
Program Verification of FreeRTOS using Microsoft Dafny

MATTHEW J. MATIAS

Bachelor of Business Administration in Information Systems

Cleveland State University

December 2010

submitted in partial fulfillment of the requirements for the degree

MASTERS OF SCIENCE IN SOFTWARE ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

May 2014

We hereby approve this thesis for

Matthew J. Matias

Candidate for the MASTERS OF SCIENCE IN SOFTWARE ENGINEERING

degree from the

Department of Electrical and Computer Engineering

and the CLEVELAND STATE UNIVERSITY

College of Graduate studies

Thesis Committee Chairperson, Dr. Nigamanth Sridhar

Department of Electrical and Computer Engineering, 05/06/2014

Thesis Committee Member, Dr. Chansu Yu

Department of Electrical and Computer Engineering, 05/06/2014

Thesis Committee Member, Dr. Yongjian Fu

Department of Electrical and Computer Engineering, 05/06/2014

To my family, friends, neighbors, colleagues, and acquaintances ...

ACKNOWLEDGMENTS

I thank Dr. Nigamanth Sridhar for his wisdom, advisement, patience, research

and experience. He introduced me to formal methods and made this research possible

from his academic endeavors and brilliance. I extend my gratitude to Dr. Sridhar’s

colleagues from the Resolve/Reusable Software Research Group for feedback and ad-

visement on verifying data structures. Thank you Indian Institute of Science for

sharing their research on formalizing FreeRTOS. The Z model is mentioned and ref-

erenced many times throughout this thesis. I thank Dr. Yongjian Fu for several

hands-on software engineering courses in which documentation, specification, and

implementation were covered in detail. These concepts are used frequently in this

research. My gratitude to Sheari Rice for reviewing early revisions of my thesis along

with her studies of various formal methods tools. Thank you Dr. Chansu Yu for

your academic and leadership role in our department. I am grateful to Rustan Leino

and Microsoft developers for creating Dafny and providing support on the discussion

threads. I appreciate my friends for their moral support. Thank you to my family

for their support, love, and kindness because they are simply the best.

iv

Program Verification of FreeRTOS using Microsoft Dafny

MATTHEW J. MATIAS

ABSTRACT

FreeRTOS is a popular real-time and embedded operating system. Real-time

software requires code reviews, software tests, and other various quality assurance

activities to ensure minimal defects. This free and open-source operating system has

claims of robustness and quality [26]. Real-time and embedded software is found

commonly in systems directly impacting human life and require a low defect rate.

In such critical software, traditional quality assurance may not suffice in minimizing

software defects. When traditional software quality assurance is not enough for defect

removal, software engineering formal methods may help minimize defects. A formal

method such as program verification is useful for proving correctness in real-time soft-

ware. Microsoft Research created Dafny for proving program correctness. It contains

a programming language with specification constructs. A program verification tool

such as Dafny allows for proving correctness of FreeRTOS’s modules. We propose

using Dafny to verify the correctness of FreeRTOS’ scheduler and supporting API.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

I. Introduction . 1

1.1 Problem . 3

1.2 Thesis . 4

1.3 Solution Approach . 5

1.4 Contributions . 6

1.5 Organization of Thesis . 7

II. FreeRTOS . 9

2.1 What is FreeRTOS? . 10

2.2 FreeRTOS Architecture . 10

2.2.1 The Scheduler . 12

2.2.2 Tasks . 14

2.2.3 System Tick . 18

2.2.4 List Data Structures . 19

2.2.5 API Calls . 20

2.3 Object-Oriented Design in FreeRTOS 22

2.3.1 Converting C to an Object-Oriented Design 23

2.3.2 Class Diagram of an xList and Scheduler 27

vi

2.4 Summary . 29

III. Dafny . 30

3.1 What is Dafny? . 31

3.2 The Toolset and Architecture . 32

3.3 The Dafny Programming Language 36

3.3.1 Assignment, Equality, and Data Types 36

3.3.2 Branching, Loops, and Arrays 39

3.4 Specifications in Dafny . 42

3.4.1 Postconditions and Preconditions 42

3.4.2 Invariants and Termination 43

3.4.3 Predicates and Functions 45

3.4.4 Specifying Classes . 46

3.5 Summary . 51

IV. Verifying the xList in Dafny . 52

4.1 Purpose . 53

4.1.1 Z Schema to Dafny Specification 53

4.1.2 API Documentation to Dafny Specification 56

4.2 Task Class . 56

4.2.1 Specification . 58

4.2.2 Refinement to an Implementation 59

4.3 FIFO Queue . 60

4.3.1 IISc’s FIFO Queue Schema 61

4.3.2 FIFO Queue Specification 61

4.3.3 FIFO Queue Implementation 70

4.4 Unordered List . 73

4.4.1 IISc’s Unordered List Specification 73

vii

4.4.2 Unordered List Specification 73

4.4.3 Unordered List Implementation 78

4.5 Priority Queue . 81

4.5.1 IISc’s Priority Queue Schema 81

4.5.2 Specification and Implementation 81

4.6 Summary . 90

V. Verifying the Scheduler in Dafny . 92

5.1 Eliciting the Scheduler Specification 93

5.2 Module Declaration and Data Members 99

5.3 The Class Invariant . 101

5.4 Method Specifications and Implementations 105

5.4.1 Initializing and Running the Scheduler 105

5.4.2 Creating and Deleting Tasks 113

5.4.3 Delaying a Task . 120

5.4.4 Incrementing the Tick . 124

5.4.5 Updating a Task’s Priority 127

5.4.6 Suspending Tasks . 130

5.4.7 Resuming a Task . 132

5.4.8 Getting the Tick Count, Priority, and Number of Tasks . 134

5.4.9 Suspending and Resuming All the Tasks 137

5.4.10 Context Switch . 140

5.4.11 Get Current Task and Scheduler Status 144

5.5 Summary . 146

VI. Lessons Learned . 148

6.1 Dafny’s Pros and Cons . 148

6.1.1 Pros . 149

viii

6.1.2 Cons . 151

6.2 Summary . 154

VII. Related Work . 156

7.1 IISc’s xList and Scheduler . 156

7.2 The B Method . 158

7.3 Model-checking and FreeRTOS 159

7.4 Summary . 160

VIII. Conclusion . 161

8.1 Future Work . 162

BIBLIOGRAPHY . 164

ix

LIST OF TABLES

Table Page

I Tasks states and associated lists . 17

II FreeRTOS Scheduler API . 21

III Tasks states and the associated list 67

x

LIST OF FIGURES

Figure Page

1 FreeRTOS Architecture . 11

2 System Tick and Scheduled Tasks . 14

3 Task States Model . 16

4 Class diagram of xList . 23

5 A task control block (TCB) as a class 25

6 Create a task method . 26

7 Instantiate a scheduler and create a task. 26

8 The scheduler class . 28

9 Dafny Verification Process . 35

10 Java inheritance and composition . 37

11 Integers in Dafny . 38

12 Methods in Dafny . 38

13 Comparing values in Dafny . 39

14 Signed and unsigned integers in Dafny 39

15 Classes and generic types in Dafny 40

16 Initializing an array and its values in Dafny 40

17 If statement . 41

18 Find the first negative number in the array 41

19 Finding negative method specification 42

20 A while loop’s invariant . 43

21 A function checking if the stack is empty 45

22 A pop() method in Dafny . 45

xi

23 The beginning of a stack class . 46

24 Stack constructor . 47

25 Stack operations . 48

26 A verified stack . 49

27 Main method which tests the stack 50

28 ListData schema from IISc . 55

29 Task Specification Module . 57

30 Task Specification Module . 59

31 IISc’s FIFO queue enqueue operation 62

32 IISc’s FIFO queue dequeue operation 62

33 FIFO Queue Specification Module Part 1 63

34 FIFO Queue Specification Module Part 2 64

35 FIFO Queue Implementation Module 71

36 IISc’s insert and remove operations for unordered list 74

37 Unordered List Specification Module Part 1 75

38 Unordered List Specification Module Part 2 76

39 Unordered List Implementation . 79

40 IISc’s enqueue schema for a priority queue 82

41 IISc’ dequeue schema for a priority queue 82

42 Priority Queue Part 1 . 84

43 Priority Queue Part 2 . 85

44 IISc’s Parameter Schema . 94

45 IISc’s TaskData Schema . 95

46 Task schema from IISc . 96

47 Modeling xTaskCreate() from IISc 98

48 Includes and Module Declaration . 100

xii

49 Valid predicate (i.e. Class Invariant) 102

50 A correspondence predicate . 103

51 A convention predicate . 103

52 Another correspondence and convention predicate 104

53 Constructor specification . 106

54 Postcondition for constructor . 106

55 constructor implementation . 109

56 startScheduler() specificity and implementation 112

57 startScheduler() postcondition . 112

58 endScheduler() specification and implementation 112

59 createTask() specification and implementation 115

60 createTask() postcondition . 116

61 createTask() lemma . 116

62 deleteTask() implementation and specification 117

63 deleteTask() lemmas and a function method 118

64 deleteTask() postcondition . 119

65 taskDelay() and taskDelayUntil() precondition 122

66 taskDelay() specification and implementation 123

67 Lemmas called in delayTask() and delayTaskUntil 123

68 taskDelayUntil() specification and implementation 124

69 incrementTick() and checkBlockedTasks() postcondition 125

70 incrementTick() specification and implementation 126

71 Private method checkBlockTasks() 126

72 updatePriority() precondition . 127

73 updatePriority() implementation and specification 128

74 Lemma called in updatePriority() 130

xiii

75 suspendTask() precondition . 132

76 suspendTask() postcondition . 132

77 suspendTask() specification and implementation 133

78 suspendTask() specification and implementation 133

79 resumeTask() precondition . 135

80 resumeTask() postcondition . 135

81 resumeTask() specification and implementation 135

82 getTaskPriority(), getTickCount(), and getNumberOfTasks() spec-

ifications and implementations . 137

83 suspendAllTasks() precondition . 140

84 suspendAllTasks() postcondition 140

85 suspendAllTasks() specification and implementation 141

86 resumeAllTasks() postcondition . 142

87 resumeAllTasks() specification and implementation 142

88 switchContext() precondition . 144

89 switchContext() postcondition . 144

90 switchContext() specification and implementation 145

91 getTopReadyPriority() method specification 145

92 Lemmas for switchContext() . 145

93 getCurrentTask() and getSchedulerStatus() specifications and im-

plementations . 146

94 Sequence incompleteness example . 153

xiv

CHAPTER I

Introduction

Software engineering attempts to solve the practical problems of developing soft-

ware. It is a young field, but our society is increasingly dependent on software that

is released commonly with defects such as bugs, faults, and failures. The branch of

software engineering that directly attempts removing or preventing defects is soft-

ware quality assurance (SQA). SQA identifies quality assurance activities that are

necessary in creating low-defect software. Documentation, specifications, reviews, in-

spections, standards, and testing are activities common in removing software defects.

SQA does not guarantee defect-free software, but the goal is an acceptable level of

software quality [9].

The demand for SQA resulted from user intolerance to software defects. Some

defects are tolerable in desktop and productivity software. If a word processor crashes,

restarting the program will most likely remedy the crash and the user may continue

working on a document. On the other hand, real-time software is not fixed by a

simple restart. For example, an air traffic control system must continue running

1

2

and operating indefinitely; this is true especially if there are airplanes in mid-flight.

It is unlikely human injury occurs from productivity software defects, but real-time

systems require constraints to prevent accidents and danger to human life. There is a

high cost for software defects in other types of real-time systems too. On September

23, 1999, NASA lost its Mars Climate Orbiter (MCO) due to a software defect in

which English units were used rather than metric units [28]. The MCO’s trajectory

was miscalculated and the satellite’s signal was lost that day. NASA’s MCO project

cost the MCO satellite’s destruction, time, and money, but the result was ensuring

the next Mars satellite, Mars Polar Lander (MPL), would land safely.

NASA’s MCO Mishap Report mentions one of the contributing causes to MCO’s

software failure was an inadequate verification and validation process [28]. This is

a common problem in software development. Specifications are written mostly in

ambiguous natural language which may lead to defects. Inadequate validation and

verification coverage may not show the specification was followed. This may also lead

to defects. As a result of this common problem, there is a need for an unambiguous

specification, adequate validation, and verification process.

Software engineering formal methods attempts to create unambiguous specifica-

tions and adequate validation and verification coverage. Formal specifications use

different logics as an unambiguous language. Tools such as program verifiers prove

the specification is correct. Formal methods are not a “silver bullet” [5], but it pro-

vides another SQA activity that may minimize software defects.

3

1.1 Problem

Fortunately, software defects in NASA’s MCO did not cost human life or in-

jury. Real-time and embedded software are used often in critical systems. FreeRTOS

is an operating system used in embedded systems. While this software has claims

of robustness from rigorous testing, there are research projects formalizing FreeR-

TOS [7] [8] [6].

Projects such as the Indian Institute of Science’s (IISc) Z model formally specifies

FreeRTOS in which the data structures and scheduler are specified [7] [8]. Z is a for-

mal specification language and there is tool support for validating Z schema such as

ProZ [24]. The IISc research converts FreeRTOS’ API documentation into a formal

model. This is quite difficult because natural language is converted into a formal

language, Z. Natural language is ambiguous and the translation to formalization is

open to interpretation. In addition, the Z model is not coupled to any program imple-

mentation. The implementation may consist of pen-and-paper proofs or a complete

guess. Also, there are tools to refine a formal model into implementation code [6].

A common goal in formal methods is to refine the formal model or specification into

executable code.

Various formal methods tools can formalize FreeRTOS including model-checkers

and program verifiers. A model checker can check the Z model for consistency. If the

Z model was given to a model checker, it will show if the model’s attributes hold. Al-

though using this tool is feasible, there is a disconnect between the formal model and

program implementation [13]. In addition, the Z schema needs to translate into the

model checker’s language. Refining a formal model to executable code is not a trivial

task, but model-driven design methods exist which allows for refining the model and

eventually creating an implementation [6]. Although model checkers can formalize

4

FreeRTOS, there is a better tool. A program verifier can formalize FreeRTOS based

on a Z model or documentation. Microsoft Research has several tools used to prove

functional correctness such as Dafny, VCC, SPEC#, and HAVOC 1. Each tool con-

tains a programming language and specification constructs. The API documentation

needs a conversion into the verifier’s specification constructs and constructing code

is required. The implementation is proven correct based on the specification in the

program verifier process.

Model checking or program verification are sufficient formal methods tools that

may verify FreeRTOS’s API. Both tools can create a formal specification. However, a

program verifier such as Dafny supports refinement into program code without the use

of additional tools. This verifier contains specification constructs and a programming

language for formalizing FreeRTOS. Dafny is the tool used in this thesis because it

allows for creating a specification and code for verifying FreeRTOS’s scheduler and

supporting data structures.

1.2 Thesis

This thesis creates a formal specification and verified implementation of FreeR-

TOS’s scheduler with a program verifier. The scheduler’s supporting data structures

and API are specified in Dafny. Therefore, the data structures and API have an

implementation in which it is correct in respect to the specification. The Dafny spec-

ification is based on the existing API documentation in FreeRTOS’s code base and

IISc’s Z model. The challenge is converting natural language into a specification and

creating an implementation from the API documentation. IISc’s Z model is referenced

also providing an unambiguous specification.

1see http://research.microsoft.com/en-us/projects/boogie/

5

1.3 Solution Approach

The overall process starts with documentation and it is finalized with an imple-

mentation. Formalizing FreeRTOS requires selecting a tool in which a creating a

specification is possible. Dafny is used because it provides specification constructs

for formalizations and programming language to construct an implementation. In

addition, references from existing documentation must provide guidance for creating

a specification and translating it into a formal methods tool. After the formalized

specification is created, an implementation is constructed. Dafny verifies the code

correct based on the specification.

The API documentation is reviewed and converted into Dafny along with simulta-

neously referencing IISc’s Z model. The functional and behavioral requirements are

captured. This provides the what and how the task lists and scheduler operates. The

API documentation describes each function and provides examples how each is called.

Constraints are stated in the documentation in natural language also. Some functions

have preconditions before a call occurs. The Z model further specifies the constraints

in an unambiguous language and formalizes the operations. Each formalized schema

contains the behavioral attributes of an operation without containing implementation

details. The schema do not directly convert into Dafny and API documentation is

used when needed. Classes and methods are created to contain class invariants, fram-

ing annotations, annotated loops, preconditions, and postconditions. Modules allow

refining a class containing only specifications into an implementation. Each method

signature is kept as close as possible to its associated API function signature. Again,

the API documentation is referenced to closely model the functional and behavioral

requirements. As a result of reviewing and converting the API documentation and

Z model, the final artifact of this step contains a Dafny specification without an

6

implementation.

A formalized specification is refined into an implementation. Code is created which

corresponds to the formalized specification. This is accomplished in Dafny. Some of

the code is based on the existing FreeRTOS implementation and API functions are

referenced. In contrast, other code is constructed only from the Dafny specification.

This code may or may not execute, but the scheduler data structures and algorithms

are captured and formalized. The resulting and final artifact is a formal specification

and verified construction in Dafny.

1.4 Contributions

The contributions include a formalization of FreeRTOS and practical applica-

tion of the Dafny program verifier. This is a software engineering formal methods

experiment that applies software verification to a real-time system. This is a direc-

tional step related to “verified software’s grand challenge” (Jones et al) where formal

methods allow developers to build trustworthy, reliable, robust, and low-defect soft-

ware [16]. A verified FreeRTOS contains an unambiguous formal specification and

correct implementation. The Dafny community may benefit from observing how well

the tool verifies a software system. The FreeRTOS community may benefit by ex-

panding the existing documentation and following more quality assurance activities

to minimize and eliminate defects.

The following statements summarize the contributions:

• FreeRTOS is formalized into a Dafny specification and implementation. This

documents the behavior required and constraints ensured. xList and the sched-

uler API are specified and verified code is constructed.

7

• The Dafny code captures the data structures, algorithms, and scheduler oper-

ations which can translate into another language or formal methods tool. For

example, the code can convert to another programming language in which it

can execute; or it is translated into a tool such as VCC, an annotated C language.

• This work shows examples of using Dafny. It provides a practical example of the

Dafny program verifier. Common constructs are used including classes, meth-

ods, modules, framing, invariants, and contracts. The examples may expose

improvements needed in the tool.

• A possible intermediate step for IISc’s work on formalizing FreeRTOS where

the Z model is translated into Dafny, then VCC. Converting Z to VCC is difficult

because C is much lower-level than the modeling notation. Dafny is higher-

level than VCC and contain similar specification constructs. It may be simpler

to translate Z to Dafny to VCC rather than Z to VCC.

1.5 Organization of Thesis

This chapter introduces the thesis in which the problem, topic, solution, and

contributions are described. The second chapter explains FreeRTOS’s design and ar-

chitecture. The scheduler and task list behavior are described along with task states

and timing constraints. A list of API calls are presented and object-oriented design

techniques for the scheduler and data structures are shown. Next, chapter three

explains common specification and programming constructs used in Dafny. The lan-

guage and annotations utilized in verification are shown with tutorial-like examples.

Chapter four verifies the task lists built on the high-level designed xList. The list

data structure specifications and implementations are verified. The specified data

structures include a priority queue, FIFO queue, and unordered list. Afterwards,

8

chapter five verifies the specification and construction of FreeRTOS’s scheduler. The

chapter introduces the scheduler module and class declaration. Each method is shown

in a figure and described sequentially. The specifications are quite detailed and pre-

sented with figures and textual descriptions. Large method contracts are written in

separate logic formulas. The final chapters include lessons learned from Dafny and

related work. Notable Dafny features and improvements are mentioned along with

other formal methods projects. The final chapter describes the accomplishments and

future works.

CHAPTER II

FreeRTOS

This chapter provides background information on FreeRTOS. The purpose is demon-

strating the system aspects required for a formal specification and verification in later

chapters. FreeRTOS is a real-time operating system and must guarantee events occur

in a time interval. The proper management of temporal events is common in real-time

software [30]. These events include scheduling tasks and running the highest priority

task. The scheduler algorithm must follow such a guarantee. The scheduler utilizes

several data structures to accomplish this guarantee. In addition, several functions

are included in the operating system’s API for managing tasks.

Section 1 provides a brief introduction defining FreeRTOS. Section 2 discusses

FreeRTOS’s Architecture which includes the scheduler, tasks, list data structures, and

API calls. Section 3 discusses modeling FreeRTOS with an object-oriented design.

9

10

2.1 What is FreeRTOS?

FreeRTOS is abbreviated Free Real-time Operating System because it is embedded

software and a real-time operating system. Embedded software is defined as software

used in embedded devices such as microcontrollers and an embedded device refers to

a cost-effective and low-resource computing electronic. Real-time guarantees events

happen in a specific time interval. This guarantee makes FreeRTOS a hard real-

time system [30]. In addition, a real-time operating system such as FreeRTOS sup-

ports multitasking, memory management, scheduling, prioritizing tasks, and real-time

events. Approximately thirty-four hardware platforms are supported. The supported

hardware architectures include microcontrollers such as ARM, Atmel, and PIC. In

order for FreeRTOS to fit on a microcontroller, the kernel size is small: it is approxi-

mately 3-9 KLOC depending on the port. The kernel is licensed by GNU GPL, free,

and open-source. It has also grown in popularity being downloaded 103,000 times in

2012. FreeRTOS is actively supported by its community and claims robustness and

dependability [1].

2.2 FreeRTOS Architecture

Figure 1 shows the software architecture of FreeRTOS. There are port and non-

port modules in FreeRTOS. Port modules include device drivers and any software

specific to either a processor or microcontroller hardware implementation. Modules

are written in assembly language or C [15]. Each port has its own configuration which

is shown as a module in Figure 1. Some header files contain macros for configuring

and compiling for specific microcontrollers. For example, CPU clock and system tick

rate macros sets the frequencies specific for an ARM processor. The implementation

is different depending on the microcontroller and compiler used. The port code is

11

Figure 1: FreeRTOS Architecture

12

found in the source folder in FreeRTOS’s code.

Non-port modules include code such as tasks, scheduler, queues, and lists. The

scheduler is FreeRTOS’s core component [29]. The scheduler must guarantee each

task is given a fair-share of processor time by managing tasks. In this case, fair-

share of processor refers to a properly scheduled task: highest priority tasks schedule

and run before lower priority tasks. Task scheduling is a critical role of any operating

system, but a real-time system must guarantee priority tasks are given processor time.

Also, FreeRTOS is hard real-time software: events must occur in a specific time. It is

not a soft real-time system where timed events can occasionally miss deadlines [30].

Most of FreeRTOS’s code base is ensuring tasks are given the processor and time

guarantee. The non-port code is found in every FreeRTOS port and includes the files

list.c, tasks.c, and queues.c [25].

An application programmer interface (API) is available regardless of the system

FreeRTOS is compiled. This API presents a set of functions for accessing the sched-

uler, queues, tasks, and lists. FreeRTOS can execute application programs on the

system. Application programmers can write programs to run on FreeRTOS.

2.2.1 The Scheduler

The highest priority tasks must schedule and run first. FreeRTOS’s scheduler is

configured either as preemptive or non-preemptive scheduling. In preemptive schedul-

ing, a task runs for a specific time interval. Once the time interval reaches zero, the

task is changed to a suspended state [30]. Low priority tasks are interrupted by high

priority tasks in preemptive scheduling, but non-preemptive scheduling ensures low or

high priority tasks will run until completion, then high priority tasks may run afters.

Low priority tasks are not interrupted and run until completion in non-preemptive

13

scheduling [30].

Preemptive scheduling is available for architectures which contain a clock interrupt.

However, some systems may not have this interrupt. In this case, non-preemptive

scheduling is used because a clock interrupt is not required for this scheduling algo-

rithm. Also, the lack of a clock interrupt is the reason tasks are not interrupted in

non-preemptive scheduling.

Tasks must run in a certain time interval. FreeRTOS must have a timed heartbeat

[29]. Any time the operating systems has a heartbeat, the scheduler must run the

highest priority task. This heartbeat is an interrupt called the system tick shown

in Figure 2. Thus, when the system tick interrupts, the highest priority task is

selected and the task is scheduled as the currently running task. When the system

tick interrupts, the highest priority task enters the running state. The FreeRTOS

scheduler’s main job is to ensure the highest-priority task is always scheduled and

running. The highest-priority task is any task from a ready list array where the

ready list contains all of the highest-priority tasks. However, tasks with the same

priority (i.e. tasks in the same ready list) follow round-robin scheduling.

Figure 2 shows how the system tick affects scheduled tasks. Assume there are three

tasks: Task1-1 and Task1-2 have a priority of one and Task2-1 has a priority of two.

Task1-1 and Task1-2 have higher priority then Task1-2. Task1-1 is scheduled and

running in the first period of Figure 2 while Task1-2 and Task2-1 are not running. In

the second period, Task1-2 is running since Task1-1 and Task1-2 have equal priority

and are scheduled in a round-robin fashion. Task2-1 is not running. The third period

has Task1-1 as the running task again while Task1-2 and Task2-1 are not running.

In period four, Task1-2 is running. Task1-1 and Task1-2 are completed by the fifth

14

Figure 2: System Tick and Scheduled Tasks

period. Task2-1 runs in period five because it is the highest priority task.

Each FreeRTOS port contains a system tick. It is essential for real-time software.

The system tick measures timed events. At the end of a tick, the running task and

ready list is checked. If the running tasks’s time out period expires, it is inserted into

the suspended list. Whether or not the running task expires, the next task in the

ready list becomes the running task. Tasks in the same ready list run in a round-robin

fashion. This is the same tasks having the same priority. Lower priority tasks do not

enter the running state until higher priority tasks are completed.

2.2.2 Tasks

A task is the main unit of work in an operating systems. An operating system’s

main role is properly scheduling tasks. FreeRTOS has a task control block (TCB)

15

which is a placeholder for tasks. A TCB is a struct containing task data. TCB

contains a pointer to the list owning the task, a task priority integer, and a name for

the task.

Tasks have several states: running, ready, delayed, suspended, and blocked/waiting.

However, a task does not have a variable which explicitly assigns the task state, but

a task’s state is known by the list in which it is inserted. There are several types

of lists including ready, suspended, delayed , and waiting lists. In regards to a tasks

state, if a task is entering the ready state, this task is inserted into a ready list. When

a task’s state changes from ready to waiting, the task is removed from the ready list

and inserted into the waiting list.

Figure 3 models the task states. Tasks enter the ready state after a task is created.

The transition from the ready to run state occurs when a task is scheduled. A running

task is either suspended, delayed, or waiting as the next transition. A waiting task

requests a resource and block until it is available. Tasks may delay for a duration

then transit into a ready state at the duration’s deadline. Suspended tasks may enter

a suspension state indefinitely. This may happen when an interrupt request resources

and all other tasks are suspended until the request is finished.

Most task states have an associated list type. The exception is the running state

which is marked with the pointer to the running task, pxCurrentTCB. The current

running task is not a list, but a single item using processor resources. There are

several states and list types (see Table I).

Each task has a priority. The default priorities are integers 0 (lowest), 1, 2, 3, and

4 (highest priority). A task’s priority allows the scheduler to pick the highest priority

16

Figure 3: Task States Model

17

State List Description
Running none Current running task
Suspended SuspendedTaskList Implemented as an unordered list
Waiting (blocked) WaitingTaskList Implemented as a priority queue.

Order is determined by task pri-
ority. After the waiting state,
the highest priority task becomes
ready, then the task will run

Delayed DelayedTaskList Implemented as a priority queue.
Tasks are blocked for a timeout
period which is defined by the
user. The scheduler checks this
task list at every tick to determine
if the task timed out. Order is de-
termined by timeout period

Ready ReadyTasksLists Newly created tasks are imme-
diately placed in the ready list.
Ready lists track tasks currently
ready to run. It is implemented
as an array of FIFO queues.

Deleted none The idle tasks may cleanup
deleted tasks

Table I: Tasks states and associated lists

18

task. For example, a task with the priority of 4 will always run before a task priority

of 2. Additionally, the preemptive scheduler allows a task of priority 4 to interrupt

a priority 2 task. The non-preemptive scheduler allows a currently priority 3 task to

run to completion while a priority 4 task will run next.

A FreeRTOS macro, config maxPriorities, allows setting the number of prior-

ities. Since the default priorities is 5, the priority integers range from 0 to config-

maxPriorities-1. Also, there are API calls available for manipulating tasks such as

accessing a task, changing a task priority, or inserting a task into another list. The

list data structures containing the tasks are discussed in the next section.

2.2.3 System Tick

Although the system tick was described in the previous section, aspects of its im-

plementation and abstraction shall be emphasized. The system tick is a software ab-

straction: hardware implementation details are not accessed by the scheduler. Micro-

controllers operate at different tick frequencies. For example, an Atmel AVR Atmega

323 IAR and PIC18 MPLAB tick oscillates at 1000 Hz while an Arm9 STR91X IAR

tick operates at 100 Hz. The scheduler has no responsibility to know the tick frequen-

cies of each implementation. However, the scheduler must know when a tick cycle is

complete in order to assign a task processor time. The tick allows the scheduler to

manage tasks.

The system tick is needed for time slicing. In ordered to schedule tasks correctly,

each task receives a slice of processor time. Tasks with the same priority are swapped

and receive processor time after each tick cycle. This allows tasks of the same priority

to schedule in a round-robin ordering. If there is a single high priority task, it will run

to completion. In conclusion, this tick interrupts the processor which allows tasks to

19

get a fair-share of processor time from time-slicing.

2.2.4 List Data Structures

Lists are used in tasks and scheduling. As mentioned earlier, a task’s state is tracked

by the list in which it was inserted. As shown in Table I, each list is implemented

as a data structure: a suspended list is an unordered list, waiting list is a priority

queue, delayed list is a priority queue, and a ready list is an array of FIFO queues. All

FreeRTOS lists are implemented as a data structure known as an xList. An xList is

implemented as a linked list containing nodes called xListItem. Every task control

block is owned by an xListItem. The main list types are queues and unordered lists.

Queues There are several uses for queues. FreeRTOS allows tasks communication

and synchronization with the use of queues. Also, interrupt service routines (ISRs)

use queues for synchronization and communication. The two types of FreeRTOS

queues include a FIFO queue and priority queue. Both queues support both blocking

and nonblocking inserts and removals. Blocking inserts and removals have a timeout.

The user can define a timeout period which the task is alive for a certain amount of

time. For example, a delayed task has a timeout period of ten seconds and the task is

inserted into a ready list when timeout occurs [10]. A nonblocking insert or removal

returns true or false based on its success or failure.

Priority Queue Waiting and delayed tasks are implemented with a priority queue.

This is stated in Table I. Waiting tasks are assigned to a task priority which the

lowest priority task is scheduled last and contains the integers equal or closest to

zero. The highest priority tasks are scheduled first and assigned with the highest

priority integers or closest to maxPriorities-1. Delayed tasks have a time-to-wake

period. For example, a task is delayed for eight seconds then it is assigned to a ready

20

list. The task is awake when it is removed from the delayed task list and inserted

into the ready list.

FIFO Queue As stated in Table I, ready lists are implemented as FIFO queues.

The ready list reference is an array of ready lists in the FreeRTOS kernel. Each ready

list index represents the priority level of the task. The scheduler iterates through the

ready list (i.e. array of FIFO queues) starting from the highest priority and finishes

with the lowest priority list [10].

Unordered List The suspended task list is implemented as an unordered list (see

Table I). Task order is not important in this list. An unordered list supports insert

and removal of tasks. All tasks that are not currently running may be inserted

into the suspended task list. These tasks may be suspended for an unspecified time

period [10]. Tasks that are no longer suspended are removed from the suspended task

list and inserted into a ready list.

2.2.5 API Calls

Operating systems commonly have an application programming interface (API)

[30]. This allows a program to interact with the operating system. Operating system

API calls include activities such as manipulating tasks, processes, and files. Table II

is a list of scheduler API calls.

21

API Call Description
vTaskSwitchContext() selects highest priority task and

assigns task to pxCurrentTCB
(currently running task)

xTaskCreate() creates a task
vTaskStartScheduler() starts the scheduler
vTaskEndScheduler() terminates the scheduler
ListData struct containing ready, delayed

and suspended/blocked lists
Task contains a task name and priority.

It may contain other members in-
cluding task data, list data, pri-
ority date, etc.)

vTaskDelete() deletes a running, ready, delayed,
or suspended task

vTaskDelayUntil() delays a task for a given number
of clock ticks

vTaskDelay() delays a task indefinitely
vTaskIncrementTick() increments the system clock
vTaskPrioritySet() change the priority of an existing

task in the system
vTaskSuspend() suspends a task
vTaskResume() updates the suspended and ready

lists as required. Resumes a task
to the running state

uxTaskPriorityGet() returns the task priority
xGetCurrentTaskHandle() return a pointer to the current

running task
xTaskGetCurrentTaskHandle() returns the scheduler state of ei-

ther executing, suspended, or ini-
tialized

uxTaskGetNumberOfTasks() returns the number of tasks
xTaskGetTickCount() returns the time elapsed since

scheduler initialization
vTaskSuspendAll() suspends the scheduler
xTaskResumeAll() resume scheduler

Table II: FreeRTOS Scheduler API

22

2.3 Object-Oriented Design in FreeRTOS

One goal of this thesis is to specify FreeRTOS’s scheduler behavior into Dafny.

Along with converting the code base, a formal specification is created. A formal

specification with an implementation can be verified for functional correctness in

Dafny. Most of the code is converted from the API documentation and code to Dafny

directly. However, this is not always straightforward and some code is converted

from C to C++ before converting to Dafny. C++ is utilized because it is an object-

oriented language and contains C language constructs. This intermediary step helps

us translate C to Dafny code. This also allows debugging because Dafny does not

have a program debugger that supports execution tracing. The Visual C++ IDE

allows for tracing the program execution. Regardless of how the code is translated

from C to Dafny, an object-oriented design must be incorporated since Dafny is an

object-oriented language.

C is not an object-oriented programming language, but the FreeRTOS scheduler

is modeled in an object-oriented language in this project. This is because the Dafny

programming language (see Chapter 3) is an object-oriented language. The FreeRTOS

scheduler is ported into an object-oriented design in which it is converted into Dafny

code.

This section demonstrates the tactics for converting FreeRTOS into an object-

oriented design. Some code is converted from C to C++. A class diagram is presented

in Figure 8.

23

Figure 4: Class diagram of xList

2.3.1 Converting C to an Object-Oriented Design

The API calls and data structures in FreeRTOS are written in C. The code fol-

lows modular programming: the program is composed of many different modules.

Each module contains variables, functions, or structures. Modules may also con-

tain abstract data structures. The data structures are placeholders for data and the

API calls manipulate the data structures. For example, a task is created with the

xTaskCreate() function and assigned to a task. The task is inserted into a ready list

which is represented using a FIFO queue.

C code is converted to an object-oriented design because Dafny (used in later

chapters) is an object-oriented programming language. Some of the FreeRTOS code

has a struct-and-function idiom: it contains structs for structured data and functions

to manipulate data. Structs are placeholders for data and often provide a reference to

a data structure. In C, a common idiom includes declaring a struct and using functions

24

to modify the struct. For example, a queue struct has an insert function which allows

appending an item to the queue. The insert function contains two parameters: the

queue reference and inserted item. When the insert method is called, the inserted

item is appended to the queue via the struct reference to the queue.

This idiom is followed when the C code is converted to an object-oriented language.

This struct and function idiom is converted into a class. The struct data members

are declared as data members in the class while the functions manipulating the struct

are methods owned by the class. Instead of declaring a struct and passing the struct

to a function, an object is instantiated from a class and method calls modify the

object. The idiom is used to convert a task control block from C to C++. As

mentioned earlier, the task control block is a placeholder for a task. A TCB is

a struct modified with functions such as xTaskCreate(), uxTaskPriorityGet(),

and vTaskPrioritySet() where task creation, priority access, and priority mutation

occurs, respectively.

The TCB is converted to a class in Figure 5. Line 2 declares the Task class.

There is a default constructor on Line 9 and another constructor which accepts a

task name on Line 11. There are two accessors on Line 15 and Line 19 which set and

get a task name. Line 24 declares a TaskControlBlock class. This class extends the

functionality of the Task class: a task can be declared with a key (i.e. priority) in

the TaskControlBlock class.

Let us assume the scheduler’s responsibilities includes creating tasks. Figure 6

is a partial class which allows task creation. The createTask() method accepts

parameters for a name and priority on Line 17. A task control block is created on

Line 19 and inserted into a ready list on Line 20. A pointer to the task is returned

25

1 // C++ code for task and task control block

2 class Task {

3

4 private:

5 int _name;

6

7 public:

8

9 Task() { }

10

11 Task(int name) {

12 _name = name;

13 }

14

15 void setName(int name) {

16 _name = name;

17 }

18

19 int getName () {

20 return _name;

21 }

22 };

23

24 class TaskControlBlock {

25 private:

26 int _key;

27 Task _task;

28

29 public:

30 TaskControlBlock () { }

31

32 TaskControlBlock(Task task , int key) {

33 _task = task;

34 _key = key;

35 }

36

37 void setTask(Task task) {

38 _task = task;

39 }

40

41 void setKey(int key) {

42 _key = key;

43 }

44

45 Task getTask () {

46 return _task;

47 }

48

49 int getKey () {

50 return _key;

51 }

52

53 };

Figure 5: A task control block (TCB) as a class

26

at the end of the method (Line 22). Tasks are created by calling the scheduler

constructor and invoking the createTask() method. Figure 7 shows the creation of

a task.

1 class Scheduler {

2

3 FIFOQueue* readyList;

4

5 private:

6 void init_readyList(int maxSize) {

7 for (int i = 0; i < MAX_PRIORITY; i++)

8 readyList[i] = *new FIFOQueue(maxSize);

9 }

10

11 public:

12 Scheduler () {

13 readyList = new FIFOQueue[MAX_PRIORITY];

14 init_readyList(FIFO_MAX_SIZE);

15 }

16

17 TaskControlBlock createTask(int taskName , int taskPrior) {

18 Task* task = new Task(taskName);

19 TaskControlBlock* tcb = new TaskControlBlock(taskName , taskPrior);

20 readyList[taskPrior]. enqueue(tcb);

21

22 return *tcb;

23 }

24

25 FIFOQueue getFifoQueue(int priority) {

26 return readyList[priority];

27 }

28

29 };

Figure 6: Create a task method

1

2 Scheduler* sc = new Scheduler ();

3 TaskControlBlock tcb = sc->createTask (22222 , 1); // name , priority

4 TaskControlBlock tcb2 = sc ->createTask (11111 , 0);

5 TaskControlBlock tcb3 = sc ->createTask (91231 , 1);

6 TaskControlBlock tcb4 = sc ->createTask (20812 , 1);

7 TaskControlBlock tcb5 = sc ->createTask (10899 , 0);

8 TaskControlBlock tcb6 = sc ->createTask (71987 , 1);

Figure 7: Instantiate a scheduler and create a task.

Figures 5, 6, and 7 implement task creation in an object-oriented fashion. The

scheduler, task and task control block are composed as classes. This is a simple

example of converting C code into an object-oriented design and implementation in

C++.

27

2.3.2 Class Diagram of an xList and Scheduler

Figure 4 is a class diagram of the xList data structure. The xList is the abstraction

for ready, delayed, waiting, and suspend lists. Each of the lists inherits from abstract

class, xList. It has a composition relationship with xListItem: an xList can have

one or many xListItems. These are composed of a task control block which this

TCB either contains a task or priority task. A ready list is composed of several

FIFO queues. Delayed and suspend lists are priority queues and a delayed list is an

unordered list.

Also, there is scheduler class. It follows the singleton pattern since there is only

one instance of the scheduler. A scheduler has a current task which is a place holder

for the running task. The other data members include several lists seen in Figure 4:

ready, delayed, waiting, and suspend lists. A ready list is declared as an array. The

API calls listed in Table II are methods in the scheduler class.

28

Figure 8: The scheduler class

29

2.4 Summary

This chapter covered FreeRTOS’s architecture including the scheduler’s data

structures and API. The data structures include the xList which is an abstraction

for a FIFO queue, priority queue, or unordered list. An xList is composed of one

or many tasks. The API calls are listed in Table II. The scheduler API calls modify

these data structures and tasks. An object-oriented design is presented. FreeRTOS’s

C code base is translated into an objected-oriented language. A class diagram presents

the components of the scheduler and xList.

Now that FreeRTOS was discussed, we can consider creating a formal specification

of FreeRTOS in Dafny. Dafny’s specification and programming language constructs

are covered in Chapter 3.

CHAPTER III

Dafny

Until recently, program verification tools included only pencil and paper proofs

and assisted theorem provers [19]. These proofs require predefined proof rules and

significant mathematics. In addition, it may cost much time and effort. Verifying

modern software systems using this method is impractical because the costs are high.

Assisted theorem provers reduced time and effort of verification with minimal results

because verification proofs were not very automated [19].

Proving program correctness is more automated than its predecessor tools. Modern

program verifiers do not require a pencil and paper proofs. Instead, users create

annotated programs within a developer environment. Current research efforts have

produced a list of benchmarks for program verifiers [31]. Verification tools have

grown popular and recent benchmarks guide and measure the tools’ limitation. Alone,

Microsoft has several program verifiers including SPEC#, HAVOC, VCC, Chalice, and

Dafny 1.

1see http://research.microsoft.com/en-us/projects/boogie/

30

31

Dafny met the verification benchmarks with varying success, but improvements

were made as a result of benchmark attempts [22]. This project used some features

added from the benchmark attempts including termination metrics, sets, and se-

quences. Despite the benchmark claims, Dafny may require various lemmas to guide

the theorem prover. It is not a mature nor perfect tool, but the verification bench-

marks have shown Dafny as a useful program verifier since it passed benchmarks

of verifying data structures and common math operations [22]. There is an active

and supportive community built around Dafny. This tool has regular updates, im-

provements, and builds available to the public. Dafny is a continuously improving

verification tool.

In this chapter, the first section covers basic concepts behind Dafny. Section 2

provides a high-level explanation of verifying programs in Dafny. The role of an

intermediary language, theorem prover, and verification conditions are shown. Section

3 shows Dafny’s programming language and the language constructs used in this

project. This language allows the user to create an implementation which is proven

correct given a specification. Section 4 explains the specification constructs used in

Dafny.

3.1 What is Dafny?

Microsoft Dafny is a program verification tool which includes a programming lan-

guage and specification constructs [20]. Users create and verify specifications and

implementations. After these are created, the verifier proves correctness of the im-

plementation in regards to the specification.

32

An advantage to Dafny is a relationship between the specification and program’s

code because its users must create an implementation and specification for verifica-

tion. In comparison, other software engineering formal methods tools such as model

checkers are disconnected from the software’s implementation since the model is a

representation not easily ported to programming code [13]. A Dafny program needs

an implementation and specification for verification, but the verification may require

much effort to verify implementations and verification. Also, translation to an imple-

mentation language may require effort. Programmers may find it less cumbersome

to port a Dafny program to an implementation language such as C++ rather then

translating a model to program code.

Dafny is an object-based language and does not support sub-typing or inheritance

[22], but the FreeRTOS specification can utilize an object-oriented design. It can

verify object-oriented programs which may seem an odd choice for verifying mod-

ules from FreeRTOS which are written in C. Mapping object-oriented design to a

non-object-oriented language is feasbile [27] 2. Dafny encourages using best-practice

programming styles and following object-oriented design is our approach to following

best practices. Our goal in this project is verifying FreeRTOS’s hardware-independent

modules and Dafny is the verifier tool used in this project to achieve this goal.

3.2 The Toolset and Architecture

A Dafny program includes specifications and implementations. Users create meth-

ods which have precondition and postcondition specifications. Classes may have an

invariant which specifies aspects of the class that do not change regardless of the

method called in the class. After the Dafny program specification and implementa-

2Chapter 16 in Object-Oriented Modeling and Design shows the transistion from an object-
oriented design to a programming language that is not object-oriented

33

tion is created, the program verification process occurs.

Dafny contains several components involved in the verification process shown in

Figure 9. Users write specifications and code in a Dafny program. When a program

is verified, the specification constructs and program code are sent to the program

verifier. The Dafny program is translated into an intermediate verification language

known as Boogie. Boogie creates the verification conditions (VCs). Verification con-

ditions are generated from the translated Boogie code. The verification conditions

are assertions used to prove if the program is correct. These verification conditions

are given to the Z3 SMT solver and either the program is correct or an error model is

generated. If all the verification conditions are true, the program is proven correct in

respect to the specfication. An error model is generated for incorrect programs. An

error model is a counterexample stating a verification condition was not proved. The

Boogie Verification Debugger (BVD) can display and trace the error model that was

generated. As of Dafny v1.7, the Dafny Visual Studio add-in displays the BVD and

allows for interacting with the error model.

Z3 is an satisfiability modulo theory (SMT) solver in which it is used as Dafny’s

reasoning engine. Dafny is considered an auto-active verifier [18]: users will interact

with the proofs, but there is automation. This SMT solver contains a collection of

theories, theorems, and proof rules. Z3 can solve declarative calculations, inductive

and co-inductive proofs. In Dafny, users can use the specification and programming

constructs to create the proof. The SMT solver, Z3, contains facts on specification

constructs. The SMT solver’s components allows Z3 to solve proofs.

The rectangles in Figure 9 are Dafny’s components while the circle items are

inputs or outputs of each component. Each component is standalone software. For

34

example, a user can prove theorems without using Boogie or Dafny. Boogie can

verify programs as a standalone tool, but this is not recommended because it is

an intermediate verification language. Several program verifiers were built using

Boogie as an intermediary language such as VCC 3. Boogie also contains the verification

condition (VC) generator. The VC generator is shown separately in Figure 9 to

emphasize verification conditions are generated after the Boogie code translation and

before Z3 proves the VCs.

Microsoft offers a web interface for Z3 4, Dafny 5, and Boogie 6. Dafny’s web

interface is good for small programs, but cumbersome for larger programs. Web

interfaces for program verification tools are mostly for demonstration. The Dafny

Language Service add-in for Visual Studio is recommended to write programs.

3see http://research.microsoft.com/en-us/projects/boogie/
4see http://research.microsoft.com/en-us/um/redmond/projects/z3/old/
5see http://research.microsoft.com/en-us/projects/dafny/
6see http://research.microsoft.com/en-us/projects/boogie/

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/um/redmond/projects/z3/old/
http://research.microsoft.com/en-us/projects/dafny/
http://research.microsoft.com/en-us/projects/boogie/

35

Figure 9: Dafny Verification Process

36

3.3 The Dafny Programming Language

Dafny can model an object-oriented program [22]. Classes are created and

instantiated as objects and classes may contain data members, constructors, acces-

sors, and methods in an object-based language. However, Dafny does not support

inheritance, but composition relationships are used to model inheritance if necessary.

Tricks such as using composition to model inheritance is needed in the Dafny pro-

gramming language. It is a minimal programming language and does not have many

language constructs. It does contain weak or strong typed variables, branching, loops,

methods, dynamic data types, and classes common in many modern programming

languages [20]. There are also ghost types, functions, invariants, lemmas, assertions,

and assumptions used for specifications [20].

3.3.1 Assignment, Equality, and Data Types

:= is used for assignment. Dafny allows for both strong and weak typed variables.

Strong type variables state the data type explicitly and weak type variables state the

data type implicitly. Assigning an integer in a strong and weak typed manner is as

follows in Figure 11.

The setInteger() method demonstrates variable assignment. A method declar-

action must contain the method keyword and name. Optionally, method may contain

parameters, return value, body, post conditions, and preconditions. The following

examples in Figure 12 contains legal method declarations:

Methods do not always have a body when writing specifications and may only

contain preconditions and postconditions. A Dafny user may attempt to verify and

37

1 // Java example

2 public class A {

3 public A () { }

4

5 public void printString(String s) {

6 System.out.println(s);

7 }

8 }

9

10 // inheritance

11 public class B extends A {

12

13 public B () { }

14

15 public void printString(String s) {

16 super.printString(s);

17 }

18 }

19

20 // composition

21 public class B {

22 private A a;

23

24 public B () {

25 this.a = new A();

26 }

27

28 public void printString(String s) {

29 this.a.printString(s);

30 }

31 }

Figure 10: Java inheritance and composition

38

1 // assign two integers a value

2 method setInteger() {

3 var i : int := 5; // strong typed

4 var j := 6; // weak typed

5 }

Figure 11: Integers in Dafny

1 // method follows the form of method keyword ,

2 // method name , return value , postcondition , and body

3 method getInteger () returns (i : int)

4 ensures i >= 0; // i must be positive

5 {

6 var i := 5;

7 return i;

8 }

9

10 // method follows the for method keyword , method name ,

11 // parameters , return value , precondition , postcondition , and body

12 method setIntegerToFive(i : integer) returns (j : int)

13 requires i >= 0;

14 ensures i == 5;

15 {

16 var j := i

17 return j;

18 }

19

20 // method with no body , but only specifications

21 method getPositiveInteger() returns (i : int)

22 ensures i >= 0;

Figure 12: Methods in Dafny

test the specification before writing an implementation. This is further described in

Section 3.3.2.

The == symbol compares to values for equality and != is the inequality symbol.

Comparing two integers will compare two integer values and does not compare the

references. The example (below) shows comparing integers i == 5 which compares

a variable to a literal value for equality and i != j for inequality. Each i, j, and 5

are compared by value.

Primitive and generic data types are supported. Primitive types include integers,

booleans, and natural numbers. Boolean types contain either true or false. Integers

include signed integers where N is the maximum integer such that −N ≤ i ≤ N − 1.

39

1 method compareIntegers() {

2 var i : int := 5;

3 var j := 6;

4

5 assert i == 5; // i == 5 evaluates as true

6 assert i != j; // i != j compares two values , but not two references

7 }

Figure 13: Comparing values in Dafny

Natural numbers are unsigned integers where N is the maximum integer such that

0 ≤ i ≤ N − 1 . The method in Figure 14 shows valid primitive types:

1 method showDataTypes() {

2 var i : int := -55; // integer

3 var j : int := 55; // integer

4 var k : nat := 99; // natural number

5 }

Figure 14: Signed and unsigned integers in Dafny

Dafny also allows for generic types. A class must be created to use generic types.

The class created will contain a constructor, data members, and methods. Suppose

class A is created and this class will accept the type Data. When A is instantiated,

an integer type is assigned to the generic data type, Data, in the main method of the

example (see Figure 15).

3.3.2 Branching, Loops, and Arrays

Branching and loops are supported by the if..else statement and while loop, re-

spectively. Loops commonly iterate through arrays: the usual ordered, fixed memory

sized, and list-styled construct. The declaration and initialization of an array and its

respective elements is as follows in Figure 16.

An if..else statement requires brackets in the body. else..if is supported. An

example of a branching statement shown in Figure 17.

40

1 class A<Data > {

2 var k : Data;

3

4 constructor(s : Data)

5 modifies this;

6 {

7 k := s;

8 }

9

10 method getK() returns (k : Data)

11 {

12 return k;

13 }

14 }

15

16 method Main() {

17 var i : int := -5;

18 var a := new A<int >(i);

19 var b := a.getK ();

20 //e := new A(i);

21 }

Figure 15: Classes and generic types in Dafny

1 var a := new int [10];

2 a[0] := 5;

3 a[1] := 3;

4 a[2] := 89;

5 a[3] := -2;

6 a[4] := 9;

Figure 16: Initializing an array and its values in Dafny

while loops contain a loop condition and body. Loops often contain specifications

for termination metrics and loop invariants, but this is discussed in the next section.

Here is an example which finds the first instance of a negative number in the array a

in Figure 18.

41

1 bool success := false;

2

3 if (a.Length > 0) {

4 success := true;

5 }

6 else if (a.Length == 0) {

7 success := false;

8 }

9 else {

10 success := false;

11 }

Figure 17: If statement

1 method findNegative(a : array <int >) returns (negativeInt : int)

2 // specifications

3 requires a != null;

4 requires a.Length > 0;

5 ensures negativeInt < 0 ==>

6 exists i :: 0 <= i < a.Length ==> negativeInt == a[i];

7 {

8 var i := 0;

9

10 while (0 <= i < a.Length) // notice the loop condition ,

11 //0 <= i < a.Length

12 invariant 0 <= i <= a.Length; // specification

13 decreases a.Length - i; // specification

14 {

15 if (a[i] < 0 || i == a.Length) {

16 break;

17 }

18 else {

19 i := i + 1;

20 }

21 }

22

23 if (i == a.Length) {

24 i := i - 1;

25 }

26

27 negativeInt := a[i]; // could also be return a[i];

28 }

Figure 18: Find the first negative number in the array

42

3.4 Specifications in Dafny

Dafny contain annotations for specifying programs. Each program does not

always declare a method implementation, but each method is annotated with a spec-

ification. The code is verified in respect to the specification in which the method’s

preconditions and postconditions are used to prove correctness. This section discusses

the annotations used in Dafny.

3.4.1 Postconditions and Preconditions

The most common specification constructs in Dafny are method preconditions and

postconditions. Method preconditions state conditions which are true before the

method is called and method postconditions state true conditions after the method is

invoked. A good example is the findNegative() method from the previous section,

but it is shown in Figure 19.

1

2 method findNegative(a : array <int >) returns (negativeInt : int)

3 requires a != null; // precondition

4 requires a.Length > 0; // precondition

5 ensures negativeInt < 0 ==>

6 exists i :: 0 <= i < a.Length ==>

7 negativeInt == a[i]; // postcondition

Figure 19: Finding negative method specification

Regardless of the method’s implementation 7, the specification shows the method’s

behavior. findNegative() requires an initialized array (i.e. an array that is not

null) and an array with a length greater then zero. There is some reasoning for the

preconditions. This method needs an array which contains elements for searching.

First, the array requires initializations because an uninitialized array does not have

accessible elements. In most programming languages, accessing an uninitialized array

such as a[0] := 4 will cause a crash (i.e. either a thrown exception or compilation

7The emphasis is on the specification of this method and not the method body.

43

error). Second, an array length of more then zero is required because searching an

array with no elements is quite useless. One or more elements in the array allows for

searching for a negative number.

The postcondition is one statement which is an implication followed by an exis-

tential quantifier (discussed more in the next sections). This postcondition states

the main behavior of this method: if the negative integer is found, then there is a

bounded i where the negative integer is the same as the ith element in the array.

3.4.2 Invariants and Termination

An invariant is defined as an attribute remaining constant and unchanged across

several states 8. Dafny requires loop invariant annotations in while loops. Consider

the loop in the finding negative method in Figure 20.

1 var i := 0;

2

3 while (0 <= i < a.Length) // notice the loop condition ,

4 // 0 <= i < a.Length

5 invariant 0 <= i <= a.Length; // loop invariant annotation

6 decreases a.Length - i; // termination metric

7 {

8 if (a[i] < 0 || i == a.Length) {

9 break;

10 }

11 else {

12 i := i + 1;

13 }

14 }

Figure 20: A while loop’s invariant

At a first glance, the loop condition is similar to the invariant. The only difference

between the loop condition and invariant is 0 == i == a.Length is valid in the

invariant at the end of the loop, but not the loop condition. i is assigned to zero

8This is my definition.

44

before the loop and after the loop, i might equal the array length, a. This reasoning

helps, but this does not show the reason the invariant is required.

The loop invariant is concerned with three states of a loop:

1. The state before the loop (i == 0)

2. The state during the loop (0 ≤ i ≤ a.Length)

3. The state after the loop terminates (i ≤ a.Length)

The variable, i , is assigned to zero before the loop starts. Therefore, i == 0 is

true and it satisfies the loop invariant, 0 ≤ i ≤ a.Length. The loop is entered when

0 ≤ i < a.Length based on the loop condition. Inside the loop, i is incremented until

a[i] is negative or i == a.Length and the loop invariant is still satisfied. The while

loop will exit if the loop condition is false. Once the loop exits and a[i] is negative,

then the 0 ≤ i ≤ a.Length is satisfied since i is located in the array. Alternatively,

i == a.Length satisfies the invariant too.

This reasoning is showing the possible states reached before, during, and after the

while loop’s iterations. Dafny cannot handle proving an infinite amount of reachable

states in a loop [20], but it can prove a finite amount of reachable states with the

while loop. The loop invariant provides Dafny with a finite model of reachable states.

As a result, it is verified.

Dafny also needs a termination metric for loops. Notice in our previous reasoning

consisted of statements such as “the loop will exit if the condition is false.” The

decreases clause is the termination metric in which it specifies the loop exits at

a specific condition. When a.Length−i == 0 is true, the loop will terminate. A

termination metric is needed since Dafny needs to prove the loop will exit. Dafny

45

attempts to guess the termination metric if the user does not annotate it [22]. As

useful as this may seem, it is not as challenging as creating a loop invariant. The

termination metric contains a stating when the loop terminates, but loop invariants

must show the unchanging state of a loop. An invariant table is often created to find

the unchanging attributes of a loop.

3.4.3 Predicates and Functions

Predicates and functions are specification constructs which contain one state-

ment and return a value. Predicates return a boolean value while functions return

any data type. These functions represent mathematical functions [20] An example of

a function is using an isEmpty() function for specifying an array-implemented stack.

As stack is empty when items == 0.

1

2 function isEmpty () : bool // or , this could be ‘‘predicate isEmpty ()"

3 reads this;

4 {

5 items == 0

6 }

Figure 21: A function checking if the stack is empty

A precondition of a stack’s pop() method requires the stack is not empty. The

isEmpty() function is used in Figure 22.

1

2 method pop() returns (d : Data)

3 requires !isEmpty ();

4 ensures Contents == old(Contents)[0.. old(items)-1] &&

5 d == old(Contents)[old(items)-1];

6 {

7 items := items - 1;

8 d := a[items];

9 Contents := Contents [0.. items];

10 }

Figure 22: A pop() method in Dafny

The pop() method’s precondition requires the stack is not empty. Instead of

46

using isEmpty(), the precondition could be written as items == 0. Functions are

used because readability is improved and the specification is portable. Any method

can call isEmpty() in any specification annotation such as preconditions or postcon-

ditions.

isEmpty() could be declared as a predicate since it returns a boolean value.

However, predicates are often used in class invariant specifications.

3.4.4 Specifying Classes

Dafny must have annotations for specifying classes for verifying object-oriented

programs. Classes commonly contain constructors, data members, and methods, but

a class invariant and representation are also included in Dafny. Consider a partial

stack class in Figure 23.

1 class {: autocontracts} Stack <Data > {

2 ghost var Contents : seq <Data >; // representation

3 var a : array <Data >;

4 var items : int;

5 var maxSize : int;

6

7 predicate Valid // class invariant

8 reads this;

9 reads a;

10 {

11 a != null &&

12 0 <= items <= |Contents| < maxSize +1 <= a.Length &&

13 Contents == a[0.. items]

14 }

15 /* .. functions and methods .. */

16 }

Figure 23: The beginning of a stack class

The stack needs a representation that is decoupled from the implementation. Se-

quence Contents represents the stack. Sequences model ordered data structures in

Dafny. Contents is also declared a ghost variable because it is called only in spec-

ification annotations and not used in the implementation. The sequence contains

append and cardinality operations needed in our stack specification. This is shown

47

in the push() and pop() specifications.

Predicate Valid is Dafny’s class invariant [20]. Since the :autocontracts keyword

is called in the class, Valid is automatically a postcondition for constructors and a

precondition and postcondition for all methods in the stack class. The class invari-

ant contains bounds-checking and a mapping of the implementation to the abstract

specification. a != null states the array is initialized since methods cannot modify

an uninitialized array. 0 ≤ items ≤| Contents |< maxSize + 1 ≤ a.Length states

the valid bounds of the stack. Contents == a[0..items] maps the array implemen-

tation to the abstract specification. a[0..items] is Dafny’s slicing notation which

allows assigning elements an array to a sequence. This slicing notation allows the

abstract specification and array mapping needed for this specification.

1 constructor(size : int)

2 modifies this;

3 requires 0 < size;

4 ensures maxSize == size;

5 ensures isEmpty ();

6 ensures maxSize > 0;

7 ensures a.Length > 0;

8 {

9 maxSize := size;

10 a := new Data[maxSize +1];

11 items := 0;

12 Contents := a[0.. items]; // initialize Contents sequence

13 }

Figure 24: Stack constructor

The constructor (Figure 24) initializes the class, ghost variables, and data

members. The array implementation is initialized to a discrete size and initialized.

This follows the usual idiom for initializing classes in object-oriented programming.

However, the ghost variable, Contents, is initialized in the constructor. The Valid

predicate is implicitly a postcondition since :autocontracts was declared. The con-

structor ensures Contents is initialized with the array implementation values. As a

result, the entire array is assigned to Contents using Dafny’s slicing notation. Also,

48

slicing may remove items from the sequence as shown in the pop() method.

1 method push(d : Data)

2 requires !isFull;

3 ensures Contents == old(Contents) + [d];

4 ensures maxSize == old(maxSize);

5 {

6 a[items] := d;

7 items := items + 1;

8 Contents := Contents + [d];

9 }

10

11 method pop() returns (d : Data)

12 requires !isEmpty ();

13 ensures Contents == old(Contents)[0.. old(items)-1] &&

14 d == old(Contents)[old(items)-1];

15 ensures maxSize == old(maxSize);

16 {

17 items := items - 1;

18 d := a[items];

19 Contents := Contents [0.. items];

20 }

Figure 25: Stack operations

As shown in Figure 25, push() and pop() are the usual operations for a

stack: append an item to the top of the stack and remove an item from the top

of the stack, respectively. The push() method appends a d item to the Contents

sequence using the old sequence (i.e. before the method call) with the appended

new item, d . This is stated in the postcondition, Contents == old(Contents)

+ [d]. The pop() method uses the slicing notation to remove an item from the

stack. Dafny does not have a “unappend” sequence operation. Therefore, the slic-

ing notation is used to remove sequence items. The postcondition Contents ==

old(Contents)[0..old(items)-1] states the new sequence is all of the old sequence

items except for the last item, old(items)-1. The last item is the removed item.

The following figure, Figure 26 shows the entire stack. A main method is

declared to provides a demonstration that the stack is usable in Figure 27.

49

1 class {: autocontracts} Stack <Data > {

2 ghost var Contents : seq <Data >;

3 var a : array <Data >;

4 var items : int;

5 var maxSize : int;

6

7 predicate Valid

8 reads this;

9 reads a;

10 {

11 a != null &&

12 0 <= items <= |Contents| < maxSize +1 <= a.Length &&

13 Contents == a[0.. items]

14 }

15

16 constructor(size : int)

17 modifies this;

18 requires 0 < size;

19 ensures maxSize == size;

20 ensures isEmpty ();

21 ensures maxSize > 0;

22 ensures a.Length > 0;

23 {

24 maxSize := size;

25 a := new Data[maxSize +1];

26 items := 0;

27 Contents := a[0.. items];

28 }

29

30 function isEmpty () : bool

31 reads this;

32 {

33 items == 0

34 }

35

36 predicate isFull

37 reads this;

38 {

39 items == maxSize

40 }

41

42 method push(d : Data)

43 requires !isFull;

44 ensures Contents == old(Contents) + [d];

45 ensures maxSize == old(maxSize);

46 {

47 a[items] := d;

48 items := items + 1;

49 Contents := Contents + [d];

50 }

51

52 method pop() returns (d : Data)

53 // requires items >= 1;

54 requires !isEmpty ();

55 ensures Contents == old(Contents)[0.. old(items)-1] &&

56 d == old(Contents)[old(items)-1];

57 ensures maxSize == old(maxSize);

58 {

59 items := items - 1;

60 d := a[items];

61 Contents := Contents [0.. items];

62 }

63 }

Figure 26: A verified stack

50

1 method main() {

2

3 var st : Stack <int > := new Stack <int >(10);

4

5 st.push (20);

6

7 var temp := st.pop ();

8 st.push(temp);

9

10 st.push (40);

11 st.push (60);

12

13 assert 40 in st.Contents;

14 assert 20 in st.Contents;

15 assert 60 in st.Contents;

16

17 var item := st.pop ();

18 assert item == 60;

19

20 var item2 := st.pop();

21 assert item2 == 40;

22

23 var item3 := st.pop();

24 assert item3 == 20;

25

26 assert item == 60;

27 assert item2 == 40;

28 assert item3 == 20;

29

30 }

Figure 27: Main method which tests the stack

51

3.5 Summary

This chapter presented the Dafny programming language and specification con-

structs. Verifying a stack data structure and “finding negative” algorithm was also

presented. These verifications were discussed in order to show the possible applica-

tions to verifying FreeRTOS’s scheduler. Verifying the scheduler requires verifying

several data structures and API calls. FreeRTOS’s data structures are verified in

Chapter 4 and API calls are verified in Chapter 5.

CHAPTER IV

Verifying the xList in Dafny

An operating system scheduler manages tasks by guaranteeing each task receives

a fair-share of processor time. Task management in FreeRTOS includes list data

structures. The underlying scheduler’s data structure is known as xList. This data

structure is implemented as a doubly-linked list in FreeRTOS. An is composed of

one or many xList items consisting of a task. Also, the is an abstraction for ready,

delayed, waiting, and suspended lists. These lists are special cases of xList. The is

vital to scheduling correctly. The scheduler’s implementation must guarantee tasks

are scheduled correctly in its design. Therefore, the scheduler’s data structures must

allow for proper scheduling to occur. The data structure is the foundation of FreeR-

TOS’s scheduler.

This chapter will show the verification of FreeRTOS’s using Dafny. The first sec-

tion provides a high-level explanation of eliciting specifications. The trailing sections

explain the task class, FIFO queue, priority queue, and unordered list. The specifica-

tion and refined code is shown. Finally, the last section concludes the data structure

52

53

verification.

4.1 Purpose

The scheduler uses xList for managing tasks. Tasks can have several states (see

Chapter 2) which are represented as data structures. Tasks change state from be-

ing inserted or removed from ready, suspended, delayed, and waiting lists. An is

either a ready, waiting, delayed, or suspend list. A ready list is composed of several

FIFO queues and a suspend list is an unordered list. Additionally, delay and waiting

(blocked) lists are priority queues.

The verification is a starting point for verifying the FreeRTOS scheduler. The

scheduler’s foundation is composed of underlying data structures. The must allow

operations including insertion and removal of tasks. Creating a Dafny specification

and implementation for the are the materials used for showing functional correctness

of xList. The purpose of verifying the is to show its behavior is functionally correct.

In showing the xList’s behavior is correct, functional correctness is defined as

proving the data structure is correct in respect to the Dafny specification. If the data

structures are verified as correct, the scheduler API’s verification comes next (see

Chapter 5). Proving the data structure is the foundation for verifying the functional

correctness of the FreeRTOS scheduler.

4.1.1 Z Schema to Dafny Specification

The Indian Institute of Science created a Z model of the xList [8] and scheduler

API [7]. These Dafny specifications are based on the Z schema provided by IISc. The

specification constructs in Z are utilized in Dafny because both are based on set theory

54

and formal logic. IISc’s Z schema are very detailed and thorough.

Many concepts from the Z model [8] are used in the Dafny specification. There

is a task schema in the Z model [8] because a scheduler manages tasks. The task

schema includes a task key (i.e. priority) and name. The Dafny specification uses

this schema and declares a task class with name and key as data members. However,

name is declared an integer in Dafny because string data types do not exist. The data

structures follow the Z model also. The xList’s underlying data structures including

a FIFO queue and priority queue are modeled as sequences. Unordered list is a set in

the Z model [8], but it is a sequence in Dafny. Both queues have insertion and removal

operations traditionally found in lists and queues. Additionally, the Z model contained

a random-access remove() operation in all data structures [8]. This is convenient for

moving tasks to different lists in the scheduler. The Dafny specification includes a

remove() method and it is called frequently in the scheduler. This method is adapted

to input a single parameter of data type Task rather than the task and key used in

the Z model [8].

Sequences are utilized in both the Z model and Dafny specification. The concepts

behind the operations are similar, but the notation is different. Z contains several

symbols for sequence and set concatenation, but it is the + symbol in Dafny. This

allows for appending elements, but random-access insertion is also possible. The se-

quence is sliced into two parts and the new element is concatenated between the two

pieces. Removing elements utilizes slicing a sequence into two pieces and concate-

nating the two parts. Sequences support accessing or removing the first element (i.e.

the head). Sequence element seq[0] references the head and seq[1..] retrieves the

tail. Z supports those operations with head() and tail(). In summary, Dafny and

Z support similar sequence operations.

55

[ListData]
PQ : seq TASK × N
FIFO : seq(iseq TASK)
unordered : PTASK

#PQ ≤ BOUND
#FIFO ≤ BOUND
∀ i : N • i ∈ dom FIFO ⇒ #FIFO(i) ≤ BOUND
#unordered ≤ BOUND
dom FIFO = {1 . . MAXPRIO}
∀ i : N • i ∈ dom PQ ⇒ PQ(i).2 ≤ BOUND
∀ i , j : dom PQ • i 6= j ⇒ PQ(i).1 6= PQ(j).1
∀ i , j : dom PQ • i < j ⇒ PQ(i).2 ≤ PQ(j).2

Figure 28: ListData schema from IISc

The Z model contains a schema ListData modeling the xList [8]. The schema

is shown in Figure 28 in which priority queue, FIFO queue, and unordered list are

referenced respectively as PQ, FIFO, and unordered. The Dafny specification contains

both queues modeled as sequence, but the unordered list is a sequence. In contrast,

IISc’s unordered list is a set of tasks. The Dafny specification does not declare a

ListData class. In an object-oriented language, priority queue, FIFO queue, and

unordered list would contain an xList interface or abstract class and follow poly-

morphism. Dafny does not support inheritance, but the xList could declare queues

and lists as data members. Dafny does not handle several levels classes well due to

framing issues. As a result, priority queue, FIFO queue, and unordered list will retain

the respective data type when declared as a data member.

The Dafny specification is influenced by the Z model, but the annotations use

different characters, operations, and operators. The Z model utilizes a strict math-

ematical notation. Dafny contains both mathematical and programming constructs.

This specification is a based on the Z model, but the API documentation is referenced

56

also.

4.1.2 API Documentation to Dafny Specification

The API documentation is a sufficient high-level reference, but it is written

in natural language and subject to ambiguity. Formal specifications may remedy the

ambiguities of natural language, but the API documentation is utilized as a reference.

This documentation contains comments for public functions and shows examples of

how to use the functions. The xList and task control block (TCB) structures were

referenced. The TCB’s members were translated into data members for class Task.

xList’s behavior was described sufficiently in the API documentations, but Z model

is referenced more for verifying the data structures. However, the scheduler class

(Chapter 5) references the API documentation more extensively.

4.2 Task Class

Tasks are an essential component to an operating system scheduler. Each task has

a name or priority. The task priority and name follow setter and getter patterns

common in object-oriented design. Task priorities commonly change in a scheduler.

Therefore, a task becomes a class in Dafny because it is the main object that is

managed by the scheduler.

The next sections contain the task class specification and refinement into a Dafny

implementation. The specification is contained in a module and refined into code. The

task class in the task module is refined into an implementation after the specification

is created.

57

1 module TaskModule {

2 class Task {

3 var name : int;

4 var key : int;

5 ghost var g_name : int;

6 ghost var g_key : int;

7

8

9

10 predicate Valid ()

11 reads this;

12 {

13

14 name == g_name &&

15 name >= 0 &&

16 g_name >= 0 &&

17 g_key == key &&

18 key >= 0 &&

19 g_key >= 0

20 }

21

22 constructor(newName: int , newKey : int)

23 requires newName >= 0;

24 requires newKey >= 0;

25 modifies this;

26 ensures g_name == newName;

27 ensures g_key == newKey;

28 ensures name == g_name;

29 ensures key == g_key;

30 ensures Valid;

31

32

33 } // end class Task

34 }

Figure 29: Task Specification Module

58

4.2.1 Specification

The Figure 29 contains the code for the task specification module. The first line

in the task specification contains the module declaration. A Dafny module allows

specification refinement into an implementation. This module is refined later to in-

clude an implementation that uses this specification. The second line contains the

class name, Task. Next, name and key are declared and used as setters and getters in

Dafny (Lines 3-4). g name and g key are ghost variables used only in a specification

context (Lines 5-6). The key is the priority of the task. Notice name is an integer and

not a string. This is because Java-like strings do not exist in Dafny.

The predicate, Valid (Line 10), is used as the class invariant. This is a common

specification pattern in Dafny classes. Valid is a postcondition for a constructor and

a precondition and postcondition for all methods in a class. This allows method calls

not to change the data members of the existing class 1. The next line, reads this,

states the memory locations accessible by the predicate. This allows access to the

data members in the Valid predicate’s body. The Valid predicate body (Lines 12 to

20) maps the implementation to the ghost variables such as name == g name, g key

== key. The predicate body also contains bounds-checking because these integers

are natural numbers and should not contain negative integers2.

The constructor is declared (Line 22). newName and newKey set the new values

for the task’s name and key. These values require natural numbers (Lines 23 and

24). modifies this allows mutating an instance of this class (Line 25). In Dafny,

this refers to this specific class. Lines 26-29 are postconditions ensuring name and

1Dafny will assume values change in between method calls if Valid is not used as an invariant.
This is because the SMT solver attempts verification with arbitrary values, unless stated in the
specification.

2Dafny contains a natural number, nat data type, but there is a known bug which sequences
cannot be referenced by natural numbers, but signed integers, int, work perfectly. See extended
Dafny tutorial at http://rise4fun.com/Dafny/tutorial/Sequences

http://rise4fun.com/Dafny/tutorial/Sequences

59

1 module TaskImplementation refines TaskModule {

2 class Task {

3

4 constructor(newName: int , newKey : int)

5 {

6 name := newName;

7 g_name := name;

8 key := newKey;

9 g_key := key;

10 Repr := {this};

11 }

12

13 function method getName () : int

14 reads this;

15 {

16 name

17 }

18

19 function method getKey () : int

20 reads this;

21 {

22 key

23 }

24

25

26 } // end class Task

27

28 }

Figure 30: Task Specification Module

key values are assigned to the respective ghost variables and implementation values.

ensures Valid is our class invariant. Data members will not change between the

constructor and next method call. Since this constructor contains the postcondition

Valid, any other method with precondition Valid may be called after the constructor

because it is a valid object state.

4.2.2 Refinement to an Implementation

Figure 30 shows the refinement of the task specification from Figure 29. This

refinement contains mostly code. The specifications are implicitly included from the

refines TaskModule declaration.

The first line contains the module declaration. refines TaskModule imports the

specification including Valid, method preconditions, and postconditions into this

module. All classes, data members, and methods are also imported. Next, the Task

60

class is declared (Line 2). The constructor declaration (Line 4) contains both concrete

variables and specification-only constructs such as ghost variables. name := newName

are the concrete values of the task’s name (Line 6), but g name := name assigns

the concrete variable to a ghost variable. Assigning a value to both the concrete and

ghost variables is a common specification pattern in Dafny [22]. Ghost variables allow

for decoupling the implementation and allow for a modular specification. (Although

this is a simple example, this pattern is useful when mapping abstract values to a

realization, such as an array assigned to a sequence.)

key := newKey assigns the new key value to the concrete key data member (Line

8). g key := key assigns the concrete value of key to the respective ghost variable.

This follows the same assignment pattern as name where newKey is assigned to the

data member (Line 8) and concrete value is assigned to the ghost variable (Line 9).

Function methods getName() and getKey() are declared (Lines 13 and 19, respec-

tively). If task is an object of type Task; task.name or task.key can be called

publicly. getName() and getKey() also have a public scope. These getter methods

are included for convenience. Lines 14 and 20 contain reads this allows reference

data members of this class in this function method. The return values include name

(Line 15) and key (Line 22) for getName() and getKey(), respectively. Function

methods are called in either implementation or specification contexts.

4.3 FIFO Queue

A FIFO queue is a first-in first-out data structure. The first inserted item is the first

item removed. FreeRTOS’s FIFO queue contains task objects which are instantiated

from the Task class in Figure 30 or 29. Tasks are removed from the queue’s head

61

and inserted at the tail-end. The scheduler’s ready list is implemented as an array of

FIFO queues.

The next sections contain the FIFO queue specification and implementation mod-

ules. In comparison to the task modules, the FIFO queue has a specification module

and the implementation module is refined from the specification.

4.3.1 IISc’s FIFO Queue Schema

Figure 31 shows IISc’s Z schema for FIFO queue’s enqueue operation [8]. taskIn

and prioIndex are input parameters. The Dafny specification follows this in the

method signature by allowing a task as a parameter. The enqueue operation will not

have two parameters in the method specification. Instead, a task object contains

a priority as a data member. The Dafny specification also follows concatenating a

new task to the FIFO queue. This is shown in the Z schema in the second last

line where FIFO‘ is referenced in Figure 31. Z language contains different symbols for

concatenation when compared to Dafny in which the + symbol appends to a sequence.

Figure 32 displays IISc’s dequeue operation in Z [8]. taskOut is the return variable

of this schema. The head assigns taskOut from the front of the queue. In addition,

tail returns the tasks behind the queue’s head. These annotations are followed in

the Dafny specification, but the language contains a different notation. However, the

queue’s head is referenced with fifo[0] where fifo is a sequence and the tail-end is

a sliced with fifo[1..].

4.3.2 FIFO Queue Specification

Figures 33 and 34 displays the FIFO queue specification module. Starting with

Part 1, the module is declared (Line 1). The TaskImplementation module 30 is

62

[FIFO enqueue]
∆ListData
taskIn? : TASK
prioIndex? : N

prioIndex? ∈ dom FIFO
#FIFO(prioindex) < BOUND
taskIn? ∈ ran FIFO(prioIndex?)
PQ ′ = PQ

FIFO ′ = FIFO ⊕ {prioIndex? 7→ FIFO(prioIndex?)a 〈taskIn?〉}
unordered ′ = unordered

Figure 31: IISc’s FIFO queue enqueue operation

[FIFO dequeue]
∆ListData
taskOut ! : TASK
index : N

index = max{i ∈ {1 . . #FIFO | FIFO(i) 6= 〈〉}}
taskOut ! = head FIFO(index)
PQ ′ = PQ
FIFO ′ = FIFO ⊕ {index? 7→ tail FIFO(index?)}
unordered ′ = unordered

Figure 32: IISc’s FIFO queue dequeue operation

63

1 module FIFOQueueModule {

2

3 import T = TaskImplementation;

4

5 class FIFOQueue <Task > {

6 ghost var fifo : seq <T.Task >;

7

8 var q : array <T.Task >;

9 var m : int;

10 var n : int;

11 var maxSize : int;

12

13 predicate Valid

14 reads this , q;

15 {

16 q != null &&

17 Convention(q) &&

18 Correspondence(q)

19 }

20

21 predicate Convention(q : array <T.Task >)

22 requires q != null;

23 reads this , q;

24 {

25 maxSize >= |fifo| &&

26 0 <= n < maxSize <= q.Length &&

27 0 <= m < maxSize <= q.Length

28 }

29

30

31 predicate Correspondence(q : array <T.Task >)

32 requires q != null;

33 reads this , q;

34 {

35 (q.Length >= maxSize > m >= n >= 0 ==>

36 fifo == q[0..n] + q[m..]) ||

37 (0 <= m < n < maxSize <= q.Length ==>

38 fifo == q[m..n]) ||

39 (m <= n < maxSize <= q.Length ==>

40 fifo == q[m..n]) ||

41 (q.Length >= maxSize > m >= n ==>

42 q[0..n] + q[m..] == fifo)

43 }

44

45 constructor(size : int)

46 modifies this;

47 requires size > 0;

48 ensures Valid;

49 ensures maxSize == size;

50 ensures fifo == [];

51 ensures |fifo| == 0;

Figure 33: FIFO Queue Specification Module Part 1

64

1 method enqueue(task : T.Task)

2 requires Valid;

3 modifies this , q;

4 requires |fifo| < maxSize;

5 requires task != null;

6 ensures Valid;

7 ensures fifo == old(fifo) + [task];

8 ensures task in fifo;

9 ensures maxSize == old(maxSize);

10 ensures |fifo| == old(|fifo |)+1;

11

12 method dequeue () returns (task : T.Task)

13 requires Valid;

14 requires |fifo| != 0;

15 modifies this;

16 ensures Valid;

17 ensures fifo == old(fifo)[1..];

18 ensures task == old(fifo)[0];

19 ensures maxSize == old(maxSize);

20

21 method remove(task : T.Task)

22 requires Valid;

23 requires task != null;

24 modifies this;

25 ensures Valid;

26 ensures 0 <= task.key < old(|fifo|) ==>

27 fifo == removeAt(old(fifo), task.key);

28 ensures task !in fifo;

29 ensures |fifo| == old(|fifo |)-1;

30

31 function method removeAt(s: seq <T.Task >, index: int): seq <T.Task >

32 reads this;

33 requires 0 <= index < |s|;

34 {

35 s[.. index] + s[index +1..]

36 }

37

38 function method isEmpty () : bool

39 requires Valid;

40 reads this;

41 ensures Valid;

42 {

43 m == n

44 }

45

46 }

47 }

Figure 34: FIFO Queue Specification Module Part 2

65

imported because the queue contains task objects (Line 2). This queue is composed

of tasks. The FIFO queue class is declared (Line 4). Next, a sequence of type Task

is a specification construct (Line 5). The FIFO queue is an ordered data structure

modeled by this sequence. Each sequence is referenced by an index. Sequences also

support concatenation and slicing operations for creating a new sequence. When items

are inserted or removed, a new sequence is created from concatenating or slicing the

old sequence. fifo also contains a data type, Task. However, Dafny’s module system

requires the T in T.Task because it distinguishes names from other imported modules

3. This prevents any naming conflicts between modules.

q represents an array-based queue (Line 7). This couples the implementation as

array-based, but it does not require a bounded queue. If this specification is refined

into an unbounded queue, it is possible to copy all existing array elements into a new

and resized array [20]. On the other hand, q may define the array bounds by calling

q.Length in the Valid predicate. If the queue is bounded, it must be specified in

Valid. The predicate constrains the class to several reachable states. For example, q

! = null is a valid state, but q==null is not valid. Any state not defined in Valid

will not verify in this class because it is invalid.

Data members m, n, and maxSize couple this specification to a circular and bounded

queue (Lines 8-10). m points to the first index of the queue while n points to the last

element. m is incremented when an item is removed while n is incremented for task

insertion. This allows for the wrap-around to behave as a circular queue. maxSize

limits the capacity of this bounded queue.

3see the Dafny module tutorial http://rise4fun.com/Dafny/tutorial/Modules for more
information

http://rise4fun.com/Dafny/tutorial/Modules

66

FIFO queue’s Valid predicate (Line 12) allows reads to data members and q with

reads this, q. Although q is a data member, arrays need explicit declaration in

read clauses. This specifies that elements can be accessed in this predicate. q is not

null (Line 15). For this postcondition to verify, q must be initialized.

Two predicates are called in Valid. This includes Convention and Correspondence.

Both predicates require q is not null and another reads clause which is needed because

predicates and functions must specify a memory object that may be accessed. Dafny

needs to know this for every predicate or function specified. The rest of Convention

contains the array and sequence bounds that are valid. maxSize >= |fifo| enforces

the size of fifo sequence is not larger than the maximum size. |fifo| is the cardi-

nality of the sequence which grows and shrinks with the elements inserted or removed

from a sequence As stated earlier, inserting or removing elements into a sequence is ac-

complished by concatenating and slicing sequences. 0 <= n < maxSize <= q .Length

and 0 <= m < maxSize <= q .Length enforce that n and m are within the array

bounds. For instance, n and m being outside the array bounds is an invalid state in

this specification. Convention() prevents m and n from referencing indexes outside

q. Both of these variables are referenced in the Correspondence predicate (Lines

30-38). This predicate maps the concrete and abstract values (i.e. implementation

is mapped to ghost variables). For example, the fifo sequence is equal to the sliced

array, q, within bounds of the circular queue. This disjunction describes how the

array implementation corresponds to the specified sequence. Table III lists the valid

states of the circular queue.

Valid State 1 in Table III is constrained by a bound where n is between zero and

maxSize along with m is equal or greater than n. This models the scenario where m

points to the head, but n is less than m. This is the wrap-around. n only equals m

67

Valid State Bound Mapping
1 q .Length >= maxSize > m >= n >= 0 fifo == q [0..n] + q [m..])
2 0 <= m < n < maxSize <= q .Length fifo == q [m..n]
3 m <= n < maxSize <= q .Length fifo == q [m..n])
4 q .Length >= maxSize > m >= n q [0..n] + q [m..] == fifo

Table III: Tasks states and the associated list

during initialization. Valid State 2 displays the state the queue will exist during

and iterations before the wrap-around. m is less than n. Valid State 3 is similar

to Valid State 2, but both variables are the same during and after initialization.

Valid State 4 also models the wrap-around, but n may not equal zero.

Correspondence is a disjunction and uses implications which is different from the

conjunctive statements in Valid and Convention. A disjunction loosens the speci-

fication since one, several, or all statements may evaluate as true. The implication

statements may short-circuit. If the left-side of the implication evaluates as false and

the right-side evaluates as true, then this statement evaluates as true. For example,

if the wrap-around occurred in the queue, q [0..n] + q [m..] and q [m..n] is not desired,

then the q [m..n] will short-circuit and the wrap-around will evaluate as true. This

short-circuiting of implication statements is a common pattern in Dafny [23].

constructor is declared (Line 40) and accepts the parameter, size. The construc-

tor requires the queue’s size is one or greater (Line 42). modifies this allows the

modification of the data members in this class. Valid ensures the class is invariant

after initialization. maxSize == size constrains the queue will have a constant ca-

pacity (Line 44). This is the upper bound of the queue’s array. fifo == [] (Line

45) and |fifo| == 0 (Line 46) ensures the initialization of the sequence modeling

the queue. fifo == [] sets the sequence to empty. |fifo| == 0 strengthens the

68

postcondition ensuring zero items in the queue.

FIFOQueue includes the operations enqueue(), dequeue(), and isEmpty() which

are shown in Figure 34. enqueue() inserts at the end of the queue and dequeue()

removes the head of the queue. In addition to these operations, there are remove()

and removeAt(). Most of the queue operations contain Valid as the class invariant.

The exception is removeAt() only utilized in a specification context as a postcondition

in remove() (Line 26). modifies this is specified in enqueue(), dequeue(), and

remove() because each method may change the data members in class FIFOQueue.

The first operation is the enqueue() method which accepts task as a parameter

in Figure 34 (Line 1). The preconditions |fifo| < maxSize (Line 4) and task ! =

null (Line 5) require the queue to have fewer items than the maximum size and task

parameter is initialized. Uninitialized tasks are not part of the queue. The parameter,

task, is concatenated with the old sequence fifo as a postcondition (Line 7). The

old value of fifo concatenated with task (right-side of ==) creates the new fifo

sequence (left-side of ==). The concatenation defines the ordering of the queue by

inserting the item after the last element of the queue. task in fifo states that the

task is an element in sequence fifo (Line 8). maxSize == old(maxSize) preserves

the value and enforces the maximum size does not change after the method call (Line

9). In comparison, Dafny can change the value of maxSize after the method call

without this statement because the SMT solver will assume a new value for maxSize

unless a post condition preserves it. The last postcondition, |fifo| == old(|fifo|)

+1, ensures the number of tasks is incremented by one.

The second operation is dequeue() which returns a task (Line 12). |fifo| ! = 0

states the queue is not empty. Notice isEmpty()’s negation could replace this post-

69

condition. However, the reference to sequence fifo modularizes the specification and

does not contain implementation details of the specification. isEmpty() references m

and n which are coupled to this implementation of a circular queue. The postcon-

dition, fifo == old(fifo)[1..], removes the head of the queue (Line 17). The

fifo’s old value is referenced and sliced. old(fifo)[1..] keeps all the values of

fifo and removes the first element, old(fifo)[0]. The next postcondition, task

== old(fifo)[0], ensures the return value task is from the old queue head (Line

18). maxSize == old(maxSize) preserves itself in the same fashion as enqueue().

The next operation is remove() which provides random-access to an element and

removes it from the queue (Line 21). While this is not a typical FIFO queue operation,

FreeRTOS’s queues may remove a specific task and insert it into another list at certain

times. For example, if a task is delayed, it is removed from the ready list regardless

of priority and inserted into the delay list. This provides a clean method of removing

items when tasks change state (i.e. a task moving from one list to another). As a pre-

condition, task contains some value by stating it is not null (Line 23). The postcondi-

tions (Lines 26-28) ensures task is not in the queue and all other tasks are preserved

in the queue. task !in fifo states the task is not an element in the new sequence,

fifo (Line 28). The latter postcondition, 0 <= task.key < old(|fifo|) ==>

fifo == removeAt(old(fifo), task.key), ensures task.key is between bounds

0 and fifo’s old size (Line 26). If true, task is removed at the specific index.

All other tasks are not removed from the sequence except for task. |fifo| ==

old(|fifo|)−1 ensures the number of queue items is decremented by one (Line 29).

There are two function methods shown: removeAt() and isEmpty() (Lines 30-

43). removeAt() accepts a sequence and an index as parameters. The precondition

requires 0 <= index < |s| constrains the index is in the sequence s bounds (Line

70

32). An item is removed by slicing and concatenating sequence s (Line 34). This

ensures s[index] is removed 4. The returned sequence will not contain the task at

index, but it will preserve all other tasks. isEmpty() states that if m == n, then the

queue is empty.

4.3.3 FIFO Queue Implementation

This section describes the FIFO queue specification refinement into an imple-

mentation. This follows a similar pattern to the Task specification and implementa-

tion. The FIFO queue implementation includes the data members and specifications

from the FIFOQueueModule import. This section concentrates on Figure 35 which

contains the refined code.

FIFOQueueImplementation refines the FIFO queue specification from Figure 33

and 34 (Line 2). Throughout this module, the Valid predicate, preconditions, and

postconditions are implicitly included in this refined module. FIFOQueue class is de-

clared (Line 5). All data members from the FIFOQueueModule are implicitly included

in this refined module. The constructor performs the usual initialization of data mem-

bers and ghost variables (Lines 6-13). size is assigned to maxSize (Line 8) which

conforms to the postconditions size == maxSize (see Figure 33). q is instantiated

as an array of Tasks (Line 9). This follows Valid as a postcondition since q is not

null and the array’s bounds are valid. n is assigned from maxSize−1 (Line 10) and

initializes to zero when enqueue() reaches the if block (Line 17). n assigned to m

initializes the queue as empty (Line 11). The postcondition m == n signifies the queue

is empty. Sequence fifo is initialized as empty with [] (Line 12). Ghost variables

also need initialization in the constructor.

4If you are not satisfied this is true, see https://dafny.codeplex.com/discussions/529249.
This discusses updating sequences

https://dafny.codeplex.com/discussions/529249

71

1

2 module FIFOQueueImplementation refines FIFOQueueModule {

3 import opened TaskModule;

4

5 class FIFOQueue <Task > {

6 constructor(size : int)

7 {

8 maxSize := size;

9 q := new T.Task[maxSize];

10 n := maxSize -1;

11 m := n;

12 fifo := [];

13 }

14

15 method enqueue(task : T.Task)

16 {

17 if (n == maxSize -1) {

18 n := 0;

19 } else {

20 n := n + 1;

21 }

22

23 q[n] := task;

24 fifo := fifo + [task];

25 }

26

27 method dequeue () returns (task : T.Task)

28 {

29 if (m == maxSize -1) {

30 m := 0;

31 } else {

32 m := m + 1;

33 }

34

35 task := q[m];

36 DequeueLemma(task);

37 }

38

39 ghost method {: axiom} DequeueLemma(task : T.Task)

40 requires |fifo| > 0;

41 ensures fifo == old(fifo)[1..] && task == old(fifo)[0];

42

43 }

44 }

Figure 35: FIFO Queue Implementation Module

72

Lines 15 to 25 contain the declaration and body of enqueue(). The if-else

block (Lines 17-21). When the queue is first initialized, n == maxSize−1 n is zero.

Afterwards, n is incremented by 1 until n must wrap-around to the first element in

the array. This wrap-around enforces the circular array behavior. task is assigned to

q[n] which is the next item in the array (Line 23). task concatenates to the end of

the sequence. This allows the array to maintain the queue’s ordering because tasks

are inserted at the queue’s tail-end.

dequeue()’s implementation is declared and shown (Lines 27-37). The if-else

block is the wrap-around (Lines 29-33) for m (the queue’s front index). If the queue

was initialized, contains one element, and dequeue() has not been called, m is assigned

to zero from the if branch. m will increment by one until the wrap-around occurs and

the circular queue changes to fifo == q[m..n]. task := q[m] returns the head of

the queue (Line 35). DequeueLemma helps Dafny show the head of the sequence is the

return value, task (Line 36). This lemma helps prove the head of the sequence and

private array implementation are the same. Dafny’s sequence theories are incomplete

5 and requires a lemma to help prove specifications utilizing sequences. This lemma

connects the sequence to the corresponding array because Dafny recalls task :=

q[m] removes the head task from the array and not the sequence. The additional

ghost annotation tells Dafny the queue’s head, task, is removed from the sequence

also. As a result, the dequeue() method concludes with removing task from both

implementation and specification constructs.

5Sequence incompleteness is described in this discussion thread: http://dafny.codeplex.com/
discussions/529249. Lemmas remind Dafny which assertions are still true within the method
scope.

http://dafny.codeplex.com/discussions/529249
http://dafny.codeplex.com/discussions/529249

73

4.4 Unordered List

FreeRTOS’s suspended list is an unordered list. Any tasks inserted into this list

are in the suspended state. Operations including insert() which appends a task to

the list and remove() which provides a random-access removal of a task. This section

shows the specification and refined implementation of an unordered list.

4.4.1 IISc’s Unordered List Specification

Figure 36 shows the insert and remove schema for unordered list [8]. taskIn is

the return value. The last lines in both Unordered insert and Unordered remove

update unordered with an union and removal symbol. Other annotations specify

the priority and FIFO queues are maintained which is needed only in Z. In Dafny, a

task is returned also. Updating the unordered list is different from the IISc schema

because it is modeled in Dafny as a sequence. The insert() method appends a task

to the sequence with concatenation and remove() removes the task by slicing the

sequence.

4.4.2 Unordered List Specification

Figure 37 and 38 contains the specification for the unordered list module. The

TaskImplementation module is declared and the task class is imported (Lines 2-3).

The import allows Task to be referenced throughout the module. Class UnorderedList

is declared (Line 5). The data members consist of a ghost sequence unorderedList,

array u, items, and maxSize (Lines 6-9). An unordered list does not need ordering,

but a sequence may models this list. Although a sequence preserves the elements’

ordering, unorderedList is used because it can model a bounded list and supports

concatenation needed for insertion and removal. Sequence unorderedList is declared

(Line 6). The private array implementation is declared as u (Line 7). items tracks

74

[Unordered insert]
∆ListData
taskIn? : TASK

taskIn? 6∈ unordered
#unordered < BOUND
PQ ′ = PQ
FIFO ′ = FIFO
unordered ′ = unordered ∪ {taskIn?}

[Unordered remove]
∆ListData
taskIn? : TASK

taskIn? ∈ unordered
PQ ′ = PQ
FIFO ′ = FIFO
unordered ′ = unordered \ {taskIn?}

Figure 36: IISc’s insert and remove operations for unordered list

the number of tasks in the list (Line 8). maxSize is the capacity of the list.

The class invariant Valid is declared (Line 11). reads this, u allows access to

this classes data members and the array, u. u ! = null specifies u must have a

value. Convention() and Correspondence() define the bounds and mapping of the

sequence and array elements (Lines 15-16 in Valid). Convention() is declared (Line

19). UnorderedList’s array is passed as a parameter and contains an initialized value

(Line 19-20). This specifies the valid state of the unordered list’s array, u. items and

maxSize are between 0 and the array length (Line 23). This predicate constrains the

bounds of the list. Correspondence contains an array parameter that is not null and

within bounds (Lines 26-28). reads this, u allows access to this class and array.

Sequence unorderedList and array u are mapped and must contain the same values

(Line 31). The ordering is also preserved. The sequence unorderedList is less than

75

1 // unordered list module

2 module UnorderedListModule {

3 import opened TaskImplementation;

4

5 class UnorderedList <T> {

6 ghost var unorderedList : seq <Task >;

7 var u : array <Task >;

8 var items : int;

9 var maxSize : int;

10

11 predicate Valid ()

12 reads this , u;

13 {

14 u != null &&

15 Convention(u) &&

16 Correspondence(u)

17 }

18

19 predicate Convention(u : array <Task >)

20 requires u != null;

21 reads this , u;

22 {

23 0 <= items <= maxSize <= u.Length

24 }

25

26 predicate Correspondence(u : array <Task >)

27 requires u != null;

28 requires 0 <= items <= maxSize <= u.Length;

29 reads this , u;

30 {

31 unorderedList == u[0.. items] &&

32 |unorderedList| <= maxSize

33 }

34

35 constructor (s : int)

36 modifies this;

37 requires 0 < s;

38 ensures Valid;

39 ensures unorderedList == [];

40 ensures |unorderedList| == 0;

41 ensures s == maxSize;

Figure 37: Unordered List Specification Module Part 1

76

1 method insert(task : Task)

2 requires Valid;

3 modifies this , u;

4 requires |unorderedList| < maxSize;

5 requires task != null && task.Valid;

6 ensures Valid;

7 ensures unorderedList == old(unorderedList) + [task];

8 ensures maxSize == old(maxSize);

9

10 method remove(task : Task)

11 requires Valid;

12 modifies this , u;

13 requires task != null;

14 ensures Valid;

15 ensures 0 <= task.key < old(| unorderedList |) ==>

16 unorderedList == removeAt(old(unorderedList), task.key);

17 ensures task !in unorderedList;

18 ensures |unorderedList| == old(| unorderedList |)-1;

19 ensures maxSize == old(maxSize);

20

21 function method removeAt(s: seq <Task >, index: int): seq <Task >

22 reads this;

23 requires 0 <= index < |s|;

24 {

25 s[.. index] + s[index +1..]

26 }

27

28 }

29 }

Figure 38: Unordered List Specification Module Part 2

or equal to the capacity, maxSize (Line 32). This keeps the sequence within bounds.

The list is never larger than maxSize.

The constructor initializes the data members (Line 35). The parameter s de-

fines the capacity of the unordered list and must be greater than one (Lines 35 and

37). modifies this allows access to data members in this class (Line 36). This

allows mutation of this class because the data members are set to default values.

unorderedList is initialized as an empty sequence with no elements (Lines 39-40).

The capacity, s, must equal maxSize since it specifies the list’s upper bound (Line

41). Notice the precondition 0 < s constrains maxSize as greater than zero. This

constraint allows the postcondition to follow the same bounds.

Figure 38 displays the second part of the unordered list module. The insert()

appends task to the list (Line 1). The usual class invariant and framing are declared

77

(Line 2-3). Valid constrains properties that do not change in this class and modifies

this, u allows changing data member values. The |unorderedList| < maxSize

precondition requires the quantity of tasks is less than the upper-bound, maxSize

(Line 4). The parameter task is initialized and valid (Line 5) because null tasks

are forbidden in the list. Valid maintains the invariant properties of this class (Line

6). The postconditions include concatenating the inserted task into this list (Line

7) and preserving maxSize (Line 8). The task is properly inserted into the list and

maxSize’s value is constrained to not change after the method call.

The remove() method is shown in Figure 38 too. Valid establishes the class invari-

ant and modifies this, u allows changes to the data members. The precondition

requires the parameter task in a initialized state (Line 13). The postconditions show

task is removed from the unordered list (Lines 15-18). The left side of the implication

(Line 15) states the task is removed if it is in bound of sequence unorderedList’s

previous value. The implication’s right side ensures the new unorderedList is the

old unorderedList without parameter task. The removal is accomplished with the

removeAt() function method. The next postcondition, task !in unorderedList,

guarantees the task is not in the list (Line 17). In case the removal does not occur

(Line 15-16), task guaranteed to not exist in the list. This is necessary because

if task is not in the list, remove() ensures the task is removed. This is needed

for both moving a task from suspended to a different list and deleting tasks. The

unorderedList is decremented (Line 18) and maxSize is preserved because the upper

bound must not change. The removeAt() function method (Line 21) is the same as

its counterpart in the FIFO queue. A sequence is concatenated and sliced at index.

A new sequence is returned without the item at s[index].

78

4.4.3 Unordered List Implementation

Figure 39 shows the unordered list’s implementation. Along with remove(), the

constructor and insert() methods are displayed. The implementation for the

constructor and insert() are concise, but remove() contains two loops which re-

quires invariant and termination annotations. The remove operation also calls the

tailAndRemoveLemma(). The mentioned figure is described and these upcoming para-

graphs explain the annotated code.

Figure 39 shows the UnorderedListImplementation module is a refinement of

UnorderedListModule (Line 1). Valid, data members, method preconditions, and

postconditions are called implicitly in this class. UnorderedList’s constructor re-

quires parameter size which is assigned to maxSize (Line 6). This follows the post-

condition where maxSize == s. This is the upper bound of the unordered list.

Sequence unorderedList is initialized to an empty sequence (Line 7). This follows

the postcondition where the sequence is initialized as empty. The private implemen-

tation array, u, is initialized as an array of tasks (Line 8). u is not null according to

the postcondition. items is assigned as zero (Line 9) which follows the postconditions

items == 0.

The implementation for insert() is concise (Lines 12-17). task is assigned to the

last item of array u by u[items] := task (Line 14). This inserts task at the end

of u. items is incremented by one (Line 15). This tracks the number of tasks in

list. unorderedList := unorderedList + [task] appends the task to the end of the

sequence.

Lines 19-44 list remove()’s implementation in which the first loop searched index

and second loop removes the task. The first while loop searches for the task’s index

79

1 module UnorderedListImplementation refines UnorderedListModule {

2 class UnorderedList <T> {

3

4 constructor (s : int)

5 {

6 maxSize := s;

7 unorderedList := [];

8 u := new Task[s];

9 items := 0;

10 }

11

12 method insert(task : Task)

13 {

14 u[items] := task;

15 items := items + 1;

16 unorderedList := unorderedList + [task];

17 }

18

19 method remove(task : Task)

20 {

21 var index := 0;

22

23 while(u[index] != null &&

24 task != u[index] && 0 <= index < u.Length -1)

25 invariant 0 <= index < u.Length;

26 decreases u.Length -index;

27 {

28 index := index + 1;

29 }

30

31 var i := index;

32 while (0 <= i < u.Length -1)

33 invariant u != null && 0 <= i <= u.Length -1;

34 modifies u;

35 decreases u.Length -i;

36 {

37 u[i] := u[i+1];

38 i := i + 1;

39 }

40

41 items := items - 1;

42 unorderedList := u[0.. items];

43

44 tailAndRemoveLemma(task , index);

45 }

46

47

48 ghost method {: axiom} tailAndRemoveLemma(taskOut : Task , index : int)

49 requires Valid;

50 ensures Valid;

51 ensures taskOut != null &&

52 0 <= index < |unorderedList| &&

53 0 <= taskOut.key < old(| unorderedList |) &&

54 taskOut !in unorderedList;

55

56 }

57 }

Figure 39: Unordered List Implementation

80

in the unordered list’s array (Line 23). The loop exits when the array is either a null

value (u[index] == null, task is found (task == u[index]), or the loop’s end

index == u.Length-1 (Line 23). The invariant 0 <= index < u.Length states

that index ranges between zero and u’s length (Line 24). This required for searching

for index because it is restricted to the unordered list’s bounds. The decreases

clause enforces the loop termination (Line 25). When u.Length-index is zero, the

loop terminates because it is the last iteration of the loop. index is incremented by

one until the loop exits (Line 27). index is assigned to i (Line 30) because it is

modified in the loop and index is used later. Inside the loop, task is overwritten

at i’s initial value (Line 36). i is incremented by one (Line 37) and array items are

shifted left (see Line 36). Since u’s items are shifted, modifies u allows the loop

to edit array values (Line 33). Other loop annotations include the invariant which

constrains u is initialized (Line 32). In addition, the bounds of i range from zero

to u.Length−1 (Line 32) because i cannot reference an array element outside the

range. However, i <= u.Length−1 is valid because the invariant must include a

valid state when the loop exits. Another loop annotation is the termination metric in

which u.Length−i decreases until it equals zero (see Line 34). After the loop exits,

items is decremented because task was removed in the previous loop (Line 40). The

unorderedList sequence is updated from the modified array values since u no longer

contains task (Line 41). Although the sequence and array were updated, a lemma

is needed to verify taskOut is removed from the sequence (Line 43). taskOut was

removed from u in the second loop and unorderedList was updated, but Dafny does

not know the task was removed from the sequence. This is required because sequence

theories are incomplete 6.

6In this example, the task is removed from shifting in the second loop. Dafny cannot recognize
that shifting deletes the task from the array. Furthermore, updating the sequence from the array
values does not prove the removal. The lemma allows Dafny to verify the item is removed. Again, see
Dafny discussion thread on sequence incompleteness http://dafny.codeplex.com/discussions/

529249.

http://dafny.codeplex.com/discussions/529249
http://dafny.codeplex.com/discussions/529249

81

4.5 Priority Queue

This section describes the priority queue module containing the specification and

code. The implementation consists of a FIFO queues array in which tasks are inserted

into the array index associated with the respective priority. For example, a priority

two task is inserted with this method call: q[2].enqueue(task). q is an array of

FIFO queues. This implementation associates a task with a priority without explicitly

sorting the queue. This implementation is used due to the difficulty of annotating

and verifying a sorted queue [4] [22].

4.5.1 IISc’s Priority Queue Schema

Figures 40 and 41 show IISc’s Z schema. PQ enqueue specifies a task is inserted

into the queue in a sorted order. taskIn and key are parameters for this operation

where the key is a priority. tmpSeqPre and tmpSeqSuf allow for inserting a task

somewhere in the sequence. This is similar to concatenating or slicing sequences in

Dafny. However, the Dafny specification maintains the sorted order differently. The

implementation contains several arrays for each priority. Higher priority arrays are

sliced and assigned to a sequence which preserves the sorted order (see next section).

PQ dequeue is similar to the Dafny specification. While the Z schema uses

head and tail to return and remove the highest-priority task, Dafny returns the task

at the first index and slices the queue. IISc’s PQ dequeue operation maintains values

for FIFO and unordered in which this is not needed in Dafny.

4.5.2 Specification and Implementation

This implementation contains the usual enqueue and dequeue operations. In addi-

tion, there is a remove() method specification, but the implementation is not included

for brevity. This method contains a similar specification to unordered list’s remove()

82

[PQ enqueue]
∆ListData
taskIn? : TASK
key? : N
tmpSeqPre : seq TASK × N
tmpSeqSuf : seq TASK × N

taskIn? 6∈ dom PQ
key? ≤ BOUND
#PQ < BOUND
∀(t , i) : TASK × N • (t , i) ∈ ran PQ ⇒ t 6∈ taskIn?
tmpSeqPre = PQ � {t : TASK , i : N | i ≤ key? • (t , i)}
tmpSeqSuf = PQ � {t : TASK , i : N | i ≤ key? • (t , i)}
PQ ′ = tmpSeqPre a 〈(taskIn?, key?)〉a tmpSeqSuf
FIFO ′ = FIFO
unordered ′ = unordered

Figure 40: IISc’s enqueue schema for a priority queue

[PQ dequeue]
∆ListData
taskOut ! : TASK

PQ 6= 〈〉
taskOut ! = head (PQ).1
PQ ′ = tail(PQ)
FIFO ′ = FIFO
unordered ′ = unordered

Figure 41: IISc’ dequeue schema for a priority queue

83

and its implementation is the same for the unordered list. In addition to brevity, the

priority queue module contains specifications and method implementation. This is

because separating priority queue modules resulted in a failed sanity check. Early

version of the priority queue attempted creating two separate modules, but the imple-

mentation module failed a sanity check where “assert false” evaluated as true. When

the specification and implementation were combined, it passed the sanity checks.

Hopefully, improving module support is in future plans for Dafny. Figures 42 and 43

show the priority queue specification and implementation .

PriorityQueueModule is declared along with the imported task module and pri-

ority queue’s class declaration (Lines 1-3). Importing TaskImplementation allows

referencing Task throughout this class. The sequence pq models the priority queue

and is declared a ghost variable (Line 9). This is needed for specifying an ordered

data structure. The sequence will allow for ordering, inserting and removing tasks. q

provides the private array implementation of this queue (Line 6). In comparison with

the FIFO queue (see Figures 33 and 34), this priority queue maps the array values

to the sequence in Valid. items contains the number of tasks in the priority queue

(Lines 8). maxSize is the number of FIFO queues in q (Line 8) where each index is

corresponds with a priority. For example, priority three tasks are inserted into q[3].

Valid specifies the class invariant (Line 11) which follows the specification pattern

similar to classes Task, UnorderedList, FIFOQueue. This invariant describes proper-

ties which do not change throughout the class. reads * ignores framing constraints.

While framing annotations are prefered, this is necessary to avoid strange read errors

7. q must be initialized (Line 17). Convention() and Correspondence() specify

7Dafny needs improvement in this area. In ordered for Valid to verify, it requires preconditions
stating q’s array elements are not null. However, Valid should not have preconditions because it
constrains where the predicate can be called. Valid should not have any preconditions because its
the class invariant and can be called in specifications anywhere its needed. In conclusion, Valid

84

1 module PriorityQueueModule {

2 import T = TaskImplementation;

3 import F = FIFOQueueModule;

4

5 class PriorityQueue {

6 var q : array <F.FIFOQueue <T.Task >>;

7 var items : int;

8 var maxSize : int;

9 ghost var pq : seq <T.Task >;

10

11 var prior : int;

12 var topPriority : int;

13

14 predicate Valid

15 reads *;

16 {

17 q != null &&

18 Convention(q) &&

19 prior == 5 &&

20 prior <= q.Length &&

21 q[0] != null && q[1] != null && q[2] != null &&

22 q[3] != null && q[4] != null &&

23 q[0]. Valid && q[1]. Valid && q[2]. Valid &&

24 q[3]. Valid && q[4]. Valid &&

25 Correspondence(q) &&

26 prior >= topPriority >= 0

27 }

28

29 predicate Convention(q : array <F.FIFOQueue <T.Task >>)

30 requires q != null;

31 reads this;

32 {

33 0 <= items <= |pq|

34 }

35

36 predicate Correspondence(q : array <F.FIFOQueue <T.Task >>)

37 requires q != null;

38 requires prior == 5;

39 requires prior <= q.Length;

40 requires q[0] != null && q[1] != null && q[2] != null &&

41 q[3] != null && q[4] != null;

42 reads this , q;

43 reads q[0], q[1], q[2], q[3], q[4];

44 {

45 // highest priority is concatenated first

46 pq == q[4]. fifo [..] + q[3]. fifo [..] +

47 q[2]. fifo [..] + q[1]. fifo [..] + q[0]. fifo [..]

48 }

49

50 constructor(size : int)

51 requires size > 0;

52 modifies this;

53 ensures Valid;

54 ensures items == 0;

55 ensures pq == [];

56 ensures |pq| == 0;

57 {

58 items := 0;

59 pq := [];

60 maxSize := 5;

61 q := new F.FIFOQueue[maxSize];

62 q[0] := new F.FIFOQueue(size);

63 q[1] := new F.FIFOQueue(size);

64 q[2] := new F.FIFOQueue(size);

65 q[3] := new F.FIFOQueue(size);

66 q[4] := new F.FIFOQueue(size);

67 prior := 5;

68 topPriority := 0;

69 }

Figure 42: Priority Queue Part 1

85

1 method enqueue(task: T.Task) returns (position : int)

2 requires Valid;

3 requires |pq| < maxSize;

4 requires task != null;

5 requires 0 <= task.key <= prior < q.Length;

6 requires q[task.key] != null && q[task.key].Valid;

7 requires |q[task.key].fifo| < q[task.key]. maxSize;

8 modifies this , q, q[task.key];

9 ensures Valid;

10 ensures 0 <= position < old(|pq|);

11 ensures pq == insertAt(old(pq), position , task);

12 ensures task in pq;

13 {

14 q[task.key]. enqueue(task);

15 position := task.key;

16 enqueueLemma(position);

17 pq := insertAt(pq , position , task);

18 if (task.key > topPriority) {

19 topPriority := task.key;

20 }

21 enqueueLemma(position);

22 items := items + 1;

23 }

24

25 ghost method {: axiom} enqueueLemma(position : int)

26 ensures Valid;

27 ensures 0 <= position < |pq|;

28 ensures 0 <= position < old(|pq|);

29

30 // remove from the front of the queue

31 method dequeue () returns (task : T.Task)

32 requires Valid;

33 requires |pq| != 0;

34 requires 0 <= topPriority < q.Length;

35 requires q[topPriority] != null && q[topPriority].Valid;

36 requires |q[topPriority].fifo| != 0;

37 modifies this , q[topPriority];

38 ensures Valid;

39 ensures task == old(pq)[0];

40 ensures pq == old(pq)[1..];

41 {

42 task := q[topPriority]. dequeue ();

43 items := items - 1;

44 dequeueBoundsLemma ();

45 dequeueLemma(task);

46 if (task.key <= topPriority && q[task.key].q.Length == 0) {

47 topPriority := topPriority - 1;

48 }

49 }

50

51 ghost method {: axiom} dequeueBoundsLemma ()

52 ensures Valid;

53 ensures 0 < |pq|;

54

55 ghost method {: axiom} dequeueLemma(task : T.Task)

56 requires |pq| > 0;

57 ensures Valid;

58 ensures pq == old(pq)[1..] && task == old(pq)[0];

59 ensures task != null;

60

61 method remove(task : T.Task)

62 requires Valid;

63 requires task != null;

64 modifies this;

65 ensures Valid;

66 ensures 0 <= task.key < old(|pq|) ==>

67 pq == removeAt(old(pq), task.key);

68 ensures task !in pq;

69 ensures |pq| == old(|pq|)-1;

Figure 43: Priority Queue Part 2

86

the valid bounds and values mapped between the sequence and array, respectively

(Lines 18, 25). This priority queue assume five priorities because it is the default

number of priorities in the scheduler (Line 19). In addition, prior is less than or

equal to q.Length since the number of priorities is not larger than the queue length

(Line 20). All five queue elements are initialized values and valid (Lines 21-24). The

bounds for topPriority are defined (Line 26). This tracks which queue element is

dequeued. For example, if topPriority == 1, then q[1].dequeue() is called when

the priority queue calls its dequeue method.

Convention() is declared (Line 29). Although it is specified in Valid, q requires

initialization as a precondition (Line 30). reads this allows this predicate to access

the data members in this class (Line 22). The priority queue’s bounds are required

as between zero and |pq| (Line 24). This defines sequence pq’s bounds as it grows

and shrinks. Also, items is constrained within the array bounds.

Correspondence() is declared (Line 36). The preconditions require q is initialized

and the queue’s bounds are valid (Lines 37, 40-41). The reads clause provides the

same role as in Convention() and Valid by allowing access to the data members (Line

42). Line 43 allows this predicate to reference q’s elements. The pq sequence and q

array values are mapped to each other (Line 46-47). This states the priority queue

is the concatenation of all the FIFO queues. The highest priority element (q[4]) is

concatenated first while lower priority items are appended after. This preserves the

sorting order in the priority queue.

constructor accepts an integer s (Line 50). Each FIFO queue is assigned this

value. The precondition requires the size is zero or greater (Line 51). modifies this

allows for changing values of the data members associated with this class (Line 52).

should not have preconditions in which framing is ignored.

87

Valid is the usual class invariant which states the unchanging properties of this class.

The postcondition pq == [] ensures the sequence is initialized as empty (Line 55)

and |pq| == 0 strengthens the initialization by constraining the sequence size is zero

(Line 56). items == 0 ensures the priority queue is empty (Line 54). constructor’s

implementation is between Lines 58-68 and starts with initializing items to zero.

This satisfies the postcondition in Line 54. pq is initialized as an empty sequence

(Line 59). In addition, maxSize is assumed the value of five (Line 60) because there

are five priorities. q is initialized to five array elements (Line 61). This is followed by

initializing each array element (Line 62-66). topPriority is initialized to zero since

the queue is still empty (Line 68).

Figure 43 contains the other methods for the priority queue. enqueue() inserts

the parameter, task, into the priority queue (Line 1). Valid is specified in the

precondition and postcondition for preserving the class invariant. task requires an

initialized value (Line 4). The |pq| < maxSize postcondition requires the priority

queue is not full (Line 3). The pq is referenced to keep the specification modular.

This precondition is the same regardless of the implementation because the sequence

pq is used. The tasks priority, task.key, is located in the range between zero and

q.Length (Line 5). Lines 6-7 allows a valid call to FIFOQueue’s enqueue operation.

q[task.key] is initialized, valid and not empty. There is one framing annotation

where this, q, and q[task.key] may change values (Line 8). The next annotations

are the postconditions (see Lines 9-12). The task is an element in sequence pq (Line

12), but a stronger postcondition appends the task to the priority queue (Line 11)

by inserting task into pq. insertAt() inserts taskIn at position in which a new

sequence containing the new and old items is returned. These annotations ensures

priority queue contains task.

88

enqueue()’s implementation starts with inserting task into a FIFO queue (Line

14). The task is inserted into the correct priority because q[task.key].enqueue()

inserts an item into a FIFO queue associated with task.key. If task.key is two,

the task is inserted into q’s FIFO queue element at q[task.key]. position returns

the task’s priority (Line 15). enqueueLemma() allows Dafny to verify that position

is between the ranges of zero and pq’s old and new lengths (Line 16). On Line 17,

assigning the return value of insertAt() to pq satisfies the postcondition on Line 11.

The if statement updates topPriority if task’s priority is greater than the current

topPriority (see Lines 18-20). This updates which FIFO queue contains the highest

priority tasks and it is used later in dequeue(). enqueueLemma() is called again to

remind Dafny position is in bounds (Line 21). Incrementing items updates the

number of tasks in the priority queue (Line 22).

dequeue() removes the task at the head of the priority queue (Line 31). Valid

enforces the queue is sorted before and after every method call. Therefore, the head

is always a highest priority task which preserves the best-in first-out ordering. A

postcondition of this method call requires the priority queue is not empty (Line 33).

The next three postconditions (see Lines 34-36) reference the index to the highest

priority pq element: topPriority. The highest priority ranges between zero and

q.Length (Line 34). q[topPriority] is initialized and valid because this element

is dequeuing a task (Line 35). In addition, q[topPriority] is not empty (Line

36) and it may be modified (Lines 37-38). The postconditions start with Valid in

which this preserves the class invariant properties (Line 38). The next postcondition

ensures task is the head from the old priority queue sequence, pq (Line 39). This

also ensures the return value, task contains a value. Even if only one element exists

in the priority queue before a call to dequeue(), old(pq)[0] is not null because the

Valid predicate does not allow uninitialized tasks. |pq| gets the size of the sequence.

89

pq == old(pq)[1..] removes the head from sequence pq (Line 40). This slicing

notation removes the first element, pq[0], and preserves all the other tasks in the

sequence.

The implementation is shown between Lines 42-48. The head task is removed

from the priority queue (Line 42). items is decremented by one because a task is

removed (Line 43). The lemmas dequeueBoundsLemma() and dequeueLemma() state

the priority queue’s sequence , pq, does not contain task. These are ghost annotations

which reason if task was dequeued from q[topPriority], then it is removed from

the specification construct, pq. dequeueLemma() contains a postcondition that slices

pq (pq == old(pq)[1..]) and reasons task is the old priority queue head (task

== old(pq)[0]) (see Line 58). This satisfies dequeue’s postconditions on Lines 39-

40. The final part of the implementation updates topPriority to the next highest

priority (Line 46-48).

The next method, remove(), accepts a task parameter (Line 61). This operation

removes the task from the priority queue. Valid is a precondition and postcondition

preserving the invariant properties (Lines 62, 65). The precondition task ! = null

states the parameter must be initialized (Line 63). A postcondition includes the task

is in bounds between zero and the size of old(pq) (Line 66). The task is removed

from sequence pq (Line 67) and preserves the values not removed from the sequence.

Also, the task removal is strengthened by stating task is not an element of pq (Line

68). In case removeAt() does not remove the task, task must not exist as an element

in pq. removeAt() (not shown for brevity) provides the same functionality as in the

unordered list 38 and priority queue 34. A task is removed at index. The sequence

is sliced and concatenated. The new sequence is returned. The priority queue is

decremented (Line 69).

90

4.6 Summary

The chapter started with explaining the references used for specifying the in Dafny.

The FreeRTOS API documentation and IISc Z model [8] were the basis of the Dafny

specification. However, the Z model was widely used throughout the data structure

specifications. The API documentation was a supplemental reference. It provides

examples of how the and tasks are called.

The task class and several data structures were specified in the next sections. The

data structures follow a common specification pattern with Valid, preconditions,

postconditions, and framing. Valid is the class invariant and must evaluate as true

as a precondition and postcondition of every method. constructor only needs Valid

as a postcondition because it is responsible for initialization. The constructor creates

the initial valid state of the object. Methods contain preconditions and postconditions

to constrain the state in which the method is called and the state after the method call,

respectively. The reads and modifies clauses are framing annotations. Predicates

and functions often specify read to allow data members access. modifies allows data

members to change in the class (i.e. object mutation). Methods which only return

a value, but do not write changes to data members do not need modifies as seen

Task’s function methods.

The FIFO queue main operations include enqueue(), dequeue(), and remove().

This queue is used the ready list. enqueue() appends a task to the end of the queue,

dequeue() removes a task from the head of the queue, and remove() provides a

random-access removal. This queue is bounded and array-based. A sequence models

this data structure because it allows ordering, appending, and removal.

91

The unordered list contains methods for insertion and removal. FreeRTOS’s sus-

pend list is an unordered list. The insert() operation appends a task to the list

and remove() provides a random-access removal. The list is also bounded and array-

based. A sequence models this data structure, but no ordering is not required. The

appending and removal is needed from the sequence for modeling an unordered list.

The priority queue contains enqueue(), dequeue(), and remove(). This queue

is used in both delay and waiting lists in FreeRTOS. enqueue() inserts a task into

the priority queue, dequeue() must remove the highest-priority task, and remove()

provides a random-access removal. This list is bounded and array-based implemen-

tation. A sequence models this data structure for ordering, appending, and removal.

However, the priority queue must dequeue() the highest-priority item (i.e. the best

item is removed first). The priority ordering is specified in the class invariant to

guarantee the best item is removed first.

CHAPTER V

Verifying the Scheduler in Dafny

The previous chapter presented details of the verified xList in Dafny. This is

the foundation of the FreeRTOS scheduler because the ready list is an array of FIFO

queues, suspended list is an unordered list, waiting and delay lists are priority queues.

The scheduler manages tasks by inserting or removing from the appropriate list. The

scheduler contains a running task and it may undergo a context switch at every clock

tick. Tasks are switched at every tick increment. Scheduler task management includes

creating, deleting, updating, and changing tasks. This must follow the real-time

constraints found in FreeRTOS. As a result, this behavior is included in the Dafny

specification. Port-specific details are not included, but clock behavior is abstracted

as a tick. The system clock tick is in every port, but since Dafny is not a low-level

programming language, the tick is a software abstraction. All common scheduler

behavior is included in this Dafny specification.

The specification utilizes ideas from IISc’s Z FreeRTOS model [7] in which it has

common traits for each port including the scheduler’s API. The Z model specifies the

92

93

scheduler API found in every port [7], but it does not include port-specific details such

hardware details. If the generic API is specified, port-specific details should behave

the same in every port. As in the IISc Z model, these commonalities are specified

throughout the Dafny specification. This is mentioned in the first section.

This chapter contains the scheduler specification and implementation. All the

modules from Chapter 4 are imported and referenced by the scheduler. Unlike the

xList’s data structures, the specifications and implementations are included in the

same class due to module issues 1. The scheduler module is explained and split into

sections. IISc’s Z model concepts use in the Dafny specification are covered in the

first section. The second section covers the module declaration and data members.

Specification constructs are described in the third section. The fourth section covers

the method specification and implementation for each scheduler operation.

5.1 Eliciting the Scheduler Specification

There are differences between the IISc Z model and Dafny specification. While the

classes and methods resemble Z schema, the Dafny language does not have the same

notation. The Z model translation is open to interpretation. There is no straight-

forward process to convert a Z model to a Dafny specification. For example, the

ListData schema contains the ready, delayed, blocked, and suspend lists [7], but this

schema is not converted to a Dafny class. This was a design decision to simplify

the scheduler specification. Not all of the Z model schemas are translated to Dafny

specifications, but there are schema converted into a class such as Parameter.

1Dafny needs improvement in this area. When the scheduler specification was refined into an
implementation module, it failed a sanity check where “assert false” verified.

94

[Parameter]
MAXPRIO : N
MAXDELAY : N
PREEMPTION : BOOL

MAXPRIO > 0
MAXDELAY > 0

[Init Parameter]
Parameter ′

MP? : N
MD? : N
PREEMPT ? : BOOL

MP? > 0
MD? > 0
MAXPRIO ′ = MP?
MAXDELAY ′ = MD?
PREEMPTION ′ = PREEMPT ?

Figure 44: IISc’s Parameter Schema

The Parameter schema follows the same specification in Dafny. Figure 44 shows

the schema. The preemption state is a boolean value while the maximum priority and

delay are natural numbers [7]. These values model defined macros from FreeRTOS’s

code. This is constrained with class Scheduler’s Valid predicate in Dafny. Addi-

tionally, the Init Parameter initializes the values [7], but a constructor performs

the initialization in Dafny. The Z model’s priorities scheme follows a the range of one

to MAXPRIO [7] where 0 < i <= MAXPRIO when i is a valid priority. The specifica-

tions are different in Dafny. The priorities range from zero to MAXPRIO−1 such that

0 <= i < MAXPRIO where i is a valid priority. The specification’s lowest-priority is

zero which these priorities range from zero to maxpriorities-1 because sequences

and arrays are allocated from the first index (i.e. the first index is zero).

95

[TaskData]
tasks : PTASK
running task : TASK

idle ∈ tasks
running task ∈ tasks

[Init TaskData]
TaskData ′

tasks ′ = {idle}
running task ′ = idle

Figure 45: IISc’s TaskData Schema

TaskData contains the set of all tasks in the Z model [7]. This is shown in Figure 45

where tasks is a set of tasks. The Dafny specification utilizes this idea as a ghost

declaration, g allTasks. This allows for specifying task insertion or removal from

the scheduler when a specific list does not need referencing. The ListData schema

models the xList [7], but the Dafny specification considers this as a high-level design

decision. The xList is a high-level class design and its implementation consists of

separate task lists (see Chapter 2 or 3). This schema also contains running task

and an idle task (see Figure 45). In Dafny, the scheduler declares data members

runningTask and idleTask to represent the executing and idle tasks, respectively.

In Figure 46, topReadyPriority models the index to the ready list’s next running

task [7]. This index is shown in the Task schema. This idea is utilized in the Dafny

specification. It is convenient to track the ready priorities as an index. The Dafny

specification models a ready list as a sequence and it is simple to reference (i.e.

g readyList[topReadyPriority]).

96

[Task]
Parameter
TaskData
ListData
PrioData
ClockData
topReadyPriority : N

idle ∈ ran a/(ran ready)
topReadyPriority ∈ dom ready
∀ i : dom ready | ready(i) 6= 〈〉 • i ≤ topReadyPriority
running task = head ready(topReadyPriority)

tasks = rana/(ran ready) ∪ ran blocked ∪ ran seqFirst(delay) ∪ suspended
dom priority = tasks
dom basePriority = tasks
∀ tcn : ran delayed • tcn.2 > clock
∀ t : tasks ,∀ i : dom ready | t ∈ ran ready(i) • priority(t) = i
∀ i , j : dom blocked | i < j • priority(blocked(i)) ≥ priority(blocked(j))

Figure 46: Task schema from IISc

97

The Z schema partially model the API functions where one operation may have

several schema [7]. Figure 47 contains two schemas for creating a task. It models dif-

ferent use-cases of the API functions. For example, xTaskCreate() has two different

scenarios. If a task is created, it is added either to the ready list or executed as the

running task. The Dafny specification contains both scenarios in one method because

the methods are annotated to have similar calling behavior to the associated API

functions. If xTaskCreate() is called in another method, both scenarios are possible

use-cases. Since Dafny allows method calls, the specification allows both scenarios to

occur with one call. Modeling several use-cases for a scheduler function is common

in the Z schemas. Along with xTaskCreate(), this appears in vTaskPrioritySet(),

vTaskIncrementTick(), vTaskDelay(), vTaskDelayUntil(), and vTaskDelete().

Although the Z model is thorough, the Dafny scheduler specification references the

API documentation for eliciting the required behavior. This is the primary reference.

The API comments are resourceful when there no clear translation from Z to Dafny

exists. The next sections quote the API documentation when needed.

98

[CreateTaskAndAddToReadyQueue]
∆Task
taskIn? : TASK
prio? : N

prio? ≤ MAXPRIO
taskIn? 6∈ tasks
priority(running task) ≥ prio?
ΞParameter
tasks ′ = tasks ∪ {taskIn?}
running task ′ = running task

ready ′ = ready ⊕ {(prio? 7→ ready(prio?)a 〈taskIn?〉)}
blocked ′ = blocked
delayed ′ = delayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ prio?)}
basePriority ′ = priority ⊕ {(taskIn? 7→ prio?)}
ΞClockData
topReadyPriority ′ = topReadyPriority

[CreateTaskAndSchedule]
∆Task
taskIn? : TASK
prio? : N

prio? ≤ MAXPRIO
taskIn? 6∈ tasks
priority(running task) < prio?
ΞParameter
tasks ′ = tasks ∪ {taskIn?}
running task ′ = taskIn?
ready ′ = ready ⊕ {(prio? 7→ 〈taskIn?〉)}
blocked ′ = blocked
delayed ′ = delayed
suspended ′ = suspended
priority ′ = priority ⊕ {(taskIn? 7→ prio?)}
basePriority ′ = priority ⊕ {(taskIn? 7→ prio?)}
ΞClockData
topReadyPriority ′ = prio?

Figure 47: Modeling xTaskCreate() from IISc

99

5.2 Module Declaration and Data Members

Figure 48 contains the scheduler module and include statements. Starting with the

include statements (Lines 1-5), the xList components are called in the scheduler.

As mentioned in Chapter 4, the data structure includes the priority queue, FIFO

queue and unordered list. The Task module is also needed because an xList contains

tasks. The parameter class models a few macros including maximum delay, maximum

priority, and preemption.

SchedulerModule is declared (Line 8) and the imported modules are shown (Lines

9-13). FIFOQueueModule, PriorityQueueModule, and UnorderedListModule are ref-

erenced in the scheduler. These modules compose the xList and each respective class

is used as a data member (shown later). The xList modules are all composed of tasks

which the TaskImplementation module is imported for this reason.

Class Scheduler is declared (Line 15) along with several data members and ghost

variables (Lines 16-34). readyList, waitingList, suspendList, and delayList are

the xList instances (Lines 16-19). Notice the high-level design in Chapter 3 xList

is the base class for the list classes, but the implementation is different. It does not

contain a parent class because Dafny does not support inheritance. Instead, scheduler

is composed of the list classes representing the xList.

readyList is the private array implementation containing several FIFO queues

(Line 16). Each array index holds the respective priority task. For example, a task

with a priority of three is inserted into readyList[3]. Inserting a priority task into

this list follows the delegation pattern: readyList[3].enqueue(aTask) inserts a

task into its respective FIFO queue. waitingList holds the blocking tasks (Line 17).

suspendList is implemented as an unordered list (Line 18). A task may remain in

100

1 include "tasks_module.dfy"

2 include "fifo_queue_module.dfy"

3 include "unordered_list_module.dfy"

4 include "PriorityQueueModule.dfy"

5 include "Parameter.dfy"

6

7

8 module SchedulerModule {

9 import opened F = FIFOQueueModule;

10 import opened P = PriorityQueueModule;

11 import opened U = UnorderedListModule;

12 import opened T = TaskImplementation;

13 import opened Pa = ParameterModule;

14

15 class Scheduler {

16 var readyList : array <F.FIFOQueue <T.Task >>;

17 var waitingList : P.PriorityQueue;

18 var suspendList : U.UnorderedList <T.Task >;

19 var delayList : P.PriorityQueue;

20

21 var clock : int;

22 var topReadyPriority : int;

23 var runningTask : T.Task;

24 var idleTask : T.Task;

25 var parameter : Parameter; // maxprior , maxdelay , preemption

26 var numberOfTasks : int;

27 var runningStatus : nat;

28

29 ghost var g_readyList : seq <F.FIFOQueue <T.Task >>;

30 ghost var g_waitingList : PriorityQueue;

31 ghost var g_suspendList : UnorderedList <T.Task >;

32 ghost var g_delayList : PriorityQueue;

33 ghost var g_allTasks : seq <T.Task >;

34 ..

35 }

36 }

Figure 48: Includes and Module Declaration

this list indefinitely. delayList is also a priority queue (Line 19).

The other data members (Lines 21-27) model several scheduler behaviors. clock

represents a tick, but it does not contain port-specific details. Every port has

clock ticks and it increments for every tick event. This value is initialized as

zero. When a tick occurs, the value of clock changes to the next positive in-

teger and a context switch may occur. topReadyPriority contains the highest-

priority readyList index (Line 22). This list is composed of high-priority tasks.

Round-robin scheduling is followed for readyList[topReadyPriority]. If the sched-

uler contains several items in readyList[topReadyPriority], a context switch may

change the running task to an item contained in this list at the topReadyPriority.

101

runningTask is the current executing process (Line 23). This task must be a task

from readyList[topReadyPriority]. idleTask is a low-priority task in the ready

list. parameter represents macro values found in every port (Line 25) including

maxprior, maxdelay, and preemption [7]. numberOfTasks is the total quantity of

tasks in the scheduler’s lists (Line 26). runningStatus is a natural number modeling

the scheduler’s status where zero is the initialized state, one is the running state,

and two is the suspended state. One or many tasks are in readyList during the

running state and all tasks are inserted into the suspended list when the scheduler is

suspended.

The ghost variables are specified for the lists (Lines 29-33). g readyList is a

sequence modeling the readyList. The values from the array to the sequence are

mapped to the same values in Valid. g waitingList models waitingList imple-

mentation (Line 30), g suspendList models suspendList, and g delayList models

the delay list. g allTasks contains all the tasks in the scheduler. This helps specify

amount of tasks and task removal.

This section described the data members including implementation and ghost vari-

ables (i.e. concrete and abstract). These are referenced extensively throughout the

specification. The data members have invariant states defined by Valid. This is

described in the next section.

5.3 The Class Invariant

Valid contains the scheduler’s class invariant (see Figure 49). These values specify

the reachable and valid states in class Scheduler. This follows the common specifica-

tion pattern in Dafny as seen in previous chapters. Valid defines that data members

102

1 predicate Valid

2 reads this;

3 {

4 g_delayList != null &&

5 g_waitingList != null &&

6 g_suspendList != null &&

7 readyList != null &&

8 parameter != null &&

9 Correspondence1 &&

10 Convention1 &&

11 Correspondence2 &&

12 Convention2 &&

13 runningTask != null &&

14 (runningTask in g_allTasks) &&

15 idleTask != null

16 }

Figure 49: Valid predicate (i.e. Class Invariant)

are initialized, sequences and arrays are in bounds, and ghost sequences are mapped

to arrays.

This predicate declares framing with reads this (Line 2). This allows the data

member access in this predicate and throughout the methods when Valid is pre-

served. g delayList ! = null constrains this value must be initialized (Line 4).

This follows with g waitingList, g suspendList, and readyList are constrained

as initialized values (Lines 5-7). For comparison, g readyList ! = [] is not a con-

straint because the ready list is initialized in the constructor as an empty sequence,

[]. An empty sequence and null are not the same value because [] is an initialized

and empty sequence, but null is an uninitialized value. As a result, Line 7 allows

a valid ready list initialization. parameter is an initialized value (Line 8). Lines

9-12 specifies several correspondences and conventions. These map data members

to the corresponding ghost variable and defines bounds. These predicates are or-

dered specifically as defined values and bounds are referenced later. For example, the

ready list requires a value before readyList.Length ! = 0 is evaluated. Convention1

specifies g readyList and readyList bounds. Correspondence2’s preconditions in-

clude a call to Convention1 because the ready list bounds requires declaration before

103

1 predicate Correspondence1

2 reads this , suspendList , delayList , waitingList;

3 requires g_delayList != null &&

4 g_waitingList != null &&

5 g_suspendList != null;

6 {

7 g_suspendList == suspendList &&

8 g_delayList == delayList &&

9 g_waitingList == waitingList

10 }

Figure 50: A correspondence predicate

1 predicate Convention1

2 reads this , parameter , readyList;

3 requires readyList != null &&

4 parameter != null;

5 {

6 clock >= 0 &&

7 parameter.maxDelay > 0 &&

8 |g_readyList| <= parameter.maxPriorities &&

9 readyList.Length != 0 &&

10 0 <= parameter.maxPriorities < readyList.Length

11 }

Figure 51: A convention predicate

mapping the array values to the specification sequence. runningTask must contain

an initialized value (Line 13). In addition, there is a running task in the all the

scheduler’s tasks (Line 14). idleTask is also an initialized value (Line 15).

Figure 50 shows Correspondence1 which requires several ghost variables contain a

value before specifying the mapping concrete data members to abstract values. These

maps the suspend list’s implementation to the ghost variable (Line 7). This pattern

is also followed for the delay list and waiting list in Lines 8-9. This predicate may

access the data members in this instance (Line 2). This allows Valid to call this

predicate.

Valid contains another predicate, Convention1, which defines the bounds for

clock, parameter and readyList (see Figure 51). These data members are ac-

cessed and referenced by this predicate (Line 2) while readyList and parameter

must contain an initialized value (Lines 3-4) as a precondition. clock is a natural

104

1 predicate Correspondence2

2 reads this , readyList , parameter;

3 requires readyList != null &&

4 parameter != null;

5 requires Convention1;

6 {

7 g_readyList == readyList [0.. parameter.maxPriorities]

8 }

9

10 predicate Convention2

11 reads this;

12

13 {

14 |g_readyList| > topReadyPriority >= 0 &&

15 numberOfTasks >= 0 &&

16 // 0 == initialized , 1 == running , 2 == suspended

17 (runningStatus == 0 || runningStatus == 1 || runningStatus == 2) &&

18 0 <= roundRobinIndex

19 }

Figure 52: Another correspondence and convention predicate

number because a clock tick is not negative when incremented (Line 6). A task’s max-

imum delay is greater than zero (Line 7). g readyList’s size is less than or equal to

the maximum number of priorities (Line 8). Similar bounds are defined in Line 10

where the parameter.maxPriorities’s ranges between 0 and readyList.Length.

The ready list’s length is never zero (Line 9).

Convention1 must come before Correspondence2 in Valid because the ready list’s

bounds must be defined before mapping the implementation to a ghost sequence. This

is a precondition for Correspondence2 which is declared in Figure 52. reads allows

access to the data members, readyList, and parameter (Line 2). These values re-

quire initialization before this predicate call (Line 3-4). The ready list implementation

is mapped to its ghost variable in Line 7. readyList and g readyList have a range

between zero and parameter.maxPriorities to represent the valid priority numbers.

The maximum priority number is defined with parameter.maxPriorities. Notice

the ready list’s bounds were defined in Convention1 because Dafny must know the

readyList and g readyList bounds before it is referenced. This is the reason it is

a precondition (Line 5).

105

Valid specifies which values are initialized and maps implementations to ghost

variables. The class invariant preserves these values after the constructor call. Valid

also preserves data members before and after method calls. The constructor and

method specifications and implementations are described in the next section.

5.4 Method Specifications and Implementations

This section describes the annotated methods and code. Common specification

patterns are applied which includes preconditions, postconditions, class invariant,

and framing annotations. An implementation is included in the method bodies and

it is verified correct based on the specifications. Each body may contain additional

annotations such as lemmas in order to guide the proof. Dafny may “forget” certain

facts during verification since the scheduler specification and code-base is much larger

than the xList data structures. As a result, code fragments may contain additional

annotations from assertions or ghost methods to guide the verification. The annotated

scheduler is explained and it starts with initialization.

5.4.1 Initializing and Running the Scheduler

The scheduler may transform into three valid states: initialized, running, and sus-

pended. Initialization occurs before the run or suspend states. When FreeRTOS

finishes booting, the scheduler is initialized, but it is not running. One or many tasks

are created before the scheduler starts the running state. After the scheduler is in

the initial state, vTaskStartScheduler() will run and execute ready tasks.

In Dafny, object-oriented design enforces the constructor to initialize the scheduler.

The method signature and specification for constructor() contains max priority, de-

lay, and preemption parameters in which it is shown in Figure 53. The constructor

106

1 constructor (maxPrior : int , delay : int , preemption : bool)

2 modifies this;

3 requires maxPrior > 0 && delay > 0;

4 ensures Valid;

5 ensures parameter != null;

6 ensures topReadyPriority == parameter.maxPriorities -1;

7 ensures runningTask != null;

8 ensures numberOfTasks == 0;

9 ensures |g_allTasks| >= 1;

10 ensures runningStatus == 0; // initialized

11 ensures idleTask != null;

Figure 53: Constructor specification

Valid() ∧ (maxPrior > 0) ∧ (delay > 0)∧

(parameter 6= null)∧

(topReadyPriority = parameter .maxPriorities − 1)∧

(runningTask 6= null) ∧ (numberOfTasks = 0)∧

(| g allTasks |≥ 1)∧

(runningStatus = 0) ∧ (idleTask 6= null)

Figure 54: Postcondition for constructor

begins with initializing data members. Parameters maxPrior and delay are con-

strained to any integer greater than zero (Line 3). preemptions is a boolean data

type. It naturally requires no constraint because bool contains either true or false.

The framing annotation, modifies this, allows changing the data members of

this instance (Line 2). The postcondition is shown in Figure 54 and Figure 53 Lines

4-11 show the ensures clauses which may mutate the data members. Valid is the

class invariant which constrains this instance to several states (Line 4). parameter

is ensured as an initialized value because this object holds the max priority, delay,

and preemption enabler (Line 5). topReadyPriority must point to a highest-priority

task (Line 6). This data member allows a context switch to pick the next task to

run. For example, readyList[topReadyPriority] points to an array containing the

next task to run. runningTask is initialized as a value (Line 7). Since creating a task

107

cannot occur before the scheduler initialization, runningTask := idleTask will satisfy

this specification. This is intentional and explained further in the implementation.

The g allTasks sequence contains all tasks in the scheduler and |g allTasks|

>= 1 accounts for the idle task (Line 9). This postcondition is different from stating

idleTask in g allTasks. This is a “looser” specification to allow for minimal conflict

with method calls after constructor is called. runningStatus is set to zero to

represent the scheduler’s initialized state (Line 10). Line 11 states that idleTask

contains an initialized value in which this specification is concluded.

Figure 55 shows the implementation for constructor. Lines 1-4 initialize a parameter

object and assign maxPrior, delay, and preemption. The assignment statements are

redundant, but necessary to help Dafny verify parameter is initialized. This forces

the verifier to keep parameter’s data member values. Otherwise, Dafny may as-

sume random values in place of the data members during verification. In the next

line, topReadyPriority is assigned the ready list’s highest-priority index (Line 9).

readyList is assigned to an array of FIFO queues and its length is parameter.-

maxPriorities-1.

Lines 11-22 initialize the readyList array and assigns the array to a ghost se-

quence g readyList. The loop counter, i, starts at zero and the loop condition runs

until !(i < readyList.Length) (Lines 11-12). while can modify the readyList

array contents with modifies readyList (Line 13). The loop invariant has three

statements (Lines 14-16) in which the bounds are defined and variables are initial-

ized. readyList is an initialized value (Line 14). 0 <= i <= readyList .Length

states the valid bounds of i before, during, and after the loop (Line 15). i == 0

is true before the loop and 0 <= i < readyList .Length is valid during the loop.

0 <= i <= readyList .Length is true after the loop. The last invariant annotation

108

states that every readyList previous element is initialized (Line 16). Without this

statement, the loop will exit and Dafny only knows the last element was initialized.

Lines 18-19 assign readyList[i] to a new FIFOQueue instance and i is incremented.

The readyList elements hold ten items. The number of items is an arbitrary as-

sumption because there is not documentation stating the item number held in each

readyList element. i is incremented by one in each iteration. This is important

for a termination metric (not shown). Dafny guesses2 a condition in which a loop

terminates. The guessed metric is decreases readyList.Length-i where the last

loop iteration will evaluate the termination metric as zero. After the loop terminates,

the g readyList sequence is assigned all of the initialized readyList elements (Line

22). The array is sliced and assigned to the sequence.

idleTask is assigned a value in Line 24. The task name, 10101, is arbitrary, but

the priority states the idleTask is a low-priority task. runningTask is the same

value as idleTask (Line 25). As mentioned earlier, the specification ensures both

tasks are initialized, but idleTask == runningTask may become true. Valid states

runningTask and idleTask are not null and must be true in all object states. Since

tasks are not created before scheduler implementation and the initialization must

conform to Valid’s specification, the running and idle tasks are the same.

numberOfTasks, clock, and roundRobinIndex are initialized (Lines 32, 43-44).

runningStatus is zero which signifies the scheduler’s state is initialized. Lines 29-30

are related to the sequence, g allTasks, which tracks all tasks in the scheduler. The

sequence is set to the default value, [], an empty sequence. runningTask is appended

to g allTasks (Line 30). Lines 34-41 initialize and set the remaining scheduler lists

to an associated ghost variable. This includes delay, waiting, and suspend lists. Each

2Dafny has built-in heuristics guessing a termination metric.

109

1 parameter := new Parameter(maxPrior , delay , preemption);

2 parameter.maxPriorities := maxPrior;

3 parameter.maxDelay := delay;

4 parameter.preemption := preemption;

5 assert 0 < maxPrior;

6

7 topReadyPriority := parameter.maxPriorities -1;

8

9 readyList := new FIFOQueue <T.Task >[parameter.maxPriorities];

10

11 var i := 0;

12 while (i < readyList.Length)

13 modifies readyList;

14 invariant readyList != null;

15 invariant 0 <= i <= readyList.Length;

16 invariant forall j :: 0 <= j < i ==> readyList[j] != null;

17 {

18 readyList[i] := new FIFOQueue <T.Task >(10);

19 i := i+1;

20 }

21

22 g_readyList := readyList [0.. parameter.maxPriorities];

23

24 idleTask := new T.Task (10101 , 0);

25 runningTask := idleTask;

26

27 numberOfTasks := 0;

28

29 g_allTasks := [];

30 g_allTasks := g_allTasks + [runningTask];

31

32 runningStatus := 0;

33

34 delayList := new P.PriorityQueue (10);

35 g_delayList := delayList;

36

37 waitingList := new P.PriorityQueue (10);

38 g_waitingList := waitingList;

39

40 suspendList := new U.UnorderedList (10);

41 g_suspendList := suspendList;

42

43 clock := 0;

44 roundRobinIndex := 0;

45

46 assert Valid;

Figure 55: constructor implementation

110

task list has a abstract and concrete value in which the implementation variable is

assigned to the ghost variable.

assert Valid is used as a lemma (Line 44). Without this lemma, the constructor

does not verify. Dafny “forgets” the class invariant in which the assertion is needed

to remind the verifier Valid holds. One of constructor’s role is to mutate the

object into a valid state. Along with Valid, the postconditions must conform with

the implementation. This allows Valid and other postconditions to evaluate as true

after the constructor call. This assertion statement (i.e. lemma) reminds Dafny that

Valid still holds.

After constructor is called, the scheduler begins running with calling method

startScheduler() shown in Figure 56 (vTaskStartScheduler() in FreeRTOS). The

method runs until the scheduler is suspended. As a precondition, a running task must

exist before the scheduler starts (Line 4). Tick processing is started as shown in the

postcondition (Line 10). Task creation must occur between the calls to constructor

and startScheduler(). This information is found in the FreeRTOS’s API comment:

Starts the real time kernel tick processing. After calling the kernel has

control over which tasks are executed and when. This function does

not return until an executing task calls vTaskEndScheduler (). At least

one task should be created via a call to xTaskCreate () before calling

vTaskStartScheduler (). The idle task is created automatically when the

first application task is created.

The Dafny specification splits this role between methods constructor and

startScheduler(). Some of this is accomplished in the constructor because Valid

must verify as a postcondition. Notice Valid is also a precondition in startScheduler()

111

and must verify (Line 2) because the values have invariant states that must hold.

constructor initializes this valid state. The postcondition is shown in Figure 57 and

it is written as ensures clauses in Lines 5-11 (see Figure 56). idleTask is created in

constructor and not createTask() because the scheduler must be in a valid state

after the constructor call and idleTask ! = null is in Valid. startScheduler()

does initialize the tick processing (Line 10) and change the status to “running”

with runningStatus == 1 (Line 9). In addition, runningTask is appended to

g allTasks in which this sequence represents all scheduler tasks(Line 7). As a result,

the final ensures clause states that the running task exists in the scheduler.

The implementation is presented on Lines 13-17. A running task is created with

a high-priority (Line 14). This satisfies the postcondition in Line 6. Unfortu-

nately, a dummy task is created to satisfy the postcondition because idleTask and

runningTask should not be equal after this method call. runningTask is appended

to g allTasks (Line 17) which this satisfies the postcondition in Line 7. clock is

initialized to zero to begin the tick processing (Line 19). As tasks are running, clock

is incremented and context switching may occur. runningStatus is set to one to

represent the scheduler’s status is now running.

Figure 58 contains the endScheduler() method that mimics vTaskEndScheduler().

Besides Valid (Line 2), there are no preconditions. As a result, the scheduler may

stop running at anytime. The clock ticks are halted and clock is set to zero (Line 4).

This is satisfied by clock := 0 in the method body (Line 9). The scheduler status is

set to initialized rather than running (Line 5). runningStatus := 0 on Line 10 con-

forms to this postcondition. Lines 11 and 12 clears the tasks, but the running process

is kept. Tasks are cleared, but the scheduler goes into “running a single process” (see

API comment). This is represented as g allTasks == 1 to show a single process

112

1 method startScheduler ()

2 requires Valid;

3 modifies this;

4 requires runningTask != null; // requires at least one task

5 ensures Valid;

6 ensures runningTask != idleTask;

7 ensures g_allTasks == old(g_allTasks) + [runningTask];

8 ensures old(numberOfTasks) == numberOfTasks;

9 ensures runningStatus == 1; // running

10 ensures clock == 0;

11 ensures parameter != null;

12 {

13 runningTask := new T.Task (1111, 4);

14 g_allTasks := g_allTasks + [runningTask];

15 clock := 0;

16 runningStatus := 1;

17 roundRobinIndex := 0;

18 }

Figure 56: startScheduler() specificity and implementation

Valid() ∧ (runningTask 6= null)∧

(g allTasks = old(g allTasks) + [runningTask])∧

(old(numberOfTasks) = numberOfTasks)∧

(runningStatus = 1) ∧ (clock = 0) ∧ (parameter 6= null)

(5.1)

Figure 57: startScheduler() postcondition

1 method endScheduler ()

2 requires Valid;

3 modifies this;

4 ensures clock == 0;

5 ensures runningStatus == 0;

6 ensures |g_allTasks| == 1;

7 ensures Valid;

8 {

9 clock := 0;

10 runningStatus := 0;

11 g_allTasks := [];

12 g_allTasks := g_allTasks + [runningTask];

13 }

Figure 58: endScheduler() specification and implementation

113

can still run.

Scheduler initialization and suspension were covered in this subsection. Although

the scheduler may suspend indefinitely, tasks must exist in the scheduler before it

starts running. Task creation is needed to start the scheduler.

5.4.2 Creating and Deleting Tasks

This section describes createTask() and deleteTask() in which the methods pro-

vide creating and deleting task operations. In addition to task creation, createTask()

inserts tasks into the ready list and performs a context switch if a new task is the

highest priority item. deleteTask() removes the task from the scheduler. Figure 59

shows the specification and implementation of createTask() while Figure 62 dis-

plays deleteTask(). Both methods are annotated with lemmas also presented in

Figures 61 and 63.

createTask()’s method signature accepts integers name and priority and returns

task. Unfortunately, it has a lengthy specification shown in Lines 2-24. The usual

Valid predicate and modifies this is declared (Lines 2-3). Calls to this method

preserve the class invariant with Valid and modifies this allows changing the data

members. Lines 4-5 requires name and priority are in bounds. A new task is inserted

into readyList[priority] in which 0 <= priority < |g readyList is needed

before insertion. A valid name is anything zero or greater based Task’s specification.

Another framing clause, modifies readyList[priority], allows modifying the list

at index priority (Line 6). This modifies is declared after the priority bounds

precondition (see Line 4) to allow modifies readyList[priority] is in bounds.

114

The postcondition is shown in Figure 60 and described as ensures clauses in Lines

7-23 (see Figure 59). The first statement Valid declares bounds and states of this

object (Line 7). Lines 9-13 specify the use-case where a context switch occurs. If

the running task’s priority (i.e. runningTask.key) is less than task’s priority, a

context switch occurs. In case runningTask was not initialized, the running task is

the created task (Lines 11-12). Lines 14-24 describe events that happen regardless

of a context switch. task is initialized (Line 14). Lines 15-17 ensure the created

task objected is placed in the ready list. priority is between zero and the ready

list’s length (Line 15). By stating g readyList[priority] ! = null , the ready list

is initialized at priority and the in operator ensures task is placed in the ready

list (line 16). Line 17 ensures priority is the same as task.key. numberOfTasks

increments by one because a new task is created (Line 18) and task is appended

to g allTasks (i.e. the sequence of all tasks) (Line 19). Lines 21-23 ensures task

is appended to the ready list. priority is between zero and the old g readyList

length (Line 21) in which these ready list values are initialized (Line 22). After the

bounds-checking and initialization annotations, task is placed in the ready list by

appending old(g readyList[priority].fifo) sequence and task object.

Lines 25-35 contains the implementation body. A new task is created (Line 25).

When the method returns, task will contain the initialized value. The new task is

followed by createTaskLemma() which (specified in Figure 61) reminds Dafny that

priority is in bounds and inserting a new task into the ready list is valid. This

lemma is needed because verifier forgets createTasks()’s preconditions in which

allow enqueue()’s contracts are satisfied. createTaskLemma() reminds Dafny of

readyList[priority].enqueue()’s preconditions. As a result, the enqueue() method

call verifies in Line 28. The task is inserted into the ready list at priority. This

satisfies the postconditions in Lines 15-17 and 21-23 in which task is inserted into

115

the queue. numberOfTasks is incremented (Line 30) which follows the postcondition

on Line 18. task is appended to the g allTasks (Line 19) which ensures Line 19 is

true. The branching statement where runningTask.key < priority allows a context

switch to occur (Lines 33-35). The corresponding postconditions are Lines 9-12.

1 method createTask(name : int , priority : int) returns (task : T.Task)

2 requires Valid;

3 modifies this;

4 requires 0 <= priority < |g_readyList |;

5 requires 0 <= name;

6 modifies readyList[priority];

7 ensures Valid;

8 // is context switch ==>

9 ensures old(runningTask.key) < priority ==>

10 runningTask == task;

11 ensures old(runningTask) == null ==>

12 runningTask == task;

13 // both

14 ensures task != null;

15 ensures 0 <= priority <= topReadyPriority < |g_readyList| ==>

16 g_readyList[priority] != null && task in g_readyList[priority].fifo &&

17 priority == task.key;

18 ensures numberOfTasks == old(numberOfTasks)+1;

19 ensures g_allTasks == old(g_allTasks) + [task];

20

21 ensures 0 <= priority <= topReadyPriority < old(| g_readyList |) &&

22 g_readyList[priority] != null && old(g_readyList[priority]) != null ==>

23 g_readyList[priority].fifo == old(g_readyList[priority].fifo) + [task];

24 {

25 task := new T.Task(name , priority);

26 createTaskLemma(priority);

27

28 readyList[priority]. enqueue(task);

29

30 numberOfTasks := numberOfTasks + 1;

31 g_allTasks := g_allTasks + [task];

32

33 if (runningTask.key < priority) {

34 runningTask := task;

35 }

36 }

Figure 59: createTask() specification and implementation

Figure 62 shows deleteTask() which removes the task from the scheduler. The

method signature takes task as an input and returns a ghost value, indexOfItem (Line

1). Generally, the preconditions require task is in bounds and the lists are valid while

the postconditions ensure task is removed from all the lists. As usual, Valid requires

the class invariant holds and modifies allows the object to mutate (Line 11). task is

initialized and located between the ranges of zero and g readyList (Lines 4-5). After

116

Valid() ∧ (old(runningTask .key) < priority ⇒ runningTask = task)∧

(old(runningTask) = null ⇒ runningTask = task)∧

(task 6= null)∧

(0 ≤ priority ≤ topReadyPriority <| g readyList | ⇒

g readyList [priority] 6= null∧

task ∈ g readyList [priority].fifo ∧ priority = task .key)∧

(numberOfTasks = old(numberOfTasks) + 1)∧

(g allTasks = old(g allTasks) + [task])∧

(0 ≤ priority ≤ topReadyPriority < old(| g readyList |)∧

g readyList [priority] 6= null ∧ old(g readyList [priority]) 6= null ⇒

g readyList [priority].fifo == old(g readyList [priority].fifo) + [task])

Figure 60: createTask() postcondition

1 ghost method {: axiom} createTaskLemma(priority : int)

2 requires Valid;

3 requires 0 <= priority < |g_readyList |;

4 ensures Valid;

5 ensures g_readyList[priority] != null;

6 ensures 0 <= |g_readyList[priority].fifo| < g_readyList[priority]. maxSize;

7 ensures g_readyList[priority].Valid;

Figure 61: createTask() lemma

117

1 method deleteTask(task : T.Task) returns (ghost indexOfItem : int)

2 requires Valid;

3 requires task != null;

4 requires 0 <= task.key < |g_readyList |;

5 requires g_readyList[task.key] != null;

6 requires g_readyList[task.key].Valid;

7 requires g_waitingList.Valid;

8 requires g_delayList.Valid;

9 requires suspendList != null && suspendList.Valid;

10

11 modifies this; suspendList , readyList[task.key], waitingList , delayList;

12

13 ensures Valid;

14 ensures 0 <= indexOfItem < old(| g_allTasks |) ==>

15 g_allTasks == removeAt(old(g_allTasks), indexOfItem);

16 ensures 0 <= task.key < |g_readyList| ==>

17 g_readyList[task.key] != null && (task !in g_readyList[task.key].fifo);

18 ensures task in old(g_waitingList.pq) ==>

19 task !in g_waitingList.pq;

20 ensures task in old(g_suspendList.unorderedList) ==>

21 task !in g_suspendList.unorderedList;

22 ensures task in old(g_delayList.pq) ==> task !in g_delayList.pq;

23 ensures numberOfTasks == old(numberOfTasks)-1;

24 ensures |g_allTasks| == old(| g_allTasks |)-1;

25 ensures task !in g_allTasks;

26 {

27 indexOfItem := getIndexOfItem(task);

28 removeTaskLemma(task , indexOfItem);

29

30 deleteTaskInvariant(task);

31 readyList[task.key]. remove(task);

32 g_readyList := readyList [0.. parameter.maxPriorities];

33

34 deleteTaskInvariant(task);

35 waitingList.remove(task);

36 g_waitingList := waitingList;

37

38 deleteTaskInvariant(task);

39 suspendList.remove(task);

40 g_suspendList := suspendList;

41

42 deleteTaskInvariant(task);

43 delayList.remove(task);

44 g_delayList := delayList;

45

46 numberOfTasks := numberOfTasks - 1;

47 deleteTaskInvariant(task);

48 }

Figure 62: deleteTask() implementation and specification

118

1 ghost method {: axiom} getIndexOfItem () returns (indexOfItem : int)

2 requires Valid;

3 ensures Valid;

4 ensures 0 <= indexOfItem < |g_allTasks |;

5 ensures exists k :: 0 <= k < |g_allTasks| &&

6 k == indexOfItem ==> g_allTasks[k] == task;

7

8 ghost method {: axiom} deleteTaskInvariant(task : T.Task)

9 // requires Valid;

10 requires task != null;

11 requires 0 <= task.key < |g_readyList |;

12 requires g_readyList[task.key] != null;

13 ensures Valid;

14 ensures g_readyList[task.key].Valid;

15 ensures g_delayList.Valid;

16 ensures g_suspendList.Valid;

17 ensures g_waitingList.Valid;

18

19 ghost method removeTaskLemma(task : T.Task , indexOfItem : int)

20 requires Valid;

21 modifies this;

22 requires 0 <= indexOfItem < |g_allTasks |;

23 requires task != null;

24 ensures Valid;

25 ensures 0 <= indexOfItem < old(| g_allTasks |) ==>

26 g_allTasks == removeAt(old(g_allTasks), indexOfItem);

27 ensures task !in g_allTasks;

28 {

29 assert Valid;

30 g_allTasks := removeAt(g_allTasks , indexOfItem);

31 assume Valid;

32 assume task !in g_allTasks;

33 }

34

35 /*

36 * not part of freertos api. remove task at an index for a seq and return new sequence

37 */

38 function method removeAt(s: seq <T.Task >, index: int): seq <T.Task >

39 requires 0 <= index < |s|;

40 {

41 s[.. index] + s[index +1..]

42 }

Figure 63: deleteTask() lemmas and a function method

119

Valid()∧

(0 ≤ indexOfItem < old(| g allTasks |)⇒

g allTasks = removeAt(old(g allTasks), indexOfItem))∧

(0 ≤ task .key <| g readyList |⇒

g readyList [task .key] 6= null ∧ task 6∈ g readyList [task .key].fifo)∧

(task ∈ old(g waitingList .pq)⇒

task ∈ g waitingList .pq)∧

(task ∈ old(g suspendList .unorderedList)⇒

task ∈ g suspendList .unorderedList)∧

(task ∈ old(g delayList .pq)⇒ task 6∈ g delayTask .pq)∧

(| g allTasks |= old(| g allTasks |)− 1) ∧ (task 6∈ g allTasks)

Figure 64: deleteTask() postcondition

task’s bounds are defined, the g readyList[task.key] is initialized (Line 6) and

the ready list located at task.key may change values (Line 11). The object elements

in readyList are initialized in constructor in which deleteTask() requires that

initialization at task.key and readyList[task.key] may change values. Lines 7-

8 require the ready list is valid at task.key and the waiting list is valid. Also,

waitingList’s values may change (Line 7,11). g delayList requires validity and its

associated concrete variable may mutate (Lines 8,11). Line 9 state the suspend list

is initialized, valid, and accessible.

The postconditions are shown in Figure 64 and declared as ensures clauses in Fig-

ure 62. Line 13-25 contains the postconditions which starts with Valid ensuring the

class invariant holds (Line 16). Lines 17-18 remove the task from the g allTasks.

indexOfItem is between zero and old(g allTasks) length while removeAt() re-

moves the task. task is removed from the ready, waiting, suspend, and delay lists

(Lines 19-24). As long as task is removed from the lists, this specification holds.

120

numberOfTasks and g allTasks is decremented to ensure a task is removed (Lines

26-27). Additionally, task does not exist in g allTasks (Line 28).

Lines 30-50 contain deleteTask()’s implementation with annotations. getIndexOfItem()

retrieves task’s index in g allTasks in which it is a ghost method because indexOfItem

is only assigned from ghost constructs. removeTaskLemma() removes task at the

indexOfItem index (Line 31). Lines 33-35 allow removing task from the ready list.

The deleteTaskInvariantTask() lemma allows a valid ready list removal (Line 33-

34). Although deleteTask() specifies preconditions allowing a valid remove() call,

Dafny needs a reminder this call is valid. This call is valid because nothing has vio-

lated the method preconditions. The task removal from the ready list is shown at Line

34. The updated ready list is assigned to its associated ghost sequence, g readyList

(Line 35). The same pattern is followed through Lines 37-47 for waiting, suspend,

and delay lists. numberOfTasks is decremented (Line 49) and does not violate any

preconditions, but the deleteTaskInvariant() is called again to ensure the method

postconditions verify (line 50).

This subsection covered creating and deleting task operations. createTask() adds

a new task to the scheduler in which a context switch might occur. deleteTask() re-

moves a task indefinitely. The next section describes another task operation: delaying

tasks.

5.4.3 Delaying a Task

This section describes methods which delay tasks. This includes two public

methods taskDelay() and taskDelayUntil() along with a private method, sleep().

taskDelay() delays a task for a duration, but taskDelayUntil() delays a task rela-

tive to the clock tick. sleep() pretends to do nothing for several clock ticks because

121

Dafny contains no native sleep() method. Two lemma are also described.

Figure 66 shows taskDelay()’s specification and implementation. In addition, this

method’s precondition is shown in Figure 65. The method signature accepts task and

a time period (Line 1). The class invariant must hold (Line 2). period contain an inte-

ger greater than zero (Line 3). modifies task states the delayed task’s data members

may change (Line 4). This is also true for delayList, readyList, and this (lines 5-

7). task and parameter are initialized values (Lines 8-11). Line 12 are preconditions

for inserting a task in the delay list. As a result, the call to delayList.enqueue() is

valid. task.key is bounded between zero and g readyList’s length and the ready

list is initialized at the task.key element (Line 13). Line 14 enables modifying

g readyList[task.key]. The final precondition requires g readyList[task.key].-

Valid to evaluate as true (Line 15).

The taskDelay() postconditions start with ensuring the class invariant, Valid,

holds (Line 16). The ensures clock == period constraint simulates the task delay

lasts until this is true (Line 17). g delayList is initialized and the task is in the

delay list (Line 18). Lines 19-20 ensures task.key is constrained in bounds and task

is removed from the ready list.

Lines 22-27 contains the implementation. delayList.enqueue() inserts task into

the delay list (Line 22). This call is valid from the Line 12’s precondition, Valid (Line

2), and modifies this (Line 7). The delay list ghost variable, g delayList, is up-

dated with delayList because it was modified (Line 23). removeLemma() reminds

Dafny the readyList[task.key].remove() is a valid call (Lines 24-25). This lemma

ensures g readyList[task.key] is valid (see Figure 67 because the preconditions

are not violated. task is removed from the ready list (Line 25). The task simu-

122

Valid()∧

(period ≥ 0) ∧ (task 6= null) ∧ (task .Valid())∧

(parameter 6= null) ∧ (parameter .Valid())∧

(g delayList .Valid()) ∧ (g delayList .pq |< g delayList .maxSize)∧

(0 ≤ task .key <| g readyList |) ∧ (g readyList [task .key] 6= null)∧

(g readyList [task .key].Valid)

Figure 65: taskDelay() and taskDelayUntil() precondition

lates sleeping for a time period (Line 26). removalLemma2() ensures delayTask()’s

postconditions are met on Line 27.

Figure 68 shows the taskDelayUntil() specification and implementation. The

method signature contains inputs task, previousWakeTime, and period in which

task is initialized and previousWakeTine and period are greater than zero (Lines

1,3,8). Lines 2-16 are the same preconditions as taskDelay() (expect Line 3).

The postconditions are the same as taskDelay() with exception to Line 18. clock

== previousWakeTime + period constrains the task is delayed until this is true.

Further more, the implementation contains one different call to sleep() (the rest of

the implementation is the same). In taskDelay(), sleep(0, period) will delay a

task for a time period, but taskDelayUntil() delays the task until a specified time

where previousWakeTime + period == clock.

This subsection covered delaying tasks. The two delay operations different in which

delayTask() makes a task sleep for a duration and delayTaskUntil() sleeps given

a starting time and clock tick deadline.

123

1 method taskDelay(task : T.Task , period : int)

2 requires Valid;

3 requires period >= 0;

4 modifies task;

5 modifies delayList;

6 modifies readyList;

7 modifies this;

8 requires task != null;

9 requires task.Valid;

10 requires parameter != null;

11 requires parameter.Valid;

12 requires g_delayList.Valid && |g_delayList.pq| < g_delayList.maxSize;

13 requires 0 <= task.key < |g_readyList| && g_readyList[task.key] != null;

14 modifies readyList[task.key];

15 requires g_readyList[task.key].Valid;

16 ensures Valid;

17 ensures clock == period;

18 ensures g_delayList != null && task in g_delayList.pq;

19 ensures 0 <= task.key < |g_readyList| &&

20 g_readyList[task.key] != null && task !in g_readyList[task.key].fifo;

21 {

22 var index := delayList.enqueue(task);

23 g_delayList := delayList;

24 removalLemma(task);

25 readyList[task.key]. remove(task);

26 sleep(0, period);

27 removalLemma2(task);

28 }

Figure 66: taskDelay() specification and implementation

1 /* private */

2 method sleep(previousWakeTime : int , period : int)

3 requires Valid;

4 requires previousWakeTime >= 0 && period >= 0;

5 modifies this;

6 ensures Valid;

7 ensures clock == previousWakeTime + period;

8 {

9 clock := previousWakeTime + period;

10 }

1 ghost method {: axiom} removalLemma(task : T.Task)

2 requires task != null &&

3 readyList != null &&

4 parameter != null &&

5 0 <= task.key < |g_readyList| &&

6 g_readyList[task.key] != null;

7 ensures g_readyList[task.key].Valid;

8 ensures parameter == old(parameter);

9

10 ghost method {: axiom} removalLemma2(task : T.Task)

11 ensures Valid;

12 ensures task != null &&

13 readyList != null &&

14 parameter != null &&

15 0 <= task.key < |g_readyList| &&

16 readyList[task.key] != null;

17 ensures 0 <= task.key < |g_readyList| && g_readyList[task.key] != null &&

18 task !in g_readyList[task.key].fifo;

19 ensures task in g_delayList.pq;

Figure 67: Lemmas called in delayTask() and delayTaskUntil

124

1 method taskDelayUntil(task : T.Task , previousWakeTime : int , period : int)

2 requires Valid;

3 requires previousWakeTime >= 0 && period >= 0;

4 modifies task;

5 modifies delayList;

6 modifies readyList;

7 modifies this;

8 requires task != null;

9 requires task.Valid;

10 requires parameter != null;

11 requires parameter.Valid;

12 requires g_delayList != null;

13 requires g_delayList.Valid && |g_delayList.pq| < g_delayList.maxSize;

14 requires 0 <= task.key < |g_readyList| && g_readyList[task.key] != null;

15 modifies readyList[task.key];

16 requires g_readyList[task.key].Valid;

17 ensures Valid;

18 ensures clock == previousWakeTime + period;

19 ensures task in g_delayList.pq;

20 ensures 0 <= task.key < |g_readyList| && g_readyList[task.key] != null ==>

21 task !in g_readyList[task.key].fifo;

22 ensures g_delayList != null;

23 {

24 var index := delayList.enqueue(task);

25 g_delayList := delayList;

26 removalLemma(task);

27 readyList[task.key]. remove(task);

28 sleep(previousWakeTime , period);

29 removalLemma2(task);

30 }

Figure 68: taskDelayUntil() specification and implementation

5.4.4 Incrementing the Tick

Clock ticks are important for scheduling tasks in FreeRTOS. This tick is counted in

each port and it is incremented in every cycle. After each clock cycle, the scheduler

checks for blocked (i.e. waiting) tasks that should change to ready. incrementTask()

provides this functionality. The FreeRTOS API documentation describes incrementTask()

in a similar fashion:

Called from the real time kernel tick (either preemptive or cooperative),

this increments the tick count and checks if any tasks that are blocked

for a finite period required removing from a blocked list and placing on a

ready list.

125

Valid()∧

(g waitingList 6= null) ∧ (g waitingList .pq 6= [])∧

(∀ i : int | 0 ≤ i <| g waitingList .pq |⇒

g waitingList .pq [i] 6= null ∧ g waitingList .pq [i].key = 0∧

g waitingList .pq [i] 6∈ g waitingList .pq∧

g waitingList .pq [i] ∈ g readyList [parameter .maxPriorities − 1].fifo)∧

(clock = old(clock) + 1) ∧ (parameter = old(parameter))

Figure 69: incrementTick() and checkBlockedTasks() postcondition

This method must fulfill two roles. The clock tick increments by one for every

call and blocked tasks are checked and may become ready (i.e. the tasks are in-

serted into the ready list). Figure 70 shows incrementTask() and its precondition

is shown in Figure 69. Starting with the specification, the class invariant is pre-

served with Valid (Lines 2,7). modifies this allows incrementing clock since it

changes in this method. parameter must contain a value (Line 4) and also waiting

list must contain a value (Line 5). The waiting list is preserved as an initialized

value in Line 8. Lines 9-12 contain a rather messy-looking universal quantifier. This

quantifier states that any task finished waiting is removed from the wait list and in-

serted into the ready list. The messy parts include checking i is in bounds defined

in 0 <= i < |g waitingList.pq|. pq is the sequence modeling the waiting list and

|g waitingList.pq| is the length. g waitingList.pq[i] ! = null states every

task, g waitingList.pq[i], is initialized. Any task where task.key == 0 is fin-

ished waiting (Line 10). Lines 11 and 12 state the finished and previously waiting

task is removed from the wait list and inserted into the ready list. Continuing to the

remaining post conditions, clock is incremented to track the clock ticks (Line 13).

The value for parameter is preserved (Line 14), concluding the method specification.

126

1 method incrementTick ()

2 requires Valid;

3 modifies this;

4 requires parameter != null;

5 requires g_waitingList != null && g_waitingList.pq != [];

6

7 ensures Valid;

8 ensures g_waitingList != null && g_waitingList.pq != [];

9 ensures forall i :: 0 <= i < |g_waitingList.pq| ==>

10 g_waitingList.pq[i] != null && g_waitingList.pq[i].key == 0 &&

11 g_waitingList.pq[i] !in g_waitingList.pq &&

12 g_waitingList.pq[i] in g_readyList[parameter.maxPriorities -1]. fifo;

13 ensures clock == old(clock)+1;

14 ensures parameter == old(parameter);

15 {

16 clock := clock + 1;

17 checkBlockTasks ();

18 }

Figure 70: incrementTick() specification and implementation

1 /* private */

2 method checkBlockTasks ()

3 requires Valid;

4 modifies this;

5 ensures Valid;

6 ensures g_waitingList != null;

7 ensures g_waitingList.pq != [];

8 ensures forall i :: 0 <= i < |g_waitingList.pq| ==>

9 g_waitingList.pq[i] != null && g_waitingList.pq[i].key == 0 &&

10 g_waitingList.pq[i] !in g_waitingList.pq &&

11 g_waitingList.pq[i] in g_readyList[parameter.maxPriorities -1]. fifo;

12 ensures clock == old(clock);

13 ensures parameter == old(parameter);

Figure 71: Private method checkBlockTasks()

127

Valid()∧

(task 6= null) ∧ (0 ≤ task .getKey() <| g readyList |)∧

(0 ≤ newPriority <| g readyList |)∧

(g readyList [task .getKey()] 6= null ∧ g readyList [task .getKey()].Valid())∧

(g readyList [newPriority] 6= null ∧ g readyList [newPriority].Valid())∧

(| g readyList [newPriority].fifo |< g readyList [newPriority].maxSize)∧

(task ∈ g allTasks)

Figure 72: updatePriority() precondition

The incrementTick() implementation increments clock by one (Line 16) and

checks for completed waiting tasks (Line 17). checkBlockTasks() is a private method

which checks for completed waiting tasks and transfers these tasks to the ready list

(see Figure 71). This method contains the same postcondition (Lines 8-11) as in

incrementsTask() (Lines 9-12, Figure 70). This is intentional. An implementation

for checkBlockTasks() would move all completed waiting tasks to the ready list.

This operation is performed every clock tick by checking if a task’s priority is zero.

The next section describes updating task priority.

5.4.5 Updating a Task’s Priority

A task’s priority is changed eventually to either a higher or lower priority.

When a task gets a lower priority, the task remains in the ready list. If a task gets

a higher priority, the task remains in the ready list or a context switch occurs. A

switch happens if the task becomes the highest priority task. updatePriority()

must follow this behavior.

updatePriority()’s behavior is shown in Figure 73. In addition, this methods

precondition is displayed in Figure 72. The method signature accepts task and

128

1 method updatePriority(task : T.Task , newPriority : int)

2 requires Valid;

3 modifies this;

4 modifies task;

5 modifies readyList;

6 requires task != null;

7 requires 0 <= task.getKey () < |g_readyList |;

8 requires 0 <= newPriority < |g_readyList |;

9 requires g_readyList[task.getKey ()] != null &&

10 g_readyList[task.getKey ()]. Valid;

11 modifies readyList[task.getKey ()];

12 requires g_readyList[newPriority] != null &&

13 g_readyList[newPriority]. Valid;

14 modifies readyList[newPriority], readyList[newPriority].q;

15 requires |g_readyList[newPriority].fifo| < g_readyList[newPriority]. maxSize;

16 requires task in g_allTasks;

17 ensures Valid;

18 ensures task in g_allTasks;

19 ensures task.key == newPriority;

20 ensures runningTask != null;

21 // context switch

22 ensures topReadyPriority < newPriority ==>

23 runningTask == task;

24 {

25 readyList[task.getKey ()]. remove(task);

26 updatePriorityLemma(task , newPriority);

27 task.key := newPriority;

28

29 readyList[newPriority]. enqueue(task);

30

31 if (topReadyPriority < newPriority) {

32 runningTask := task;

33 g_allTasks := g_allTasks + [runningTask];

34 }

35 }

Figure 73: updatePriority() implementation and specification

129

newPriority as inputs (Line 1). Postconditions and framing clauses are displayed

between Lines 2-16. The class invariant is preserved by Valid as a precondition

and postcondition (Line 2, 17). The framing annotations modifying this, task, and

readyList may change in this method (Lines 3-5). modifies allows task’s priority

to change and move to a different ready list location. modifies this is annotated

because runningTask might change. The input parameter, task, is an initialized

value by stating it is not null (Line 6) . task and newPriority are between zero

and the ready list’s length, g readyList (Lines 7-8). Lines 9-14 states the ready list

is initialized and modified at specific elements. These annotations allow reading and

writing to elements in the ready list. g readyList[task.getKey()] is an initialized

value (Line 9), but it must contain a valid state (Line 10). Along with modifies

readyList[task.getKey()], these annotations allow reading and writing to ready

list elements at index task.getKey(). The same pattern is followed in Lines 12-14

to allow reading and writing to the ready list at element newPriority. Line 15 is

precondition allowing a valid call to readyList[newPriority].enqueue() because

it is also a precondition in enqueue(). The final precondition states task is located

in the scheduler (Line 16), but this is preserved because task in g allTasks is a

postcondition (Line 18). After this method call, task’s priority is a new priority (Line

19). runningTask is an initialized value (Line 20). The running task either remains

the same or switched with a higher priority task. A context switch scenario occurs

if newPriority is greater than the running task’s priority (i.e. topReadyPriority)

(Line 22-23). This context switch specification concludes the method specification.

The implementation is shown on Lines 25-34 along with additional ghost annota-

tions. readyList[task.getKey()].remove(task) removes the task from the ready

list at the task.getKey() index (Line 25). This call is valid due to the preconditions

and framing annotations that allow ready list access. updatePriorityLemma() allows

130

1 ghost method {: axiom} updatePriorityLemma(taskIn : T.Task , newPriority : int)

2 requires Valid;

3 modifies this;

4 requires 0 <= newPriority < |g_readyList |;

5 requires g_readyList[newPriority] != null;

6 requires taskIn != null;

7 requires taskIn in g_allTasks;

8 ensures Valid;

9 ensures |g_readyList[newPriority].fifo| < g_readyList[newPriority]. maxSize;

10 ensures taskIn in g_allTasks;

Figure 74: Lemma called in updatePriority()

the preconditions to hold after the call to remove() (Line 26). Dafny “forgets” the

preconditions after the remove() call. task.key is assigned to a new priority (Line

29). A context switch might occur between the branching statement (Lines 31-34). If

the running task’s priority (i.e. topReadyPriority) is less than newPriority, task

is running (Line 32). A ghost annotation enforces the modified task is in the scheduler

(Line 33).

This subsection described changing a task’s priority. Other operations, such as

suspending tasks, may change a task’s state. The next section covers task suspension.

5.4.6 Suspending Tasks

A task may change to a suspended state where it receives no processor time.

This task may become suspended indefinitely or until the task is resumed. Therefore,

suspended tasks might not resume. Figure 77 and 78 shows the suspendTask()

method and lemmas needed for suspendTask().

The method signature contains an input parameter, task. The specification is

included through Lines 2-19. The class invariant, Valid, is preserved (Lines 2,14).

this and suspendList are modified in this method (Lines 3-4). The precondition

is also shown in Figure 75, but it is described in Figure 77 (Lines 5-13). The task

parameter is initialized and valid (Line 5). The suspend list requires validity (Line 6)

131

and |g suspendList.unorderedList| < g suspendList.maxSize states that the

suspend list is not full (Line 7). Both preconditions allow a valid call by fulfilling the

suspendList.insert()’s preconditions. Additionally, any call to an object’s Valid

predicate allows reading the data members. Lines 8-9 allow writing and reading to

the waiting list with modifies waitingList and requires g waitingList.Valid.

The same concept is applied to the delay list in Lines 10-11. The task’s priority

bounds are between zero and ready list’s length (Line 12). Writes are allowed through

modifies readyList[task.key] (Line 13).

The postconditions ensure task is inserted into the suspend list and removed from

other lists (Lines 15-19). It is also shown in Figure 76. The suspend list contains

task (Line 15). The task is removed from waiting and delay lists (Line 16-17). task’s

bounds are between the range of zero and ready list’s length (Line 18) and removed

from the ready list at the task.key index (Line 19). g readyList[task.key] cannot

equal null in order to state the task is removed from the ready list (see first part of

Line 19).

Lines 21-36 contain suspendTask()’s implementation along with ghost annota-

tions. task is inserted into suspendList (Line 21). The update suspendList

is assigned to its associated ghost variable, g suspendList (Line 22). Method

taskSuspendInvariant() is called for the first time (Line 23). This reminds Dafny

the suspendTask()’s preconditions continue to hold. task is removed from the wait-

ing list and the ghost value is updated (Lines 25-26). Again, taskSuspendInvariant()

is called as a reminder to Dafny. The delay list contains similar code in which the

task is removed and ghost variable is updated (Lines 29-31). Along with waiting

and delay lists, the ready list follows the same pattern in Lines 33-35. task is no

longer in readyList[task.key] (Line 33) and the ghost ready list is updated (Line

132

Valid()∧

(task 6= null) ∧ (task .Valid()) ∧ (g suspendList .Valid())∧

(| g suspendList .unorderedList |< g suspendList .maxSize)∧

(g waitingList .Valid) ∧ (g delayList .Valid)∧

(0 ≤ task .key <| g readyList |)

Figure 75: suspendTask() precondition

Valid() ∧ (task ∈ g allTasks) ∧ (task .key = newPriority)∧

(runningTask 6= null)∧

(topReadyPriority < newPriority ⇒

runningTask = task)

Figure 76: suspendTask() postcondition

34). Two more lemmas are called which includes taskSuspendInvariant() and

taskSuspendRemovalLemma(). The first lemma reminds Dafny the preconditions

still hold. The second lemma tells Dafny task is removed from delay and waiting

lists; also, the suspend list contains task (see Figure 78). The updated ready list was

not annotated in a lemma because Dafny can infer the ready list was updated and it

does not need restating in a lemma.

5.4.7 Resuming a Task

Not all tasks are suspended indefinitely; some might continue into a resumed

state. A tasks may resume with calling resumeTask(), but resuming a task requires

the suspend list contains it. In this case, the task is removed from the suspend list

and inserted into the ready list. Figure 81.

133

1 method suspendTask(task : T.Task)

2 requires Valid;

3 modifies this;

4 modifies suspendList;

5 requires task != null && task.Valid;

6 requires g_suspendList.Valid;

7 requires |g_suspendList.unorderedList| < g_suspendList.maxSize;

8 modifies waitingList;

9 requires g_waitingList.Valid;

10 modifies delayList;

11 requires g_delayList.Valid;

12 requires 0 <= task.key < |g_readyList |;

13 modifies readyList[task.key];

14 ensures Valid;

15 ensures task in g_suspendList.unorderedList;

16 ensures task !in g_waitingList.pq;

17 ensures task !in g_delayList.pq;

18 ensures 0 <= task.key < |g_readyList |;

19 ensures g_readyList[task.key] != null && task !in g_readyList[task.key].fifo;

20 {

21 suspendList.insert(task);

22 g_suspendList := suspendList;

23 taskSuspendInvariant(task);

24

25 waitingList.remove(task);

26 g_waitingList := waitingList;

27 taskSuspendInvariant(task);

28

29 delayList.remove(task);

30 g_delayList := delayList;

31 taskSuspendInvariant(task);

32

33 readyList[task.key]. remove(task);

34 g_readyList := readyList [0.. parameter.maxPriorities];

35 taskSuspendInvariant(task);

36 taskSuspendRemovalLemma(task);

37 }

Figure 77: suspendTask() specification and implementation

1 ghost method {: axiom} taskSuspendInvariant(task : T.Task)

2 requires Valid;

3 requires task != null;

4 ensures Valid;

5 ensures g_waitingList.Valid;

6 ensures g_delayList.Valid;

7 ensures task != null;

8 ensures 0 <= task.key < readyList.Length;

9 ensures 0 <= task.key < |g_readyList |;

10 ensures g_readyList[task.key] != null;

11 ensures g_readyList[task.key].Valid;

12

13 ghost method {: axiom} taskSuspendRemovalLemma(task : T.Task)

14 requires Valid;

15 requires task != null;

16 ensures Valid;

17 ensures task in g_suspendList.unorderedList;

18 ensures task !in g_waitingList.pq;

19 ensures task !in g_delayList.pq;

Figure 78: suspendTask() specification and implementation

134

Figures 79 and 80 shows the precondition and postcondition for resumeTask().

Figure 81. Lines 2-18 contain the method specification. Two common specifications

are shown. Valid, the class invariant, is maintained (Line 2, 14) and modifies

this allows write access to this object’s data members. There are several simi-

lar preconditions from suspendTask(). task is initialized and valid (Line 4) and

also, it is preserved in a postcondition (Line 16). The task ranges between zero

and ready list’s length (Line 5). Lines 6-8 are required preconditions for calling

readyList[task.key].enqueue() where ready list is initialized, valid, and not full.

The suspend list contains task before the method call (Line 9). modifies suspendList

allows write access while a valid suspend list permits reading data members (Lines

10-11). readyList[task.key] may change values (Line 12). The postconditions en-

sure task is removed from the suspended list (Line 14), but the ready list contains

the task (Lines 17-18). Additionally, suspend list is an initialized value as the final

method annotation (Line 16).

The implementation is compact (Lines 20-21). task is removed from suspend list

and inserted into the ready list. The task is enqueued at readyList[task.key]. The

removal and insertion accounts for a task to change from suspend to resume states.

This subsection described resuming a task and concludes methods which mutate

tasks. The next section covers “getter” operations for retrieving task values.

5.4.8 Getting the Tick Count, Priority, and Number of Tasks

FreeRTOS provides several task “accessor” operations. Three of these are getters

for the tick count, task priority, and task quantity. The operations are converted

into Dafny methods as “accessor” methods in which the object can retrieve the data

member’s value. The methods framing specifications are different from other meth-

135

Valid() ∧ (task 6= null) ∧ (task .Valid())∧

(0 ≤ task .key <| g readyList |)∧

(g readyList [task .key] 6= null) ∧ (g readyList [task .key].Valid())∧

(| g readyList [task .key].fifo |< g readyList [task .key].maxSize)∧

(task ∈ g suspendList .unorderedList) ∧ (g suspendList .Valid)

Figure 79: resumeTask() precondition

Valid() ∧ (task 6∈ g suspendList .unorderedList)∧

(task 6= null) ∧ (task .Valid())∧

(g suspendList 6= null)∧

(0 ≤ task .key <| g readyList | ∧g readyList [task .key] 6= null ⇒

task ∈ g readyList [task .key].fifo)

Figure 80: resumeTask() postcondition

1 method resumeTask(task : T.Task)

2 requires Valid;

3 modifies this;

4 requires task != null && task.Valid;

5 requires 0 <= task.key < |g_readyList |;

6 requires g_readyList[task.key] != null;

7 requires g_readyList[task.key].Valid;

8 requires |g_readyList[task.key].fifo| < g_readyList[task.key]. maxSize;

9 requires task in g_suspendList.unorderedList;

10 modifies suspendList;

11 requires g_suspendList.Valid;

12 modifies readyList[task.key];

13 ensures Valid;

14 ensures task !in g_suspendList.unorderedList;

15 ensures task != null && task.Valid;

16 ensures g_suspendList != null;

17 ensures 0 <= task.key < |g_readyList| && g_readyList[task.key] != null ==>

18 task in g_readyList[task.key].fifo;

19 {

20 suspendList.remove(task);

21 readyList[task.key]. enqueue(task);

22 }

Figure 81: resumeTask() specification and implementation

136

ods mentioned earlier. This is because object mutation does not occur: nothing

needs write access. Values are retrieved only. Figure 82 shows getTaskPriority(),

getTickCount(), and getNumberOfTasks() methods.

Lines 1-9 retrieve a task’s priority. The method signature accepts a task parameter

and returns a priority. Valid preserves the invariant states (Lines 2,5). task is

initialized and valid (Line 3). task.Valid allows that task.key is an integer greater

than zero and read access to its data members. priority == task.key constrains

the return value is the same as the task’s priority (Line 4). The implementation

contains one assignment in which priority is task.key (Line 7). Thus, it satisfies the

postcondition.

Lines 10-18 shows the getTickCount() method. The method returns the tick

count. The class invariant is preserved (Lines 11,15) along with clock and parameter.

Also, numberOfTicks is equal to clock because the ticks are counted by the clock.

The code contains an assignment statement where clock is the return value (Line

17). This satisfies the postcondition, but clock == numberOfTicks very notably

proved as the assignment proves this assertion.

Lines 20-27 contain the getNumberOfTasks() method which it returns the task

quantity. Validity is preserved as usual (Lines 21,24). The return value is the same

as the object’s numberOfTasks (Line 22) and its value does not change (Line 23).

The implementation assigns this.numberOfTasks to numberOfTasks in which the

value is returned.

This subsection described several “getter” methods for retrieving number of tasks,

tick count, and task priority. The next section describes changing task lists.

137

1 method getTaskPriority(task : T.Task) returns (priority : int)

2 requires Valid;

3 requires task != null && task.Valid;

4 ensures priority == task.key;

5 ensures Valid;

6 {

7 priority := task.key;

8 }

9

10 method getTickCount () returns (numberOfTicks : int)

11 requires Valid;

12 ensures clock == numberOfTicks;

13 ensures clock == old(clock);

14 ensures parameter == old(parameter);

15 ensures Valid;

16 {

17 numberOfTicks := clock;

18 }

19

20 method getNumberOfTasks () returns (numberOfTasks : int)

21 requires Valid;

22 ensures numberOfTasks == this.numberOfTasks;

23 ensures old(this.numberOfTasks) == this.numberOfTasks;

24 ensures Valid;

25 {

26 numberOfTasks := this.numberOfTasks;

27 }

Figure 82: getTaskPriority(), getTickCount(), and getNumberOfTasks() speci-
fications and implementations

5.4.9 Suspending and Resuming All the Tasks

This section describes two methods which suspend and resume all scheduler tasks.

suspendAllTasks() moves all tasks into the suspended list in which the scheduler

status is changed to suspended. Except for the suspended list, all task lists are

emptied. resumeAllTasks() moves all suspended tasks into the ready list. This

returns the scheduler to a running state. resumeAllTasks() calls a private method,

sendToReadyList() which moves all tasks to the ready list.

Figure 85 contains the suspendAllTasks() method specification and implemen-

tation. Lines 2 and 11 preserve the Valid predicate. The precondition is shown in

Figure 83. The requires clauses start with the requiring a valid and initialized suspend

list (Line 3). This list is not full (Line 4). Similar to the suspend list, the waiting and

delay list is valid and initialized (Line 5-6). Framing annotations begin with allowing

138

write access to this in which all object data members are modifiable (Line 7). The

waiting and delay lists may mutate also (Lines 9-10). The postcondition is shown in

Figure 84. Figure 85 displays the declared ensures clauses in which the suspend list

contains all tasks and the scheduler is suspended (Lines 12-18). runningTask contains

a value (Line 12). All tasks are inserted into the scheduler and it is in the suspended

state (Lines 13-14). The waiting and delay lists are empty (Lines 15-16). The ready

list is empty too, but the universal quantifier states every element of g readyList

does not contain tasks (Line 17-18). This leads to the implementation body.

The implementation starts with a ghost annotation in which the suspend list is

the concatenation of the current g suspendList and all tasks (g allTasks) (Line

20). The scheduler transits to the suspended state (Line 21). After the transition,

the next line calls validPriorityQueueLemma() in which Dafny is reminded the

waiting and delay lists are valid (Line 22). Both valid annotations are declared as

method preconditions in suspendAllTasks(), but the lemma is needed since Dafny

forgets these preconditions from Lines 5-6. Figure 85 also shows the clearLists()

private method and removeFromAllListsLemma() are shown. The private method

clearLists() removes all tasks from ready, waiting, and delay lists to the suspend

list (Line 23). removeFromAllListsLemma() reminds Dafny the scheduler is in the

suspended state and all task lists are cleared except for the suspended list (Line 25).

The last statement (Line 24) contains an assumption which restates the concatenation

operation on Line 20 in which the postcondition should be satisfied. Unfortunately,

the assumption is needed to verify the concatenation postcondition in Line 24 because

Dafny forgets the operation performed (see Line 20) 3.

3Sequence theories are not complete in Dafny. See https://dafny.codeplex.com/

discussions/529249

https://dafny.codeplex.com/discussions/529249
https://dafny.codeplex.com/discussions/529249

139

Figure 87 shows resumeAllTasks()’s specification and implementation. A few

common annotations are shown such as the class invariant and framing. The Valid

predicate is preserved (Lines 1,6). This method can modify this and suspendList

(Lines 4-5). The precondition runningStatus == 2 requires the scheduler is sus-

pended (Line 3). The postcondition is shown in Figure 86. The ensures clauses (see

Figure 87) include universal quantifier, clearing the suspended list, and changing the

scheduler state. The quantifier states that all tasks are moved into the ready list

(Lines 7-10). Line 7 states the bounds for g allTasks in which each of its tasks are

initialized. Each task’s priority ranges between zero and g readyList’s length (Line

8). Line 9 states each task is initialized. The task at index i is in the ready list

(Line 10). The suspended list is cleared (Line 11), but g suspendList maintains an

initialized value. Its sequence is cleared and g suspendList ! = null would violate

Valid. As the final postcondition, the scheduler status changes to running (Line 12).

Lines 14-16 contains the implementation. A ghost annotation assigns an empty

sequence, [], to g suspendList.unorderedList. This clears the ghost suspended

list. runningStatus is assigned a one signifying the scheduler is running (Line 15).

sendToReadyList() sends all suspended tasks into the ready list (Line 16). Lines 20-

29 contains the private method’s specification. sendToReadyList()’s postconditions

satisfies resumeAllTasks()’s postconditions in which this verifies.

This subsection described two mutation operations used on task lists. The scheduler

changes states in these operations and moves task to different lists (i.e. suspend or

ready lists). The next section covers changing the running task.

140

Valid() ∧ (g suspendList .Valid) ∧ (g suspendList .u 6= null)∧

(¬g suspendList .isFull()) ∧ (g waitingList .Valid)∧

(g waitingList .q 6= null)∧

(g delayList .Valid) ∧ (g delayList .q 6= null)

Figure 83: suspendAllTasks() precondition

Valid() ∧ (runningTask 6= null)∧

(g suspendList .unorderedList = old(g suspendList .unorderedList) + old(g allTasks))∧

(runningStatus = 2) ∧ (g waitingList .items = 0)∧

(g delayList .items = 0)∧

(∀ k : int | 0 ≤ k <| g readyList | ∧g readyList [k] 6= null ⇒

| g readyList [k].fifo |= 0)

Figure 84: suspendAllTasks() postcondition

5.4.10 Context Switch

FreeRTOS supports multitasking in which it must schedule tasks to receive fair-

share of processor time. Multiple tasks alternate between the running and ready states

for a given time period. Tasks run for a specific time period then are swapped with

the next ready task. Context switching is a core component in a real-time system

because it guarantees a task’s running duration until a switch occurs. Figure 90

shows this operation. Additionally, Figures 91 and 92 displays lemmas called in

switchContext() and getTopReadyPriority().

switchContext() begins with specifications seen in previously described meth-

ods. In addition to Figures 88 and 89, Figure 90 lists the method specification.

The class invariant is preserved (Lines 2, 17) while this and runningTask sup-

port write access (Lines 3-4). The next requires clause (Line 5) states that the

141

1 method suspendAllTasks ()

2 requires Valid;

3 requires g_suspendList.Valid && g_suspendList.u != null;

4 requires !g_suspendList.isFull ();

5 requires g_waitingList.Valid && g_waitingList.q != null;

6 requires g_delayList.Valid && g_delayList.q != null;

7 modifies this;

8 modifies suspendList;

9 modifies waitingList , waitingList.q, waitingList.pq;

10 modifies delayList , delayList.q, delayList.pq;

11 ensures Valid;

12 ensures runningTask != null;

13 ensures g_suspendList.unorderedList ==

14 old(g_suspendList.unorderedList) + old(g_allTasks);

15 ensures runningStatus == 2;

16 ensures g_waitingList.items == 0;

17 ensures g_delayList.items == 0;

18 ensures forall k :: 0 <= k < |g_readyList| && g_readyList[k] != null ==>

19 |g_readyList[k].fifo| == 0;

20 {

21 g_suspendList.unorderedList := g_suspendList.unorderedList + g_allTasks;

22 runningStatus := 2;

23 validPriorityQueueLemma ();

24 clearLists ();

25 removeFromAllListsLemma ();

26 assume g_suspendList.unorderedList ==

27 old(g_suspendList.unorderedList) + old(g_allTasks);

28 }

29

30 ghost method {: axiom} validPriorityQueueLemma ()

31 ensures Valid;

32 ensures waitingList.Valid;

33 ensures delayList.Valid;

34

35 /* private */

36 method clearLists ()

37 requires Valid;

38 requires waitingList != null;

39 requires waitingList.q != null;

40 requires waitingList.Valid;

41 requires suspendList != null;

42 requires suspendList.u != null;

43 requires delayList != null;

44 requires delayList.q != null;

45 requires delayList.Valid;

46 requires suspendList != null;

47 requires suspendList.u != null;

48 modifies this , waitingList , waitingList.q, delayList , delayList.q, suspendList;

49 ensures Valid;

50 ensures g_waitingList.items == 0;

51 ensures g_delayList.items == 0;

52 ensures forall k :: 0 <= k < |g_readyList| && g_readyList[k] != null ==>

53 |g_readyList[k].fifo| == 0;

54

55 ghost method removeFromAllListsLemma ()

56 requires Valid;

57 requires g_suspendList != null;

58 modifies this;

59 ensures Valid;

60 ensures runningStatus == 2; // 2 == suspended

61 ensures g_delayList.pq == [];

62 ensures forall k :: 0 <= k < |g_readyList| && g_readyList[k] != null ==>

63 g_readyList[k].fifo == [];

Figure 85: suspendAllTasks() specification and implementation

142

Valid()∧

(∀ i : int | 0 ≤ i < old(| g allTasks |)⇒ old(g allTasks [i]) 6= null ∧

0 ≤ old(g allTasks [i].key) <| g readyList | ∧

g readylist [old(g allTasks [i].key)] 6= null ∧

old(g allTasks [i]) ∈ g readyList [old(g allTasks [i].key)].fifo) ∧

(g suspendList .unorderedList = []) ∧ (runningTask = 1)

Figure 86: resumeAllTasks() postcondition

1 method resumeAllTasks ()

2 requires Valid;

3 requires runningStatus == 2;

4 modifies this;

5 modifies suspendList;

6 ensures Valid;

7 ensures forall i :: 0 <= i < old(| g_allTasks |) ==> old(g_allTasks[i]) != null &&

8 0 <= old(g_allTasks[i].key) < |g_readyList| &&

9 g_readyList[old(g_allTasks[i].key)] != null &&

10 old(g_allTasks[i]) in g_readyList[old(g_allTasks[i].key)]. fifo;

11 ensures g_suspendList.unorderedList == [];

12 ensures runningStatus == 1;

13 {

14 g_suspendList.unorderedList := [];

15 runningStatus := 1;

16 sendToReadyList ();

17 }

18

19 /* private */

20 method sendToReadyList ()

21 requires Valid;

22 modifies this;

23 ensures Valid;

24 ensures forall i :: 0 <= i < old(| g_allTasks |) ==> old(g_allTasks[i]) != null &&

25 0 <= old(g_allTasks[i].key) < |g_readyList| &&

26 g_readyList[old(g_allTasks[i].key)] != null &&

27 old(g_allTasks[i]) in g_readyList[old(g_allTasks[i].key)]. fifo;

28 ensures g_suspendList != null && g_suspendList.unorderedList == [];

29 ensures runningStatus == 1;

Figure 87: resumeAllTasks() specification and implementation

143

scheduler is not in the suspended state (i.e. runningStatus ! = 2). Lines 6-

8 requires topReadyPriority ranges between zero and ready list’s length along

with g readyList[topReadyPriority] is initialized. Lines 9-12 fulfill the precon-

ditions for calling remove() and enqueue(). The ready list is not full at index

topReadyPriority (Line 9). readyList[topReadyPriority] is readable and writable

(Lines 10-11) along with the ready list is not empty (Line 12). The postconditions

are shown between Lines 14-17. topReadyPriority ranges between zero and ready

list’s length (Line 14) and g readyList[topReadyPriority] contains a value (Line

15). A context switch is specified concisely as runningTask ! = null (Line 16). By

stating the running task is some initialized value, the task is either a different task or

the same if there is a single ready task. As long as runningTask is not annotated as

preserved, this specifies a context switch. Finally, parameter is preserved (Line 17).

The implementation is shown (Lines 19-23). In case the running task is in the ready

list, remove() ensures the list does not contain runningTask (Line 19). roundRobinLemma()

allows the running task to change (Line 20). This reminds Dafny switchContext()’s

preconditions still hold. In addition, enqueue() and dequeue() are valid calls.

runningTask is appended ready list’s tail-end and the next running task is assigned

(Lines 21-22). This switch inserts the running task into readyList[topReadyPriority]

and assigns the next task to run with dequeue(). changeTaskLemma() specifies the

context switch and allows Dafny to verify it (Line 23).

The FreeRTOS API does not specify if switchContext() will update topReadyPriority.

switchContext() performs a round-robin switch if topReadyPriority (i.e. next

running task’s index) has not changed. In case the topReadyPriority needs to

change, the getTopReadyPriority() method updates this value. Its specification

is shown in Figure 92. This method finds the next ready priority and assigns it to

144

Valid() ∧ (runningStatus 6= 2)∧

(0 ≤ topReadyPriority <| g readyList | ∧

g readyList [topReadyPriority] 6= null∧

g readyList [topReadyPriority].q 6= null)∧

(| readyList [topReadyPriority].fifo |< readyList [topReadyPriority].maxSize)∧

(readyList [topReadyPriority].Valid) ∧ (g readyList [topReadyPriority].fifo 6= [])

Figure 88: switchContext() precondition

Valid() ∧ (| g readyList |> topReadyPriority ≥ 0)∧

(g readyList [topReadyPriority] 6= null)∧

(runningTask 6= null)∧

(parameter = old(parameter))

Figure 89: switchContext() postcondition

topReadyPriority (Lines 5). Line 6 defines nextReadyPriority ranges between

zero and ready list’s length. This method is specified if needed.

This subsection described changing the running task. Context switching allows a

scheduler to allocate processor time to other tasks. The next section describes two

more “getter” methods.

5.4.11 Get Current Task and Scheduler Status

There are two more accessor methods. getCurrentTask() retrieves the current

running task and getSchedulerStatus() returns whether the scheduler status is

initialized, running, or suspended. Both methods are shown in Figure 93. Lines

1-10 displays getCurrentTask() which returns the current running task. The class

invariant is preserved (Lines 2-3). The postcondition currentTask == runningTask

145

1 method switchContext ()

2 requires Valid;

3 modifies this;

4 modifies runningTask;

5 requires runningStatus != 2;

6 requires 0 <= topReadyPriority < |g_readyList| &&

7 g_readyList[topReadyPriority] != null &&

8 g_readyList[topReadyPriority].q != null;

9 requires |readyList[topReadyPriority].fifo| < readyList[topReadyPriority]. maxSize;

10 requires readyList[topReadyPriority].Valid;

11 modifies readyList[topReadyPriority];

12 requires g_readyList[topReadyPriority].fifo != [];

13 ensures Valid;

14 ensures |g_readyList| > topReadyPriority >= 0;

15 ensures g_readyList[topReadyPriority] != null;

16 ensures runningTask != null;

17 ensures parameter == old(parameter);

18 {

19 readyList[topReadyPriority]. remove(runningTask);

20 roundRobinLemma ();

21 readyList[topReadyPriority]. enqueue(runningTask);

22 runningTask := readyList[topReadyPriority]. dequeue ();

23 changeTaskLemma ();

24 }

Figure 90: switchContext() specification and implementation

1 method getTopReadyPriority () returns (nextReadyPriority : int)

2 requires Valid;

3 modifies this , readyList[topReadyPriority];

4 ensures Valid;

5 ensures topReadyPriority == nextReadyPriority &&

6 0 <= nextReadyPriority < |g_readyList |;

7 ensures parameter == old(parameter);

8 ensures readyList[topReadyPriority] != null;

Figure 91: getTopReadyPriority() method specification

1 ghost method roundRobinLemma ()

2 requires Valid;

3 modifies this , readyList[topReadyPriority];

4 ensures Valid;

5 ensures readyList[topReadyPriority] != null &&

6 readyList[topReadyPriority].Valid;

7 ensures |readyList[topReadyPriority].fifo| < readyList[topReadyPriority]. maxSize;

8 ensures runningTask != null;

9 ensures |g_readyList[topReadyPriority].fifo| > 1 ==>

10 g_allTasks == old(g_allTasks);

11

12 /*

13 * Dafny forgets runningTask != null && Valid == true ,

14 * even though this is true throughout the rest of the method.

15 */

16 ghost method changeTaskLemma ()

17 modifies this;

18 ensures Valid;

19 ensures runningTask != null;

Figure 92: Lemmas for switchContext()

146

1 method getCurrentTask () returns (currentTask : T.Task)

2 requires Valid;

3 ensures Valid;

4 ensures currentTask == runningTask;

5 ensures runningTask == old(runningTask);

6 ensures currentTask != null;

7

8 {

9 currentTask := runningTask;

10 }

11

12 method getSchedulerStatus () returns (status : nat)

13 requires Valid;

14 ensures Valid;

15 ensures runningStatus == status;

16 ensures runningStatus == old(runningStatus);

17 {

18 status := runningStatus;

19 }

Figure 93: getCurrentTask() and getSchedulerStatus() specifications and imple-
mentations

ensures the return value is the running task (Line 4). runningTask is preserved (Line

5) and currentTask is initialized (Line 6). The implementation assigns runningTask

to currentTask which returns the running task (Line 9).

Lines 12-19 contains the getSchedulerStatus() method which returns the sched-

uler status. As mentioned earlier, status is either zero, one, or two. Zero represents

the scheduler is initialized, one is the scheduler is running, and two the scheduler is

suspended. The specification starts with preserving the class invariant, Valid (Lines

13-14). This predicate also defines status is a natural number ranging for zero to two.

The return value equals the running status (Line 15). runningStatus is preserved

(Line 16). In conclusion of the additional “getter” methods, the implementation

assigns runningStatus to status in which the value is returned (Line 18).

5.5 Summary

This chapter covered FreeRTOS’s scheduler API which consisted of a specifica-

tion and implementation. The first section described eliciting the FreeRTOS API

147

specifications from IISc’s Z model. The schema are referenced and utilized through-

out the Dafny specification, but FreeRTOS’s API documentation provided additional

guidance. While the Z model minimizes ambiguous language because it is formal

language, the schemas are open to interpretation when translating to Dafny. In com-

parison to the Z model, the API documentation is written in natural language, but it is

well-written and detailed. Section two specified the scheduler class’s data members.

These included imported modules, xList components, tick counting (i.e. clock),

runningTask, idleTask, non-port macros (i.e. parameter), runningAStatus, and

various ghost variables. Section three covered the class invariant, Valid. This pred-

icate specifies which values are initialized. Convention() and Correspondence()

predicates define bounds and mappings of concrete values to specification variables

(i.e. ghost annotations). Valid is declared as a precondition and postcondition in

methods to preserved the object’s invariant states. The fourth section contains spec-

ification annotations and code for Scheduler’s methods. Except for the constructor,

all methods preserve the class invariant. Any operations mutated the object contain

the modifies clause to allow changing the data members. constructor contains

Valid only as a postcondition because the object is initialized. Scheduler operations

include initialization, start scheduling, manipulating tasks, incrementing the clock

tick, context switching, and various accessor methods.

CHAPTER VI

Lessons Learned

There are notable lessons learned from using Dafny including several advantages

and disadvantages. The program verifier is a tool: it is worth stating Dafny’s limita-

tions, but also its wonderful features which other formal method’s have not obtained.

Whether Dafny is a hammer or wrench, this tool should be applied when necessary:

a wrench is used on bolts, but it is not a replacement for a hammer. This chapter

covers how well Dafny functions as a tool.

6.1 Dafny’s Pros and Cons

This section explains Dafny’s advantages and disadvantages in a pros-and-

cons format. The first part contains advantages while the second part describes the

disadvantages. Recommendations are given regarding features or improvements in

the disadvantages section.

148

149

6.1.1 Pros

There are several advantages to using Dafny including that it is a simple language

and object-oriented. It is both a verifier and compiler. Ghost annotations such as

sequences and sets can model data structures while refinement is supported through

modules. Verification time is relatively quick. This section describes the advantages.

Simplified Language Dafny avoids language complexity by containing a minimal

amount of programming and specification constructs. Users are not overwhelmed by

different constructs to solve solutions. In addition, Dafny’s proof rules are simpler.

For example, there is a single looping construct in which searching and assigning

values are common. Since loop invariant annotations are often lengthy, Dafny also

provides a forall “loop” that allows multiple and simultaneous assignments for ar-

rays and sequences [20]. The language does not contain a for, do-while, or foreach

loop. This may increase the work of Dafny users, but the language does not have an

overwhelming amount of programming constructs.

Constructs common in various programming languages are also included. These

were used throughout Chapters 3-5. Typical constructs include arithmetic, branching,

assignment, primitive data types, arrays, and user-defined data types.

A Verifier and Complier Verifying programs is the main activity in proving

program correctness. While this starts with a specification, an implementation is

usually a refinement step after creating a formal specification. Not all formal methods

tools contain a compiler (i.e. model checkers) [6]. Dafny contains a compiler in which

.NET Framework bytecode is generated [21]. Therefore, the refined program code can

execute in a .NET Framework program. This allows verified software components to

be used in real programs instead of containing only a formal model.

150

Object-oriented Object-oriented programming (OOP) is supported by allowing

users to create classes and instantiate objects. Methods provide different operations

on an object. Inheritance and sub-typing is not supported [22], but delegation is a

utilized in which objects may another through methods. Modern programs written

in object-oriented languages can verify in Dafny. This programming paradigm was

used throughout this thesis in previous chapters. Classes and objects were declared

and instantiated, respectively. This allows for reusable implementations as seen in

OOP.

Sets and Sequences Dafny can verify unordered and ordered data structures with

sets and sequences, respectively. Sequences were used to verify task lists in which

specifications contained slicing and concatenation operations (see Chapter 4). Sets

may represent unordered data structures in which operations include intersection,

union, and difference. These are also utilized in dynamic framing [19].

Termination Heuristics While loop invariants are often difficult, a related an-

notation is automated. A neat feature includes “guessing” the termination metric for

a while loop [22]. This automates part of the loop annotations. Dafny attempts this

automatically when a loop is declared. If a termination metric is not guessed, Dafny

will state the user needs to define the decreases clause.

Refinement with Modules Refinement is described as developing a program in

iterations starting from the specification and resulting in an implementation [6].

Programs are developed in iterations starting from a specification and resulting with

an implementation. Modules allow for reusing specifications and refining into pro-

gram code. This was used in the xList and scheduler where refines transforms

specification module into code.

151

Performance Dafny’s SMT solver is very efficient. The Schorr-Waite algorithm

example contains thirty-two lines of loop invariant annotations and it is verified in

under five seconds [19]. Another example is the verification for the scheduler and

its underlying data structures. Dafny takes approximately fifty seconds for proving

seventy-three verifications conditions. Considering the scheduler is large and Dafny

must apply many different theories to the proof, performance is very good.

6.1.2 Cons

There are disadvantages to using Dafny as a verification tool. Lemmas and

framing issues are troublesome. Incompleteness of sequences requires lemmas to help

verification. The lack of documentation may lead to frustration because there are

many undocumented features of Dafny. These are all discussed.

Creating Lemmas Whether a ghost method or assertion, lemma creation is a com-

mon activity in Dafny. Assertions are often needed to remind the verifier of certain

facts while ghost methods help Dafny in less obvious proofs. In addition, method

implementations may contain ghost annotations. The ideal Dafny program contains

modular specifications where methods bodies contain only code. Method level spec-

ifications only contain specification constructs. However, some situations require

writing code which does not separate the specification from the implementation (see

suspendAllTasks() method in Chapter 5).

One recommendation is further modularizing specifications from the implementa-

tion. Other verifiers such as Resolve, separates the specification from the implemen-

tation using concepts and realizations [11]. This allows calling modular specifications

from reusable components. A concept contains the specification for a component

such as a list data structure. Also, theories are imported to model data structures

152

or components (e.g. a string theory is imported to model a list). The concept con-

tains specifications and method signatures only. A realization reuses a concept and

its specification by defining the convention and correspondence in which concrete

variables are mapped to abstract values. Except for annotations for loop invariants,

the implementation (e.g. realization) contains no additional specification constructs

because everything the theorem prover knows regarding the realized data structure

is available in the concept.

A Resolve-like concept and realizations may reduce or eliminate the need for lem-

mas. If Dafny’s development team included concepts and realizations, the most likely

solution utilizes “pure mathematical modeling” to further modularize specifications

as recommended by Bronish and Weide [4]. The development team may need to

decide if further modularizing specifications is a project goal.

Framing Issues Framing constructs include reads and modifies which allow ac-

cessing and changing values in functions, methods or classes. Objects and arrays

are statically defined in framing annotations throughout the scheduler and task lists

(see previous chapters 4-5). When using classes, dynamic framing is available to de-

clare several valid states for the instantiated object as it mutates [20] [19]. This is

automatically applied when declaring a class with autocontracts.

Dynamic framing is not used in the task lists and scheduler. It was used in ear-

lier revisions of this Dafny specification. Unfortunately, dynamic framing seems to

contain limitations when declaring several layers of classes. The delegation/compo-

sition pattern allows xList components to become data members in the scheduler

class. After several layers of classes are declared, it is unclear how to define dynamic

framing in the Valid predicate. In addition, there is no documentation defining how

153

1 var s : seq <int >;

2 s := [];

3 s := s + [0];

4 s := s + [1];

5

6 assert 0 in s; // verifies

7 assert 1 in s; // verifies

8

9 s := s + [2];

10 assert 2 in s; // needed or will not verify

11

12 s := s + [3];

13 assert 3 in s; // this is needed

14

15 var i := 1;

16 var s0 := insertAt(s, i, 5);

17

18 assert 0 in s0;

19 assert 1 in s0;

20 assert 2 in s0;

21 assert 3 in s0; // verifies only assert 3 in s, several lines above , is there

22 assert 5 in s0;

Figure 94: Sequence incompleteness example

autocontracts applies dynamic framing to multiple class levels. The recommended

solution is providing documentation for dynamic framing with object-oriented code.

Incompleteness of Sequence Theories As footnoted throughout this thesis, the

sequence theories are incomplete in Dafny1. This discussion thread example was

posted and it is shown in Figure 94. After every concatenation operation (Lines

3,4,9,12), assertions are needed to prove an item is contained in sequence. The com-

ments mark which lines are needed for a successful verification. Lines 18-22 test the

integers are part of the sequence s0.

In addition to incompleteness, a minor bug does not allow referencing sequences

with natural numbers2. Sequences are referenced extensively in the task lists and

scheduler which this shows this construct is quite usable. A very common pattern in

Dafny is assigning an array to a sequence (see Chapters 4-5). In this case, sequences

should use natural numbers because all sequence indexes are zero or positive integers.

1Again, see https://dafny.codeplex.com/discussions/529249
2This is an extended Dafny tutorial which mentions integers are used, but not natural numbers

with sequences: http://rise4fun.com/Dafny/tutorial/Sequences

https://dafny.codeplex.com/discussions/529249
http://rise4fun.com/Dafny/tutorial/Sequences

154

This is accomplished by referencing array and sequence indexes with integers. As a

result, integer bounds are defined as a natural number, but the actual nat data type

is not used because this bug. The short-term solution is recording and documenting

limitations of sequences. This allows Dafny users less guessing when working with

sequences. The long term goal should include improving sequence theories as Dafny

matures as a verification tool.

Lack of Documentation While the discussion threads 3, examples 4 and pa-

pers [22] [20] [19] [18] [12] are very helpful; official documentation such as a user

manual is needed. Any examples on dynamic framing, autocontracts, classes, se-

quences, and modules are valuable. There is some literature on these topics, but it

is not compiled into one document. All mentioned Dafny papers took over a year

to find. When answers were not found in papers, the discussion threads are helpful.

However, a user manual would provide a faster reference in which common questions

may be answered. When all else fails, users are left to trial-and-error and guessing to

verify Dafny programs. As a result, the user manual would solve this problem along

and remedy many other issues stated in previous paragraphs.

6.2 Summary

This chapter discussed Dafny’s pros and cons. Simplified language keeps spec-

ification and constructs to a minimal in which the basics are easy to learn. Simplicity

is not the only advantage. An implementation is not only verified, but it can compile.

Whether compiling or verifying, the language is object-oriented in which it allows

verifying modern programming languages. The Dafny language also includes ghost

annotations such as sets and sequences. These can describe unordered and ordered

3Dafny discussion threads: urlhttps://dafny.codeplex.com/discussions
4Dafny code examples: urlhttps://dafny.codeplex.com/SourceControl/latest

155

data structures. Other annotations include loop invariants and termination metrics.

While loop invariants are required annotations, Dafny automates the termination

metric by “guessing” when the loop ends. Besides annotation constructs, refinement

is supported. Another feature is verifying specifications in a reasonable duration.

Dafny solves proofs efficiently, but it requires lemmas when certain constructs such

as sequences are used. Sequence theories are incomplete. Other issues are related

to classes. Framing issues exist when multiple levels of classes are declared through

composition. Most problems may be solved with additional papers or documentation.

Literature on Dafny is available, but official user documentation is lacking. User doc-

umentation may solve many shortcomings by providing a compilation of common

issues and solutions.

CHAPTER VII

Related Work

This chapter describes a parallel FreeRTOS project and other approaches taken

to verifying this real-time operating system. The first section describes the Indian

Institute of Science’s (IISc) FreeRTOS verification research in which this thesis ref-

erenced numerous times. The second section discusses another project using the

B-method to specify and implement a verified FreeRTOS. The third section discusses

another formal methods project possibility.

7.1 IISc’s xList and Scheduler

FreeRTOS is documented as API comments containing parameters, return val-

ues, calling example, and a description. The parameters and return values state the

function signature while the calling example shows how the it is called. A description

summarizes the function’s behavior and possible constraints. This is an informal and

imprecise document. Converting the documentation into a formalized specification al-

lows for a precise and unambiguous specification. Translating all of these components

156

157

into a Z model provides a formal, precise, and unambiguous documentation.

The API comments are declared in C source files. In addition, the code-base may

provide insight on a function’s behavior. The Z notations allows creating a formal,

unambiguous, and precise document in set theory and formal logic [8]. The model

shown in Z Model of Tasks Lists in FreeRTOS documents the xList data structures’

operations formally and tools are used to validate and simulate the schema [8]. After

this was accomplished, the scheduler documented into Z operation schema [7].

After completing a Z model of the xList and scheduler, translating the Z model

to an annotated C implementation is the next research goal. Microsoft’s C program

verifier, VCC, would allow creating a specification and implementation; and also prov-

ing both correct. The challenging part is converting Z to VCC specifications. There is

no official process of converting Z to VCC specifications, but the annotations are also

based on set theory and formal logic. A separate implementation is also coded which

conforms to the specification.

Other challenges include verifying concurrency and numerous annotations. VCC

contains annotations for proving parallel programing. Spin-locks and monitors are

presented in the documentation because it is common method for handling concur-

rency. Besides concurrency, a heavy amount of annotations required for verification.

Specifications are less modular than Dafny and may have more annotations per lines

of code.

The completion of this research will contain a formal specification and verified

implementation of FreeRTOS’s task lists and scheduler. If any bugs are found, the

FreeRTOS code-base may be modified and corrected. Note that this does not elimi-

nate the need for traditional software quality assurance; testing, code reviews, walk-

158

throughs, and inspections are still needed [3]. A formal specification and verified

implementation further minimizes defects in software, but may not eliminate them

completely.

7.2 The B Method

Formalizing FreeRTOS: First Steps converts this operating system into a formal

language similar to Z. The B method contains set theory and logic-based specifications

and focuses on refining the specification into executable code [6]. Similar to IISc’s

research, verification starts with translating the FreeRTOS documentation to a formal

specification. A basic model is created from the requirements and its operations are

defined. Each refinement step expands the model to include tasks, queues, mutexes,

and valid scheduler states [6]. Every step adds another requirement to the model

and consistency is checked. The requirements are reviewed if any inconsistency in the

model. The final refinement artifact contains the implementation in a programming

language [6].

The main advantage to the B method is the final artifact consists of program code.

This is a very useful feature in which not all formal methods tools accomplish. For

example, stand-alone theorem provers do not provide tools for refinement. Z3 is an

example of this, but Dafny does support refinement through a module system (see

Chapter 5). The B method supports refinement whether through a process or tool

set. In addition, tools are available for all development stages [6].

While the B method has many positive aspects, Formalizing FreeRTOS: First steps

states that the tool support needs improvement [6]. The tool support includes spec-

ification, interactive proofs, and code generation ??. While there are a variety of

159

B method tools available, some may be cumbersome as stated by Deharbe et al.

Their research described the beginning steps of formalizing FreeRTOS, but it did

not contain refined code. The tool support may have improved since this research

occurred several years ago. Despite the flawed tools, this is very promising formal

methods research.

7.3 Model-checking and FreeRTOS

Creating a FreeRTOS formal specification can be done in a model-checker. The

FreeRTOS API documentation would translate into set theory and formal logic in

which the language is similar to specification annotations used in program verifiers

(i.e. Dafny). However, model-checkers often support temporal logic in which modeling

timing events is possible. Model-checking tools such as NuSMV contain LTL or CTL

constructs in the language [14]. This would allow NuSMV to model timing events

such as a tick in FreeRTOS.

A model-checker is perfect for modeling ticks and checking if the timing require-

ments hold. NuSMV supports modules in which xList and scheduler can be separated

into different components. NuSMV is open-source and it is a more mature tool than

Dafny. There is plenty of support and examples available for this model-checking

tool.

While the tool maturity and ability to model temporal events are advantages,

refinement is very difficult. Refining a formal model into executable code is difficult

because there is no implementation or programming language associated with model-

checking tools. Program verifiers such as Dafny refining a specification into code, but

this is not common in model-checking.

160

7.4 Summary

This chapter covered related work to verifying FreeRTOS in which several

formal methods projects were described. The first is a program verification project.

IISc translated the FreeRTOS documentation into a Z model that captured the xList

and scheduler requirements. In addition, there are plans to convert the Z model into

an annotated C code-base using VCC. This research used the Z formal language and

plans to refine the specification into an implementation. There is another similar

project. The Formalizing FreeRTOS: First Step paper presents research on translating

the documentation into another formal language using the B method. The tools and

techniques will refine the specification into executable code. However, the tool support

exists, but it needs improvement. Another tool which may formalize FreeRTOS is a

model-checker. While tools such as NuSMV are mature and stable, refinement into

program code is difficult. The advantages include modeling temporal events with

logic not supported in other formal methods tools.

CHAPTER VIII

Conclusion

Software engineering formal methods provide reduction in program defects in which

producing high-integrity systems is possible [3]. Real-time software such as FreeRTOS

requires integrity, robustness, reliability, availability, and temporal constraints. In

addition, the operating system’s website claims quality [2]. Formal methods may

lower defects in FreeRTOS. As a result, program verification is another SQA activity

to further minimize software defects [3] [9]. We proposed proving the correctness of

FreeRTOS using the Dafny verifier. As a result, a specification and implementation

of the scheduler API and task list data structures were created and verified.

Verifying FreeRTOS requires a formal specification and correct implementation.

Dafny provides annotations for specifying FreeRTOS’s behavior into contracts in

methods, classes, and modules. The API documentation and IISc’s Z model [7] [8]

was referenced and a Dafny specification was created in classes and methods. The

xList was verified in which it contains priority queue, FIFO queue, and unordered

list. Each data structure was specified and implemented as a class. The scheduler

161

162

API uses the xList data structures in ready, delay, waiting, and suspended lists.

These task lists, Parameter, and Task classes were declared in modules and imported

by the scheduler. The scheduler operations were specified and implemented in a class

with its respective task-managing operations.

There were challenges to verifying FreeRTOS along with successful attributes.

Some specifications such as FIFO queue and unordered list were separated into meth-

ods, classes, and modules in which these artifacts refine into a implementation-only

module. The priority queue and scheduler classes did not contain a separate spec-

ification and implementation due to problems with modules (see Chapter 6). In

addition, framing and sequences had some issues, but it was remedied by a work-

around. Regardless of Dafny issues, the priority queue, FIFO queue, scheduler, task,

and parameter classes were successfully verified. The data structures and scheduler

API contain specifications and implementations. The API contained eighteen opera-

tions for managing tasks while the xList data structures have eight operations. The

scheduler class required approximately seventy-seven verification conditions to prove

correctness. As a result, Dafny performed adequately as a verification tool.

8.1 Future Work

The Dafny specification and implementation could refine into another artifact which

may include executable code. The scheduler’s operations were specified and imple-

mented in which it may convert into another programming language. However, this

is a difficult conversion because C is low-level and not an object-oriented language,

but Dafny uses objects, classes, and methods. Another approach includes converting

Dafny specifications to VCC. Both program verifiers contain similar annotations from

sharing the same verification engine, Boogie. There is no process or tool to convert

163

Dafny to VCC and it requires knowledge and skill of both verifiers. The converting

Dafny to VCC would accomplish having a C implementation of the scheduler API and

xList data structures.

A long-term goal in formalizing FreeRTOS research is creating executable C code

from a specification [6] [7] [8]. This allows several possibilities. One includes com-

paring a verified implementation to the original in which the formalized code-base

may catch defects. In addition, traditional SQA activities can be applied to the ver-

ified code-base. This can assure further if defects were removed. Another possibility

is comparing defect rates through fault injection to test if program verification or

traditional SQA is more effective. Finally, a verified FreeRTOS port can built from

the annotated code, but port-specific code would need developing to run on a test

platform.

Research is needed to continue developing and improving verification tools. Pro-

gram verifiers such as Dafny and VCC are considered “auto-active” verifiers in which

the developer is responsible for creating the specifications and implementations [17].

A fully automatic program verifier which generates a formal specification from code

and proves correctness does not exist. Some researchers question if an automatic

verifier is feasible and possible [17]. Dafny contains some automation and heuristics

for specifying a termination metric [22], but it needs improvement in decoupling the

specification from the implementation [4].

BIBLIOGRAPHY

[1] R. Barry. About freertos, November 2013.

[2] R. Barry. Freertos - market leading rtos for embedded systems supporting 34

microcontroller architectures, September 2013.

[3] J. P. Bowen and M. G. Hinchey. Ten commandments of formal methods. Com-

puter, 28(4):56–63, 1995.

[4] D. Bronish and B. W. Weide. A review of verification benchmark solutions using

dafny. In Proceedings of the 2010 Workshop on Verified Software: Theories,

Tools, and Experiments, 2010.

[5] F. P. Brooks Jr. No silver bullet-essence and accidents of software engineering.

IEEE computer, 20(4):10–19, 1987.

[6] D. Déharbe, S. Galvão, and A. M. Moreira. Formalizing freertos: First steps. In

Formal Methods: Foundations and Applications, pages 101–117. Springer, 2009.

[7] S. Divakaran and D. D’Souza. Z model of freertos.

[8] S. Divakaran and D. D’Souza. Z model of tasks lists in freertos.

[9] D. Galin. Software quality assurance: from theory to implementation. Pearson

education, 2004.

[10] R. Goyette. An analysis and description of the inner workings of the freertos

kernel. Carleton University Department of Systems and Computer Engineering,

SYSC5701: Operating System Methods for Real-Time Applications, 1st, 2007.

164

165

[11] H. K. Harton. Mechanical and Modular Verification Condition Generation for

Object-Based Software. PhD thesis, Clemson University, 2011.

[12] L. Herbert, K. R. M. Leino, and J. Quaresma. Using dafny, an automatic program

verifier. In Tools for Practical Software Verification, pages 156–181. Springer,

2012.

[13] F. Huch. Verification of erlang programs using abstract interpretation and model

checking. In Proceedings of the fourth ACM SIGPLAN international conference

on Functional programming, ICFP ’99, pages 261–272, New York, NY, USA,

1999. ACM.

[14] M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning

about systems. Cambridge University Press, 2004.

[15] R. Inam, J. Maki-Turja, M. Sjodin, S. M. Ashjaei, and S. Afshar. Support for

hierarchical scheduling in freertos. In Emerging Technologies & Factory Automa-

tion (ETFA), 2011 IEEE 16th Conference on, pages 1–10. IEEE, 2011.

[16] C. Jones, P. O’Hearn, and J. Woodcock. Verified software: A grand challenge.

IEEE Computer, 39(4):93–95, 2006.

[17] C. Le Goues, K. R. M. Leino, and M. Moskal. The boogie verification debug-

ger (tool paper). In Software Engineering and Formal Methods, pages 407–414.

Springer, 2011.

[18] K. R. M. Leino. Automating theorem proving with smt.

[19] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.

In Logic for Programming, Artificial Intelligence, and Reasoning, pages 348–370.

Springer, 2010.

166

[20] K. R. M. Leino. Developing verified programs with dafny. Ada Lett., 32(3):9–10,

Dec. 2012.

[21] K. R. M. Leino. Dafny: a language and program verifier for functional correct-

ness, 2013.

[22] K. R. M. Leino and R. Monahan. Dafny meets the verification benchmarks chal-

lenge. In Proceedings of the Third international conference on Verified software:

theories, tools, experiments, VSTTE’10, pages 112–126, Berlin, Heidelberg, 2010.

Springer-Verlag.

[23] T. Nipkow et al. Getting started with dafny: A guide. Software Safety and

Security: Tools for Analysis and Verification, 33:152, 2012.

[24] D. Plagge and M. Leuschel. Validating Z specifications using the ProB animator

and model checker. In J. Davies and J. Gibbons, editors, Integrated Formal

Methods, volume 4591 of Lecture Notes in Computer Science, pages 480–500.

Springer-Verlag, 2007.

[25] Real Time Engineers Ltd. Freertos readme file, September 2013.

[26] Real Time Engineers Ltd. Official freertos ports. microcontrollers and compiler

tool chains supported by freertos, September 2013.

[27] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice-Hall, 14th indian reprint edition, Octo-

ber 2002.

[28] A. G. Stephenson, D. R. Mulville, F. H. Bauer, G. A. Dukeman, P. Norvig,

L. LaPiana, P. Rutledge, D. Folta, and R. Sackheim. Mars climate orbiter mishap

investigation board phase i report, 44 pp. NASA, Washington, DC, 1999.

167

[29] C. Svec. Freertos architecture. the architecture of open source applications (vol-

ume 2): Freertos. In The Architecture of Open Source Applications. September

2013.

[30] A. Tanenbaum. Modern Operating Systems. Prentice Hall, 3rd edition edition,

December 2007.

[31] B. W. Weide, M. Sitaraman, H. K. Harton, B. Adcock, P. Bucci, D. Bronish,

W. D. Heym, J. Kirschenbaum, and D. Frazier. Incremental benchmarks for

software verification tools and techniques. In Verified Software: Theories, Tools,

Experiments, pages 84–98. Springer, 2008.

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	I. Introduction
	1.1 Problem
	1.2 Thesis
	1.3 Solution Approach
	1.4 Contributions
	1.5 Organization of Thesis

	II. FreeRTOS
	2.1 What is FreeRTOS?
	2.2 FreeRTOS Architecture
	2.2.1 The Scheduler
	2.2.2 Tasks
	2.2.3 System Tick
	2.2.4 List Data Structures
	2.2.5 API Calls

	2.3 Object-Oriented Design in FreeRTOS
	2.3.1 Converting C to an Object-Oriented Design
	2.3.2 Class Diagram of an xList and Scheduler

	2.4 Summary

	III. Dafny
	3.1 What is Dafny?
	3.2 The Toolset and Architecture
	3.3 The Dafny Programming Language
	3.3.1 Assignment, Equality, and Data Types
	3.3.2 Branching, Loops, and Arrays

	3.4 Specifications in Dafny
	3.4.1 Postconditions and Preconditions
	3.4.2 Invariants and Termination
	3.4.3 Predicates and Functions
	3.4.4 Specifying Classes

	3.5 Summary

	IV. Verifying the xList in Dafny
	4.1 Purpose
	4.1.1 Z Schema to Dafny Specification
	4.1.2 API Documentation to Dafny Specification

	4.2 Task Class
	4.2.1 Specification
	4.2.2 Refinement to an Implementation

	4.3 FIFO Queue
	4.3.1 IISc's FIFO Queue Schema
	4.3.2 FIFO Queue Specification
	4.3.3 FIFO Queue Implementation

	4.4 Unordered List
	4.4.1 IISc's Unordered List Specification
	4.4.2 Unordered List Specification
	4.4.3 Unordered List Implementation

	4.5 Priority Queue
	4.5.1 IISc's Priority Queue Schema
	4.5.2 Specification and Implementation

	4.6 Summary

	V. Verifying the Scheduler in Dafny
	5.1 Eliciting the Scheduler Specification
	5.2 Module Declaration and Data Members
	5.3 The Class Invariant
	5.4 Method Specifications and Implementations
	5.4.1 Initializing and Running the Scheduler
	5.4.2 Creating and Deleting Tasks
	5.4.3 Delaying a Task
	5.4.4 Incrementing the Tick
	5.4.5 Updating a Task's Priority
	5.4.6 Suspending Tasks
	5.4.7 Resuming a Task
	5.4.8 Getting the Tick Count, Priority, and Number of Tasks
	5.4.9 Suspending and Resuming All the Tasks
	5.4.10 Context Switch
	5.4.11 Get Current Task and Scheduler Status

	5.5 Summary

	VI. Lessons Learned
	6.1 Dafny's Pros and Cons
	6.1.1 Pros
	6.1.2 Cons

	6.2 Summary

	VII. Related Work
	7.1 IISc's xList and Scheduler
	7.2 The B Method
	7.3 Model-checking and FreeRTOS
	7.4 Summary

	VIII. Conclusion
	8.1 Future Work

	BIBLIOGRAPHY

