
CONCURRENT, FLEXIBLE, AND PORTABLE FAULT INJECTION SYSTEM

By

YAO-CHIA CHUANG

Submitted in the partial fulfillment of the requirements

For the degree of Master of Science

Department of Electrical, Computer, and Systems Engineering

CASE WESTERN RESERVE UNIVERSITY

May, 2024

2

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis of

YAO-CHIA CHUANG

candidate for the degree of Master of Science*.

Committee Chair

Dr. Daniel G. Saab

Committee Member

Dr. Christos Papachristou

Committee Member

Dr. Pan Li

Date of Defense

April 1, 2024

*We also certify that written approval has been obtained for

any proprietary material contained therein.

3

Table of Content

LIST OF TABLES .. 5

LIST OF FIGURES .. 6

Concurrent, Flexible, and Portable Fault Injection System ... 7

Abstract .. 7

Chapter 1: Introduction ... 8

Chapter 2: Fault Injection Techniques ... 11

2.1 Hardware Based Fault Injection .. 11

2.1.1 Radiation Testing in Spacecraft Systems: .. 11

2.1.2 Pin-Level Fault Injection on Microprocessors: .. 16

2.2 Software Based Fault Injection ... 19

2.2.1 Chaos Monkey in Cloud Computing Environments: 19

2.2.2 LLFI (LLVM Fault Injection Tool): ... 22

2.2.3 IM-FIT: .. 25

2.3 Simulation Based Fault Injection ... 27

Chapter 3: Enhancing Multithreaded Application Dependability with ETFIDS 31

3.1 Motivation ... 31

3.2 The Overall Approach ... 32

3.3 Fault Injection Control Flow .. 38

3.4 Fault Outcome Analysis .. 43

3.5 Comparison .. 49

Chapter 4: Fault Injection Experiments Using ETFIDS... 52

4

4.1 Typical Fault Injection Target and Experiment Configuration 52

4.2 Fault Injection Experiment Results .. 54

4.3 Performance Analysis .. 55

Chapter 5:Conclusion ... 61

REFERENCES .. 64

5

LIST OF TABLES

TABLE 1 : SIZE OF DUMP FILES FOR FAULT OUTCOME ANALYSIS. [4] 46

TABLE 2 : CHARACTERISTICS OF LLFI, IM-FIT, CHAOS MONKEY, ETFIDS. 50

TABLE 3 : OUTCOME FOR FAULT INJECTION. .. 56

TABLE 4 : NUMBER OF FAULTS/TARGET APPLICATION ... 59

TABLE 5 : TIME OVERHEAD COMPARISON. .. 60

TABLE 6 : DETAILED (IN SECONDS) COMPARISON. .. 60

6

LIST OF FIGURES

FIGURE 1: BASIC COMPONENTS OF A FAULT INJECTION ENVIRONMENT. [1] 11

FIGURE 2: IMPACT OF A PIN-LEVEL FAULT IN THE TARGET SYSTEM AT THE PROCESSOR

INSTRUCTION LEVEL BEHAVIOR [8] ... 16

FIGURE 3: RIFLE ORGANIZATION. [8] ... 18

FIGURE 4: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15] 23

FIGURE 5: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15] 24

FIGURE 6: IM-FIT USAGE ARCHITECTURE. [16] ... 26

 FIGURE 7: SAMPLE NETWORK SETUP FOR SIMICS SIMULATION. [17] 28

 FIGURE 8: SIMIC ARCHITECTURE. [17]... 30

FIGURE 9: ILLUSTRATION OF ETFIDS FAULT INJECTION AND ANALYSIS. [4] 33

FIGURE 10: ESIFT STRUCTURE [4]... 34

FIGURE 11: BIT-FLIP FAULT MODEL [4] .. 37

FIGURE 12: ETFIDS FAULT INJECTION CONTROL FLOW ... 38

FIGURE 13: ETFIDS FAULT OUTCOME ANALYSIS CONTROL FLOW. 45

 FIGURE 14: FAULT OUTCOME ANALYSIS WORK FLOW BY DUMPING DATA. [4] 48

FIGURE 15: SAMPLE OF CONFIGURATION FILE. .. 52

FIGURE 16: SAMPLE MULTI-THREADED C++ PROGRAM ... 53

FIGURE 17: OUTCOME FOR PROBE VARIABLE “A” AND “E” .. 56

FIGURE 18: OUTCOME FOR PROBE VARIABLE “I” AND “O” ... 57

FIGURE 19: OUTCOME FOR PROBE VARIABLE “U” AND OVERALL 57

FIGURE 20: FAULT EXPERIMENT OUTCOMES .. 59

7

CONCURRENT, FLEXIBLE, AND PORTABLE FAULT INJECTION SYSTEM

Abstract

By

YAO-CHIA CHUANG

The development of a Concurrent, Flexible, and Portable Fault Injection System represents

a significant advancement in the field of system reliability and dependability testing.

Leveraging the SWIFI (Software-Implemented Fault Injection), this thesis emphasizes the

robust evaluation of software systems by introducing faults in a controlled manner. Notably,

the system is tailored for applications written in C++ and makes extensive use of threading

to simulate various fault scenarios concurrently. This approach enhances the efficiency of

detecting potential system vulnerabilities and ensures a higher degree of flexibility and

portability in testing procedures. By simulating real-world fault conditions, developers can

identify and address vulnerabilities effectively, thereby improving the overall reliability

and dependability of the system. This fault injection system stands out for its ability to

provide comprehensive insights into system behavior under fault conditions, making it an

invaluable tool for developers aiming to build resilient software applications.

8

Chapter 1: Introduction

Discussing fault injection and its nuances, particularly the assertion that no fault

injection category is universally superior, requires an understanding of what fault

injection is, its purposes, and the various categories it encompasses. This approach is

crucial in recognizing that the efficacy and appropriateness of fault injection methods

depend significantly on the context of the testing environment.

Fault injection is a testing technique used to validate a system's robustness and

error-handling capabilities. By intentionally introducing faults or errors into a system,

developers can observe how it behaves under unexpected conditions, ensuring it can

handle such scenarios gracefully in a real-world environment. This technique is crucial

for identifying and mitigating potential points of failure in both hardware and software

systems, enhancing their reliability, security, and performance.

The essence of fault injection lies in its diversity; it encompasses various

techniques, each suited to different systems and objectives. By injecting faults into a

system and observing its behavior, researchers and practitioners can gain insights into its

vulnerabilities and the efficacy of its fault tolerance mechanisms. This iterative process of

injecting faults, analyzing system responses, and refining fault tolerance strategies forms

the basis for achieving robust and dependable systems. Fault injection techniques can be

broadly categorized into hardware-based, software-based, and simulation-based methods,

each with unique advantages and application scenarios.

9

Hardware Based Fault Injection: it uses additional hardware to introduce faults

into the target system’s hardware. [1] Depending on the faults and their locations,

hardware-implemented fault injection methods fall into two categories: with contact and

without contact [1].

Software Based Fault Injection: it is also called as Software-implemented fault

injection (SWIFI). It relies on the assumption that the effects of real hardware faults can

be emulated either by manipulating the state of the target system registers and memory

via run-time injection or by modifying the target workload through pre-run-time injection

[2]. This assumption usually holds for transient faults, but for permanent faults, it

presents some difficulty due to the repeated invocation of the fault injection exception

handler every time a register or memory location is referenced [2].

Simulation Based Fault Injection: the target system and the possible hardware

faults are modeled and simulated by a software program, usually called a fault simulator

[3]. In this approach, the system or its environment is modeled in a simulator, and faults

are introduced into the simulation. This method allows for exploring fault impacts in

complex systems that are difficult or impractical to test in real life, such as satellite

systems, without the risk of causing actual damage.

The choice among these fault injection categories should be guided by several

factors, including the system's nature, the testing objectives, and available resources. For

instance, hardware-based fault injection might be indispensable for testing embedded

systems or hardware components where physical conditions can lead to failures.

10

Furthermore, the testing environment is critical in selecting the appropriate fault

injection method. In a development environment, where the primary goal is identifying

and fixing bugs early, software-based or simulation-based fault injection might be

preferred due to its flexibility and safety. In contrast, hardware-based fault injection could

be more appropriate in a staging or pre-production environment, where testing aims to

mimic real-world conditions as closely as possible.

It's also essential to consider the system's criticality and the potential impact of

failures. For high-stakes environments, such as in the aerospace, automotive, or

healthcare industries, exhaustive testing using multiple fault injection techniques might

be necessary to ensure the system's reliability and safety.

The fault injection tool we used in this thesis, ETFIDS, is a runtime-based

software fault injection tool. It injects a fault by changing signal/variable values at

runtime, and it also provides the ability to observe the effect on the output or behavior of

the system [4].

11

Chapter 2: Fault Injection Techniques

 As mentioned in Chapter 1, fault injection techniques can be broadly categorized

into hardware-based, software-based, and simulation-based methods. There is no one-

size-fits-all approach to fault injection. The effectiveness and appropriateness of a fault

injection category are highly contingent on the specific context of the testing

environment, the nature of the system under test, and the objectives of the testing process.

A nuanced understanding of these factors is crucial for selecting the most suitable fault

injection method. Developers and testers must carefully evaluate their options,

considering the trade-offs between realism, risk, cost, and the comprehensive assessment

of the system's fault tolerance capabilities. We will talk about a few notable examples for

each category.

2.1 Hardware Based Fault Injection

2.1.1 Radiation Testing in Spacecraft Systems:

Figure 1: Basic components of a fault injection environment. [1]

12

Radiation testing in spacecraft systems is critical to ensuring the reliability,

performance, and longevity of spacecraft operating in harsh space environments. Exposure

to various forms of radiation in space, including cosmic rays, solar flares, and Van Allen

belt radiation, can cause significant damage to onboard systems and components. This

damage can range from temporary malfunctions to permanent failures, potentially

compromising mission objectives and safety. Therefore, understanding and mitigating

radiation effects through rigorous testing is paramount for the success of space missions.

There are three types of space radiation–particles inside Earth’s magnetic field,

particles shot through space by solar Particle events (such as solar flares), and the heavy

ions and high-energy protons produced outside this solar system (galactic cosmic rays) [5].

The energy levels of these particles can be extremely high, capable of penetrating

spacecraft shielding and causing direct ionization and displacement damage to materials

and electronic devices.

Radiation can affect spacecraft systems in several ways. Single Event Effects

(SEEs), which can be either destructive or nondestructive, occur when a single energetic

particle, such as high-energy heavy ions or protons, passes through a semiconductive

material, depositing energy and potentially increasing the risk of failure on a space mission

[6]. There are four types of SEEs: Single Event Burnout(SEB), Single Event Upset (SEU),

Single Event Transients (SETs), and Single Event Functional Interrupts (SEFIs). They can

result in minor issues and catastrophic failure. Total Ionizing Dose (TID) significantly

affects electronic devices in space, where prolonged exposure to ionizing radiation can

increase transistor leakage currents and alter threshold voltages and sub-threshold slopes,

potentially leading to component failure or complete malfunction if sufficiently high [7].

13

This testing is crucial for assessing a component's vulnerability to TID radiation effects,

aiming to identify parameter variations across the total dose and the threshold where

performance falls short of mission requirements while also highlighting that radiation

effects on space electronics pose risks to technology manufacturers, as failure or

malfunction due to TID can endanger missions and lives, underscoring the importance of

thorough pre-mission evaluation to mitigate TID radiation impact. Displacement damage

caused by non-ionizing energy loss can alter the physical structure of materials, affecting

their mechanical and electrical properties.

To assess and mitigate these risks, spacecraft systems undergo comprehensive

radiation testing during their development phase. Radiation testing involves exposing

spacecraft components and systems to controlled radiation sources that simulate the space

environment. This testing can be conducted at various levels, including component,

subsystem, and system levels, to identify vulnerabilities and validate protective measures.

Component-level testing, subsystem, and system-level testing, along with

simulation and modeling, form the backbone of ensuring spacecraft resilience against the

harsh radiation environment encountered in space. This comprehensive approach ensures

that individual components and entire systems can withstand the various forms of

radiation they will be exposed to, thus safeguarding the mission's integrity and the safety

of any crew.

At the heart of space mission durability against radiation lies component-level

testing. This meticulous process involves evaluating individual electronic parts under

controlled radiation exposure to assess their vulnerability to Single Event Effects (SEEs),

14

Total Ionizing Dose (TID), and displacement damage. SEEs occur when a single

energetic particle, such as a proton or heavy ion, strikes a semiconductor, leading to

temporary or permanent damage. TID refers to the cumulative damage caused by

exposure to ionizing radiation over time, which can degrade the performance of

electronic components. Displacement damage results from particles displacing atoms in

the material's lattice, potentially altering its physical properties and electronic behavior.

The primary goal of component-level testing is twofold: first, to identify each

part's radiation sensitivity, and second, to determine its suitability for space applications.

By understanding the limitations and thresholds of individual components, engineers can

make informed decisions regarding selecting radiation-hardened (designed to withstand

radiation effects) or radiation-tolerant (able to operate under a certain level of radiation)

components. This strategic selection is crucial for developing spacecraft capable of

enduring the rigors of space without succumbing to radiation-induced failures.

Moving beyond individual components, subsystems, and system-level testing

provides a broader perspective on a spacecraft's resilience to radiation. In this phase,

clusters of components are assembled into subsystems, and the complete spacecraft

systems undergo rigorous radiation exposure tests. The purpose is to evaluate the

collective response of these assemblies to space radiation, simulating as closely as

possible the actual conditions they will face.

This level of testing is invaluable for several reasons. First, it helps assess the

effectiveness of shielding solutions designed to protect sensitive electronics from

radiation. Second, it allows for the evaluation of error correction codes and redundancy

15

strategies implemented within the hardware and software to mitigate the impact of

radiation-induced errors. Lastly, system-level testing offers insights into the overall

robustness of the spacecraft, identifying potential weak links in the design that could

compromise mission success.

Parallel to physical testing, simulation and modeling are indispensable tools in

understanding and mitigating radiation effects on spacecraft systems. Using advanced

computational models and simulations, engineers can predict the interaction between

radiation and electronic components, evaluate the potential impact of different space

radiation environments, and test the efficacy of shielding and other protective measures.

These simulations can be incredibly detailed, encompassing various aspects of

radiation physics, materials science, and electronic circuit behavior. They allow for

exploring numerous scenarios, including extreme events that are difficult or impossible to

recreate in a laboratory setting. By integrating simulation results with empirical data from

physical testing, engineers can refine their designs, optimize radiation protection

strategies, and enhance the reliability and safety of space missions.

The combined efforts in component-level testing, subsystem and system-level

testing, and simulation and modeling are essential to developing spacecraft capable of

surviving and functioning in a hostile space environment. This multi-layered approach

enables engineers to identify vulnerabilities early in the design process, implement

effective mitigation strategies, and ensure the success and safety of space missions. As

humanity's space exploration expands, the importance of comprehensive radiation testing

16

and modeling will only grow, underpinning the reliability and longevity of future space

endeavors.

2.1.2 Pin-Level Fault Injection on Microprocessors:

[8] discusses the architecture of a pin-level fault injector named RIFLE, designed

for dependability validation of computing systems. RIFLE can adapt to various target

systems, injecting faults primarily into the processor pins. The system offers

deterministic fault injection with reproducibility without requiring feedback circuits to

detect error production. It can identify instances where faults do not impact the target

system, generating sets of faults that specifically affect the system's operations. The

results show significant error detection with simple mechanisms, suggesting that

computers with basic error detection approaches are closer to achieving fail-silent

operation.

Figure 2: Impact of a pin-level fault in the target system at the processor instruction level

behavior [8]

17

Validating fault-tolerance mechanisms is challenging due to the complexity

involved in fault activation and error propagation processes. [8] introduces RIFLE, a

system that complements traditional validation techniques like modeling and simulation.

RIFLE focuses on injecting physical faults into actual systems, highlighting the influence

of workloads on error-handling mechanisms' performance.

RIFLE's architecture is detailed, showcasing its ability to inject faults at the pin

level across various components of a computing system, mainly focusing on the

processor. Faults can be triggered under specific conditions, allowing for controlled and

reproducible fault injection. The system's adaptability to different target systems and

capacity to detect the practical impact of injected faults without external feedback

mechanisms are emphasized.

An evaluation of simple, behavior-based error detection techniques reveals that up

to 72.5% of errors can be detected with basic mechanisms. [8] discusses the impact of

different fault sets on detection coverage and latency, providing insights into the

effectiveness of built-in error detection mechanisms in processors like the 68000 built-in

error detection mechanisms. It also evaluates memory access error detection mechanisms,

watchdog timers, and the fail-silent behavior in systems equipped with these error

detection techniques.

The fail-silent behavior of systems employing behavior-based error detection

mechanisms is scrutinized. The study reveals that over 90% of the faults led to systems

behaving according to the fail-silent model. This indicates that traditional computers with

simple error detection mechanisms are relatively close to achieving fail-silent operation,

18

highlighting the potential for enhancing system dependability through basic error

detection strategies.

RIFLE presents a novel approach to fault injection for system dependability

validation, showcasing its versatility and effectiveness. The system's capacity for

deterministic fault injection and its ability to generate specific fault sets and assess their

impact without external feedback mechanisms marks a significant advancement in fault

injection methodologies. The evaluation of simple error detection mechanisms

underscores the potential of basic strategies in achieving fail-silent operation, paving the

way for more dependable computing systems.

Figure 3: RIFLE organization. [8]

19

2.2 Software Based Fault Injection

2.2.1 Chaos Monkey in Cloud Computing Environments:

Thirty years ago, Jim Gray noted that "A way to improve availability is to install

proven hardware and software, and then leave it alone" [9] [10]. In the recent era that

demands putting customers first and emphasizes after-sales service, it's impossible for

companies to “leave it alone” after it's sold. Companies must ensure the product can

function correctly when selling or providing a service. Today's business giants like

Google [11], Facebook [12], Microsoft [13], and Amazon [11] all have corresponding

measures to ensure their services operate smoothly. As a streaming platform with tens of

millions of subscribers, Netflix also has measures known as "Chaos Monkey." After all,

no one wants their relaxation time to be ruined by the unreliability of a streaming

platform.

For years, Netflix has been running an internal service called Chaos Monkey

[14], which randomly selects virtual machine instances that host our production services

and terminates them [10]. Chaos Monkey's purpose was to encourage Netflix engineers

to design software services that can withstand failures of individual instances [10]. The

inception of Chaos Engineering can be traced back to the acknowledgment of the

inherent complexity and failure modes of distributed systems. Traditional engineering

practices, which might suffice in more monolithic or less dynamic environments, fail to

address the challenges posed by modern, distributed internet-scale services. The critical

insight was that, despite best efforts in design and testing, unforeseen failures are

20

inevitable in complex systems. This realization prompted a shift in focus from merely

trying to prevent all possible failures to ensuring that systems are resilient and can

maintain functionality in the face of disruptions. Chaos Engineering has four principles:

building hypotheses around steady-state behavior, varying real-world events, running

experiments in production, and automating experiences.

The cornerstone of Chaos Engineering is identifying and understanding a system's

steady state, which represents its normal operating conditions. At Netflix, metrics such as

"stream starts per second" (SPS) serve as indicators of this steady state, providing a

measurable and observable output that reflects the health and availability of the service.

Experiments in Chaos Engineering are designed around perturbing this steady state in

controlled ways to test hypotheses about the system's resilience.

Chaos Engineering involves introducing changes that simulate real-world events,

ranging from server crashes and network partitions to more subtle conditions like

increased latency or load. Historical incidents and theoretical analysis of potential failure

modes inform the selection of these events. This principle emphasizes the importance of

testing the system's response to various stressors rather than limiting scrutiny to those

failures already experienced or most easily imagined.

One of the more controversial aspects of Chaos Engineering is the insistence on

running experiments in the actual production environment. This approach stems from the

understanding that distributed systems' complexity and emergent behavior can never be

fully replicated in a test environment. Running experiments in production ensures that

21

findings are as relevant and accurate as possible, directly informing improvements in

system resilience.

Chaos Engineering experiments must be automated and run continuously to

remain effective as systems evolve. This automation allows for consistency, and The

system's resilience is continually validated against a backdrop of constant change—new

code deployments, configuration changes, and evolving user behaviors. Automation also

facilitates the scaling of Chaos Engineering practices, enabling them to cover more

aspects of the system and adapt dynamically to new insights and conditions.

Netflix's adoption of Chaos Engineering showcases a comprehensive approach to

resilience, encompassing everything from individual service robustness to the integrity of

its content delivery network. Tools like Chaos Monkey and Chaos Kong have become

emblematic of this approach, each targeting different levels of the system's architecture to

ensure that every layer is prepared to handle failures gracefully.

Beyond Netflix, the principles of Chaos Engineering have begun to influence a

wide range of organizations and systems. As digital services become increasingly central

to all aspects of modern life, maintaining availability and function in the face of

unexpected disruptions has become critical. Chaos Engineering provides a framework

and methodology for achieving this resilience, grounded in empirical testing and

continuous improvement.

Chaos Engineering represents a paradigm shift in approaching system reliability

and resilience. By embracing failure as a means to learn and improve, organizations can

build systems that are not only capable of surviving unexpected disruptions but are also

22

more robust, flexible, and responsive to the demands of the digital age. The principles

and practices outlined in Netflix's document offer valuable insights and a roadmap for

implementing Chaos Engineering across various contexts, promising to play a pivotal

role in the evolution of technology infrastructure.

2.2.2 LLFI (LLVM Fault Injection Tool):

 [15] introduces LLFI (Low-Level Fault Injection), an innovative fault injection

tool designed to evaluate software resilience against hardware faults. As hardware errors

become increasingly prevalent due to reducing feature sizes in microelectronic devices,

ensuring software resilience against these errors has become a pivotal challenge.

Traditional hardware-centric solutions for error resilience are becoming cost-prohibitive,

pushing the research toward software-based error resilience strategies. LLFI represents a

significant advancement in this research area by enabling precise, configurable fault

injections at the LLVM (Low-Level Virtual Machine) Intermediate Representation (IR)

level.

 [15] presents LLFI as a software-implemented fault injection (SWiFI) tool that

operates at the LLVM IR level, bridging the gap between high-level source code analysis

and low-level hardware operation emulation. This allows for accurate and configurable

fault injections, making it a versatile tool for researching and enhancing software error

resilience techniques. Through extensive experiments involving nine benchmark

programs, [15] demonstrates LLFI's utility in investigating the impact of various fault

injection parameters (such as instruction type, register target, and bit flip count) on

application resilience. The experiments reveal significant insights into how these

23

parameters influence the failure modes of applications, thereby guiding the development

of more resilient software systems.

 The findings from LLFI's application suggest that instruction type significantly

influences failure outcomes, injecting faults into source registers typically leads to higher

crash rates than into destination registers, and the distinction between single and double-

bit flips has minimal impact on Silent Data Corruption (SDC) rates. These insights

underscore the nuanced nature of software error resilience and the importance of targeted

fault injection strategies in evaluating and enhancing resilience. LLFI leverages the

LLVM compiler infrastructure to inject faults into selected program points in a fine-

grained manner. It consists of two main components: LLVM passes for static code

analysis and instrumentation and runtime libraries for executing the fault injections based

Figure 4: LLFI workflow from the user perspective. [15]

24

on user-defined parameters. This design enables LLFI to support various programs and

programming languages, making it a flexible tool for resilience studies.

 [15] not only present their results but also delve into their significance, exploring

how differences in instruction types, register targets, and fault types can influence

application failure modes. This analysis is grounded in the data obtained through LLFI,

highlighting the tool's practical utility in advancing our understanding of software

resilience. Moreover, it situates LLFI within the broader context of fault injection

research, offering a review of related work encompassing program-level and assembly

code-level fault injection techniques. This review underscores LLFI's novelty and its

contribution to the field.

Figure 5: LLFI workflow from the user perspective. [15]

25

In conclusion, [15] articulates a compelling case for LLFI as a powerful tool for

researching software error resilience. By enabling precise, configurable fault injections at

the LLVM IR level, LLFI opens up new avenues for understanding and improving the

strength of software systems against hardware faults. The authors' thorough experimental

evaluation and insightful analysis of the results significantly contribute to the ongoing

effort to develop more robust and error-resilient software systems.

2.2.3 IM-FIT:

 IM-FIT [16] has been introduced as a versatile tool designed to evaluate software

robustness in safety-critical systems, focusing on Python-based and ROS-based systems.

Its development aims to address the need for rigorous testing methodologies that can

simulate a wide range of fault conditions to ensure system reliability and safety.

 The significance of IM-FIT lies in its application to safety-critical systems, where

failure can result in significant harm or loss. The tool's mutation-based testing approach

represents a proactive strategy to identify and mitigate potential system failures. IM-FIT's

contribution to the field is underscored by its capacity to generate comprehensive fault

libraries and implement mutation-based testing methods, which are crucial for critical

systems' verification and validation (V&V).

26

 The architecture of IM-FIT is detailed, illustrating its components and

functionality. The software's design allows for identifying fault-applicable lines in source

code, leveraging a customizable RegEx and AST-based structure for fault injection. Key

functionalities are described, including the evaluation of Python-based software

robustness and the ROS mutation module, which underline the tool's adaptability and

specificity in testing different system types.

 IM-FIT utilizes mutation-based testing, where artificial faults are injected into the

system to assess its response and adaptability. This method provides insights into

potential weaknesses and areas for improvement. The software's execution metrics are

introduced to evaluate software robustness. These include Detected Mutations,

Figure 6: IM-FIT usage architecture. [16]

27

Undetected Mutations, Valid Mutations, Invalid Mutations, Total Mutations, and the

Mutation Score, which collectively offer a comprehensive overview of the system's

resilience.

 Examples of IM-FIT's application demonstrate its utility in scanning launch files,

extracting critical information, and injecting faults into ROS-based systems. These

examples highlight the practical benefits of using IM-FIT in real-world scenarios. The

impact of IM-FIT extends beyond its technical capabilities, offering significant benefits

in terms of time, effort, and cost savings in the V&V process. Its unique features,

particularly for ROS-based testing, underscore its value in managing complex projects

and ensuring system robustness. IM-FIT's role in facilitating the rapid completion of

safety-critical system studies, generating datasets for AI training, and aiding in quality

certification processes is discussed.

2.3 Simulation Based Fault Injection

Simics

Simics is a full system simulator developed by Virtutech AB, designed to strike a

balance between accuracy and performance in system simulation. It aims to model

complete final applications and provide a unified framework for both hardware and

software design. The importance of simulation in computer architecture design is well-

established, dating back to early projects like the EDSAC in the 1950s. Simics builds on

the principle that all computers can simulate each other, a concept stemming from the

theoretical work of Alan Turing and Alonzo Church.

28

The complexity of modern digital systems necessitates the design and testing of

hardware and software within the context of their final application. Traditional simulation

methods often fall short by focusing on overly simplified models or "toy" workloads,

leading to accurate but irrelevant results. Simics addresses this by offering a platform

capable of running commercial workloads and interfacing with detailed hardware models,

thereby providing both functional and timing accuracy.

Simics is designed to be sufficiently detailed to run unmodified operating systems

and applications, making it versatile for simulating various system types, from embedded

devices to high-end servers. It supports multiple processor architectures and operating

systems, offering the flexibility to model complex, heterogeneous networks. Notably,

Simics enables the simulation of intricate setups, such as telecom switches,

Figure 7: Sample network setup for Simics simulation. [17]

29

multiprocessor systems, and clusters, with the ability to run realistic workloads like the

SPEC CPU2000 benchmark suite and database benchmarks.

Simics architecture includes a core module that provides basic simulation features

such as processor instruction set and memory simulation. An extensive application

programming interface (API) allows for the addition of specific device models and

intrinsic components, enhancing Simics' extensibility. The system uses a simple object-

oriented configuration language for system description, enabling easy modification and

extension of the simulation environment.

Simics is utilized across various stages of system development, including

microprocessor design, memory studies, device development, operating system

development, debugging, and high-availability testing. Its performance is benchmarked

across different processor architectures, demonstrating its capability to simulate complex

systems efficiently.

Simics builds upon previous efforts in system simulation, such as IBM's early

emulator and academic projects like SimOS. However, it distinguishes itself by running

completely unmodified kernel and driver code across a heterogeneous network of

systems. Simics represents a significant advancement in the field of system simulation,

offering a comprehensive platform that supports a wide range of applications in computer

architecture and system design.

The development and deployment of Simics have significant implications for the

design, testing, and implementation of digital systems. By providing a platform that can

accurately simulate complete systems and run realistic workloads, Simics facilitates a

30

more efficient and effective approach to system development. Its flexibility and

extensibility make it a valuable tool for exploring new architectures, testing software in a

controlled environment, and debugging complex systems. Looking forward, Simics has

the potential to shape the future of system simulation, offering a foundation for the

development of more sophisticated and accurate simulation methodologies.

[17]presents a comprehensive overview of Simics, a full system simulator that

balances accuracy and performance. By enabling detailed simulation of complete systems

and supporting a wide range of applications, Simics represents a significant advancement

in the field of system simulation. Its impact extends across the electronics industry,

offering a powerful tool for system design, development, and testing. As digital systems

continue to evolve in complexity, platforms like Simics will play a crucial role in

facilitating innovation and ensuring the reliability and performance of future

technologies.

Figure 8: Simic architecture. [17]

31

Chapter 3: Enhancing Multithreaded Application

Dependability with ETFIDS

3.1 Motivation

The development of the efficient transient fault injection and detection system

(ETFIDS) [4] marks a significant advancement in addressing the specific challenges of

conducting fault injection tests in multi-threaded environments. The complexity inherent

in these environments, characterized by concurrent execution and intricate

synchronization mechanisms, demands a fault injection solution beyond traditional tools'

capabilities. ETFIDS stands out by offering this solution, directly responding to the need

for precise, reproducible, and efficient testing methodologies tailored for the nuanced

dynamics of multi-threaded applications.

Multi-threaded environments pose unique challenges for fault injection due to

their complex behavior patterns and the potential for unpredictable interactions between

threads. Traditional software fault injection tools often fall short in these scenarios,

primarily due to their inability to accurately target faults and assess their impact in real-

time across multiple threads. This limitation not only makes it difficult to simulate

specific fault scenarios but also hinders the analysis of fault propagation and the system's

resilience to errors.

ETFIDS addresses these challenges head-on by enabling precise fault

specification and concurrent evaluation of system behaviors under both faulty and fault-

32

free conditions. This capability is crucial for multi-threaded environments, where the

timing and location of a fault can significantly influence the system's overall behavior

and stability. By providing a mechanism for detailed fault modeling and real-time error

detection, ETFIDS facilitates a deeper understanding of fault tolerance and system

dependability within the complex multi-threading context.

Furthermore, ETFIDS's integration with GDB for dependability analysis enhances

its utility in multi-threaded applications, allowing for a comprehensive and nuanced

analysis of faults and their effects. This integration ensures that ETFIDS can effectively

navigate the complexities of multi-threaded systems, offering accurate and actionable

insights.

The motivation behind employing ETFIDS in multi-threaded environments is its

innovative approach to fault injection and detection. By addressing the unique challenges

presented by these environments, ETFIDS not only improves the reliability and

robustness of software systems but also pushes the boundaries of what is possible in

software fault injection research. Its development represents a tailored response to the

intricate requirements of multi-threaded testing, ensuring that researchers and developers

can conduct more effective, efficient, and meaningful fault injection experiments.

3.2 The Overall Approach

ETFIDS is designed to conduct fault injection trials within a running application

to determine how faults impact system behavior. In these experiments, depicted in Figure

9, ETFIDS introduces errors into the application while it is in operation, according to

predefined user parameters. It then proceeds to monitor the application, observing how

33

the errors propagate in real-time. When an error is recognized, ETFIDS records the time

elapsed since the fault introduction—known as fault latency—and other pertinent data,

after which it shuts down the application. This termination is intentional, as the user does

not require further analysis post-error detection, thus optimizing the overall duration of

fault injection testing.

Figure 10 delineates the comprehensive architecture of a fault injection

framework that integrates a target application with the ETFIDS and the GNU Debugger

(GDB). This figure represents the complex interplay between the user, ETFIDS, and the

target application, demonstrating the fault injection and monitoring process.

The system hinges on the target application, which the user operates, providing

ETFIDS with a specification file containing a detailed list of potential faults and points of

Figure 9: Illustration of ETFIDS Fault Injection and Analysis. [4]

34

observation. This file is crucial for ETFIDS to configure the fault injection parameters.

Once the fault injection experiment commences, ETFIDS leverages GDB, which uses the

ptrace system call to control the application at runtime. GDB is pivotal in the fault

injection process—it sets breakpoints and watchpoints based on the user's specified fault

list and can manipulate the application's memory contents to induce faults.

ETFIDS employs GDB to create a clone of the application's process before fault

injection. It maintains two parallel executions of the application within GDB, termed

"inferiors": one that carries the injected fault ("Fault-Injected Inferior") and one that runs

faultlessly ("Fault-Free Inferior"). ETFIDS meticulously synchronizes these inferiors to

ensure that the comparison for error propagation analysis is consistent and accurate.

When errors arise from the injected faults, ETFIDS quickly identifies them by comparing

the state of both inferiors at the designated observation points.

Figure 10: ESIFT structure [4].

35

The user retains control over the entire fault injection process. They provide

ETFIDS with a list specifying each fault, which includes the targeted variable's name, the

code location for the fault injection, and the precise execution event triggering the fault.

This specificity ensures accurate fault injection timing, uninfluenced by disparate testing

environments. ETFIDS presumes visibility of all variables within the target system, and it

assumes the user can query these via GDB, which is particularly accessible if the target

application is compiled with the debug flag—this generates a symbol table that ETFIDS

relies upon for identifying variable and function names.

Additionally, ETFIDS exhibits the capacity for fault outcome analysis through the

use of two inferiors in GDB. GDB represents each program's execution state with an

entity known as an inferior, which typically correlates to a process but can represent other

types of program executions. ETFIDS maintains synchronization between the inferiors by

establishing additional watchpoints, enabling the detection of discrepancies between the

fault-injected and fault-free observations.

To optimize efficiency and conserve resources, ETFIDS is programmed to clone

the target application's process precisely before the fault injection occurs. It utilizes

hardware breakpoints offered by GDB, allowing ETFIDS to set breakpoints directly at

the hardware level without altering the application's code. Most modern microprocessors

support these hardware breakpoints and allow for less intrusive monitoring of target

variables, reducing CPU overhead and accelerating the fault injection software's

performance.

36

In essence, Figure 9 provides an intricate view of how ETFIDS functions,

showcasing its dual capabilities in fault injection and analysis by employing GDB for

real-time manipulation and monitoring of a target application's execution, facilitating a

controlled environment for dependability assessment.

In a live system, simulating transient faults is essential to evaluate the resilience

of the system at a circuit level. Research has demonstrated that these faults often cause a

reversal in the state of a memory element's stored bit—a phenomenon widely known as a

bit-flip. Figure 10 illustrates the conditions under which a bit-flip fault might occur

during the operation of an application.

The diagram in Figure 10 highlights how environmental factors, such as particle

strikes, can lead to transient faults. When a high-energy particle impacts a circuit node, it

induces a pulse, often called a "single-event transient (SET) fault." Initially, this pulse

does not alter the application's functioning. However, as the pulse moves along the

circuitry and arrives at a memory element, it can cause a bit-flip by inverting the stored

bit's value. If this pulse interacts with a counter, the fault might result in the accidental

increment or decrement of the stored value, leading to a deviation in the application's

expected behavior.

ETFIDS is equipped to simulate various transient fault models to analyze their

impacts thoroughly. The current suite of transient fault models supported by ETFIDS

includes:

1. Single bit-flip: A solitary bit in a memory element changes its state.

37

2. Multiple bit-flips: Several bits within a memory element simultaneously flip their

states.

3. Increment: A value within a memory element is erroneously increased.

4. Decrement: A value within a memory element is erroneously decreased.

5. Force value: A memory element is coerced into adopting a specific value, which can

occur due to significant crosstalk effects in densely packed circuits.

6. Jump: This fault can be induced externally, often by a cyber-attack, compelling the

application to execute or branch to a set of instructions dictated by the attacker.

Such "force value" faults result when the circuit layout's compactness amplifies

the crosstalk effect, influencing adjacent gates and causing a memory element to take on

a specific value as the fault propagates. On the other hand, "jump" faults are typically

Figure 11: Bit-flip fault model [4]

38

associated with adversarial activities where an attacker aims to redirect the application's

execution flow to achieve a malicious outcome.

Figure 10 not only visualizes the mechanisms of fault occurrence and propagation

but also underlines the diverse types of transient faults that ETFIDS can introduce to

understand their varied effects on system operation and reliability.

3.3 Fault Injection Control Flow

ETFIDS operates on the principle of fault injection and outcome analysis to assess

and enhance the dependability of software applications in multithreaded environments. In

such environments, faults and errors can have unpredictable and often magnified

consequences due to the concurrent execution of threads. Therefore, the ability to inject

faults and analyze their outcomes in real-time becomes a critical step in ensuring the

resilience and robustness of systems.

Figure 12: ETFIDS Fault Injection Control Flow

39

ETFIDS leverages the GDB (GNU Debugger) and its Python API to create a

highly configurable and flexible platform for conducting fault injection experiments. This

approach allows ETFIDS to not only inject faults but also to observe their effects on the

system's behavior at runtime, which is a significant advancement over post-mortem

analysis methods. By using ETFIDS, developers can simulate various fault conditions

and gain insights into how their applications would react in the face of such adversities.

Configurability and User-Defined Fault Models

One of the cornerstones of ETFIDS is its configurability, enabling users to tailor

fault models according to their specific needs. Through Python scripting, users can

simulate transient hardware faults by injecting faults into hardware registers, such as

altering the program counter to simulate jump faults. This simulates a variety of real-

world transient faults, from simple bit-flips to complex control flow changes, which are

particularly challenging in multithreaded applications due to the timing sensitivities and

interdependencies between threads.

Execution Stages and Fault Injection Process

The operation of ETFIDS in a multithreaded environment can be divided into

three main concurrent stages:

1. Execution Monitoring: Initially, ETFIDS monitors the execution of the target

scope using GDB breakpoints to count the number of times a particular code segment is

entered. Upon reaching the user-defined scope-hit threshold, a hardware-assisted

watchpoint is set on the target variable, halting execution on any read or write operation.

40

2. Fault Injection: Once the thresholds are met, ETFIDS injects the fault into the

variable of the fault-injected process. This precision is achieved by directly manipulating

the process's memory through the access granted by GDB, ensuring the fault is

introduced at exactly the right moment in execution.

3. Outcome Observation: Following the injection, ETFIDS continues to execute

both the fault-injected and the non-faulty processes, observing the probe variable's

values. Any discrepancy between the two indicates an error caused by the injected fault,

prompting the tool to record the fault's effect and terminate the process if necessary.

Iterative and Distributed Execution

ETFIDS's design allows for distributed execution of fault injection experiments.

This enables large-scale testing to be broken down into smaller, manageable experiments

that can run concurrently across multiple computing resources. After the execution of

each fault trial (FT), ETFIDS resets the target application to its pre-experiment state,

ready for the next FT.

Significance in Multithreaded Environments

In multithreaded environments, where tasks are distributed across several

execution threads, the introduction of faults can reveal critical information about the

system's fault tolerance capabilities. The real-time comparison of faulty and non-faulty

threads offered by ETFIDS is crucial for immediate error detection and response—a

process that is significantly more complex in multithreaded contexts due to the

interactions between threads.

41

The ability to inject faults and promptly observe their impact is an invaluable

feature that can potentially save significant time and resources during the development

and testing phases. It can lead to earlier detection of potential issues, better understanding

of fault propagation, and more robust multithreaded applications. ETFIDS's process

aligns well with modern software development practices where continuous integration

and testing are crucial for the delivery of reliable software products.

Real-time Analysis and Early Termination

ETFIDS's real-time fault outcome analysis differentiates it from traditional

methods. By simultaneously comparing the behavior of the fault-injected and non-faulty

threads, the tool can detect discrepancies immediately. This immediate response allows

for early termination of the test, saving valuable time that would otherwise be spent on

prolonged faulty executions or extensive post-failure analyses.

Flexibility and Efficiency

The flexibility of ETFIDS is evident in its ability to perform dependability

analysis for multi-threaded applications. It efficiently utilizes hardware breakpoints and

watchpoints, reducing CPU overhead and accelerating the fault injection process. This

efficiency is crucial in multithreaded environments where additional overhead can disrupt

the delicate timing and interactions between threads.

Fault Injection and Multithreading

Injecting faults in a multithreaded environment poses unique challenges due to the

potential for race conditions and synchronization issues. ETFIDS's synchronized

42

execution of fault injection experiments ensures that the fault is introduced without

disrupting the natural execution flow of the application, maintaining the authenticity of

the test scenario.

Advanced Fault Modeling

ETFIDS allows users to define complex fault scenarios that may involve

simultaneous faults across multiple threads or shared resources. This advanced fault

modeling is critical for applications that operate in environments with a high risk of

concurrent faults, such as server applications handling multiple requests or systems

engaged in real-time data processing.

Outcome Categorization and Distributed Computing

The categorization of fault outcomes into different types enables a structured

approach to analyzing fault tolerance. Moreover, ETFIDS's ability to divide and

distribute experiments makes it ideal for cloud-based development environments where

resources can be allocated dynamically, and parallel processing can significantly reduce

the time required for comprehensive testing.

In summary, ETFIDS presents a sophisticated, efficient, and flexible tool for fault

injection in multithreaded environments. Its integration with GDB and Python scripting

offers a level of precision and control that is essential for modern, complex applications.

Future enhancements could include expanding the range of fault models, improving the

user interface for setting up experiments, and integrating with automated build and

testing pipelines for even more seamless operation.

43

By enabling real-time detection of faults and providing a granular level of control

over the fault injection process, ETFIDS paves the way for building more resilient

multithreaded applications. As multithreading becomes increasingly prevalent in software

design, tools like ETFIDS will be vital for developers aiming to ensure their applications

can withstand a wide array of fault scenarios and continue to function reliably in

demanding environments.

3.4 Fault Outcome Analysis

Figure 12 illustrates the advanced control flow utilized by ETFIDS to perform real-

time fault outcome analysis. This system is a departure from traditional fault injection

methods, which typically involve post-injection data dumps and time-intensive analysis

of the resultant memory state. Such conventional processes can become cumbersome,

particularly when large memory dumps and extensive computational resources are

required to analyze the outcomes.

injected (faulty) and fault-free (golden model) instances of an application, referred

to as "inferiors," immediately after fault injection. This synchronous comparison

eliminates the need for memory dumps. It facilitates immediate error detection, allowing

for observing discrepancies at precise moments and within the exact execution context—

such as a specific stack frame—where the fault was injected. The ETFIDS user can

activate or deactivate the fault outcome analysis feature. This is achieved by including or

omitting a "probe variable" in the input configuration file. The "probe variable" is a

designated target variable that ETFIDS monitors for changes indicative of a fault.

ETFIDS's control flow for fault analysis operates interleaved, which is critical for

44

maintaining accuracy in a multithreaded environment. Upon activation of fault injection,

ETFIDS clears all existing breakpoints and watchpoints to prevent any interference with

program execution. It then clones the current inferior, creating a fault-free counterpart,

and introduces the fault into the original inferior. Subsequently, ETFIDS sets a

watchpoint on the probe variable in both inferiors, signaling the commencement of the

fault outcome analysis phase. As the program executes, ETFIDS will halt the process

each time the watchpoint is triggered. At these junctures, ETFIDS conducts a comparison

of the probe variable's value in both the faulty and fault-free inferiors while they are in

sync. This process ensures that any internal data corruption or execution alterations are

detected instantly by noting any discrepancies between the inferiors.

Depending on the parameters specified by the user regarding the expected behavior

following a fault, ETFIDS may either stop both inferiors immediately upon detecting a

discrepancy or continue to monitor the probe variable values to detect further

divergences. If a difference is identified and the user has not expressed interest in

subsequent execution analysis, halting the application at this point significantly reduces

the time expenditure typically associated with fault injection experiments.

By default, absent any additional user specifications, ETFIDS will terminate the

execution of both inferiors immediately after detecting a fault impact. However, users can

modify this behavior by setting a threshold in the specification file, defining the number

of times a discrepancy between the probe variables should be observed before

terminating the application execution.

45

FIDS circumvents these inefficiencies by directly comparing the state of fault-

Figure 13: ETFIDS Fault Outcome Analysis Control Flow.

46

ETFIDS's control flow for fault outcome analysis represents a sophisticated and

efficient approach to fault injection experimentation. By leveraging real-time analysis

and providing user-configurable options, ETFIDS offers a flexible and expedient method

for assessing fault tolerance. This system reduces the time and computational overhead

traditionally associated with such experiments, allowing for quicker iterations and more

dynamic testing scenarios. With ETFIDS, researchers and developers can gain rapid

insights into the resilience of their systems, ensuring that potential faults are not just

detected but understood within the full context of their operational impact.

Table 1 presents a comparative analysis of the storage efficiency achieved by

ETFIDS's real-time fault outcome detection mechanism versus traditional core dump

methods in fault injection experiments. The table illustrates the storage space consumed

by dump files under different fault analysis approaches based on the number of

observation points triggered.

In scenarios where core dumps are utilized for fault analysis, the data reveal a

substantial increase in dump file size with each additional observation point. This method

can quickly accumulate large amounts of data, becoming impractical for experiments

Observation Point Hit Core Dump (KB) Value Dump (KB) ETFIDS (KB)
1 744 4 4
2 1488 8 4
3 2232 12 4
4 2976 16 4
5 3720 20 4
6 4464 24 4
7 5208 28 4
8 5952 32 4
9 6696 36 4
10 7440 40 4

Table 1 : Size of Dump Files for Fault Outcome Analysis. [4]

47

with numerous observation points or iterations. For instance, with each observation point

hit, the core dump size escalates by approximately 744 KB, culminating in a considerable

total for multiple data points. Alternatively, the method of dumping only the values at

observation points shows a more modest increase in file size, adding around 4 KB for

each triggered point. Although each individual increase seems negligible, the

accumulated data can become significant when considering a large scale of fault injection

experiments. In stark contrast, ETFIDS's approach, which eschews additional data

storage in favor of real-time analysis, maintains a constant minimal storage footprint.

Regardless of the number of observation points hit, ETFIDS consistently reports a

negligible increase, always accounting for only 4 KB of storage space.

While core dumping offers the unique advantage of allowing users to restore and re-

execute sessions from specific points, this benefit becomes less relevant in high-volume

fault injection scenarios where the sheer amount of data renders such analysis

cumbersome. Consequently, the core dump approach may be best suited for targeted

analyses with fewer observation points, where an in-depth exploration of the faults'

impact is necessary. ETFIDS, with its efficient real-time detection mechanism, provides a

streamlined alternative that significantly reduces storage demands and is well-suited for

extensive testing environments where many fault injections are performed, ensuring high-

performance analysis without the burden of large storage requirements.

48

The traditional approach depicted in Figure 14 relies on the collection of dump files

at each observation point. This method requires the faulty and fault-free processes to run

to completion before any comparative analysis can occur. The serial visualization here

signifies that no parallel or real-time comparison is done; the analysis awaits the end of

execution for both runs. This often results in a more time-consuming process and a larger

accumulation of data, as complete dump files are necessary for the post-process analysis.

ETFIDS's approach represents a significant efficiency improvement. By forgoing

the need for comprehensive data dumps and instead conducting on-the-fly comparisons,

Figure 14: Fault Outcome Analysis Work Flow by Dumping Data. [4]

49

ETFIDS reduces the time to outcome and minimizes storage requirements. Furthermore,

this real-time analysis method allows for immediate fault detection and system response,

streamlining the process of fault assessment. The efficiency of ETFIDS's technique is

evident in its ability to provide timely insights, thereby enabling quicker iterations and

more effective debugging.

3.5 Comparison

In multithreaded environments, where multiple processes or threads run

concurrently, synchronizing the fault injection and outcome analysis is especially critical.

ETFIDS demonstrates specific strengths in such contexts when compared with tools like

LLFI, IM-FIT, and Chaos Monkey:

⚫ Synchronized Fault Injection: ETFIDS can inject faults into a specific thread

while monitoring its execution in relation to other threads in real-time. This is

particularly advantageous in multithreaded applications where the timing of fault

injection relative to the execution of threads can significantly impact the system's

behavior.

⚫ Concurrent Fault Analysis: The capability of ETFIDS to concurrently analyze the

behavior of both the faulty and the non-faulty system (or threads) during runtime

provides immediate insights into the fault's impact on the application. This

50

concurrent analysis helps in understanding the complex interactions and

dependencies between threads, which might be affected by the injected fault.

⚫ Early Detection and Response: In a multithreaded environment, the early detection

of faults is crucial to prevent cascading failures across threads. ETFIDS is designed

to quickly identify the propagation of errors, providing a measure of fault latency.

This immediate response can help minimize the impact of faults on the system.

⚫ Thread-Specific Fault Modeling: Unlike some tools that may focus on system-

wide faults, ETFIDS's integration with GDB allows for precise thread-specific fault

modeling and injection. This granular level of control is vital in multithreaded

systems where different threads may have different roles and importance.

⚫ Efficiency in Execution: The design of ETFIDS ensures that there is minimal

overhead in fault injection and monitoring. This efficiency is particularly critical in

multithreaded applications where additional overhead could disrupt thread timing

and interactions.

Feature LLFI IM-FIT
Chaos

Monkey
ETFIDS

Method
Compiler-

level IR
Mutation-based testing

Random

instance

termination

Runtime injection

with GDB

Real-Time

Analysis
No No No Yes

Configurability High High Low High

Integration
LLVM

compiler
Python, ROS

Production

systems

GDB,

multithreading

Ease of Use Moderate User-friendly Moderate
Requires GDB

knowledge

Use Cases

Software

vs

hardware

fault

emulation

Safety-critical systems

Distributed

system

resilience

Multithreaded

application

dependability

Table 2 : Characteristics of LLFI, IM-FIT, Chaos Monkey, ETFIDS.

51

⚫ Reduced Data Overhead: ETFIDS's approach avoids the need for extensive

logging or creation of large dump files for analysis. This is especially useful in

multithreaded environments, which can generate vast amounts of data due to the

concurrent execution of multiple threads.

Comparatively:

LLFI is a lower-level tool that operates at the compiler's intermediate representation

level. While it offers fine-grained control over fault injection, it may not be as adept at

handling the dynamic runtime interactions present in a multithreaded environment.

IM-FIT focuses on mutation-based testing for safety-critical systems and may not

provide the concurrent execution and analysis capabilities that ETFIDS does, which are

crucial for testing multithreaded applications.

Chaos Monke is designed to test the resilience of distributed systems by randomly

terminating instances. While effective for assessing system-wide reliability, it may not

offer the precision needed for thread-level fault analysis and immediate fault detection in

a multithreaded application.

In summary, ETFIDS’s architecture and methodology provide targeted benefits for

testing and analyzing multithreaded applications, where precise timing, concurrent

execution, and immediate response to faults are essential.

52

Chapter 4: Fault Injection Experiments Using

ETFIDS

4.1 Typical Fault Injection Target and Experiment

Configuration

The introduction of ETFIDS, a novel fault injection tool, necessitates a clear

illustration of its application and configuration for users. To this end, Figure 16 displays

a sample configuration file for ETFIDS, while Figure 17 presents an example C++

program with multithread targeted for fault injection testing.

Figure 15: Sample of Configuration File.

In the configuration file, the executable path is specified, setting the stage for the

fault injection process. This file, notably absent of program arguments, defines the

parameters for the fault injection, detailing how and where faults should be inserted into

the code. The faults can be delineated in two distinct manners within the scope of the

53

Figure 16: Sample multi-threaded C++ program

code. The first method specifies where the variable of interest is by using the

function address scope within the source file. The second one specifies the function’s

name directly. The "probe variable" exists and is monitored.

In the given example, ETFIDS is set to initiate monitoring when the execution

enters the defined scope—between lines where the "probe variable" is accessible. The

fault, designated as a random bit-flip, is programmed to be injected on the tenth access of

the probe variable. This precise targeting is essential for simulating faults in a controlled

manner, reflecting realistic scenarios where faults might occur intermittently and not

merely upon the first instance of variable access.

54

Furthermore, the configuration outlines the location of observation points within

the code. These points are critical for tracking the propagation of errors through the

program's execution. The threshold specified next to each observation point dictates the

frequency of fault detection required before ETFIDS logs the fault latency. Once this

predefined threshold is reached, ETFIDS concludes the experiment, thereby conserving

time and computational resources.

This intricate setup exemplified in the configuration file underscores ETFIDS's

capability to monitor and analyze faults in real-time with high precision. It enables users

to gain insights into the fault tolerance of their applications without the overhead of

extensive data dumps, characteristic of traditional fault analysis tools. The strategic

placement of faults and subsequent analysis by ETFIDS facilitates a comprehensive

understanding of a program's behavior under duress, which is pivotal for developing

resilient software systems.

4.2 Fault Injection Experiment Results

The fault injection experiment conducted on the multithreaded application serves

as a crucial test of the system's resilience. The experiment's outcome, distributed across

several categories, offers a panoramic view of how simulated faults affect system

behavior. The outcomes of an ETFIDS fault injection experiment are categorized as

follows:

⚫ Success: The application completes its execution without any noticeable impact

from the injected fault.

55

⚫ Crash: An unsuccessful exit of the fault-injected process caused directly by the

injected fault.

⚫ Detected Error: The fault-injected process's probe variable deviates from the

expected value, indicating a detected error.

⚫ Overtime: The fault injection results in a hang or a desynchronization between the

fault-injected and non-faulty processes.

⚫ Invalid: The experiment is deemed invalid, perhaps due to optimization out of the

target variable or inaccessible variables during execution.

Analyzing these results provides a comprehensive picture of the target

application's behavior under duress. Successes confirm its reliability under specific

conditions, while crashes, overtimes, errors expose its vulnerabilities. Invalid results offer

a baseline understanding that not all code segments are equally susceptible to fault-

induced failures.

4.3 Performance Analysis

The comprehensive analysis of performance metrics post-fault injection provided

a granular view of ETFIDS's efficiency and the resilience of the target application under

fault conditions. The introduction of faults invariably introduced a time overhead

attributed primarily to the system's error detection and recovery processes. Despite this,

ETFIDS demonstrated remarkable efficiency, minimizing operational disruption through

its sophisticated fault injection control flow and real-time monitoring capabilities. The

system's overhead, in terms of resource utilization and execution time, remained within

56

acceptable bounds, underscoring ETFIDS's optimization for high-performance

environments.

Target

variable
crash error invalid overtime success

Probe

Variable

countMutex._

_data.__kind

0 974 264 0 8762 A

0 1525 524 0 7951 E

0 1781 96 0 8123 I

0 1499 352 0 8149 O

0 1601 463 0 7936 U

numThreads

8978 0 0 502 520 A

9354 0 0 523 123 E

9132 0 0 293 575 I

9036 0 0 698 266 O

9468 0 0 327 205 U

Table 3 : Outcome for fault injection.

Figure 17: Outcome for Probe Variable “A” and “E”

57

One of the standout features of ETFIDS is its concurrent fault injection and

analysis model, which significantly accelerates the identification and evaluation of fault

impacts. This model facilitated immediate insights into fault propagation patterns, system

resilience thresholds, and the effectiveness of fault tolerance mechanisms, proving

instrumental in guiding subsequent optimization efforts for the target application.

Figure 18 to 20 respectively show charts for five different probe variables (please

see Table 3 as reference) as well as a composite data chart. These charts only capture

target variables that have non-successful outcomes. From these charts, we can confirm

that ETFIDS can operate normally even in a multithreaded environment, executing fault

Figure 18: Outcome for Probe Variable “I” and “O”

Figure 19: Outcome for Probe Variable “U” and Overall

58

injection and detecting related errors. In this dataset, we can see that "numThreads" has

an extremely high percentage of crashes, which means that developers must ensure that

this variable is completely undisturbed in future operations and has very good protection

mechanisms in place. Although “countMutex._data._kind” has about an 80% probability

of being undisturbed, there is still a 20% chance of errors and overtime. This indicates

that developers also need to provide corresponding protection for it. Otherwise, with

continuous operation, too many errors could ultimately lead to system crashes. Overtime

could cause unexpected system behavior or the occupation and locking of system

resources. Overall, ETFIDS can still provide effective fault injection outcomes in a

multithreaded environment, which is beneficial for developers to take corresponding

measures.

In a comprehensive fault injection study, ETFIDS was tested on widely-used

applications: gzip, perl, python, and bzip2. The experiments (Table 4) aimed to

meticulously map variables from these applications, handling complexities in data types

for thorough analysis. Fault Injection (FI) tests were parallelized for efficiency, focusing

on critical variables within each application's code, particularly targeting variables within

write functions to ensure fault detection.

Gzip, bzip2, perl, and python were selected for their diverse functionalities,

ranging from compression algorithms to scripting languages. Each application's workload

was tailored to engage the write functions, with gzip and bzip2 processing their source

code, perl running a prime number generator, and python calculating pi digits. This

approach aimed to simulate realistic usage while maximizing error detection through

fault injections.

59

The study used a bit-flips fault model on a hex-core x64 Linux system, setting

fault detection thresholds to one for both scope and target hits, to optimize the

identification of injected faults. Faults were injected based on the number of accessible

variables, discounting any that couldn't be monitored due to technical limitations with

GDB. Figure 21 indicated varying resilience among the applications: python showed the

highest tolerance with 96% of tests passing, followed by perl and bzip2 with 88% and

87% success rates, respectively. Gzip had a lower success rate of 60%. Detected errors

and crashes were relatively rare across all applications, highlighting the robustness of the

tested software against injected faults. Table 5 illustrates a comparison between ETFIDS

and other software-based fault injection (SWIFI) tools, demonstrating that there isn't a

Figure 20: Fault experiment outcomes

 gzip perl python bzip2

of FIs 2885 74,250 107,338 2025

Table 4 : Number of faults/target application

60

definitive leader in terms of fault injection efficiency. Modern methodologies, including

ETFIDS and others, show improved performance over an older method. This comparison

highlights a lack of performance metrics in most existing studies on software fault

injection, which limits a comprehensive analysis. Notably, the slight performance edge of

the tool mentioned in [18] over ETFIDS is attributed to its development using Intel's

debugging framework designed specifically for the x86 architecture, allowing for

significant architectural optimizations. In contrast, ETFIDS is built upon GDB, catering

to various CPU architectures, and hence, lacks the extent of optimization achievable with

Intel’s PIN.

Furthermore, prior work, specifically FIESTA++, is unique in measuring the fault

injection time overhead across different memory target regions, presenting a noteworthy

comparison with ETFIDS. Table 6 details the significant time overhead disparity between

FIESTA++ and ETFIDS per run, in seconds. This discrepancy primarily arises from

FIESTA++ measuring time overhead in its “black box mode,” a functionality absent in

 SWIFI Tool Time Overhead

FERRARI [19] 1.290000

Ftape [20] 1.087275

PIN [18] 1.011341

ETFIDS 1.056720

Table 5 : Time Overhead Comparison.

ETFIDS Fault Target Memory
Region

FIESTA++
[19]

0.0012 Globals 0.11

0.011 Stack Memory 1.2

0.009 Dynamic Memory 2.9

Table 6 : Detailed (in seconds) Comparison.

61

ETFIDS. In this mode, FIESTA++ incurs most of its overhead from locating the target

variable for fault injection, a process that can be approximated by pre-identifying

potential fault injection targets in the target program. For extensive fault injection

campaigns involving hundreds to thousands of tests, the “black box mode” time overhead

in FIESTA++ could be deemed prohibitive.

Chapter 5:Conclusion

The development and evaluation of ESFIT, as explored in this thesis, underscore

the critical role of fault injection techniques in enhancing system dependability and

resilience. Through the meticulous design and implementation of ETFIDS, this thesis

contributes significantly to the field of fault injection, particularly addressing the nuanced

challenges presented by multithreaded applications.

The experiments conducted using ETFIDS provide valuable insights into the fault

tolerance capabilities of multithreaded applications, highlighting the impact of various

fault types on system behavior and performance. The results demonstrate the system's

resilience to certain faults and its vulnerabilities to others, particularly those affecting

synchronization mechanisms and shared resource management. These findings not only

validate the effectiveness of ETFIDS as a fault injection tool but also reveal critical areas

for improvement in the application's design and error-handling strategies.

Moving forward, several avenues for future work emerge from this research,

promising to further advance the field of fault injection and system dependability:

62

1. Expansion of Fault Models: While this thesis covers a broad range of fault scenarios,

the continuous evolution of computing systems necessitates the development of new

fault models. Future research could explore emerging fault types, particularly those

related to novel architectures and technologies, enhancing the comprehensiveness of

fault injection tools like ETFIDS.

2. Automation and Scalability: Automating the fault injection and analysis process can

significantly improve the efficiency and scalability of testing. Future work could

focus on developing more sophisticated automation techniques, enabling large-scale

testing of complex systems with minimal manual intervention.

3. Integration with Development Tools: Integrating fault injection capabilities directly

into development and debugging tools could streamline the testing process, making

it a seamless part of the development lifecycle. Future efforts could explore plugins

or extensions for popular Integrated Development Environments (IDEs) that

facilitate easy access to fault injection functionalities.

4. Application to Distributed Systems: With the rise of distributed computing, ensuring

the dependability of distributed systems has become increasingly important. Future

research could adapt and extend the principles of ETFIDS to address the unique

challenges of fault injection in distributed environments, including network failures,

consensus algorithms, and distributed data management.

5. Real-world Case Studies: Applying ETFIDS and similar tools to real-world

applications can provide invaluable insights into their practical utility and the real-

world implications of fault injection. Future studies could collaborate with industry

63

partners to conduct case studies on commercial software systems, offering a direct

assessment of fault tolerance strategies in a production context.

6. Enhancing Resilience through Machine Learning: The use of machine learning

techniques to analyze fault injection outcomes and predict system vulnerabilities

offers a promising direction for future work. By leveraging data from fault injection

experiments, machine learning models could identify patterns and predict system

behaviors under fault conditions, guiding the development of more resilient systems.

In conclusion, the research presented in this thesis marks a significant step

forward in the understanding and application of fault injection techniques for improving

system dependability. The paths outlined for future work promise to build on this

foundation, exploring new frontiers in fault injection research and system resilience.

Through continuous innovation and exploration, the field can adapt to the evolving

landscape of computing, ensuring the reliability and security of software systems in an

increasingly complex and interconnected world.

64

REFERENCES

[1] M. C. T. T. K. &. I. R. K. Hsueh, "Fault injection techniques and tools," Computer, vol. 30, pp. 75-

82, 1997.

[2] N. J. G. M. A. R. M. M. C. B. S. B. M. S. B. W. J. C. R. Elks, in Development of a Fault Injection-

Based Dependability Assessment Methodology for Digital I&C Systems, U.S. NRC, 2012, p. 47.

[3] M. K. a. G. D. Natale, "A survey on simulation-based fault injection tools for complex systems," in

IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era

(DTIS), Santorini, Greece, 2014.

[4] N. Tian, "ETFIDS: Efficient Transient Fault Injection and Detection System," OhioLINK Electronic

Theses and Dissertations Center, 2018.

[5] A. T. Services, "Space Radiation Testing," [Online]. Available: https://atslab.com/testing-and-

analysis-company/space-radiation-testing/. [Accessed 12 3 2024].

[6] A. T. Services, "SEE Radiation Testing," [Online]. Available: https://atslab.com/testing-and-analysis-

company/see-radiation-testing/. [Accessed 12 3 2024].

[7] "Applied Technical Services," [Online]. Available: https://atslab.com/testing-and-analysis-

company/tid-radiation-testing/. [Accessed 12 3 2024].

[8] H. &. R. M. &. M. F. &. S. J. Madeira, "RIFLE: A general purpose pin-level fault injector," in

European Dependable Computing Conference, 2001.

[9] J. Gray, "Why do Computers Stop and What Can Be Done About It?," in Tandem Computers

Technical Report 85.7, 1985.

[10] N. B. R. d. R. L. H. L. K. J. R. C. R. Ali Basiri, "Chaos Engineering," IEEE Software, vol. 33, no. 3,

pp. 35-41, 2016.

[11] . Jesse Robbins, "Resilience Engineering: Learning to Embrace Failure," 13 Sep 2012. [Online].

Available: http://queue.acm.org/detail.cfm?id=2371297 .

[12] Yevgeniy Sverdlik, "Facebook Turned Off Entire Data Center to Test Resiliency,"

Data Center Knowledge, 15 9 2014. [Online]. Available:

http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent er totest

resiliency/ .

[13] " Inside Azure Search: Chaos Engineering," Microsoft Azure Blog, 1 7 2015. [Online]. Available:

https://azure.microsoft.com/enus/blog/insideazuresearchchaosengineering/ .

65

[14] . Cory Bennett, "Chaos Monkey Released Into The Wild," Netflix Tech Blog, 30 7 2012. [Online].

Available: http://techblog.netflix.com/2012/07/chaosmonkeyreleasedintowild.html.

[15] M. F. J. W. A. T. a. K. P. Q. Lu, "LLFI: An Intermediate Code-Level Fault Injection Tool for

Hardware Faults," in 2015 IEEE International Conference on Software Quality, Reliability and

Security, Vancouver, BC, IEEE, 2015, pp. 11-16.

[16] C. B. Ugur Yayan, "Tailored mutation-based software fault injection tool (IM-FIT)," SoftwareX, 10 7

2023. [Online]. Available: https://www.softxjournal.com/article/S2352-7110(23)00159-0/fulltext.

[Accessed 18 3 2024].

[17] P. S. M. et, "Simics: A full system simulation platform," Computer, vol. 35, no. 2, pp. 50-58, Feb,

2002.

[18] J. J. J. H. a. J. L. A. Jin, "A pin-based dynamic software fault injection system," in 2008 The 9th

International Conference for Young Computer Scentists, 2208, pp. 2160-2167.

[19] N. A. K. a. J. A. A. G. A. Kanawati, "Ferrari: a flexible software-based fault and error injection

system.," in IEEE Transactions on Computers, 1995.

[20] R. K. I. a. D. J. T. K. Tsai, "An approach towards benchmarking of fault-tolerant commercial

systems.," in Proceedings of Annual Symposium on Fault, 1996, pp. 314-323.

	Structure Bookmarks
	CONCURRENT, FLEXIBLE, AND PORTABLE FAULT INJECTION SYSTEM

	CONCURRENT, FLEXIBLE, AND PORTABLE FAULT INJECTION SYSTEM

	
	By

	
	YAO-CHIA CHUANG

	
	
	Submitted in the partial fulfillment of the requirements

	For the degree of Master of Science

	
	Department of Electrical, Computer, and Systems Engineering

	
	CASE WESTERN RESERVE UNIVERSITY

	May, 2024
	
	CASE WESTERN RESERVE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

	We hereby approve the thesis of

	YAO-CHIA CHUANG

	candidate for the degree of Master of Science*.

	
	
	Committee Chair

	Dr. Daniel G. Saab

	
	
	Committee Member

	Dr. Christos Papachristou

	
	
	Committee Member

	Dr. Pan Li

	
	
	
	
	
	
	
	
	Date of Defense

	
	April 1, 2024

	
	
	
	
	
	*We also certify that written approval has been obtained for
any proprietary material contained therein.
	Table of Content

	LIST OF TABLES .. 5

	LIST OF TABLES .. 5

	LIST OF TABLES .. 5

	LIST OF TABLES .. 5

	

	LIST OF FIGURES .. 6

	LIST OF FIGURES .. 6

	LIST OF FIGURES .. 6

	

	Concurrent, Flexible, and Portable Fault Injection System ... 7

	Concurrent, Flexible, and Portable Fault Injection System ... 7

	Concurrent, Flexible, and Portable Fault Injection System ... 7

	

	Abstract.. 7

	Abstract.. 7

	Abstract.. 7

	

	Chapter 1: Introduction ... 8

	Chapter 1: Introduction ... 8

	Chapter 1: Introduction ... 8

	

	Chapter 2: Fault Injection Techniques... 11

	Chapter 2: Fault Injection Techniques... 11

	Chapter 2: Fault Injection Techniques... 11

	

	2.1 Hardware Based Fault Injection ..11

	2.1 Hardware Based Fault Injection ..11

	2.1 Hardware Based Fault Injection ..11

	

	2.1.1 Radiation Testing in Spacecraft Systems: ..11

	2.1.1 Radiation Testing in Spacecraft Systems: ..11

	2.1.1 Radiation Testing in Spacecraft Systems: ..11

	

	2.1.2 Pin-Level Fault Injection on Microprocessors:..16

	2.1.2 Pin-Level Fault Injection on Microprocessors:..16

	2.1.2 Pin-Level Fault Injection on Microprocessors:..16

	

	2.2 Software Based Fault Injection...19

	2.2 Software Based Fault Injection...19

	2.2 Software Based Fault Injection...19

	

	2.2.1 Chaos Monkey in Cloud Computing Environments:19

	2.2.1 Chaos Monkey in Cloud Computing Environments:19

	2.2.1 Chaos Monkey in Cloud Computing Environments:19

	

	2.2.2 LLFI (LLVM Fault Injection Tool): ...22

	2.2.2 LLFI (LLVM Fault Injection Tool): ...22

	2.2.2 LLFI (LLVM Fault Injection Tool): ...22

	

	2.2.3 IM-FIT:..25

	2.2.3 IM-FIT:..25

	2.2.3 IM-FIT:..25

	

	2.3 Simulation Based Fault Injection ...27

	2.3 Simulation Based Fault Injection ...27

	2.3 Simulation Based Fault Injection ...27

	

	Chapter 3: Enhancing Multithreaded Application Dependability with ETFIDS..... 31

	Chapter 3: Enhancing Multithreaded Application Dependability with ETFIDS..... 31

	Chapter 3: Enhancing Multithreaded Application Dependability with ETFIDS..... 31

	

	3.1 Motivation...31

	3.1 Motivation...31

	3.1 Motivation...31

	

	3.2 The Overall Approach...32

	3.2 The Overall Approach...32

	3.2 The Overall Approach...32

	

	3.3 Fault Injection Control Flow ..38

	3.3 Fault Injection Control Flow ..38

	3.3 Fault Injection Control Flow ..38

	

	3.4 Fault Outcome Analysis ..43

	3.4 Fault Outcome Analysis ..43

	3.4 Fault Outcome Analysis ..43

	

	3.5 Comparison ..49

	3.5 Comparison ..49

	3.5 Comparison ..49

	

	Chapter 4: Fault Injection Experiments Using ETFIDS... 52
	Chapter 4: Fault Injection Experiments Using ETFIDS... 52
	Chapter 4: Fault Injection Experiments Using ETFIDS... 52

	

	4.1 Typical Fault Injection Target and Experiment Configuration52

	4.1 Typical Fault Injection Target and Experiment Configuration52

	4.1 Typical Fault Injection Target and Experiment Configuration52

	

	4.2 Fault Injection Experiment Results..54

	4.2 Fault Injection Experiment Results..54

	4.2 Fault Injection Experiment Results..54

	

	4.3 Performance Analysis..55

	4.3 Performance Analysis..55

	4.3 Performance Analysis..55

	

	Chapter 5:Conclusion... 61

	Chapter 5:Conclusion... 61

	Chapter 5:Conclusion... 61

	

	REFERENCES.. 64
	REFERENCES.. 64
	REFERENCES.. 64

	

	

	
	LIST OF TABLES

	TABLE 1 : SIZE OF DUMP FILES FOR FAULT OUTCOME ANALYSIS. [4] 46

	TABLE 1 : SIZE OF DUMP FILES FOR FAULT OUTCOME ANALYSIS. [4] 46

	TABLE 1 : SIZE OF DUMP FILES FOR FAULT OUTCOME ANALYSIS. [4] 46

	TABLE 1 : SIZE OF DUMP FILES FOR FAULT OUTCOME ANALYSIS. [4] 46

	

	TABLE 2 : CHARACTERISTICS OF LLFI, IM-FIT, CHAOS MONKEY, ETFIDS. 50

	TABLE 2 : CHARACTERISTICS OF LLFI, IM-FIT, CHAOS MONKEY, ETFIDS. 50

	TABLE 2 : CHARACTERISTICS OF LLFI, IM-FIT, CHAOS MONKEY, ETFIDS. 50

	

	TABLE 3 : OUTCOME FOR FAULT INJECTION. .. 56

	TABLE 3 : OUTCOME FOR FAULT INJECTION. .. 56

	TABLE 3 : OUTCOME FOR FAULT INJECTION. .. 56

	

	TABLE 4 : NUMBER OF FAULTS/TARGET APPLICATION ... 59

	TABLE 4 : NUMBER OF FAULTS/TARGET APPLICATION ... 59

	TABLE 4 : NUMBER OF FAULTS/TARGET APPLICATION ... 59

	

	TABLE 5 : TIME OVERHEAD COMPARISON. .. 60

	TABLE 5 : TIME OVERHEAD COMPARISON. .. 60

	TABLE 5 : TIME OVERHEAD COMPARISON. .. 60

	

	TABLE 6 : DETAILED (IN SECONDS) COMPARISON. .. 60
	TABLE 6 : DETAILED (IN SECONDS) COMPARISON. .. 60
	TABLE 6 : DETAILED (IN SECONDS) COMPARISON. .. 60

	

	

	LIST OF FIGURES

	FIGURE 1: BASIC COMPONENTS OF A FAULT INJECTION ENVIRONMENT. [1] 11

	FIGURE 1: BASIC COMPONENTS OF A FAULT INJECTION ENVIRONMENT. [1] 11

	FIGURE 1: BASIC COMPONENTS OF A FAULT INJECTION ENVIRONMENT. [1] 11

	FIGURE 1: BASIC COMPONENTS OF A FAULT INJECTION ENVIRONMENT. [1] 11

	

	FIGURE 2: IMPACT OF A PIN-LEVEL FAULT IN THE TARGET SYSTEM AT THE PROCESSOR
INSTRUCTION LEVEL BEHAVIOR [8]... 16

	FIGURE 2: IMPACT OF A PIN-LEVEL FAULT IN THE TARGET SYSTEM AT THE PROCESSOR
INSTRUCTION LEVEL BEHAVIOR [8]... 16

	FIGURE 2: IMPACT OF A PIN-LEVEL FAULT IN THE TARGET SYSTEM AT THE PROCESSOR
INSTRUCTION LEVEL BEHAVIOR [8]... 16

	

	FIGURE 3: RIFLE ORGANIZATION. [8] ... 18

	FIGURE 3: RIFLE ORGANIZATION. [8] ... 18

	FIGURE 3: RIFLE ORGANIZATION. [8] ... 18

	

	FIGURE 4: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 23

	FIGURE 4: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 23

	FIGURE 4: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 23

	

	FIGURE 5: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 24

	FIGURE 5: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 24

	FIGURE 5: LLFI WORKFLOW FROM THE USER PERSPECTIVE. [15]....................................... 24

	

	FIGURE 6: IM-FIT USAGE ARCHITECTURE. [16] ... 26

	FIGURE 6: IM-FIT USAGE ARCHITECTURE. [16] ... 26

	FIGURE 6: IM-FIT USAGE ARCHITECTURE. [16] ... 26

	

	FIGURE 7: SAMPLE NETWORK SETUP FOR SIMICS SIMULATION. [17] 28

	FIGURE 7: SAMPLE NETWORK SETUP FOR SIMICS SIMULATION. [17] 28

	FIGURE 7: SAMPLE NETWORK SETUP FOR SIMICS SIMULATION. [17] 28

	

	FIGURE 8: SIMIC ARCHITECTURE. [17]... 30

	FIGURE 8: SIMIC ARCHITECTURE. [17]... 30

	FIGURE 8: SIMIC ARCHITECTURE. [17]... 30

	

	FIGURE 9: ILLUSTRATION OF ETFIDS FAULT INJECTION AND ANALYSIS. [4].................... 33

	FIGURE 9: ILLUSTRATION OF ETFIDS FAULT INJECTION AND ANALYSIS. [4].................... 33

	FIGURE 9: ILLUSTRATION OF ETFIDS FAULT INJECTION AND ANALYSIS. [4].................... 33

	

	FIGURE 10: ESIFT STRUCTURE [4]... 34

	FIGURE 10: ESIFT STRUCTURE [4]... 34

	FIGURE 10: ESIFT STRUCTURE [4]... 34

	

	FIGURE 11: BIT-FLIP FAULT MODEL [4].. 37

	FIGURE 11: BIT-FLIP FAULT MODEL [4].. 37

	FIGURE 11: BIT-FLIP FAULT MODEL [4].. 37

	

	FIGURE 12: ETFIDS FAULT INJECTION CONTROL FLOW ... 38

	FIGURE 12: ETFIDS FAULT INJECTION CONTROL FLOW ... 38

	FIGURE 12: ETFIDS FAULT INJECTION CONTROL FLOW ... 38

	

	FIGURE 13: ETFIDS FAULT OUTCOME ANALYSIS CONTROL FLOW. 45

	FIGURE 13: ETFIDS FAULT OUTCOME ANALYSIS CONTROL FLOW. 45

	FIGURE 13: ETFIDS FAULT OUTCOME ANALYSIS CONTROL FLOW. 45

	

	FIGURE 14: FAULT OUTCOME ANALYSIS WORK FLOW BY DUMPING DATA. [4]............... 48

	FIGURE 14: FAULT OUTCOME ANALYSIS WORK FLOW BY DUMPING DATA. [4]............... 48

	FIGURE 14: FAULT OUTCOME ANALYSIS WORK FLOW BY DUMPING DATA. [4]............... 48

	

	FIGURE 15: SAMPLE OF CONFIGURATION FILE... 52

	FIGURE 15: SAMPLE OF CONFIGURATION FILE... 52

	FIGURE 15: SAMPLE OF CONFIGURATION FILE... 52

	

	FIGURE 16: SAMPLE MULTI-THREADED C++ PROGRAM ... 53

	FIGURE 16: SAMPLE MULTI-THREADED C++ PROGRAM ... 53

	FIGURE 16: SAMPLE MULTI-THREADED C++ PROGRAM ... 53

	

	FIGURE 17: OUTCOME FOR PROBE VARIABLE “A” AND “E” .. 56

	FIGURE 17: OUTCOME FOR PROBE VARIABLE “A” AND “E” .. 56

	FIGURE 17: OUTCOME FOR PROBE VARIABLE “A” AND “E” .. 56

	

	FIGURE 18: OUTCOME FOR PROBE VARIABLE “I” AND “O” ... 57

	FIGURE 18: OUTCOME FOR PROBE VARIABLE “I” AND “O” ... 57

	FIGURE 18: OUTCOME FOR PROBE VARIABLE “I” AND “O” ... 57

	

	FIGURE 19: OUTCOME FOR PROBE VARIABLE “U” AND OVERALL..................................... 57

	FIGURE 19: OUTCOME FOR PROBE VARIABLE “U” AND OVERALL..................................... 57

	FIGURE 19: OUTCOME FOR PROBE VARIABLE “U” AND OVERALL..................................... 57

	

	FIGURE 20: FAULT EXPERIMENT OUTCOMES .. 59
	FIGURE 20: FAULT EXPERIMENT OUTCOMES .. 59
	FIGURE 20: FAULT EXPERIMENT OUTCOMES .. 59

	

	CONCURRENT, FLEXIBLE, AND PORTABLE FAULT INJECTION SYSTEM

	Abstract

	By

	YAO-CHIA CHUANG

	The development of a Concurrent, Flexible, and Portable Fault Injection System represents
a significant advancement in the field of system reliability and dependability testing.
Leveraging the SWIFI (Software-Implemented Fault Injection), this thesis emphasizes the
robust evaluation of software systems by introducing faults in a controlled manner. Notably,
the system is tailored for applications written in C++ and makes extensive use of threading
to simulate various fault scenarios concurrently. This approach enhances the efficiency of
detecting potential system vulnerabilities and ensures a higher degree of flexibility and
portability in testing procedures. By simulating real-world fault conditions, developers can
identify and address vulnerabilities effectively, thereby improving the overall reliability
and dependability of the system. This fault injection system stands out for its ability to
provide comprehensive insights into system behavior under fault conditions, making it an
invaluable tool for developers aiming to build resilient software applications.
	
	Chapter 1: Introduction

	Discussing fault injection and its nuances, particularly the assertion that no fault
injection category is universally superior, requires an understanding of what fault
injection is, its purposes, and the various categories it encompasses. This approach is
crucial in recognizing that the efficacy and appropriateness of fault injection methods
depend significantly on the context of the testing environment.

	Fault injection is a testing technique used to validate a system's robustness and
error-handling capabilities. By intentionally introducing faults or errors into a system,
developers can observe how it behaves under unexpected conditions, ensuring it can
handle such scenarios gracefully in a real-world environment. This technique is crucial
for identifying and mitigating potential points of failure in both hardware and software
systems, enhancing their reliability, security, and performance.

	The essence of fault injection lies in its diversity; it encompasses various
techniques, each suited to different systems and objectives. By injecting faults into a
system and observing its behavior, researchers and practitioners can gain insights into its
vulnerabilities and the efficacy of its fault tolerance mechanisms. This iterative process of
injecting faults, analyzing system responses, and refining fault tolerance strategies forms
the basis for achieving robust and dependable systems. Fault injection techniques can be
broadly categorized into hardware-based, software-based, and simulation-based methods,
each with unique advantages and application scenarios.
	Hardware Based Fault Injection: it uses additional hardware to introduce faults
into the target system’s hardware. [1] Depending on the faults and their locations,
hardware-implemented fault injection methods fall into two categories: with contact and
without contact [1].

	Software Based Fault Injection: it is also called as Software-implemented fault
injection (SWIFI). It relies on the assumption that the effects of real hardware faults can
be emulated either by manipulating the state of the target system registers and memory
via run-time injection or by modifying the target workload through pre-run-time injection
[2]. This assumption usually holds for transient faults, but for permanent faults, it
presents some difficulty due to the repeated invocation of the fault injection exception
handler every time a register or memory location is referenced [2].

	Simulation Based Fault Injection: the target system and the possible hardware
faults are modeled and simulated by a software program, usually called a fault simulator
[3]. In this approach, the system or its environment is modeled in a simulator, and faults
are introduced into the simulation. This method allows for exploring fault impacts in
complex systems that are difficult or impractical to test in real life, such as satellite
systems, without the risk of causing actual damage.

	The choice among these fault injection categories should be guided by several
factors, including the system's nature, the testing objectives, and available resources. For
instance, hardware-based fault injection might be indispensable for testing embedded
systems or hardware components where physical conditions can lead to failures.
	Furthermore, the testing environment is critical in selecting the appropriate fault
injection method. In a development environment, where the primary goal is identifying
and fixing bugs early, software-based or simulation-based fault injection might be
preferred due to its flexibility and safety. In contrast, hardware-based fault injection could
be more appropriate in a staging or pre-production environment, where testing aims to
mimic real-world conditions as closely as possible.

	It's also essential to consider the system's criticality and the potential impact of
failures. For high-stakes environments, such as in the aerospace, automotive, or
healthcare industries, exhaustive testing using multiple fault injection techniques might
be necessary to ensure the system's reliability and safety.

	The fault injection tool we used in this thesis, ETFIDS, is a runtime-based
software fault injection tool. It injects a fault by changing signal/variable values at
runtime, and it also provides the ability to observe the effect on the output or behavior of
the system [4].
	
	Chapter 2: Fault Injection Techniques

	As mentioned in Chapter 1, fault injection techniques can be broadly categorized
into hardware-based, software-based, and simulation-based methods. There is no one�size-fits-all approach to fault injection. The effectiveness and appropriateness of a fault
injection category are highly contingent on the specific context of the testing
environment, the nature of the system under test, and the objectives of the testing process.
A nuanced understanding of these factors is crucial for selecting the most suitable fault
injection method. Developers and testers must carefully evaluate their options,
considering the trade-offs between realism, risk, cost, and the comprehensive assessment
of the system's fault tolerance capabilities. We will talk about a few notable examples for
each category.

	
	
	Figure 1: Basic components of a fault injection environment. [1]

	Figure
	2.1 Hardware Based Fault Injection

	2.1.1 Radiation Testing in Spacecraft Systems:

	Radiation testing in spacecraft systems is critical to ensuring the reliability,
performance, and longevity of spacecraft operating in harsh space environments. Exposure
to various forms of radiation in space, including cosmic rays, solar flares, and Van Allen
belt radiation, can cause significant damage to onboard systems and components. This
damage can range from temporary malfunctions to permanent failures, potentially
compromising mission objectives and safety. Therefore, understanding and mitigating
radiation effects through rigorous testing is paramount for the success of space missions.

	There are three types of space radiation–particles inside Earth’s magnetic field,
particles shot through space by solar Particle events (such as solar flares), and the heavy
ions and high-energy protons produced outside this solar system (galactic cosmic rays) [5].
The energy levels of these particles can be extremely high, capable of penetrating
spacecraft shielding and causing direct ionization and displacement damage to materials
and electronic devices.

	Radiation can affect spacecraft systems in several ways. Single Event Effects
(SEEs), which can be either destructive or nondestructive, occur when a single energetic
particle, such as high-energy heavy ions or protons, passes through a semiconductive
material, depositing energy and potentially increasing the risk of failure on a space mission
[6]. There are four types of SEEs: Single Event Burnout(SEB), Single Event Upset (SEU),
Single Event Transients (SETs), and Single Event Functional Interrupts (SEFIs). They can
result in minor issues and catastrophic failure. Total Ionizing Dose (TID) significantly
affects electronic devices in space, where prolonged exposure to ionizing radiation can
increase transistor leakage currents and alter threshold voltages and sub-threshold slopes,
potentially leading to component failure or complete malfunction if sufficiently high [7].
	This testing is crucial for assessing a component's vulnerability to TID radiation effects,
aiming to identify parameter variations across the total dose and the threshold where
performance falls short of mission requirements while also highlighting that radiation
effects on space electronics pose risks to technology manufacturers, as failure or
malfunction due to TID can endanger missions and lives, underscoring the importance of
thorough pre-mission evaluation to mitigate TID radiation impact. Displacement damage
caused by non-ionizing energy loss can alter the physical structure of materials, affecting
their mechanical and electrical properties.

	To assess and mitigate these risks, spacecraft systems undergo comprehensive
radiation testing during their development phase. Radiation testing involves exposing
spacecraft components and systems to controlled radiation sources that simulate the space
environment. This testing can be conducted at various levels, including component,
subsystem, and system levels, to identify vulnerabilities and validate protective measures.

	Component-level testing, subsystem, and system-level testing, along with
simulation and modeling, form the backbone of ensuring spacecraft resilience against the
harsh radiation environment encountered in space. This comprehensive approach ensures
that individual components and entire systems can withstand the various forms of
radiation they will be exposed to, thus safeguarding the mission's integrity and the safety
of any crew.

	At the heart of space mission durability against radiation lies component-level
testing. This meticulous process involves evaluating individual electronic parts under
controlled radiation exposure to assess their vulnerability to Single Event Effects (SEEs),
	Total Ionizing Dose (TID), and displacement damage. SEEs occur when a single
energetic particle, such as a proton or heavy ion, strikes a semiconductor, leading to
temporary or permanent damage. TID refers to the cumulative damage caused by
exposure to ionizing radiation over time, which can degrade the performance of
electronic components. Displacement damage results from particles displacing atoms in
the material's lattice, potentially altering its physical properties and electronic behavior.

	The primary goal of component-level testing is twofold: first, to identify each
part's radiation sensitivity, and second, to determine its suitability for space applications.
By understanding the limitations and thresholds of individual components, engineers can
make informed decisions regarding selecting radiation-hardened (designed to withstand
radiation effects) or radiation-tolerant (able to operate under a certain level of radiation)
components. This strategic selection is crucial for developing spacecraft capable of
enduring the rigors of space without succumbing to radiation-induced failures.

	Moving beyond individual components, subsystems, and system-level testing
provides a broader perspective on a spacecraft's resilience to radiation. In this phase,
clusters of components are assembled into subsystems, and the complete spacecraft
systems undergo rigorous radiation exposure tests. The purpose is to evaluate the
collective response of these assemblies to space radiation, simulating as closely as
possible the actual conditions they will face.

	This level of testing is invaluable for several reasons. First, it helps assess the
effectiveness of shielding solutions designed to protect sensitive electronics from
radiation. Second, it allows for the evaluation of error correction codes and redundancy
	strategies implemented within the hardware and software to mitigate the impact of
radiation-induced errors. Lastly, system-level testing offers insights into the overall
robustness of the spacecraft, identifying potential weak links in the design that could
compromise mission success.

	Parallel to physical testing, simulation and modeling are indispensable tools in
understanding and mitigating radiation effects on spacecraft systems. Using advanced
computational models and simulations, engineers can predict the interaction between
radiation and electronic components, evaluate the potential impact of different space
radiation environments, and test the efficacy of shielding and other protective measures.

	These simulations can be incredibly detailed, encompassing various aspects of
radiation physics, materials science, and electronic circuit behavior. They allow for
exploring numerous scenarios, including extreme events that are difficult or impossible to
recreate in a laboratory setting. By integrating simulation results with empirical data from
physical testing, engineers can refine their designs, optimize radiation protection
strategies, and enhance the reliability and safety of space missions.

	The combined efforts in component-level testing, subsystem and system-level
testing, and simulation and modeling are essential to developing spacecraft capable of
surviving and functioning in a hostile space environment. This multi-layered approach
enables engineers to identify vulnerabilities early in the design process, implement
effective mitigation strategies, and ensure the success and safety of space missions. As
humanity's space exploration expands, the importance of comprehensive radiation testing
	and modeling will only grow, underpinning the reliability and longevity of future space
endeavors.

	
	
	Figure 2: Impact of a pin-level fault in the target system at the processor instruction level
behavior [8]

	Figure
	2.1.2 Pin-Level Fault Injection on Microprocessors:

	[8] discusses the architecture of a pin-level fault injector named RIFLE, designed
for dependability validation of computing systems. RIFLE can adapt to various target
systems, injecting faults primarily into the processor pins. The system offers
deterministic fault injection with reproducibility without requiring feedback circuits to
detect error production. It can identify instances where faults do not impact the target
system, generating sets of faults that specifically affect the system's operations. The
results show significant error detection with simple mechanisms, suggesting that
computers with basic error detection approaches are closer to achieving fail-silent
operation.

	Validating fault-tolerance mechanisms is challenging due to the complexity
involved in fault activation and error propagation processes. [8] introduces RIFLE, a
system that complements traditional validation techniques like modeling and simulation.
RIFLE focuses on injecting physical faults into actual systems, highlighting the influence
of workloads on error-handling mechanisms' performance.

	RIFLE's architecture is detailed, showcasing its ability to inject faults at the pin
level across various components of a computing system, mainly focusing on the
processor. Faults can be triggered under specific conditions, allowing for controlled and
reproducible fault injection. The system's adaptability to different target systems and
capacity to detect the practical impact of injected faults without external feedback
mechanisms are emphasized.

	An evaluation of simple, behavior-based error detection techniques reveals that up
to 72.5% of errors can be detected with basic mechanisms. [8] discusses the impact of
different fault sets on detection coverage and latency, providing insights into the
effectiveness of built-in error detection mechanisms in processors like the 68000 built-in
error detection mechanisms. It also evaluates memory access error detection mechanisms,
watchdog timers, and the fail-silent behavior in systems equipped with these error
detection techniques.

	The fail-silent behavior of systems employing behavior-based error detection
mechanisms is scrutinized. The study reveals that over 90% of the faults led to systems
behaving according to the fail-silent model. This indicates that traditional computers with
simple error detection mechanisms are relatively close to achieving fail-silent operation,
	highlighting the potential for enhancing system dependability through basic error
detection strategies.

	RIFLE presents a novel approach to fault injection for system dependability
validation, showcasing its versatility and effectiveness. The system's capacity for
deterministic fault injection and its ability to generate specific fault sets and assess their
impact without external feedback mechanisms marks a significant advancement in fault
injection methodologies. The evaluation of simple error detection mechanisms
underscores the potential of basic strategies in achieving fail-silent operation, paving the
way for more dependable computing systems.

	
	
	Figure 3: RIFLE organization. [8]

	Figure
	2.2 Software Based Fault Injection

	2.2.1 Chaos Monkey in Cloud Computing Environments:

	Thirty years ago, Jim Gray noted that "A way to improve availability is to install
proven hardware and software, and then leave it alone" [9] [10]. In the recent era that
demands putting customers first and emphasizes after-sales service, it's impossible for
companies to “leave it alone” after it's sold. Companies must ensure the product can
function correctly when selling or providing a service. Today's business giants like
Google [11], Facebook [12], Microsoft [13], and Amazon [11] all have corresponding
measures to ensure their services operate smoothly. As a streaming platform with tens of
millions of subscribers, Netflix also has measures known as "Chaos Monkey." After all,
no one wants their relaxation time to be ruined by the unreliability of a streaming
platform.

	For years, Netflix has been running an internal service called Chaos Monkey
[14], which randomly selects virtual machine instances that host our production services
and terminates them [10]. Chaos Monkey's purpose was to encourage Netflix engineers
to design software services that can withstand failures of individual instances [10]. The
inception of Chaos Engineering can be traced back to the acknowledgment of the
inherent complexity and failure modes of distributed systems. Traditional engineering
practices, which might suffice in more monolithic or less dynamic environments, fail to
address the challenges posed by modern, distributed internet-scale services. The critical
insight was that, despite best efforts in design and testing, unforeseen failures are
	inevitable in complex systems. This realization prompted a shift in focus from merely
trying to prevent all possible failures to ensuring that systems are resilient and can
maintain functionality in the face of disruptions. Chaos Engineering has four principles:
building hypotheses around steady-state behavior, varying real-world events, running
experiments in production, and automating experiences.

	The cornerstone of Chaos Engineering is identifying and understanding a system's
steady state, which represents its normal operating conditions. At Netflix, metrics such as
"stream starts per second" (SPS) serve as indicators of this steady state, providing a
measurable and observable output that reflects the health and availability of the service.
Experiments in Chaos Engineering are designed around perturbing this steady state in
controlled ways to test hypotheses about the system's resilience.

	Chaos Engineering involves introducing changes that simulate real-world events,
ranging from server crashes and network partitions to more subtle conditions like
increased latency or load. Historical incidents and theoretical analysis of potential failure
modes inform the selection of these events. This principle emphasizes the importance of
testing the system's response to various stressors rather than limiting scrutiny to those
failures already experienced or most easily imagined.

	One of the more controversial aspects of Chaos Engineering is the insistence on
running experiments in the actual production environment. This approach stems from the
understanding that distributed systems' complexity and emergent behavior can never be
fully replicated in a test environment. Running experiments in production ensures that
	findings are as relevant and accurate as possible, directly informing improvements in
system resilience.

	Chaos Engineering experiments must be automated and run continuously to
remain effective as systems evolve. This automation allows for consistency, and The
system's resilience is continually validated against a backdrop of constant change—new
code deployments, configuration changes, and evolving user behaviors. Automation also
facilitates the scaling of Chaos Engineering practices, enabling them to cover more
aspects of the system and adapt dynamically to new insights and conditions.

	Netflix's adoption of Chaos Engineering showcases a comprehensive approach to
resilience, encompassing everything from individual service robustness to the integrity of
its content delivery network. Tools like Chaos Monkey and Chaos Kong have become
emblematic of this approach, each targeting different levels of the system's architecture to
ensure that every layer is prepared to handle failures gracefully.

	Beyond Netflix, the principles of Chaos Engineering have begun to influence a
wide range of organizations and systems. As digital services become increasingly central
to all aspects of modern life, maintaining availability and function in the face of
unexpected disruptions has become critical. Chaos Engineering provides a framework
and methodology for achieving this resilience, grounded in empirical testing and
continuous improvement.

	Chaos Engineering represents a paradigm shift in approaching system reliability
and resilience. By embracing failure as a means to learn and improve, organizations can
build systems that are not only capable of surviving unexpected disruptions but are also
	more robust, flexible, and responsive to the demands of the digital age. The principles
and practices outlined in Netflix's document offer valuable insights and a roadmap for
implementing Chaos Engineering across various contexts, promising to play a pivotal
role in the evolution of technology infrastructure.

	2.2.2 LLFI (LLVM Fault Injection Tool):

	[15] introduces LLFI (Low-Level Fault Injection), an innovative fault injection
tool designed to evaluate software resilience against hardware faults. As hardware errors
become increasingly prevalent due to reducing feature sizes in microelectronic devices,
ensuring software resilience against these errors has become a pivotal challenge.
Traditional hardware-centric solutions for error resilience are becoming cost-prohibitive,
pushing the research toward software-based error resilience strategies. LLFI represents a
significant advancement in this research area by enabling precise, configurable fault
injections at the LLVM (Low-Level Virtual Machine) Intermediate Representation (IR)
level.

	[15] presents LLFI as a software-implemented fault injection (SWiFI) tool that
operates at the LLVM IR level, bridging the gap between high-level source code analysis
and low-level hardware operation emulation. This allows for accurate and configurable
fault injections, making it a versatile tool for researching and enhancing software error
resilience techniques. Through extensive experiments involving nine benchmark
programs, [15] demonstrates LLFI's utility in investigating the impact of various fault
injection parameters (such as instruction type, register target, and bit flip count) on
application resilience. The experiments reveal significant insights into how these
	parameters influence the failure modes of applications, thereby guiding the development
of more resilient software systems.

	The findings from LLFI's application suggest that instruction type significantly
influences failure outcomes, injecting faults into source registers typically leads to higher
crash rates than into destination registers, and the distinction between single and double�bit flips has minimal impact on Silent Data Corruption (SDC) rates. These insights
underscore the nuanced nature of software error resilience and the importance of targeted
fault injection strategies in evaluating and enhancing resilience. LLFI leverages the
LLVM compiler infrastructure to inject faults into selected program points in a fine�grained manner. It consists of two main components: LLVM passes for static code
analysis and instrumentation and runtime libraries for executing the fault injections based

	
	
	Figure 4: LLFI workflow from the user perspective. [15]

	Figure
	on user-defined parameters. This design enables LLFI to support various programs and
programming languages, making it a flexible tool for resilience studies.

	[15] not only present their results but also delve into their significance, exploring
how differences in instruction types, register targets, and fault types can influence
application failure modes. This analysis is grounded in the data obtained through LLFI,
highlighting the tool's practical utility in advancing our understanding of software
resilience. Moreover, it situates LLFI within the broader context of fault injection
research, offering a review of related work encompassing program-level and assembly
code-level fault injection techniques. This review underscores LLFI's novelty and its
contribution to the field.

	
	
	Figure 5: LLFI workflow from the user perspective. [15]

	Figure
	In conclusion, [15] articulates a compelling case for LLFI as a powerful tool for
researching software error resilience. By enabling precise, configurable fault injections at
the LLVM IR level, LLFI opens up new avenues for understanding and improving the
strength of software systems against hardware faults. The authors' thorough experimental
evaluation and insightful analysis of the results significantly contribute to the ongoing
effort to develop more robust and error-resilient software systems.

	2.2.3 IM-FIT:

	IM-FIT [16] has been introduced as a versatile tool designed to evaluate software
robustness in safety-critical systems, focusing on Python-based and ROS-based systems.
Its development aims to address the need for rigorous testing methodologies that can
simulate a wide range of fault conditions to ensure system reliability and safety.

	The significance of IM-FIT lies in its application to safety-critical systems, where
failure can result in significant harm or loss. The tool's mutation-based testing approach
represents a proactive strategy to identify and mitigate potential system failures. IM-FIT's
contribution to the field is underscored by its capacity to generate comprehensive fault
libraries and implement mutation-based testing methods, which are crucial for critical
systems' verification and validation (V&V).
	The architecture of IM-FIT is detailed, illustrating its components and
functionality. The software's design allows for identifying fault-applicable lines in source
code, leveraging a customizable RegEx and AST-based structure for fault injection. Key
functionalities are described, including the evaluation of Python-based software
robustness and the ROS mutation module, which underline the tool's adaptability and
specificity in testing different system types.

	
	
	Figure 6: IM-FIT usage architecture. [16]

	Figure
	IM-FIT utilizes mutation-based testing, where artificial faults are injected into the
system to assess its response and adaptability. This method provides insights into
potential weaknesses and areas for improvement. The software's execution metrics are
introduced to evaluate software robustness. These include Detected Mutations,

	Undetected Mutations, Valid Mutations, Invalid Mutations, Total Mutations, and the
Mutation Score, which collectively offer a comprehensive overview of the system's
resilience.

	Examples of IM-FIT's application demonstrate its utility in scanning launch files,
extracting critical information, and injecting faults into ROS-based systems. These
examples highlight the practical benefits of using IM-FIT in real-world scenarios. The
impact of IM-FIT extends beyond its technical capabilities, offering significant benefits
in terms of time, effort, and cost savings in the V&V process. Its unique features,
particularly for ROS-based testing, underscore its value in managing complex projects
and ensuring system robustness. IM-FIT's role in facilitating the rapid completion of
safety-critical system studies, generating datasets for AI training, and aiding in quality
certification processes is discussed.

	2.3 Simulation Based Fault Injection

	Simics

	Simics is a full system simulator developed by Virtutech AB, designed to strike a
balance between accuracy and performance in system simulation. It aims to model
complete final applications and provide a unified framework for both hardware and
software design. The importance of simulation in computer architecture design is well�established, dating back to early projects like the EDSAC in the 1950s. Simics builds on
the principle that all computers can simulate each other, a concept stemming from the
theoretical work of Alan Turing and Alonzo Church.
	The complexity of modern digital systems necessitates the design and testing of
hardware and software within the context of their final application. Traditional simulation
methods often fall short by focusing on overly simplified models or "toy" workloads,
leading to accurate but irrelevant results. Simics addresses this by offering a platform
capable of running commercial workloads and interfacing with detailed hardware models,
thereby providing both functional and timing accuracy.

	Simics is designed to be sufficiently detailed to run unmodified operating systems
and applications, making it versatile for simulating various system types, from embedded
devices to high-end servers. It supports multiple processor architectures and operating
systems, offering the flexibility to model complex, heterogeneous networks. Notably,
Simics enables the simulation of intricate setups, such as telecom switches,

	Figure 7: Sample network setup for Simics simulation. [17]
	Figure 7: Sample network setup for Simics simulation. [17]

	Figure
	multiprocessor systems, and clusters, with the ability to run realistic workloads like the
SPEC CPU2000 benchmark suite and database benchmarks.

	Simics architecture includes a core module that provides basic simulation features
such as processor instruction set and memory simulation. An extensive application
programming interface (API) allows for the addition of specific device models and
intrinsic components, enhancing Simics' extensibility. The system uses a simple object�oriented configuration language for system description, enabling easy modification and
extension of the simulation environment.

	Simics is utilized across various stages of system development, including
microprocessor design, memory studies, device development, operating system
development, debugging, and high-availability testing. Its performance is benchmarked
across different processor architectures, demonstrating its capability to simulate complex
systems efficiently.

	Simics builds upon previous efforts in system simulation, such as IBM's early
emulator and academic projects like SimOS. However, it distinguishes itself by running
completely unmodified kernel and driver code across a heterogeneous network of
systems. Simics represents a significant advancement in the field of system simulation,
offering a comprehensive platform that supports a wide range of applications in computer
architecture and system design.

	The development and deployment of Simics have significant implications for the
design, testing, and implementation of digital systems. By providing a platform that can
accurately simulate complete systems and run realistic workloads, Simics facilitates a
	more efficient and effective approach to system development. Its flexibility and
extensibility make it a valuable tool for exploring new architectures, testing software in a
controlled environment, and debugging complex systems. Looking forward, Simics has
the potential to shape the future of system simulation, offering a foundation for the
development of more sophisticated and accurate simulation methodologies.

	Figure 8: Simic architecture. [17]
	Figure 8: Simic architecture. [17]

	Figure
	[17]presents a comprehensive overview of Simics, a full system simulator that
balances accuracy and performance. By enabling detailed simulation of complete systems
and supporting a wide range of applications, Simics represents a significant advancement
in the field of system simulation. Its impact extends across the electronics industry,
offering a powerful tool for system design, development, and testing. As digital systems
continue to evolve in complexity, platforms like Simics will play a crucial role in
facilitating innovation and ensuring the reliability and performance of future
technologies.

	Chapter 3: Enhancing Multithreaded Application
Dependability with ETFIDS

	3.1 Motivation

	The development of the efficient transient fault injection and detection system
(ETFIDS) [4] marks a significant advancement in addressing the specific challenges of
conducting fault injection tests in multi-threaded environments. The complexity inherent
in these environments, characterized by concurrent execution and intricate
synchronization mechanisms, demands a fault injection solution beyond traditional tools'
capabilities. ETFIDS stands out by offering this solution, directly responding to the need
for precise, reproducible, and efficient testing methodologies tailored for the nuanced
dynamics of multi-threaded applications.

	Multi-threaded environments pose unique challenges for fault injection due to
their complex behavior patterns and the potential for unpredictable interactions between
threads. Traditional software fault injection tools often fall short in these scenarios,
primarily due to their inability to accurately target faults and assess their impact in real�time across multiple threads. This limitation not only makes it difficult to simulate
specific fault scenarios but also hinders the analysis of fault propagation and the system's
resilience to errors.

	ETFIDS addresses these challenges head-on by enabling precise fault
specification and concurrent evaluation of system behaviors under both faulty and fault�
	free conditions. This capability is crucial for multi-threaded environments, where the
timing and location of a fault can significantly influence the system's overall behavior
and stability. By providing a mechanism for detailed fault modeling and real-time error
detection, ETFIDS facilitates a deeper understanding of fault tolerance and system
dependability within the complex multi-threading context.

	Furthermore, ETFIDS's integration with GDB for dependability analysis enhances
its utility in multi-threaded applications, allowing for a comprehensive and nuanced
analysis of faults and their effects. This integration ensures that ETFIDS can effectively
navigate the complexities of multi-threaded systems, offering accurate and actionable
insights.

	The motivation behind employing ETFIDS in multi-threaded environments is its
innovative approach to fault injection and detection. By addressing the unique challenges
presented by these environments, ETFIDS not only improves the reliability and
robustness of software systems but also pushes the boundaries of what is possible in
software fault injection research. Its development represents a tailored response to the
intricate requirements of multi-threaded testing, ensuring that researchers and developers
can conduct more effective, efficient, and meaningful fault injection experiments.

	3.2 The Overall Approach

	ETFIDS is designed to conduct fault injection trials within a running application
to determine how faults impact system behavior. In these experiments, depicted in Figure
9, ETFIDS introduces errors into the application while it is in operation, according to
predefined user parameters. It then proceeds to monitor the application, observing how
	the errors propagate in real-time. When an error is recognized, ETFIDS records the time
elapsed since the fault introduction—known as fault latency—and other pertinent data,
after which it shuts down the application. This termination is intentional, as the user does
not require further analysis post-error detection, thus optimizing the overall duration of
fault injection testing.

	Figure 9: Illustration of ETFIDS Fault Injection and Analysis. [4]
	Figure 9: Illustration of ETFIDS Fault Injection and Analysis. [4]

	Figure
	Figure 10 delineates the comprehensive architecture of a fault injection
framework that integrates a target application with the ETFIDS and the GNU Debugger
(GDB). This figure represents the complex interplay between the user, ETFIDS, and the
target application, demonstrating the fault injection and monitoring process.

	The system hinges on the target application, which the user operates, providing
ETFIDS with a specification file containing a detailed list of potential faults and points of

	observation. This file is crucial for ETFIDS to configure the fault injection parameters.
Once the fault injection experiment commences, ETFIDS leverages GDB, which uses the
ptrace system call to control the application at runtime. GDB is pivotal in the fault
injection process—it sets breakpoints and watchpoints based on the user's specified fault
list and can manipulate the application's memory contents to induce faults.

	
	
	Figure 10: ESIFT structure [4].

	Figure
	ETFIDS employs GDB to create a clone of the application's process before fault
injection. It maintains two parallel executions of the application within GDB, termed
"inferiors": one that carries the injected fault ("Fault-Injected Inferior") and one that runs
faultlessly ("Fault-Free Inferior"). ETFIDS meticulously synchronizes these inferiors to
ensure that the comparison for error propagation analysis is consistent and accurate.
When errors arise from the injected faults, ETFIDS quickly identifies them by comparing
the state of both inferiors at the designated observation points.

	The user retains control over the entire fault injection process. They provide
ETFIDS with a list specifying each fault, which includes the targeted variable's name, the
code location for the fault injection, and the precise execution event triggering the fault.
This specificity ensures accurate fault injection timing, uninfluenced by disparate testing
environments. ETFIDS presumes visibility of all variables within the target system, and it
assumes the user can query these via GDB, which is particularly accessible if the target
application is compiled with the debug flag—this generates a symbol table that ETFIDS
relies upon for identifying variable and function names.

	Additionally, ETFIDS exhibits the capacity for fault outcome analysis through the
use of two inferiors in GDB. GDB represents each program's execution state with an
entity known as an inferior, which typically correlates to a process but can represent other
types of program executions. ETFIDS maintains synchronization between the inferiors by
establishing additional watchpoints, enabling the detection of discrepancies between the
fault-injected and fault-free observations.

	To optimize efficiency and conserve resources, ETFIDS is programmed to clone
the target application's process precisely before the fault injection occurs. It utilizes
hardware breakpoints offered by GDB, allowing ETFIDS to set breakpoints directly at
the hardware level without altering the application's code. Most modern microprocessors
support these hardware breakpoints and allow for less intrusive monitoring of target
variables, reducing CPU overhead and accelerating the fault injection software's
performance.
	In essence, Figure 9 provides an intricate view of how ETFIDS functions,
showcasing its dual capabilities in fault injection and analysis by employing GDB for
real-time manipulation and monitoring of a target application's execution, facilitating a
controlled environment for dependability assessment.

	In a live system, simulating transient faults is essential to evaluate the resilience
of the system at a circuit level. Research has demonstrated that these faults often cause a
reversal in the state of a memory element's stored bit—a phenomenon widely known as a
bit-flip. Figure 10 illustrates the conditions under which a bit-flip fault might occur
during the operation of an application.

	The diagram in Figure 10 highlights how environmental factors, such as particle
strikes, can lead to transient faults. When a high-energy particle impacts a circuit node, it
induces a pulse, often called a "single-event transient (SET) fault." Initially, this pulse
does not alter the application's functioning. However, as the pulse moves along the
circuitry and arrives at a memory element, it can cause a bit-flip by inverting the stored
bit's value. If this pulse interacts with a counter, the fault might result in the accidental
increment or decrement of the stored value, leading to a deviation in the application's
expected behavior.

	ETFIDS is equipped to simulate various transient fault models to analyze their
impacts thoroughly. The current suite of transient fault models supported by ETFIDS
includes:

	1. Single bit-flip: A solitary bit in a memory element changes its state.
	2. Multiple bit-flips: Several bits within a memory element simultaneously flip their
states.

	3. Increment: A value within a memory element is erroneously increased.

	4. Decrement: A value within a memory element is erroneously decreased.

	5. Force value: A memory element is coerced into adopting a specific value, which can
occur due to significant crosstalk effects in densely packed circuits.

	6. Jump: This fault can be induced externally, often by a cyber-attack, compelling the
application to execute or branch to a set of instructions dictated by the attacker.

	Such "force value" faults result when the circuit layout's compactness amplifies
the crosstalk effect, influencing adjacent gates and causing a memory element to take on
a specific value as the fault propagates. On the other hand, "jump" faults are typically

	
	
	Figure 11: Bit-flip fault model [4]

	Figure
	associated with adversarial activities where an attacker aims to redirect the application's
execution flow to achieve a malicious outcome.

	Figure 10 not only visualizes the mechanisms of fault occurrence and propagation
but also underlines the diverse types of transient faults that ETFIDS can introduce to
understand their varied effects on system operation and reliability.

	3.3 Fault Injection Control Flow

	ETFIDS operates on the principle of fault injection and outcome analysis to assess
and enhance the dependability of software applications in multithreaded environments. In
such environments, faults and errors can have unpredictable and often magnified
consequences due to the concurrent execution of threads. Therefore, the ability to inject
faults and analyze their outcomes in real-time becomes a critical step in ensuring the
resilience and robustness of systems.

	
	
	Figure 12: ETFIDS Fault Injection Control Flow

	Figure
	
	ETFIDS leverages the GDB (GNU Debugger) and its Python API to create a
highly configurable and flexible platform for conducting fault injection experiments. This
approach allows ETFIDS to not only inject faults but also to observe their effects on the
system's behavior at runtime, which is a significant advancement over post-mortem
analysis methods. By using ETFIDS, developers can simulate various fault conditions
and gain insights into how their applications would react in the face of such adversities.

	Configurability and User-Defined Fault Models

	One of the cornerstones of ETFIDS is its configurability, enabling users to tailor
fault models according to their specific needs. Through Python scripting, users can
simulate transient hardware faults by injecting faults into hardware registers, such as
altering the program counter to simulate jump faults. This simulates a variety of real�world transient faults, from simple bit-flips to complex control flow changes, which are
particularly challenging in multithreaded applications due to the timing sensitivities and
interdependencies between threads.

	Execution Stages and Fault Injection Process

	The operation of ETFIDS in a multithreaded environment can be divided into
three main concurrent stages:

	1. Execution Monitoring: Initially, ETFIDS monitors the execution of the target
scope using GDB breakpoints to count the number of times a particular code segment is
entered. Upon reaching the user-defined scope-hit threshold, a hardware-assisted
watchpoint is set on the target variable, halting execution on any read or write operation.
	2. Fault Injection: Once the thresholds are met, ETFIDS injects the fault into the
variable of the fault-injected process. This precision is achieved by directly manipulating
the process's memory through the access granted by GDB, ensuring the fault is
introduced at exactly the right moment in execution.

	3. Outcome Observation: Following the injection, ETFIDS continues to execute
both the fault-injected and the non-faulty processes, observing the probe variable's
values. Any discrepancy between the two indicates an error caused by the injected fault,
prompting the tool to record the fault's effect and terminate the process if necessary.

	Iterative and Distributed Execution

	ETFIDS's design allows for distributed execution of fault injection experiments.
This enables large-scale testing to be broken down into smaller, manageable experiments
that can run concurrently across multiple computing resources. After the execution of
each fault trial (FT), ETFIDS resets the target application to its pre-experiment state,
ready for the next FT.

	Significance in Multithreaded Environments

	In multithreaded environments, where tasks are distributed across several
execution threads, the introduction of faults can reveal critical information about the
system's fault tolerance capabilities. The real-time comparison of faulty and non-faulty
threads offered by ETFIDS is crucial for immediate error detection and response—a
process that is significantly more complex in multithreaded contexts due to the
interactions between threads.
	The ability to inject faults and promptly observe their impact is an invaluable
feature that can potentially save significant time and resources during the development
and testing phases. It can lead to earlier detection of potential issues, better understanding
of fault propagation, and more robust multithreaded applications. ETFIDS's process
aligns well with modern software development practices where continuous integration
and testing are crucial for the delivery of reliable software products.

	Real-time Analysis and Early Termination

	ETFIDS's real-time fault outcome analysis differentiates it from traditional
methods. By simultaneously comparing the behavior of the fault-injected and non-faulty
threads, the tool can detect discrepancies immediately. This immediate response allows
for early termination of the test, saving valuable time that would otherwise be spent on
prolonged faulty executions or extensive post-failure analyses.

	Flexibility and Efficiency

	The flexibility of ETFIDS is evident in its ability to perform dependability
analysis for multi-threaded applications. It efficiently utilizes hardware breakpoints and
watchpoints, reducing CPU overhead and accelerating the fault injection process. This
efficiency is crucial in multithreaded environments where additional overhead can disrupt
the delicate timing and interactions between threads.

	Fault Injection and Multithreading

	Injecting faults in a multithreaded environment poses unique challenges due to the
potential for race conditions and synchronization issues. ETFIDS's synchronized
	execution of fault injection experiments ensures that the fault is introduced without
disrupting the natural execution flow of the application, maintaining the authenticity of
the test scenario.

	Advanced Fault Modeling

	ETFIDS allows users to define complex fault scenarios that may involve
simultaneous faults across multiple threads or shared resources. This advanced fault
modeling is critical for applications that operate in environments with a high risk of
concurrent faults, such as server applications handling multiple requests or systems
engaged in real-time data processing.

	Outcome Categorization and Distributed Computing

	The categorization of fault outcomes into different types enables a structured
approach to analyzing fault tolerance. Moreover, ETFIDS's ability to divide and
distribute experiments makes it ideal for cloud-based development environments where
resources can be allocated dynamically, and parallel processing can significantly reduce
the time required for comprehensive testing.

	In summary, ETFIDS presents a sophisticated, efficient, and flexible tool for fault
injection in multithreaded environments. Its integration with GDB and Python scripting
offers a level of precision and control that is essential for modern, complex applications.
Future enhancements could include expanding the range of fault models, improving the
user interface for setting up experiments, and integrating with automated build and
testing pipelines for even more seamless operation.
	By enabling real-time detection of faults and providing a granular level of control
over the fault injection process, ETFIDS paves the way for building more resilient
multithreaded applications. As multithreading becomes increasingly prevalent in software
design, tools like ETFIDS will be vital for developers aiming to ensure their applications
can withstand a wide array of fault scenarios and continue to function reliably in
demanding environments.

	3.4 Fault Outcome Analysis

	Figure 12 illustrates the advanced control flow utilized by ETFIDS to perform real�time fault outcome analysis. This system is a departure from traditional fault injection
methods, which typically involve post-injection data dumps and time-intensive analysis
of the resultant memory state. Such conventional processes can become cumbersome,
particularly when large memory dumps and extensive computational resources are
required to analyze the outcomes.

	injected (faulty) and fault-free (golden model) instances of an application, referred
to as "inferiors," immediately after fault injection. This synchronous comparison
eliminates the need for memory dumps. It facilitates immediate error detection, allowing
for observing discrepancies at precise moments and within the exact execution context—
such as a specific stack frame—where the fault was injected. The ETFIDS user can
activate or deactivate the fault outcome analysis feature. This is achieved by including or
omitting a "probe variable" in the input configuration file. The "probe variable" is a
designated target variable that ETFIDS monitors for changes indicative of a fault.
ETFIDS's control flow for fault analysis operates interleaved, which is critical for
	maintaining accuracy in a multithreaded environment. Upon activation of fault injection,
ETFIDS clears all existing breakpoints and watchpoints to prevent any interference with
program execution. It then clones the current inferior, creating a fault-free counterpart,
and introduces the fault into the original inferior. Subsequently, ETFIDS sets a
watchpoint on the probe variable in both inferiors, signaling the commencement of the
fault outcome analysis phase. As the program executes, ETFIDS will halt the process
each time the watchpoint is triggered. At these junctures, ETFIDS conducts a comparison
of the probe variable's value in both the faulty and fault-free inferiors while they are in
sync. This process ensures that any internal data corruption or execution alterations are
detected instantly by noting any discrepancies between the inferiors.

	Depending on the parameters specified by the user regarding the expected behavior
following a fault, ETFIDS may either stop both inferiors immediately upon detecting a
discrepancy or continue to monitor the probe variable values to detect further
divergences. If a difference is identified and the user has not expressed interest in
subsequent execution analysis, halting the application at this point significantly reduces
the time expenditure typically associated with fault injection experiments.

	By default, absent any additional user specifications, ETFIDS will terminate the
execution of both inferiors immediately after detecting a fault impact. However, users can
modify this behavior by setting a threshold in the specification file, defining the number
of times a discrepancy between the probe variables should be observed before
terminating the application execution.
	
	FIDS circumvents these inefficiencies by directly comparing the state of fault�
	
	
	Figure 13: ETFIDS Fault Outcome Analysis Control Flow.

	Figure
	ETFIDS's control flow for fault outcome analysis represents a sophisticated and
efficient approach to fault injection experimentation. By leveraging real-time analysis
and providing user-configurable options, ETFIDS offers a flexible and expedient method
for assessing fault tolerance. This system reduces the time and computational overhead
traditionally associated with such experiments, allowing for quicker iterations and more
dynamic testing scenarios. With ETFIDS, researchers and developers can gain rapid
insights into the resilience of their systems, ensuring that potential faults are not just
detected but understood within the full context of their operational impact.

	Table 1 presents a comparative analysis of the storage efficiency achieved by
ETFIDS's real-time fault outcome detection mechanism versus traditional core dump
methods in fault injection experiments. The table illustrates the storage space consumed
by dump files under different fault analysis approaches based on the number of
observation points triggered.

	In scenarios where core dumps are utilized for fault analysis, the data reveal a
substantial increase in dump file size with each additional observation point. This method
can quickly accumulate large amounts of data, becoming impractical for experiments

	Observation Point Hit
	Observation Point Hit
	Observation Point Hit
	Observation Point Hit
	Observation Point Hit

	Core Dump (KB)
	Core Dump (KB)

	Value Dump (KB)
	Value Dump (KB)

	ETFIDS (KB)

	ETFIDS (KB)

	1
	1
	1

	744
	744

	4
	4

	4

	4

	2
	2
	2

	1488
	1488

	8
	8

	4

	4

	3
	3
	3

	2232
	2232

	12
	12

	4

	4

	4
	4
	4

	2976
	2976

	16
	16

	4

	4

	5
	5
	5

	3720
	3720

	20
	20

	4

	4

	6
	6
	6

	4464
	4464

	24
	24

	4

	4

	7
	7
	7

	5208
	5208

	28
	28

	4

	4

	8
	8
	8

	5952
	5952

	32
	32

	4

	4

	9
	9
	9

	6696
	6696

	36
	36

	4

	4

	10
	10
	10

	7440
	7440

	40
	40

	4

	4

	Table 1 : Size of Dump Files for Fault Outcome Analysis. [4]

	with numerous observation points or iterations. For instance, with each observation point
hit, the core dump size escalates by approximately 744 KB, culminating in a considerable
total for multiple data points. Alternatively, the method of dumping only the values at
observation points shows a more modest increase in file size, adding around 4 KB for
each triggered point. Although each individual increase seems negligible, the
accumulated data can become significant when considering a large scale of fault injection
experiments. In stark contrast, ETFIDS's approach, which eschews additional data
storage in favor of real-time analysis, maintains a constant minimal storage footprint.
Regardless of the number of observation points hit, ETFIDS consistently reports a
negligible increase, always accounting for only 4 KB of storage space.

	While core dumping offers the unique advantage of allowing users to restore and re�execute sessions from specific points, this benefit becomes less relevant in high-volume
fault injection scenarios where the sheer amount of data renders such analysis
cumbersome. Consequently, the core dump approach may be best suited for targeted
analyses with fewer observation points, where an in-depth exploration of the faults'
impact is necessary. ETFIDS, with its efficient real-time detection mechanism, provides a
streamlined alternative that significantly reduces storage demands and is well-suited for
extensive testing environments where many fault injections are performed, ensuring high�performance analysis without the burden of large storage requirements.
	The traditional approach depicted in Figure 14 relies on the collection of dump files
at each observation point. This method requires the faulty and fault-free processes to run
to completion before any comparative analysis can occur. The serial visualization here
signifies that no parallel or real-time comparison is done; the analysis awaits the end of
execution for both runs. This often results in a more time-consuming process and a larger
accumulation of data, as complete dump files are necessary for the post-process analysis.

	Figure 14: Fault Outcome Analysis Work Flow by Dumping Data. [4]
	Figure 14: Fault Outcome Analysis Work Flow by Dumping Data. [4]

	Figure
	ETFIDS's approach represents a significant efficiency improvement. By forgoing
the need for comprehensive data dumps and instead conducting on-the-fly comparisons,

	ETFIDS reduces the time to outcome and minimizes storage requirements. Furthermore,
this real-time analysis method allows for immediate fault detection and system response,
streamlining the process of fault assessment. The efficiency of ETFIDS's technique is
evident in its ability to provide timely insights, thereby enabling quicker iterations and
more effective debugging.

	3.5 Comparison

	In multithreaded environments, where multiple processes or threads run
concurrently, synchronizing the fault injection and outcome analysis is especially critical.
ETFIDS demonstrates specific strengths in such contexts when compared with tools like
LLFI, IM-FIT, and Chaos Monkey:

	⚫
	⚫
	⚫
	Synchronized Fault Injection: ETFIDS can inject faults into a specific thread
while monitoring its execution in relation to other threads in real-time. This is
particularly advantageous in multithreaded applications where the timing of fault
injection relative to the execution of threads can significantly impact the system's
behavior.

	⚫
	⚫
	Concurrent Fault Analysis: The capability of ETFIDS to concurrently analyze the
behavior of both the faulty and the non-faulty system (or threads) during runtime
provides immediate insights into the fault's impact on the application. This

	concurrent analysis helps in understanding the complex interactions and

	concurrent analysis helps in understanding the complex interactions and

	concurrent analysis helps in understanding the complex interactions and

	dependencies between threads, which might be affected by the injected fault.

	Feature
	Feature
	Feature
	Feature
	Feature

	LLFI
	LLFI

	IM-FIT
	IM-FIT

	Chaos
Monkey
	Chaos
Monkey

	ETFIDS

	ETFIDS

	Method
	Method
	Method

	Compiler�level IR
	Compiler�level IR

	Mutation-based testing

	Mutation-based testing

	Random
instance
termination

	Random
instance
termination

	Runtime injection
with GDB

	Runtime injection
with GDB

	Real-Time
Analysis
	Real-Time
Analysis
	Real-Time
Analysis

	No
	No

	No
	No

	No
	No

	Yes

	Yes

	Configurability
	Configurability
	Configurability

	High
	High

	High
	High

	Low
	Low

	High

	High

	Integration
	Integration
	Integration

	LLVM
compiler
	LLVM
compiler

	Python, ROS
	Python, ROS

	Production systems
	Production systems

	multithreading GDB,

	multithreading GDB,

	Ease of Use
	Ease of Use
	Ease of Use

	Moderate
	Moderate

	User-friendly
	User-friendly

	Moderate
	Moderate

	Requires GDB
knowledge

	Requires GDB
knowledge

	Use Cases

	Use Cases

	Use Cases

	Software
vs
hardware
fault
emulation

	Software
vs
hardware
fault
emulation

	Safety-critical systems

	Safety-critical systems

	Distributed
system
resilience

	Distributed
system
resilience

	Multithreaded
application
dependability

	Multithreaded
application
dependability

	Table 2 : Characteristics of LLFI, IM-FIT, Chaos Monkey, ETFIDS.

	⚫
	⚫
	Early Detection and Response: In a multithreaded environment, the early detection
of faults is crucial to prevent cascading failures across threads. ETFIDS is designed
to quickly identify the propagation of errors, providing a measure of fault latency.
This immediate response can help minimize the impact of faults on the system.

	⚫
	⚫
	Thread-Specific Fault Modeling: Unlike some tools that may focus on system�wide faults, ETFIDS's integration with GDB allows for precise thread-specific fault
modeling and injection. This granular level of control is vital in multithreaded
systems where different threads may have different roles and importance.

	⚫
	⚫
	Efficiency in Execution: The design of ETFIDS ensures that there is minimal
overhead in fault injection and monitoring. This efficiency is particularly critical in
multithreaded applications where additional overhead could disrupt thread timing
and interactions.

	⚫
	⚫
	⚫
	Reduced Data Overhead: ETFIDS's approach avoids the need for extensive
logging or creation of large dump files for analysis. This is especially useful in
multithreaded environments, which can generate vast amounts of data due to the
concurrent execution of multiple threads.

	Comparatively:

	LLFI is a lower-level tool that operates at the compiler's intermediate representation
level. While it offers fine-grained control over fault injection, it may not be as adept at
handling the dynamic runtime interactions present in a multithreaded environment.

	IM-FIT focuses on mutation-based testing for safety-critical systems and may not
provide the concurrent execution and analysis capabilities that ETFIDS does, which are
crucial for testing multithreaded applications.

	Chaos Monke is designed to test the resilience of distributed systems by randomly
terminating instances. While effective for assessing system-wide reliability, it may not
offer the precision needed for thread-level fault analysis and immediate fault detection in
a multithreaded application.

	In summary, ETFIDS’s architecture and methodology provide targeted benefits for
testing and analyzing multithreaded applications, where precise timing, concurrent
execution, and immediate response to faults are essential.
	
	
	Chapter 4: Fault Injection Experiments Using
ETFIDS

	4.1 Typical Fault Injection Target and Experiment
Configuration

	The introduction of ETFIDS, a novel fault injection tool, necessitates a clear
illustration of its application and configuration for users. To this end, Figure 16 displays
a sample configuration file for ETFIDS, while Figure 17 presents an example C++
program with multithread targeted for fault injection testing.

	Figure 15: Sample of Configuration File.

	Figure 15: Sample of Configuration File.

	Figure 15: Sample of Configuration File.

	Figure 15: Sample of Configuration File.

	Figure 15: Sample of Configuration File.

	TBody

	In the configuration file, the executable path is specified, setting the stage for the
fault injection process. This file, notably absent of program arguments, defines the
parameters for the fault injection, detailing how and where faults should be inserted into
the code. The faults can be delineated in two distinct manners within the scope of the
	
	
	
	
	
	Figure
	Figure 16: Sample multi-threaded C++ program

	TBody

	code. The first method specifies where the variable of interest is by using the
function address scope within the source file. The second one specifies the function’s
name directly. The "probe variable" exists and is monitored.

	In the given example, ETFIDS is set to initiate monitoring when the execution
enters the defined scope—between lines where the "probe variable" is accessible. The
fault, designated as a random bit-flip, is programmed to be injected on the tenth access of
the probe variable. This precise targeting is essential for simulating faults in a controlled
manner, reflecting realistic scenarios where faults might occur intermittently and not
merely upon the first instance of variable access.
	Furthermore, the configuration outlines the location of observation points within
the code. These points are critical for tracking the propagation of errors through the
program's execution. The threshold specified next to each observation point dictates the
frequency of fault detection required before ETFIDS logs the fault latency. Once this
predefined threshold is reached, ETFIDS concludes the experiment, thereby conserving
time and computational resources.

	This intricate setup exemplified in the configuration file underscores ETFIDS's
capability to monitor and analyze faults in real-time with high precision. It enables users
to gain insights into the fault tolerance of their applications without the overhead of
extensive data dumps, characteristic of traditional fault analysis tools. The strategic
placement of faults and subsequent analysis by ETFIDS facilitates a comprehensive
understanding of a program's behavior under duress, which is pivotal for developing
resilient software systems.

	4.2 Fault Injection Experiment Results

	The fault injection experiment conducted on the multithreaded application serves
as a crucial test of the system's resilience. The experiment's outcome, distributed across
several categories, offers a panoramic view of how simulated faults affect system
behavior. The outcomes of an ETFIDS fault injection experiment are categorized as
follows:

	⚫
	⚫
	⚫
	Success: The application completes its execution without any noticeable impact
from the injected fault.

	⚫
	⚫
	⚫
	Crash: An unsuccessful exit of the fault-injected process caused directly by the
injected fault.

	⚫
	⚫
	Detected Error: The fault-injected process's probe variable deviates from the
expected value, indicating a detected error.

	⚫
	⚫
	Overtime: The fault injection results in a hang or a desynchronization between the
fault-injected and non-faulty processes.

	⚫
	⚫
	Invalid: The experiment is deemed invalid, perhaps due to optimization out of the
target variable or inaccessible variables during execution.

	Analyzing these results provides a comprehensive picture of the target
application's behavior under duress. Successes confirm its reliability under specific
conditions, while crashes, overtimes, errors expose its vulnerabilities. Invalid results offer
a baseline understanding that not all code segments are equally susceptible to fault�induced failures.

	4.3 Performance Analysis

	The comprehensive analysis of performance metrics post-fault injection provided
a granular view of ETFIDS's efficiency and the resilience of the target application under
fault conditions. The introduction of faults invariably introduced a time overhead
attributed primarily to the system's error detection and recovery processes. Despite this,
ETFIDS demonstrated remarkable efficiency, minimizing operational disruption through
its sophisticated fault injection control flow and real-time monitoring capabilities. The
system's overhead, in terms of resource utilization and execution time, remained within
	acceptable bounds, underscoring ETFIDS's optimization for high-performance
environments.

	Target
variable
	Target
variable
	Target
variable
	Target
variable
	Target
variable

	crash
	crash

	error
	error

	invalid
	invalid

	overtime
	overtime

	success
	success

	Variable Probe

	Variable Probe

	countMutex._
_data.__kind

	countMutex._
_data.__kind

	countMutex._
_data.__kind

	0
	0

	974
	974

	264
	264

	0
	0

	8762
	8762

	A

	A

	0
	TD
	0
	0

	1525
	1525

	524
	524

	0
	0

	7951
	7951

	E

	E

	0
	TD
	0
	0

	1781
	1781

	96
	96

	0
	0

	8123
	8123

	I

	I

	0
	TD
	0
	0

	1499
	1499

	352
	352

	0
	0

	8149
	8149

	O

	O

	0
	TD
	0
	0

	1601
	1601

	463
	463

	0
	0

	7936
	7936

	U

	U

	numThreads

	numThreads

	numThreads

	8978
	8978

	0
	0

	0
	0

	502
	502

	520
	520

	A

	A

	9354
	TD
	9354
	9354

	0
	0

	0
	0

	523
	523

	123
	123

	E

	E

	9132
	TD
	9132
	9132

	0
	0

	0
	0

	293
	293

	575
	575

	I

	I

	9036
	TD
	9036
	9036

	0
	0

	0
	0

	698
	698

	266
	266

	O

	O

	9468
	TD
	9468
	9468

	0
	0

	0
	0

	327
	327

	205
	205

	U

	U

	Table 3 : Outcome for fault injection.

	Table 3 : Outcome for fault injection.

	Table 3 : Outcome for fault injection.

	
	
	
	
	
	
	Figure
	Figure
	Figure 17: Outcome for Probe Variable “A” and “E”

	TBody

	
	
	
	
	
	Figure
	Figure
	Figure 18: Outcome for Probe Variable “I” and “O”

	
	
	
	Figure
	Figure
	Figure 19: Outcome for Probe Variable “U” and Overall

	TBody

	One of the standout features of ETFIDS is its concurrent fault injection and
analysis model, which significantly accelerates the identification and evaluation of fault
impacts. This model facilitated immediate insights into fault propagation patterns, system
resilience thresholds, and the effectiveness of fault tolerance mechanisms, proving
instrumental in guiding subsequent optimization efforts for the target application.

	Figure 18 to 20 respectively show charts for five different probe variables (please
see Table 3 as reference) as well as a composite data chart. These charts only capture
target variables that have non-successful outcomes. From these charts, we can confirm
that ETFIDS can operate normally even in a multithreaded environment, executing fault

	injection and detecting related errors. In this dataset, we can see that "numThreads" has
an extremely high percentage of crashes, which means that developers must ensure that
this variable is completely undisturbed in future operations and has very good protection
mechanisms in place. Although “countMutex._data._kind” has about an 80% probability
of being undisturbed, there is still a 20% chance of errors and overtime. This indicates
that developers also need to provide corresponding protection for it. Otherwise, with
continuous operation, too many errors could ultimately lead to system crashes. Overtime
could cause unexpected system behavior or the occupation and locking of system
resources. Overall, ETFIDS can still provide effective fault injection outcomes in a
multithreaded environment, which is beneficial for developers to take corresponding
measures.

	In a comprehensive fault injection study, ETFIDS was tested on widely-used
applications: gzip, perl, python, and bzip2. The experiments (Table 4) aimed to
meticulously map variables from these applications, handling complexities in data types
for thorough analysis. Fault Injection (FI) tests were parallelized for efficiency, focusing
on critical variables within each application's code, particularly targeting variables within
write functions to ensure fault detection.

	Gzip, bzip2, perl, and python were selected for their diverse functionalities,
ranging from compression algorithms to scripting languages. Each application's workload
was tailored to engage the write functions, with gzip and bzip2 processing their source
code, perl running a prime number generator, and python calculating pi digits. This
approach aimed to simulate realistic usage while maximizing error detection through
fault injections.
	The study used a bit-flips fault model on a hex-core x64 Linux system, setting
fault detection thresholds to one for both scope and target hits, to optimize the
identification of injected faults. Faults were injected based on the number of accessible
variables, discounting any that couldn't be monitored due to technical limitations with
GDB. Figure 21 indicated varying resilience among the applications: python showed the
highest tolerance with 96% of tests passing, followed by perl and bzip2 with 88% and
87% success rates, respectively. Gzip had a lower success rate of 60%. Detected errors
and crashes were relatively rare across all applications, highlighting the robustness of the
tested software against injected faults. Table 5 illustrates a comparison between ETFIDS
and other software-based fault injection (SWIFI) tools, demonstrating that there isn't a

	
	
	
	Figure 20: Fault experiment outcomes

	
	
	
	

	gzip
	gzip

	perl
	perl

	python
	python

	bzip2

	bzip2

	# of FIs
	# of FIs
	# of FIs

	2885
	2885

	74,250
	74,250

	107,338
	107,338

	2025

	2025

	Table 4 : Number of faults/target application
	Figure
	Figure

	definitive leader in terms of fault injection efficiency. Modern methodologies, including
ETFIDS and others, show improved performance over an older method. This comparison
highlights a lack of performance metrics in most existing studies on software fault
injection, which limits a comprehensive analysis. Notably, the slight performance edge of
the tool mentioned in [18] over ETFIDS is attributed to its development using Intel's
debugging framework designed specifically for the x86 architecture, allowing for
significant architectural optimizations. In contrast, ETFIDS is built upon GDB, catering
to various CPU architectures, and hence, lacks the extent of optimization achievable with
Intel’s PIN.

	Furthermore, prior work, specifically FIESTA++, is unique in measuring the fault
injection time overhead across different memory target regions, presenting a noteworthy
comparison with ETFIDS. Table 6 details the significant time overhead disparity between
FIESTA++ and ETFIDS per run, in seconds. This discrepancy primarily arises from
FIESTA++ measuring time overhead in its “black box mode,” a functionality absent in

	SWIFI Tool
	SWIFI Tool
	SWIFI Tool
	SWIFI Tool
	SWIFI Tool

	Time Overhead

	Time Overhead

	FERRARI [19]
	FERRARI [19]
	FERRARI [19]

	1.290000

	1.290000

	Ftape [20]
	Ftape [20]
	Ftape [20]

	1.087275

	1.087275

	PIN [18]
	PIN [18]
	PIN [18]

	1.011341

	1.011341

	ETFIDS
	ETFIDS
	ETFIDS

	1.056720

	1.056720

	Table 5 : Time Overhead Comparison.

	ETFIDS
	ETFIDS
	ETFIDS
	ETFIDS

	Fault Target Memory
Region

	Fault Target Memory
Region

	FIESTA++
[19]

	FIESTA++
[19]

	0.0012
	0.0012
	0.0012

	Globals
	Globals

	0.11

	0.11

	0.011
	0.011
	0.011

	Stack Memory
	Stack Memory

	1.2

	1.2

	0.009
	0.009
	0.009

	Dynamic Memory
	Dynamic Memory

	2.9

	2.9

	Table 6 : Detailed (in seconds) Comparison.
	Figure

	ETFIDS. In this mode, FIESTA++ incurs most of its overhead from locating the target
variable for fault injection, a process that can be approximated by pre-identifying
potential fault injection targets in the target program. For extensive fault injection
campaigns involving hundreds to thousands of tests, the “black box mode” time overhead
in FIESTA++ could be deemed prohibitive.

	Chapter 5:Conclusion

	The development and evaluation of ESFIT, as explored in this thesis, underscore
the critical role of fault injection techniques in enhancing system dependability and
resilience. Through the meticulous design and implementation of ETFIDS, this thesis
contributes significantly to the field of fault injection, particularly addressing the nuanced
challenges presented by multithreaded applications.

	The experiments conducted using ETFIDS provide valuable insights into the fault
tolerance capabilities of multithreaded applications, highlighting the impact of various
fault types on system behavior and performance. The results demonstrate the system's
resilience to certain faults and its vulnerabilities to others, particularly those affecting
synchronization mechanisms and shared resource management. These findings not only
validate the effectiveness of ETFIDS as a fault injection tool but also reveal critical areas
for improvement in the application's design and error-handling strategies.

	Moving forward, several avenues for future work emerge from this research,
promising to further advance the field of fault injection and system dependability:
	1.
	1.
	1.
	Expansion of Fault Models: While this thesis covers a broad range of fault scenarios,
the continuous evolution of computing systems necessitates the development of new
fault models. Future research could explore emerging fault types, particularly those
related to novel architectures and technologies, enhancing the comprehensiveness of
fault injection tools like ETFIDS.

	2.
	2.
	Automation and Scalability: Automating the fault injection and analysis process can
significantly improve the efficiency and scalability of testing. Future work could
focus on developing more sophisticated automation techniques, enabling large-scale
testing of complex systems with minimal manual intervention.

	3.
	3.
	Integration with Development Tools: Integrating fault injection capabilities directly
into development and debugging tools could streamline the testing process, making
it a seamless part of the development lifecycle. Future efforts could explore plugins
or extensions for popular Integrated Development Environments (IDEs) that
facilitate easy access to fault injection functionalities.

	4.
	4.
	Application to Distributed Systems: With the rise of distributed computing, ensuring
the dependability of distributed systems has become increasingly important. Future
research could adapt and extend the principles of ETFIDS to address the unique
challenges of fault injection in distributed environments, including network failures,
consensus algorithms, and distributed data management.

	5.
	5.
	Real-world Case Studies: Applying ETFIDS and similar tools to real-world
applications can provide invaluable insights into their practical utility and the real�world implications of fault injection. Future studies could collaborate with industry

	partners to conduct case studies on commercial software systems, offering a direct

	partners to conduct case studies on commercial software systems, offering a direct

	partners to conduct case studies on commercial software systems, offering a direct

	assessment of fault tolerance strategies in a production context.

	6.
	6.
	Enhancing Resilience through Machine Learning: The use of machine learning
techniques to analyze fault injection outcomes and predict system vulnerabilities
offers a promising direction for future work. By leveraging data from fault injection
experiments, machine learning models could identify patterns and predict system
behaviors under fault conditions, guiding the development of more resilient systems.

	In conclusion, the research presented in this thesis marks a significant step
forward in the understanding and application of fault injection techniques for improving
system dependability. The paths outlined for future work promise to build on this
foundation, exploring new frontiers in fault injection research and system resilience.
Through continuous innovation and exploration, the field can adapt to the evolving
landscape of computing, ensuring the reliability and security of software systems in an
increasingly complex and interconnected world.
	
	REFERENCES

	
	[1]
	[1]
	[1]
	[1]
	[1]

	M. C. T. T. K. &. I. R. K. Hsueh, "Fault injection techniques and tools," Computer, vol. 30, pp. 75-
82, 1997.

	M. C. T. T. K. &. I. R. K. Hsueh, "Fault injection techniques and tools," Computer, vol. 30, pp. 75-
82, 1997.

	[2]
	[2]
	[2]
	[2]

	N. J. G. M. A. R. M. M. C. B. S. B. M. S. B. W. J. C. R. Elks, in Development of a Fault Injection�Based Dependability Assessment Methodology for Digital I&C Systems, U.S. NRC, 2012, p. 47.

	N. J. G. M. A. R. M. M. C. B. S. B. M. S. B. W. J. C. R. Elks, in Development of a Fault Injection�Based Dependability Assessment Methodology for Digital I&C Systems, U.S. NRC, 2012, p. 47.

	[3]
	[3]
	[3]

	M. K. a. G. D. Natale, "A survey on simulation-based fault injection tools for complex systems," in
IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS), Santorini, Greece, 2014.

	M. K. a. G. D. Natale, "A survey on simulation-based fault injection tools for complex systems," in
IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS), Santorini, Greece, 2014.

	[4]
	[4]
	[4]

	N. Tian, "ETFIDS: Efficient Transient Fault Injection and Detection System," OhioLINK Electronic
Theses and Dissertations Center, 2018.

	N. Tian, "ETFIDS: Efficient Transient Fault Injection and Detection System," OhioLINK Electronic
Theses and Dissertations Center, 2018.

	[5]
	[5]
	[5]

	A. T. Services, "Space Radiation Testing," [Online]. Available: https://atslab.com/testing-and�analysis-company/space-radiation-testing/. [Accessed 12 3 2024].

	A. T. Services, "Space Radiation Testing," [Online]. Available: https://atslab.com/testing-and�analysis-company/space-radiation-testing/. [Accessed 12 3 2024].

	[6]
	[6]
	[6]

	A. T. Services, "SEE Radiation Testing," [Online]. Available: https://atslab.com/testing-and-analysis�company/see-radiation-testing/. [Accessed 12 3 2024].

	A. T. Services, "SEE Radiation Testing," [Online]. Available: https://atslab.com/testing-and-analysis�company/see-radiation-testing/. [Accessed 12 3 2024].

	[7]
	[7]
	[7]

	"Applied Technical Services," [Online]. Available: https://atslab.com/testing-and-analysis�company/tid-radiation-testing/. [Accessed 12 3 2024].

	"Applied Technical Services," [Online]. Available: https://atslab.com/testing-and-analysis�company/tid-radiation-testing/. [Accessed 12 3 2024].

	[8]
	[8]
	[8]

	H. &. R. M. &. M. F. &. S. J. Madeira, "RIFLE: A general purpose pin-level fault injector," in
European Dependable Computing Conference, 2001.

	H. &. R. M. &. M. F. &. S. J. Madeira, "RIFLE: A general purpose pin-level fault injector," in
European Dependable Computing Conference, 2001.

	[9]
	[9]
	[9]

	J. Gray, "Why do Computers Stop and What Can Be Done About It?," in Tandem Computers
Technical Report 85.7, 1985.

	J. Gray, "Why do Computers Stop and What Can Be Done About It?," in Tandem Computers
Technical Report 85.7, 1985.

	[10]
	[10]
	[10]

	N. B. R. d. R. L. H. L. K. J. R. C. R. Ali Basiri, "Chaos Engineering," IEEE Software, vol. 33, no. 3,
pp. 35-41, 2016.

	N. B. R. d. R. L. H. L. K. J. R. C. R. Ali Basiri, "Chaos Engineering," IEEE Software, vol. 33, no. 3,
pp. 35-41, 2016.

	[11]
	[11]
	[11]

	. Jesse Robbins, "Resilience Engineering: Learning to Embrace Failure," 13 Sep 2012. [Online].
Available: http://queue.acm.org/detail.cfm?id=2371297 .

	. Jesse Robbins, "Resilience Engineering: Learning to Embrace Failure," 13 Sep 2012. [Online].
Available: http://queue.acm.org/detail.cfm?id=2371297 .

	[12]
	[12]
	[12]

	Yevgeniy Sverdlik, "Facebook Turned Off Entire Data Center to Test Resiliency,"
Data Center Knowledge, 15 9 2014. [Online]. Available:
http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent er totest
resiliency/ .

	Yevgeniy Sverdlik, "Facebook Turned Off Entire Data Center to Test Resiliency,"
Data Center Knowledge, 15 9 2014. [Online]. Available:
http://www.datacenterknowledge.com/archives/2014/09/15/facebookturnedoffentiredatacent er totest
resiliency/ .

	[13]
	[13]
	[13]

	" Inside Azure Search: Chaos Engineering," Microsoft Azure Blog, 1 7 2015. [Online]. Available:
https://azure.microsoft.com/enus/blog/insideazuresearchchaosengineering/ .
	" Inside Azure Search: Chaos Engineering," Microsoft Azure Blog, 1 7 2015. [Online]. Available:
https://azure.microsoft.com/enus/blog/insideazuresearchchaosengineering/ .

	[14]
	[14]
	[14]
	[14]
	[14]

	. Cory Bennett, "Chaos Monkey Released Into The Wild," Netflix Tech Blog, 30 7 2012. [Online].
Available: http://techblog.netflix.com/2012/07/chaosmonkeyreleasedintowild.html.

	. Cory Bennett, "Chaos Monkey Released Into The Wild," Netflix Tech Blog, 30 7 2012. [Online].
Available: http://techblog.netflix.com/2012/07/chaosmonkeyreleasedintowild.html.

	[15]
	[15]
	[15]

	M. F. J. W. A. T. a. K. P. Q. Lu, "LLFI: An Intermediate Code-Level Fault Injection Tool for
Hardware Faults," in 2015 IEEE International Conference on Software Quality, Reliability and
Security, Vancouver, BC, IEEE, 2015, pp. 11-16.

	M. F. J. W. A. T. a. K. P. Q. Lu, "LLFI: An Intermediate Code-Level Fault Injection Tool for
Hardware Faults," in 2015 IEEE International Conference on Software Quality, Reliability and
Security, Vancouver, BC, IEEE, 2015, pp. 11-16.

	[16]
	[16]
	[16]

	C. B. Ugur Yayan, "Tailored mutation-based software fault injection tool (IM-FIT)," SoftwareX, 10 7
2023. [Online]. Available: https://www.softxjournal.com/article/S2352-7110(23)00159-0/fulltext.
[Accessed 18 3 2024].

	C. B. Ugur Yayan, "Tailored mutation-based software fault injection tool (IM-FIT)," SoftwareX, 10 7
2023. [Online]. Available: https://www.softxjournal.com/article/S2352-7110(23)00159-0/fulltext.
[Accessed 18 3 2024].

	[17]
	[17]
	[17]

	P. S. M. et, "Simics: A full system simulation platform," Computer, vol. 35, no. 2, pp. 50-58, Feb,
2002.

	P. S. M. et, "Simics: A full system simulation platform," Computer, vol. 35, no. 2, pp. 50-58, Feb,
2002.

	[18]
	[18]
	[18]

	J. J. J. H. a. J. L. A. Jin, "A pin-based dynamic software fault injection system," in 2008 The 9th
International Conference for Young Computer Scentists, 2208, pp. 2160-2167.

	J. J. J. H. a. J. L. A. Jin, "A pin-based dynamic software fault injection system," in 2008 The 9th
International Conference for Young Computer Scentists, 2208, pp. 2160-2167.

	[19]
	[19]
	[19]

	N. A. K. a. J. A. A. G. A. Kanawati, "Ferrari: a flexible software-based fault and error injection
system.," in IEEE Transactions on Computers, 1995.

	N. A. K. a. J. A. A. G. A. Kanawati, "Ferrari: a flexible software-based fault and error injection
system.," in IEEE Transactions on Computers, 1995.

	[20]
	[20]
	[20]

	R. K. I. a. D. J. T. K. Tsai, "An approach towards benchmarking of fault-tolerant commercial
systems.," in Proceedings of Annual Symposium on Fault, 1996, pp. 314-323.
	R. K. I. a. D. J. T. K. Tsai, "An approach towards benchmarking of fault-tolerant commercial
systems.," in Proceedings of Annual Symposium on Fault, 1996, pp. 314-323.

	
	
	
	

Accessibility Report

		Filename:

		Concurrent Flexible and Portable Fault Injection System-Yao-Chia Chuang.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		 Needs manual check:2

		 Passed manually:0

		 Failed manually:0

		 Skipped:2

		 Passed:28

		 Failed:0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		 Passed		Accessibility permission flag is set

		Image-only PDF		 Passed		Document is not image-only PDF

		Tagged PDF		 Passed		Document is tagged PDF

		Logical Reading Order		 Needs manual check		Document structure provides a logical reading order

		Primary language		 Passed		Text language is specified

		Title		 Passed		Document title is showing in title bar

		Bookmarks		 Passed		Bookmarks are present in large documents

		Color contrast		 Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		 Passed		All page content is tagged

		Tagged annotations		 Passed		All annotations are tagged

		Tab order		 Passed		Tab order is consistent with structure order

		Character encoding		 Passed		Reliable character encoding is provided

		Tagged multimedia		 Passed		All multimedia objects are tagged

		Screen flicker		 Passed		Page will not cause screen flicker

		Scripts		 Passed		No inaccessible scripts

		Timed responses		 Passed		Page does not require timed responses

		Navigation links		 Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		 Passed		All form fields are tagged

		Field descriptions		 Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		 Passed		Figures require alternate text

		Nested alternate text		 Passed		Alternate text that will never be read

		Associated with content		 Passed		Alternate text must be associated with some content

		Hides annotation		 Passed		Alternate text should not hide annotation

		Other elements alternate text		 Passed		Elements require alternate text

		Tables

		Rule Name		Status		Description

		Rows		 Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		 Passed		TH and TD must be children of TR

		Headers		 Skipped		Tables must have headers

		Regularity		 Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		 Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		 Passed		LI must be a child of L

		Lbl and LBody		 Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		 Passed		Appropriate heading nesting

Back to top

