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ABSTRACT 

Permanent magnet synchronous motor (PMSM) is a popular electric machine in 

industry for its small volume, high electromagnetic torque, high reliability and low cost. 

It is broadly used in automobiles and aircrafts. However, PMSM has its inherent 

problems of nonlinearity and coupling, which are challenges for control systems design. 

In addition, the external disturbances such as load variation and noises could degrade the 

system’s performance. Both sliding mode control (SMC) and active disturbance rejection 

control (ADRC) are robust against disturbances. They can also compensate the 

nonlinearity and couplings of the PMSM. Therefore, in this thesis, we apply both SMC 

and ADRC to a PMSM speed system. Our control goal is to drive the speed outputs of the 

PMSM speed system to reference signals in the presences of nonlinearity, disturbance, 

and parameter variations. Simulation results verify the effectiveness of SMC and ADRC 

on the speed control for PMSM systems in spite of the presences of external disturbance 

and internal system uncertainties. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Electric motors play an important role in modern world because most of the 

physical motions in machines such as hand power tools, air compressors and water 

pumps, etc. are driven by electric motors. Among all types of motors, permanent magnet 

(PM) motors became increasingly popular and they have been widely used in 

automobiles, aircrafts and industrial machines [1-3]. 

PM motors do not need commutator or brush compared to direct current (DC) 

motors. Thus they have simpler structure, better reliability and lower maintenance cost 

[2]. 

In addition, PM motors do not need exciting currents for the magnetic field in its 

air gap compared to induction motors. Therefore PM motors have lower power 

consumption on armature windings, higher efficiency and simpler controller [2]. 
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In general, PM motors have the advantages of small volume, low noise, high 

power density, high electromagnetic torque, high efficiency, high dynamic performance 

and low cost [1-3]. 

PM motors can be mainly classified as brushless direct current (BLDC) motor and 

permanent magnet synchronous motor (PMSM) [3]. The mechanical structures of BLDC 

and PMSM are almost the same, except that the designs of the permanent magnets on 

rotors for these two motors are different [3]. The supply currents of BLDC motor are 

three-phase square waves while the supply currents of PMSM are three-phase sine waves 

[3]. The ideal back electromotive force (back-EMF) of BLDC motor is in square wave 

form and the ideal back-EMF of PMSM is in sine wave form [3]. But in reality, the back-

EMF of BLDC motor is usually in trapezoidal wave form due to the imperfection of the 

shapes of permanent magnets of BLDC motors [1], which leads to considerable torque 

ripples and speed oscillation in BLDC motors. 

PMSM has smaller torque ripples than BLDC motor, which makes PMSM more 

suitable for high precision speed systems. 

1.2 Literature Review 

Although PMSM has the advantages listed above that attract attention from 

researchers and manufactures, it also has inherent problems such as nonlinearity and 

coupling [4]. There is not only self-inductance in each phase but also mutual-inductance 

between each two phases in the stator of PMSM, which resulting in coupling. PMSM can 
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only be controlled by three-phase stator currents since there is no excitation winding on 

the rotor. But the excitation magnetic field from permanent magnets on the rotor has 

strong nonlinear influence on the stator windings. In addition, the parameter variations 

such as friction variation and moment of inertia variation have considerable influence on 

PMSM [5-6]. Finally, the external disturbances such as load variation and noise would 

degrade the performance of PMSM significantly [5-7]. 

The coupling problem of PMSM can be solved by adopting field oriented control 

(FOC) strategy [8-10]. FOC was firstly introduced by F. Blaschke in 1971 to solve 

induction motor control problems [11]. Then, FOC was studied by many researchers and 

it was successfully applied to many alternate current (AC) drives in industry [11]. 

Nowadays, FOC is the main decoupling control method for PMSM and its decoupling 

function is realized by coordinate transformation [1]. 

The other wildly used control strategy for PMSM is direct torque control (DTC) 

[12-14]. DTC was firstly presented by I. Takahashi and T. Noguchi in 1986 to control 

induction motors [13]. DTC controls the magnetic toque and flux linkage of AC motors 

directly without any decoupling calculation [12]. DTC was also successfully applied on 

PMSM [14]. 

The comparison study between FOC and DTC indicates that the response of 

PMSM speed control to DTC is faster than FOC with more torque ripples, and the 

response of PMSM speed control to FOC is more precise than DTC with less torque 

ripples [8, 12]. 

PI controllers are popular for PMSM control in industry because of its simple 

structure, easy implementation and reliability [5, 6, 15, 16]. However, PI controllers are 
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not robust enough against plant parameter variations and external disturbances [5, 6, 15-

18]. When there is nonlinear parameter variations in PMSM, the operating point of 

PMSM changes accordingly, so that linear PI controllers with fixed controller gains need 

to be tuned again or the performance of PMSM control system will be degraded [16, 19]. 

But PI controllers are still a good choice for PMSM control system if the high precision 

performance of PMSM is not demanded. 

Fuzzy logic control (FLC) overcomes the limitation of linear PI controller since 

the FLC’s controller gains can be decided online according to the error signal and 

changing tendency of error signal [20-25]. FLC is robust against the nonlinearity of 

PMSM and sudden load variation of PMSM control system [20-25]. But the design 

process and tuning of FLC is complicated, so that it is laborious and time consuming to 

design a proper FLC for PMSM control systems in practice. 

Adaptive control was successfully applied to PMSM control systems for its 

insensitivity to system uncertainties [26-31]. The unknown parameters of PMSM are 

estimated by adaptive laws online. The adaptive control signal that is based on the 

estimated parameters can compensate the parameter variations and load variations [26-

31]. Adaptive control is an effective solution to solve specific PMSM control problems 

that are caused by certain parameters such as the torque ripples [27-29]. The performance 

of adaptive control is dependent on mathematical modeling of the PMSM system. It 

would be degraded in practice since an accurate mathematical model is hard to obtain. 

Variable structure control (VSC) was first proposed by Soviet researchers 

Emelyanov and Utkin in the 1950s [32, 33]. From 1950s to 1960s, VSC was studied to 

solve the control problems of second-order linear systems [32, 33]. From 1960s to 1970s, 
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VSC was further studied to solve the control problems of higher order linear systems [33]. 

VSC and SMC were first published in English by Utkin in 1977 [34], and then VSC and 

SMC were studied and applied to solve many control problems [32, 33]. SMC is a robust 

control method that is insensitive to systems uncertainties, parameter variations and 

external disturbances [32]. And many SMC control methods have been applied to PMSM 

[35-44]. The major drawback of the classical SMC is its chattering problem [32, 45]. So 

some complex algorithms such FLC and adaptive control are combined with SMC to 

solve this problem [37, 40], which makes the SMC lose the advantage of simplicity. 

Nowadays the main SMC research topics for PMSM include sliding mode observer [35] 

and chattering free control [36]. 

ADRC was first proposed by J. Q. Han in Chinese in 1998 [46]. The original 

ADRC consists of a nonlinear tracking-differentiator [47], a nonlinear state error 

feedback controller [48] and an extended state observer (ESO) [49]. ADRC was first 

published in English in 2001 [50]. And the concepts of linear extended state observer 

(LESO) and linear active disturbance rejection control (LADRC) were proposed by Z. Q. 

Gao in 2003 [51], who simplified the design process of ADRC. Han’s ADRC is 

insensitive to system uncertainties and external disturbances [46], and it was successfully 

applied to PMSM control system [4, 5, 15, 52, 53]. But Han’s ADRC is relatively 

complex for control design and tuning while LADRC is easier for design and 

implementation in the real world. 
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1.3 Thesis Contribution 

Both a pure SMC and a LADRC are originally developed for a PMSM speed 

system. They are implemented on a PMSM speed system using Matlab/Simulink to drive 

the speed outputs to the references. The comparison study between these two advanced 

control methods from the aspects of dynamic performance, and their robustness against 

disturbances and parameter variations is presented. The simulation results demonstrated 

the effectiveness of the two controllers. 

1.4 Outline 

The rest of the thesis is organized as follows. The dynamic modeling of a PMSM 

speed system is introduced in Chapter II. A SMC is developed on the PMSM speed 

system in Chapter III. A LADRC is developed on the PMSM speed system in Chapter IV. 

The simulation results for both SMC and LADRC on the PMSM speed system are 

presented in Chapter V. The concluding remarks and future research are provided in 

Chapter VI. 
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CHAPTER II 

PMSM SPEED SYSTEM 

2.1 Introduction 

PMSM speed systems refer to the systems that take the speed of PMSM as the 

major control object with speed sensors or sensorless calculation. 

PMSM speed systems are designed to satisfy specific industrial manufacture 

processes or customer requirements. A high performance PMSM speed system requires 

fast and smooth transient response without overshoot, a stable steady state response 

without error and robustness against disturbances and parameter variations. 

There are speed feedback control loop and current feedback control loops in 

PMSM speed systems. The current controllers are used to control the electromagnetic 

torque and flux linkage in PMSM. The speed controller is used to drive the speed outputs 

to the speed references. The output of the speed controller is the input of current control 

loop and the performance of speed controller affects the overall performance of the 

system. So the design of speed controller is critical for PMSM speed systems. 
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The block diagram of PMSM speed system is presented in Figure 2.1. The 

currents converter is used to converter three-phase currents to two-phase currents. 

Speed
reference +- + -

Speed
controller

Current
controllers PMSM

Speed
sensor

Currents
Converter

Speed

 

Figure 2.1: Block diagram of PMSM speed system 

2.2 Permanent Magnet Synchronous Motor 

2.2.1 Mechanical Structure 

PMSM is an AC electric machine whose rotor is mounted with permanent 

magnets instead of windings. 

PMSM is constructed with stator and rotor [1-3]. The air gap magnetic field of 

PMSM is mainly provided by permanent materials on the rotor and the stator magnetic 

field is generated by three-phase sinusoidal currents [3]. A schematic diagram of 

PMSM’s mechanical structure is presented in Figure 2.2. 

In Figure 2.2, the stator, iron core and shaft are made of silicon steel, and the slots 

in the stator are used for placing windings [1-3]. The permanent materials could be 

alnicos (Al, Ni, Co, Fe), Ceramics (barium ferrite BaO × 6Fe2O3, strontium ferrite 
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SrO×6Fe2O3) or rare-earth materials (samarium-cobalt SmCo, neodymium-iron-boron 

NdFeB) [3]. The permanent materials are firmly installed on the rotor and N represents 

the North Pole and S represents the South Pole. 

 

Figure 2.2: Mechanical structure of PMSM [1] 

2.2.2 Rotating Magnetic Field 

The PMSM stator is winded with copper wires that are distributed to three-phases. 

When three-phase sinusoidal currents are applied to the windings, a rotating magnetic 

field is generated, which drives the rotor to rotate with it at synchronous speed. 

There are two major stator winding connection patterns: distributed windings and 

concentrated windings. Distributed winding has the advantage of even magnetic field 
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distribution in sinusoidal form, but it requires more coils that take more space [54]. And 

concentrated winding has the advantages of less cost of coils and small volume, but its 

magnetic field is not as evenly distributed as distributed winding [54]. 

We take one-pole-pair PMSM for an example to explain how stator windings 

generate rotating magnetic field. The windings are usually star-connected as shown in 

Figure 2.3. In this figure, Au , Bu  and Cu  represent three-phase supply voltages and Ai , 

Bi  and Ci  represent three-phase supply currents. A, B and C represent the input ports of 

each phase and X, Y and Z represent the terminal ports of each phase. Since the three-

phase windings are star-connected, X, Y and Z are connected at the same point. 

A

B C

X
Y Z

iA

iB

iC

uA

uB

uC  

Figure 2.3: Two pole pair PMSM Y-connection stator windings [55] 

There is a 120º phase difference between each two of the three-phase currents as 

shown in (2.1) and Figure 2.4. 
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2sin
3

4sin
3

A m e

B m e

C m e

i I sin t

i I t

i I t
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πω

πω


=


  = −  

 
  = −  
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                                          (2.1) 

t (s)0

iA iB iC

π 2π

i (A)

Im

π/3 2π/3

 

Figure 2.4: Three-phase sinusoidal supply currents 

In (2.1) and Figure 2.5, Ai , Bi  and Ci  represent the instant currents in the three-

phases. Parameter mI  represents the current peak value. Parameter eω  represents the 

angular electrical frequency and t represents time. 

Since the supply currents are consistent, the rotating magnetic field is continuous. 

In order to illustrate the relationship of rotating magnetic field positions and supply 

currents, four specific moments are taken: 1  = 0( )t s , 2  = ( )
3

t sπ , 3
2 = ( )
3

t sπ  and 

4  = ( )t sπ . 
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The corresponding rotating magnetic field positions of distributed windings are 

shown in Figure 2.5, Figure 2.6, Figure 2.7, and Figure 2.8. Define the anticlockwise 

direction is positive and phase A as zero degree. The direction of magnetic field is 

decided by Ampere’s circuital law, and N represents the North Pole and S represents the 

South Pole. The parameter eω represents electrical angular speed and etω  represents the 

electrical angular position. When the current value is positive, the current is feeding in 

the winding, so a cross symbol is used. When the current is flowing out of an end, a dot 

symbol is used. 

A

B

C

Z

Y

N S

ωet1=0

ωeS N

Stator

Magnetic circuit

Air gap

Rotor

Slot

 

Figure 2.5: Rotating magnetic field of distributed windings at 1  = 0etω  
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A

B

C

Z

Y

ωet2=π/3

N

S

ωe

S

N

Stator

Magnetic circuit

Air gap

Rotor

Slot

 

Figure 2.6: Rotating magnetic field of distributed windings at 2 = / 3etω π  

AX

B

C

Z

Y

ωet3=2π/3

N

S

ωe

S

N

Stator

Magnetic circuit

Air gap

Rotor

Slot

 

Figure 2.7: Rotating magnetic field of distributed windings at 3 =2 / 3etω π  
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AX

B

C

Z

Y

ωet4=π

NSωe

Stator
Magnetic circuit

Air gap

SN

Rotor

Slot

 

Figure 2.8: Rotating magnetic field of distributed windings at 4 =etω π  

From Figure 2.5 to Figure 2.8, the magnetic circuit includes stator and the air gap. 

The stator silicon steel will generate some small currents in the changing magnetic field, 

resulting in producing heat. This phenomenon is defined as eddy current loss [1-3]. Also 

the flux changing rate of the stator silicon steel is slower than the flux changing rate 

generated by supply currents, resulting in the stator silicon steel absorbing small amount 

energy from the magnetic field to maintain the same flux value. This phenomenon is 

defined as hysteresis loss [1-3]. The magnetic flux capacity of the stator silicon steel is 

limited, so the flux cannot be increased at its limitation value. This phenomenon is 

defined as magnetic saturation [1-3]. 

When the rotor rotates, a voltage is generated by the rotor flux in the stator 

windings and this voltage is opposite to the supply voltage. This voltage is defined as 

back-EMF. 
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2.3 Coordinate Transformations 

Coordinate transformation is used for FOC realization and PMSM mathematical 

model simplification, so the understanding of coordinate transformation is necessary for 

the control of PMSM. 

Three coordinates are defined and they are the A-B-C stationary coordinate, the α-

β stationary coordinate and the d-q rotating coordinate. 

Figure 2.9 shows the A-B-C stationary coordinate. In Figure 2.9, there is 120º 

phase difference between each two of the three phases. The three-phase currents Ai , Bi  

and Ci  of PMSM are assigned along phase A, phase B and phase C respectively. Then the 

three-phase currents Ai , Bi  and Ci  are considered as three space vectors, and the three-

phase currents together constitute a composite vector Si . 

Phase C

Phase A

Phase B

 

Figure 2.9: The A-B-C stationary coordinate 
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Define the anticlockwise as positive direction and phase A as zero degree. 

Suppose the composite vector Si  rotates at a constant speed eω  in positive direction. The 

composite vector Si  in the A-B-C stationary coordinate is presented in Figure: 2.10. 

ωe

iAiB

iC

iS

Phase A

Phase B

Phase C  

Figure 2.10: Composite vector in the A-B-C stationary coordinate 

Figure 2.11 shows the α- β stationary coordinate. In Figure 2.11, phase α and 

phase β are orthogonal to each other and the current iα  and iβ  are defined as the current 

vectors along phase α and phase β.  

Phase α

Phase β

 

Figure 2.11: The α-β stationary coordinate 
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Figure 2.12 shows the α- β stationary coordinate. The composite vector Si  can be 

composed by these two orthogonal space vectors iα  and iβ . 

Phase α 

Phase β 

ωe

iα

iSiβ

 

Figure 2.12: Composite vector in the α-β stationary coordinate 

Figure 2.13 shows the d- q rotating coordinate. In Figure 2.13, the phase d and 

phase q are orthogonal to each other and the currents di  and qi  are defined as the current 

vectors along phase d and phase q. 

Phase d

Phase q

 

Figure 2.13: The d-q rotating coordinate 
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Figure 2.14 shows the composite vector Si  in the d- q rotating coordinate. The 

composite vector Si  can be composed by di  and qi . The amplitude of di  and qi  remain 

the same, and the d-q rotating coordinate rotates at the constant speed eω . And the angle 

between phase d and phase A is defined as eθ . 

Phase A

Phase d

Phase q 

ωe

iS

iq id

eθ

 

Figure 2.14: Composite vector in the d-q rotating coordinate 

The propose of coordinate transformation is to convert the current vectors Ai , Bi  

and Ci  to current vectors di  and qi . Figure 2.15 shows the relationship between PMSM 

rotor and the d-q rotating coordinate. In Figure 2.15, the phase d is assigned along the 

rotor flux of PMSM and eω  represents the angular electrical speed and eθ  represents the 

angular electrical position. 
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Phase d

Phase q

S

N

Phase A
eθ

 

Figure 2.15: Relationship between PMSM rotor and d-q rotating coordinate 

The transformation from current vectors Ai , Bi  and Ci  to current vectors iα  and 

iβ  is defined as Clarke transformation. And the transformation from current vectors iα  

and iβ  to current vectors Ai , Bi  and Ci  is defined as Inverse Clarke transformation. 

The Clarke transformation can be represented by: 

1 11
2 2 2
3 3 30

2 2

A

B

C

i
i

i
i

i

α

β

   − −     =       −    

                                     (2.2) 

The Inverse Clarke transformation can be represented by: 

01
2 1 3
3 2 2

1 3
2 2

A

B

C

i
i

i
i

i

α

β

 
 

   
    = −           

 − −  

                                           (2.3) 
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The transformation from current vectors iα  and iβ  to current vectors di  and qi  is 

defined as Park transformation. And the transformation from current vectors di  and qi  to 

current vectors iα  and iβ  is defined as Inverse Park transformation. 

The Park transformation can be represented by: 

cos sin
sin cos

d e e

q e e

i i
i i

α

β

θ θ
θ θ

    
=    −    

                                     (2.4) 

The Inverse Park transformation can be represented by: 

cos sin
sin cos

de e

qe e

ii
ii

α

β

θ θ
θ θ

−     
=     
    

                                     (2.5) 

In (2.4) and (2.5), eθ  represents the angular electrical position. 

Combining Clarke transformation and Park transformation, we will have the 

transformation from current vectors Ai , Bi  and Ci  to current vectors di  and qi  which is 

presented by (2.6). And the transformation from current vectors di  and qi  to current 

vectors Ai , Bi  and Ci  is presented in (2.7). Again in these two equations, eθ  represents 

the rotor angular electrical position. 

2 2cos cos( ) cos( )
2 3 3

2 23 sin sin( ) sin( )
3 3

Ae e e
d

B
q

e e e C

i
i

i
i

i

π πθ θ θ

π πθ θ θ

   − +    =        − − − − +     

                  (2.6) 
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cos sin
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3 3
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3 3

e e
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d
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q
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e e
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i

i
i

i

θ θ
π πθ θ

π πθ θ

 
 −

        = − − −           
 + − +
 

                              (2.7) 

2.4 Equivalent Circuit and Mathematical Models for PMSM Systems 

2.4.1 Equivalent Circuit Model in A-B-C Coordinate 

The equivalent circuit for PMSM systems in the A-B-C coordinate is presented in 

Figure 2.16. In Figure 2.16, Au , Bu  and Cu  represent the three-phase supply voltages, Ai , 

Bi  and Ci  represent the three-phase supply currents, SR  is the stator resistance in each 

phase, L is the stator self-inductance in each phase, M is the stator mutual-inductance 

between two phases, and Ae , Be  and Ce  are back-EMF from the rotor side. 
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Figure 2.16: An equivalent circuit for PMSM system in A-B-C coordinates [56] 

From Figure 2.16, the PMSM model in the A-B-C coordinate can be constructed 

using Kirchhoff’s voltage laws (KVL). 

From KVL, the voltage equations of PMSM of each phase are presented in (2.8).  

( )

( )

( )

A
A A S A

B
B B S B

C
C C S C

iu i R

iu i R

iu

dL M e
dt
dL M e
dt
dL M e
d

i R
t

= + − +

= + − +

= + − +










                                      (2.8) 

According to the Faraday’s law, the back-EMF is the derivative of rotor flux 

linkage.  

The back-EMF equations of each phase are presented in (2.9), where fψ  

represents the rotor flux linkage and eθ  is rotor electrical angular position. 
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                                       (2.9) 

The total flux in each phase is the combination of the stator flux and the rotor flux. 

The flux equations of each phase are presented in (2.10). In (2.10), Aψ , Bψ  and 

Cψ  represent the total flux in each phase. 
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 
 − 
 


 = − +


= − +



= − +


                              (2.10) 

The electromagnetic torque equation is presented in equation (2.11). In (2.11), eT

represents electromagnetic torque and eω  represents angular electrical speed. 

A A B B C C
e

e

e ei i iT e
ω

+ +
=                                               (2.11) 

2.4.2 PMSM Equivalent Circuits and Models in the d-q Coordinate 

The equivalent circuits of d-q coordinate are transformed from equivalent circuits 

of A-B-C coordinate. The details about the circuit transformation are introduced in [57]. 

The equivalent circuits of d-q coordinate are presented in Figure 2.17 and Figure 2.18. In 
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Figure 2.17 and Figure 2.18, SR  is the stator resistance, du  and qu  are supply voltages. 

di  and qi  are supply currents, dL  and qL  represent the self-induction in phase d and 

phase q, eω  represents the angular electrical speed, and dψ  and qψ  represent the flux 

linkage in phase d and phase q. 

RS Ld

ud

+

-

-
+

ωeψq

id

 

Figure 2.17: PMSM equivalent circuit in phase d [56] 
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uq

+

-
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+ωeψd

iq

 

Figure 2.18: PMSM equivalent circuit in phase q [56] 

The voltage equations in d-q coordinate are presented in (2.12). 

d
d s d e q

q
q s q e d

du R i
dt

d
u R i
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ψωψ

ψ
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= − +


+ +


=






                                        (2.12) 
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The flux equations in d-q coordinate are presented in (2.13). Since the phase d is 

assigned along the rotor. The total flux in phase d is the combination of stator flux and 

rotor flux. In (2.13), fψ  represents the rotor flux. 

d d d f

q q q

L i
L i

ψ ψ
ψ

= +
=





                                               (2.13) 

The electromagnetic torque equation in d-q coordinate is presented in (2.14). In 

(2.14), pn  is the number of pole pairs. 

( )3
2e p d q q dT n i iψ ψ= −                                           (2.14) 

According to Newton’s second law, the torsional mechanical equation is present 

in (2.15). In (2.15), mω  represents rotor mechanical speed, J represents the moment of 

inertia, LT  represents the load torque ( LT  is constant) and B represents friction. 

( )1m
e L m

d T T B
dt J
ω ω= − −                                     (2.15) 

The relationship between electrical speed and mechanical speed is shown in 

(2.16). 

e p mnω ω=                                                      (2.16) 
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2.5 Field Oriented Control (FOC) 

FOC is the decoupling control strategy for PMSM and the control methods such 

as PI, FLC and SMC can be applied to PMSM based on the control frame of FOC. 

The purpose of FOC on PMSM is to control the composite flux linkage and 

electromagnetic torque of PMSM separately, so that the control frame of PMSM can be 

simplified as the control frame of a separately excited DC motor [2]. 

The working principle of FOC is demonstrated in Figure 2.19. In Figure 2.19, Sψ  

is the composite flux linkage, dψ  and qψ  are total flux linkage in phase d and phase q, 

dL  and qL  are self-induction in phase d and phase q, di  and qi  are currents in phase d 

and phase q, fψ  is the rotor flux, Si  represents the composite current vector, eω  is the 

angular electrical speed and eθ  is the angular position. 

Phase A

Phase d

Phase q 

iS

iq

id

ψS

eθ
ψd =Ldid+ψf

ψq=Lqiq

ωe

 

Figure 2.19: Demonstration of FOC 
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In the control frame of FOC the phase d current is controlled to be zero. When 

phase d current is zero, the total flux linkage in phase d is equal to the rotor flux linkage 

which is constant. Then the composite flux linkage Sψ  is only modified by the phase q 

flux linkage qψ  and qψ  is controlled by qi . 

The system can generate the maximum electromagnetic torque when the phase d 

current is zero. The (2.14) can be rewritten as (2.17). So the electromagnetic torque is 

controlled by phase q current qi . 

3
2e p f qT n iψ=                                                   (2.17) 

For FOC realization, the phase d current and phase q current need to be controlled 

separately. So there are two current feedback control loops. And there is a speed feedback 

control loop in PMSM speed system. 

The block diagram of PMSM speed system is shown in Figure 2.24. In Figure 

2.24, dω  is the speed reference signal, mω  is the speed feedback signal, mθ  is the position 

feedback signal, u is speed control signal (u is also the reference signal for q current 

control loop), du  is phase d current control signal, and qu  is phase q current control 

signal. Since the phase d current needs to be maintained at zero, the phase d reference is 

zero. 
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phase d
reference ud

uq

iq
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current
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ωd
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iq
id

LoadTe

speed

Figure 2.20: Block diagram of PMSM speed system 

2.6 Summary 

The mechanical structure of PMSM was introduced in this Chapter. The working 

principle of PMSM was discussed. The PMSM equivalent circuits and PMSM 

mathematical models were also presented, and the FOC working principle and control 

frame was introduced. 
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CHAPTER III 

SLIDING MODE CONTROL 

3.1 Concept of SMC 

Sliding mode control (SMC) is a nonlinear control method which forces the states 

of a system to land and remain on the desired states trajectories with the control signal 

that switches in high frequency between positive and negative saturation. 

SMC consists of three parts, which are sliding surface, switching control and 

equivalent control. Sliding surface is the desired states trajectories. Switching control is a 

discontinuous control law to force the states to land on the sliding surface from their 

initial conditions. Equivalent control is a continuous control law to remain the states on 

the sliding surface. 

3.1.1 Sliding surface 
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Sliding surface is the essential part of SMC because it defines the desired states 

trajectories, which affects the stability and dynamic performance of the system. 

For a n-th order single input single output system, the sliding surface is defined as 

(3.1) [58]. In (3.1), s represents the sliding surface, c is a positive scalar, which is the 

sliding surface coefficient, e is the tracking error, and n is the order of the system. 

1nds c e
dt

−
 = + 
 

                                                   (3.1) 

For a second order system, the sliding surface will be s e ce= +  and its 

demonstration in phase plane is presented in Figure 3.1. In Figure 3.1, SMC should force 

any initial states to land on the sliding surface in a finite time. If both the tracking error 

and the derivative of the tracking error are zero, the system reaches the demanded states. 

0 x

ẋ

s=0

s=e+ce˙

Slope is c

Finite reaching time

 

Figure 3.1: Example of sliding surface [45, 58] 
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Once the sliding surface is defined, the control problem concerning the system’s 

dynamics is transferred to remaining the system’s states on the sliding surface. The order 

of the sliding surface is less than the order of the system, so the sliding surface has the 

advantage of order reduction for control design. 

The stability of SMC is testified using Lyapunov's second method for stability. 

Define a positive definite Lyapunov function as (3.2) [45]. In (3.2), V is a positive 

definite Lyapunov function and s is a sliding surface. If the derivative of (3.2) is a 

negative definite function as (3.3), the system is asymptotically stable in the sense of 

Lyapunov. 

21( ) 0, (0) 0
2

V s s onlyV= ≥ =                                      (3.2) 

( ) 0V s ss= <

                                                 (3.3) 

3.1.2 Switching control 

Switching control is used to force the initial states of the system to land on the 

desired state trajectories in a finite time and also used to force the states back to the 

desired state trajectories when disturbances occur. 

The switching control is defined as (3.4) [45]. In (3.4), u is the switching control 

law, ou  is the positive controller gain and s is the sliding surface. The switching control 

has only two output signals, and the sign of switching control is decided by the sign of 

the sliding surface. If the sliding surface is position, the switching control signal is 

positive. If the sliding surface is negative, the switching control signal is negative. 
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0
0

o

o

u if s
u

u if s
+ >

= − <
                                                   (3.4) 

The switching control can be written as (3.5) [45]. In (3.5), ( )sgn s  is a sign 

function that switches between 1 and -1 at high frequency. 

( )sgnou u s=                                                        (3.5) 

We take the first order relay system which is presented by (3.6) as an example to 

explain how switching control works [58]. In (3.6), x is the output signal, u is the control 

signal and ( )f x  is an unknown but bounded function, and ( ) 0f x f< , where 0f  is 

constant. 

( )x f x u= +                                                         (3.6) 

The switching control effort swu  for the system (3.6) is designed as (3.7). In (3.7), 

e is the tracking error and r is the reference signal. 

( )sgnsw ou u e=                                                       (3.7) 

e r x= −                                                             (3.8) 

The derivative of tracking error can be developed as (3.9). If the switching 

controller gain ( )0ou f r> +  , then 0ee < . The error will decrease to zero at a finite time. 

( ) ( )sgnoe r x r f x u e= − = − −                                             (3.9) 

3.1.3 Equivalent control 
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Equivalent control is a continuous control used to keep the system states staying 

on the desired state trajectories. 

Under the equivalent control, the system states would not drift out of the sliding 

surface unless there is unknown internal dynamics or external disturbance. Equivalent 

control is mainly designed to compensate the internal dynamics under the assumption that 

the major internal dynamics and system parameters are known. 

We use the first order relay system in (3.6) as an example to explain equivalent 

control. 

If the internal dynamic ( )f x  can be estimated by a known function ( )f̂ x , ( )f x  

can be cancelled by ( )f̂ x  [58]. Inserting ( )( )f̂ x r−   into (3.9), yields (3.10). 

( ) ( )( ) ( )ˆ sgnoe r x r f x f x r u e= − = − + − −                               (3.10) 

Define the difference between ( )f x  and ( )f̂ x  as ( ) ( )ˆf f x f x∆ = − . Then 

(3.10) can be rewritten as (3.11). 

( )sgnoe r x f u e= − = ∆ −                                            (3.11) 

The error will decrease to zero if ou f> ∆  because 0ee < . Therefore the 

equivalent control can be designed as (3.12). 

( )ˆ
equ f x r= − +                                                    (3.12) 

The general equivalent control law can be calculated by letting the derivative of 

sliding surface 0s = . 
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3.2 SMC Design 

We take a general second order system (3.13) as an example to explain SMC 

design. In (3.13), y is the system’s output signal, u is the control signal, b is a scalar, and 

( ), ,f y y t  represents the system’s dynamics, which is not exactly known but is bounded. 

( ), ,y f y y t bu= +                                              (3.13) 

The sliding surface is designed according to (3.1). Since it is a second order 

system, the sliding surface should be (3.14). In (3.14), e is the tracking error and defined 

by (3.15), and r is the reference signal. 

s e ce= +                                                        (3.14) 

e r y= −                                                         (3.15) 

Differentiating (3.14) and making the derivative of sliding surface equal to zero 

produces (3.16). 

0s e ce= + =                                                     (3.16) 

Substituting (3.13) and (3.15) into (3.16), we will have (3.17). In (3.17), f 

represents ( ), ,f y y t . 

( ) 0s r f bu ce= − − + =                                       (3.17) 

The equivalent control can be designed as (3.18). In (3.18), f̂  is the estimation 

of ( ), ,f y y t . 



 

 

35 

( )1 ˆ
equ r f ce

b
= − +                                               (3.18) 

The switching control is designed as (3.19). In (3.19), k is a positive controller 

gain. 

( )sgnswu k s=                                                (3.19) 

The general SMC is the combination of equivalent control and switching control 

as (3.20). 

eq swu u u= +                                                   (3.20) 

Lyapunov's second method is used to testify the stability of SMC. Substituting 

(3.20) into (3.17), we can obtain (3.21). 

( )( )eq sws r f b u u ce= − − + +                                     (3.21) 

Substituting (3.18) and (3.19) into (3.21), we have (3.22). 

( )ˆ sgns f f bk s= − −                                            (3.22) 

Define ˆf f f∆ = − . Equation (3.22) can be rewritten as (3.23), where bk is 

defined as K in (3.24). 

( )sgns f K s= ∆ −                                               (3.23) 

K=bk                                                           (3.24) 

The system will be stable in sense of Lyapunov if K f> ∆  because 0ss < . 
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3.3 Application of SMC to PMSM Speed System 

The speed tracking error signal e is defined as the difference between reference 

speed dω  and the speed feedback signal mω  as (3.25). 

d me ω ω= −                                                       (3.25) 

Substituting (2.15) into the double derivative of the error signal e, we can obtain 

(3.26). 

3
2

p f
d m d q m

n Be i
J J
ψ

ω ω ω ω
 

= − = − − 
 



                                  (3.26) 

We define the sliding surface as (3.27). 

s e ce= +                                                       (3.27) 

We calculate the equivalent controller for PMSM speed system by letting 0s =  as 

represented by (3.28) 

3
0

2
p f

d q m

n Bs e ce i ce
J J
ψ

ω ω
 

= + = − + + = 
 



                               (3.28) 

The equivalent control is calculated as (3.29). In (3.29), qi  is the control signal for 

PMSM speed control loop. Parameter b is a scalar as (3.30). 

1
eq q d m

Bu i ce
b J

ω ω = = + + 
 
                                          (3.29) 

3
2

p fn
b

J
ψ

=                                                         (3.30) 
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The switching control is designed as (3.31). In (3.31), K is the positive controller 

gain. 

( )sgnswu K s=                                                 (3.31) 

The SMC for PMSM speed control loop is the combination of equivalent control 

and switching control as in (3.28). 

( )1 sgneq sw d m
Bu u u ce K s

b J
ω ω = + = + + + 
 
                         (3.32) 

3.4 Summary 

The basic concept of SMC has been introduced in this Chapter. Also the design 

procedure of SMC and its implementation on PMSM speed control were introduced. 
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CHAPTER IV 

LINEAR ACTIVE DISTURBANCE REJECTION CONTROL 

4.1 Concept of LADRC 

ADRC is an advanced control technology, which is specialized on estimation and 

cancellation of system internal and external disturbances with the use of an extended state 

observer (ESO). 

Linear ADRC or LADRC consists of the LESO and a general PD controller. As 

the major disturbance signals such as unknown internal dynamics and external load 

variation are cancelled, a complex system can be controlled by a general PD controller to 

achieve desired performances. 

For LADRC design, only two factors need to be known. The first factor is the 

order of the system, which can be tested by time response or frequency response. The 

other factor is the basic parameters of the system, which can be acquired from 

manufacturer’s data. 
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LESO offered the possibility of disturbance estimation for LADRC. The total 

internal unknown dynamics and external disturbance are considered as a generalized 

disturbance, which is estimated by an augment state [51] in LESO. Therefore, for a 

second-order system, we need a third-order LESO to estimate the system states. 

The block diagram of LADRC with a third-order LESO is shown in Figure 4.1. In 

Figure 4.1, r is the reference signal and r  is the derivative of r. Parameter e is the 

tracking error signal and e  is the derivative of e. PD represents a general proportional-

derivate controller. Parameter 0u  is the control signal for the ideal system dynamic after 

disturbance cancellation. Parameter b is a scalar for control input. Parameter u is the 

control signal. Parameter w represents the external disturbance. Paremeter y is the 

system’s output signal. Patermeter 1z  is the estimation of y. Paremeter 2z  is the 

derivative of 1z . Parameter 3z  is the estimated generalized disturbance signal. 

In Figure 4.1, the LESO takes the control signal u and feedback signal y as inputs, 

and it estimates y and the generalized disturbance signal with 1z  and 3z  respectively. The 

estimated total disturbance signal is used to cancel the real disturbance in the plant. After 

the disturbance cancellation, the plant can be controlled by a general PD controller. 
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Figure 4.1: Block diagram of LADRC with a third-order LESO 

4.2 LADRC Design 

A generalized second order system (4.1) is taken as an example to explain the 

LADRC design [51]. In (4.1), y is the output signal, u is the control signal. ( ), , ,f y y w t  

represents the system dynamics that contain the internal and external disturbances, w is 

external disturbances, t is time and b is constant. 

( ), , ,y f y y w t bu= +                                                   (4.1) 
For motion control systems, b is the torque constant that is related to moment of 

inertia, which can be calculated by designer [59]. 

In order to design LESO, (4.1) has to be written in state space form. Let 1x y= , 

2x y=   and 3x f=  where f is an augmented state that is assumed to be differentiable. 

And let h f= /  and assume h is bounded. 
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Then the system (4.1) can be represented by state equations (4.2). 

x Ax Bu Eh
y Cx
= + +

 =



                                               (4.2) 

where 
0 1 0
0 0 1
0 0 0

A
 
 =  
  

, 
0

0
B b

 
 =  
  

, [ ]1 0 0C =  and 
0
0
1

E
 
 =  
  

. 

For a second-order system, a third-order LESO is constructed as (4.3). In (4.3), z 

is the estimation of x, 1z  is the estimated feedback signal, 2z  is the derivative of 1z  and 

3z  is the estimated total disturbance signal, L is the observer gain vector, and 1β , 2β  and 

3β  are observer gains. The observer gain vector needs to be determined to make sure the 

observer poles are placed properly.  

( )1 1

ˆ
z Az Bu L x z
y Cz

 = + + −


=



                                        (4.3) 

1

2

3

L
β
β
β

 
 =  
  

                                                           (4.4) 

If all the poles of LESO are placed at oω−  the tuning of LESO is simplified [51]. 

So the observer gain vector can be designed as (4.5). In (4.5), oω  is the bandwidth of 

LESO [51]. 

1
2

2
3

3

3
3

o

o

o

L
β ω
β ω
β ω

   
   = =   
      

                                                   (4.5) 
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The LADRC control law is designed as (4.6). In (4.6), u is LADRC control law, 

ou  is the control signal for the ideal system dynamic after disturbance cancellation, 3z  is 

the estimated total disturbance signal and b is a scalar. 

3ou zu
b
−

=                                                         (4.6) 

Substituting (4.6) into (4.1), we have (4.7). 

3 oy f z u= − +                                                    (4.7) 
If the total disturbance f is estimated by 3z  accurately, it can be cancelled. Then 

the system (4.1) becomes a pure double integrator as (4.8) which is the ideal dynamic 

after disturbance cancellation. 

oy u=                                                            (4.8) 
For (4.8), ou  can be designed as a general PD controller given by (4.9). In (4.9), 

pk  and dk  are proportional and derivative controller gains respectively, r is the reference 

signal. 1z  is the estimated feedback signal and 2z  is the derivative of 1z . 

( ) ( )1 2o p du k r z k r z= − + −                                         (4.9) 

The tuning of ou  will be simplified by placing both the close-loop system poles at 

cω−  [51]. So the controller gains in (4.9) can be designed as (4.10) and (4.11) [51]. 

2
p ck ω=                                                         (4.10) 

2d ck ω=                                                       (4.11) 
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4.3 Application of LADRC to PMSM Speed System 

The speed loop of PMSM is an approximate first-order system, so the first-order 

LADRC with a second-order LESO is applied to the loop. 

Substituting (2.17) into (2.15), the differential equation of PMSM speed control 

loop is presented in (4.12). In (4.12), mω  is the mechanical speed output, J is the moment 

of inertia, pn  is the number of pole pairs, fψ  is the rotor flux linkage, qi  is phase q 

current, LT  is load torque, and B is friction factor. 

1 3
2 p f mq

m
Ln id T B

dt J
ω ωψ = − − 

 
                                   (4.12) 

In (4.12), the generalized disturbance f is represented by (4.13). 

L
m

TBf
J J
ω= − −                                                 (4.13) 

Substituting (4.13) into (4.12), we have (4.14). In (4.14), b is defined by (3.30). 

m
q

d f bi
dt
ω

= +                                                   (4.14) 

Write (4.14) in state space form and we have (4.15). Let 1 mx ω= , 2x f=  and 

f h= . In (4.15), x is the state vector, u is the control vector and h is an augment vector. 

x Ax Bu Eh
y Cx
= + +

 =



                                             (4.15) 

where 
0 1
0 0

A  
=  
 

, 
0
b

B  
=  
 

, [ ]1 0C =  and 
0
1

E  
=  
 

. 
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The LESO for (4.15) is designed as (4.16). In (4.16), z is the estimation of x, 1z  is 

the estimated feedback signal and 2z  is the estimated generalized disturbance. The 

observer gain vector L is designed as (4.17). 

( )1 1z Ax Bu L x z
y Cz

 = + + −


=





                                           (4.16) 

2

2 o

o

L
ω
ω

 
=  
 

                                                       (4.17) 

The control law is designed as (4.18). In (4.18), qi  is the phase q current control 

signal. 

2o
q

u zu i
b
−

= =                                                    (4.18) 

The ideal dynamic of (4.14) after the disturbance cancellation is presented in 

(4.19). 

m
o

d u
dt
ω

=                                                        (4.19) 

The controller for (4.19) is designed as (4.20). In (4.20), dω  is the speed reference 

signal and ˆmω  is the estimated speed feedback signal. 

( )ˆo p d mu k ω ω= −                                                (4.20) 
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4.4 Summary 

The design process of LADRC is introduced in this chapter. The tuning of 

LADRC and LESO are explained. The application of LADRC to a first-order PMSM 

speed loop is discussed. 
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CHAPTER V 

SIMULATION AND COMPARISON 

5.1 Introduction 

Matlab is powerful software that can solve complex mathematical problems. 

Simulink is an important toolbox of Matlab, which shares the calculation ability of 

Matlab and provides the possibility of graphic modeling. Graphic modeling helps the 

designers build models that represent the real world systems in structure and function. 

The design in Matlab/Simulink does not have to run the real-world systems but with the 

major problems being solved, which lowers the research cost. So it is broadly used in 

science and engineering research. 

In this Chapter, the simulation results of PI controller, SMC and LADRC are 

presented in Section 5.2. The comparisons of PI controller, LADRC and SMC are 

presented in Section 5.3. The effectiveness of SMC and LADRC on a PMSM system is 

verified by simulation results. 



 

 

47 

5.2 Simulation Results 

The PMSM parameters are presented in Table I. 

TABLE I: PMSM PARAMETERS VALUES [60] 

Name Symbol Value 

Stator resistance 
SR  2.875Ohm  

Rotor flux linkage 
fψ  0.175Wb   

Phase d inductance 
dL  0.0085H  

Phase q inductance 
qL  0.0085H 

Moment of inertia J 0.0008 2kgm  

Number of pole pairs 
pn  4 

Rated speed n 3000 rpm   
 

PI controller is a simple control method for PMSM speed system and it is broadly 

used in industry. So we consider the performance of PMSM speed system with PI speed 

controller as a reference performance for the performance of PMSM speed systems with 

SMC and LADRC. 

The block diagram of PMSM speed system with PI controller is presented in 

Figure 5.1. In Figure 5.1, dω  is the speed reference signal, mω  is the speed feedback 

signal, e is the speed tracking error, u is the output of speed controller, du  is the output of 

phase d current controller, qu  is the output of phase q current controller, eT  is 

electromagnetic torque, di  is the current in phase d and qi  is the current in phase q. There 
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are speed feedback control loop and the current feedback control loop in Figure 5.1. The 

current feedback control loop is used to remain the PMSM currents and the speed 

controller is used to regulate the speed. 

speed
reference +- +-

+-0

phase d
reference ud

uq

iq

id

ωm

uPI

PI

PIωd

ωm
iq
id

LoadTe

PMSM
e

speed

 

Figure 5.1: Block diagram of PMSM speed system with PI controllers 

To decide the controller gains for current control loops, a small step input with a 

magnitude of 0.1 A  is used as reference signal for the current control loop. The current 

controller gains are decided as 20pk =  and 10ik = . The step responses for currents di  

and qi  with PI controllers are presented in Figure 5.2. 
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Figure 5.2: Step responses for current di  and qi  with PI controllers 

From Figure 5.2, we can see that the responses of current control loops are very 

fast. It takes approximately 0.002 seconds for the currents di  and qi  to reach steady states. 

Advanced controllers are not usually applied to the current control loop because of the 

complex algorithms which could lengthen the responding time of the system. From the 

figure, we can also see that there are steady state errors in the step responses of the 

currents. However, the steady state error in current control loop will not affect the overall 

performance of PMSM speed system because this small error can be compensated by the 

speed controller. 
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We apply the PI controller to the speed control loop. The speed reference is a step 

input with magnitude of 200 rad/s. The controller gains 0.5pk = and 11ik =  are decided 

by trial-and-error tuning in order to eliminate overshoot or steady state error in the step 

responses for speed feedback control loop. 

The speed response of PMSM speed system with PI speed controller and PI 

control signal in the absence of load are presented in Figure 5.3. 

 

Figure 5.3: Speed response and PI control signal in the absence of torque load 
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From Figure 5.3, we can see that it takes 0.01 seconds for the speed to reach the 

set-point. The control signal remains at 7 V at steady state. 

A step torque load with magnitude of 10 Nm is applied to the system at 0.1 second 

to test the PI controller’s disturbance rejection capacity. The speed response and PI 

control signal in the presence of step torque load is presented in Figure 5.4. 

 

Figure 5.4: Speed response and PI control signal in the presence of torque load 

From Figure 5.4, we can see that the speed drops 10 percent after the step load is 

applied. It takes 0.15 second for PI speed controller to drive the speed back to the set-

point. The control signal increases to 18 V at steady state after the step load is applied. 
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Next we increase the moment of inertia five times to test the PI speed controller’s 

robustness against parameter variations. The speed response and PI control signal with 

increased inertia are presented in Figure 5.5. 

 

Figure 5.5: Speed response and PI control signal with increased moment of inertia 
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controller makes more effort to drive the speed to its set-point, resulting in over 

compensation. 

The block diagram of PMSM speed system with SMC is presented in Figure 5.6. 

In Figure 5.6, PI controllers are applied to the currents control loops and the PI controller 

gains remain the same ( 20pk =  and 10ik = ). The SMC is applied to the speed control 

loop. 
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Figure 5.6: Block diagram of PMSM speed system with SMC 

The SMC parameters are decided by trial-and-error tuning. The sliding surface 

coefficient is chosen as c=500 and the SMC controller gain is selected as K=20. 

The speed response and SMC control signal without load are presented in Figure 

5.7. The close view of the control signal of SMC in the absence of load is presented in 

Figure 5.8. 
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Figure 5.7: Speed response and the control signal of SMC in the absence of torque 

load 
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Figure 5.8: Close view of the control signal of SMC in the absence of torque load 

From Figure 5.7, we can see that it takes 0.015 seconds for the speed output to 

reach the set-point. From Figure 5.8, we can see that control signal switches between 20 

V and -20 V at steady state. 

The same step torque load with magnitude of 10 Nm is applied to the system at 

0.1 second to test the SMC’s robustness against external disturbance. The speed response 

and SMC control signal in the presence of step torque load are presented in Figure 5.9.  
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Figure 5.9: Speed response and the control signal of SMC in the presence of step torque 

load 

The close view of the control signal of SMC in the presence of step torque load is 

presented in Figure 5.10. 
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Figure 5.10 Close view of the control signal of SMC in the presence of step torque load 

From Figure 5.9, we can see that the speed drops 5 percent after the step load is 

applied. It takes 0.01 seconds for SMC to drive the speed back to the set-point. The 

control signal still switches between 20 V and -20 V at steady state after the step load is 

applied. 

Then we increase the moment of inertia five times to test the robustness of SMC 

against parameter variations. The speed response and SMC control signal with increased 

inertia are presented in Figure 5.11. 
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Figure 5.11: Speed response and the control signal of SMC with increased moment of 

inertia 

The close view of the control signal of SMC with increased moment of inertia is 

presented in Figure 5.12. 
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Figure 5.12 Close view of the control signal of SMC with increased moment of inertia 

From Figure 5.11, we can see that there is no overshoot in the speed response. But 

it takes longer time (0.03 second) for the SMC to drive the speed to set-point. The SMC 

control signal still switches between 20 V and -20 V at steady state. 

The block diagram of PMSM speed system with LADRC is presented in Figure 

5.13. In Figure 5.13, PI controllers are applied to the currents control loops and the PI 

controller gains remain the same ( 20pk =  and 10ik = ). The LADRC is applied to the 

speed control loop. 
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Figure 5.13: Block diagram of PMSM speed system with LADRC 

The LADRC parameters are decided by trial-and-error tuning. The observer 

bandwidth is selected as 900oω =  and the controller bandwidth is chosen as 350cω = . 

The torque constant is b=1325. 

The speed response and the control signal of LADRC in the absence of torque 

load are presented in Figure 5.14. 
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Figure 5.14: Speed response and the control signal of LADRC in the absence of 

torque load 

From Figure 5.14, we can see that it only takes 0.007 seconds for the speed output 

to reach the set-point at. The control signal remains 7 V at the steady state. 

The same step torque load with magnitude of 10 Nm is applied to the system at 

0.1 second to test the robustness of LADRC against disturbance. The speed response and 

LADRC control signal with torque load are presented in Figure 5.15. 
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Figure 5.15: The speed response and the control signal of LADRC in the presence of step 

torque load 

From Figure 5.15, we can see that the speed drops 10 percent after the step load is 

applied. It takes 0.01 second for LADRC to drive the speed back to the set-point. The 

control signal increases to 18 V at steady state after the step load is applied. 

Next we increase the moment of inertia five times to test the robustness of 

LADRC against parameter variations. The speed response and the control signal of 

LADRC with increased inertia are presented in Figure 5.16. 
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Figure 5.16: Speed response and the control signal of LADRC with increased moment of 

inertia 

From Figure 5.16, we can see that there is 28 percent overshoot in the speed 

response. And it takes 0.15 second for the LADRC to drive the speed to steady state in 

the presence of increased moment of inertia. 

Now we compare the speed responses of the PMSM speed system with PI 

controller, LADRC and SMC in the absence of torque load in one figure, which is 

presented in Figure 6.17. 
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Figure 5.17: Speed responses with PI controller, LADRC and SMC in the absence of 

torque load 

From Figure 5.17, we can see that there is no overshoot in the speed responses of 

PMSM speed system with PI controller, LADRC and SMC. The speed response with 

LADRC has the shortest settling time. 

We compare the robustness of PI, LADRC and SMC against step torque load 

disturbance in one figure, which is shown in Figure 5.18. 
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Figure 5.18: Speed responses with PI controller, LADRC and SMC in the presence of 

step torque load 

From Figure 5.18, we can see that PI controller, LADRC and SMC can drive the 

speed output back to the set-point after the step torque load is applied to the system. The 

speed drop with SMC is smallest. 

5.3 Comparison 

From Figure 5.3, Figure 5.7, Figure 5.14 and Figure 5.17, we can see that the 

settling time of PMSM speed system with different controllers (PI controller, SMC and 

LADRC) is very close. And there is no overshoot. So the responses of PMSM speed 

system with these three controllers in the absence of torque load are all acceptable. 
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From Figure 5.4 and Figure 5.15, we can see that the speed drop of PMSM speed 

system with PI and LADRC is the almost the same, while it takes LADRC much less 

time to drive the speed back to the set-point. 

From Figure 5.9 and Figure 5.15, we can see that it takes almost the same time for 

SMC and LADRC to drive the speed back to the set-point after the step torque load is 

applied. But the speed drop of a PMSM speed system with SMC is half the speed drop of 

system with LADRC. However, the control signal of SMC is more aggressive than 

LADRC. 

From Figure 5.5, Figure 5.11 and Figure 5.16, we can see that SMC is insensitive 

to this parameter variation in PMSM speed system. The transit responses of PI and 

LADRC are degraded by this parameter variation. 

5.4 Summary 

The simulation results of a PMSM speed system with PI controller, SMC and 

LADRC using Matlab/Simulink are presented in this chapter. The comparison study of PI 

controller, SMC and LADRC on PMSM speed system form the aspects of dynamic 

performance, robustness against disturbance and parameter variations are presented. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

PMSM speed system with PI controller has fast transit response and stable steady 

state response. But the robustness of the PI controller against disturbance and parameter 

variations are limited. PI controller is a good option for the PMSM speed systems that do 

not have significant disturbance or parameter variations. The output signal of PI 

controller can remain at a relatively low level for PMSM speed system, which is an 

advantage for its real-world application. 

PMSM speed system with SMC also has fast transit response and stable steady 

state response. In addition, SMC is robust against disturbance and parameter variations 

for PMSM speed system. But the good performance of PMSM speed system with SMC is 

at the cost of aggressive control signal. And the aggressive control signal of SMC may 

wear down the system in a long run. So SMC is a good option for the PMSM speed 
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systems that demand strong disturbance rejection capacity and robustness against 

parameter variations. 

PMSM speed system with LADRC has desirable transit and steady state 

responses. The output signal of LADRC in both transit response and steady state response 

for PMSM speed system is quite low. LADRC has good disturbance rejection capacity 

when torque load disturbance is applied. But the transit response of PMSM speed system 

is degraded when the moment of inertia of the system is suddenly changed. LADRC is a 

good option for the PMSM speed system in that encounter great load variations. 

6.2 Future Work 

The modeling of sensors and actuators and their time lags for PMSM speed 

system will be researched. 

The SMC with moderate control output will be studied for PMSM speed system. 

The ADRC that is robustness against parameter variations without complicating 

the control algorithm will be investigated for PMSM speed system. 
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