(3)+(HC/2)))))/sigma0))-Sca; 
%one way shear Vu-?Vc<=0 
c(3)=abs(((PU1+PU2)/(x(1)+x(2)+l))*(x(1)-(c1/2)-x(4)))-
(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(4)=abs(PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*(x(1)+(c1/2)+x(4))))-
(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(5)=abs((((PU1+PU2)/(x(1)+x(2)+l))*(x(1)+l-(c1/2)-
x(4)))-PU1)-(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(6)=abs(((PU1+PU2)/(x(1)+x(2)+l))*(x(2)-(c2/2)-x(4)))-
(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(7)=abs(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((x(3)/2)-
(c1/2)-x(4))*(x(1)+x(2)+l))-
(phi1*(x(1)+x(2)+l)*x(4)*1000*(1/6)*((fc)^0.5)); 
%two way shear Vu-?Vc<=0 as interior column 
c(8)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c1+x(4))^2)*0.7857
142857))-
((1000*phi2/6)*(1+(2/B1))*((fc)^0.5)*x(4)*(((c1+x(4))*3
.14))); 
c(9)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c1+x(4))^2)*0.7857
142857))-
((1000*phi2/12)*((((40*x(4))/(((c1+x(4))+(c1+x(4)))*2))
)+2)*((fc)^0.5)*x(4)*((c1+x(4))*3.14)); 
c(10)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c1+x(4))^2)*0.7857
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142857))-
((1000*phi2/3)*((fc)^0.5)*x(4)*((c1+x(4))*3.14)); 
c(11)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c2+x(4))^2)*0.7857
142857))-
((1000*phi2/6)*(1+(2/B2))*((fc)^0.5)*x(4)*((c2+x(4))*3.
14)); 
c(12)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c2+x(4))^2)*0.7857
142857))-
((1000*phi2/12)*((((40*x(4))/(((c2+x(4))+(c2+x(4)))*2))
)+2)*((fc)^0.5)*x(4)*((c2+x(4))*3.14)); 
c(13)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(((c2+x(4))^2)*0.7857
142857))-
((1000*phi2/3)*((fc)^0.5)*x(4)*((c2+x(4))*3.14)); 
%two way shear Vu-?Vc<=0 as edge column 
c(14)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c1+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(1)/(c1+x(4))))/180))+(0.125*((c1+x(4))^2)*s
in(2*(acosd(2*x(1)/(c1+x(4))))))))-
((1000*phi2/6)*(1+(2/B1))*((fc)^0.5)*x(4)*(((c1+x(4))*3
.14)*(1-((acosd(2*x(1)/(c1+x(4))))/180)))); 
c(15)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c1+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(1)/(c1+x(4))))/180))+(0.125*((c1+x(4))^2)*s
in(2*(acosd(2*x(1)/(c1+x(4))))))))-
((1000*phi2/12)*(((30*x(4))/((2*x(1))+c1+c1+(2*x(4))))+
2)*((fc)^0.5)*x(4)*(((c1+x(4))*3.14)*(1-
((acosd(2*x(1)/(c1+x(4))))/180)))); 
c(16)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c1+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(1)/(c1+x(4))))/180))+(0.125*((c1+x(4))^2)*s
in(2*(acosd(2*x(1)/(c1+x(4))))))))-
((1000*phi2/3)*((fc)^0.5)*x(4)*(((c1+x(4))*3.14)*(1-
((acosd(2*x(1)/(c1+x(4))))/180)))); 
c(17)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c2+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(2)/(c2+x(4))))/180))+(0.125*((c2+x(4))^2)*s
in(2*(acosd(2*x(2)/(c2+x(4))))))))-
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((1000*phi2/6)*(1+(2/B2))*((fc)^0.5)*x(4)*(((c2+x(4))*3
.14)*(1-((acosd(2*x(2)/(c2+x(4))))/180)))); 
c(18)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c2+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(2)/(c2+x(4))))/180))+(0.125*((c2+x(4))^2)*s
in(2*(acosd(2*x(2)/(c2+x(4))))))))-
((1000*phi2/12)*(((30*x(4))/((2*x(2))+c2+c2+(2*x(4))))+
2)*((fc)^0.5)*x(4)*(((c2+x(4))*3.14)*(1-
((acosd(2*x(2)/(c2+x(4))))/180)))); 
c(19)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((((c2+x(4))^2)*0.785
7142857)*(1-
((acosd(2*x(2)/(c2+x(4))))/180))+(0.125*((c2+x(4))^2)*s
in(2*(acosd(2*x(2)/(c2+x(4))))))))-
((1000*phi2/3)*((fc)^0.5)*x(4)*(((c2+x(4))*3.14)*(1-
((acosd(2*x(2)/(c2+x(4))))/180)))); 
%-ve Moment Mu1 Mu-?Mn<=0 
c(20)=(-100000*(((x(5)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*((PU1*(((PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*x(1)))*l)/(((PU1+PU2)/(x(1)+
x(2)+l))*l)))-
(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+(((PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*x(1)))*l)/(((PU1+PU2)/(x(1)+
x(2)+l))*l)))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5)
)))); 
c(21)=(-100000*(((x(5))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve Moment Mu2 Mu-?Mn<=0 
c(22)=(-100000*(((x(6)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)-
(c1/2))^2)))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5))))); 
c(23)=(-100000*(((x(6)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-
((0.002*(abs((0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+(c1/
2))^2))-
(0.5*PU1*c1))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5)))))
; 
c(24)=(-100000*(((x(6))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve Moment Mu3 Mu-?Mn<=0 
c(25)=(-100000*(((x(7)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(-PU1*(l-
(0.5*c2))+(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+l-
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(0.5*c2))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5)))))
; 
c(26)=(-100000*(((x(7)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(-PU1*(l+(0.5*c2))-
(0.5*PU2*c2)+(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+l+(0
.5*c2))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5))))); 
c(27)=(-100000*(((x(7))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve transverse Moment Mu4 Mu-?Mn<=0 
c(28)=(-100000*(((x(8)/(x(4)*(x(4)+c1)))-
((0.85*fc/fy)*(1-(1-((0.002*((PU1/(2*x(3)))*((x(3)/2)-
(c1/2))^2))/(0.85*fc*phi3*(x(4)+c1)*(x(4)^2))))^0.5))))
); 
c(29)=(-100000*(((x(8))-
(0.0018*420*(x(4)+C+(dpl/2))*(x(4)+c1)/fy)))); 
%+ve transverse Moment Mu5 Mu-?Mn<=0 
c(30)=(-100000*(((x(9)/(x(4)*(x(4)+c2)))-
((0.85*fc/fy)*(1-(1-((0.002*((PU2/(2*x(3)))*((x(3)/2)-
(c2/2))^2))/(0.85*fc*phi3*(x(4)+c2)*(x(4)^2))))^0.5))))
); 
c(31)=(-100000*(((x(9))-
(0.0018*420*(x(4)+C+(dpl/2))*(x(4)+c2)/fy)))); 
%Temp and shrinkage steel 
c(32)=(-100000*(((x(10))-
(0.0018*420*(x(1)+x(2)+l)*(x(4)+C+(dpl/2))/fy)))); 
%spacing for longitudenal As1 
c(33)=(((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
c(34)=(((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1))-0.45); 
c(35)=dpl-((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1)); 
c(36)=0.025-((x(3)-(2*C)-
((x(5)/Adpl)*dpl))/((x(5)/Adpl)-1)); 
%spacing for longitudenal As2 
c(37)=(((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1))-(3*(x(4)-(dpl/2)-C))); 
c(38)=(((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1))-0.45); 
c(39)=dpl-((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1)); 
c(40)=0.025-((x(3)-(2*C)-
((x(6)/Adpl)*dpl))/((x(6)/Adpl)-1)); 
%spacing for longitudenal As3 
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c(41)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
c(42)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-0.45); 
c(43)=dpl-((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1)); 
c(44)=0.025-((x(3)-(2*C)-
((x(7)/Adpl)*dpl))/((x(7)/Adpl)-1)); 
%spacing for longitudenal As3 
c(45)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
c(46)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-0.45); 
c(47)=dpl-((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1)); 
c(48)=0.025-((x(3)-(2*C)-
((x(7)/Adpl)*dpl))/((x(7)/Adpl)-1)); 
%spacing for longitudenal As4 
c(49)=(((x(1)+(c1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))/((x(8)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(50)=(((x(1)+(c1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))/((x(8)/Adpt)-1))-0.45); 
c(51)=dpl-((x(1)+(c1/2)+(x(4)/2)-C-((x(8)/Adpt)*dpt))); 
c(52)=0.025-((x(1)+(c1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))); 
%spacing for longitudenal As5 
c(53)=(((x(2)+(c2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))/((x(9)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(54)=(((x(2)+(c2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))/((x(9)/Adpt)-1))-0.45); 
c(55)=dpl-((x(2)+(c2/2)+(x(4)/2)-C-((x(9)/Adpt)*dpt))); 
c(56)=0.025-((x(2)+(c2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))); 
%spacing for longitudenal As6 
c(57)=(((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(58)=(((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1))-0.45); 
c(59)=dpl-((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1)); 
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c(60)=0.025-((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1)); 
%Strain >=0.005 
c(61)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(5)*fy))-1); 
c(62)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(6)*fy))-1); 
c(63)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(7)*fy))-1); 
c(64)=0.005-
0.003*(((x(4)*(x(1)+x(2)+l)*fc*Beta*0.85)/(x(8)*fy))-
1); 
c(65)=0.005-
0.003*(((x(4)*(x(1)+x(2)+l)*fc*Beta*0.85)/(x(9)*fy))-
1); 
ceq= ((x(1)+x(2)+l)-
(2*(((PD2+PL2)*l)/(PD1+PL1+PD2+PL2)+x(1)))); 
end 
 



 79

APPENDIX E                                                                                                  

COMBINED FOOTING WITH RECTANGULAR COLUMNS CONSTRAINTS 

FUNCTION 

 
function [c,ceq] 
=constr(x,l,fc,fy,PU1,PU2,phi1,phi2,phi3,B1,B2,C,cl1,cl
2,cb1,cb2,Cc,HC,e0,sigma0,Sca,FS,Dw,CO,NC,NQ,GAMA,NG,PD
1,PL1,PD2,PL2,dpl,dpt,Adpl,Adpt,hf,Beta,surcharge) 
%Bearing Capacity 
c(1)=((((PL1+PD1+PL2+PD2)*FS)/(((0.5+(0.5*(Dw/(hf+x(3))
)))*((CO*NC)+(hf*NQ*GAMA)+(0.5*GAMA*x(3)*NG)))-
(GAMA*hf)-(surcharge)))-((x(1)+x(2)+l)*x(3))); 
%settelments 
c(2)=(((Cc*HC)/(1+e0))*log10((sigma0+((PD1+PL1+PD2+PL2)
/((x(1)+x(2)+l+(HC/2))*(x(3)+(HC/2)))))/sigma0))-Sca; 
%one way shear Vu-?Vc<=0 
c(3)=abs(((PU1+PU2)/(x(1)+x(2)+l))*(x(1)-(cl1/2)-
x(4)))-(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(4)=abs(PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*(x(1)+(cl1/2)+x(4))))-
(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(5)=abs((((PU1+PU2)/(x(1)+x(2)+l))*(x(1)+l-(cl1/2)-
x(4)))-PU1)-(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(6)=abs(((PU1+PU2)/(x(1)+x(2)+l))*(x(2)-(cl2/2)-
x(4)))-(phi1*x(3)*x(4)*1000*(1/6)*((fc)^0.5)); 
c(7)=abs(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*((x(3)/2)-
(cb1/2)-x(4))*(x(1)+x(2)+l))-
(phi1*(x(1)+x(2)+l)*x(4)*1000*(1/6)*((fc)^0.5)); 
%two way shear Vu-?Vc<=0 as interior column 
c(8)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl1+x(4))*(cb1+x(4))
)-
((1000*phi2/6)*(1+(2/B1))*((fc)^0.5)*x(4)*(((cl1+x(4))+
(cb1+x(4)))*2)); 
c(9)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl1+x(4))*(cb1+x(4))
)-
((1000*phi2/12)*((((40*x(4))/(((cl1+x(4))+(cb1+x(4)))*2
)))+2)*((fc)^0.5)*x(4)*(((cl1+x(4))+(cb1+x(4)))*2)); 
c(10)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl1+x(4))*(cb1+x(4))
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)-
((1000*phi2/3)*((fc)^0.5)*x(4)*(((cl1+x(4))+(cb1+x(4)))
*2)); 
c(11)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl2+x(4))*(cb2+x(4))
)-
((1000*phi2/6)*(1+(2/B2))*((fc)^0.5)*x(4)*(((cl2+x(4))+
(cb2+x(4)))*2)); 
c(12)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl2+x(4))*(cb2+x(4))
)-
((1000*phi2/12)*((((40*x(4))/(((cl2+x(4))+(cb2+x(4)))*2
)))+2)*((fc)^0.5)*x(4)*(((cl2+x(4))+(cb2+x(4)))*2)); 
c(13)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(cl2+x(4))*(cb2+x(4))
)-
((1000*phi2/3)*((fc)^0.5)*x(4)*(((cl2+x(4))+(cb2+x(4)))
*2)); 
%two way shear Vu-?Vc<=0 as edge column 
c(14)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(1)+(cl1/2)+(x(4)/2
))*(cb1+x(4)))-
((1000*phi2/6)*(1+(2/B1))*((fc)^0.5)*x(4)*((2*x(1))+cl1
+cb1+(2*x(4)))); 
c(15)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(1)+(cl1/2)+(x(4)/2
))*(cb1+x(4)))-
((1000*phi2/12)*(((30*x(4))/((2*x(1))+cl1+cb1+(2*x(4)))
)+2)*((fc)^0.5)*x(4)*(((2*x(1))+cl1+cb1+(2*x(4))))); 
c(16)=PU1-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(1)+(cl1/2)+(x(4)/2
))*(cb1+x(4)))-
((1000*phi2/3)*((fc)^0.5)*x(4)*((2*x(1))+cl1+cb1+(2*x(4
)))); 
c(17)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(2)+(cl2/2)+(x(4)/2
))*(cb2+x(4)))-
((1000*phi2/6)*(1+(2/B2))*((fc)^0.5)*x(4)*((2*x(2))+cl2
+cb2+(2*x(4)))); 
c(18)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(2)+(cl2/2)+(x(4)/2
))*(cb2+x(4)))-
((1000*phi2/12)*(((30*x(4))/((2*x(2))+cl2+cb2+(2*x(4)))
)+2)*((fc)^0.5)*x(4)*(((2*x(2))+cl2+cb2+(2*x(4))))); 
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c(19)=PU2-
(((PU1+PU2)/((x(1)+x(2)+l)*x(3)))*(x(2)+(cl2/2)+(x(4)/2
))*(cb2+x(4)))-
((1000*phi2/3)*((fc)^0.5)*x(4)*((2*x(2))+cl2+cb2+(2*x(4
)))); 
%-ve Moment Mu1 Mu-?Mn<=0 
c(20)=(-100000*(((x(5)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*((PU1*(((PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*x(1)))*l)/(((PU1+PU2)/(x(1)+
x(2)+l))*l)))-
(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+(((PU1-
(((PU1+PU2)/(x(1)+x(2)+l))*x(1)))*l)/(((PU1+PU2)/(x(1)+
x(2)+l))*l)))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5)
)))); 
c(21)=(-10000*(((x(5))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve Moment Mu2 Mu-?Mn<=0 
c(22)=(-100000*(((x(6)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)-
(cl1/2))^2)))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5))))); 
c(23)=(-100000*(((x(6)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-
((0.002*(abs((0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+(cl1
/2))^2))-
(0.5*PU1*cl1))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5))))
); 
c(24)=(-100000*(((x(6))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve Moment Mu3 Mu-?Mn<=0 
c(25)=(-100000*(((x(7)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(-PU1*(l-
(0.5*cl2))+(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+l-
(0.5*cl2))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5))))
); 
c(26)=(-100000*(((x(7)/(x(3)*x(4)))-((0.85*fc/fy)*(1-
(1-((0.002*(-PU1*(l+(0.5*cl2))-
(0.5*PU2*cl2)+(0.5*((PU1+PU2)/(x(1)+x(2)+l))*((x(1)+l+(
0.5*cl2))^2))))/(0.85*fc*phi3*x(3)*(x(4)^2))))^0.5)))))
; 
c(27)=(-100000*(((x(7))-
(0.0018*420*x(3)*(x(4)+C+(dpl/2))/fy)))); 
%+ve transverse Moment Mu4 Mu-?Mn<=0 
c(28)=(-100000*(((x(8)/(x(4)*(x(4)+cb1)))-
((0.85*fc/fy)*(1-(1-((0.002*((PU1/(2*x(3)))*((x(3)/2)-
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(cb1/2))^2))/(0.85*fc*phi3*(x(4)+cb1)*(x(4)^2))))^0.5))
))); 
c(29)=(-100000*(((x(8))-
(0.0018*420*(x(4)+C+(dpl/2))*(x(4)+cl1)/fy)))); 
%+ve transverse Moment Mu5 Mu-?Mn<=0 
c(30)=(-100000*(((x(9)/(x(4)*(x(4)+cb2)))-
((0.85*fc/fy)*(1-(1-((0.002*((PU2/(2*x(3)))*((x(3)/2)-
(cb2/2))^2))/(0.85*fc*phi3*(x(4)+cb2)*(x(4)^2))))^0.5))
))); 
c(31)=(-100000*(((x(9))-
(0.0018*420*(x(4)+C+(dpl/2))*(x(4)+cl2)/fy)))); 
%Temp and shrinkage steel 
c(32)=(-100000*(((x(10))-
(0.0018*420*(x(1)+x(2)+l)*(x(4)+C+(dpl/2))/fy)))); 
%spacing for longitudenal As1 
c(33)=(((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
c(34)=(((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1))-0.45); 
c(35)=dpl-((x(3)-(2*C)-((x(5)/Adpl)*dpl))/((x(5)/Adpl)-
1)); 
c(36)=0.025-((x(3)-(2*C)-
((x(5)/Adpl)*dpl))/((x(5)/Adpl)-1)); 
%spacing for longitudenal As2 
c(37)=(((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1))-(3*(x(4)-(dpl/2)-C))); 
c(38)=(((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1))-0.45); 
c(39)=dpl-((x(3)-(2*C)-((x(6)/Adpl)*dpl))/((x(6)/Adpl)-
1)); 
c(40)=0.025-((x(3)-(2*C)-
((x(6)/Adpl)*dpl))/((x(6)/Adpl)-1)); 
%spacing for longitudenal As3 
c(41)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
c(42)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-0.45); 
c(43)=dpl-((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1)); 
c(44)=0.025-((x(3)-(2*C)-
((x(7)/Adpl)*dpl))/((x(7)/Adpl)-1)); 
%spacing for longitudenal As3 
c(45)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-(3*(x(4)+(dpl/2)+C))); 
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c(46)=(((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1))-0.45); 
c(47)=dpl-((x(3)-(2*C)-((x(7)/Adpl)*dpl))/((x(7)/Adpl)-
1)); 
c(48)=0.025-((x(3)-(2*C)-
((x(7)/Adpl)*dpl))/((x(7)/Adpl)-1)); 
%spacing for longitudenal As4 
c(49)=(((x(1)+(cl1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))/((x(8)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(50)=(((x(1)+(cl1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))/((x(8)/Adpt)-1))-0.45); 
c(51)=dpl-((x(1)+(cl1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))); 
c(52)=0.025-((x(1)+(cl1/2)+(x(4)/2)-C-
((x(8)/Adpt)*dpt))); 
%spacing for longitudenal As5 
c(53)=(((x(2)+(cl2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))/((x(9)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(54)=(((x(2)+(cl2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))/((x(9)/Adpt)-1))-0.45); 
c(55)=dpl-((x(2)+(cl2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))); 
c(56)=0.025-((x(2)+(cl2/2)+(x(4)/2)-C-
((x(9)/Adpt)*dpt))); 
%spacing for longitudenal As6 
c(57)=(((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1))-
(3*(x(4)+(dpl/2)+C))); 
c(58)=(((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1))-0.45); 
c(59)=dpl-((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1)); 
c(60)=0.025-((x(1)+x(2)+l-(2*C)-
((x(10)/Adpt)*dpt))/((x(10)/Adpt)-1)); 
%Strain >=0.005 
c(61)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(5)*fy))-1); 
c(62)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(6)*fy))-1); 
c(63)=0.005-
0.003*(((x(4)*x(3)*fc*Beta*0.85)/(x(7)*fy))-1); 
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c(64)=0.005-
0.003*(((x(4)*(x(1)+x(2)+l)*fc*Beta*0.85)/(x(8)*fy))-
1); 
c(65)=0.005-
0.003*(((x(4)*(x(1)+x(2)+l)*fc*Beta*0.85)/(x(9)*fy))-
1); 
ceq= ((x(1)+x(2)+l)-
(2*(((PD2+PL2)*l)/(PD1+PL1+PD2+PL2)+x(1)))); 
end 
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APPENDIX F                                                                                                              

CODE INPUT EXCEL SHEET FOR WIGHT 

 

choose column shape "0 for circular,1 for rectangular or square" 1
Clear cover 0.075 M C
Depth of footing 1.524 (M) hf
Excavation Margin 0.5 (M) E
Rate of Excavation 19.8  ($/m3) Rexc
Rate of Form work 77.18  ($/m2) Rfw
Rate of Concrete 182.56  ($/m3) Rcon 
Rate of Insulation 13.35  ($/m2) Rins
Rate of Blinding Concrete 169.41  ($/m3) Rb 
Rate of Steel 2524.29  ($/TON) Rst 
Soil initial void ratio 0.75  e0
Dead load on column 1 756.198  (KN) PD1
LIVE load on column 1 333.617  (KN) PL1
Dead load on column 2 889.644  (KN) PD2
LIVE load on column 2 556.028  (KN) PL2
"Circular" Column 1 Diameter  (M) c1
"Circular" Column 2 Diameter  (M) c2
"Square" Column 1 length 0.4572 (M) cl1
"Square" Column 1 width 0.4572 (M) cb1
"Square" Column 2 length 0.4572 (M) cl2
"Square" Column 2 length 0.4572 (M) cb2
Concrete compressive strength 27.579 (MPa) fc
Steel yield strength 413.685 (MPa) fy
Center to center column spacing 9.144 (M) l
Reduction factor one way shear 0.75 phi1
Reduction factor twoway shear 0.75 phi2
Reduction factor flexture 0.9 phi3
Upper value for Distance between left edge to center column 1 0.6096 (M) r1
Upper value for Distance between right edge to center column 2 10 (M) r2
Upper value for width (B) 10 (M) r3
Diameter for longitudenal reinforcment 0.025 (M) dpl
Diameter for transvere reinforcment 0.025 (M) dpt
Diameter for dowels 0.016 (M) dpd
Factor of safety for bearing capacity 3  FS
Allowable settelment 0.0508 (M) Sca
lightweight-aggregate-concrete factor(0.75 fpr light weight) 1 lam
Surcharge 0 (KN/M2) qanet
Depth of water taple from surface 1.8288 (M) Dw
Depth of soil layer 3.048 (M) D

Moist unit weight of soil 18.0651 (KN/M3) Gama

Cohesion of soil 33.5162 (KN/M2) C

Soil friction angle 20 degree ø

Consolidation coefficant 0.15 Cc/Cs
Distance between left edge to center column 1 0.60955 (M) x(1)
Distance between right edge to center column 2 1.89291 (M) x(2)
Width (B) 3.07017 (M) x(3)
Effective depth (d) 0.58 (M) x(4)
As for -ve moment 0.01329 (M2) x(5)
As for +ve moment under column 1 0.00542 (M2) x(6)
As for +ve moment under column 2 0.00375 (M2) x(7)
As for transverse moment under column 1 0.00191 (M2) x(8)
As for transverse moment under column 2 0.00288 (M2) x(9)
As for temp and shrinkage 0.01421 (M2) x(10)
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APPENDIX G                                                                                                 

ADVANCED FOUNDATION CLASS COMBINED FOOTING EXAMPLE 
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APPENDIX H                                                                                                      

BEARING CAPACITY FACTORS ACCORDING TO TERZAGHI 

 

Friction Angle Nc Nq Nγ

0 5.7 1

1 6 1.1 0.01

2 6.3 1.22 0.04

3 6.62 1.35 0.06

4 6.97 1.49 0.1

5 7.34 1.64 0.14

6 7.73 1.81 0.2

7 8.15 2 0.27

8 8.6 2.21 0.35

9 9.09 2.44 0.44

10 9.61 2.69 0.56

11 10.16 2.98 0.69

12 10.76 3.29 0.85

13 11.41 3.63 1.04

14 12.11 4.02 1.26

15 12.86 4.45 1.52

16 13.68 4.92 1.82

17 14.6 5.45 2.18

18 15.12 6.04 2.59

19 16.56 6.7 3.07

20 17.69 7.44 3.64

21 18.92 8.26 4.31

22 20.27 9.19 5.09

23 21.75 10.23 6

24 23.36 11.4 7.08

25 25.13 12.72 8.34

26 27.09 14.2 9.84

27 29.24 15.9 11.6

28 31.61 17.81 13.7

29 34.24 19.98 16.18

30 37.16 22.46 19.13

31 40.41 25.28 22.65

32 44.04 28.52 26.87

33 48.09 32.23 31.94

34 52.64 36.5 38.04

35 57.75 41.44 45.41

36 63.53 47.16 54.36

37 70.01 53.8 65.27

38 77.5 61.55 78.61

39 85.97 70.61 95.03

40 95.66 81.27 115.31

41 106.81 93.85 140.51

42 119.67 108.75 171.99

43 134.58 126.5 211.56

44 151.95 147.74 261.6

45 172.28 173.28 325.34

46 196.22 204.19 407.11

47 224.55 241.8 512.84

48 258.28 287.85 650.67

49 298.71 344.63 831.99

50 347.5 415.14 1072.8


