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TIME RELAXED ROUND ROBIN TOURNAMENT AND THE NATIONAL 

BASKETBALL ASSOCIATION SCHEDULING PROBLEM 

 RENJUN BAO  

ABSTRACT 
 

This dissertation study was inspired by the National Basketball Association regular 

reason scheduling problem. NBA uses the time-relaxed round robin tournament format, 

which has drawn less research attention compared to the other scheduling formats. 

Besides NBA, the National Hockey League and many amateur leagues use the time-

relaxed round robin tournament as well.  

This dissertation study is the first ever to examine the properties of general time-relaxed 

round robin tournaments.  Single round, double round and multiple round time-relaxed 

round robin tournaments are defined. The integer programming and constraint 

programming models for those tournaments scheduling are developed and presented. 

Because of the complexity of this problem, several decomposition methods are presented 

as well.  

Traveling distance is an important factor in the tournament scheduling. Traveling 

tournament problem defined in the time constrained conditions has been well studied. 

This dissertation defines the novel problem of time-relaxed traveling tournament problem. 

Three algorithms has been developed and compared to address this problem. 
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In addition, this dissertation study presents all major constraints for the NBA regular 

season scheduling. These constraints are grouped into three categories:  structural, 

external and fairness. Both integer programming and constraint programming are used to 

model these constraints and the computation studies are presented.  



vii 
 

TABLE OF CONTENT 

ABSTRACT .................................................................................................................................. v 

LIST OF TABLES ......................................................................................................................... x 

LIST OF FIGURES ...................................................................................................................... xi 

LIST OF MODELS...................................................................................................................... xii 

LIST OF DEFINITIONS ............................................................................................................ xiii 

CHAPTER I     INTRODUCTION ................................................................................................ 1 

1.1 The problem ................................................................................................................... 1 

1.2 Research objectives and academic contribution ............................................................. 3 

1.3 Basic Terminology ......................................................................................................... 4 

1.4 Outline............................................................................................................................ 6 

CHAPTER II     LITERATURE REVIEW .................................................................................... 8 

2.1 Sports scheduling ........................................................................................................... 8 

2.2 Time relaxed scheduling .............................................................................................. 11 

2.3 Basketball tournament scheduling ................................................................................ 14 

CHAPTER III     TIME RELAXED ROUND ROBIN TOURNAMENT SCHEDULING .......... 17 

3.1 Time Relaxed Single Round Robin Tournament Problem (TRSRR)............................ 17 

3.1.1 TRSRR  IP model ................................................................................................. 19 

3.1.2 TRSRR  CP model ............................................................................................... 20 

3.1.3 Completion of partial schedule ............................................................................. 25 

3.1.4 Optimization Problem .......................................................................................... 26 

3.2 Time Relaxed Double Round Robin Tournament (TRDRRT) ..................................... 28 

3.2.1 Round-based time relaxed double round robin tournament .................................. 29 

3.2.2 General time relaxed double round robin tournament........................................... 31 

3.2.3 TRDRR  CP Models ............................................................................................. 32 

3.3 Time Relaxed r Round Robin Tournament Problem (TR -rRRTP) .............................. 36 



viii 
 

3.4 Break Minimization Problem ....................................................................................... 37 

3.5 Decomposition Scheme ................................................................................................ 40 

3.5.1 First-Schedule-Then-Break .................................................................................. 44 

3.5.2 First-Break-Then-Schedule .................................................................................. 49 

3.5.3 GOP  problem....................................................................................................... 52 

CHAPTER IV   TIME RELAXED TRAVELING TOURNAMENT PROBLEM....................... 58 

4.1  Minimizing traveling distance in practical applications ............................................... 58 

4.2  Traveling Tournament Problem (TTP) ......................................................................... 60 

4.2.1 The definition of TTP ........................................................................................... 60 

4.2.2 Research progress ................................................................................................. 61 

4.3  Time Relaxed Traveling Tournament Problem (TRTTP) ............................................. 63 

4.3.1 Definition ............................................................................................................. 63 

4.3.2 Complexity ........................................................................................................... 64 

4.3.3 Independent Lower Bound ................................................................................... 66 

4.3.4   Solution Method ................................................................................................... 76 

CHAPTER V   NBA SCHEDULING PROBLEM ....................................................................... 84 

5.1 Basic structure constraint ............................................................................................. 87 

5.1.1 Basic problems ..................................................................................................... 87 

5.1.2 Conferential/Divisional Games ............................................................................ 90 

5.1.3 Consecutive games ............................................................................................... 93 

5.1.4 Consecutive off days ............................................................................................ 95 

5.2 External and team specific Constraints......................................................................... 96 

5.2.1  Television Schedule ............................................................................................. 96 

5.2.2.   Home away pattern ............................................................................................... 98 

5.2.3.   Arena availability ................................................................................................. 99 

5.2.4.   Team forbidden games ....................................................................................... 102 

5.2.5.   Complementary schedules .................................................................................. 103 



ix 
 

5.2.6.   Maximum value schedules ................................................................................. 104 

5.3 Fairness constraint ...................................................................................................... 105 

5.3.1 Back-to-back games ........................................................................................... 105 

5.3.2 Weekend games.................................................................................................. 107 

5.3.3 Travel distance ................................................................................................... 110 

CHAPTER VI     CONCLUSIONS AND FUTURE WORK ..................................................... 112 

BIBLIOGRAPHY ...................................................................................................................... 116 

APPENDIX - TRTTP INSTANCES .......................................................................................... 124 

 

  



x 
 

 

LIST OF TABLES 

Table 1 Time Relaxed Single Round Robin Tournament for n = 6 ....................................... 18 

Table 2   Partial schedule for n = 6 .......................................................................................... 26 

Table 3  CP models for unconstrained TRDRR ..................................................................... 35 

Table 4 An example of opponent schedule – 6 teams............................................................ 44 

Table 5  Break Minimization Phases ..................................................................................... 48 

Table 6 An example for 6 teams............................................................................................ 50 

Table 7    An GOP generated by Model 16 .............................................................................. 54 

Table 8  Partial schedule based on Table 7............................................................................. 54 

Table 9   ILB-CP computation results for NL 6 teams ............................................................ 72 

Table 10 ILB-CP computation results for NL 8 teams ............................................................ 72 

Table 11 TRTTP computation results ..................................................................................... 82 

Table 12 Computation results – Basic instance ....................................................................... 90 

Table 13  Conference games .................................................................................................... 91 

Table 14  Division games ......................................................................................................... 92 

Table 15  Consecutive games ................................................................................................... 94 

Table 16  Consecutive off days ................................................................................................ 95 

Table 17 TV schedules ............................................................................................................ 98 

Table 18 HAP Patterns ............................................................................................................ 99 

Table 19 Arena availability ................................................................................................... 101 

Table 20 Team forbidden ...................................................................................................... 102 

Table 21 Two teams have complementary schedules ............................................................ 103 

Table 22 Maximum value ..................................................................................................... 104 

Table 23 Schedule without back-to-back games by CP model based on day ........................ 106 

Table 24  Back-to-back games ............................................................................................... 107 

Table 25 Maximum Weekend Games ................................................................................... 109 

Table 26 Weekend games ..................................................................................................... 110 

Table 27 Travel distance ....................................................................................................... 111 

  



xi 
 

LIST OF FIGURES 

 

Figure 1 An example of oriented 1-factorization of K6 .......................................................... 10 

Figure 2 Schedule corresponding to the Figure-1 ................................................................... 10 

Figure 3 Optimal travel pattern for U=2 ................................................................................. 66 

Figure 4  Optimal travel pattern when U = 3 for n = 6 ............................................................ 74 

Figure 5 An optimal travel pattern when U = 3 for n = 8........................................................ 74 

Figure 6  An optimal travel pattern with two pair trips when U =3 for n = 8 ........................... 75 

  

  



xii 
 

LIST OF MODELS 

Model 1 TRRRT IP Model ..................................................................................................... 19 

Model 2 Time Constrained Single Round Robin Tournament CP Model ............................... 21 

Model 3 Time Relaxed Single Round Robin Tournament CP Model ..................................... 23 

Model 4 TRSRRT Optimization problem IP model ............................................................... 27 

Model 5 round based TRDRR – IP Model ............................................................................. 30 

Model 6 general TRDRR – IP Model ..................................................................................... 32 

Model 7 Home opponent based CP model for TRDRRT........................................................ 33 

Model 8 Road opponent based CP model for TRDRRT ......................................................... 33 

Model 9 Two variables based CP model for TRDRRT .......................................................... 34 

Model 10 TR –rRRTP – IP Model............................................................................................ 37 

Model 11 Break minimization CP model ................................................................................. 38 

Model 12 Generate Schedule Phase CP Model......................................................................... 45 

Model 13 Break Minimization Phase CP-model ...................................................................... 46 

Model 14 Break Minimization Phase IP-model ........................................................................ 47 

Model 15 HAP feasibility problem IP model ........................................................................... 51 

Model 16 GOP generating model ............................................................................................. 53 

Model 17 GOP feasibility Model ............................................................................................. 56 

Model 18 Pairing Models ......................................................................................................... 65 

Model 19 ILB – CP model ....................................................................................................... 69 

Model 20 Grouping model when U =3 ..................................................................................... 75 

Model 21 TRTTP – Return Home on off days Model .............................................................. 76 

Model 22  TRTTP – Stay on road on off days Model ............................................................ 80 

Model 23 Tour selection model ................................................................................................ 81 

Model 24 Basic NBA scheduling IP Model.............................................................................. 87 

Model 25 CP Model based on Day ........................................................................................... 89 

Model 26 Weekend games IP model ...................................................................................... 108 

 

  



xiii 
 

LIST OF DEFINITIONS 

Definition 1 The Basic Time relaxed single round robin tournament problem ......................... 18 

Definition 2 Time Relaxed Single Round Robin Tournament Optimization Problem .............. 27 

Definition 3 round-based time relaxed double round robin tournament.................................... 29 

Definition 4 General round-based time relaxed double round robin tournament ...................... 31 

Definition 5 Time relaxed r-round robin tournament problem.................................................. 36 

Definition 6 Break in time relaxed schedule ............................................................................. 38 

Definition 7 GOP pattern .......................................................................................................... 40 

Definition 8 GOP pattern set .................................................................................................... 40 

Definition 9 HAP pattern .......................................................................................................... 40 

Definition 10 HAP pattern set ................................................................................................ 40 

Definition 11 Time relaxed break minimization problem ....................................................... 45 

Definition 12 HAP feasibility problem ................................................................................... 50 

Definition 13 GOP problem ................................................................................................... 52 

Definition 14 GOP feasibility problem ................................................................................... 55 

Definition 15 Traveling tournament problem (TTP)............................................................... 60 

Definition 16 Time relaxed traveling tournament problem:.................................................... 63 

Definition 17 Time Relaxed Single Team Problem (TRSTP) ................................................. 67 



1 
 

 

 

CHAPTER I 

INTRODUCTION 
 

 

1.1 The problem 
 

In many countries, sports provide income besides entertainment. Maximizing the 

revenues for a sports league is in the best interest of not only the teams, but also the local 

communities. There are many factors that could affect league revenues, one of them is the 

schedule.  

Most of the professional sports leagues let the central administrative offices make 

the schedules. There are some fundamental features of a schedule. The foremost is the 

structure. In modern days, most leagues use a round robin tournament schedule format 

which means each team play every other team for a fixed number of times during a time 

span, which is called a round. The round robin tournament schedules can be divided into 

two broad types: time constrained schedules and time relaxed schedules. In time 

constrained schedules, the number of available game slots is equal to necessary game 

slots. The time constrained schedules are used by many leagues, including most college 

basketball conferences, professional soccer leagues in the Europe and the South America. 

In the time relaxed schedules, the time of available game slots is bigger than the 

necessary number. It are used by a few leagues, the National Basketball Association 
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(NBA) and the National Hockey League (NHL) in North America are two examples.  

The NBA is the most popular professional basketball league in North America. This 

dissertation work was inspired by the scheduling problem for the NBA regular season.  

Although this dissertation work is inspired by the NBA scheduling, the time 

relaxed schedule is widely used in many other leagues, especially amateur sports leagues. 

As a result of the limited arena and player availability, time relaxed round robin 

tournament format is the only choice for most amateur leagues. 

To schedule a time relaxed round robin tournament is not a trivia task. Besides the 

basic structure requirement, there are many other constraints required for the scheduling. 

It is not uncommon to have conflicting requirements from individual teams because each 

team has its own interest. On top of that, there are some external factors that play an 

important role in the scheduling. For example, NBA’s television network partner turner 

wants to exclusively reserve popular games for the prime time. However, local television 

networks want to broadcast local team’s game during prime time as well. It is not an easy 

task to balance the conflicting interests.   

Although there have been many research studies done on the sports scheduling in 

recent years, few of them focuses on the time relaxed round robin tournament. The 

research on the time relaxed round robin tournament will be an important building block 

for the future research. For example, an understanding of the feasibility of pattern sets 

and computation studies could lead to a better constructive method in the future. 

To reduce the fatigue and save traveling time, it is important to minimize the total 

traveling distance for the league.  It is even becoming more important for the NBA teams 
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because of the economic condition. This dissertation research defines and provides 

algorithms to tackle the traveling tournament problem in the time relaxed context. 

It is a daunting task to schedule the regular season games for the NBA because of 

all those involved constraints.  For the time being, most of the work is done manually and 

the use of the information technology is limited. Compared to other leagues, there are 

many constraints are unique in the NBA scheduling problem, which is unknown to the 

academic world. This dissertation study will outline most major constraints for the NBA 

scheduling problem.   

1.2 Research objectives and academic contribution 
 

The research objectives are threefold:  

First, is to examine the properties of the time relaxed round robin tournament 

problem structure. Except few studies on the practical applications, there has no study 

been done on the general time relaxed round robin tournament problem to our best 

knowledge. The understanding of the properties, especially the decomposition methods, 

will be important building block for both practical application and future research. 

Besides that, this dissertation work will present the computation study of the integer 

programming and constraint programming model formulation for different kinds of time 

relaxed round robin tournaments.  

The second, is to define and tackle the time relaxed traveling tournament problem. 

To reduce the traveling distance is in best interest for all teams. Traveling Tournament 

Problem (TTP) draw a lot of research interest in the last ten years. This problem posts 

new challenges if put in the time relaxed context. This dissertation study will define the 
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Time Relaxed Round Robin Tournament problem (TRTTP) and several benchmark 

problems are given.  Although it is unrealistic to develop an algorithm to get an optimal 

solution for a league of 30 teams, it is still important to get the optimal solution for league 

of small size. For example, a league of 5 teams could be modeled as a division. In this 

dissertation study, an algorithm to solve the problems of 6 team cases to optimality will 

be presented.  

The third objective is to model all the essential constraints that arise from the 

NBA scheduling problem.  Although the previous studies on sports league scheduling 

have considered many constraints, there are still many constraints faced by the NBA have 

never been mentioned in other literatures. This dissertation will be the first ever to model 

these constraints.  

1.3 Basic Terminology 
 

The terminology used in the other sports scheduling literature is not consistent. 

We will use the terminology stated in the following through the paper unless marked 

explicitly. 

We assume there are n, n even, teams in a sports league. The assumption about 

even will not lost any generality because we can add a dummy team if n is odd. A team 

play against the dummy team will have a bye at that time slot.  We use letter T to 

represent the set of teams.   

In this work we focus on the round robin tournament formulation, where all 

teams meet all other teams a fixed k number of times. If k is one, we call it a single round 

robin tournament; if k is two, we call it a double round robin tournament; if k is three, we 



5 
 

call it a triple round robin tournament.  In the double round robin tournament, if every 

team has the same opponent in the second round as those in the first round but the venue 

is reversed, we call it mirrored round robin.  

Competition between one team against another team is called a game.  A game is 

carried out in exactly one time period p out of set P. In this work we use day as the time 

period. We use letter D to represent the set of days. If there are more available time slots 

than the games, it is a time relaxed round robin tournament. On the other hand, in a time 

constrained round robin tournament the number of the available time slots is equal to the 

games plus necessary byes. 

We assume each team has its own venue. A game has to be carried out in exactly 

one of the two competitors’ venue. A team plays a home game if the game is played in its 

own venue, an away game if the game is played in the opponent’s venue. Sometimes 

team venue will be referred to as team arena. A team has a bye, or off day if it does not 

have any game on that day. When two teams play together, one will play home game and 

the other will play away game. We use H, A, O to note home games, away games, and off 

days respectively.  Home away pattern (HAP) refers to a sequence of home games, away  

games, and byes during the tournament for a team. We call a set of HAP patterns as HAP 

pattern sets if each team is associated with a HAP. If a HAP has home game and away 

game only, we can use number 1 and 0 to represent them respectively. Sometimes two 

teams share the same venue, it is necessary for them not to play home games at the same 

time.  A complementary HAP sets might be needed in this case. Game Off pattern (GOP) 

refers to a sequence of games, off days during a time relaxed tournament for a team. We 

call a set of GOP patters as GOP pattern sets if each team is associated with a GOP.  
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Timetable refers to the allocation of games into periods. Each row of the table 

corresponds to a team while the column corresponds to time periods. If a timetable 

combined with an according pattern sets, we call it a schedule. A schedule is feasible if it 

meets all the constraints, otherwise it is infeasible.  

There are many basic requirements for a schedule. Normally there is a 

requirement that the deviation of the number of games played for all teams should be less 

than a fixed number. Meanwhile for a individual team the deviation of the number of 

home games played and away games played should be less than a fixed number at any 

specific time as well. Such a schedule is termed balanced.  Because of the consideration 

of the attendances, no team wants to play consecutive games. If this occurs, it is called a 

break. If a team plays consecutive home games, it has a home stand. In the time relaxed 

tournament, if a team play two consecutive games on consecutive days, it has back-to-

back games.   

1.4 Outline 
 

The work is organized as follows. All the prior related research is reviewed in 

Chapter II. It includes the topic on general sports scheduling, time relaxed tournament 

scheduling and basketball tournament scheduling. 

Chapter III focuses on basic time relaxed round robin tournament scheduling 

problems. Single round, double round, and multiple round time relaxed round robin 

tournament optimization problems are defined. Because of the complexity of this 

problem, several decomposition methods are presented. 
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Time Relaxed Traveling Round Robin problem (TRTTP) is examined in Chapter IV. It is 

a time relaxed version of the well known traveling tournament problem (TTP). Besides 

the definition, several methods to tackle the TRTTP are described in this chapter.  

In Chapter V, the NBA scheduling problem is presented. All the major constraints 

needed to make a feasible schedule are presented by means of both integer programming 

model formulation and constraint programming model formulation. Finally, Chapter VI 

gives conclusion and an outlook on future research.  
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CHAPTER II 

LITERATURE REVIEW 
 

This dissertation work focuses on a topic belongs to the sports scheduling, which 

normally is a combinational optimization problem. In this section, first we will review the 

research on the general sports scheduling. Then we will focus on the category of the time 

relaxed scheduling problems. The research studies related to the basketball scheduling are 

reviewed as well.  

2.1 Sports scheduling 

  
According to Nemhauser and Trick (1998), sports scheduling can be divided into 

two categories: temporally relaxed scheduling and temporally constrained scheduling 

problems. They will be referred to as time relaxed scheduling and time constrained 

scheduling respectively in this dissertation study.  For the time constrained scheduling, 

the number of the games is equal to the minimum required time slots. For the time 

relaxed scheduling, the number of the available time slots is larger than the minimum 

required time slots.  
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In the last thirty years, there have been a lot of researches done on the topic of 

sports scheduling. Most of the research focuses on the time constrained scheduling. The 

research objectives can be classified into two broad groups: break minimization and 

traveling distance minimization. If a team plays two consecutive home or away games, it 

has a break. The undesired consequence caused by the consecutive games could include 

the attendance declining, unfairness for participants, etc. A schedule with as few breaks 

as possible is desired by most leagues. Long traveling distance will cause fatigue for the 

players and coach, which will give advantage to its opponents. Therefore teams want to 

minimize the traveling distance to avoid the fatigue and save cost. This section will 

review the studies done on the break minimization, the literature on the traveling distance 

minimization will be reviewed in Chapter IV.  

During the history of constructing schedules for both professional and amateur 

sports tournaments, some mathematical tools have been utilized and 1-factorization is one 

of them. As early as 1980, the relationship between 1-factorizations of graphs and 

tournaments has been exploited by de Werra. A compact single round robin tournament 

can be associated with a complete graph. Each node corresponds to a team and each edge 

corresponds to a game between the teams associated with two end nodes. A 1-

factorization of a complete graph is to construct as many n-1 1-factors corresponding to a 

partitioning of the games into n-1 slots. The orientation of the edge can be used to 

represent the game venue. The following Figure 1 is a 1-factorization example when 

there are 6 teams in the tournament. Figure 2 is the schedule based on the results from 

Figure 1.  The positive sign is used to represent a home game, and a negative sign is used 

to represent an away game.   
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Figure 1 An example of oriented 1-factorization of K6 

 

  

Figure 2 Schedule corresponding to the Figure-1 

With the help of graph theory, researchers have developed many important 

theories. For example, the lower bound of the breaks for a single round robin schedule is 

n-2.  This is easy to be proofed. If a team has no break, it has to alternate the game 

pattern every time after the first time slot. Because each two teams have to play at least 

once, no teams can have same pattern. There are only two no-break patterns are available: 

starting with a home game or starting with an away game. As a result at most two teams 

can have no-break patterns. All the other n-2 teams have at least one slot different, which 

cause a break. Originally the graph method was used to solve the problems without any 

other constraints. Although de Werra and other researchers developed some intricate 

solutions to solve the problem with constraints, the usage of the graph method is limited 
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if there are many constraints. We have to mention Rosa and Wallis (1982) work on the 

premature sets. They proved that premature sets of 1-factors exist under many 

circumstances, which means greedy construction of scheduling time slots one by one will 

not work.  

Since decomposition is an effective method to tackle complicated problems, 

several studies on decomposition methods has been conducted. A sports scheduling 

problem can be decomposed into four steps: generating patterns, generating pattern sets, 

generating timetable, and generating complete schedules. Trick (2001) argued that the 

order should be arranged according to the difficulties of these steps. To get a schedule 

with minimum break, it is appealing to schedule the pattern and pattern sets at first. This 

brings the question to determine the feasibility of pattern sets. If an opponent schedule is 

scheduled first, integer programming and constraint programming among many other 

methods are used to tackle the break minimization problem. 

Beginning in the 1990s, several metaheuristic approaches were applied to 

minimize the break in the practice problems. Willis and Terrill (1994) used simulated 

annealing and Wright (1995) used a tabu search for scheduling cricket tournaments.  

2.2 Time relaxed scheduling  
 

The majority of the professional sports leagues use time constrained schedules, 

such as the college basketball conferences in the United States, the professional soccer 

leagues in Europe, etc. However, there are two notable professional sports leagues in 

North America use time relaxed scheduling: National Hockey League (NHL) and 
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National Basketball Association (NBA). In the last thirty years, there has been couple 

tries to tackle the time relaxed scheduling problems.  

The only study focus on the NBA scheduling problem was conducted by Bean 

and Birge (1980). The objective is to reduce the traveling distance. The authors state the 

problem cannot be solved by linear programming because the amount of the variables is 

too large. Therefore a two-phase heuristic method is proposed. The first phase is to make 

the traveling tours for each team, the second phase is to combine these tours according to 

the constraints. To make the tour for a team, the saving index based on the distance is 

calculated.  The tour grows from one game to five, which is the maximum road trip 

games permitted.  The tours are sorted by the traveling distance.  The longest 

unscheduled tour is placed in the period of least home arena availability.  A tour is 

divided into partial tours in case it cannot be placed. The authors report a result with 20% 

saving of the traveling distance compared to the official schedule.  

There have been three researches focused on the NHL scheduling. Fraser (1982) 

developed a “road trip simulator ” model which has been proven inflexible to schedule all 

games. He made a statement that it was impossible to use the computer to generate a 

schedule without manually tuning or adjusting. Ferland and Fleurent (1991) proposed a 

decision support system to help users interactively make the schedule. There are two 

major components in the tool: road trip scheduler and exchanging tools. The first part is 

to schedule the required road trips for all teams. The road trips were classified as forced 

and free.  A long period of unavailability of stadium will cause a forced road trip. It used 

a heuristics similar to the one used by Bean and Birge to construct the forced road trips. 

This method consists of four steps. The first step is to select the team with longest arena 
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unavailability. The second step schedules the two games with largest saving index in the 

middle of the period. The candidate games are those cannot be played in consecutive 

days because of the traveling distance. The third step is to fill in the games at the end of 

the road trip with the same logic used in the step 2. The last step is to fill in the games at 

the beginning of the road trip. The exchange procedure consists of two choices: single 

exchange and double exchange. In single exchange, the remaining game can be scheduled 

by changing one game. Similarly, the remaining game can be scheduled by changing two 

games in the double exchange. The tool can be used by expert in batch mode or try mode. 

The authors reported that this system produced promising results.  

The latest research on the NHL scheduling was conducted by Costa (1995). A 

evolutionary tabu search algorithm was proposed. All the constraints are classified into 

two types: essential constraints and relaxed constraints. All the feasible schedules satisfy 

the essential constraints. The relaxed constraints are used to judge the solution quality. 

There are four steps in this algorithm. The first step is to generate initial solutions. 

Method used in the first step is similar to the one used by Ferland and Fleurent. The 

second step is to reproduce the solutions. The fitter a solution, the better chance it will be 

chosen for the reproduction. The third step is to crossover the solutions. It tries to put as 

many games as possible in a solution without changing the frame. All redundant games 

are removed according to the costs. The final step is to apply the tabu search. In each 

iteration, the games violating at least one relaxed constraint are chosen to change the 

game day.  The last move is regarded as a tabu for the next certain iterations. Only a part 

of the constraints are used to construct the aspiration function. The author reported good 

computation results.  
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Besides the professional leagues like the NBA and the NHL, some no-

professional tournaments use the time relaxed scheduling as well. One of them received 

research attention is the amateur table tennis tournament in German.  It was a double 

round robin tournament scheduling problem. The constraints considered in this research 

included off days, balance of the number of the games among teams, arena availabilities. 

Schonberger (2004) modeled this problem as a constraint satisfaction problem. The 

variables are games between each team, the values are the possible game dates for each 

game. The authors tried constraint programming and got poor results when the number of 

the teams getting large.  Therefore a generic algorithm was proposed to solve the problem.  

The variable used in the CSP model is selected as the coding for the generic algorithm. 

The mutation operator is to swap the game days for two games. To drive the search 

toward the feasibility, the objective function penalized the violation of the constraints. A 

local improvement heuristic was implemented. The author reported good results based on 

the generic algorithm. 

2.3 Basketball tournament scheduling 
 

It is difficult to solve the basketball tournament scheduling by exact methods 

because of the enormous amount of the variables and values involved. Therefore heuristic 

algorithms were deployed for the basketball scheduling. The first tractable literature on 

the topic of basketball league scheduling in modern time was published in 1976.  

Campbell and Chen (1976) developed an algorithm to minimize the traveling distance for 

a college basketball league. This algorithm consists of two phases. The first phase is to 

find a schedule with minimum traveling distance for each team. To do that, teams are 

divided into pairs based on the distances. The optimal travel pattern for a team is to travel 
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to every other pair in one trip before return home, and use a round trip to visit the team 

paired with itself. In the second phase, all the other constraints are deployed to make a 

feasible solution. The authors reported a significant decrease in the traveling distance by 

using this algorithm.  

Inspired by the work of Campbell and Chen, Bean and Birge (1980) tried to tackle 

the NBA scheduling problem by similar algorithm. It is reviewed in the previous section. 

Besides the algorithm used by Bean and Birge, other heuristic algorithms to make a 

feasible schedules were constructed. For example, Frencek (2001) used an algorithm 

based on the graph theory to make schedules for Czech national basketball league.  

With the development of the computation technology, solving the basketball 

scheduling problem by exact method became a possibility. Nemhauser and Trick (1998) 

faced a problem to make the schedule for basketball games in the Atlantic Coast 

Conference (ACC).  It was done in three steps. The first step was to find game patterns 

and pattern sets.  At first all possible 38 game patterns for a team were generated. All the 

constraints related to the game pattern were considered in generating patterns, such as the 

number of home games and weekend games. Then all possible 17 pattern sets was 

generated. All the constraints related to the time slot were considered in generate pattern 

sets.  The second step was to assign the teams to the pattern sets to generate the timetable. 

It took 10 minutes to generate 826 feasible timetables. The last step was to assign the 

team to timetables, which is most time-consuming. It took 24 hours to generate 17 

feasible schedules.  
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If the objective is to find a feasible solution rather than an optimal value, 

constraint programming shows more strength compared to integer programming. Henz 

(2001) showed this result by solving Trick’s problem with much less computation time. It 

produced similar results but reduced the overall computation time from 24 hours to 1 

minute.  The problem was decomposed into three phases, all of them were solved by 

constraint programming

Like Trick, several other researchers used integer programming to tackle the 

basketball league scheduling problem. Voorhis (2005) developed an integer programming 

model to solve the basketball league scheduling problem for two college conferences. 

Later on he incorporated travel swings into his model.  

Although exact methods are promising, heuristic algorithms are necessary in 

many cases. Wright (2006) used a metaheuristic algorithm to make schedule for the New 

Zealand basketball league. Instead of putting all requirements into constraints, the author 

used an objective function to model subjective requirements. A sub-cost guided simulated 

annealing algorithm was used to solve the problem to the minimum penalty. 
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CHAPTER III 

TIME RELAXED ROUND ROBIN TOURNAMENT SCHEDULING 
 

Time relaxed round robin tournaments have different characteristics compared to 

the time constrained counterparts.  This chapter concerns the basic problems solely 

derived from time relaxed tournament structural requirements.  

3.1 Time Relaxed Single Round Robin Tournament Problem (TRSRR) 
 

Time relaxed single round robin tournaments have the general round robin 

tournament structure requirement: every team will meet every other team at a fixed 

number, which is one in this case. In a time constrained round robin tournament, the 

number of the available game days is equal to the minimum required days.  Unlike its 

counterpart, time relaxed round robin tournaments have more game days than the 

minimum required. Therefore it is necessary to define the parameter of the number of 

available game days. In this dissertation work we assume the number of available time 

slots is double size of the number of the games. For instance, there are 2(n-1) time slots 

available if a team has to play n-1 games.  Table 1 is an example schedule for a 

tournament with six teams.  
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Easton (2001) provided a formal definition of the time constrained basic single 

round robin problem. We will use the similar notation used in her definition to define the 

basic time relaxed single round robin tournament problem as the following:  

Definition 1 The Basic Time relaxed single round robin tournament problem 

Instance:  a set of n teams T= {t1, t2,  …, tn} 

Question:  Is there a mapping of the games in the set G =  {gij: ti,tj ∊ T,i<j }on the 

days in the set D = {Dk, k = 1,2,…, 2(n-1) if n is even and k = 1,2,…, 2n if n is odd} such 

that no more than 1 game including ti is mapped on any given day for all ti ∊ T ? 

Table 1 Time Relaxed Single Round Robin Tournament for n = 6 

 

 

Like we mentioned in Chapter II, Werra and many other researchers did extensive 

research on the relationship between the graphics and the round robin tournament 

schedule construction. Although these researches are done in the time constrained context, 

some results are applicable to the time relaxed tournament as well. We use the single 

round robin tournament to demonstrate the relationship.  

If there are 2n teams, a complete graph K2n with 2n nodes is considered. Each 

node represents a team. Every node has an edge connecting to every other node, which 

represents a game. Therefore every node has 2n-1 edges connected to itself. We need 2n-

1 color to distinguish all these edges. If we partition all the nonadjacent edges with same 

 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Team 1 @3 

 

vs 2 @6 vs5 

 

vs 4 

   Team 2 

  

@1 vs 4 

 

vs 5 @3 

  

vs 6 

Team 3 vs 1 @6 

  

@4 

 

vs2 @5 

  Team 4 @6 @5 

 

@2 vs3 

 

@1 

   Team 5 

 

vs4 

  

@1 @2 

 

vs 3 @6 

 Team 6 vs 4 vs 3 

 

vs1 

    

vs 5 @2 
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color, we get so called 1-factors F1, …, F2n-1, corresponding to the games schedules in the 

rounds r = 1,2, …, 2n-1. The direction can be used to represent the venue information.  

To construct a schedule with minimum breaks, the so called canonical 1-factorization (F1, 

F2, …, Fn) was used. The factors Fi  refers to the edge sets: 

i F = {{2n, i}}  {{i + k, i - k}|k = 1, . . . , n -1}  

The numbers i+k and i−k are taken modulo 2n−1 as one of the numbers 1,2,  . . . , 

2n−1. If there are no constraints on the length of consecutive games, we can use the 

canonical 1-factoriztion to generate a schedule for the time relaxed round robin 

tournament, which happens to have minimum breaks. 

The TRTTP can be models as both IP model and CP model, we will look at these 

two models in the following sections. 

3.1.1 TRSRR  IP model 
 

TR-RRT can be modeled as an IP model with employing 2n(n-1)
2
 variables

 
and 

5 ( 1)

2

n n
values.Equation Chapter 3 Section 1 

    Model 1 TRSRR IP Model  

 
( ) 1 , ,ijd jid

d D

x x i j T i j
 (3.1) 

 
{ \ }

( ) 1 ,ijd jid

j T i

x x i T d D  (3.2) 

 {0,1} , , ,ijdx i j T i j d D  (3.3) 
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Binary variable xi,j,d represents team i will host team j on day d. It is equal to 1 if 

game (i, j, d) is carried out, and 0 otherwise. Constraint (3.1) restraints each team will 

play every other team once, constraint (3.2) restraints every team play at most one game 

on a given day.  The above IP model performs poorly when the problem size grows to an 

extent. Therefore Trick (2003) suggested to add an extra constraint to the IP model for 

the time constrained SRR:  

 
,

1 ,ijt

i S j S

x S T S odd
 (3.4) 

S is a set of teams. If all the sets are added, this odd-set constraint make sure each 

team will play exactly once in a time slot. Because every team is not required to play a 

game on every day, the above constraint cannot be applied to the time relaxed tournament.  

3.1.2 TRSRR  CP model 
 

We first give an introduction to the constraint programming. Then we provide the 

CP model for the TRRRT problem.  

3.1.2.1  Constraint Programming  

 

The notation for the CSP is a triplet (X, D, C).  X refers to a finite set of variables, 

D is the domain of variable represent all possible values for each variable, C is the set of 

the constraints.  A solution to the CSP is a set of values assigned to each variable that all 

constraints are satisfied. The following is a brief description of the procedure to use 

constraint programming to solve the CSP. First we will encode the problem as P. Each 

constraint is associated with a filter algorithm aims to reduce the values in the domain 

which are not consistent with the constraint. To implement a constraint C, we will 
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generate two new problems by applying C’ and negation –C’ to P. The so-called 

consistency techniques are used during the process. If setting a variable from any value 

from its domain, all the other variables could choose some values to meet the constraint, 

that variable’s domain is arc consistency.  In this way we will get a binary search tree.  

Regin (1999) stated a good CP model deal with four important problems: 

symmetries, implicit constraints, global constraints, pertinent and redundant constraints. 

The search space can be dramatically reduced by removing intrinsic symmetries caused 

by identical characteristics of variables. Sometimes the search can be speeded up by 

introducing implicit constraints. For example, the number of the breaks is always even. 

Adding this implicit constraint can reduce the search time dramatically. A global 

constraint normally involves a set of other constraints.  For example, allDifferent is a 

powerful constraint to affect many variables simultaneously. Adding a symmetry or 

implicit, global constraint does not guarantee the computation reducing, which leads to 

the notation of pertinent constraint. If a constraint adding to the defined model cannot 

improve the performance, it is called redundant.  

3.1.2.2  CP models 

 

Henz (2003) did an extensive investigation on constraint programming 

formulations for single round robin tournament problem. The basic variables used in their 

model are opponent[i, d], which represents team i’s opponent on day d. The following is 

the CP model of the time constrained round robin tournament:  

Model 2 Time Constrained Single Round Robin Tournament CP Model 

 1, 2, ..., 1( )i i inall different O O O i T  (3.5) 
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 1 2( , ,... )d d ndone factor O O O d D  (3.6) 

 {1,2,... } ,Oid n i T d D  (3.7) 

The constraint (3.7) defines the variable Oid’s domain. The constraint (3.6) restraints 

every team will play exactly one game in every time slot. The constraint (3.5) restraints 

every team will play every other team exactly once.  To understand how these two 

constraints are achieved, we will present formal explanation as following.   

The definition for the all-different is: 

 1 2 1 2 1 2{ , ,..., } {( , ,... ) ( , ,..., | , , , )}m m x x xm i jall different x x x v v v D D D i j i j v v (3.8) 

ix  is the variable Di  is the domain and Vi   is the value of the variable which belongs 

to the domain.  Two variables have to take on different values if both variables are non-

zero.  

 The definition of the one-factor is: 

 1 1 1( ,..., ) {( ,... ) ... | , , , }m m m i i jOne factor x x v v Dx Dx i j v i v j v i (3.9) 

The definitions of ix ,
Di

and Vi  are same as those used in (3.8). This constraint 

requires no variable can have value equals to itself. If variable i’s value Vi equals j, then 

variable j’s value Vj
equals i as well.  

For both all-different and one-factor constraint, there are several available 

propagation algorithms. The strengths of these algorithms vary depending on such factors 

as domain size, additional external constraints, and so on. Herz, Muller and Thief (2004) 



23 
 

examined several propagation approaches for the all-different and one-factor constraints 

in the constraint programming context. They convincingly argued that for the all-different 

constraint, the propagation from Reign (1999) should be used. For the one-factor 

constraint, the arc-consistence propagation will reduce the computation time under most 

circumstances.  

               In the time relaxed single round robin tournament, a team needs to play every 

other team once. Therefore the all-different opponent constraint is still valid. However, 

since a team will have same opponent (opponent 0 on off days) multiple times during the 

tournament, we have to alter the all-different opponent constraint accordingly. The one-

factor constraint will be invalid in the time relaxed tournament, since teams will not play 

on every day. Given these considerations, we present the time relaxed single round robin 

tournament CP model as following. For consistence and comparison, similar variables 

used in the time constrained tournament models are used in our model. When team i does 

not play on day d, we assign value 0 to the variable opponent[i, d].    

Model 3 TRSRR CP Model 

 1 2{ , ,..., | 0}i i id idall different O O O O i T  (3.10) 

 1 , 2 , ...,( | 0) ,d d nd idOne factor O O O O i T d D  (3.11) 

 {1,2,... } ,idO n i T d D  (3.12) 

The domain for the opponent variable is defined in (3.12). The first constraint 

(3.10) forces every team not to have duplicated opponents throughout the tournament 

except dummy 0. The second constraint (3.11) restrains teams not to have same opponent 
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on the same day. Like we stated early, a team will have dummy opponent 0 for more than 

once because the number of the time slots is greater than the number of the games. 

Consequently, we cannot simply copy the all-different algorithms from the time 

constrained tournament models. To use the research results from the time constrained 

context, we tried two methods. The first one is to filter the dummy opponent by adding 

one more variable to represent if a team play a game or not on a specific day. According 

to our basic computation test, this method leads to increasing computation time. 

Therefore we developed the second method, which is listed as following.   

The requirement for every team to have different opponent throughout the 

tournament can be interpreted as play every other team exactly once. We get the all-

different definition in the following equation: 

 ( ) 1 , ,id

d D

O j i j T i j  (3.13) 

No team can play itself; no teams share same opponent; these two requirements in 

the constraint (3.9) are still valid: 

 ,idO i i T d D  (3.14) 

 , ,id jdO j O i i j T d D  (3.15) 

To clarify, the OPL code based on the above algorithms is listed.  

int nbTeams  = …; 

int nbTeamGames = nbTeams-1; 

int nbDays = 2*nbTeamGames ; 

range rngTeams = 1..nbTeams; 
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range rngDays = 1..nbDays; 

dvar int opponent[rngTeams][rngDays] in 0..nbTeams; 

subject to  

{ 

 //All different 

 forall(i,j in rngTeams: i!=j) 

   sum(d in rngDays)(opponent[i][d] == j) == 1;   

 //One-factor 

 forall(i in rngTeams,d in rngDays) 

  opponent[i][d]!=i;  

 forall(d in rngDays,i,j in rngTeams:i!=j) 

  (opponent[i][d] ==j) == (opponent[j][d] == i);     

} 

3.1.3 Completion of partial schedule 
 

In the practical world, normally the schedulers face the problem of completing 

partial schedules, rather than starting from the scratch. The reason behind that is there are 

many requirements from external sources, such as TV networks. It is a common 

requirement from the TV networks to reserve high-profile games on specific dates. All 

these reserved games combining other requirements compose a partial schedule. Take the 

schedule in Table 1 as an example. If some but all games are schedules, we will get a 

partial schedule as listed in Table 2. 
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It is not a trivia task to complete a partial schedule. Actually Easton (2001) 

proved that there are no polynomial time algorithm to complete partial time constrained 

round robin tournament. Even for a partial tournament with only three periods are 

uncompleted and each team has at most three games unscheduled, Easton shows it is still 

a NP-hard problem. It can be reduced to the Latin square completion problem.  

Table 2   Partial schedule for n = 6 

  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Team 1     vs 2               

Team 2     @1     vs 5 @3     vs 6 

Team 3   @6           @5     

Team 4 @6           @1       

Team 5           @2   vs 3     

Team 6 vs 4 vs 3               @2 

  

The mapping between Latin square and time relaxed tournament is not valid 

because the number of time slots is greater than the number of the teams. Unfortunately 

we cannot provide formal proof the complexity of this completion problem, we 

conjecture it is NP-hard.  

3.1.4 Optimization Problem 

 

In the practical world, getting a feasible schedule is not the only requirement. It is 

not uncommon for a schedule to have one or some objectives besides many additional 

constraints. If we consider every game has a related cost, we get the time relaxed single 

round robin tournament optimization problem. As Briskorn (2007) defined the time 

constrained round robin tournament optimization, we will formally define the time relaxed single 

round tournament optimization as the following:  
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Definition 2 Time Relaxed Single Round Robin Tournament Optimization 

Problem 

Given a set of teams T, |T| = n, and a set of available days D, |D| =2* ( n−1), 

each triple (i, j,d) ∊ T × T × D, i ≠ j, represents a game  of team i against team j at i’s 

home on day d. Cost ci,j,d  is  given for each game. A feasible solution to the Time Relaxed 

Single Round Robin Tournament problem corresponds to a set of 
( 1)

2

n n
 triples such 

that 

(i)  for each pair (i, j) ∊ T × T, i < j, exactly one triple of form (i, j, d) or (j, i, d) with 

d ∊D is chosen  

(ii)   for each pair (i, b) ∊ T × D, at most  one triple of form (i, j, b) or (j, i, b) with j ∊ 

T\{i} is chosen.  

The problem is to find a feasible solution having the minimum sum of chosen triples’cost. 

Condition (i) forces each team to meet every other team once, condition (ii) 

restrains each team to play at most one game on a day. TRSRRT can be modeled as an 

IP model with employing 2n(n-1)
2
 variables

 
and  values. 

Model 4 TRSRR Optimization problem IP model 

 
{ \ }

min ijd ijd

i T j T i d D

x c  (3.16) 

 ( ) 1 , ,ijd jid

d D

x x i j T i j  (3.17) 

 
{ \ }

( ) 1 ,ijd jid

j T i

x x i T d D  (3.18) 
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 {0,1} , , ,ijdx i j T i j d D  (3.19) 

Binary variable xi,j,d is equal to 1 if game (i, j, b) is carried out, and 0 otherwise. 

Constraints (3.17)  and (3.18) correspond to (i) and (ii) respectively, while (3.16) 

represents the goal of cost minimization.  

Briskorn proofed the time constrained single round robin tournament optimization 

problem is NP-hard by using the reduction from the planar three index assignment 

problem (PTIAP). Although we cannot provide the formal proof here, we conjecture the 

time relaxed round robin tournament optimization problem is NP-hard as well.  

3.2 Time Relaxed Double Round Robin Tournament (TRDRRT) 
 

Teams play each other twice in a double round robin tournament, normally one at 

home, the other on road.  In the time constrained schedules, the mirrored double round 

robin tournament is popular. A mirrored double round robin tournament consists of two 

rounds with identical timetables, and the venues in the second round are reversed to those 

in the first round.  For example, it team i play at home with team j on day d (d≤
2

D
), then 

team j will play at home with team i on day d+ 
2

D
. Because the game days in the time 

relaxed tournament are not fixed, we will not consider mirrored round robin tournaments 

in this dissertation study.  

In the practical world, it is a common requirement for a league to have a round-

based tournament if it has a multiple-round schedule. For example, a lot of leagues have 

all-star event after the half season. It makes sense to have a complete round before the 
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all-star event. In this section we will examine the round-based tournament at first; then 

we will look into the general tournament. The integer programming models are given for 

both formats.  

3.2.1 Round-based time relaxed double round robin tournament 
 

In the time constrained double round robin tournament, the number of the game 

days for the first round equals to the number for the second round by default. In the time 

relaxed double round robin tournament, we need to define the game days for each round. 

We use D1 to represent the set of days in the first round, D2 to represent the set of days in 

the second round , D  to represent the set of days in two round,  D1+D2 = D.  

We will examine the optimization problem only. The definition is similar to the 

one of the time relaxed single round robin tournament.  The following is the formal 

definition: 

Definition 3 round-based time relaxed double round robin tournament  

Given a set of teams T, |T| = n, and a set of available days D, |D| =4* ( n−1). The 

days set is divided into two sub sets: D1 and D2. Each triple (i, j,d) ∊ T × T × D, i ≠ j, 

represents a game of team i against team j at i’s home on day d. Cost ci,j,d is  given for 

each game. 

A feasible solution to the Time Relaxed round-based double Round Robin 

Tournament problem corresponds to a set of n*(n-1) triples such that 

(i)  for each pair (i, j) ∊ T × T, i < j, exactly one triple of form (i, j, d) or (j, i, d) with 

d ∊ D1 is chosen  



30 
 

(ii) for each pair (i, j) ∊ T × T, i ≠ j, exactly one triple of form (i, j, d) with d ∊ D is 

chosen 

(iii)   for each pair (i, d) ∊ T × D, at most  one triple of form (i, j, d) or (j, i, d) with j 

∊T\{i} is chosen.  

The problem is to find a feasible solution having the minimum sum of chosen triples’cost. 

The variables are same as those used in single round robin tournament problem.  

Model 5 round based TRDRR – IP Model 

 
\{ }

min ijd ijd

i T j T i d D

C x
 (3.20) 

 
1

( ) 1 , ,ijd jid

d D

x x i j T j i
 (3.21) 

 
1 , ,ijd

d D

x i j T j i
 (3.22) 

 
\{ }

( ) 1 ,ijd jid

j T i

x x i T d D
 (3.23) 

 0,1 , ,ijdx i j T d D  (3.24) 

Binary variable xi,j,d is equal to 1 if game (i, j, d) is carried out, and 0 otherwise. 

Constraints (3.21) restraint every team will play every other team once in the first round. 

Constraint (3.22)  ensure every team will play every other team once at home during the 



31 
 

whole season. Constraint (3.23) requires every team will play at most one game on each 

day.  The objective function (3.20) represents the goal of cost minimization.  

It is obvious that the complexity of TRDRRT is decided by the complexity of TRSRRT. 

The TRDRRT can be solved in polynomial time only if TRSRRT can be solved in 

polynomial time. Since we conjecture TRSRRT is NP-hard, we conjecture TRDRRT is 

NP-hard as well.  

3.2.2 General time relaxed double round robin tournament 
 

The general time relaxed double round robin tournament is defined as: 

Definition 4 General round-based time relaxed double round robin 

tournament 

Given a set of teams T, |T| = n, and a set of available days D, |D| =4* ( n−1).. 

Each triple (i, j, d) ∊ T × T × D, i ≠ j, represents a game of team i against team j at i’s 

home on day d. Cost ci,j,d  is  given for each game. 

A feasible solution to the Time Relaxed general double Round Robin Tournament 

problem corresponds to a set of n*(n-1) triples such that 

(i)  for each pair (i, j) ∊ T × T, i ≠ j, exactly one triple of form (i, j, d) with d ∊ D is 

chosen  

(ii)   for each pair (i, d) ∊ T × D, at most  one triple of form (i, j, d) or (j, i, d) with j ∊ 

T\{i} is chosen.  

The problem is to find a feasible solution having the minimum sum of chosen triples’cost. 

The IP model is:  
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Model 6 general TRDRR – IP Model 

 
\{ }

min ijd ijd

i T j T i d D

C x  (3.25) 

 1 , ,ijd

d D

x i j T j i  (3.26) 

 
\{ }

( ) 1 ,ijd jid

j T i

x x i T d D  (3.27) 

 0,1 , ,ijdx i j T d D  (3.28) 

Binary variable xi,j,d is equal to 1 if game (i, j, d) is carried out, and 0 otherwise. 

Constraints (3.26) restraint every team will play every other team once at home during the 

whole season. Constraint (3.27) restraint every team will play at most one game on each 

day.  The objective function (3.25) represents the goal of cost minimization.  

We conjecture the round-based double round robin tournament problem is NP-hard.  

 

3.2.3 TRDRR  CP Models 
 

The venue factor is not considered in the TRSRR-CP model (Model 3).  In the 

double round robin tournament, venue is usually a factor. Therefore we need to deal with 

the venues in the TRDRRT CP models accordingly. For demonstration, we choose the 

general TRDRRT as our modeling basis. We will compare three modeling approaches: 

home opponent based, road opponent based, and two variables based.  

For the home opponent based approach, we change the variable opponent[i][d] in 

the Model 3 to HO[i][d].  
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Model 7 Home opponent based CP model for TRDRRT 

 ( ) 1 , ,id

d D

HO j i j D i j  (3.29) 

 
{ \ }

( ) 1 ,jd

j T i

HO i i T d D  (3.30) 

 0 , ,id jdHO j HO i j T d D  (3.31) 

The variable idHO  represents team i’s opponent on day D if i plays a home 

game, the domain are all teams in the tournament except itself, plus dummy 0 for off day. 

The constraint (3.29) restraints every team will play every other team once at home. The 

constraint (3.30) ensures every team play at most one game on each day. The constraint 

(3.31) requires one team stay at home and the other stay on road if they play a game on a 

specific day.  

For the road based approach, the variable Vid is used to represent team i’s 

opponent on day d when i plays on road.  

Model 8 Road opponent based CP model for TRDRR 

 

 
( ) 1 , ,id

d D

V j i j D i j
 (3.32) 
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V i i T d D
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 , ,id jdV j V j i j T d D  (3.34) 
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The variable idV  represents where team i play on day d. If the value is not i, it 

refers to team i’s road opponent; if the venue is i, it means i either have a home game or 

off day.   The constraint (3.32) force every team will play every other team exactly once 

on road. The constraint (3.33) restraints every team plays at most one game on each day. 

The constraint (3.34) ensures two opponents to stay at the same venue for a game.  

Two variables Oid  and  Vid venue are used in the two variables based approach: 

one represents team i’s opponent on day d,  the other represents team i’s venue on day d. 

The domains for these variables are same as those defined in the previous two models, 

which are the other teams in the tournament.  

Model 9 Two variables based CP model for TRDRR 

 

 
1 , 2 , ...( | 1) ,d d nd idall different O O O V i T d D

 (3.35) 

 1 , 2 , ...( | 0) ,d d nd idall different O O O V i T d D  (3.36) 

 , ,id jdO j O i i j T d D  (3.37) 

 ( 0 & 1) || ( 1& 0) , ,jd id jd id jdO i V V V V i j T d D  (3.38) 

 ,idO i i T d D  (3.39) 

 { \ }, {0,1,2} ,Oid T i Vid i T d D  (3.40) 

The constraint (3.35) and (3.36) ensure every team plays every other team at home 

and on road exactly once respectively. The constraint (3.37)  restrains two teams has each 
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other as opponent for a game. The constraint (3.38) enforces opponent has 

complementary venue. The constraint (3.39) ensures no team play itself.  

The computation study for three CP models is carried out in ILOG OPL studio. 

All the default propagation setting is used. The results are listed in Table 3.  “Home” 

refers to the Home-opponent variable based approach, “Road” refers to the Road-

opponent variable based approach, “Two variables” refers to the two-variables based 

approach. N is the number of the teams, F is the failure time, T is the running time. We 

can tell Home-opponent variable based and Road-opponent variable based approaches 

have similar performance with road-opponent has a slight advantage. Both approaches 

are better than the two-variables based approach. It even takes more than 10 minutes to 

get a solution for N=12 cases, therefore we just run the three cases with N =6,8, and 10.  

The result for N=18, road-opponent based approach is not typo. It might be 

interesting to investigate if some certain number has special structure advantages by 

using this method.  

Table 3  CP models for unconstrained TRDRR 

N Home Road Two variables 

F T F T F T 

6 200 0.03 104 0.02 205 0.02 

8 200 0.05 100 0.05 2587 0.48 

10 200 0.06 103 0.06 413861 81.89 

12 200 0.09 200 0.08 ? ? 

14 200 0.17 200 0.14 ? ? 

16 200 0.31 200 0.27 ? ? 

18 200 0.45 112 0.28 ? ? 

20 200 0.61 200 0.53 ? ? 

22 200 0.83 200 0.66 ? ? 

24 200 1.16 200 0.89 ? ? 

26 200 1.56 200 1.19 ? ? 
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28 200 2.06 200 1.64 ? ? 

30 200 2.67 200 2.31 ? ? 

 

3.3 Time Relaxed r Round Robin Tournament Problem (TR -rRRTP) 
For the NBA scheduling, every team will play four times with the opponent from 

the same division. That makes a four-round robin tournament. Generally, we get a r-

round robin tournament if each team will play every other team r times. Similar to the 

two round tournaments, we have round-based and general robin tournament. Both of 

them are similar to those problems defined in the double round robin tournament 

respectively. We assume r is even in this dissertation study. We will just list the general 

one here.  The following is the formal definition of the time relaxed r-round robin 

tournament problem.  

Definition 5 Time relaxed r-round robin tournament 

Given a set of teams T, |T| = n, and a set of available days D, |D| =2r* ( n−1).. 

Each triple (i, j, d) ∈ T × T × D, i ≠ j, represents a game of team i against team j at i’s 

home on day d. Cost ci,j,d  is  given for each game. 

A feasible solution to the Time Relaxed general r- Round Robin Tournament 

problem corresponds to a set of 
( 1)*

2

n n r

 triples such that 

(iii)  for each pair (i, j) ∊ T × T, i ≠ j, exactly 
2

r
 triple of form (i, j, d) with d ∊ D is 

chosen  

(iv)   for each pair (i, d) ∊ T × D, at most  one triple of form (i, j, d) or (j, i, d) with j ∊ 

T\{i} is chosen.  
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The problem is to find a feasible solution having the minimum sum of chosen triples’cost. 

The following is the IP model: 

Model 10 TR –rRRT – IP Model 
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i T j T i d D

C x  (3.41) 
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j T i

x x i T d D
 (3.43) 

 0,1 , ,ijdx i j T d D  (3.44) 

Binary variable xi,j,d is equal to 1 if game (i, j, d) is carried out, and 0 otherwise. 

Constraints (3.42) restraint every team will play every other team 
2

r
times at home during 

the whole season. Constraint (3.43) restraint every team will play at most one game on 

each day.  The objective function (3.41) represents the goal of cost minimization.  

If the single round robin tournament can be solved in polynomial time, the r-round robin 

tournament can be solved in polynomial time as well. Therefore we conjecture the r-

round robin tournament is NP-hard.  

3.4 Break Minimization Problem 
 

In the time constrained tournament scheduling, a break is defined as a team play 

two consecutive games, both either at home or on road. In the time relaxed instances, it is 
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common that there are some off days between two games for a team. In real world, some 

teams do not want to play consecutive home games or road games because of the impact 

on the revenue, regardless of the off days between. Therefore it is still meaningful to 

consider two consecutive games with off days between as a break.  

Definition 6 Break in time relaxed schedule 

A break occurs when a team plays two consecutive away games or two 

consecutive home games, even there are off days between. 

If there are no limitations on the consecutive games or consecutive off days, it is 

obvious that there exists a schedule with zero breaks for every time relaxed schedule. 

Froncek (2003) stated that there exists an unique schedule without break even if each 

team has just one bye. With the constraints on the length of consecutive games, it is not 

trivia to find a schedule with zero breaks. We will use a CP model to demonstrate.  

We will explain the variables used in the model first. Oid refers to team i’s 

opponent on day d, Pid refers to the game type on day d. The domains for these two 

variables are same as those in Model 9. Variable brkid  equals 1 if team i has a break on 

day d, otherwise 0. To calculate brkid , we introduce an aiding variable Vid.. The binary 

variable Vid. is defined as the following: the constraint (3.52) defines Vid. equals Pid when a 

team plays a game on day d; the constraint (3.53) set Vid. to be previous day value if team i is off 

on day d. The dummy variable 0iV  is zero for all teams. With the help of Vid,, we can give the 

definition of brkid  in constraint (3.56).  The model is listed as the following: 

Model 11 Break minimization CP model 

 
{2,..., }

min id

i T d D

brk  (3.45) 
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 ( || 1) 1 , ,id id

d D

O j P i j T i j  (3.46) 

 ( || 0) 1 , ,id id

d D

O j P i j T i j  (3.47) 

 ( )

{0,1}

( 0) 2 , {1,... 1}i d k

k

P i T d D  (3.48) 

 ( )

{0,1,2}

( ! 2) 3 , {1,... 2}i d k

k

P i T d D  (3.49) 

 , ,id jdO j O i i j T d D  (3.50) 

 { \ }, {0,1,2} ,id idO T i P i T d D  (3.51) 

 2 ,id id idP V P i T d D  (3.52) 

 ( 1)2 ,id id i dP V V i T d D  (3.53) 

 0 0iV i T  (3.54) 

 {0,1} ,idV i T d D  (3.55) 

 ( 1)( )*( 0) , {2,... }id id i d idbr V V O i T d D   (3.56) 

The objective (3.45) is to minimize the total breaks for all teams. The constraint (3.46) 

and (3.47) ensures a double round robin tournament. The constraint (3.48) refrains every team to 

have consecutive home games. The constraint (3.49) makes sure no more than three games in a 

row. The other constraints provide the definition for breaks or the relationships among variables. 

This model can use the size of 8 teams, but it cannot provide the optimal solution for 10 teams in 
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30 minutes. Some approaches to break the symmetry as Regan did could be used to improve the 

model, we believe the work is not a trivia task.  

3.5 Decomposition Scheme 

Because of the complexity of the problems, decomposition methods are widely 

used for the sports league scheduling. For the time constrained tournaments, generally 

there are two things needed to be decided regarding a game: game opponent and game 

type (home game or road game). Games should be carried out on which day is not a 

concern in the time constrained, because all game days are predefined. However, it is a 

decision should be made for the time relaxed schedules. All the decision problems can be 

decomposed as sub-problems of the original scheduling problem. We break down the 

schedule problems into four sub- problems. First of all we provide the definitions of some 

terms used in this section.  

Definition 7 GOP pattern 

A GOP is a string of length equals to game numbers containing 1 on day d if the 

specific team has a game on that day, 0 otherwise 

Definition 8 GOP pattern set 

A GOP pattern set is a collections of GOP and exactly each GOP is assigned to a 

distinct team in the tournament. 

Definition 9 HAP pattern 

A HAP is a string of length equals to game numbers containing 0 on day d if the 

specific team plays a home game on that day, 1 if the specific team plays a road game, 2 

if the specific team has an off day. 

Definition 10 HAP pattern set 
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A HAP pattern set is a collections of GOP and exactly each HAP is assigned to a 

distinct team in the tournament. 

The four steps to make a time relaxed schedule corresponding to four sub-problems 

are listed as the following: 

1)  Find GOP set. For 8 teams, a possible GOP set would be  

1. G G O G O O G O O G G O G O 

2. G O G G O O G O G G O G O O 

3. O G G O O G G O G O G G O O 

4. O O O G G O G O G G O G G O 

5. G O G O G G O O G G O G O O 

6. G O G O O G G O O G G O G O 

7. G G O G O G O O G O G G O O 

8. G G O O O O G O G G O G G O 

2) Assign games consistent with the GOP set to get an opponent schedule. If team i 

has j as the opponent on day d, j should has i as opponent on day d as well.  For 

off days, team’s opponent will be designated to 0. A possible opponent schedule 

for the above GOP is:  

1. 8 3 0 2 0 0 4 0 0 5 7 0 6 0 

2. 5 0 6 1 0 0 3 0 4 8 0 7 0 0 

3. 0 1 5 0 0 7 2 0 8 0 6 4 0 0 

4. 0 0 0 7 5 0 1 0 2 6 0 3 8 0 

5. 2 0 3 0 4 6 0 0 7 1 0 8 0 0 

6. 7 0 2 0 0 5 8 0 0 4 3 0 1 0 

7. 6 8 0 4 0 3 0 0 5 0 1 2 0 0 
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8. 1 7 0 0 0 0 6 0 3 2 0 5 4 0 

3) Assign HAP set consistent with the opponent schedule to get a timetable.  If a 

team plays at home on day d, its opponent will play on road on the same day. 

For the above opponent schedule, a possible timetable would be  

1. +8 -3  0 +2  0  0 -4 0  0 +5 -7  0 +6 0 

2. -5  0 +6 -1  0  0 +3 0 -4 +8  0 -7  0 0 

3.  0 +1 -5  0  0 +7 -2 0 +8  0 +6 -4  0 0 

4.  0  0  0 +7 -5  0 +1 0 +2 -6  0 +3 -8 0 

5. +2  0 +3  0 +4 -6  0 0 +7 -1  0 +8  0 0 

6. -7  0 -2  0  0 +5 -8 0  0 +4 -3  0 -1 0 

7. +6 -8  0 -4  0 -3  0 0 -5  0 +1 +2  0 0 

8. -1 +7  0  0  0  0 +6 0 -3 -2  0 -5 +4 0 

4)  Assign teams to the timetable to get the complete schedule. If the teams are 

A,B,C,D,E,F,G,H, we can assign them to the 1,2,3,4,5,6,7,8 respectively to get 

the complete schedule: 

A. +H -C  0 +B  0  0 -D 0  0 +E -G  0 +F 0 

B. -E  0 +F -A  0  0 +C 0 -D +H  0 -G  0 0 

C.  0 +A -E  0  0 +G -B 0 +H  0 +F -D  0 0 

D.  0  0  0 +G -E  0 +A 0 +B -F  0 +C -H 0 

E. +B  0 +C  0 +D -F  0 0 +G -A  0 +H  0 0 

F. -G  0 -B  0  0 +E -H 0  0 +D -C  0 -A 0 

G. +F -H  0 -D  0 -C  0 0 -E  0 +A +B  0 0 

H. -A +G  0  0  0  0 +F 0 -C -B  0 -E +D 0 
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Assigning teams to timetables is league dependent. For that season, this step is not 

considered in this dissertation study. The decomposition methods can be classified 

according to the orders of the first three steps Two steps could be combined to form a 

new step since there are three decisions in the time relaxed tournaments. Theoretically 

there are more than dozen decomposition methods by switching the decision orders. For 

example, the following are four possible decomposition methods by staring the game day 

decision first: 

1. First GOP, then HAP, last opponent 

2. First GOP, then opponent, then HAP 

3. First GOP and HAP, then opponent 

4. First GOP and opponent, then HAP 

Actually some decomposition methods are essentially equivalent. For example, if 

the opponent for each day is decided, then the GOP is decided automatically. Therefore 

“First GOP, then opponent, last HAP” is same as “First GOP and opponent, last HAP”. 

We will focus on the problems with objective to minimize the breaks. In the time 

constrained tournaments, there are two well known decomposition methods if the 

objective is to minimize breaks: one is First-Break-Then-Schedule, the other is First-

Schedule-Then-Break. We will examine how these two decomposition methods work in 

the time relaxed context. Besides the two well-known decompositions, we will single out 

the GOP problem. 
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3.5.1 First-Schedule-Then-Break   
 

Trick (2003) argues that the steps should be ordered such that the most critical 

aspects of the schedule are considered early in the solution process. If the opponent is 

more important than venue in the scheduling, it should be considered at first. 

Additionally, sometimes the opponent could be decided by the external factors in the 

early scheduling stage. If the objective is to minimize the total breaks, we get a method 

called “First-Schedule-Then-Break”. This decomposition approach first generates an 

opponent schedule, then finds a feasible HAP sets with minimum breaks for the opponent 

schedule.  

Post and Woeginger (2006) defined opponent schedule as a timetable determines 

every pair (i, d), i ∊ T, d∊ D, the opponent team i on day d.  The table 7 is an example for 

the league of 6 teams playing a time relaxed single round robin tournament consisting of 

10 game days.  

Table 4 An example of opponent schedule – 6 teams 

  1  2  3  4  5  6 7  8  9  10 

Team 1  4    3  5       2     6 

Team 2  5   6  4  3        1     

Team 3  6  5  1  2            4 

Team 4  1   2   6    5        3 

Team 5  2  3  6  1    4         

Team 6  3  2 5   4            1 

 

 There are two types of approaches to generate an opponent schedule: generating 

opponent schedule without constraints or completion of a partial opponent schedule. As 
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we notice the opponent schedule contains the GOP information. For example, the GOP 

pattern for the team 1 in the above table is GOGGOOOGOG.  

In the opponent schedule generating phase, if the objective is to generate a regular 

schedule, we can use the following CP model: 

Model 12 Generate Schedule Phase CP Model 

 ( ) 1 , ,id

d D

O j i j T i j  (3.57) 

 , ,id jdO j O i i j T d D  (3.58) 

 ,idO i i T d D  (3.59) 

 ( )

{0,1,2}

( 0) 3 , {1,... 2}i d k

k

O i T d D  (3.60) 

The variable Oid refers to team i’s opponent on day d. The constraint (3.57) 

ensures every team play each other exactly once. The constraint (3.58) is the typical 

opponent constraint. (3.59) forces each team not to play itself. The constraint (3.60) set the 

length of consecutive games to be less than three for each team.  

After getting an opponent schedule, the next step is to find a feasible HAP with 

minimum breaks. We give the formal definition of this problem as the following: 

Definition 11 Time relaxed break minimization problem   

Given a timetable for a time relaxed tournament, the break minimization problem 

consists of finding a feasible pattern set which minimizes the number of breaks.  

Régin (2001) presents a CP approach to address the time constrained break minimization problem. 

A problem of 16 teams can be solved by his approach in one minute by adding some constraints 
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to break symmery  for improvement. Trick (2001) used IP model to solve the problem size of 20. 

Elf (2003) transferred the break minimization problem into a maximum cut problem. 

They solved problem of 26 teams in reasonable time. A similar approach is used by 

Miyashiro and Matsui (2006). They developed an approximate method to solve the 

problem of 40 teams.  

We can use CP model to address the break minimization problem. The variables 

Pid and  brkid are similar to those used in Model 11.  

Model 13 Break Minimization Phase CP-model 

 
{2,... }

min id

i T d D

brk  (3.61) 

 ( 1)( )*( 0) , {2,... }id id i d idbr P P O i T d D  (3.62) 

 0 ( 0 & 1) || ( 1& 0) ,id idid O d O dO Pid P Pid P i T d D  (3.63) 

 ( 1)0 , {2,..., }id id i dO P P i T d D  (3.64) 

 ( ) ( )

{0,1}

( 0)* 2 , {1,..., 1}i d k i d k

k

O P i T d D  (3.65) 

The constraint (3.62) defines a break to be 1 if a team plays two consecutive home games 

or away games. The constraint (3.63) ensures two opponents have opposite venue when they play 

a game. The constraint (3.64) assigns a team to its previous venue if it has an off day. The 

constraint (3.65) makes sure no team can play consecutive home games. The objective (3.61) is to 

minimize the total breaks. 

We run Model 12 to get the random schedule, then we use Model 13 to assign the game 

venues. We can get optimal solution for problem of 10 teams in seconds, but it take more than 10 
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minutes to solve the problem of 12 teams. We believe some improvement methods such as those 

used by Régin to break symmetries could be  helpful  to decrease the computation time,  but it is 

not a trivia task.  Another observation is we get some shcedules with minimum break closing to 

the team number.  For example, there is a  schedule for 8 teams with minimum break at 6.  

For the comparation, we developed IP model for break minimization phase. The varialbes 

definiton are similar to those from Trick (2001). The following is the model:  

Model 14 Break Minimization Phase IP-model 

 
{2,... }

min id

i T d D

brk  (3.66) 

 ( _ hom _ ) _ hom ,
t d

id id id idstart to e to away at e i T d D  (3.67) 

 ( _ hom hom 1)*( 0) ,id id id idbrk at e at e O i T d D  (3.68) 

 10 _ hom _ hom ,id id idO at e at e i T d D  (3.69) 

 ( _ hom _ hom ) 1 , ,id jd idO j at e at e i j T d D  (3.70) 

 _ hom _ 1 ,to e to away i T d D  (3.71) 

 _ hom _ hom 1 ,at e to e i T d D  (3.72) 

 ( ) ( )

{0,1}

_ hom *( 0) 2 , {1,.. 1}i d k i d k

k

at e O i T d D  (3.73) 

            The definitions are variables are explained as the following: to_homeid and 

to_awayid equal 1 if a team goes home or go to plat a road trip after day d respectively, 0 
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otherwise. brkid is defined as a break when a team play two consecutive home games or 

road games. The constraint (3.67) and (3.68) defines the variable at_home and brk 

respectively. The constraint (3.69) claims a team to stay at the previous venue if it has an 

off day. The constraint (3.70) makes sure one team at home and the other on road if they 

play a game. The constraint (3.73) forces a team not to play consecutive home games. 

The constraint (3.71) ensures a team not to go home and go on road at the same time on a 

specific day.  The constraint (3.72) is added to improve the computation. The objective 

(3.66) is to minimize the total breaks for the whole tournament.  

We use Model 12 to generate schedules then we run a computation studies on the IP 

model and CP model. The following table presents results: 

Table 5  Break Minimization Phases 

 

 

We set the computation time to 600 seconds for both models. CP model has slight 

advantage for problem of eight teams or less, but it cannot finish the searching for problem of 

twelve teams or more. IP model can get the optimal solution for problem of 20 teams in 126 

sections.    

Team IP CP 

Node Time Optimal Fail Time Best 
6 0 0.12 2 168 0.08 2 

8 3 1.14 8 2225 0.31 8 

10 0 1.82 8 1210723 97.43 8 
12 0 3.79 16 5899790 600 16 

14 3 14.25 27 5053636 600 27 

16 52 36.68 33 3673985 600 34 

18 14 62.77 42 2851148 600 46 
20 47 126.09 50 2329830 600 56 
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3.5.2 First-Break-Then-Schedule 

 

In this section we look at the method consisting of two parts: first generate a 

schedule with minimum break without considering opponent, then generate the 

opponents in the second phase. A lot of researches have been done on the problem to 

minimize breaks in the time constrained tournament schedules. Because of the difference 

in the structures, only some of the results are applicable for the time relaxed problems. In 

the following we will list some properties related to the time relaxed tournament.  

The limitation of the length of consecutive games is an important parameter for a 

time relaxed tournament. FronEek (2003) stated that a round robin tournament with one 

bye in each round has a unique schedule without break. If there is no limitation on the 

length of the consecutive games, every time relaxed tournament has at least one schedule 

without break.  

Theory 3.1 If neither consecutive games nor consecutive off days are allowed, a 

tournament consisting of 2n teams will have at least 2n-4 breaks in a 2*(2n-1) time slot 

relaxed tournament. 

Proof.  We will use the 6 team instance as a example to demonstrate. Here 2n = 6, 

total time slots is 2*(2n-1) = 10. Because neither consecutive games nor off days are 

allowed, therefore all the games are distributed every other day. Like the time constrained 

tournament, there are only two possible game patterns have no breaks: HAHAH or 

AHAHA. For the first game, it can be carried out either on the first day or the second day.  
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Without lost of generality, we can assume team 1 and Team 3 have the HAHAH pattern, 

starting the game on the first day and second day respectively. Team 2 and team 4 have 

the AHAHA pattern, starting the game on the first day and second day respectively.  All 

these 4 teams have no break as can tell. Two identical HAP patterns cannot be assigned 

to two teams, otherwise these two teams cannot play each other. Therefore every one of 

the rest 2n-4 team will have at least one slot different with one of the four teams, which 

will bring a break. As a result, the total break is at least 2n-4.  

Table 6 An example for 6 teams 

  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Team 1 H 

 

A 

 

H 

 

A 

 

H 

 Team 2 
 

H 
 

A 
 

H 
 

A 
 

H 

Team 3 A 

 

H 

 

A 

 

H 

 

A 

 Team 4 
 

A 
 

H 
 

A 
 

H 
 

A 

Team 5 

          Team 6 

           

The first step for this method is to generate a HAP set. A common question is to 

decide whether a HAP set is feasible. The following is the formal definition of this 

problem.  

Definition 12 HAP feasibility problem 

Input: A HAP set h ∊ {0, 1, 2}
n×(2n−2) 

Question: Is h feasible? 

The HAP set feasibility problem exists in the time constrained tournament 

scheduling as well. The HAP set feasibility problem is still open for the time constrained 

scheduling. Miyashiro et al.(2003) proposes necessary condition (3.74) for HAP sets to be 
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feasible. T’ is a subset teams belong to T, p is any time period. C0(T’, p) and C1(T’, p) 

represent the number of zeros and ones respectively: 

 0 1

' ' 1
min{ ( ', ), ( ', )} 0 '

2p P

T T
C T p C T P T T  (3.74) 

In each time slot, the maximum possible games among teams in subset T’ is 

restricted to the minimum number of home or road games respectively. The summary of 

these minimum numbers should be equal or greater than the required games among teams 

in the subset, which is
' ' 1

2

T T
.  This condition can be checked in polynomial time. 

Miyashiro conjectured that this condition is sufficient. Miyashiro et al. also show that, for 

pattern sets with a minimum number of breaks and no more than 26 teams the condition 

(3.74) is both necessary and sufficient. However, the sufficiency is still not proven for 

other instances.  Actually the constraint is applicable to the time relaxed schedules as 

well.  

Briskorn (2007) provides an IP model stated that it is tighter than the condition 

given by  Miyashiro. Similarly we present the following IP model to check the feasibility 

of the HAP: 

Model 15 HAP feasibility problem IP model 

 
,

max h ijd

i T j T j i d D

z x  (3.75) 

 1 , ,ijd

d D

x i j T j i  (3.76) 



52 
 

 
{ \ }

1 ,jid

j T i

x i T d D  (3.77) 

 ( 2) ,ijd id

j T

x h i T d D  (3.78) 

 , , ,ijd id jdx h h i j T j i d D           (3.79)  

The objective function (3.75) represents the goal to maximize the number of 

matches. The constraint (3.76)  forces each pair of teams to meet at most once while 

constraint (3.77)restricts the number of matches per team and day to be less than or equal 

to one. These two constraints ensure a single RRT. Symbol iph  is the entry of HAP set 

corresponding to team i and day d.  The constraint (3.78) and (3.79) ensures two teams can 

meet on a day only if one play at home and the other play on the road. If the HAP sets are 

feasible, the objective number should be equal to
( 1)

2

n n
.  Briskorn proved the IP model 

for time constrained model is tighter than the condition given by Miyashiro. The 

sufficiency of this condition is not proven either.  

3.5.3 GOP  problem 
 

As previously stated, we assume the total available days are double size of the 

games for all tournament schedules. There is a decision to pick the game days. We can 

formally define the game day decision problem for a single round robin tournament as the 

following:  

Definition 13 GOP problem 
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 Given a set T, |T| = n, a set D, |D| = 2n – 2, each double (i, d) ∊ T x D equals 1 if 

team i plays a game on day D, and cost Cid for each (i, d) ∊ (T × D).  A feasible solution 

to the GOP y problem corresponds to a set of n*(n−1) doubles such that  

(i) for each team, exactly n-1 doubles are chosen  

(ii) for each team, no more than two doubles within a  consecutive fixed number  

are selected 

(iii) the selected doubles can be used to generate a feasible timetable 

The objective of the game day problem is to find a feasible solution having the minimum 

cost of chosen doubles cost.   

The first two conditions can be easily modeled. However, the third condition is 

not straightforward. One obvious characteristics of feasible GOP is the number of the 

teams playing games on a specific day should be even. If we employ this requirement 

only for iii condition, we get the following IP model:  

Model 16 GOP generating model 

 ( %)2 0id

i T

x d D  (3.80) 

 | | 1id

d D

x T i T  (3.81) 

 ( )

{0,1,2}

2 , {1,..., 2}i d k

k

x i T d D  (3.82) 

 0,1 ,idx i T d D  (3.83)  

Binary variable idx  is equal to 1 if team i plays a game on day d, otherwise 0. 

Constraint (3.81) is to make sure the total number of games for each team is equal to n-1, 
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constraint (3.80) is to ensure the total number of teams will play game on any day is not 

odd, which is impossible for a tournament. Constraint (3.82) represents the requirement 

every team will play no more than two consecutive games.  

The above model provides necessary conditions. Are these conditions enough to 

provide a feasible schedule for a tournament?  The answer is no. Here we will give a 

contradiction example.  

Table 5 is a game day assignment generated by Model 16.We can verify that this 

GOP pattern has no feasible schedule. If there are only two teams playing on a day, we 

know these two teams are opponents to each other on that day. Therefore we can decided 

the opponent schedule on day 3, day 4, day 5, day 7 and day 7. After this step, we get a 

partial timetable in table 6. Now we check the schedule of team 5. On day 9, there are 

three possible opponents for team 5: team 4, team 5, or team 6. However, all of these 

three teams have been assigned already. Therefore there is no opponent available for 

team 5 on day 9. This example proofed that Model 16 cannot guarantee a feasible 

schedule.   

Table 7    An GOP generated by Model 16 

  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 
Team 1 1 1 0 0 0 1 0 1 0 1 

Team 2 1 1 0 0 0 1 0 1 0 1 

Team 3 1 0 0 1 0 1 0 0 1 1 
Team 4 0 1 1 0 1 0 0 0 1 1 

Team 5 0 0 1 1 0 1 1 0 1 0 

Team 6 1 1 0 0 1 0 1 0 1 0 
 

Table 8  Partial schedule based on Table 7 

 

  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 
Team 1 

       
2 
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Team 2 
       

1 
  Team 3 

   
5 

      Team 4 
  

5 
 

6 
     Team 5 

  
4 3 

  
6 

 
? 

 Team 6 
    

4 
 

5 
    

Now it is natural to ask the question: what are the characteristics of a feasible 

GOP? We formally define the GOP feasibility problem as follows: 

Definition 14 GOP feasibility problem 

Input: A GOP set g ∊ {0, 1}
n×(2n−2) 

Question: Is g feasible? 

The GOP feasibility problem is important. At the early stage of the NBA 

scheduling, the first step is to decide the game days based on the available days provided 

by individual team. The solution for the feasibility problem provides a good way to detect 

the infeasibility caused by the conflicting requirements from the teams.  

As we noticed, the necessary conditions embraced in Model 16 are not sufficient. 

Therefore we need to find more characteristics of GOP feasibility. There are similarities 

between GOP and HAP.  

Similar to the HAP set feasibility, we propose the following necessary condition 

for the GOP feasibility:  

 
'

' ' 1
( ) / 2 '

2
ip

p P i T

T T
x T T  (3.84) 

T’ is a subset of teams T. The maximum possible games among the subset T’ on a 

specific day is restricted to the total number of the non-zero variables divided by 2. For 
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example, if the subset contains 5 teams and all the GOP entries are 1 on day 1, then there 

should be equal to or less than 2 games among the teams from this subset on day 1. If the 

sum total of these numbers are strictly less than 
' ' 1

2

T T
, this GOP is infeasible. 

This condition is necessary, but its sufficiency is hard to proven. The IP model for the 

feasibility of GOP pattern set is listed as the following:.  

Model 17 GOP feasibility Model 

 
,

max 'g ijd

i T j T j i d D

z x  (3.85) 

 
' 1 , ,ijd

d D

x i j T j i
 (3.86) 

 
{ \ }

' 1 ,jid

j T i

x i T d D  (3.87) 

 ' , , ,ijd jdx G i j T j i d D  (3.88) 

 ' {0,1} , , ,ijdx i j T j i d D  (3.89) 

The objective function (3.85) represents the goal to maximize the number of 

games. The constraint (3.86) forces each pair of teams to meet exactly once while 

constraint (3.87) restricts the number of games per team play on a specific day to be less 

than or equal to one. These two constraints ensure a single RRT. idG  is the entry of 

GOP set corresponding to team i and day d.  The constraint (3.88) ensures only teams 

with entry 1 can meet for a game on a specific day. If the GOP sets are feasible, the 
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objective number should be equal to 
( 1)

2

n n

. 
This IP model can be checked in 

polynomial time. For example, the GOP pattern listed in the table 5 returns the optimal 

number of 9, which is less than
6 * (6 1)

2
 = 15. Therefore that GOP is not feasible. We 

conjecture that this condition is sufficient for the GOP feasibility. Unfortunately we 

cannot provide the formal proof. We can run some test for this model. We tested the 

instances of 6,8,10, 14 teams. It detects all the infeasible models.  
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CHAPTER IV    

TIME RELAXED TRAVELING TOURNAMENT PROBLEM 

 

Traveling distance is a major concern in the tournament scheduling problems. 

Every team wants to minimize the travel distance as much as they can. Long traveling 

distance means long traveling time which is highly unwanted during the tightly scheduled 

season. Besides that, long traveling distance has some other undesired results, such as 

players fatigue, high traveling cost, etc.  On the other side, a certain amount of traveling 

distance is necessary. The administrative agency has to make sure the traveling distance 

is fair for all teams when it attend to minimize the total traveling distance for the whole 

league.  

This chapter will look at the traveling distance factor in the time relaxed 

tournament scheduling problem. First we will review the related work. Then the problem 

of Time Relaxed Traveling Tournament Problem (TRTTP) is presented. In the third 

section we present algorithms to tackle the TRTTP. Equation Chapter 4 Section 1 

4.1  Minimizing traveling distance in practical applications  
 

If a team is not required to return home after every game, it is possible to combine 

consecutive away games into one trip to save traveling distance. During the middle 70’s, 

the surging oil price urged teams to find a way to save traveling cost.  As a scheduling 
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constraint, traveling distance has been studied in several practical sports scheduling 

problems since then. Since several problems are basketball league related, they have been 

reviewed in Chapter II. In this section we will focus on the literatures regarding the 

minimizing traveling distance in practical applications.  

The problem of minimizing traveling distance can be models as an IP problem. 

However it is beyond the current computer computation capability to solve these IP 

problems because the size is too large. Therefore some effective heuristic algorithms are 

developed.  Campbell and Chen published the first paper with minimizing traveling cost 

as an objective in 1976. They faced the problem of minimizing the traveling distance for 

a baseball league. They developed a heuristic approach based on the pairing. The major 

idea in their approach is to pair teams, visitors will reduce the traveling distance by 

playing the pair teams in one trip rather than in two separate trips. Many algorithms 

resembling this two-phase heuristic approach were used for some other applications in 

the following years. To name a few, Ball and Webster (1977) solved a college basketball 

conference scheduling problem; Bean and Birge (1977) tackled the NBA scheduling 

problem.   

With the development in the computation capabilities, metaheuristic algorithms 

are used to address the minimizing traveling distance problem. Costa(1995) developed a 

generic algorithm to tackle the NHL scheduling problem with minimizing traveling 

distance as an objective. Wright (2006) uses a type of simulated annulling to solve the 

scheduling problem for the New Zealand basketball league, traveling distance is 

embodies in the objective functions.   
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Besides the practical problems, there is a theoretical problem with minimizing 

traveling distance as the objective has drawn a lot of research attentions since it was 

introduced. It is called the traveling distance problem (TTP), which is the main topic in 

the following section. 

4.2  Traveling Tournament Problem (TTP)   
 

Traveling tournament problem (TTP) was originally introduced in 2001 by Easton, 

Nemhauser, and Trick. It is motivated by the Major League Baseball (MLB) scheduling 

problem. The TTP captures the silent features of the MLB scheduling problem, which 

combines the traveling distance minimization and game pattern feasibility.  

4.2.1 The definition of TTP 

 

The formal definition of the TTP is replicated as following:  

Definition 15 Traveling tournament problem (TTP) 

Input: n, the number of teams; D an n by n integer distance matrix; L, U integer 

parameters. 

Output: A double round robin tournament on the n teams such that 

– The number of consecutive home games and consecutive away games are 

between L and U inclusive, and 

– The total distance travelled by the teams is minimized.  

There are two optional constraints: the games between same opponents cannot 

happen in consecutive time slots, which is called no repeater constraint; the second round 
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is mirrored to the first found, which is called mirroring constraint. Notice these two 

requirements cannot be relevant at the same time, because the mirrored schedule 

guarantees no repeater.  

After the introduction, TTP draw a lot of research interest from both operations 

research and constraint programming communities.  Two instances of the TTP were 

listed in the original paper. The first one is called circle instances. All teams are regarded 

as nodes on a circle. The distance for all the adjacent nodes is constant. The second is 

National League instance. The distances for teams are based on the National League 

teams in the Major League Baseball. Different instances can be gained by varying the 

number of teams in the tournament, such as NL4, NL6, NL8, etc. Several additional 

instances were added afterward. For examples, the constant instances in which all the 

distances among teams are same, the super instances which are based on a rugby league, 

the NFL instances which are based on the National Football League from the United 

states, and so on.  

4.2.2 Research progress 
 

After the TTP was presented, a lot of algorithms has been attempted to solve the 

problem. All the instance classes together with the current best upper and lower bounds 

can be checked at Trick’s “Traveling tournament problem challenge” page. So far, 

finding the optimal solution for 10 teams is still open.  

Easton et al (2002) present a method based on the independent lower bound (ILB) 

in their TTP introduction paper. First of all they calculate the traveling distance lower 

bound for each team without consideration of the other teams. Later on the trips 
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generated in the first step was combined according to the timetable constraints. This 

method solves the problem of NL4 and NL 6 to optimality.  

Because of the enormous amount of the variables, this method cannot solve the 

problem of eight teams. Easton et al (2002) present a method based on the column 

generation techniques for the eight team instance. The master problem uses IP to assign 

tours to teams. The pricing problem uses CP to find all the tours with negative reduced 

cost for teams. They report the program generated a solution for NL8 after 24 hours of 

parallel computation on 20 CPU, but they cannot prove the optimality. Sirnich (2009) 

proved that the solution indeed is the optimal solution. 

The instances of ten teams and above are still unsolved. Besides methods to reach 

optimality, various methods employing heuristic algorithms to find approximate solutions 

have been developed. Anagnostopoulos et al (2006) used a method called TTSA to get 

some best-to-date solutions for many instances. TTSA is a variation of the typical 

simulated annealing algorithms. The searching neighborhood is constructed by five types 

of moves: SwapHomes, SwapRounds, SwapTeams, Partial SwapRounds and 

PartialSwapTeams. An ejection chain is used to restore the structure after the moves. All 

the constraints except the no repeaters can be accomplished by this procedure. The no 

repeaters constraint is modeled in the objective function. This algorithm generated some 

best known solutions to many instances. 

In addition to the simulated annealing, some other heuristic algorithms have been 

used to tackle the TTP as well. Schaerf (2007) used tabu search, Lim et al (2006) used an 

algorithm combining simulated annealing and hill-climbing, etc.  All these effective 
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algorithms are proved to be promising method if the objective is to get a good feasible 

solution, rather than to attain the optimal solution.  

4.3  Time Relaxed Traveling Tournament Problem (TRTTP) 
 

If we put the traveling tournament problem in the time relaxed context, we get a 

new problem called Time Relaxed Traveling Tournament Problem (TRTTP). TRTTP 

shares most characteristics with the TTP meanwhile carries some unique properties. In 

this section we present the formal definition first. Secondly, we will look at the 

complexity of this problem. Then we will present algorithms used to tackle different 

instances.  

4.3.1 Definition 

 

The formal definition of TRTTP is listed as the following:  

 

Definition 16 Time relaxed traveling tournament problem: 

Input: n, the number of teams; D, an n by n integer distance matrix; L, U, B, O 

integer parameters. 

Output: A double round robin tournament on the n teams such that 

(i)  The number of consecutive home games and consecutive away games are 

between L and U inclusive; 

(ii) The consecutive games without off days is less than B; 

(iii)The consecutive off days is less than O; 

(iv) The total available game slots are 4(n-1); 

(v) The total distance travelled by the teams is minimized. 
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There are three new constraints compared to the time constraint TTP. If a team 

play games on two consecutive days, it has a back-to-back game on the second time slot.  

Normally teams want to avoid such situation, so we introduce the new parameter B to 

limit the length of the consecutive games.  Analogously, we restrict the length of 

consecutive off days. The third new constraint is the number of the total available time 

slots. We define the total available game slots to be 2 times the number of the games for 

each team. Because each team has to play 2(n-1) games in a double round tournament, 

the total available time slots are 4(n-1).   

4.3.2 Complexity  

 

For comparison, we will look into the complexity of the TTP before examine the 

complexity of TRTTP. 

           In extreme cases, the complexity of the TTP is obvious. For examples, when L and 

U are both equal to one, the optimal solution is a constant. When U is equal to two, a 

polynomial time algorithm analogical to find the minimum weight for a complete graph 

can be attained. When U is equal to n-1, this is a traveling salesman problem (TSP), 

which has been proven to be a NP-complete problem. Actually the analog to the TSP 

stands in many cases. The round robin tournament problem is analogical to the multiple-

salesman traveling problem to some extent, but it is more difficult because of the one-

factor constraint. By the time of this dissertation writing, the complexity of the TTP is 

still an open problem when L and U equal to a value between 3 and n.  Easton (2001) 

conjectured that TTP is a NP-hard problem except some extreme instances. She made a 

statement that even single team problem is strong NP-complete when L and U take 
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certain values. This problem can be reduced by the partition into isomorphic sub-graphs 

restricted to path problem (PISP), which is proven as NP-complete.  

            Similarly, we can easily get the complexity of TRTTP when the parameters take 

extreme values. If U is 1, every team has to travel round trip for each opponent. 

Therefore the traveling distance for each team is a constant.  A polynomial algorithm for 

TRTTP is trivia.  

When U equals 2, we can find a polynomial time algorithm to solve TRTTP. We 

assume the distance matrix satisfies the reflexive properties and triangle inequality. It is 

obvious that a team will have a shorter traveling distance if it has a consecutive away trip 

to visit two teams together, rather than two round trips to each team separately. Based on 

this observation, we can tell easily if a team wants to travel as short as possible, it has to 

have as many consecutive away trips as possible. The away opponents should be paired 

to minimize the traveling distance. This is the pairing theory used in Campbell and Chen 

(1977). Figure 3 illustrate an example when team number is eight. Team i will take three 

separate away trips to visit pair teams, then it will take a round trip to the team paired 

with itself.  No matter what the designated team i is, the pairing results is the same. The 

following model can be used to find the pairs: 

Model 18 Pairing Models 

 *
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min ij ij

j i T
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 {0,1} , ,ijp i j T i j  (4.3) 

 

Figure 3 Optimal travel pattern for U=2 

The Binary variable Pij equals 1 when team i is paired with team j. The objective 

function (4.1) is to minimize the traveling distance for the pairs, which can be considered 

as the minimum weight matching. The equation (4.2) restrains each team to be exactly in 

one pair. After the pairs are generated, we can make a timetable based on the pairs. This 

algorithm is polynomial. 

When U equals to a value between three and n-1, we cannot provide a formal 

proof the complexity. We conjecture the problem is NP-hard because it is analogical to 

the TSP.  

4.3.3 Independent Lower Bound  

 

If we make the schedule with minimum traveling distance for one team without 

considering the other teams, it is a strong lower bound for that team. If we sum up the 

lower bounds for all teams in the tournament, we have a lower bound which is called 
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independent lower bound (ILB).  We will introduce the single team problem first since it 

is the fundamental idea behind the ILB. 

Definition 17 Time Relaxed Single Team Problem (TRSTP) 

Instance: n, the number of teams; tr, the designated team; D, an n by n integer 

distance matrix; L, U, B,O integer parameters, k is the integer threshold.  

Questions:  Does there exist a tour for tr meeting the following constraints 

meanwhile the traveling distance is less than or equal to k?  

(i)  The number of consecutive home games and consecutive away games are 

between L and U inclusive; 

(ii) The consecutive games  is less than B; 

(iii)The consecutive off days is less than O; 

(iv) The total available game slots are 4(n-1); 

The condition (i) restrains the length of consecutive home or away games. 

Meanwhile the length of the consecutive games regardless of the game type is restricted 

by condition (ii). The condition (iii) forces team to avoid too long off days. The last 

condition (iv) defines the number of available time slots. The objective is to find a tour 

with traveling distance is less than or equal to the threshold number. We will introduce 

the concept of tour in the following paragraph.  

A tour is a vector of length of total available time slots. Each element in the 

vector represents the venue where the team visits on that day. It is used to descript the trip 

taken by the team during the tournament. We use the number of the team to notate the 

venue. For simplicity, if a team has consecutive away games, we assume the team will 

travel to the opponent’s venue directly after the first away game rather than returning to 

home. If there is an off day between two consecutive away games, we assume the team 
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will return home. In real world, it is more complicated than this. For example, a team 

from the east coast will have a long trip to visit the west coast teams every season. 

Normally they will stay on the road between games rather than return home. However, 

sometimes teams prefer to stay at home during off day between two away games if it is 

possible. It is believed among players and coaches that they can have better rest at home. 

It is so called “home pillow” advantage among players. Taking into all these 

considerations will make our model too complicated. As a result we assume teams will 

return home on off days between two away games. We use number 0 to represent the off 

day.  For example, in a instance with n = 4, L = 1, U = 3, B = 3, a possible tour for team 1 

is {1,1,2,1,3,1,1,1,1,4,1,1}, note that each opponent venue appears exactly once, and 

home venue appears 9 times. Actually the return home assumption will not change the 

optimal solution for TRSTP. If we assume teams will stay on road on off days, only the 

travelling day will be changed, the travelling distance will remain the same.    

If U equals to 1 or 2, the analysis of complexity for the TRTTP still stands for 

TRSTP. Now we examine the instances when U equals three. We can use both integer 

programming and constraint programming to find the ILB for a team. The constraint 

programming modeling is outlined here. It is similar to the method used by Easton (2001). 

The basic variables are the venues where the team will play on each day. The domains for 

these variables are all the teams in the tournament. Two dummy variables are added for 

the purpose of calculating traveling distance: day 0 and day n+1. Both of the dummy 

variables are set to the home team. Traveling distance for consecutive time slots are set as 

variables as well, but only used for calculating distance. The objective is to minimize the 

total traveling distance.  
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Additionally, there is a need for one more type variables in our model. In the time 

constrained model, every team has two options in a time slot: plays either a home game 

or a road game. In the time relaxed model, every team has three options: home game, 

road game and off day.  Whether teams return home or stay on road will not change the 

optimal value. We assume the team will return home on off days during an away trip, and 

we assume teams only travel the day before the game day.  

We list the CP model to calculate the ILB in the following Model 19. The variable 

Vd refers to the venue where team i will stay on day d, the domain for this variable are all 

teams. The binary variable Hd equals 1 if team i plays a home game on day d, otherwise 0.  

Cd are the traveling distance for team i on day d.  

Model 19 ILB – CP model 
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 1[ , ] 1d dCd dis v v d D  (4.11) 

The objective (4.4) is to minimize the total travel distance for team i from the 

starting day to the finishing day. The constraint (4.5) ensure team i will visit every other 

team once. Then the constraint (4.6) forces team i to play the required number of home 

games. The following (4.7) and (4.8) set the limitation on the consecutive games and off 

days respectively. Then (4.9) and (4.10) declare team start and finish the tournament at 

home. The last equation (4.11) calculates the traveling distance for each day. The notation 

1[ , ]d ddis v v  refers to the distance between two venues where team I stay on day D and 

the following day.  

To clarify, we will list an example in the OPL language in the following. The 

parameters Ub and Od represent the variable U and O respectively.  

using CP; 

int nbTeams = ...; 

int nbDays = ...; 

int Ub = ...; 

int Od = ...; 

int home = ...; 

int distance[1..nbTeams,1..nbTeams]=...; 

dvar int venue[0..nbDays+1] in 1..nbTeams; 

dvar int homegame[1..nbDays] in 0..1; 

dvar int travel[0..nbDays] in 0..1380; 

dexpr float totalcost= sum(d in 0..nbDays)travel[d]; 
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subject to 

{ 

//visit each opponent once 

 forall(i in 1..nbTeams: i!=home) 

  sum(d in 1..nbDays)(venue[d] == i) == 1; 

//stay at home except road games  

 sum(d in 1..nbDays)(venue[d]== home) == nbDays-nbTeams+1; 

//nbTeams-1 home games 

 sum(d in 1..nbDays)homegame[d] == nbTeams -1; 

//can't have road game and home game together 

 forall(d in 1..nbDays) 

  venue[d]!= home =>homegame[d] == 0; 

//No more than Ub consecutive games 

 forall(d in 1..nbDays-ub) 

  sum(j in 1..ub)(venue[d+j]!=home || homegame[d+j] ==1)<Ub; 

//No more than ub consecutive off days 

 forall(d in 1..nbDays-Ob) 

  sum(j in 1..Ob)(venue[d+j]==home && homegame[d+j] == 0)<Od; 

//start and finish the tour at home 

 venue[0] == home; 

 venue[nbDays+1] == home; 

 forall(d in 0..nbDays) 

  travel[d] == distance[venue[d],venue[d+1]]; 
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}  

We set the parameters used in the model as the following: L = 1; U=B = 3; O = 5. 

We run the above OPL code in ILOG Studio 6.0 for NL 6 and NL8 instances by using the 

default propagation setting. The program cannot finish the searching after thirty minutes.  

For both the NL 6 and NL 8 (A) instance, the program cannot get any improvement after 

the first minute.  Table 9 and Table 10 provide the computation results respectively. The 

number 38670 for eight team instance is same as the result from Easton (2001). The 

number 22557 for six team instance is smaller than Easton’s 22969.  The difference can 

be caused by the non-repeater constraint in Easton’s model, which is not included in our 

model. We will prove that these numbers are actual the lowest bound a team can get. 

Table 9   ILB-CP computation results for NL 6 teams  

Team  Distance 

1 4147 

2 3328 

3 3200 

4 3711 

5 4953 

6 3218 

Total 22557 

 

Table 10 ILB-CP computation results for NL 8 teams  

Team  Distance 

1 4772 

2 4491 

3 4340 

4 5165 

5 6654 

6 4131 

7 4278 

8 4839 

Total 38670 
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When U equals three, a team has three options for a trip:  one-team trip, which 

means visiting one team and returning to home; two-team trip, which means visiting two 

teams then returning home, three-team trip, which means visiting three teams before 

returning to home. Similar to the pairing model, we will use an IP model to find the 

optimal trip pattern for a team when U equals three: 

When U is equal to 2, the optimal travel pattern for a team is to have as many pair 

trips as possible. At first glance, the travel pattern with as many three-team trip as 

possible seems attractive for a team when U is equal to 3. Actually it is not the case. For 

one thing, teams cannot be divided into three-team groups under many circumstances. 

 Figure 4 and Figure 5 are two examples. Additionally, sometimes it is better for a 

team to have a pair of two-team trips rather than a three-team trip plus a round trip to a 

single team. For example, the optimal travel pattern for team 6 in the instance NL 8(A) is 

to have two pair trips. It is illustrated in Figure 6.  As a result, the IP model to find the 

optimal traveling pattern when U equals three should consider all these circumstances. 

The following Model 20 can be used to find the optimal travel pattern when U equals 

three.  
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 Figure 4  Optimal travel pattern when U = 3 for n = 6  

 

 

 

Figure 5 An optimal travel pattern when U = 3 for n = 8 
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Figure 6  An optimal travel pattern with two pair trips when U =3 for n = 8 

 

Model 20 Grouping model when U =3 

 min( * * )ijk ijk ij ij

i T j T k T i T j T

R G P T  (4.12) 

 
{1,..., ) { 1,... }

( ) 1ijk jik jki ji ji

j T k T j i j i T

G G G P P i T  (4.13) 

 , ,ijk hi ij jk khR dis dis dis dis i j k T  (4.14) 

 ,ij hi ij jhT dis dis dis i j T  (4.15) 

 {0,1} , ,ijkG i j k T  (4.16) 

 {0,1} ,ijP i j T  (4.17) 

There are two binary variables used in this model. This first one is  ijkG , which 

is equal to 1 if a team visit i first, then go from i to j,  j to k, finally return from k to home; 
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otherwise 0. The second one is ijP , which is equal to 1 if a team visits team I first,  then 

goes from i to j, and returns from j to home. The objective function (4.12) is to minimize 

the total traveling distance for all trips. The constraint (4.13)forces each team belongs to 

exactly one trip, either three-team or two-team. The constraint (4.14) and (4.15) defines 

the traveling distance for three-team trip and two-team trip respectively.  

The optimal solution with traveling pattern can be gained in seconds. The 

computation results match those listed in Table 9 and Table 10. Therefore we know those 

results are optimal. 

4.3.4   Solution Method 

 

Three methods based on the ILB are outlined in this section. The first one is a CP 

model for teams return home on off days during the consecutive away games. The second 

one is a CP model for teams stay on road on off days during the consecutive away games. 

The last one is a decomposition method which is based on the concept of optimal travel 

pattern.  

The computation results from Model 19 can serve as a strong lower bound for 

TRTTP. We can modify it for calculating the minimum traveling distance for all teams. 

We set the parameters as the following: the maximum consecutive off days O is 4, 

maximum consecutive games U=B= 3. The flowing is the model for the whole 

tournament.  

 Model 21 TRTTP – Return Home on off days Model 

 
{0,... }

min id

i T d D

C  (4.18) 



77 
 

 ( ) ( )

{ \ }

( ) 1 ,i d k j d k

j T i

v i v i i T d D  (4.19) 

 ( ) ( )

{0,...,4} {0,...,4} { \ }

( ) ( ) 1 , {1,..., 4}i d k j d k

k k j T i

v i v i i T d D (4.20) 

 ( ) ( )

{0,...,3} {0,...,3} { \ }

( ) ( ) 3 , {1,..., 3}i d k j d k

k k j T i

v i v i i T d D (4.21) 

 ( )

{0,...,1} { \ }

( ) 1 , {1,..., 1}j d k

k j T i

v i i T d D  (4.22) 

 ( ) 1 , ,jd

d D

v i i j T i j  (4.23) 

The objective (4.18) is to minimize the traveling distance for all teams. The 

constraint (4.19) ensures every team will play at most one game on any day. The 

constraint (4.20) and (4.21) limit the length of consecutive games and off days 

respectively. The constraint (4.22) makes sure every team will not play consecutive home 

games. The constraint (4.23)forces each team will visit every other team exactly once. 

The definition for the cost is same as those in Model 19, which is not listed in the model.  

To clarify, we list the OPL for this model as the following:  

using CP; 

int nbTeams = ...; 

int nbDays = 4*(nbTeams-1); 

int distance[1..nbTeams,1..nbTeams]=...; 

dvar int venue[1..nbTeams][0..nbDays+1] in 1..nbTeams; 

dvar int travel[1..nbTeams][0..nbDays] in 0..1380; 
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dexpr float totalcost= sum(i in 1..nbTeams,d in 0..nbDays)travel[i][d]; 

minimize totalcost; 

subject to 

{ 

//visit each opponent once 

 forall(i,j in 1..nbTeams:i!=j) 

  sum(d in 1..nbDays)(venue[i][d] == j) == 1;  

//stay at home except road games 

 forall(i in 1..nbTeams)  

  sum(d in 1..nbDays)(venue[i][d]== i) == nbDays-nbTeams+1; 

 //No more than 3 consecutive games 

 forall(i in 1..nbTeams,d in 1..nbDays-3) 

  sum(k in 0..3)(venue[i][d+k]!=i)+sum(j in 1..nbTeams:j!=i, k in 

0..3)(venue[j][d+k]==i)<=3; 

//No consecutive home games 

 forall(i in 1..nbTeams,d in 1..nbDays-1) 

  sum(j in 1..nbTeams:j!=i, k in 0..1)(venue[j][d+k]==i) <=1; 

//No more than 4 consecutive off days  

 forall(i in 1..nbTeams,d in 1..nbDays-4) 

  sum(k in 0..4)(venue[i][d+k]!=i)+sum(j in 1..nbTeams:j!=i, k in 

0..4)(venue[j][d+k]==i)>=1;  

//No more than 1 game on each day 

 forall(i in 1..nbTeams, d in 1..nbDays) 



79 
 

 { 

  (venue[i][d]!=i)+sum(j in 1..nbTeams:j!=i)(venue[j][d] == i)<=1; 

  forall(j in 1..nbTeams:j!=i) 

   venue[j][d] == i =>venue[i][d]== i; 

 }  

//Start and finish at home 

 forall(i in 1..nbTeams)  

 {  

  venue[i][0] == i; 

  venue[i][nbDays+1] == i; 

 } 

 forall(i in 1..nbTeams,d in 0..nbDays) 

  travel[i][d] == distance[venue[i][d],venue[i][d+1]]; 

} 

The one-dimensional variables in the ILB model are changed to two-dimensional 

variables accordingly in the above model.  Variable venue[i][d] refers to the venue where  

team i will play on day d. The domains for these variables are all teams in the tournament. 

Two dummy variables for day 0 and day n+1 are added for each team. Both of the 

dummy variables are set to the team itself. Traveling distance on consecutive days are set 

as variables as well, but only used for calculating distance. We assume the team will 

return home if it has an off day.  

For the comparison, the CP model for teams not to return home on off days during 

the away games is developed as well.  
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Model 22 TRTTP – Stay on road on off days Model 

 
{0,..., }

min id

i T d D

C  (4.24) 

 ( )

{0,1}

( 0) 1 , {1,..., 1}i d k

k

G i T d D  (4.25) 

 ( )

{0,...,3}

( 2) 3 , {1,..., 3}i d k

k

G i T d D  (4.26) 

 ( )

{0,...,4}

( 2) 1 , {1,..., 4}i d k

k

G i T d D  (4.27) 

 ( ) ( )

{0,..., } {0,..., }

( 0) 0 ( 1) 3 , {0,..., }, {1,..., }i d m i d m

m k m k

G G i T k D d D k (4.28) 

 ( 1& ) 1 , ,id id

d D

G O j i j T i j  (4.29) 

 ( 0 & ) 1 , ,id id

d D

G O j i j T i j  (4.30) 

 0 ,id idG V i i T d D  (4.31) 

 1 ,id id idG V O i T d D  (4.32) 

 ( 1)2 ,id id i dG V V i T d D  (4.33) 

Three types of variables are used in this model: Gid, Oid and Vid. Gid equals 0 if 

team i has a home game on day d, equals 1 if team i has a road game on day d, and 2 if 

team i has an off day on day d.  Oid refers to team i’s opponent on day d, the domain is all 

teams. Vid refers to where team i stays on day d, the domain is all teams as well. The 

objective (4.24)  is to minimize the total cost for all teams. The constraint (4.25) ensures 
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no team play consecutive home games. The lengths of home games and off days are 

defined by (4.26) and (4.27) respectively.  The constraint (4.28) makes sure the length of 

away games will be equal or less than three. The constraints (4.29) and (4.30) makes sure 

a double round robin tournament. A team will stay at home on home game day, stay at 

opponent venue on road game day, and stay at the previous venue on off days, where are 

defined by (4.31), (4.32), and (4.33) respectively.  

The decomposition method is based on the optimal tour. The first step is to 

generate optimal tours with minimum traveling distance for every team. We force the 

traveling distance for each team equals to the result from Model 19.  The second step is to 

select tours for a feasible tournament. The following model is used to select tours:  

Model 23 Tour selection model 

 
* 1i

i Ut

i x t T
 (4.34) 

 ( )* ( )* 1 ,id i id i

i Ut i Ut

v i x v i x t T d D  (4.35) 

 ( ) ( )

{0,...,3} {0,...,3}

( )* ( )* 3 , 3i d m i i d m i

m i Ut m i Ut

v i x v i x t T d D (4.36) 

 ( ) ( )

{0,...,4} {0,...,4}

( )* ( )* 4 , 4i d m i i d m i

m i Ut m i Ut

v i x v i x t T d D (4.37) 

 ( )

{0,1}

( )* 1 , {1,..., 1}i d m i

m i Ut

v i x t T d D  (4.38) 

 {0,1}ix  (4.39) 
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 ,tdv T t T d D  (4.40) 

The binary variable xi is equal to 1 if tour i is selected, otherwise 0. The variable 

tdv represents the venue where team t stays on day d.  T is the set of the teams in the 

tournament. U is the set of tours. Ut represents the tours taken by team t.  The set of 

constraints (4.34) forces each team to have on tour selected. The set of constraints (4.35) 

restrict a team not to play a home game and a road game on the same day. The set of 

constraints (4.36) restrains the length of consecutive games taken by team T, either home 

games or away games. The set of constraints (4.37) restrict the length of off days for 

every team. The constraint (4.38) makes sure every team will not play home games on 

consecutive days. The computation results are listed in  

Table 11. All the computation studies were carried out on a personal computer 

running windows XP with 2.6GHZ CPU, 3G RAM.  For the decomposition method, we 

set the initial solution pool for each team to be 200. We can get the optimal solution for 

problem of four teams in about two minutes. For the problem of six or eight teams, we 

cannot get the optimal solution. For the “return home” and “Stay on road” instances, we 

set the computation time to 1000 for four team instance, 10000 for six team instance and 

eight instance.  The “Stay on road” model takes longer compared to the “Return home” 

model because of more variables. That could be the reason for the solution value is bigger.  

Table 11 TRTTP computation results 

Teams Return home Stay on road Decomposition 

F T Value F T Value T value 

4 8754920 1000 8044 4263785 1000 8044 121 8044 

6 46492244 10000 22710 11217105 10000 22711 

 

/ 

8 23615225 10000 40443 1977763 10000 44668 

 

/ 
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CHAPTER V     

NBA SCHEDULING PROBLEM 

The National Basketball Association (NBA) is a professional basketball league in 

North America. Currently there are 30 teams in the league, grouped into the eastern 

conference and western conference, each conference has 15 teams.  Each conference is 

divided into three divisions. Each division has five teams. A NBA season consists of 

three parts: preseason, regular season and playoffs.  This dissertation study focuses on the 

regular season scheduling problem. The NBA regular season starts at the late October or 

beginning of November and ends in the middle of April. Totally there are about 165 days 

for whole season. Each team will play 82 games during this time span，41 at home and 

41 on the road. There are 1,230 games in total. Equation Chapter (Next) Section 1 

Because too many constraints are involved, the NBA regular season scheduling 

(referred to the NBA scheduling in this dissertation study) is far beyond the current 

computation facility capability. There is no practical algorithm available to generate a 

complete schedule automatically.  As a result, most of the work is done manually. 

Currently a company from Denver, Colorado makes the schedule for the NBA. The 

scheduling procedure starts every February. Each team will provide about 60 available 

dates for the 41 home games. The scheduler will make a draft schedule based on 

information from all teams and some other sources. The draft schedule will be modified 
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according to team feedback in the next phase. The NBA will release the official schedule 

at the beginning of July. The whole process is very time consuming which takes about 

five months.   

On the other hand, the demand for the automatic scheduling approach is obvious 

for many reasons.  For example, TV networks want to feature high-profile games. They 

want to see all possible scenarios to arrange those games under different circumstance, 

which is extremely difficult for manually scheduling approach. In the sports world, 

unexpected events happen all the time and those events could affect the scheduling. For 

instance, some trades could affect the distribution of attractive games dramatically. In 

2007, Kevin Garnet was traded from the Minnesota Timberwolves to the Boston Celtics. 

The league had to delay releasing the schedule because of this trade.  The decision 

makers would like to compare different scheduling before they make the choice. 

Normally manual scheduling approach cannot produce multiple schedules simultaneously 

because of the time limitation. However, the automatic scheduling approach can produce 

many solutions at the same time by changing parameters. 

Besides reducing the scheduling time, the automatic scheduling approach could 

provide an optimal solution in terms of some objectives. Although the scheduling 

company does an excellent job, there is much room for the current official schedule to be 

improved. For example, the Cleveland Cavaliers will meet Chicago Bulls four times in 

the regular season. In the 2008 official schedule, two games between Cavaliers and Bulls 

are scheduled in March and there are only four days between these two games. The other 

two games are scheduled in April, and there is only one week between these two games. 
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The ideal distribution of these four games should be evenly throughout the whole season 

given these two teams are rivals from the same division.  

Although it is difficult to design an algorithm to produce a complete schedule 

automatically under current computation capability, the problem definition and properties 

study will provide building blocks for the future research in this area. This dissertation 

will list all the major constraints in the NBA scheduling problem.  All the constraints are 

grouped into three parts: basic structure constraints, external and team specific constraints 

and fairness constraints.  

Integer programming and constraint programming are successfully used for the 

time constrained round robin tournament scheduling problems.  Trick (2003) did research 

to compare the strengths of these two methods. Inspired by his work, we will model the 

constraints by both integer programming and constraint programming. In most cases we 

only show the IP modeling definition of the constraints. 

We run a series of computation studies to compare these modes. The test machine 

is a personal computer running Windows XP with 2.2GHz Duo Core CPU and 1GBs of 

Ram. For the IP model, the search engine is ILOG CPLEX 11.2 and the default branching 

strategy was used unless explicitly marked.  Running time (RT) and branch nodes (N) are 

used to indicate the performance. The time unit for the running time is second by default. 

If the model cannot terminate searching after 30 minutes or other explicitly marked time 

period, we will give either the best solution or mark the question as “/”, which means no 

solution available.  For the CP model, the search engine is ILOG CP Optimizer 2.1 and 

the default propagation setting was used unless explicitly marked. Running time (RT) and 
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failed branches (F) are used to indicate the performance. The time unit for the running 

time is second by default. Testing instances are generated by changing the size of 

tournament, which is decided by the number of teams. The computation study details are 

given accordingly.  If the program cannot terminate the searching after 30 minutes or 

other explicitly marked time period, we use “/” to indicate there is no solution available. 

All the values for both IP model and CP model are average number of three runs under 

the same configuration.  

5.1 Basic structure constraint  
 

In essence the NBA scheduling is a time relaxed round robin tournament 

scheduling problem. In Chapter III we have studied some basic properties of this kind 

scheduling problems. In this section we will present the basic structure requirements for a 

feasible NBA schedule. 

5.1.1 Basic problems 
 

In this section we will present both IP and CP models with computation study 

results for the basic problems. Although we list the integer models in the Chapter III 

already, we will repeat here again to make this section complete. All the round robin 

tournaments can be decomposed to either one or multiple single round robin tournaments. 

Therefore we choose the single round robin tournament for demonstration. We first look 

at the basic model without any constraints. 

Model 24 Basic NBA scheduling IP Model 

 
( ) 1 , ,ijd jid

d D

x x i j T i j
 (5.1) 
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{ \ }

( ) 1 ,ijd jid

j T i

x x i T d D  (5.2) 

 {0,1} , , ,ijdx i j T i j d D  (5.3) 

If team i plays team team j on day d, the binary variable ijdx equal 1, otherwise 0. To 

clarify, the following is the OPL code for Model 24.  

int nbTeams = …; 

int nbDays = 2*(nbTeams-1); 

dvar int play[1..nbTeams][1..nbTeams][1..nbDays] in 0..1; 

subject to  

{ 

//Play each other once 

 forall(ordered i,j in 1..nbTeams) 

  sum(d in 1..nbDays)(play[i][j][d]+ play[j][i][d])  ==1; 

//At most one game each day 

 forall(i in 1..nbTeams, d in 1..nbDays) 

  sum(j in 1..nbTeams)(play[i][j][d]+play[j][i][d]) <=1; 

} 

 

The basic variable used in CP model presented in the Chapter III is opponent, 

which represents team’s opponent on a specific day.  If we change the variable to day, 

which represents the day on which a specific game holds, we get another approach for the 

CP modeling. 
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Model 25 CP Model based on Day 

 
{ \ }

( )ij

j T i

allDifferent d i T  (5.4) 

 ,ij jid d i j T  (5.5) 

 0iid i T  (5.6) 

 {0,1,..., } ,ijd D i j T  (5.7) 

The variable ijd represents the day on which team i plays against team j, its 

domains are all available game days plus zero. Constraint (5.4) forces every team will 

play different games on different day. Since this model is based on the single round robin 

tournament, we use constraint (5.5) to reduce domain searching. Constraint (5.6) forces no 

team can play itself. To clarify, we present the CP model based on day in OPL as 

following: 

using CP; 

int nbTeams = …; 

int nbDays = 2*(nbTeams-1); 

range rngTeams = 1..nbTeams; 

dvar int day[rngTeams][ rngTeams] in 0..nbDays; 

subject to  

{ 

 //all different constraint 

 forall(i in rngTeams){ 



90 
 

    allDifferent(all(j in rngTeams)day[i][j]); 

 } 

 //one-factor constraint 

 forall(i,j in rngTeams){ 

     day[i][j] == day[j][i]; 

     day[i][i] == 0; 

 }  

} 

 Table 12 shows the computation results for basic problem. Computation time is 

listed in seconds. We can tell CP model based on day variable has best performance. The 

searching domain is much smaller in this model compared to the other two models, which 

could be the major contribution to the decrease in the computation time. We also notice 

IP model performs better than the CP model based on the opponent variable.  

Table 12 Computation results – Basic instance 

Teams CP-day model 

(seconds) 

CP-opponent model IP  Model 

6 0 0.02 0.01 

10 0 0.02 0.01 

14 0.03 0.11 0.09 

18 0.03 0.27 0.15 

22 0.03 0.73 0.31 

26 0.03 1.36 0.56 

30 0.03 2.56 0.76 

 

5.1.2 Conferential/Divisional Games 
 

All 30 NBA teams are grouped into conferences and divisions according to the 

geographical locations. How to arrange the conferential or divisional games is a major 
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concern for the NBA scheduling problem. We will abstract major requirements regarding 

this aspect in this section.  

There are two conferences in the current NBA league: the eastern conference and 

the western conference. To reduce the travel cost, each team will play a team from the 

other conference only twice, one home game and one away game. It is a typical double 

round robin tournament. To demonstrate, we list the constraint clause in IP model only. 

The explanation of variable and other basic constraints are same as those in Model 24. 

We use Ca as the notation for one conference, Ca’ as the other.  Constraint (5.8) forces 

every team to play one home game against every team from the other conference.  For the 

CP models, we just use the model based on opponent variable because the model based 

on day variable is not suitable for the conferential games. We use homeopponent as the 

variable as listed in Model 7. The computation results are listed in Table 13. 

 1 , 'jid a a

d D

x i C j C  (5.8) 

Table 13  Conference games 

Team 
IP CP 

N RT F RT 

6 0 0 200 0 

10 0 0.06 515 0 

14 0 0.33 4550 0.33 

18 0 1.08 31749 3.75 

22 0 7.32 1798834 221.2 

26 0 12.52 / / 

30 0 22.0 
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The IP model performs better than the CP model. The CP model cannot find a feasible 

solution for instance of 26 teams in 30 minutes, while the IP model can get one in only 12.52 

seconds.  

In each conference, there are three divisions. Totally there are six divisions in the 

NBA league, each division consists of five teams. Every team will play four times with a 

team from the same division, two home games and two away games. It is a four round 

robin tournament.  We use aT to notate the set of teams from the same division. The 

following constraint (5.9) forces every team to play every other team from the same 

division two home games throughout the whole tournament. 

 
2 , ,ijd a

d D

x i j T i j
 (5.9) 

Table 14  Division games 

Teams 
IP CP 

N RT F RT 

4 0 0.03 127 0.02 

6 0 0.03 200 0.03 

8 0 0.09 200 0.09 

10 0 0.17 200 0.16 

 

It is really rare for a division to have more ten teams, therefore we limited our 

instances to ten teams in the computation study. The results are showed in Table 14. We 

can tell IP models performances resembling CP performances.  

Each team will play the remaining 36 games with the other 10 teams from the 

same conference. Among these teams, 6 teams have 4 games (2 home games and 2 away 

games) and 4 teams have 3 games. This is based on a 5-year rotation. Because it is not a 
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complete double round robin, how to assign the game venue for the odd game is an issue. 

In the practical scheduling, NBA chooses venues for such games based on the previous 

schedules. For example, Cleveland Cavaliers plays totally three games with New Jersey 

Nets in 2008-2009 season, two out of three played at home. During the last time these 

two teams play three times at a season, New Jersey Nets played two home games against 

Cleveland Cavaliers. Taking into account the previous schedules will make the model too 

complicated. For simplicity, we just designate certain teams to play two home games, one 

away game against some specific opponents.  

 1 , 'ijd i

d D

x i T j T  (5.10) 

 2 , ''ijd i

d D

x i T j T  (5.11) 

Because the requirements resemble those in the divisional game models, the 

computation study results should be similar as well. Therefore there is no need to do the 

computation study for this model.  

5.1.3 Consecutive games 

 

In the time constrained schedules, the limitation on the consecutive games is 

usually set on the game types. For example, the length of consecutive home games or 

away games should fit in a range. In the time relaxed schedules, there are more 

limitations on the length of consecutive games. In this section we list major constraints 

regarding this requirement arose from the NBA scheduling problem.   

The attendance will be affected if a team has two home games in a row on consecutive 
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days. Therefore such game pattern is unwanted by teams.  

 ( )

{0,1} { \ }

2 , {1,..., 1}ij d k

k j T i

x i T d D  (5.12) 

Besides the attendance, fatigue is another factor limiting the length of consecutive 

games. It is required that no team can play three games in a row. 

 ( ) ( )

{0,1,2} { \ }

( ) 3 , {1,..., 2}ij d k ji d k

k j T i

x x i T d D  (5.13) 

            Another basic requirement for the length of consecutive games is that no team can 

have six or more games in eight days:   

 ( ) ( )

{0,...,7} { \ }

( ) 6 , {1,..., 7}ij d k ji d k

k j T i

x x i T d D  (5.14) 

For the CP model, we need two variables instead of single opponent, because the 

game venue is involved in these constraints. We add another variable venue to specify the 

game location. The computation results are listed in Table 15. CP model performs better 

in every test instance. There are several notable aspects in the results. For example, the 

computation time for 18 teams under IP model is unusual compared to the other instances; 

the fail number for 22 teams under CP model is unusual compared to the other instances.  

Unfortunately we cannot find the systemic correlations here.  

Table 15  Consecutive games   

Teams 
IP CP 

N RT F RT 

6 0 0.05 16 0.03 

10 0 0.21 181 0.05 

14 0 1.28 103 0.13 

18 0 53.17 107 0.20 
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22 0 23.96 410 0.98 

26 0 57.05 221 1.16 

30 0 134.24 102 2.37 

 

5.1.4 Consecutive off days 

 

In the time constrained schedule, constraints on the bye time slot are usually not 

necessary since the number of games is decided by the predefined time slots. In the time 

relax schedule, each team could have an off day besides the home game and road game. 

In the practical NBA scheduling, there is a limitation on the length of the consecutive off 

days. Except the starting week and ending week, each team will play at least 2 games in a 

week.  

 ( ) ( )

{ \ } {0..6}

( ) 2 , {1,..., 6}ij d t ji d t

j T i t

x x i T d D  (5.15) 

Another constrains is limitation on the length of the consecutive off days. We 

model this constraint by setting the upper bound of off days to 4 days.  

 ( ) ( )

{ \ } {0..4}

( ) 1 , {1,..., 4}ij d t ji d t

j T i t

x x i T d D  (5.16) 

The computation study results of constraint on the length of consecutive off days 

are similar to those regarding the consecutive games. The CP models perform better than 

IP models for every test instance. In general, the fail number for CP model is much 

bigger than those in consecutive games instances. 

Table 16  Consecutive off days 

Teams 
IP CP 

N RT F RT 

6 0 0.03 0 0 
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10 0 0.13 104 0.09 

14 0 1.16 517 0.33 

18 0 14.28 2162 1.94 

22 0 73.47 2982 4.88 

26 0 126.63 3442 9.16 

30 0 242.11 4870 19.61 

 

5.2 External and team specific Constraints  
 

For the NBA scheduling, there are many constraints besides the basic structure 

requirements. Among them, the external constraints and requirements from the individual 

team are most important. We will list the major constraints regarding these two topics in 

this section.  

5.2.1  Television Schedule 

 

Like the other professional leagues, television networks are the major revenue 

sources for the NBA. NBA has contracts with Turner media group for the right to 

nationally televise games. Turner media group has several national TV networks, 

including ABC, TNT, and ESPN. Besides the national TV network, NBA also has 

contracts with local television networks where the teams located.  Recently the NBA has 

signed multiple contracts with several international television outlets.  

To get a better view rating, normally All TV networks want to air attractive 

games at prime time. Meanwhile it is possible for a TV network to reserve exclusive 

broadcasting right for a specific day. For example, TNT will air two games on Thursday 

night. They require that generally no more than three games can be scheduled on each 

Thursday. ESPN will broadcast two games on Wednesday night and Friday night 

respectively. ABC will broadcast either one or two games on Sunday afternoon during 
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non-football season. All these requirements make the scheduling problem difficult.  

There are many ways to define the attractive games. Normally attractive is 

associated with certain teams. For example, games between teams having super stars are 

normally regarded as attractive games. However, there is not always the case. A game 

between two week teams could be an attractive game if they are rivalries. At the end of 

the season, a game between two non-elite teams which have potential to make playoff is 

regarded as attractive games as well. Although at the scheduling stage it could be difficult 

to predict which teams could make playoffs, it is always a good practice to put some 

games like this at the end of the season.  Briskorn (2009) use a probability function to 

decide whether a game is attractive or not. To keep things simple, we will use a similar 

method. Normally there is one elite team in each division, therefore we use the 

probability 0.2 for all games to be attractive. To indicate whether a game between team i 

and j is attractive, we introduce a parameter
ija

.  
ija

is equal to 1 if the game is 

attractive, otherwise it is equal to 0.   

The objective is to distribute the attractive games according to the TV stations’ 

requirements. It is important to balance the games among TV stations, including the 

national TV stations and local TV stations. For the national TV stations, we just limit the 

maximum attractive games in each time slot.  Meanwhile we use D’ as the set of special 

time slots including Thursdays and Sundays. Because local TV networks normally 

associated with one team, we just add constraint (5.15) for local TV stations to make sure 

each team will play at least twice a week.   

 max

{ \ }

ij ijd

i T j T i

a x a d D  (5.17) 
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 min

{ \ }

'ij ijd

i T j T i

a x a d D  (5.18) 

The computation results are listed in 

Table 17.  Both IP and CP models can solve the problem of 30 teams quickly. CP 

model has slight advantage compared to IP model. For comparison, we change the 

constraint (5.17)  and (5.18) to let every Thursday and Sunday play exactly two attractive 

games, the computation results are similar to Table 17.  

Table 17 TV schedules 

Teams 
IP CP 

N RT F RT 

6 0 0 0 0 

10 0 0.00 435 0.05 

14 0 0.02 1615 0.39 

18 0 0.06 512 0.25 

22 0 0.22 212 0.34 

26 0 0.25 866 1.75 

30 0 0.41 202 0.91 
 

5.2.2.   Home away pattern 

Like we previously stated, games can be classified by game venues as home 

games and road games. The sequence of game types forms game patterns which referred 

to as HAP in this dissertation study. There are many important constraints on the game 

patterns. For instance, the constraint on avoiding consecutive home games and the 

constraint on length of consecutive games are typical constraints on HAP.  

Normally every team has preference regarding the home game or away game on a 

specific day, although it is rare for a team to define the whole HAP during the scheduling stage. 

To demonstrate the constraint, we will generate a feasible HAP in the first phase, then we will try 

to find an opponent schedule based on the HAP in the second phase.   
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We examined the HAP feasibility problem in Chapter III. To make sure we have a 

feasible HAP, we just use a model to randomly generate a complete schedule, then we use the 

place information as the HAP for our second phase.  

 0 1 ,id ijd

j T

P x i T d D  (5.19) 

 1 1 ,id jid

j T

P x i T d D  (5.20) 

 2 ( ) 0 ,id ijd jid

j T

P x x i T d D  (5.21) 

The computation results are listed in Table 18. When the problem size is less than 14, 

CP model has slight advantage over IP. When the problem size is equal to or larger than 14, it is 

obvious that IP model performs much better. CP model cannot find a feasible solution after 10 

minutes computation, while IP model find one in just 3.38 seconds.  

Table 18 HAP Patterns 

Teams 
IP CP 

N RT F RT 

6 0 0.03 0 0 

10 0 0.09 41 0.02 

14 0 0.86 110 0.03 

18 0 3.38 / / 

22 0 17.34 / / 

26 8 174.47 / / 

30 44 511.06 / / 

 

 

5.2.3.   Arena availability 
 

For most of the NBA teams, they rent the arenas or stadiums which generally 

belong to the local government. These arenas will be used for other activities besides 
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basketball games, such as concerts, hockey games, etc. Consequently the arena is not 

always available, which post a very important restriction for the schedule. 

We introduce a parameter id  to indicate whether the arena for team i is available on 

day d.  

 , , ,ijd idx i j T i j d D  (5.22) 

Normally each team has only about from 50 to 60 days available for the 41 home 

games. Because there are roughly 180 days for the whole season, the probability for each 

day’s availability is about 1/3. We use a random generator to simulate the probability for 

our test instances. It randomly assigns a number from 0 to 100 to the variable.  

For the integer programming, we use the same model used in the HAP constraint. The 

following is the OPL function to model the arena availability constraint: 

forall(i in 1..nbTeams, d in 1..nbDays) 

      sum(j in 1..nbTeams)play[i][j][d]<=(available[i][d]<=33); 

 

For the constraint programming, we change the variable opponent to the new 

variable homeopponent. The following is the OPL code: 

//play each other exactly once 

forall(ordered i,j in rngTeams) 

sum(d in rngDays)(homeopponent[i][d]== j||homeopponent[j][d] == i) == 

1; 

    

//No team play itself  

forall(i in rngTeams,d in rngDays) 

 homeopponent[i][d]!=i; 
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//opponent constraint 

forall(d in rngDays,i,j in rngTeams) 

 (homeopponent[i][d] == j) => (homeopponent[j][d] == 0); 

//At most one game each day 

forall(i in rngTeams,d in rngDays) 

 (homeopponent[i][d] !=0 )+ sum(j in rngTeams)(homeopponent[j][d] == 

i)<=1; 

//Arena availability 

forall(i,j in rngTeams, d in rngDays) 

 (available[i][d]>=33) =>homeopponent[i][d] == 0 ;  

The computation result is listed in  

Table 19. It is obvious that the IP approach does better in this test instance. For the CP 

approach, one interesting observation is the computation time is not linearly increasing 

with the size growth of the test instances. The problem of 14 team instance uses less time 

than 10 team instance. The CP cannot finish searching for problem of 18 teams in 30 

minutes. This could be caused by the change in sizes of the search domains.  

 

Table 19 Arena availability  

Teams 
IP CP 

N RT F RT 

6 0 0.04 202 0.14 

10 0 0.18 740382 27.06 

14 0 0.34 96949 6.41 

18 0 0.43 / / 

22 0 0.79 / / 

26 0 1.36 / / 

30 0 2.28 / / 
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5.2.4.   Team forbidden games  
 

If a team requests not to have some certain games on a particular day, we call this 

type requirement as the team forbidden games. Almost each team has such requirements.  

For example, some teams don't want to play a home game if there is a football game in 

the same city on that day. The Utah Jazz will not play home games on Sunday because of 

religion reason.  

Besides the requirements from individual teams, there are some other constraints 

can be treated as the team forbidden games.. For example, there are no games scheduled 

on super bowl night and the NBA All-star weekend. This can be considered as the 

forbidden games requirement for all teams.  

We can treat this constraint similar as the arena availability. We set ijd  equal 

to 0 if team i does not want to play team j on day d.  We generate random numbers for 

ijd .  

 , ,ijd ijdx V i j T d D  (5.23) 

The constraint for CP model is similar to the arena model: 

//Forbidden games 

 forall(i,j in rngTeams, d in rngDays) 

  (forbidden[i][d][j]>=31) =>homeopponent[i][d] !=j ;  

The computation results are listed in Table 20.  IP approach has slight advantage 

compared to CP approach. 

Table 20 Team forbidden 

 

IP CP 



103 
 

N RT F RT 

6 0 0 12 0.03 

10 0 0.02 102 0.03 

14 0 0.05 103 0.06 

18 0 0.11 106 0.14 

22 0 0.22 131 0.31 

26 0 0.45 200 0.66 

30 0 0.63 200 1.08 

 

5.2.5.   Complementary schedules  

 
The LA Lakers and The LA Clippers share the same arena – the STAPLS center. 

The schedule for these two teams should be complementary, which means these two 

teams cannot play home games simultaneously. Because all the teams can be mutated in 

the schedule, we use i1 and i2 to represent the two teams respectively.   

 1 2( ) 1i jd i jd

j T

x x d D  (5.24) 

  Table 21 Two teams have complementary schedules  

 

 

IP CP 

N RT F RT 

6 0 0.025 139 0 

10 0 0.02 200 0.97 

14 0 0.015 200 0.12 

18 0 0.02 200 0.25 

22 0 0.03 200 0.41 

26 0 0.02 200 0.69 

30 0 0.03 200 1.17 

 

The computation results are listed in Table 21. We can tell IP does better than CP in this 

test case.  
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5.2.6.   Maximum value schedules  

The revenue for a game can be different if it is held on different date. One of the 

major scheduling objectives is to maximize the total revenue for the league. For the 

instance of team n, we randomly assign a value ijdv  between 0 and n
2 

to each game on 

each day game(i,j,d).  This can be easily done in the ILOG OPL Studio by using the 

function rand(n
2
).    

            The search strategy is very important for the constraint programming.  We tried 

two search strategies. The first one is the default setting by the ILOG OPL Studio. The 

second one is to select the variables with the smallest domain size, and start searching 

with the largest value. It doesn’t show big difference for these two searching strategies. 

The computation study result is listed in  

Table 22. The CP model cannot even find the optimal solution for problem of 6 teams in 

30 minutes. It’s obvious that IP based approach does much better than the CP based 

approach.  

 
max *ijd ijd

i T j T d D

x v
 (5.25) 

Table 22 Maximum value 

 

IP CP 

N RT F RT 

6 15 0.06 / / 

10 15 0.23 / / 

14 15 0.23 / / 

18 15 0.40 / / 

22 23 0.93 / / 

26 15 1.03 / / 

30 23 1.81 / / 
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5.3 Fairness constraint 
 

One of the fundamental requirements of a schedule is to be impartial to all 

participants. Fairness can be measured by different objectives. There have been plenty 

research done on the fairness requirements in the time constrained scheduling. Because of 

the difference in the time structure, there are some fairness requirements are unique in the 

NBA scheduling problem. This dissertation will put emphasis on these constraints.  

5.3.1 Back-to-back games 
 

In the time constrained schedules, normally the interval between consecutive 

games is one week or couple days. The term “break” refers to consecutive home games or 

consecutive away games, which is unwanted pattern. The literature on this topic has been 

reviewed in Chapter II.   

In the NBA schedule, the time unit of game is day.  We stated in constraint (5.12)  

that no team play home games on two consecutive days. However, team might play road 

games on two consecutive days. Another possibility is a team play games on two 

consecutive days, one is on road and other one is at home. If a team plays games on two 

consecutive days, we call the second game as a back-to-back game. Normally teams 

prefer to avoid back-to-back games. The team playing an opponent who is on the second 

night of the back-to-back games has advantage over his opponent. As a result, it is 

important to keep the number of back-to-back games equal or close to equal among teams. 

If the back-to-back games are necessary, it should be evenly distributed throughout the 

whole season. 
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Since the basic model does not have variables for game venue, we add set of 

variables place[i][d] for the purpose of calculating the break. The domain for the variable 

are 0,1, or 2. If team i plays a home game on day d place[i][d] equals 0, an away game 

equals 1, and off days equals 2. Team i has a break on day d if the value place[i][d] is 

same as place[i][d-1]. The objective is to make a schedule without back-to-back games. 

It is obvious that it is possible if there is no other constrains required since we have more 

days available for games. We can prove this quickly by the CP model based on day.  We 

use a new constraint allMinDistance. It is a constraint available in OPL language.  

This constraint requires each game day has to be at least one day apart from the other 

game day.  This constraint is stronger than the combination of the two constraints we 

listed. This model can generate a schedule with back-to-back for problem of 30 teams in 

less than 3 seconds. The computation results are listed in Table 23.   

Table 23 Schedule without back-to-back games by CP model based on day 

 

 

If some additional constraints are considered, the CP model based on day is not 

proper in this scenario. We add the limit on the consecutive home games, off days and 

arena availability into the model. The definition of back-to-back game variable is listed in 

(5.27). 

Team 

 

CP model based on 

day F RT 

6 0 0.05 

10 1 0.02 

14 0 0.02 

18 21 0.03 

22 10 0.05 

26 4 0.06 

30 3278 2.86 
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{2,..., }

min id

d D i T

bb  (5.26)  

 ( ) ( )

{0,1}

( ( ) 2) , {2,..., }id ij d k ji d k

k j T

bb x x i T d D  (5.27) 

The objective (5.26)  is to generate a schedule with minimum back-to-back games. 

Integer programming can get the results for up to 10 teams in 30 minute computation 

time. After we get the minimum value, notated by Bmin, we use the following constraint 

to evenly distribute the back-to-back games to every team:  

 
{2,..., }

min
id

d D

B
bb i T

n
 (5.28) 

  We tune the parameters to make sure teach team will have at last one back-to-

back game. The CP model cannot get the results for 10 teams in reasonable computation 

time.  

Table 24  Back-to-back games 

Teams IP CP (opponent) 

N RT F RT 

6 0 1 5139 0.45 

8 6 17.25 25874 341.62 

10 19 33.07 4687378 833.08 

 

5.3.2 Weekend games 
 

Weekend games will bring more revenue to the home teams compared to the 

weekday games, therefore every team want to have as many weekend games as possible. 

Consequently we want to maximize the total weekend games in our modeling. The 

following model is used to calculate the maximum weekend games with some necessary 
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constraints. 

Model 26 Weekend games IP model 

 max ijd

i T j T d Dwd

x  (5.29) 

 
{ \ }

( ) 1 ,ijd jid

j T i

x x i T d D  (5.30) 

 ( ) 1 , ,ijd jid

d D

x x i j T i j  (5.31) 

 ( )

{0,1}

2 ,ij d k

j T k

x i T d D  (5.32) 

 ( ) ( )

{0,1,2}

( ) 3 , {1,..., 2}ij d k ji d k

j T k

x x i T d D  (5.33) 

 ( ) ( )

{0,...,4}

( ) 1 , {1,..., 4}ij d k ji d k

j T k

x x i T d D  (5.34) 

The objective (5.29) is to maximize the weekend games. The constraint (5.30) ensures 

each team will play at most one game on each day. The constraint (5.31) forces every team will 

play the other team exactly once. The constraint (5.32) makes sure every team will not have 

consecutive home games. The constraint (5.33) and (5.34) forces the lengthy of consecutive 

games or consecutive off days to be less than 3 and 5 respectively. Normally all games 

scheduled on the Friday, Saturday and Sunday can be considered as weekend games. Of 

course there are some slightly difference between games on these days. For simplicity, 

we treat them same in this dissertation study. Dwd is used as the notation of weekend days.  

Wmax refers to the maximum weekend games from Table 25. 

Table 25  gives the computation results. 
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Since the available weekend games are limited, it is important to balance the 

weekend games among all teams. Normally all games scheduled on the Friday, Saturday 

and Sunday can be considered as weekend games. Of course there are some slightly 

difference between games on these days. For simplicity, we treat them same in this 

dissertation study. Dwd is used as the notation of weekend days.  Wmax refers to the 

maximum weekend games from Table 25. 

Table 25 Maximum Weekend Games 

Teams Maximum  Weekend games 

6 6 

8 16 

10 20 

12 36 

14 49 

16 64 

18 90 

20 100 

22 132 

24 144 

26 182 

28 210 

30 240 

 

 
{ \ }wd

Max

ijd

d D j T i

W
x i T

n
 (5.35) 

             The above constraint (5.35)forces each team will play exactly same amount of 

weekend games, notated by 
MaxW

n
  which is equal to Wmax divided by the total teams. If 

the number is not integer, we round off the number. The computation results are listed in 

Table 26.   
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Table 26 Weekend games 

 

IP CP 

N RT F RT 

6 0 0.05 5 0.02 

8 0 0.31 30 0.04 

10 0 0.84 1541 0.38 

12 0 7.63 661553 143.75 

14 0 11.31 4091 2.22 

16 0 78.84 / / 

18 0 179.47 / / 

20 0 510.48 1541 0.38 

22 0 1745.95 / / 

24 0 5173.07 1541 0.38 

26 0 / / / 

28 0 / 1541 0.38 

30 0 / / / 

5.3.3 Travel distance 

 

             Because the traveling can cause players fatigue and increase the cost, all teams 

want to minimize their travel distance. To be fair, the traveling distance for every team 

should be within a reasonable range. We assume each team starts and finishes the 

tournament at home. When they play consecutive road games, they will stay on the road 

without returning home. Actually it is not unusual for teams to return home during the 

road game span, especially if there are more than two days off between them. We will 

make this assumption to avoid too complicated model. The fairness requirement should 

be under the circumstance with minimizing the total traveling distance as the objective. If 

we use Tri to notate the traveling distance for team i, this constraint can be listed as the 

following. We will set minimum and maximum traveling distance for each team.  

 min, max{ }iTr Tr Tr i T  (5.36) 

The IP model needs additional variables besides play[i][j][d] . The variables 

location[j][i][d] is 1 if team i plays at j’s venue on day d, otherwise 0 . If team i has an 
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off day on day d, location[j][i][d] is equal to  location[j][i][d-1]. Now we can use 

another set of variables travel[i][j][k][d] to calculate the traveling distance. This model 

performs poorly in CPLEX. We cannot get results for even 6 teams. Trick (2003) 

suggested to use another formulation for the traveling distance. It is based on all the 

possible trips a team could take: trips[i][i1][d], trips [i][i1][i2][d],and  

trips[i][i1][i2][i3][d]. This formulation has to be modified to be suitable for the time 

relaxed tournaments scheduling. We believe it is not a trivia ask.  

 

 

Table 27 Travel distance 

 

IP CP 

N RT F RT 

4 / / 4643 0.58 

6 / / / / 

8 / / / / 

10 / / / / 

 

  



112 
 

 
 

 

CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 
 

In the introduction to this dissertation, there academic contribution goals were set forth 

for this research: to examine the structural properties of the time relaxed round robin tournament, 

to define and tackle the time relaxed traveling tournament problem, to provide major modeling 

constraints for the NBA scheduling problem.    

To date, there has no research done on the properties of general time relaxed round robin 

tournament problems.  We present the formal definition of the single round, double round, and r-

round tournament problems in the time relaxed context. The integer programming models are 

developed and presented. To improve the performance, some strengthening constraints are used 

for the time constrained tournaments. The strengthening constraints for time relaxed IP models 

could be a research topic in the future. Meanwhile the proof of the complexities of these problems 

is needed in the future research. The break minimization problem is defined in the time relaxed 

context.  Currently we can only solve problem of 8 teams in reasonable time. We did not deploy 

symmetry breaking efforts in our model, therefore adding symmetry breaking constraints could 

be the first step to improve the results. Because of the complexity of the problem, decomposition 

is a promising approach.  We examined two different decomposition methods to address the 

break minimization problem. Although we can solve the problem of thirty teams use the “”first-

schedule-then-break” method, the minimum break is not zero. We addressed the HAP feasibility 

problem. We did not present the method to generate a HAP set with minimum breaks. It could be 

a research topic in the future. Additionally, we presented the GOP feasibility problem, which is 
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unique but important problem in the time relaxed scheduling.  How to utility the GOP properties 

for other objectives, such as break minimization or travelling distance minimization, could be an 

interesting topic for the future research.  

To address the traveling factor in the time relaxed round robin tournament, we introduced 

the TRTTP problem. In the formal definition of TRTTP, we use a few more parameters compared 

to the TTP. To examine the complexity of TRTTP, the single team problem TRSTP is defined. 

The complexity heavily depends on the parameter of consecutive away games U.  A polynomial 

time algorithm is presented when U is two.  When U equals to three or more, we conjecture the 

problem becomes NP-hard.   

It is difficult to get the optimal solution for TRTTP instances of more than eight teams 

given the current computation capability. To evaluate the solutions, it is important to attain good 

lower bound and upper bound. As a strong lower bound, Independent Lower Bound (ILB) for 

TRTTP is defined and calculated in this dissertation. For the upper bound, we use a CP algorithm 

to generate feasible solutions. Although only U equals to 3 is considered in this dissertation, U 

equals to four or more is found in practical applications. It could be a research topic in the future.  

We made two cases for the TRTTP: one is teams staying on road on off days during the away trip 

the other is returning home instead. In real world this decision can be decided by the length of off 

days and distance between home and away teams. How to incorporate these constraints will be 

another research topic in the future.  Additionally, we present the decomposition method based on 

the optimal tour. The other decomposition methods can be used for the future research, for 

instance, the branch-and-price method.  

Parallel computation has been proven to be effective for solving TTP. We do not use 

parallel computation in our study because of limited computation facility. Additionally, several 

metraheuristic algorithms, including simulated annealing, tabu serach, generic algorithms have 
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been used to generate good solutions for the TTP problems. All of these algorithms could be used 

to address the TRTTP in the future.  

We grouped major NBA scheduling requirements into three categories: structural, 

external and fairness constraints. Some constraints are not listed because of complexity or other 

reasons, we will list a few for the future research.  We treat all back-to-back games as the same in 

our model, actually there are difference among the types of back-to-back games. If teams have to 

play a back-to-back game, normally they prefer to play the second game at home rather than on 

road.  Since the objective to minimize back-to-back games are important for the NBA scheduling, 

it will be a research topic in the future how to minimize total number of the back-to-back games 

with more constraints considered besides those we employed.  Although we did not include the 

general break minimization in the scheduling, it is a scheduling constraint as well. For example, 

teams do not want to play five consecutive five home games just to avoid one back-to-back game.  

No-repeater is a soft constraint in the scheduling, which is not included in our modeling.  In the 

future the constraint to require there are at least fixed amount games separate games featuring 

same opponents.  

The modeling method in this dissertation study performs poorly for the constraint of 

travelling fairness. Therefore new modeling methods are needed. For efficiency, it is better for 

teams to have a trip of at least three games if they travel to another coast.  Another constraint we 

have not included in this dissertation is the overnight flight distance. Team cannot have a flight 

over certain amount distance overnight.   

We run the computation studies for all constraints in both IP and CP models. It could be a 

good research topic to develop a model to test the integration groups combing different 

constraints. For example, how the IP model and CP model perform for the models combining 

structural and external requirements. Our research shows that IP models performs better for 
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problems of optimality and CP model performs better for feasibility problem, how to combine 

them for some specific problems could be a good research topic on the future .  
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APPENDIX - TRTTP INSTANCES 

National League Instances 

  6 team instance 
  [0 745 665 929 605 521] 

  [745   0    80   337  1090   315] 
  [665   80     0   380  1020   257] 

  [929  337   380     0  1380   408] 
  [605  1090  1020  1380    0  1010] 

  [521   315   257   408  1010    0] 

  8 team instance 

  [0 745 665 929  605 521 370 587] 
  [745   0    80   337  1090   315   567   712] 

  [665   80     0   380  1020   257   501   664] 
  [929  337   380     0  1380   408   622   646] 

  [605  1090  1020  1380    0  1010   957  1190] 
  [521   315   257   408  1010    0   253   410] 

  [370   567   501   622   957   253    0   250] 
  [587   712   664   646  1190   410   250    0] 

National Basketball Association Instances 

  Division instance 

 

                       |     1     2     3     4     5  

-----------------------+------------------------------- 

 1 Detroit MI          |           98   239   220   225 

 2 Cleveland OH        |     98         333   303   257 

 3 Milwaukee WI        |    239   333          82   246 

 4 Chicago IL          |    220   303    82         167 

 5 Indianapolis IN     |    225   257   246   167    
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Conference instance 

 

 

League instance 

  

Data will be available on a website to be launched soon.  

 


