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DERIVATIVE-FREE KALMAN FILTER-BASED CONTROL OF NONLINEAR

SYSTEMS WITH APPLICATION TO TRANSFEMORAL PROSTHESES

Seyed M. Moosavi

ABSTRACT

Derivative-free Kalman filtering (DKF) for estimation-based control of a special class

of nonlinear systems is presented. The method includes a standard Kalman filter for the es-

timation of both states and unknown inputs, and a nonlinear system that is transformed to

controllable canonical state space form through feedback linearization (FL). A direct cur-

rent (DC) motor with an input torque that is a nonlinear function of the state is considered

as a case study for a nonlinear single-input-single-output (SISO) system. A three degree-

of-freedom (DOF) robot / prosthesis system, which includes a robot that emulates human

hip and thigh motion and a powered (active) transfemoral prosthesis disturbed by ground

reaction force (GRF), is considered as a case study for a nonlinear multi-input-multi-output

(MIMO) system. A PD/PI control term is used to compensate for the unknown GRF.

Simulation results show that FL can compensate for the system’s nonlinearities through

a virtual control term, in contrast to Taylor series linearization, which is only a first-order

linearization method. FL improves estimation performance relative to the extended Kalman

filter, and in some cases improves the initial condition region of attraction as well.

A stability analysis of the DKF-based control method, considering both estimation and

unknown input compensation, is also presented. The error dynamics are studied in both

frequency and time domains. The derivative of the unknown input plays a key role in

the error dynamics and is the primary limiting factor of the closed-loop estimation-based

control system stability. It is shown that in realistic systems the derivative of the unknown

input is the primary determinant of the region of convergence. It is shown that the tracking

error asymptotically converges to the derivative of the unknown input.
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CHAPTER I

INTRODUCTION

Prosthesis technology has a long history, beginning with simple devices comprised mostly

of wood and iron, and progressing to today’s sophisticated high-technology robotic de-

vices. Throughout this long history, many new designs and developments have emerged,

and many other methods have become obsolete. Egyptians were likely the first to use pros-

thetic technology, as demonstrated by a recently discovered prosthetic toe from an Egyptian

mummy [46].

Amputations are performed on various parts of the body. Transtibial, or below-

knee, amputation is the most common, comprising 54% of all amputations. Transfemoral,

or above-knee, amputation is the second most common, accounting for 33% of all ampu-

tations. Other amputations, such as upper limb, foot, and hip and knee disarticulations,

constitute 7%, 3%, 2% and 1% respectively [48]. The most common reason for lower limb

aputation is vascular disease, and more precisely diabetes. As of 2014, two-million people

in the United States lived with limb loss, and this number increases by 185,000 annually

[71]. There are currently more than 400,000 transfemoral amputees in the United States

[1].

One of the greatest challenges for a leg amputee is the amount of biomechanical

energy needed for walking. Transfemoral amputees expend over 60% more energy while

walking than an able-bodied person [12]. This indicates that an amputee needs a well-
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designed prosthetic leg to increase quality of life. Reducing prosthesis weight by using

light components can make a significant improvement in amputees’ lives. Another need

for prosthetic legs is reliable and stable control laws. Estimation-based robotic technology

allows for the removal of bulky load cells and other heavy sensors in prostheses. Although

these improvements may not result in a gait that is equivalent to that of able-bodied persons,

they can help provide a better approximation of normal gait.

1.1 Motivation

Transfemoral prosthesis design and development originally included only passive (also

called reactive) devices, meaning that the leg was completely mechanical and did not in-

clude any electrical components [38], [32]. As mentioned earlier, the main problem with

this type of prosthesis is the large amount of energy that an amputee has to expend dur-

ing walking, in comparison with able-bodied persons [3], [12]. To address this problem,

researchers have used electric power and microelectronic devices in prosthesis designs,

leading to the development of semi-active prosthetic knees [56]. Semi-active prostheses

have shown better and more reliable walking for amputees in terms of energy usage and

adaptability to sloped surfaces [14], [28]. Semi-active prostheses are actuated through a

mechanical damper or a hydraulic actuator, and the microelectronic device is used for con-

trol and measurement. The combination of microelectronics and mechanical components

comprise the prosthetic system.

Active prostheses are the most recent generation of prosthesis technology. These

prostheses use servo-motors in the knee or ankle in addition to microprocessor-based con-

trol. Highly efficient brushless DC motors have been used to generate high torque with

fast response, which can improve walking for amputees. Many researchers are working are

studying these ideas [4], [2], [41], [24], [26], [39], [62], [65], [69].

In this thesis, an active or powered transfemoral prosthetic leg is considered,
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which is connected to a robotic hip / thigh emulator. The combination of the prosthesis

and robot comprise three degrees of freedom: vertical hip displacement, thigh angle, and

knee angle [17]. Much research has been done at Cleveland State University to obtain

effective prosthesis control and estimation [5], [6], [16], [42], [50]. Research at CSU has

included ground reaction force (GRF) estimation for prostheses so that bulky, expensive,

and failure-prone load cells can be removed from the system [19], [51]. Several nonlinear

estimators have been used for this purpose, such as the extended Kalman filter (EKF) and

the unscented Kalman filter (UKF). In all of this previous research, the controllers and

estimators have heavily relied on the known GRF model.

The goal of this thesis is to obtain effective GRF estimation and prosthesis con-

trol while considering the GRF as an unknown input, meaning that there is no information

available about its dynamics. In previous research, inaccurate GRF modeling could cause

undesirable performance in both the controller and the estimator. This thesis proposes a

model-free supervisory control term, or GRF estimator, to reduce the dependence of both

the controller and the filter on the unknown GRF. Previous research has shown that nonlin-

ear GRF filters are very dependent on initial conditions, and slight changes in initial condi-

tions can cause instability or poor performance. Also, extended Kalman filters (EKFs) are

highly dependent on the system gradient, a dependence that can cause cumulative estima-

tion errors and closed-loop instability [8], [18], [52], [57].

In this thesis, the system model is first transformed using feedback linearization

(FL) to controllable canonical form. This transformation, unlike the EKF, does not ig-

nore high-order nonlinear dynamics. The state of the linearized system dynamics is then

estimated with a linear Kalman filter rather than an extended Kalman filter.
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1.2 Literature Review

1.2.1 Transfemoral Leg Prostheses

The design and development of transfemoral leg prostheses has received considerable at-

tention due to the increasing number of above-knee amputees [2], [41], [25], [28], [39],

[65], [68], [70]. Recent advances in microelectronics and robotic technologies have led to

new powered prosthetic leg technology. Transfemoral amputees who use powered (active)

prosthetic legs expend less energy during walking compared with those who use passive

prostheses, since powered prostheses can generate net power at the joints [63].

Test robots for transfemoral prostheses can emulate human walking in the sagittal

plane [50], [51]. These test robots use nonlinear control and are connected to a prosthetic

leg. Recent approaches to the control of a three degree-of-freedom robot / prosthesis system

include passivity-based robust control [5], robust adaptive impedance control [50], hybrid

control [16], and robust composite adaptive impedance control [6]. These methods have

good tracking performance in the presence of parametric uncertainties and ground reaction

force (GRF) disturbances. However, GRF in that research is assumed to have known dy-

namic properties and known bounds. Thus, besides the computational complexity of these

control methods, tracking performance may degrade if the system is disturbed by unmod-

eled inputs.

1.2.2 Unknown-Input Estimation

As mentioned earlier, a wide variety of techniques have been employed to provide accurate

and reliable tracking for robot / prosthesis systems. However, most of those methods de-

pend on a good mathematical model for the GRF. In real-world applications it is possible

for the robot / prosthesis to be perturbed by unknown inputs or disturbances with unknown

dynamics. This problem is not specific to this particular robotic system. A broad range
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of applications have reported similar problems due to unknown inputs, including real-time

estimation of mean precipitation [35], nonparametric input estimation in physiological sys-

tems [45], fault diagnosis in dynamic systems [47], and estimation of cutting force exerted

by tools [13]. Research in this area has focused on state and input estimation of linear

systems subject to disturbances with known dynamics or known bounds [54].

Several minimum variance filters have been introduced for state estimation in the

presence of unknown inputs [11], [15], [35]. However, the estimation of unknown inputs

remains a major challenge. Inferring information about unknown inputs has a major effect

on improved state estimation and results in more effective control [22] , [66]. However, the

literature still lacks a general approach to this problem.

Recent research has attempted to address this issue through the simultaneous

minimum variance estimation of both states and unknown inputs in linear, time-varying,

continuous-time, stochastic systems [67]. The authors proposed two different filters for

two different cases. The first filter was constructed under the assumption that certain ad-

ditional information about the states was available. Although the method appears to be

effective in theory and simulation, the additional required information is not realistic in

practical applications. The second method addressed the drawbacks of the first method in

that it assumed no additional information about the states. However, it was assumed that

the unknown input is sufficiently smooth with bounded derivatives. This is a common as-

sumption because if the unknown input is not sufficiently smooth or does not have bounded

derivatives, there can be no guarantee of asymptotic stability. A separation principle was

discussed for both proposed filters in terms of closed-loop control, meaning that the con-

trol feedback gain is independent of the filter or observer gain. For most linear closed-loop

control systems this separation principle arises from the unique properties of linear systems

theory.

Two categories of unknown-input estimation have received signficant attention:

unmodeled dynamics, which can be viewed as the result of small perturbations on the
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system parameters [27], [37]; and unknown external inputs, which have no contribution to

the model dynamics [33], [64].

The disturbance observer (DOB) [29], [55], [64] is a common unknown-input

estimator for linear systems, largely relying on a transfer function approach rather than

state space. The unknown-input observer (UIO) was developed [30] after the DOB, and

while including many of the properties of the DOB, it was based on a state space approach

rather than a transfer function approach. A key property of the UIO is that it is able to

estimate both states and unknown inputs. As with other estimators, the UIO was introduced

for linear systems [7], [23] but later was extended to nonlinear systems [10], [44].

The perturbation observer (POB) is another unknown input estimator that has

similarities to the DOB. The POB has the advantage of being able to handle both unknown

inputs and unmodeled dynamics [36]. The extended state observer (ESO) [9] estimates

unmodeled dynamics for the purpose of reducing control system dependence on unmod-

eled dynamics. The ESO is relatively simple in comparison with the DOB and the UIO.

The ESO has been widely applied [20] to systems such as voltage regulation in DC-DC

converters [61], high torque servo-motion control [21], and web tension regulation [31].

1.2.3 Derivative-Free Kalman Filtering

The derivative-free Kalman filter (DKF) was introduced for estimation-based control of

a certain class of input-output linearizable nonlinear systems [52]. First, the nonlinear

system was linearized and controlled by exact feedback linearization. Next, the standard,

linear Kalman filer was applied to the linearized model to estimate the state vector of the

linearized system. Unlike an extended Kalman filter (EKF), the DKF provides state esti-

mation without using derivatives or Jacobians. The result is the avoidance of drawbacks

of the EKF concerning local linearization using first-order Taylor series expansion. This is

an important advantage because these problems can affect the accuracy of state estimation,

and consequently the stability and performance of the state estimation-based controller.
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1.3 Outline of Thesis

Chapter II provides an introduction to nonlinear control systems. It highlights the impor-

tance of nonlinear control design and introduces various types of system nonlinearity. Two

significant nonlinear control design objectives (stabilization and trajectory tracking) are

discussed. Additionally, common nonlinear control methods are introduced. In the last

part of the chapter, feedback linearization is introduced as a powerful nonlinear control

technique. The chapter concludes with a discussion of input state linearization and the

standard linear Kalman filter for estimation-based control design, along with an illustrative

example of DC-servo position control.

Chapter III reviews input-output linearization for a class of nonlinear systems,

which are illustrated with a robotic system. To achieve estimation-based control, a standard

Kalman filter is applied to the linearized model for state estimation. This approach is known

as derivative-free Kalman filtering (DKF). The remainder of the chapter comprises some

of the original contributions of this thesis. First, a three-DOF robot / prosthesis system

that is disturbed by ground reaction force (GRF) is introduced as an illustrative example of

an MIMO system. Next, PI and PD supervisory control terms are introduced to make the

closed-loop system robust to the unknown GRF.

Chapter IV begins by reviewing stability for nonlinear systems. It provides a

short introduction to the concepts, definitions, and types of stability. Next, the chapter re-

views Lyapunov stability theorems and invariant set theorems. Next, the chapter provides

stability analyses of linear systems via Lyapunov candidate functions, along with stability

analyses of non-autonomous systems. The rest of the chapter concludes the original con-

tribution of this thesis by providing a stability analysis of the DKF from Chapter III in the

frequency domain, along with an error convergence analysis.

Chapter V concludes the thesis and provides suggestions for future research.
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CHAPTER II

NONLINEAR CONTROL DESIGN

In this chapter we start with a short introduction to nonlinear control systems to highlight

the importance of nonlinear control and to introduce different types of nonlinearity. Two

major control design objectives are discussed (stabilization and trajectory tracking). Addi-

tionally, common nonlinear control methods are introduced. Finally, we present feedback

linearization, input-state linearization, and the standard Kalman filter for estimation-based

control, along with an illustrative SISO example of DC-servo position control.

2.1 The Importance of Nonlinear Control

The importance of nonlinear control is based on the fact that all physical systems are inher-

ently nonlinear, and so we need to consider these nonlinearities in our control designs [59,

Chapter 1]. For instance, consider the control of a robot manipulator using a simple linear

PID controller with gravity compensation. In a small range of operation, the controller

can provide a satisfactory response. However, when motion at high speed is needed, the

controller’s performance can dramatically decrease. This may be the result of the robot’s

nonlinearity. Coriolis and centripetal forces are two basic nonlinearities that increase with

the square of the speed in electromechanical systems like electric motors.

The requirement for operation over large ranges of system parameter values, fast
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response, and high accuracy, especially in trajectory tracking, has motivated the develop-

ment of nonlinear control. Although nonlinear control in many cases can provide a better

solution than linear control, it has natural shortcomings that can affect the control design.

Multiple equilibrium points, limit cycles, bifurcations due to parameter changes, and chaos

(extremely high dependence of the output on the initial conditions) are some examples of

undesired behavior [59, Chapter 1].

2.1.1 Model and Parameter Uncertainties

Again, consider a robot manipulator. Suppose the robot task is to pick an object from

one place and put it in another location. In linear control design we are generally not

concerned with initial conditions and the system parameters are generally considered to be

well known. Changes in (for example) mass are not considered by the controller, potentially

causing poor performance or instability. (Note that if the controller adapts to changes in

mass, then the controller has become nonlinear.) Parameter changes can cause problems in

linear systems given the general assumption of a well-defined model with no uncertainty,

and the independence of the control system on parameter changes.

Now consider a nonlinear controller that is designed to perform the same task

but that considers the mass as a parameter that can be compensated. A good example of

this type of nonlinear controller is an adaptive controller. The adaptation law makes the

control design, as a whole, nonlinear. This provides the potential for a better, smoother,

more stable, and more accurate response. In some systems, like aircraft or process control,

parameter changes occur slowly. However, in other systems such as robotics, parameter

changes can occur quickly [59, Chapter 1].

2.1.2 Hard Nonlinearities

Hysteresis, dead zones, saturation, backlash, and Coulomb friction are known as hard non-

linearities. This is due to their discontinuous nature, which does not allow approxima-
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tion via linearization. Since linear control techniques require linearization, these types of

nonlinearities are neglected by linear controllers. One of the advantages of nonlinear con-

trollers is that they can potentially handle these types of nonlinearities through prediction

and compensation.

2.2 Nonlinear System Definitions and Discussion

2.2.1 Design Objectives for Nonlinear Systems

For most control system designs:

1. A given physical nonlinear system is required to be controlled.

2. The desired behavior of the controlled system is specified.

3. A closed-loop feedback controller is designed to achieve the desired behavior and

achieve stability of the closed-loop system.

We face two primary challenges in controller design. The first challenge is stabilization

around an equilibrium point. Consider a nonlinear system with dynamics

ẋ = f (x,u, t) (2.1)

where x is the state, u is the control, and t is time. The objective is to find a control input

u such that starting at any point in a defined state-space region f (called the region of

attraction), x→ 0 as t → ∞. For instance, assume we have a nonlinear system described as

k1ẍ− k2 sin(πx) = u with k1,k1 > 0 (2.2)
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The control input u can be designed as a PD term to provide state feedback and a feedfor-

ward term to cancel the system nonlinearity:

u =−kd ẋ− kpx− k2 sin(πx) (2.3)

where kd and kp are positive user-specified tuning parameters. This control input results in

a globally stable closed-loop system:

k1ẍ+ kd ẋ+ kpx = 0 (2.4)

The second challenge in controller design is to track a reference trajectory. Con-

sider a nonlinear system

ẋ = f (x,u, t)

y = h(x) (2.5)

with desired trajectory y = yd . The objective is to design a control input u such that starting

at any point in state space region f, y− yd → 0, while all states x remain bounded [59,

Chapter 3]. An example of this type of control problem will be discussed at the end of this

chapter.

2.2.2 Feedback and Feedforward in Nonlinear Control Design

Feedback is a crucial factor in all systems (both linear and nonlinear) for stabilizing closed-

loop systems. The design of feedback gains can be achieved using pole placement for linear

systems.

Feedforward in control design cancels known disturbances, uncertainties, or non-

linearities that are associated with the system dynamics. It is difficult to attain trajectory
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tracking without canceling nonlinearities through feedforward.

utotal = ufeedback +ufeedforward

2.3 Common Nonlinear Control Design Methods

Unlike linear systems, the design of control methods for nonlinear systems is system-

specific, and so there are no universal methods for nonlinear control design. However,

depending on the system’s properties, we can identify certain classes of nonlinear systems

and discuss common control techniques [59, Chapter 5].

2.3.1 Trial and Error

As the name suggests, this general approach to solving control problems can be useful,

though only in simple cases. In this method, knowledge of the system dynamics is useful,

when combined with experience and intuition [59, Chapter 5].

2.3.2 Feedback Linearization

The idea of this technique is that some classes of nonlinear systems can be transformed

to new state-space coordinates. These new coordinates are simpler than the original co-

ordinates, which in turn facilitates the design of a nonlinear controller and the subsequent

stability analysis. This linearization technique can be used either partially or fully, depend-

ing on the system dynamics.

Feedback linearization can be applied only to certain classes of nonlinear sys-

tems, and so it cannot be viewed as a universally applicable technique. Input-state and

input-output linearization are two common variations of this method. This method is a

powerful control method, and it provides the structure for other nonlinear control tech-

niques [59, Chapter 6]. One of the main drawbacks of this technique is that it is not robust
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to model uncertainty. This control methodology will be discussed in detail later in this

thesis.

2.3.3 Robust Control

Exact feedback linearization relies on the assumption that the system can be accurately

modeled. Uncertainties in parameters and in the system model cannot be handled well

be feedback linearization. Robust control can provide a solution to this problem by using

knowledge about the uncertainties. For instance, information about the bounds of param-

eter variations can be used. In other words, exact feedback linearization is not capable of

compensating for uncertainties, which results in the requirement for an additional control

term that can be provided by robust control, which can in turn stabilize the system [59,

Chapter 7].

utotal = ufeedback-linearization +urobust

2.3.4 Adaptive Control

Adaptive control is another method that can be combined with feedback linearization.

Adaptive control compensates for gradual parameter changes in well-defined dynamic mod-

els. This technique can complement robust control, or can serve as an alternative to robust

control. Adaptive control is usually applied to time-varying or uncertain systems [59, Chap-

ter 8].

utotal = ufeedback-linearization +urobust +uadaptive

2.4 Feedback Linearization

In this section, feedback linearization is discussed in detail. As an illustration, a DC motor

with nonlinear dynamics is controlled with input-state linearization and a linear estimator
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(Kalman filter).

Feedback linearization is a powerful control method for nonlinear systems. The

key feature of feedback linearization is the transformation of a nonlinear system from its

original state-space coordinates to a new coordinate system, resulting in a system that is

fully or partially linear. Canceling nonlinearities in a nonlinear system results in a linear

system such that highly efficient linear control methods (for example, Hurwitz pole place-

ment) can be easily applied.

Feedback linearization has been used to address practical control problems such

as the control of helicopters, high performance aircraft, industrial robots, biomedical de-

vices, and industrial applications. However, there are also a number of notable shortcom-

ings and limitations associated with this approach, which are topics of current research [59,

Chapter 6]. One issue that arises is the question of what class of nonlinear system is suit-

able for feedback linearization. Feedback linearization can be applied to nonlinear systems

that are in controllable canonical form, or companion form [59, Chapter 6], among other

systems (as will be clarified later in this section).

Definition 2.4.1 If the dynamics of a system can be written in the form

xn = f (x)+g(x)u (2.6)

then the system is said to be in controllable canonical form, or companion form.

In the above equation, u is the control input, x is the the state vector, and f (x) and b(x) are

nonlinear functions. Eliminating the nonlinearity with the control

u =
v− f

g
(2.7)

where g 6= 0 in the scalar case, and g is an invertible matrix in the multidimensional case,
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results in the closed-loop linear system

xn = v

where v is called the virtual control, which can be designed to achieve closed-loop stability,

meaning that the roots of the closed-loop transfer function are strictly negative.

v =−k0x− k1ẋ− ...− kn−1x(n−1) where ki > 0 (2.8)

x(n)+ kn−1x(n−1)+ ...+ k0x = 0

The virtual control can also be designed to achieve exponentially stable error dynamics for

trajectory tracking:

v = −k0e− k1ė− ...− kn−1e(n−1)+ x(n)d where ki > 0 (2.9)

e = x− xd

0 = e(n)+ kn−1e(n−1)+ ...+ k0e

where xd is the desired state trajectory.

As mentioned earlier, feedback linearization can be implemented in two ways,

under certain conditions. Implementing these methods requires the use of differential ge-

ometry and other advanced mathematics [59, Chapter 6]. Some definitions and relation-

ships are introduced next to provide background and to provide a foundation for the later

examples.

Input-State Linearization

Consider the following SISO nonlinear system (the MIMO case will be discussed later):

ẋ = f (x,u) (2.10)
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Input state linearization can then be applied in two steps [59, Chapter 6].

1. A state transformation z = z(x) and an input transformation u = u(x,v) are found

such that the nonlinear system dynamics are transformed into the equivalent linear

time-invariant dynamics, ż = Az+bv, where v is the virtual control term.

2. A linear control design method like Hurwitz pole placement is used to design the

virtual control term.

The following definitions are provided as background to a theorem that will be

presented later in this section to state the conditions for the existence of the input-state

linearization of a nonlinear system. In all definitions and theorems in this thesis, the term

smooth indicates a function that is differentiable up to any order.

1. A vector function f : Rn→ Rn is called a vector field in Rn.

2. Given a smooth scalar function h(x), the gradient of h(x) is denoted by the n-element

vector ∇h:

∇h =
∂h
∂x

(2.11)

3. Given a smooth vector field f (x), the Jacobian of f (x) is denoted by the n×n matrix

∇ f =
∂ f
∂x

(2.12)

4. Let h : Rn→ R be a smooth scalar function, and f : Rn→ Rn be a smooth vector field

on Rn. Then the Lie derivative of h with respect to f is a scalar function defined by

the dot product

L f h = ∇h︸︷︷︸
Gradient

· f (2.13)

5. Let f and g be two vector fields on Rn. The Lie bracket of f and g is a vector field
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defined by

[ f ,g] = ∇g︸︷︷︸
Jacobian

· f − ∇ f︸︷︷︸
Jacobian

·g (2.14)

The Lie bracket [ f ,g] is commonly written as ad f g.

6. A function ψ : Rn → Rn, defined in a region f, is called a diffeomorphism if it is

smooth and if its inverse ψ−1 exists and is smooth.

7. Let ψ be a smooth function defined in a region f in Rn. If the Jacobian matrix ∇ψ

is non-singular at a point x = x0 in f, then ψ(x) defines a local diffeomorphism

in a subregion of f. Note that a diffeomorphism is a one-to-one transformation

to a new coordinate system, so if there are no singular points associated with the

transformation, then the inverse exists; that is, x = ψ−1(z).

8. If the Lie bracket of f and g can be expressed as a linear combination of f and g, it

satisfes a condition called the involutivity condition between f and g.

9. A set of vector fields [ f ,g] is completely integrable if and only if it is involutive.

10. If a given nonlinear system is in the form (2.6) in which f (x) and g(x) are smooth

vector fields in Rn, then there exists a diffeomorphism ψ : f→ Rn in a state-space

region f in Rn with

u = α(x)+β (x)v (2.15)

such that the virtual control input v and the new state variable z = ψ(x). The trans-

formed system is linear.

Given the above definitions, the following theorem can now be stated [59, Chapter 6].

Theorem II.1 A nonlinear system in the form (2.6) in which f (x) and g(x) are both smooth

vector fields in Rn is input-state linearizable if and only if there exists a state-space region

f such that the the following conditions hold.
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1. The set {g,ad f g, ...,ad f n−1g} is linearly independent in the region f (controllability).

2. The set {g,ad f g, ...,ad f n−2g} is involutive in the region f.

Input-state linearization can be achieved with the following procedure.

1. Construct the vectors g,ad f g, ...,ad f n−1g.

2. Verify the controllability and involutivity conditions.

3. Select the first transformed state z1 = ψ(x) such that the following equalities are

satisfied:

∇z1︸︷︷︸
Gradient

·ad f ig = 0 i = 0,1, ...,n−2 (2.16)

∇z1︸︷︷︸
Gradient

·ad f n−1g 6= 0 (2.17)

4. Compute the state transformation and input transformation:

z(x) = [z1, L f z1, ..., L f n−1z1 ] (2.18)

α(x) =
Ln

f z1

LgLn
f z1

(2.19)

β (x) =
1

LgLn−1
f z1

(2.20)

Estimation-Based Feedback Linearization

State and parameter estimation of nonlinear systems has received much attention from

scholars and industry and remains an interesting and current research area. This atten-

tion is due to the fact that state estimation provides the opportunity for sensorless, efficient

control. Additionally, an optimal observer makes it possible to use a relatively accurate

control feedback signal, resulting in improved controller performance. One of the many

areas of estimation-based control is electromechanical energy conversion. Sensorless con-

trol of motors and generators has been a research interest for many decades, resulting in
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many commercialized estimation-based motor control approaches. Permanent magnet syn-

chronous motors (PMSMs), brushless DC motors (BLDCs), permanent magnet DC motors

(PMDCs), and induction motors (IMs) are electromechanical actuators that can be con-

trolled with these estimation-based approaches, and focus on speed, current, back-emf, and

rotor resistance estimation.

Since feedback linearization relies on full state information, an observer can pro-

vide an opportunity to obtain the full state without having a hardware sensor. This feature

can add flexibility to the control of systems in case of the loss of one or more measurements,

enabling the system to maintain desired performance.

Example: Nonlinear Electromechanical System

This example is based on [52]. Figure 1 shows a DC motor schematic that includes an

electric circuit and a mechanical model.

Figure 1: DC Motor Schematic

DC motors have linear dynamics but can exhibit nonlinear behavior in the pres-

ence of state-dependent external torque. In practice, a DC motor is nonlinear due to ar-

mature reaction effects, which can be somewhat mitigated by adding a small compensator
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pole (winding) to the stator. The DC motor dynamics are given as

L
dI
dt

=−Keω−RI +V (2.21)

Jω̇ = KeI−Kdω−Γd (2.22)

where L denotes armature inductance, I denotes armature current, Ke denotes the motor’s

electrical constant, R denotes armature resistance, V denotes input voltage, J denotes motor

inertia, ω denotes rotor rotation speed, Kd denotes the mechanical damping constant, and

Γd denotes the disturbance or external torque. We suppose here that Γd = mgl sinθ , which

creates a nonlinearity in the DC motor dynamics. Suppose that the DC motor rotates a

rigid link of length l with a mass m attached to its end. The state vector is [x1,x2,x3]
T =

[θ , θ̇ , θ̈ ]T , where θ is the rotation angle of the motor, which is considered the system output

y(t). The nonlinear model of the DC motor is then given in affine form as

ẋ = f (x, t)+g(x, t)u

where both f and g are vector fields:

f =


f1

f2

f3

=


x2

x3

−(K2
e +

KdR
JL )x2− (RJ+ KdL

JL )x3− (Rmgl
JL )sinx1− (mgl

J )x2 cosx1

 (2.23)

g =


0

0

−Ke
JL

 (2.24)

The nonlinear dynamics of the motor can be written as

x(n) = fn(x)+gn(x)u where n = 3 (2.25)
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The following form is an equivalent equation in linear observer canonical form that is

appropriate for the application of the standard Kalman filter.

ẋ1 = x2

ẋ2 = x3

ẋ3 = v (2.26)

where v is the virtual control signal. Figure 2 shows the schematic of the DC motor in an

estimation-based control configuration. There is a block for the nonlinear estimator and a

block for the nonlinear controller. Inside the nonlinear estimator block, the combination

of the linearization transformation and the linear Kalman filter is a nonlinear block. The

virtual control term, which is constructed as a nonlinear function of the physical control

signal, is input to the Kalman filter. In this example the control objective is trajectory

tracking, meaning the motor angle θ should follow a desired trajectory θd .

Figure 2: Closed-loop estimation-based control of a DC motor
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The error term is defined as e = xd− x̂, and the control voltage is computed as

u =
1

gn(x̂)
[x(n)d − fn(x̂)−KT e], n = 3, K > 0 (2.27)

The final form of the system as transformed from its original nonlinear form to a linear

form is given as

Ż(t) = AZ(t)+Bv(t)+Mγ(t)

y(t) =CZ(t)+ϖ(t) (2.28)

where A, B, C, and M are the system matrix, the control input matrix, the measurement

matrix, and the noise input matrix. γ(t) and ϖ(t) represent the process and measurement

noise terms. The Kalman filter for this linear system is given as

Ẑ(0) = E[Z(0)]

P(0) = E
[(

Z(0)− Ẑ(0)
)(

Z(0)− Ẑ(0)
)T
]

K(t) = P(t)CT R−1(t)

˙̂Z(t) = AẐ(t)+Bv(t)+K(t)(y(t)−CẐ(t))

Ṗ(t) = AP(t)+P(t)AT (t)+Q(t)−P(t)CT R−1(t)CP(t) (2.29)

where K(t) and P(t) are the Kalman gain matrix and the estimation error covariance matrix.

The covariance of the process noise and the measurement noise are Q(t) = E
[
γ(t)γT (t)

]
,

and R(t) = E
[
ϖ(t)ϖT (t)

]
, respectively.

Simulation Results

Here we present trajectory tracking with a sinusoidal reference signal. Hurwitz pole place-

ment can be used to obtain the feedback gains K = [100, 80, 60]T , where K1 is the coeffi-
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cient corresponding to ë, K2 is the coefficient corresponding to ė, and K3 is the coefficient

corresponding to e, which results in a closed-loop transfer function denominator polyno-

mial with poles that have strictly negative real parts:

s3 +100s2 +80s+60 = 0→ s1 =−58.66, s2 =−0.66+1.12i, s3 =−0.66−1.12i

Figures 3, 4, and 5 compare the simulated values of motor angle, velocity, and accelera-

tion with their reference values, and shows good tracking performance in spite of initial

condition errors. Figures 6, 7, and 8 compare the actual values of motor angle, velocity,

and acceleration with their estimated values, showing good estimation in spite of initial

condition errors. Figure 9 compares the actual control signal and the virtual control signal.
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Figure 3: Simulated DC motor angle compared with desired trajectory

23



0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

time

S
er

vo
−

V
el

oc
ity

 

 

ref
true

Figure 4: Simulated DC motor velocity compared with desired trajectory
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Figure 5: Simulated DC motor acceleration compared with desired trajectory
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Figure 6: Simulated DC motor angle compared with estimated value

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

time

S
er

vo
−

V
el

oc
ity

 

 

true
estimated

Figure 7: Simulated DC motor velocity compared with estimated value

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

time

S
er

vo
−

A
cc

el
er

at
io

n

 

 

true
estimated

Figure 8: Simulated DC motor acceleration compared with estimated value
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Figure 9: DC motor example: actual and virtual control signals

2.5 Discussion

This chapter provided an introduction to nonlinear control. It highlighted the importance of

nonlinear control and introduced different types of system nonlinearity. Two main nonlin-

ear control design objectives (stabilization and trajectory tracking) were discussed. Some

common nonlinear control methods were briefly introduced. Finally, feedback linearization

and system transformation were introduced. Input-state linearization and standard Kalman

filtering, which comprise estimation-based control, was presented, along with an illustra-

tive SISO example of DC-servo position control. The simulation results showed that a

linearized system, along with a linear observer (Kalman filter), is capable of handling a

large initial error, which is notable in comparison with nonlinear observers like the EKF

and the UKF.

Feedback linearization can provide a desirable solution for certain classes of non-

linear systems. This method can be applied in two ways: input-state linearization, and

input-output linearization. In practice, input-state linearization is a special case of input-

output linearization, which will be discussed in the next chapter.
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CHAPTER III

DERIVATIVE-FREE KALMAN

FILTER-BASED CONTROL OF

PROSTHETIC LEGS

Derivative-free Kalman filter-based control for a special class of nonlinear systems was

introduced in [52] and showed improved performance of estimation and tracking compared

to other nonlinear filter / control methods. Much of the content of this chapter is based on

[43].

We develop a derivative-free Kalman filter (DKF) for state estimation-based con-

trol for a general n-DOF robotic system. We then propose a robust DKF when the robot

dynamics are affected by disturbances / unknown inputs. In the robust DKF, we use two

different methods for disturbance rejection: PD and PI disturbance compensators. These

methods provide supervisory control, making the DKF more robust in the presence of dis-

turbances / unknown inputs.

The system considered here is a combination of a test robot that emulates human

hip and thigh motion, and a powered transfemoral prosthetic leg. The robot / prosthesis

combination is modeled as a robot with three degrees of freedom (DOFs): vertical hip

displacement, thigh angle, and knee angle. Simulation results show the advantages of
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applying the DKF and the robust DKF to the three-DOF robot / prosthesis system for state

estimation-based control.

3.1 Derivative-Free Kalman Filtering for Robotic Systems

The Kalman filter applies directly only to linear systems. However, we can linearize a non-

linear system for control purposes and then use linear estimation techniques. Applying the

standard Kalman filter to a nonlinear system through the transformation of the original non-

linear system to observer canonical form is called derivative-free Kalman filtering (DKF).

The linearization transformation of the nonlinear system is based on a diffeomorphism and

does not involve the computation of Jacobians. The DKF can be used for estimation-based

control of robots if the system model is subjected to exact feedback linearization control,

followed by state estimation of the linearized model with the standard Kalman filter.

A dynamic model of a multi-input-multi-output (MIMO) n-DOF robot is given

as

M (q) q̈+C (q, q̇) q̇+ JT
e Fe +G(q) = u (3.1)

where q is the vector of generalized joint angles, M (q) is the mass matrix, C (q, q̇) is a

matrix accounting for centripetal and Coriolis effects, Je is the kinematic Jacobian relative

to the point of application of the external forces Fe, G(q) is the gravity vector, and u is

the vector of control signals [6, 19, 50, 51]. The details of these matrices and the system

parameters of the robot / prosthesis system are given in Appendix A. We first assume that

the system model (3.1) is known in its model parameters and inputs and there are no un-

known inputs to the system except random noise terms. The robot’s dynamic model (3.1)

can be written in affine state space form with the inclusion of noise terms in the process
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and measurement equations as

ẋ = f (x, t)+g(x, t)u+ω(t)

y = h(x, t)+ϖ(t) (3.2)

where the state vector x(t), the input u(t), and the output y(t) are in Rn, Rp and Rm re-

spectively; and the smooth vector fields f (.) and g(.) are in Rn and Rn×p respectively.

The noise terms ω(t) and ϖ(t) are bandlimited, zero-mean, and uncorrelated. The process

noise is partially due to parameter uncertainty, partially due to input certainity, and partially

due to unmodeled dynamics. The measurement noise corresponds to errors in the measure-

ment equipment. The nonlinear system (3.2) is subjected to a linearization transformation

to obtain an observer canonical form in order to perform derivative-free Kalman filtering

(DKF) [52]. Since the linearization transformation of MIMO systems requires an invertible

decoupling matrix, we assume that the number of inputs is equal to the number of outputs;

p = m. The dynamic model is input-output linearizable under the conditions given in [59,

Chapter 6]. Therefore, classic input-output linearization can be applied by differentiating

the output functions yi (i = 1,2, ..,m) until the inputs appear.

We assume that the flat output of the system [53, Chapter 2] is a linear function

of the state vector elements. In this case, the applied transformation does not have any non-

linear effects on the noise signals. We also assume that we know the mean and covariance

of the noise so that we can calculate the mean and covariance of the differentiated noise

[49, Chapter 9].

Assume that ri is the smallest integer such that at least one of the inputs appears

in y(ri)
i . Then

y(ri)
i (t) = Lri

f hi(x)
m

∑
j=1

Lg jL
ri−1
f hi(x)u j(t)+ γi(t) (3.3)

where L f h denotes for the Lie derivative L f h = (∇h) f , with Lg jL
ri−1
f hi 6= 0; and γi(t) is
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noise with zero mean:

γi(t) = ωi(t)+
d
dt

ri

ϖi(t) (3.4)

Note that one of the benefits of transforming the robot dynamics (3.1) into affine state-space

form (3.2) is to handle the noise terms of the diffeomorphism. Based on (3.3) and exact

feedback linearization, the system model (3.2) (ignoring noise) can be transformed into the

following form [59, Chapter 6]:


v1(t)

...

vm(t)

=


Lr1

f h1(x)
...

Lrm
f hm(x)

+Γ(x)u(t) (3.5)

where Γ(x) is the m×m invertible decoupling matrix, and the scalar r = r1 + r2 + . . .+ rm

is called the total relative degree of the system. The virtual control terms vi(t) will be

designed later in this chapter. When the partial relative degrees ri are integers such that

Lg jL
ri−1
f hi 6= 0, then the input transformation

u(t) = Γ
−1(x)


v1(t)−Lr1

f h1(x)
...

vm(t)−Lrm
f hm(x)

 (3.6)

yields m linear systems, which include the noise terms γi(t) from (3.3):

Żi
1(t) = Zi

2(t)

...

Żi
ri
(t) = y(ri)

i (t) = vi(t)+ γi(t), i = 1,2, . . . ,m (3.7)
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Now we can write an individual state space equation for every decoupled subsystem:

Żi(t) = AiZi(t)+Bivi(t)+Miγi(t)

yi(t) =CiZi(t)+ϖi(t) (3.8)

Equation (3.8) is written in state space canonical form as


Żi

1(t)

Żi
2(t)
...

Żi
ri
(t)

=

Ai︷ ︸︸ ︷

0 1 · · · 0
... 0

. . . 0

0 · · · 0 1

0 · · · · · · 0




Zi

1(t)

Zi
2(t)
...

Zi
ri
(t)

+

Bi︷︸︸︷

0

0
...

1


vi(t)+

Mi︷︸︸︷

0

0
...

1


γi(t)

yi(t) =
[

1 0 · · · 0

]
︸ ︷︷ ︸

Ci

Zi(t)+ϖi(t) (3.9)

for i = 1, ...,m. After input-output linearization and the derivation of the transformed mod-

els for each subsystem, linear control laws (virtual controls) vi can be obtained to control

each transformed subsystem (3.9). The controller is designed to make the system output

follow a desired trajectory Zd . The virtual control is defined for each subsystem as

vi(t) = Z(ri)
di (t)−θ

T
i ei(t) (3.10)

where the gain matrix θ T
i =

[
θ i

ri
, . . . ,θ i

1
]t is designed by pole placement and the error dy-

namics is obtained from the estimation errors ei(t)= Ẑi−Zdi with ei(t)=
[
ei, ėi, . . . ,e

(ri−1)
i

]T

such that the polynomial e(ri)
i + θ i

1eri−1
i + . . .+ θ i

riei is Hurwitz. To obtain the estimate of

the state vector Ẑi, we apply the standard Kalman filter to the linearized model of the robot
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(3.9) as follows [58, Chapter 8].

Ẑi(0) = E[Zi(0)]

Pi(0) = E
[(

Zi(0)− Ẑi(0)
)(

Zi(0)− Ẑi(0)
)T
]

Ki(t) = Pi(t)CT
i R−1

i (t)

˙̂Zi(t) = AiẐi(t)+Bivi(t)+Ki(t)(yi(t)−CiẐi(t))

Ṗi(t) = AiPi(t)+Pi(t)AT
i (t)+Qi(t)−Pi(t)CT

i R−1
i (t)CiPi(t) (3.11)

for i = 1, ...,m, where Ki(t) and Pi(t) are the Kalman gain and estimation error covariance

matrix, and the covariances of the process and measurement noise are Qi(t)=E
[
γi(t)γT

i (t)
]

and Ri(t) = E
[
ϖi(t)ϖT

i (t)
]
, respectively. We see that a Kalman filter can be designed for

each decoupled subsystem, i= 1, . . . ,m, separately. These two steps, feedback linearization

and decoupled state estimation by standard Kalman filters, comprise the DKF. The Kalman

filter provides estimates of the states for input to the feedback linearization controller.

3.2 Derivative-Free Kalman Filtering in the Presence of

Unknown Inputs

Parameter uncertainties and external disturbances are unknown inputs that can affect the

robot model. In robotic systems, unknown inputs can result from the following [53]: (i)

uncertainties and changes in the model parameters, (ii) unknown external torques exerted

on the robot joints, (iii) unknown external forces exerted on the masses of the robotic mech-

anism. In the DKF we use feedback linearization to linearize the nonlinear model of the

robot so that we can apply the standard Kalman filter. However, the performance of the

DKF may suffer since feedback linearization is not robust in the presence of disturbances

and unknown inputs. In this section, the DKF for state estimation-based control is consid-

ered in the presence of unknown inputs.
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The robot’s dynamic model in (3.2) can be written in affine state space with

unknown inputs as

ẋ = f (x, t)+g(x, t)u+ω(t)+E(x, t)d(x, t)

y = h(x, t)+ϖ(t) (3.12)

where d(x, t)∈Rl is the unknown input vector and E(x, t)d(x, t) comprises the effect of the

unknown inputs on each joint, where E(x, t) ∈ Rn×l can be calculated from the dynamic

model (3.1). The unknown input and its derivatives are assumed to be bounded, but the

bounds are unknown and we do not have any information about the dynamics of the un-

known inputs. The approach of Section 3.1 is used here for the linearization of the model

(3.12). Exact feedback linearization is applied and the input transformation is obtained

from (3.6), which results in the transformation of (3.12) into the m decoupled subsystems

Żi
1(t) = Zi

2(t)

...

Żi
ri
(t) = y(ri)

i (t) = vi(t)+ γi(t)+ d̃i(x, t) (3.13)

for i = 1,2, · · · ,m. The assumption about the number of inputs p being equal to the number

of outputs m must be retained as in Section 3.1 for the existence of a feedback linearization

control u. The components (d̃1, d̃2, . . .) represent the transformed effects of the unknown

inputs and can be obtained as follows [40]:


d̃1(x, t)

...

d̃m(x, t)

=


Lr1−1

E d h1 + . . .+ d
dt
(r1−1)

(LE dh1)

...

Lrm−1
E d hm + . . .+ d

dt
(rm−1)

(LE dhm)

 (3.14)

The state space canonical form can be written for each subsystem from the transformed
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model (3.13) on the basis of (3.9):

Żi(t) = AiZi(t)+Bivi(t)+Miγi(t)+Nid̃i(x, t)

yi(t) =CiZi(t)+ϖi(t) (3.15)

where Ni is an ri×1 vector that is identical to Mi.

In order to implement state estimation-based control with the DKF, we apply the

standard Kalman filter (3.11) to the linearized model (3.15). However, the DKF is unable to

estimate the states of the robot in the presence of unknown inputs. So we need to design a

virtual control vi as in (3.10) using disturbance rejection to stabilize the transformed system

dynamics:

vi(t) = Z(ri)
di (t)−θ

T
i ei(t)− ˆ̃di(x, t) (3.16)

where ˆ̃di(x, t) is the estimate of the disturbance / unknown input, which is used for rejection

/ compensation of the disturbance. We propose two different methods to obtain ˆ̃di(x, t).

1. Use a PD disturbance compensator as a supervisory control term for the compensa-

tion of the disturbance: ˆ̃di(x, t) = LT
i Ei, with the gain LT

i = [LPi,LDi].

2. Use a PI disturbance compensator as a supervisory control term for the compensation

of the disturbance: ˆ̃di(x, t) = JT
i Ξi with JT

i = [JPi,JIi] and Ξi =
[
ei,
∫ t

0 e(τ)dτ
]T .

The virtual control vi (3.16) is designed to make the DKF robust to unknown

inputs. An augmented system is thus formed on the basis of the DKF for state estimation

and the proposed methods for disturbance rejection: ˙̂Zi(t)
˙̃̂
di(x, t)

=

Ai Ni

0 0


 Ẑi(t)

ˆ̃di(x, t)

+
Bi

0

vi +

Ki(t)(y(t)−CiẐi(t))

LT
i Ei or JT

i Ξi

 (3.17)

We define the state estimation errors as ξi(t) = Ẑi(t)−Zi(t) and the disturbance estimation

errors as ϕ(t) = ˆ̃di(x, t)− d̃i(x, t) with LPi � LDi or JPi � JIi. From [40, 60], we can

conclude that the estimation error norms ‖ξi(s)‖F and ‖ϕ(s)‖F converge to an arbitrarily
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small value ε if ‖s d̃i(s)‖F is bounded, where ‖ ·‖F denotes the Frobenius norm and s is the

Laplace transform variable. The proposed method for disturbance rejection and the DKF

for estimation-based control is depicted in Fig. 10.

Exact Feedback 
linearization

Robot model

Inputs
𝑢 = [𝑢1, … , 𝑢𝑚]

DKF
PD or PI 

disturbance

compensator 

Virtual 
control term

Outputs
𝑦(𝑟) = [𝑦(𝑟1), … , 𝑦(𝑟𝑚)]

State
estimation

Disturbances

rejection   𝑑
𝑣 = [𝑣1, … , 𝑣𝑚]

m decoupled subsystems through input-output 
linearized model 

Desired
trajectories

Noise Disturbances

Figure 10: Schematic of the proposed method for disturbance rejection / compensation and
the DKF for state estimation-based control of a robotic system

3.3 Simulation Results

In this section we show the effectiveness of the DKF and the robust DKF for state estimation-

based control through simulation studies on a three-DOF test robot / prosthesis system. Fig-

ure 11 shows a schematic of the hip robot and prosthesis combination. The transfemoral

prosthesis and the robot are modeled as a three-link robot. In the robot dynamic model

(3.1), the vector of generalized joint displacements is q = [q1,q2,q3]
T , where q1 is vertical

hip displacement, q2 is thigh angle, and q3 is knee angle. The state vector and outputs of

the robot / prosthesis system are given as

x = [q1, q̇1,q2, q̇2,q3, q̇3]
T , y = [q1,q2,q3]

T

We thus have three states for the generalized coordinates and three states for their velocities.

The inputs u = [u1,u2,u3]
T correspond to the outputs. The input ui will appear after two
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differentiations of the corresponding output yi, so the total relative degree is obtained from

(3.3) as r = r1 + r2 + r3 = 6, which is equal to the system order n. Note that there are no

internal dynamics associated with the input-output linearization of this system since r = n.

Figure 11: Diagram of the robot / prosthesis system; note that the ankle joint is stationary

Note that (3.1) is trivially input-output linearizable with u = Ma+Cq̇+G, where

a is the virtual acceleration, which results in the system q̈ = a. There is no need for output

differentiation here, but this system is provided in this thesis as an example to illustrate the

combination of the derivative-free Kalman filter and input-output linearization via output

differentiation.

First, we assume in Section 3.3.1 that the robot model has known parameters with

a known GRF contact model that comprises the external force vector Fe in (3.1). The DKF

is designed in this case for state estimation-based control of the robot. Second, we suppose

in Section 3.3.2 that the system has unknown external force dynamics and parameter un-

certainties, which are treated as unknown inputs. The performance of the robot / prosthesis

system is simulated for four steps of normal walking, which is approximately four sec-

onds. A treadmill is used as the walking surface of the prosthesis test robot. The reference

data have been provided by the Motion Studies Laboratory of the Cleveland Department of

Veterans Affairs Medical Center (VAMC) [34].
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3.3.1 The robot / prosthesis system with known inputs

The ground contact model used to simulate JT
e Fe, the generalized joint torques resulting

from ground contact in (3.1), is given as follows [5]:

Lz = q1 + l2 sinq2 + l3 sin(q2 +q3) (3.18)

Fz =

 0 if Lz ≤ sz

kb(Lz− sz) if Lz ≥ sz

(3.19)

Fx = βFz (3.20)

JT
e Fe =


Fz

Fz(l3 cos(q2 +q3)+ l2 cosq2)−Fx(l3 sin(q2 +q3)+ l2 sinq2)

Fzl3 cos(q2 +q3)−Fxl3 sin(q2 +q3)

 (3.21)

where l2 = 0.425 m and l3 = 0.527 m are the length of the thigh and shank respectively; Lz

is the vertical position of bottom of the foot in the world frame (x0,y0,z0); sz = 0.905 m

is the treadmill standoff (that is, the vertical distance from the origin of the world frame to

the treadmill); kb = 37,000 N/m is the belt stiffness; and β = 0.2 is the friction coefficient

between the foot and the treadmill. The robot dynamics (3.2) is input-output linearized

based on the assumption that the number of inputs is equal to the number of outputs. The

model is transformed into the three decoupled subsystems

Żi(t) =

0 1

0 0

Zi(t)+

0

1

vi +

0

1

γi(t)

yi(t) =
[

1 0

]
Zi(t)+ϖi(t) (3.22)

where Zi(t) = [qi, q̇i]
T for i = 1,2,3. We apply the DKF to each linearized subsystem

(3.22) to achieve estimation-based control of the robot. The covariance of the process and

measurement noise are taken as Qi = 5× 10−3 and Ri = 10−3 for each subsystem. The

measurement noise covariance is based on our knowledge of the accuracy of the measure-
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ment system. The process noise covariance is a tuning parameter that is set by trial and

error to obtain good estimation and control performance.

The initial value of the state vectors are given as

Z1(0) = [0.019,0.093]T (3.23)

Z2(0) = [1.131,0.779]T (3.24)

Z3(0) = [0.092,1.412]T (3.25)

We set the initial value of the estimated state vector to provide an arbitrary but nonzero

initial estimation error:

Ẑ1(0) = [0.039,0.062]T (3.26)

Ẑ2(0) = [0.912,0.321]T (3.27)

Ẑ3(0) = [0.135,0.884]T (3.28)

The gains θi in (3.10) are designed by pole placement to provide good control performance:

θ T
i = [1250,100] for i = 1,2,3.

The results for the state estimation-based control of the robot / prosthesis system

are shown in Fig. 12. In spite of significant initial estimation errors for the joint coordinates

and velocities, the DKF estimates converge quickly to the true states. The control magni-

tudes are shown in Fig. 13 and are greater than those exerted by able-bodied walkers [16]

because the robot dynamics are much different than human dynamics, and the GRF input

does not come from human walking. However, implementing the DKF-based controller in

the real-world robot / prosthesis would not be a problem. The control signals in this sim-

ulation are orders of magnitude closer to able-bodied controls than the nonlinear control

method proposed in [16].
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Figure 12: State estimation-based control of the robot / prosthesis system with known
inputs: state estimation performance
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Figure 13: State estimation-based control of the robot / prosthesis system with known
inputs: control signal magnitudes
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3.3.2 The robot / prosthesis system with unknown inputs

In robot / prosthesis systems, the system parameters may be unknown or may change from

their nominal values. Also, external forces Fe, including unmodeled ground reaction forces

(GRFs), can be considered as unknown inputs if sensors to measure them are not available.

We consider these two sources of uncertainties as unknown inputs d1,d2,d3 in the robot dy-

namics. We suppose the unknown inputs are given as d1 = 100sin(10t) N, d2 =−200 Nm,

and d3 = 50sin(5t +π) Nm. These inputs affect each robot joint via the linearization of

the unknown inputs based on (3.14) and are denoted as d̃1, d̃2, d̃3 in the linearized system

(3.15). The robot dynamics are transformed into three decoupled subsystems on the basis

of (3.15). The DKF is designed using the disturbance / unknown input rejection methods

proposed in Section 3.2. The values of the initial state vector, estimates, and covariances of

the noise terms are identical to those in Section 3.3.1. We use the PD and PI compensators

for disturbance rejection via estimation of d̃. The accuracy of the disturbance estimate ˆ̃d is

compared for the PD and the PI compensators.

First we consider the PD compensator as the supervisory controller for unknown

input rejection. We do not show tracking performance since it is very similar to that in the

previous subsection. Figure 14 shows good state estimation in spite of significant initial-

ization errors. Figure 15 shows control signals that are approximately equal to those in the

previous subsection in spite of the unknown inputs. Figure 16 shows good unknown input

estimation as an extra benefit of the DKF approach.
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Figure 14: State estimation-based control of the robot / prosthesis system with unknown
inputs: state estimation performance with PD compensation
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Figure 15: State estimation-based control of the robot / prosthesis system with unknown
inputs: control signal magnitudes with PD compensation
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Figure 16: State estimation-based control of the robot / prosthesis system with unknown
inputs: unknown input estimation with PD compensation
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Next we use the PI compensator for unknown input rejection. We do not show

tracking performance, state estimation performance, or control signal magnitudes, because

they are very similar to those obtained with the PD compensator. Figure 17 shows unknown

input estimation, which may be satisfactory depending on the system requirements, but is

noticeably worse than than obtained with the PD compensator.
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Figure 17: State estimation-based control of the robot / prosthesis system with unknown
inputs: unknown input estimation with PI compensation
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We compare the PD and PI compensators in terms of trajectory tracking root

mean square error (RMSE) and RMS control values. Table I shows that the PD compen-

sator outperforms the PI compensator from the following perspectives. (i) The PD com-

pensator has faster dynamics than the PI compensator due to the error derivative term ė;

therefore it includes a prediction characteristic that improves compensator response time

to the disturbance / unknown input. (ii) The integral term in the PI compensator introduces

a pole at the origin. This results in overshoot during transients and also might cause the

system to be slow in tracking the desired trajectory. In other words, since the system was

linearized based on feedback linearization, a pole at the origin may cause oscillation and

reduce stability.

Table I: Comparison of trajectory tracking RMSE and RMS control values of the robust
DKF using PD disturbance compensation and PI disturbance compensation

x1
(m)

x2
(m/s)

x3
(rad)

x4
(rad/s)

x5
(rad)

x6
(rad/s)

u1
(N)

u2
(Nm)

u3
(Nm)

PD compensator 0.001 0.019 0.008 0.019 0.211 0.112 583 217 39

PI compensator 0.001 0.030 0.068 0.022 0.359 0.857 580 211 42
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3.4 Discussion

We developed and applied a DKF to a class of MIMO robotic systems for estimation-based

control. We then proposed two methods for disturbance / unknown input rejection when

the robot dynamics are disturbed by parametric uncertainties or unmodeled but bounded

external forces. PD and PI disturbance compensators were used as supervisory control

terms for disturbance / unknown input rejection, thus making state estimation more robust

in the DKF. In the simulation results, a three-DOF robot / prosthesis system for trans-

femoral amputees was considered for estimation-based control of the joint displacements

and velocities. The results showed that the DKF converges rapidly in terms of both state

estimation and trajectory tracking, even with significant initial estimation errors and mea-

surement noise. Additionally, we demonstrated the robustness of the state estimation-based

controller in the presence of unknown inputs. We showed that the DKF achieves smaller

estimation errors when the PD compensator is employed for disturbance / unknown input

rejection / compensation, relative to the PI compensator. In the next chapter the stability of

observer-based robot / prosthesis controller will be discussed and analyzed.
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CHAPTER IV

STABILITY ANALYSIS

This chapter discusses stability analysis for nonlinear systems. It begins with a short in-

troduction to the concept of stability for nonlinear systems, including stability types and

definitions. Next, it introduces Lyapunov theorems (linearization and direct methods) and

invariant set theorems. It then discusses stability analysis of linear systems using Lyapunov

functions, along with stability analysis of non-autonomous time-varying systems. Finally,

Section 4.7, which comprises the original contribution of this chapter, develops a stability

analysis of the DKF method from Chapter III in the frequency domain, and demonstrates

error convergence in the time domain.

4.1 Stability in Nonlinear Systems

This section reviews some basic stability concepts for nonlinear systems. An autonomous

system, or time-invariant system, is denoted as

ẋ = f (x) (4.1)
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A non-autonomous system, or time-varying system, is denoted as

ẋ = f (x, t) (4.2)

When a time-invariant system has a control-input u, the system is denoted as

ẋ = g(x,u) (4.3)

If u is a function of the state x, then the closed-loop representation of the system is denoted

as

ẋ = g(x,u(x)) (4.4)

A non-autonomous system with u = u(x, t) is represented as

ẋ = g(x,u(x, t)) (4.5)

An equilibrium point for an autonomous system is defined as a state value xeq such that if

x = xeq at some time t0, then x = xeq for all t ≥ t0; that is, f (xeq) = 0 for all t ≥ 0.

As an example, consider a simple pendulum:

mr2
θ̈ +bθ̇ +mgr sin(θ) = 0 (4.6)

where θ represents the rotation angle of the pendulum. This system has many equilibrium

points: (θ = kπ , θ̇ = 0) for k = 0,±1,±2, ...

4.2 Lyapunov Stability

This section defines various types of stability and associated concepts.
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4.2.1 Stable Equilibrium Point

xeq = 0 is said to be an equilibrium point if, ∀R > 0, ∃r > 0 such that if ‖x(t0)‖ < r then

for every t ≥ t0, ‖x(t)‖< R. If the system begins close enough to the equilibrium condition

xeq (inside a ball of radius r), it never leaves the ball of radius R.

4.2.2 Local Asymptotic Stability

Suppose there exists an equilibrium point that is stable. It is locally asymptotically stable

if ∃ r > 0 such that ‖x(0)‖< r⇒ x(t)→ 0 as t → ∞.

4.2.3 Global Asymptotic Stability

Suppose there exists an equilibrium point that is stable. It is globally asymptotically stable

if, for any initial condition x(0), x(t)→ 0 as t → ∞. That is, any initial state returns to the

equilibrium point. In this case there exists exactly one equilibrium point xeq = 0, and so

there is no need to define a region of attraction.

4.2.4 Local Exponential Stability

Suppose there exists an equilibrium point that is stable. It is locally exponentially stable if

∃ r > 0 such that ‖x(0)‖ < r⇒ ∃ α > 0 and λ > 0 such that ‖x(t)‖ < α‖x(0)‖e−(λ t) ∀ t

≥ 0 .

4.2.5 Global Exponential Stability

Suppose there exists an equilibrium point that is stable. It is globally exponentially stable

if, for any initial condition x(0), ∃ α > 0 and λ > 0 such that ‖x(t)‖< α‖x(0)‖e−(λ t) ∀ t

≥ 0.

With this kind of stability, the time-constant λ indicates how long it takes the

trajectory to reach the equilibrium point. Furthermore, if we choose α = e(λT0) then
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‖x(t)‖ < ‖x(0)‖e−λ (t−T0). As a special case, a linear system is globally exponentially

stable if all of its closed-loop poles are in the left-half plane.

4.3 Lyapunov Theorems

Before introducing the Lyapunov theorems, we briefly discuss linearization and local sta-

bility.

4.3.1 Linearization and Local Stability

Consider an autonomous nonlinear system:

ẋ = f (x) (4.7)

Suppose this system has an equilibrium point at xeq = 0 . A Taylor series expansion of f (x)

around the origin can be written as

ẋ = f (0)+
∂ f
∂x

∣∣∣∣
x=0

x+h.o.t (4.8)

where h.o.t denotes higher order terms. So the linearized system dynamics can be approx-

imated as

ẋ w Ax (4.9)

where the system matrix A=∂ f
∂x

∣∣∣∣
x=0

, also called the Jacobian matrix, can be written as

∂ f
∂x

=



∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn


(4.10)
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This approach can be generalized to the linearization of a closed-loop system.

Consider the nonlinear system

ẋ = f (x,u) (4.11)

Suppose this system has an equilibrium point at (x,u) = (0,0) so that f (0,0) = 0. A Taylor

series expansion of f (x,u) can be written as

ẋ = f (0,0)+
∂ f
∂x

∣∣∣∣
x=0,u=0

x+
∂ f
∂x

∣∣∣∣
x=0,u=0

u+h.o.t (4.12)

Suppose that a controller is implemented so that u is a function of the state x; that is,

u(x) = g(x). The Taylor series expansion of u is written as

u(x) = g(x) = 0+
∂g
∂x

∣∣∣∣
x=0

x+h.o.t (4.13)

So ẋ can be approximated as

ẋ w (A+BG)x (4.14)

where

A =
∂ f
∂x

∣∣∣∣
x=0,u=0

B =
∂ f
∂x

∣∣∣∣
x=0,u=0

G =
∂g
∂x

∣∣∣∣
x=0,u=0

As a simple example, suppose that

ẋ1 = x2
3 + x1 cos(x2) (4.15)

ẋ2 = 2x2 +(x1 +5)x1 + x2 sin(x1) (4.16)
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which has an equilibrium point at (x1,x2) = (0,0). The system matrix A can be calculated

as

A =

1 0

5 2


4.3.2 Lyapunov Linearization and Stability

Here we present a theorem that is important for linear systems and that we will need to use

later in our stability proof of the DKF.

Theorem IV.1 Suppose there exists a nonlinear system such that ẋ = f (x) with an equilib-

rium point at origin; that is, f (0) = 0. Suppose that its linearized model is given as ẋ w Ax.

The system matrix A can indicate one of several types of stability.

First, if A is strictly unstable (that is, at least one eigenvalue or closed-loop pole is located

in the right-half plane), then x = 0 is unstable; that is, it is not stable in the Lyapunov sense.

Second, if A is strictly stable (that is, all eigenvalues or closed-loop poles are located in

the left-half plane), then x = 0 is asymptotically stable.

Third, if A is marginally unstable (that is, some eigenvalues are on the imaginary axis and

others are in the left-half plane), then no conclusion can be made about the stability of the

system; it may or may not be stable.

As a simple example, consider the nonlinear system v̇+ v|v| = 0. Then v̇ = 0

is the linearized system and satisfies the third condition above. If v is positive then v̇ is

negative, and if v is negative then v̇ is positive, so the linearized system is asymptotically

stable in spite of the fact that it has an eigenvalue on the imaginary axis.

4.3.3 Lyapunov’s Direct Method

Lyapunov’s direct method is based on two simple concepts: first, every physical element

has finite energy, and second, this energy dissipates due to factors like friction and re-
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sistance. Lyapunov’s direct method is thus based on simple concepts from physics. The

following definitions are fundamental to Lyapunov’s direct method.

1. V (x) is positive definite (PD) if V (0) = 0 and V (x)> 0 for every x 6=0.

2. V (x) is positive semidefinite (PSD) if V (x)≥ 0 for every x.

3. V (x) is negative definite (ND) if V (0) = 0 and V (x)< 0 for every x 6=0.

4. V (x) is negative semidefinite (NSD) if V (x)≤ 0 for every x.

5. V (x) is indefinite if it does not satisfy any of the above four criteria.

For example, consider a simple mechanical mass-spring system [59, Chapter 3]

with a nonlinear spring and damper.

mẍ+b|ẋ|ẋ+ k0x+ k1x3 = 0 (4.17)

where b|ẋ|ẋ is viscous friction or drag, and k0x+ k1x3 is a spring term. The variable x

represents position, ẋ represents velocity, and ẍ represents acceleration. The equilibrium

point of this system is

x = xeq = 0

ẋ = ẋeq = 0

The equilibrium point can be represented in two-dimensional state space coordinates, with

the horizontal axis representing x and the vertical axis representing the derivative of x. The

equilibrium point is at the origin of the state space coordinate system. Consider V (x) as the

total mechanical energy of the system (that is, the sum of the potential and kinetic energy).

V (x) =
1
2

mẋ2 +
∫ x

0
(k0τ + k1τ

3)dτ =
1
2

mẋ2 +
1
2

k0x2 +
1
4

k1x4 (4.18)
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Taking the derivative of energy V (x) with respect to time gives the power dissipation, which

shows how the energy changes with time.

d
dt

V (x) = mẋẍ+(k0x+ k1x3)ẋ

= ẋ(−b|ẋ|ẋ− k0x+ k1x3)+(k0x+ k1x3)ẋ

= ẋ(−b|ẋ|ẋ)

= −b|ẋ|3

The only element in the system that dissipates power is the damper. If d
dtV (x) = 0 then

ẋ = 0, which means that the velocity is changing direction (from positive to negative, or

vice versa).

Lyapunov’s direct method can be applied to local stability as stated by the fol-

lowing theorem.

Theorem IV.2 Consider the autonomous system

ẋ = f (x) (4.19)

with initial condition x(0) = 0. Assume there exists a smooth scalar function V (x) such

that in some state-space region (a ball with radius R) V (x) is PD and V̇ (x) is NSD. Then

x = 0 is a stable equilibrium point. If V̇ (x) is ND, then x = 0 is an asymptotically stable

equilibrium point.

Lyapunov’s direct method can be applied to global stability as stated by the fol-

lowing theorem.

Theorem IV.3 Consider the autonomous system (4.19). Assume there exists a smooth

scalar function V (x) such that for all x in Rn, V (x) is PD, V (x) → ∞ as ‖x‖ → ∞, and

V̇ (x) is ND. Then x = 0 is a globally asymptotically stable equilibrium point.
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For example, consider the nonlinear autonomous system ẋ+ f (x) = 0. Assume

that f (x) is a continuous and odd function, meaning that x f (x) > 0 for all x(t) 6= 0. That

is, both x and f (x) have the same sign. This system has an equilibrium point at the origin

(x = ẋ = 0), and since both x and f (x) have the same sign, the equilibrium point is globally

asymptotically stable. We can show this with Lyapunov theory by choosing V (x) = x2 as

the candidate Lyapunov function.

1. V (x) is PD.

2. As ‖x‖ → ∞, V (x)→ ∞.

3. V̇ = 2xẋ =−2x f (x)< 0 for all x 6= 0, which shows that V̇ is ND.

4. Therefore, x = 0 is a globally asymptotically stable equilibrium, meaning that for any

initial condition, x tends to zero as time tends to infinity.

The selection of a Lyapunov function for a given system is not unique, and the

above theorems do not indicate how to choose a Lyapunov function. For example, the

following functions are valid Lyapunov functions for the above example:

V (x) = 2x2

V (x) = x4

V (x) = 2x2 + x4

Even V (x) =
∫ x

0 f (y)dy can be used as a Lyapunov function for the above system; in this

case we obtain V̇ = f (x)ẋ =− f 2(x)< 0 for all x 6= 0.

One difficulty of using Lyapunov theorems is that if ẋ = 0⇒ V̇ = 0, the NSD

Lyapunov function indicates that the system’s velocity is zero at the equilibrium point,

which means that the velocity is changing direction. In other words, since ẋ = 0, the fact

that V̇ = 0 does not tell us anything about x. In this case we can see that x = 0 is stable but

we cannot say anything about the asymptotic stability or global asymptotic stability of the

system. This shortcoming led to the development of a richer theory that will be discussed

in the next section.
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4.4 Invariant Sets

Consider a dynamic system ẋ = f (x). A state-space set Ω is said to be an invariant set

if every state-space trajectory that starts in Ω remains in Ω. Limit cycles and equilibrium

points are examples of invariant sets.

Theorem IV.4 Local Invariant Set Theorem – Consider the autonomous dynamic system

ẋ = f (x) and the associated Lyapunov function V (x), where:

1. f (x) is continuous;

2. V (x) is a scalar function of the state x and is bounded for all x ∈ ΩL, meaning that

V (x)< L for some finite constant L;

3. The first derivative of V (x) is continuous;

4. ΩL is bounded;

5. V̇ ≤ 0 for all x ∈ΩL.

Then all trajectories in ΩL tend to the set R, and more precisely, to the largest invariant set

in the set R, which we denote as the set M.

Theorem IV.5 Global Invariant Set Theorem – Consider the autonomous dynamic system

ẋ = f (x) and the associated Lyapunov function V (x), where:

1. f (x) is continuous;

2. V (x) is a scalar function of the state x;

3. The first derivative of V (x) is continuous;

4. V (x)→ ∞ as ‖x‖ → ∞;

5. V̇ (x)≤ 0 for all x.

Let R be the set of all points such that V̇ (x) = 0, and let M be the largest invariant set in

the set R. Then all trajectories converge to the set M as t → ∞.
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4.5 Lyapunov Stability of Linear Systems

In this section we discuss how Lyapunov stability analysis can be applied to linear systems.

We first state the following definitions for a constant square matrix P.

1. P is symmetric if PT = P.

2. P is skew-symmetric if PT =−P.

So any matrix P can be written in the form

P =
P+PT

2︸ ︷︷ ︸
Psym

+
P−PT

2︸ ︷︷ ︸
Pskew

Suppose P is a skew-symmetric matrix. We can then take an arbitrary vector x and compute

the quadratic (which is scalar) as

(xT Px)T = xT PT x =−xT Px (4.20)

which implies that xT Px = 0 if P is skew-symmetric. This result implies that the quadratic

form of any square matrix is:

xT Px = xT (Psym +Pskew)x = xT Psymx

The following symmetry-related properties can be stated.

1. Suppose P is a symmetric matrix that is composed of real elements. Then all of its

eigenvalues are real and its eigenvectors can be chosen to be orthonormal; that is, P

is diagonizable.

2. A square matrix P is positive definite (P > 0) if xT Px > 0 for all x 6= 0.

3. If P > 0 then xT Px is a globally positive definite function.
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4. λmin(Psym)xT x≤ xT Px = xT Psymx≤ λmax(Psym)xT x.

Now we can discuss some concepts that are related to the Lyapunov stability

analysis of linear time-invariant systems. Consider the linear time-invariant system ẋ =

Ax. Choose the candidate Lyapunov function V = xT Px, where P is a constant symmetric

positive definite matrix (P = PT > 0). Then V → ∞ as x→ ∞. Taking the derivative of V

with respect to time gives

V̇ = ẋT Px+ xT Pẋ = ẋT (AT P+PA)x

In order to show that the system is strictly stable, we need to find a pair of matrices P and

Q, both of which are positive definite, to solve the equation AT P+PA =−Q; this is called

a Lyapunov equation. The standard approach to solve this equation is to solve for P given

a specific Q. That is, given some Q = QT > 0 (for instance, Q = I), find a solution P to

the Lyapunov equation. In fact, if the system ẋ = Ax is strictly stable, then the solution

P = PT > 0 can be written as P =
∫

∞

0 eAT tQeAtdt. This approach can be used to prove the

global asymptotic stability of the system.

4.6 Stability Analysis of Non-autonomous Systems

Non-autonomous systems can be either linear or nonlinear systems that vary with time. We

discuss both types of systems in this section.

4.6.1 Stability Analysis of Linear Time-Varying Systems

Consider an autonomous dynamic system and the time derivative of a candidate Lyapunov

function.

ẋ = f (x) (4.21)

d
dt

V (x) =
∂V
∂x

f (x) = V̇ (x) (4.22)
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Suppose that the system is linear and time-varying:

ẋ(t) = A(t)x(t) (4.23)

It is natural to suppose that if all of the eigenvalues of the system at all points in time

are strictly negative, then the system is stable. However, this supposition is false. As a

counterexample, consider the system

ẋ =

−1 e3t

0 −1

x (4.24)

For this system λ1 =−2 and λ1 =−1 for all t. However, solving the differential equation

for x2 and substituting it in x1 gives

ẋ2 =−x2⇒ x2 = x2(0)e−t (4.25)

ẋ1 + x1 = e3tx2 = e3tx2(0)e−t = x2(0)e2t (4.26)

We see that x2→ 0 as t → ∞. However, x1→ ∞ as t → ∞.

Theorem IV.6 Given a linear time-varying system ẋ(t) = A(t)x(t), if all eigenvalues of

Asym = A+AT

2 are less than−λ (where λ is a constant positive real value) for all t > 0, then

x(t)→ 0 exponentially at the rate λ .

Proof. Let V = xT x; then

V̇ = ẋT x+ xT ẋ = xT (AT +A)x≤−2λxT x =−2λV

V̇ +2λV ≤ 0⇒ 0≤V ≤V(t=0)e
−2λ t

Since V tends to zero exponentially at the rate 2λ , we conclude that x(t) decreases expo-
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nentially at the rate λ ; that is, x(t) = x(0)e−λ t .

4.6.2 Stability Analysis of Nonlinear Time-Varying Systems

Before introducing a stability theorem for nonlinear time-varying systems, we make some

assumptions and then we justify them.

First, suppose that ḟ (t) → 0 as t → ∞. Does this imply that f (t) converges to

a limit as t → ∞? Consider the counterexample f (t) = log(t). It is clear that ḟ (t) → 0

as t → ∞. However, f (t)→ ∞ as t → ∞. Consider the function f (t) = sin(log(t)). Then

ḟ (t) = 1
t cos(log(t)), and so ḟ (t)→ 0. Although it is true that −1≤ f (t)≤ 1, the function

f (t) does not converge to a limit as t → ∞.

Second, suppose that f (t) converges to a finite limit as t → ∞. Does this im-

ply that ḟ (t) → 0 as t → ∞? Consider the counterexample f (t) = e−t sin(e2t). The first

derivative has the form ḟ (t) = · · ·+ et(· · ·), showing that ḟ (t) does not converge to 0 as t

→ ∞.

Third, suppose that f (t) is a lower bounded function whose derivative satisfies

ḟ (t) ≤ 0. Does this imply that f (t) tends to a finite limit as t → ∞? This question is

answered in the following.

Lemma IV.1 Barbalat’s Lemma Suppose that: (1) There is a scalar function f (t) that

tends to a finite limit as t → ∞; (2) Its second derivative is bounded, meaning that ∃ β > 0

such that | f̈ (t)| ≤ β . Then ḟ (t)→ 0 as t → ∞.

Theorem IV.7 Consider a non-autonomous system with the dynamics

ẋ = f (x, t) (4.27)

Suppose that: (1) There exists a Lyapunov-like function V (x, t) that is lower bounded;

(2) d
dtV ≤ 0 for all t; (3) d2

dt V is bounded. Then d
dtV →0 as t → ∞.
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V is often chosen such that V̇ =−e2, where e denotes a trajectory tracking error

(if the system under consideration is a control system) or estimation error (if the system

under consideration is a state estimator). In this case, the application of Lyapunov theory

and the demonstration that V̇ → 0 shows that the error tends to zero.

4.7 Stability Analysis of Derivative-Free Kalman Filter

In this section we analyze the stability of the proposed DKF method from Chapter III. We

first derive the dynamics ėi(t) of the state estimation error and the dynamics φ̇i(t) of the

unknown input estimation error. We then use a Laplace transform approach for a frequency

domain analysis of the transfer functions of the two estimation errors. Additionally, a time

domain analysis is used to demonstrate convergence. Finally, a theorem is presented to

conclude the discussion of DKF stability.

4.7.1 Error Dynamics

Recall from Chapter III that feedback linearization was used to transform the original

robotic system dynamics to a new coordinate system, resulting in m decoupled subsystems

as shown in (3.7):

Żi
1(t) = Zi

2(t)

...

Żi
ri
(t) = y(ri)

i (t) = vi(t)+ γi(t) (4.28)
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for i = 1,2, . . . ,m. This transformed model can be expressed in state space canonical form

as


Żi

1(t)

Żi
2(t)
...

Żi
ri
(t)

=

Ai︷ ︸︸ ︷

0 1 · · · 0
... 0

. . . 0

0 · · · 0 1

0 · · · · · · 0




Zi

1(t)

Zi
2(t)
...

Zi
ri
(t)

+

Bi︷︸︸︷

0

0
...

1


vi(t)+

Mi︷︸︸︷

0

0
...

1


γi(t)

yi(t) =
[

1 0 · · · 0

]
︸ ︷︷ ︸

Ci

Zi(t)+ϖi(t) (4.29)

for i = 1,2, . . . ,m, or in more compact notation as

Żi(t) = AiZi(t)+Bivi(t)+Miγi(t)

yi(t) =CiZi(t)+ϖi(t) (4.30)

for i = 1,2, . . . ,m. The form of (Ai,Bi) and (Ai,Ci) shows that the linearized system is fully

controllable and observable for each i = 1,2, . . . ,m. The observer equations are given from

Chapter III as

Ẑi(0) = E[Zi(0)]

Pi(0) = E
[(

Zi(0)− Ẑi(0)
)(

Zi(0)− Ẑi(0)
)T
]

Ki(t) = Pi(t)CT
i R−1

i (t)

˙̂Zi(t) = AiẐi(t)+Bivi(t)+Ki(t)(yi(t)−CiẐi(t))

Ṗi(t) = AiPi(t)+Pi(t)AT
i (t)+Qi(t)−Pi(t)CT

i R−1
i (t)CiPi(t) (4.31)

for i = 1,2, . . . ,m, where Ki(t) and Pi(t) are the Kalman gain and estimation error co-

variance matrix, and the covariances of the process and measurement noise are Qi(t) =
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E
[
γi(t)γT

i (t)
]

and Ri(t) = E
[
ϖi(t)ϖT

i (t)
]
, respectively.

In order to analyze the stability of the closed-loop system, we need to formulate

the dynamics of the estimation error and the unknown input error. These equations of

the system and observer models in the presence of unknown inputs were introduced in

Chapter III but are restated here for ease of reference. From (4.29) the system models with

unknown input are given as

Żi(t) = AiZi(t)+Bivi(t)+Miγi(t)+Nid̃i(x, t)

yi(t) =CiZi(t)+ϖi(t) (4.32)

for i = 1,2, . . . ,m, where Ni is an ri× 1 vector that is identical to Mi. From (4.32) the

observer models are given as

˙̂Zi(t) = AiẐi(t)+Bivi(t)+Ni
ˆ̃di(x, t)+Ki(t)(yi(t)−CiẐi(t))

ŷi =CiẐi(t) (4.33)

for i = 1,2, . . . ,m. Define the following estimation errors:

ei(t) = Ẑi(t)−Zi(t) (4.34)

φi(t) = ˆ̃di(x, t)− d̃i(x, t) (4.35)

ei(t) is the state estimation error, and φi(t) is the unknown input estimation error, both

defined in the transformed (linearized) coordinate system. The error dynamics can then be

written as

˙̂Zi(t)− Żi(t) =Ai(Ẑi(t)−Zi(t))+Ni(
ˆ̃di(x, t)− d̃i(x, t))−

KiCi(Ẑi(t)−Zi(t))+Kiϖ(t)−Miγi(t) (4.36)
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ėi(t) = (Ai−KiCi)ei(t)+Niφ(t)+Kiϖi(t)−Miγi(t) (4.37)

Recall from (3.17) that

ˆ̃di(x, t) = Ψi(ŷi(t)− yi(t)) (4.38)

Substituting for yi and ŷi from (4.32) and (4.33) respectively gives

ˆ̃di(x, t) = ΨiCi[(Ẑi(t)−Zi(t))]−Ψiϖi(t) (4.39)

where Ψi is a large positive value whose exact value depends on whether PD or PI com-

pensation is used. The first derivative of φi(t) (defined above) gives

φ̇i(t) = ΨiCi[ėi(t)]−Ψiϖ̇i(t)− ˙̃di(t) (4.40)

Substituting ėi(t) from (4.37) gives

φ̇i(t) =ΨiCi[(Ai−KiCi)ei(t)+Niφ(t)+Ki(ϖi(t))−Miγi(t)]−Ψiϖ̇i(t)− ˙̃di(t)+

[ΨiCi(Ai−KiCi)]ei(t)+ [ΨiCiNi]φi(t)+ [ΨiCiKi]ϖi(t)− [ΨiCiMi]γi(t)−

Ψiϖ̇i(t)− ˙̃di(t) (4.41)

Recall from Chapter III that γi(t) is the sum of the process noise ωi(t) and the ri
th derivative

of the measurement noise d
dt

ri
ϖi(t):

γi (t) = ωi(t)+
d
dt

ri

ϖi(t) (4.42)

where ri is the smallest integer such that at least one of the inputs ui appears in y(ri)
i . Sub-

stituting (4.42) into (4.41) and (4.37) gives the final form of the estimation error dynamics:

ėi(t) = (Ai−KiCi)ei(t)+Niφ(t)+Kiϖi(t)−Miωi(t)−Mi
d
dt

ri

ϖi(t) (4.43)
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φ̇i(t) = [ΨiCi(Ai−KiCi)]ei(t)+ [ΨiCiNi]φi(t)+ [ΨiCiKi]ϖi(t)

−[ΨiCiMi]ωi(t)− [ΨiCiMi]
d
dt

ri

ϖi(t)−Ψiϖ̇i(t)− ˙̃di(t) (4.44)

These equations can be useful in improving the estimator and controller designs. First, it

can be seen that there is a mutual relationship between state estimation error and unknown

input estimation error, meaning that convergence to a bound will be mutual. This issue

will be addressed in detail in the following. Second, for both dynamic equations, we can

identify parameters or factors that have major or minor roles in stabilization. To address

this second point in more detail, we will take the Laplace transforms and find the transfer

functions of each estimation error with respect to each factor. We define the following

matrices for ease of notation.

M1i = ΨiCi(Ai−KiCi) (4.45)

M2i = ΨiCiNi (4.46)

M3i = ΨiCiKi (4.47)

M4i = ΨiCiMi (4.48)

The unknown input estimation error dynamics can then be written as

φ̇i(t) = M1iei(t)+M2iφi(t)+M3iϖi(t)−M4iωi(t)−M4iϖ
ri
i (t)−Ψiϖ̇i(t)− ˙̃di(t) (4.49)

The two estimation error dynamics can be combined from (4.43) and (4.49) as

ėi(t)

φ̇i(t)

=

Ai−KiCi Ni

M1i M2i


ei(t)

φi(t)

+
 Ki

M3i

ϖi(t)+

 0

−Ψi

 ϖ̇i(t)

+

−Mi

−M4i

ϖ
ri
i (t)+

−Mi

−M4i

ωi(t)+

 0

− ˙̃di(t)

 (4.50)
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This augmented formulation explicitly shows the inter-dependence of the dynamics of the

two estimators.

Before proceeding, we need to address two issues: the noise property mentioned

in Chapter III, and the assumptions about the two error dynamics.

As (3.17) shows, we need to consider process noise and measurement noise in

the i-th subsystem, as well as their derivatives up to order ri, which is the smallest integer

such that at least one of the inputs ui appears in y(ri)
i . We need to address the issue of

why the noise measurement derivative appears in the error dynamics but the process noise

derivative does not. We also need to address the properties of the derivatives of the noise.

One of the assumptions for input-output feedback linearization is that the mea-

surement is a linear function of the states. Therefore, applying the derivative operator to the

flat output until one of the inputs ui appears differentiates the measurement noise. There-

fore, the noise derivative becomes an input of the transformed system dynamics.

We need to assume that the noises are bandlimited Gaussian noise. This is an

easy assumption to satisfy because all noise in physical systems is bandlimited (that is,

finite energy). Since differentiation is a linear operator, the derivative of a Gaussian process

is a Gaussian process [49]. Therefore, if the mean and covariance of the original Gaussian

noise is known, we can calculate the mean and covariance of the differentiated noise.

The process noise is partially due to parameter uncertainties, partially due to

unmodeled dynamics, and partially due to input uncertainty. This noise is modeled as an

input to the system dynamics, which is a differential equation of order ri that includes at

least one of the inputs ui, and therefore we do not need to differentiate the process noise in

feedback linearization.

For an affine system, feedback linearization results in a canonical form, meaning

that the transformed system is fully controllable and observable. The transformed system

matrix Ai−KiCi is strictly stable for each decoupled subsystem (i = 1, · · · ,m). Up to that

point in the development it is assumed that there are no unknown inputs and that the system

67



is noise-free. In that case, (3.17) suggests a stable system for both trajectory tracking and

stabilization, and the state tends to equilibrium at the exponential rate e(A−KC)t . However,

due to the unknown input, the error dynamics above has an additional term Niφ(t) that does

not allow the error to reach equilibrium.

Additionally, (3.17) shows that the dynamics of the unknown input estimation er-

ror not only has a mutual interconnection with the state estimation error dynamics, but also

has a relationship with the term ˙̃di(t), which is the derivative of the effect of the unknown

input on the transformed states. Assume that the unknown input dynamics is noise-free,

while ˙̃di(t) is still an input to the system. In this case we can expect the estimation errors

to converge to unknown but nonzero values. Therefore, ˙̃di(t) plays a key role in the error

bounds of the estimators. These bounds can be viewed as a physical property of the system

and should be considered in the overall system design.

Finally, the previous assumptions about the system being noise-free were made

to demonstrate the major factors in stability. In the presence of noise, performance will

decrease depending on the magnitude of the noise. This issue will be addressed with a

frequency domain analysis.

4.7.2 Laplace Transform of the Error Dynamics

The Laplace transform and frequency domain analysis provide several benefits in control

and estimator design.

1. Recall that the system that we are considering is nonlinear. We used feedback lin-

earization to transform the nonlinear system (with actual control input u) to a linear

system (with virtual control input v). Therefore, applying linear techniques or oper-

ators (the Laplace transform in this section) to the virtual linear system is possible.

2. Consider (3.17) as an extended expression of the error dynamics. It is clear that the

dynamics depend not only on the measurement noise (ϖi) but also on its derivatives
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(ϖ̇i(t), ...,ϖ
ri
i (t)). The Laplace transform provides a method to reduce all of these

noise inputs to a single system input, as will be shown in this section.

3. As discussed earlier, the dynamics of the state estimation error and the unknown

input estimation error are interconnected. The dynamics include measurement noise

and its derivatives. In the time domain, separating them to illustrate their effect on

the estimation errors is not mathematically possible; however, the Laplace transform

approach provides a way to illustrate their effect on the estimation errors.

4. Superposition theory can be used to define the influence of every independent input

on the system, and then to combine their effects as desired.

We take the Laplace transform of (4.43) and (4.49), which are the state estimation

and unknown input estimation error dynamics:

sEi(s) = (Ai−KiCi)Ei(s)+NiΦi(s)+Kiϖi(s)−Miωi(s)− sriMiϖi(s) (4.51)

Define Γi(s) = [sI− (Ai−KiCi)] for ease of notation. This matrix has full rank due to the

observability of the underlying system, so its inverse exists. We then have

Ei(s) = Γi
−1(s)NiΦi(s)+Γi

−1(s)[Ki− sriMi]ϖi(s)−Γi
−1(s)Miωi(s) (4.52)

This gives the transfer function from the unknown input estimation error to the state esti-

mation error, and also from both the process and measurement noise to the state estimation

error.

We take the Laplace transform of (4.49) as follows.

sΦi(s) = M1iEi(s)+M2iΦi(s)+ [M3i− sriMi− sΨi]ϖi(s)−M4iωi(s)− sd̃i(s) (4.53)
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By substituting Ei(s) from (4.52), we obtain

[sI−M2i−M1iΓi
−1(s)Ni]Φi(s) = (M1iΓi

−1(s)[Ki− sriMi]+ [M3i− sriMi− sΨi])ϖi(s)−

[M1iΓi
−1(s)Mi +M4i]ωi(s)− sd̃i(s) (4.54)

Define ∆i = [sI−M2i−M1iΓi
−1(s)Ni] for ease of notation. We then have

Φi(s) =∆i
−1(M1iΓi

−1(s)[Ki− sriMi]+ [M3i− sriMi− sΨi])ϖi(s)−

∆i
−1[M1iΓi

−1(s)Mi +M4i]ωi(s)−∆i
−1sd̃i(s) (4.55)

We now have the transfer function from both the process and measurement noise to the

unknown input estimation error, as well as the transfer function of the derivative of the

unknown input to the unknown input estimation error.

The Laplace transform enables us to separate the contribution of each input to

the estimation errors. Now we summarize the transfer functions obtained above.

Transfer functions to state estimation error:

Ei(s)/ωi(s) =−Γi
−1(s)Mi

Ei(s)/ϖi(s) = Γi
−1(s)[Ki− sriMi]

Ei(s)/Φi(s) = Γi
−1(s)Ni

Transfer functions to unknown input estimation error:

Φi(s)/ωi(s) =−∆i
−1[M1iΓi

−1(s)Mi +M4i]

Φi(s)/ϖi(s) = ∆i
−1(M1iΓi

−1(s)[Ki− sriMi]+ [M3i− sriMi− sΨi])

Φi(s)/d̃i(s) =−∆i
−1

We have derived the error dynamics and their state representations. We have

begun the frequency domain analysis by taking the Laplace transform of each estimation
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error dynamics to obtain the transfer function with respect to each input. Next, we will

introduce some assumptions and lemmas regarding these transfer functions.

4.7.3 Assumptions and Bounds

Every physical system has limitations that are generally related to the system’s physical

properties. To achieve stable and reliable control performance, it is necessary to recognize

the system’s limitations and constraints. For the robot / prosthesis system, there are several

limitations and constraints that facilitate the design and analysis of the estimation / control

algorithm.

Condition 1 The state estimation error (4.52) is bounded if:

1. The magnitudes of both process noise ωi(s) and measurement noise ϖi(s) are suffi-

ciently small and their transfer functions to Ei(s) are stable.

2. Φi(s) is bounded and differentiable, and its transfer function to Ei(s) is stable.

Condition 2 The unknown input estimation error (4.55) is bounded if:

1. The magnitudes of both process noise ωi(s) and measurement noise ϖi(s) are suffi-

ciently small and their transfer functions to Φi(s) are stable.

2. The unknown input d̃(s) is bounded, continuous, and differentiable. In addition,

sd̃(s) is bounded and its transfer function to Φi(s) is stable.

Condition 1 can be written as the following conditions that need to be satisfied
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for the boundedness of the state estimation error.

‖ωi(s)‖ = εp‖sd̃(s)‖ ≤ ‖sd̃(s)‖ (4.56)

‖ϖi(s)‖ = εm‖sd̃(s)‖ ≤ ‖sd̃(s)‖ (4.57)

‖Γi
−1(s)Mi‖∞ ≤ δ pe (4.58)

‖Γi
−1(s)[Ki− sriMi]‖∞ ≤ δme (4.59)

‖Γi
−1(s)Ni‖∞ ≤ ηφe (4.60)

where 0 ≤ εp,εm ≤ 1 are small positive numbers, and ‖ · ‖∞ denotes the supremum norm

of a transfer function. Both process and measurement noise magnitudes are assumed to be

sufficiently small. Additionally, the noise magnitudes and bandwidths should be approxi-

mately known. The noise magnitude should be bounded with the derivative of the unknown

input sd̃(s). The quantities δ pe, δme, and ηφe are positive numbers that respectively denote

the upper bounds of the transfer functions from the process noise, the measurement noise,

and the unknown input estimation error, to Ei(s). We can make several observations about

the above assumptions.

1. It is reasonable to assume that a noisy system is stable only if the noise-free version

of the system is stable. It is reasonable to assume that an uncertain but stable system

has bounded uncertainties.

2. The open-loop transfer function of Ei(s) with respect to both ωi(s) and d̃(s) is Γi
−1(s),

which is a stable system matrix in the new coordinate system. Therefore, both trans-

fer functions have real bounds.

3. The open-loop transfer function of Ei(s) with respect to ϖi(s) is a function of two fac-

tors, Γi
−1(s) and a polynomial of degree ri. This product is stable. The closed-loop

transfer function is a sum of polynomials with maximum degree ri, which cancels

the term−sri and leaves a positive value Ki. Therefore, the closed-loop characteristic
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polynomial has all positive coefficients, and the Hurwitz criterion implies absolute

stability. This transfer function can be shown to be non-minimum phase. We know

that the open-loop transfer function includes at least one zero in the right-half plane,

and the closed-loop transfer function is strictly stable. Therefore, operation within

the system bandwidth guarantees stability and precludes the system’s root locus from

moving to zero. So the transfer function from the measurement noise to the estima-

tion error is bounded.

Condition 2 can be written as the following conditions that need to be satisfied

for the boundedness of the unknown input estimation error.

‖∆i
−1[M1iΓi

−1(s)Mi +M4i]‖∞ ≤ δ pφ (4.61)

‖∆i
−1(M1iΓi

−1(s)[Ki− sriMi]+ [M3i− sriMi− sΨi])‖∞ ≤ δmφ (4.62)

‖∆i
−1‖∞ ≤ ηdφ

(4.63)

‖sd̃(s)‖ ≤ µ (4.64)

where δ pφ , δmφ , ηdφ
, and µ are positive numbers that denote the upper bounds of the

transfer functions from the process noise, measurement noise, unknown input derivative,

and unknown input, to Φi(s).

The same discussion as provided above holds for each input to the unknown input

estimation error dynamics. However, we have two additional parameters that contribute to

the dynamics of the unknown input estimation error. These additional terms need to be

addressed from the perspective of their transfer functions, magnitudes, and bounds.

Unknown input observer gain

The first additional parameter is the unknown input observer gain Ψ, which affects the

transfer function from the noise to Φi(s), as well as the transfer function from sd̃(s) to

Φi(s). The assumption of sufficiently small noise magnitude can effectively diminish the
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influence of the noise on Φi(s). However, to ensure good performance, we need to bound

Ψ using δ pφ , δmφ , ‖ωi(s)‖, and ‖ϖi(s)‖, because the transfer function from the noise to

Φi(s) is a function of Ψ. We express bounds for Ψ as follows:

fp(Ψ,s) =
Φi(s)
ωi(s)

≤ δ pφ ⇒Ψ≤Ψp (4.65)

fm(Ψ,s) =
Φi(s)
ϖi(s)

≤ δmφ ⇒Ψ≤Ψm (4.66)

fd(Ψ,s) =
Φi(s)
sd̃(s)

≤ ηdφ
⇒Ψ≤Ψd (4.67)

where fp, fm, and fd denote the transfer functions from the process noise, measurement

noise, and unknown input derivative, to the unknown input estimation error. The above

equations indicate that for any acceptable δ pφ , δmφ , and ηdφ
, there exists an upper bound

for Ψ defined by Ψp, Ψm, and Ψd . To satisfy these bounds, we take their minimum as the

maximum allowable values of Ψ:

Ψ≤Ψmax = min{Ψp,Ψm,Ψd} (4.68)

Unknown input derivative

The second additional parameter is the derivative of the unknown input sd̃(s), which needs

to be bounded by a parameter µ for stability. This parameter plays a very important role in

the stability analysis.

In the case sd̃(s) = 0 and a noise-free system, the estimation and control problem

can be viewed as a stabilization problem. In this case, the unknown input is constant (for

example, a step input), and continuity and differentiability of the unknown input are not

stability requirements. Moreover, both process noise and measurement noise are still input

to the system, so the system will still have steady state estimation and tracking errors.
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4.7.4 Error Convergence

State estimation error

Assume that all conditions (4.61)–(4.67) related to Condition 2 are satisfied. Then the

unknown input estimation error is bounded in terms of the unknown input as

‖Φ(s)‖ ≤ [δpφ
]εp‖sd̃(s)‖+[δmφ

]εm‖sd̃(s)‖+[ηdφ
]‖sd̃(s)‖ (4.69)

‖Φ(s)‖ ≤ [δpφ
εp +δmφ

εm +ηdφ
]‖sd̃(s)‖ (4.70)

Equation (4.70) shows that the unknown input estimation error is bounded in terms of

‖sd̃(s)‖. Earlier in this chapter we saw that the input estimation error system is expo-

nentially stable. Therefore, we can use (4.70) to write the local asymptotic exponential

convergence in the time domain as

‖φ(t)‖ ≤ ‖φ0‖e−γφ0 t +δpφ
εp(1−e−γpφ

t
)‖ ˙̃d‖+δmφ

εm(1−e−γmφ
t
)‖ ˙̃d‖+ηdφ

(1−e−γdφ
t
)‖ ˙̃d‖

(4.71)

where γpφ
, γmφ

, and γdφ
are the roots of the transfer functions fp, fm, and fd respectively. φ0

denotes the initial condition of φ(t), and the γφ0 term comes from the roots of the transfer

function ∆i
−1(s) (the homogeneous solution of the unknown input estimation error dynam-

ics equation). The above equation implies that

lim
t→∞
‖φ(t)‖ ≤ [δpφ

εp +δmφ
εm +ηdφ

]µ (4.72)

where µ is the upper bound of ˙̃d. We can write this as

lim
t→∞
‖φ(t)‖ ≤ σφ µ (4.73)

where σφ = δpφ
εp +δmφ

εm +ηdφ
.
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Unknown input estimation error

Assume that all conditions (4.56)–(4.60) and (4.70) related to Condition 1 are satisfied.

Then the state estimation error can be written as

‖E(s)‖ ≤ [ηφe ]‖Φ(s)‖+[δpe ]εp‖sd̃(s)‖+[δme ]εm‖sd̃(s)‖ (4.74)

≤ [ηφe(δpφ
εp +δmφ

εm +ηdφ
)+δpeεp +δmeεm]‖sd̃(s)‖ (4.75)

Equation (4.75) shows that the state estimation error is bounded in terms of ‖sd̃(s)‖. Ear-

lier in this chapter we saw that the state estimation error system is exponentially stable.

Therefore, we can use (4.75) to write the local asymptotic exponential convergence in the

time domain as

‖e(t)‖ ≤ ‖e0‖e−γe0 t +ηφe(‖φ0‖e−γφ0 t +δ pφ εp(1− e−γpφ
t
)‖ ˙̃d‖+δmφ εm(1− e−γmφ

t
)‖ ˙̃d‖+

ηdφ
(1− e−γdφ

t
)‖ ˙̃d‖)+δpeεp(1− e−γpe t)‖ ˙̃d‖+δmeεm(1− e−γme t)‖ ˙̃d‖ (4.76)

where γpe and γme are the roots of the transfer functions from the process noise and the mea-

surement noise to E(s). e0 denotes the initial condition of e(t), and the γe0 term comes from

the roots of the transfer function Γi
−1(s) (the homogeneous solution of the state estimation

error dynamics equation). The above equation implies that

lim
t→∞
‖e(t)‖ ≤ [ηφe(δpφ

εp +δmφ
εm +ηdφ

)+δpeεp +δmeεm]µ (4.77)

where µ (as before) is the upper bound of ˙̃d. We can write this as

lim
t→∞
‖e(t)‖ ≤ σeµ (4.78)

where σe = ηφe(δpφ
εp +δmφ

εm +ηdφ
)+δpeεp +δmeεm.
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Discussion and Interpretation

Equation (4.77) shows that ˙̃d plays a clear role in the unknown input estimation error, but

what is the intuitive explanation of this phenomenon from the viewpoint of the physical

system? Recall that ˙̃d is the rate of change of the unknown input to the system. Depending

on the rate of change, the estimation error dynamics become more or less stable. Recall the

previously stated important assumption that the unknown input is smooth (continuous and

differentiable). It is intuitive why this condition is key to stability and error convergence.

One interesting conclusion of this analysis is that an unknown input with a large magnitude

that is smooth can be rejected more effectively than an unknown input of smaller magnitude

but faster dynamics.

Another point requiring discussion is the term µ , which represents the bound on

the unknown input rate of change. Rate of change can be interpreted as signal bandwidth.

Therefore, if we know the smallest bandwidth within which all of the system components

operate, then we can set µ equal to that value. This is because, if the dynamics of the

unknown input are faster than this limit, at least one of the system components will not be

able to track the unknown input, and so the unknown input rate of change will be physically

limited.

If the system is noise-free or the noise magnitude is negligibly small, we have

σφ = ηdφ
, which implies that limt→∞ ‖φ(t)‖ ≤ ηdφ

µ , which in turn implies that

limt→∞‖e(t)‖ ≤ ηφeηdφ
µ

This shows the direct relationship between unknown input estimation error and state esti-

mation error. This is intuitive and implies that a better estimation of the unknown input

results in a better estimation of the states.

As shown in Chapter III, the virtual control terms vi are independent from each

other and can be selected by pole placement. This implies that v can be expressed as a
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linear differential equation of the error term. On the other hand, the actual control input

ui (3.6) is a combination of vi and Γ−1(x), the transformation matrix. Therefore, ui can be

expressed as a nonlinear differential equation of the error term. The relationship between

the stability of the original nonlinear system and the transformed linear system is expressed

by the following lemma [59, Chapter 3].

Lemma IV.2 If an equilibrium point is locally (globally) exponentially stable, then it is

also locally (globally) asymptotically stable. However, an equilibrium point that is locally

(globally) asymptotically stable may or may not be locally (globally) exponentially stable.

Lemma IV.2 implies that if vi results in local exponential stability, then the actual

control input ui results in local asymptotic stability for the nonlinear dynamics.

In many engineering applications, the goal of control design is not just stabiliza-

tion with respect to an equilibrium point; in this case an initial condition starting close

enough to equilibrium will remain close to equilibrium. But a more difficult challenge is

to return the state back to equilibrium. So a common control objective includes both sta-

bilization and asymptotic convergence. As an example, consider a satellite that has been

subjected to a disturbance. Two tasks need to be addressed: keeping the satellite state in

a bounded range that is determined by the magnitude of the disturbance, and returning the

satellite state to equilibrium. Recall from the beginning of Section 4.2 when we discussed

stability types that the region or domain of attraction is crucial for attaining asymptotic sta-

bility. However, defining or computing these regions are extremely difficult [59, Chapter

3]. But in many cases we can at least obtain an estimate of the domain of attraction, even

if the estimate may be conservative.

Let us make a conservative estimate of the attraction domain in our robot / pros-

thesis system. Assume that the region is bounded by µ , meaning that every trajectory

starting in this region will eventually converge to the final bound σeµ . This assumption

implies that the final bound is less than µ . Otherwise, there will not be asymptotic conver-

gence. In general, it is reasonable to bound or limit the region of attraction with an upper
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bound of the unknown input derivative. The parameter µ is thus a key factor in the dy-

namics of both the state estimation and the unknown input estimation, as well as a physical

property of the system.

4.7.5 Local Asymptotic Stability

Based on the previous discussion, the conditions, and the bounds, we now proceed to intro-

duce a theorem and its proof to highlight and conclude this chapter. Recall that the robot’s

dynamic model in affine state space form with unknown inputs is written as (3.12)

ẋ = f (x, t)+g(x, t)u+ω(t)+E(x, t)d(x, t)

y = h(x, t)+ϖ(t) (4.79)

where d(x, t) ∈ Rl is the unknown input vector, and E(x, t)d(x, t) comprises the effect

of the unknown inputs on each joint. The m decoupled subsystems that result from the

linearization transformation are given as

Żi
1(t) = Zi

2(t)

...

Żi
ri
(t) = y(ri)

i (t) = vi(t)+ γi(t)+ d̃i(x, t) (4.80)

for i = 1,2, . . . ,m. The virtual control input (3.15) that satisfies Hurwitz stability is given

as

vi(t) = Z(ri)
di (t)−θ

T
i ei(t)− ˆ̃di(x, t) (4.81)

where the gain matrix θ T
i =

[
θ i

ri
, · · · ,θ i

1
]

is designed by pole placement to provide a Hur-

witz polynomial e(ri)
i +θ i

1eri−1
i + . . .+θ i

riei, where the state estimation error ei(t) = Ẑi−Zdi.
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Theorem IV.8 Suppose that the system (4.79) has total relative degree r and that its zero

dynamics are locally asymptotically stable. Suppose that we design unknown input ob-

servers and compensators with gains Ψi for each of the i subsystems (4.80). Then the

control inputs ui result in a locally asymptotically stable closed-loop system that is robust

in the presence of disturbances and unknown inputs.

Proof. Each subsystem with relative degree ri = 0 has no internal dynamics and thus is

stable, meaning that all of the states remain bounded during tracking. For each subsystem

with relative degree ri > 0, substitute (4.81) into (4.80) to obtain

Żi
ri
(t) = Z(ri)

di (t)−θ
T
i ei(t)− ˆ̃di(x, t)+ γi(t)+ d̃i(x, t) (4.82)

Żi
ri
(t)−Z(ri)

di (t)+θ
T
i ei(t)︸ ︷︷ ︸

state estimation error ei(t)

+ ˆ̃di(x, t)− d̃i(x, t)︸ ︷︷ ︸
unknown input estimation error φi(t)

−γi(t) = 0 (4.83)

Equations (4.73) and (4.78) have shown that these two errors are bounded and can be de-

signed to converge to any desired positive value, assuming that the magnitudes of the noise

terms are sufficiently small. Consequently, the closed-loop dynamics is locally exponen-

tially stable when the virtual control input v is applied to the linearized dynamics, and

locally asymptotically stable when the actual control input u is applied to the nonlinear

dynamics.

In the case of internal or zero dynamics, the Lyapunov linearization method pro-

vides a straightforward approach to explore stability. The theorem suggests using a Taylor

series expansion around the equilibrium point to neglect terms higher than first order, and

then constructing an augmented system matrix to allow a stability investigation of the full

closed-loop system.

80



4.8 Discussion

We discussed Lyapunov stability types and then discussed theorems to extend the con-

cept of stability to both linear and nonlinear systems. We provided a systematic proof of

the stability of the proposed derivative-free Kalman filter (DKF) for state estimation of a

closed-loop robotic system with noise and unknown inputs. We analyzed the error dynam-

ics in both frequency and time domain, and derived the conditions for the convergence of

these errors. Finally, we provided a theorem to show that the DKF-based system dynamics

is locally asymptotically stable.
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CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis first provided an introduction to nonlinear control systems. It highlighted the

importance of nonlinear control design and introduced various types and aspects of system

nonlinearity. Two primary objectives of nonlinear control design (stabilization and trajec-

tory tracking) were discussed. Common nonlinear control methods were briefly introduced.

Feedback linearization was introduced as a technique for nonlinear control design and sys-

tem transformation. Input state linearization in conjunction with a standard Kalman filter

(that is, estimation-based control) was discussed. An example of DC-servo position con-

trol as a nonlinear SISO control problem was introduced to demonstrate the effectiveness

of estimation-based feedback linearization control.

The thesis extended the idea of linearization with feedback linearization for MIMO

systems. It introduced input-output linearization for a class of nonlinear systems. Robot

dynamics were considered as a highly nonlinear system that could be controlled with input-

output linearization. To provide estimation-based control, the linearized model was sub-

jected to a standard Kalman filter for state estimation, which is known as the derivative-free

Kalman filter (DKF). A three-DOF robot / prosthesis system was considered as an example

of an MIMO system that was disturbed by noise and unknown ground reaction force (that
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is, unknown external input). PI and PD methods were introduced as supervisory control

terms to make the system dynamics robust to the unknown input.

The thesis systematically analyzed the stability of the DKF-based closed-loop

system. It began with a short introduction to the concept of stability for nonlinear systems.

Lyapunov theorems and invariant set theorems were introduced as two powerful methods to

address stability in nonlinear systems. Lyapunov-based stability analysis of linear systems,

along with stability analysis of non-autonomous systems, or time-varying systems, was

also discussed.

A stability analysis of the DKF-based control method was presented. The dy-

namics of both the state estimation error and the unknown input estimation error was con-

structed. The Laplace transform of the dynamics provided an opportunity for a frequency-

domain analysis of both errors. The transformation allowed the treatment of noise and its

derivatives as a single unit. It also allowed the application of superposition theory to de-

termine the influence of all inputs on the error dynamics. The transfer function approach

allowed the evaluation of the relative importance of each input on the error dynamics.

Assumptions and bounds for the system inputs and their transfer functions were

introduced and justified. Every real-world system includes assumptions and bounds that

should be considered before or during control design. In order to obtain stable, reliable, and

desired performance, control system designers must recognize the system’s limitations and

account for the limitations in such a way as to achieve desirable operation in the presence

of constraints. Conditions related to the boundedness of both state estimation error and

input estimation error were addressed.

It was seen that the derivative of the unknown input plays an important role in

the dynamics of both the state estimation error and the input estimation error. This led us

to examine this term as a special factor in the DKF-based control system. It was shown that

this factor is strongly related to the region of attraction for local asymptotic stability, and

also to the unknown input estimator gain. The thesis discussed approaches for defining the
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region of attraction and the estimator gain.

Finally, the thesis introduced a theorem and proof to address the stability of the

closed-loop estimation-based control system. It was shown that the error dynamics of the

linearized model with virtual control is locally exponentially stable and that the error thus

converges to a finite bound as time tends to infinity. This implies that the actual control

provides local asymptotic stability for the nonlinear robot / prosthesis system.

5.2 Future Work

One interesting topic of recent research is simultaneous estimation of both states and un-

known inputs. This topic has received more attention as researchers have observed that

information about unknown inputs is a key factor for both improved state estimation and

closed-loop system stability. We see potential advantages to using an observer for unknown

input estimation rather than simply using a PD or PI supervisory control term. This would

provide the observer with a dynamic gain as opposed to a constant gain, which in turn could

improve performance, adaptability, and stability.

Another interesting idea for future work is to obtain quantitative results for the

stability conditions in this thesis. The system could be tested under with various initial

conditions and unknown inputs to numerically evaluate error convergence or divergence.

Practical implementation of these results would be another interesting direction

for future research. This could help verify the simulation results.

Finally, the DKF-based feedback linearization control method could be explored

for other systems. This could show the effectiveness of the method in different areas and

demonstrate the method’s flexibility. Potential applications could be quite diverse, includ-

ing biology, economics, meteorology, and others. The only limitation is that the system

needs to be linearizable; in other words, its dynamics need to be expressed in affine state

space form.
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APPENDIX A

The Robot / Prosthesis System Matrices and

Parameters

The dynamic equation of the robot / prosthesis system of (3.1) is repeated here for ease of

reference:

u− Je
T Fe = M (q) q̈+C (q, q̇) q̇+G(q)

= Y (q, q̇, q̈)Θ

where Y (q, q̇, q̈) is the regressor matrix and Θ is the parameter vector. The effect of the

GRF on the generalized joint torques, JT
e Fe, is given in (3.21). The system parameters can

be written in terms of Θ as follows [5], [50].

Θ1 = m1 +m2 +m3

Θ2 = m3l2 +m2l2 +m2c2

Θ3 = c3m3

Θ4 = I2z + I3z + c2
2m2 + c2

3m3 + l2
2m2 + l2

2m3 +2c2l2m2

Θ5 = l2m3c3

Θ6 = m3c2
3 + I3z
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Θ7 = b

Θ8 = f

M(1,1) = Θ1

M(1,2) = Θ3 cos(q3 +q2)+Θ2 cos(q2)

M(1,3) = Θ3 cos(q3 +q2)

M(2,1) = M(1,2)

M(2,2) = Θ4 +2Θ5 cos(q3)

M(2,3) = Θ6 +Θ5 cos(q3)

M(3,1) = M(1,3)

M(3,2) = M(2,3)

M(3,3) = Θ6

C(1,1) = 0

C(1,2) =−q̇2 (Θ3 sin(q2 +q3)+Θ2 sin(q2))− q̇3Θ3 sin(q2 +q3)

C(1,3) =−q̇2Θ3 sin(q3 +q2)− q̇3Θ3 sin(q3 +q2)

C(2,1) = 0

C(2,2) =−q̇3Θ5 sin(q3)

C(2,3) =−q̇2Θ5 sin(q3)− q̇3Θ5 sin(q3)

C(3,1) = 0

C(3,2) = q̇2Θ5 sin(q3)

C(3,3) = 0
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G(1) =−gΘ1

G(2) =−g(Θ2 cos(q2)+Θ3 cos(q3 +q2))

G(3) =−gΘ3 cos(q3 +q2)

The system parameters are defined in Table II.

Table II: Parameters used in the robot/prosthesis system

Parameter Symbol Value Units
Mass of link 1 m1 40.59 kg
Mass of link 2 m2 8.57 kg
Mass of link 3 m3 2.29 kg

Length of link 2 l2 0.43 m
Length of link 3 l3 0.53 m

Distance joint 1 to link 2 c2 0.09 m
Distance joint 2 to link 3 c3 0.32 m
Rotary inertia of link 2 I2z 0.43 kg-m2

Rotary inertia of link 3 I3z 0.06 kg-m2

Link 1 sliding friction f 83.33 N
Link 2 rotary damping b 9.75 N-m-s

Acceleration due to gravity g 9.81 m/s2
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