
DYNAMIC PROGRAMMING AND
CONSTRAINED OPTIMIZATION

FOR IMPROVED PARALLEL
QUANTUM CIRCUIT EXECUTION

by

AARON ALEXANDER ORENSTEIN

Submitted in partial fulfllment of the requirements for the degree

of Master of Science

Department of Computer and Data Sciences

CASE WESTERN RESERVE UNIVERSITY

May, 2024

ii

CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

Aaron Alexander Orenstein

candidate for the degree of

Master of Science1.

Committee Chair

Vipin Chaudhary

Committee Member

Vipin Chaudhary

Committee Member

Shuai Xu

Committee Member

Mehmet Koyutürk

Date of Defense

March 29, 2024

1We also certify that written approval has been obtained for any proprietary material contained
therein.

iii

DEDICATION

Dedicated to my mom, Catherine, and dad, James, who are the biggest reason I

made it here. I wish you could see the fruits of your labor.

iv

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

Preface . viii

Acknowledgements . ix

List of Abbreviations . x

Abstract . xi

Chapter I: Introduction . 1

1.1 Qubit Mapping . 1

1.2 Job Scheduling . 3

1.3 Proposed Methods . 3

Chapter II: Background . 5

2.1 Topology and Gates Errors . 5

2.2 Circuit Execution . 6

Chapter III: Related Work . 7

3.1 Greedy Methods for Mapping . 7

3.2 Optimizers for Mapping . 7

3.3 Crosstalk . 7

3.4 Measurement Crosstalk . 8

3.5 Classical Job Scheduling . 8

3.6 Quantum Job Scheduling . 9

Chapter IV: Qubit Mapping with Binary Integer Nonlinear Programming . . . 10

4.1 Solver . 10

4.1.1 Clusterer . 10

4.1.2 Placer . 18

4.2 Meta-Optimization . 22

4.2.1 Equalities > Inequalities 22

v

4.2.2 Soft Constraints . 22

Chapter V: QGroup - Parallel Job Scheduler 23

5.1 Job Grouping with Rod Cutting . 26

5.2 Parallel Scheduling with BILP . 27

5.2.1 Representation . 27

5.2.2 Objectives . 29

5.3 Machine Selection . 30

5.4 Performance . 31

5.4.1 Runtime . 31

5.4.2 Computer Groups . 32

Chapter VI: Results . 34

6.1 Qubit Mapping . 34

6.1.1 Runtime . 34

6.1.2 Evaluation on IBMQ Machines 37

6.2 Job Scheduling . 41

6.2.1 Real Machine Evaluation 43

6.2.2 High Throughput Simulation 45

Chapter VII: Discussion and Conclusion . 47

7.1 Qubit Mapping . 47

7.2 Job Scheduling . 48

Chapter VIII: Questionnaire . 49

Bibliography . 50

vi

LIST OF TABLES

Number Page

5.1 The runtimes of the scheduling algorithms. � is the number of jobs

and � is the number of computers. � ′ is the number of computer

types. � is the runtime of the mapping function used in Algorithms

4,5. Runtime for BILP solvers is not specifed in general, so we

provide the scaling of the number of variables in the model. 32

6.1 Experiment data comparing circuit cutting vs. parallel execution

vs. single execution. Executed on IBM Brisbane. ��� and � ��

are shown pre-transpilation (left subcolumn) and post-transpilation

(right subcolumn). 39

6.2 Results for QAOA experiments. The top table shows machine infor-

mation and parameter values for each experiment. The lower table

shows experiment results. 40

6.3 RevLib circuits used in the throughput stress test. We used sys6-

v0_111 twice. 42

6.4 Results for the density test. The top table shows experiment setup

information. The bottom table shows expermient results. 42

6.5 Revlib circuits used in the short queue with the number of shots. . . . 44

6.6 Results for the small queue evaluation. Best values are bolded. For

PST, we ignore the serial algorithm because we expect the serial PST

to be higher than the parallel case. The same holds for TiIF. 45

6.7 Results for the large queue simulation. 46

vii

LIST OF FIGURES

Number Page

4.1 Swap error matrix value between �0 and �113 for varying values of

�. �0 and �113 have multiple geodesic paths. Calculations used

calibration data for IBM Brisbane on 2024-01-31 13:13:52 16

6.1 Plot of clusterer objective value for diferent maximum time constraints. 35

6.2 Plot of placer objective value for diferent maximum time constraints.

The placer was initialized with the fnal assignment produced by the

clusterer in Fig. 6.1. 36

6.3 Plot of placer objective value for diferent maximum clusterer time

constraints. We fxed the placer time constraint at 2s. 37

6.4 Input graph for the MaxCut problem targeted by the QAOA ansatz

benchmark. 40

6.5 Subtopologies of IBM Brisbane used to generate circuits using QUEKO

for the throughput stress test. Used TFL density vectors and depths

of 100 and 200. 42

6.6 Execution schedule for each scheduling method. Black horizontal

lines separate execution on each computer. The numbering and col-

oring of jobs is consistent across each chart. Groups are shown by

the shaded backgrounds for QGroup. 44

viii

PREFACE

The qubit mapping algorithms discussed in this thesis come from a paper title "Quan-

tum Circuit Mapping Using Binary Integer Nonlinear Programming" accepted for

publishing as part of the 2024 IPDPS Workshop on Quantum Computing Algo-

rithms, Systems, and Applications (Q-CASA) [20]. I am frst author on this paper

and all the ideas and methods described within are my own work.

ix

ACKNOWLEDGEMENTS

A million thanks my friends and family for supporting me through this journey and

keeping my life interesting throughout the process. I would like to thank Vinooth

Rao Kulkarni, Xinpeng Li, Betis Baheri, and the Kent-Case Quantum Group for

help with brainstorming, fnding data, and refning my ideas. Additional thanks

to Hanrui Wang and Song Han from MIT for providing the queue data used in

Section 6.2.2. Special thanks to my advisor, Vipin Chaudhary, for all his guidance

with writing, researching, and learning.

This work was supported in part by NSF award CCF-2216923.

x

LIST OF ABBREVIATIONS

BILP Binary Integer Linear Programming. v, vi, 23, 27, 31, 32

BINLP Binary Integer NonLinear Programming. xi, 3, 39

EPST Estimated PST. 25, 31–33

NISQ Near-term Intermediate-Scale Quantum (Devices). 1, 2, 36, 37, 47

PST Probability of a Successful Trial. vi, x, 32, 43, 45

QAOA Quantum Approximate Optmization Algorithm. vi, vii, xi, 1, 4, 34, 39, 40,

47, 48

TiIF Time Infation Factor. vi, 43, 45, 46, 48

TiRF Time Reduction Factor. 43, 45, 46, 48

TRF Trial Reduction Factor. 43, 45, 46

xi

Dynamic Programming and Constrained Optimization for Improved
Parallel Quantum Circuit Execution

Abstract

by

AARON ALEXANDER ORENSTEIN

As Quantum Computers continue to increase in size, throughput has not increased

proportionally [22]. Researchers have begun exploring ways of parallelizing circuit

execution [6, 14–19, 21]. Due to the noisiness of quantum computers, this requires

new algorithms for efcient resource allocation, qubit mapping, and scheduling.

We improve on existing greedy algorithms by formulating the mapping search as

a Binary Integer Non-Linear Programming (BINLP) problem. We model practical

constraints and propose new heuristics for determining the goodness of a mapping.

We observe similar fdelity compared to Qiskit’s transpiler for circuit cutting and

throughput benchmarks. We observe greater fdelity over Qiskit’s transpiler for

dense QAOA ansatzes. We fnd that parallel circuit cutting provides greater fdelity

than full-circuit execution. We also propose a scheduling algorithm for paralleliz-

ing circuits of diferent lengths and shot counts. Our algorithm achieves a lower

makespan for time and number-of-shots for diverse workloads as well as lower

per-job runtimes in all cases.

1

C h a p t e r 1

INTRODUCTION

Quantum computers provide a new method of computation, which comes with new

noise models as well. With Quantum computers, each qubit contributes diferently to

the overall noise and limitations of the system [10]. Errors can occur in initializing,

operating, and measuring qubits and from exceeding the decoherence time of qubits

[10]. In the NISQ era, where such errors are signifcant, it is important to plan the

execution of circuits to mitigate noise. As quantum computers continue to increase

in size, this planning is crucial to achieve accurate results with larger circuits, even

within the bounds of the hardware. Error correction provides a promising avenue

for fault-tolerant circuit execution, but qubit demands are too large even as today’s

machines become larger [11]. Quantum computers are often underutilized, where

100+ qubit machines are used to run small circuits.

Recent research has focused on optimizing execution of multiple circuits simul-

taneously on the same machine [6, 14–19, 21]. Such work benefts throughput both

for the user and machine managers. For users, parallelism promises to run more

circuits in fewer jobs, execute shots in parallel, and improve parameter exploration

in iterative algorithms like QAOA. For machine managers like IBM, parallelism

maximizes machine throughput, allowing more users to be served and reducing

queue wait times.

1.1 Qubit Mapping

Parallel circuit optimization provides unique challenges over its serial counterpart.

The frst challenge is the multiple local topologies. Single circuit mapping benefts

from the contiguity heuristic where qubits are assigned to a connected subgraph of

the topology. Contiguity reduces the need for SWAP gates and shrinks the search

2

space when fnding the optimal mapping. In the parallel case, we must separate

the local topologies of each circuit and choose multiple connected subgraphs in an

optimal confguration.

The second challenge is gate crosstalk. When gates are applied between qubit

pairs, they induce noise on the states of all neighboring qubits. Serial mappings do

not seek to avoid this as separating qubits to mitigate crosstalk incurs heavy SWAP

costs when those qubits must be operated on. In the parallel case, qubit usage is

independent across circuits so we can and must mitigate crosstalk by separating the

qubit clusters used for diferent circuits. IBM has recently announced near-total

mitigation of crosstalk errors for new systems, which may remove this constraint in

the future [8]. Crosstalk continues to be a challenge for current NISQ systems.

Finally, quantum computers often contain non-operable qubits or nodes/edges

with high error rates. Given this, running multiple smaller circuits provides an

advantage over running a single large circuit as the smaller circuits can be mapped

to avoid areas of low fdelity. However, this advantage is only realized if mapping

algorithms are able to fnd a placement around these areas. Since fnding the

optimal placement is NP-Hard, approaches fnd solutions by limiting the search

space. Search-space reduction must be performed carefully as to not remove viable

placements [23].

Current approaches utilize greedy methods to fnd a good mapping [6, 14, 15, 17–

19, 21]. Greedy methods have good runtime, often scaling linearly or quadratically

with the number of circuits, qubits, and gates. However, each circuit and qubit is

assigned with little regard for the needs of future circuits. Given the unevenness of

errors and topologies, this can lead to cases where initial circuit placements split the

remaining qubits so that future circuit placements must choose low fdelity qubits.

By optimizing placement for all circuits simultaneously, we search a greater portion

of the search space and are able to reduce the fdelity of initial assignments in return

for a greater increase to the fdelity of future assignments.

3

1.2 Job Scheduling

Parallelism is also needed to improve throughput when processing jobs from diferent

sources. Providers such as IBM provide access to multiple computers through job

queue. Jobs are processed one at a time, regardless of their circuits’ resource usage.

This is particularly sub-optimal for small circuits. Due to the high errors on current

devices, benchmarks and circuits are small (<20 qubits) relative to the size of the

computers (100+ qubits). For example, the largest circuit width used in [6, 14, 15,

17, 21] is 16 qubits. Thus there are a large number of qubits sitting idle at each

execution.

We look to classical scheduling for inspiration. The feld of classical scheduling

has produced numerous algorithms for scheduling jobs on machines of diferent or

similar properties [5, 11]. However, our use case is more similar to the problem

scheduling multiple jobs on one machine [25, 27]. Additional constraints regarding

qubits, measurement synchronicity, and runtime similarity do not have analogies in

existing classical solutions.

Designing a parallel scheduling algorithm for quantum computing requires care-

ful consideration of the makespan-fdelity tradeof. Increased parallelism means

quicker job completion but lower circuit fdelity. The only prior proposal for such

an algorithm is QuCloud+ [14] which uses a simple greedy method to incrementally

pair circuits. This method does not consider diference in job shot specifcations

and only partially considers circuit runtime diferences.

1.3 Proposed Methods

We propose a new method for parallel circuit mapping using BINLP to optimize

qubit placement for all circuits simultaneously. Our method uses the Gurobi opti-

mizer [10] to traverse the search space with state-of-the-art optimization techniques.

We represent the problem in a matrix-vector format and present new heuristics for

4

modelling circuit error rates incurred by measurement and SWAP operations.

We evaluate our method on applications of QAOAs and synthetic deep circuits.

The ability to generate deep circuits is especially useful as they can be designed

to have optimal gate counts [28]. This means no gates can be removed during

compilation, which is the worst-case scenario for compiler optimization.

Additionally, we evaluate our mapper for parallelizing circuit cutting algorithms.

This method [24] reduces error by splitting circuits into smaller subcircuits. Execut-

ing smaller circuits, even at larger quantities, may result in better fdelity as smaller

circuits can be placed with greater fexibility.

We propose a new algorithm based on classical scheduling techniques that

better encodes the constraints of quantum computing systems. This algorithm uses

dynamic programming to reduce the slowdown from scheduling uneven circuits

simultaneously. We use a binary linear programming formulation based on the

identical-machines and bin-packing problem formulations to balance makespan and

fdelity while reducing overheads incurred from workload changes. We include

support for jobs with diferent shot lengths.

5

C h a p t e r 2

BACKGROUND

2.1 Topology and Gates Errors

Quantum circuits evolve individual qubit states as well as qubit pair states, creating

entanglement. Due to the limitations of the hardware, not all pairs of qubits can

be operated on jointly. This is captured in the qubit connectivity of a hardware,

represented as a graph. Qubits are shown as nodes, with edges indicating allowed

operations between qubits. Pairwise gates are often implemented as either CNOT

or ECR gates, which evolve the state of a target qubit based on the state of a control

qubit. For some hardware types, edges are directed, indicating which qubits within

each pair may be the target or control.

Physical limitations on gate operations creates the need for a gate scheduler

which designates the order of gates between qubits. Qubits involved in a gate must

be connected prior to the gate’s execution. When this is not the case, we must

identify a path between the qubits and apply the SWAP operator between qubits

along the path. Each SWAP operator decomposes to 3 CNOT gates, so reducing

SWAP paths through efcient scheduling is important to reduce circuit depth and

runtime.

Circuit compilation is separated into mapping, gate scheduling, and gate opti-

mization. Mapping selects which hardware qubits are used for each qubit in the

quantum circuit. Maximum efciency of gate scheduling depends strongly on the

hardware qubits chosen to execute the circuit. The subtopology used for a circuit

determines how often SWAPs must be insert and how well they can be avoided.

Thus achieving greater optimality in circuit mapping is important for improving

scheduling techniques.

6

Because of the optimality dependence of scheduling on mapping, we seek a new

approach to solving the mapping problem.

2.2 Circuit Execution

The goal of executing a quantum circuit is to measure the resulting probability

distribution. Because we cannot do this with a single sample, we re-run each circuit

several times. Each run is a shot.

When circuits are parallelized, multiple circuits are executed simultaneously

during each shot. Due to crosstalk from measurement operations, all circuits must

be measured simultaneously at the end of the shot. This means that the runtime of

the shot is the runtime of the slowest circuit. When scheduling parallelism, we must

take care not to schedule together circuits with diferent runtimes. This will slow

down the execution of the shorter circuit.

There is signifcant overhead with executing a circuit. We must compile the

circuit, which involves several NP hard problems including qubit mapping and

gate/SWAP scheduling. Additionally, error mitigation techniques may be applied

on the circuit results after execution. Both of these incur signifcant time costs.

Every time we change the workload on a computer e.g. because a circuit fnishes or

we add a new circuit, we incur the compilation and error mitigation overheads. It

is important to reduce the number of times we change the set of parallel circuits to

reduce this overhead.

Finally, scheduling more jobs in parallel increases competition for high-fdelity

qubits and gates, decreasing the fdelity of execution. This means we must be

conservative when introducing parallelism as to maintain the usefulness of circuit

results.

7

C h a p t e r 3

RELATED WORK

3.1 Greedy Methods for Mapping

Many previous approaches [6, 14, 15, 17–19, 21] are greedy. Generally, these

methods present heuristics for modeling qubit and gate fdelity, crosstalk, and other

sources of error. They select qubits and gates sequentially based on their heuristic

value. In the case of parallel mapping, multiple distinct circuits are represented

through partitions, or sets of qubits allocated for each circuit. These partitions are

also formed greedily.

3.2 Optimizers for Mapping

Nannicini et al. [16] employs a binary integer linear programming approach for

qubit mapping and scheduling. However, the restriction to linear programming

reduces the representability of hardware information, especially for 2-qubit gates.

We devise a nonlinear programming approach focused on more accurate hardware

error representation.

3.3 Crosstalk

Previous work [17, 19] determined that crosstalk can be almost fully mitigated with

a 1-qubit gap between circuits. We follow these results by mitigating the number

of inter-circuit connections, or edges between qubits of diferent circuits. This is

necessary to minimize noise on current devices. IBM recently announced that new

devices will be largely immune to crosstalk [8]. However, including separation

between circuits provides more fexibility for scheduling SWAP operations and

allocating ancilla qubits in later stages of the optimization pipeline. In our approach,

8

we consider the usefulness of crosstalk mitigation both for its intended purpose and

for scheduling improvement.

3.4 Measurement Crosstalk

Das et al. [6] showed that measurement operations introduced errors on the states

of qubits that had no entanglement with the measured qubits. In single-circuit

applications, qubits are often measured all together at the end and thus measure-

ment crosstalk is a non-issue. For parallel circuit execution, circuits have diferent

runtimes and end at diferent times. To avoid circuits from idling, it is important

to schedule circuit execution as late as possible to fnish at the same time for syn-

chronous measurement. While this constraint does not afect mapping, it is crucially

important for parallel job scheduling and we use this scheduling policy in all of our

experiments.

3.5 Classical Job Scheduling

In classical scheduling, the identical-machines formulation is the simplest case

where all machines are assumed to be identical. This problem has several polynomial-

time algorithms that can get arbitrarily close to the optimal solution [5, 11].

The problem can be generalized to the job-shop scheduling problem which

considers machines with diferent properties [4, 7, 9]. Since the fdelity and runtime

of circuits varies between computers, this is better suited for our situation. However,

we need to schedule multiple jobs to one device, rather than the other way around.

Assigning multiple jobs to one machine is an alternate formulation for e.g.

scheduling containers to nodes in an HPC environment [25, 27]. This is closer

to the problem we are trying to solve as we need to schedule multiple circuits on

one computer, but is missing objectives analogous to fdelity maximization. While

multiple scheduling models resource constraints and runtime costs for increasing

the job count, classical errors are low enough that they are not considered.

9

3.6 Quantum Job Scheduling

Liu et al. [14] propose a parallel scheduling algorithm specifc for quantum comput-

ing. They consider a single seed job and then sort the remaining jobs by similarity

based on circuit depth. The jobs are considered one-by-one. If adding the job to the

workload does not decrease the expected fdelity by more than a factor of � , then the

job is added.

QuCloud+ assumes all jobs require the same number of shots. Their depth sim-

ilarity metric seeks to reduce the runtime disparity during simultaneous execution.

However, the depth is a soft constraint so circuits with signifcant dissimilarity can

still be scheduled together. This can cause signifcant slowdown for certain jobs in

the workload.

10

C h a p t e r 4

QUBIT MAPPING WITH BINARY INTEGER NONLINEAR
PROGRAMMING

4.1 Solver

We separate the mapping optimization problem into two parts, outlined in Algorithm

1. The triangle symbol on the right side of certain lines indicates a corresponding

section or equation that explains that line.

The frst step (Cluster()) assigns each circuit a subset of qubits to use. This is

equivalent to the partitioning phase in greedy algorithms, but extends it to optimize

all qubit subsets simultaneously. Since subsets tend to be contiguous, we call this

stage clustering. Clustering uses only information from the hardware (f,A,S) to

produce the mapping (X).

The second step (Place()) places each circuit on a cluster and assigns each

virtual qubit to a qubit within the cluster. Circuits and clusters are split into groups

based on length as circuits cannot be assigned to clusters of diferent length. The

optimization produces a permutation (Y,Z) which we apply to � to derive the fnal

mapping. Placement incorporates information about qubit and circuit usage (W,G).

The following section describes the technical details and defnitions of this

algorithm.

4.1.1 Clusterer

The goal of the clusterer is to fnd sets of qubits for each circuit that optimize

measurement and gate fdelity. To do so, we must create a representation for the

machine calibration data and qubit assignments so that we can easily represent

constraints and objective terms.

11

Algorithm 1 Optimization Algorithm
1: function Cluster(circuits, backend)
2: � , �, � ← Model noise ⊲ 4.1.1, 4.1.1
3: �,� ← Create assignment variables ⊲ 4.1.1
4: � (�),� (�) Apply constraints ⊲ (4.5)-(4.7)
5: � (�, � , �, �) Defne objective ⊲ (4.8)-(4.12)
6: Optimize � w.r.t (4.12)
7: return X
8: end function
9:

10: function PlaceCohort(Q, circuits, backend)
11: �, S ← Model noise ⊲ 4.1.2
12: �,� ← Model circuit gates ⊲ 4.1.2
13: �� � = � Initial mapping
14: for all circuit� ,� � ∈ circuit-cluster pairs do
15: � ← Create permutation variables ⊲ 4.1.2
16: � (�) Apply constraints ⊲ (4.13)
17: � (�,��,��, �� , S �) Defne objective ⊲ (4.14)-(4.16)
18: Optimize � w.r.t (4.16)
19: end for
20: � ← Create permutation variables ⊲ 4.1.2
21: � (�) Apply constraints ⊲ (4.13)
22: �� � ← � (�� � ,��,��, �� , S �) Compute pair values
23: � (�,�) Defne objective ⊲ (4.17)
24: Optimize � w.r.t (4.17)

′ 25: �
� ← � � ⇔ �� � = 1 Choose best pairs

26: � ′
� ← � � ⇔ �� � = 1 Permute circuits

′ 27: � ′ ← � ′ ⇔ (�)� � = 1 Permute qubits
� � �� �

28: return � ′

29: end function
30:
31: function Place(X, circuits, backend)
32: Split circuits/clusters into cohorts ⊲ 4.1.2
33: cohorts� ← {�� ∈ �, ���� � ∈ �������� |� � = �}
34: for all ��, circs� ∈ cohorts do
35: �� ← PlaceCohort(��, circs�, backend)
36: end for
37: � ← Combine �� into original circuit order
38: return �
39: end function
40:
41: function Optimize(circuits, backend)
42: � ← Cluster(circuits, backend)
43: � ← Place(X, circuits, backend)
44: return �
45: end function

12

Machine Information

The variables and expressions used to represent the machine calibration data are

summarised below. We use Z2 = {0, 1} to represent binary matrices and variables

and I = [0, 1] to represent values in the unit interval such as probabilities.

• �: The number of qubits on the target machine.

• �: The number circuits to be executed in parallel.

• � ∈ Z2
�×� : Machine topography represented as an adjacency matrix. IBM’s

machine topographies are directed graphs where direction indicates the al-

lowed control/target qubits. The control/target qubits can be reversed by

applying Hadamard gates so for simplicity, we ignore direction. Then � is

symmetric. Formally, �� � = 1 ⇔ a 2-qubit gate can be applied between �� and

� � .

• � ∈ I�×� : Error adjacency matrix where �� � is the probability of an error

when executing a 2-qubit gate on �� and � � . The 2-qubit gate considered here

depends on which basis gates are available in the quantum computer, but is

often the CNOT or ECR gate.

• � ∈ I� : Readout error vector where �� is the probability of an error when

measuring ��.

Swap Error Matrix

Prior approaches generate objective functions by selecting qubits which have mini-

mal values in � and � [15, 17]. Such qubits are likely to be non-adjacent, incurring

error and time costs from the necessary SWAP gates. Approaches address this

by adding separate contiguity constraints, selecting qubits that are adjacent to a

previously selected qubit. Rather than artifcially restricting the search space with

13

contiguity and closeness constraints, we propose a novel heuristic that more explic-

itly models the cost of introducing SWAP gates.

A SWAP insertion between two qubits is represented by a path in the topology

graph. We model the cost of a SWAP insertion as the probability of any error

when applying gates along the path. For an unweighted adjacency matrix, �, the

expression �� computes the number of �-length paths between all pairs of nodes

in the graph. For a weighted adjacency matrix, � , this computes the sum of the

product of path weights over all �-length paths. This expression is formalized in

(�)(4.1), using � as the set of �-length paths between �� and � � . Because �� is
� � � �

� � the number of paths,
�

��

�

is the average product of weights across all �-length paths
� �

between �� and � � .

∑ Ö
�� �
� = ��� (4.1)

(�) �� →�� ∈�
�∈�

� �

Now we consider (1 − �)� . For each �-length path �, the product becomes Î
�� →�� ∈� (1 − ���). Since ��� is the probability of an error when applying a

gate between �� and �� , 1 − ��� is the probability of a success. Gate errors are

assumed to be independent and taking the product over all edges in the path gives

the probability of success when applying all gates along the path. SWAP operations

can be decomposed into three CNOT gates. Thus for CNOT-based machines, the

SWAP success chance is exactly calculated by cubing the success probability for all

edges except the one which applies the fnal post-swap gate. During the mapping

phase, it is unknown at which edge the fnal gate will be applied so we ignore this

technicality. Since �3 increases monotonically for � ∈ I, we do not need to cube

the success probability. The heuristic is directly proportional to the SWAP success

chance. Finally, we take the complement of the result to obtain the probability of at

least one error during the SWAP, which we later minimize.

However, this method only computes success chances for a fxed path length �.

14

Since qubit pairs vary in topological distance, we must determine � for each pair.

Since increasing the length of a SWAP path will increase its error, we make the

assumption that the SWAP scheduler will choose from the shortest SWAP paths.

Then for each qubit pair, we set � as their geodesic distance. This is computed

by applying Seidel’s algorithm to � to derive the distance matrix � ∈ Z�×� where

�� � = geodesic path length between �� and � � [26]. The defnition for the swap error

matrix, � ∈ Z2
�×� , is given in (4.2).

�� � (1 − �)
� �

�� � = 1 − (4.2)
�� �

�
� �

This expression models the average probability of a SWAP error over all geodesic

paths between two qubits. However, an intelligent SWAP scheduler will not choose

a random SWAP path, but instead choose SWAP paths with higher success chances.

It is more useful for our optimization to fnd the minimum probability of a SWAP

error. In order to compute this without losing the polynomial formulation, we

incorporate an approximation technique based on the p-norm. The p-norm can be

used to approximate the maximum element of a vector by taking lim�→∞. Likewise,

taking lim�→−∞ approaches the minimum element. For practical purposes, we use

� with a large, fnite magnitude to approximate the minimum or maximum (see

Fig. 4.1).

Considering a vector which contains the SWAP success probability of every

�-length path between �� and � � , the p-norm equation becomes (4.3). We do not

need to use absolute value since probabilities are nonnegative. The � exponent is

distributed into the product term and the resulting expression is analogous to (4.1)

with (1 − �)◦� instead of � . We use ◦� to represent element-wise exponentiation

(also called Hadamard exponentiation). We combine (4.2) and (4.3) to produce

the fnal formulation of � in (4.4). We reintroduce the expression � into the

denominator so that at � = 1, � approaches the average SWAP error probability.

As � →∞, the denominator becomes 1 and � approaches the minimum SWAP

15

error probability. Using this metric indicates full trust for the scheduling phase

to choose good SWAP paths. As � → −∞, the denominator again becomes 1

and � approaches the maximum SWAP error probability. This models the case of a

malicious scheduler, which is interesting but outside the scope of this paper. Fig. 4.1

shows the relationship between � and �.

1! � � ∑ Ö© ª®®� (�)
� � (1 − ���)(�) =

(�) �� →�� ∈�
�∈�

� � « ¬
1
� (4.3)∑ Ö© ª®®(1 − ���)� =

(�) �� →�� ∈�
�∈�

� � « ¬
� = (((1 − �)◦�)�)
1

� �

1
�� � � ((1 − �)◦�)© ª®� �

�� � = 1 − (4.4)
�� �

�
� � « ¬

Qubit Assignment

We use the matrix and vector encoding of the machine data to constrain and optimize

the selection of qubits using matrix and vector multiplication. We encode the

assignment as a matrix � ∈ Z�
2
×� such that �� � = 1 ⇔ � � is assigned to cluster �.

We defned an additional vector � ∈ Z2
� such that �� = 1 ⇔ � � is unassigned. We

use the notation �� and �∗ � to refer to the ��ℎ row and � �ℎ column vectors of � ,

respectively.

From this formulation, we derive two constraints. Constraint �1 in (4.5) requires

the number of assigned qubits to equal the number of qubits in the corresponding

circuit. This ensures our cluster sizes match our circuit sizes. Constraint �1� in

(4.6) requires that all remaining qubits be unassigned. Constraint �2 in (4.7) ensures

each qubit is either unassigned or assigned to exactly one cluster. �1 and �2 imply

16

Figure 4.1: Swap error matrix value between �0 and �113 for varying values of �.
�0 and �113 have multiple geodesic paths. Calculations used calibration data for
IBM Brisbane on 2024-01-31 13:13:52

�1�, however we explicitly encode �1� for optimization purposes as described in

Section 4.2.

�1 : ∥�� ∥1 = �� 1 ≤ � ≤ � (4.5)
�∑

�1� : ∥�∥1 = 1 − �� (4.6)
�=1

�2 : �� + ∥�∗ � ∥1 = 1 1 ≤ � ≤ � (4.7)

These constraints ensure that a solution can be turned into a valid mapping.

To fnd a quality solution, we defne several objective terms and minimize their

weighted sum.

17

�1 (�) = ∥� � ∥1 (4.8)

(4.8) sums the readout error of all used qubits. We want to minimize this.

�2 (�) = �� (����) (4.9)

For (4.9), (����)� � sums the SWAP error approximation for all edges between

cluster � and cluster � . By taking the trace, we only consider when � = � . Thus this

expression sums the SWAP error for all qubit pairs that are in the same cluster. We

want to minimize the result.

∑
�3 (�) = �� ��

� (4.10)�
�≠ �

For (4.10), �� ��
� computes double the number of edges between qubits of
�

cluster � and cluster � . We are iterating over � ≠ � so this expression is the number of

inter-cluster edges. When this value is 0, we have at least a one-qubit gap between

all clusters. By minimizing this expression, we protect against cross-talk error.

�4 (�) = �� (� ���) (4.11)

Equation (4.11) uses the same expression as �3, but iterates over � = � . This

produces the number of intra-cluster edges. Maximizing these edges acts as a

soft contiguity constraint. While �2 prefers contiguous assignments, varying gate

and qubit fdelities means a non-contiguous assignment can be more optimal. The

mapping stage does not consider circuit properties. We use this objective term to

indicate preference towards contiguous assignments for e.g. circuits with a large

number of 2-qubit gates. To maximize �4, we set the weight �4 < 0.

4∑
� ∗ = ������� ���� (�) (4.12)

�=1

18

�∗ in (4.12) optimizes our assignment matrix by minimizing the weighted sum

of all the objective terms. The weighting allows us to fne-tune the impact of each

term and disable terms.

4.1.2 Placer

The goal of the circuit placement problem is to decide which circuits will be assigned

to which clusters and which virtual qubits will be assigned to which physical qubits.

Circuits can only be assigned to clusters with the same number of qubits. Thus,

we split our circuits and clusters into cohorts based on their width. We solve the

placement problem for each cohort independently.

Machine Information

We reuse the machine information calculated for the clustering problem by extracting

only the values relevant to each cluster.

• �: The number of circuits and clusters in the cohort.

• �: The number of qubits in each circuit/cluster.

• � ∈ [[1, �]]�×� : This matrix encodes the qubits selected for each cluster by

the mapper. �� � = � ⇔ �� is the � �ℎ qubit in the ��ℎ cluster.

• � ∈ I�×� : The fdelity matrix derived from � . Each row is a cluster and each

column is a qubit. �� � = ��� � .

• S ∈ I�×�×� : The swap matrix for each cluster derived from �. (S�) � � =

.��� � ���

Circuit Information

If we only use machine information, then every circuit is identical and all solutions

have the same optimality. To evaluate the goodness of solutions, we construct

19

metrics to encode circuit information that mirror the hardware information of � and

S.

• � ∈ Z�×� : The weight matrix describes how often we use each qubits. We

use this to apply weights to �. Qubits that are used more often accumulate

more errors and should be placed on higher fdelity qubits. �� � is the number

of gates that use � � in circuit �.

• � ∈ Z�×�×� : The gate matrix is used to weight S and describes how often

qubits are operated on in pairs. (��) � � is the number of 2-qubits gates that use

� � and �� in circuit �. The goal is that qubits that are used more often together

should be placed on qubits with paths that are shorter and have higher fdelity

edges.

Permutation Matrices

To encode the mappings for the placement problem, we use several permutation

matrices. This ensures the mapping represented by each matrix is bĳective.

• � ∈ Z2
�×� : This is the permutation matrix for mapping circuits to clusters.

Specifcally, �� � = 1 ⇔ circuit � is assigned to cluster � .

• �� � ∈ Z2
�×� : This is the qubit permutation matrix for circuit � and cluster � .

(�� �)�� = 1 ⇔ �� of circuit � maps to �� of cluster � .

To fully optimize the placement, we must optimize �� � for all circuit-cluster pairs

(i.e. 1 ≤ �, � ≤ �). Using the results, we optimize � to decide which circuit-cluster

pairs will actually be used. Since this is � (�2) optimization problems, we explore

alternate techniques in Section 4.1.2 that reduce the number of pairs we consider.

The only constraint we need is that �, �� � be permutation matrices. �1 in (4.13)

shows the formulation for the permutation constraint on � and �� � .

20

�1 : � 1 = �� 1 = �� � 1 = �� 1 = 1 (4.13)� �

We use the permutation matrices to construct objective terms. Our general

strategy is to take the circuit information, and multiply it with the permutation

matrix. This orders the circuit metrics to match which physical qubits are used by

each virtual qubit. We multiply the permuted circuit weights with the hardware

information and optimize the result.

�1 (�� �) = �� �� � �� (4.14)

�1 in (4.14) sums the qubit errors weighted by how much each qubit is used.

(�� ���)� is the weight for �� of the cluster and indicates how much �� would be

used if �� � is the mapping. We want to minimize the result.

∑
�2 (�� �) = (S �)�� (�� � ���� �

�)�� (4.15)
��

�2 in (4.15) sums the SWAP errors weighted by how much each qubit pair is

used. �� � ���
� permutes the rows and columns of �� so that index �, � is the number
� �

of times �� , �� of the cluster are used together under the mapping �� � . We mutliply

these weights element-wise with S � and sum every entry. We want to minimize the

result.

2∑
�� �
∗ = argmin ���� (�� �) (4.16)

�� �
�=1

�∗ in (4.16) minimizes the weighted sum of each objective term. Once we’ve
� �

optimized the qubit mapping for each circuit-cluster pair, we decide which circuit-

cluster pairs we will actually use. (4.17) formulates the subsequent minimization

problem. �� � selects the objective values for the circuit-cluster pairs that are used.

� ∗ selects the pairs that provide the minimum errors.

21

2∑ ∑
� ∗ = argmin �� � ���� (�� �) (4.17)

�
� � �=1

Optimization

It is possible to combine (4.16) and (4.17) and produce a singular optimization

problem over � and � . This produces a problem with cubic objectives which is

difcult to solve. Solvers such as Gurobi do not allow cubic constraints, which

must be decomposed into quadratic constraints, introducing a large number of

intermediate variables. We observed that splitting the formulation into multiple

subproblems drastically reduces the runtime needed to optimize the problem.

The number of qubit optimization problems posed here grows quadratically with

the number of circuits in the cohort. We propose modifed algorithms to reduce the

number of pairs that are optimized. We still optimize (4.17) normally, but for every

pair that is not optimized, we replace �� (�� �) with �� (�).

• Greedy: We continually remove the circuit or cluster that performs the best

as we optimize mappings. This can also be performed over each circuit,

removing the best cluster and vice versa. The rationale is that a circuit-cluster

pair with a good objective value will likely be used so either the circuit or

cluster do not need to be optimized for other combinations.

• Linear: We pick a random mapping of circuits to clusters and optimize the

qubit mappings for only those pairs. The rationale for this approach is that

qubit mapping is more important than the circuit-cluster mapping. As long as

we optimize the qubit mapping, we will achieve reasonably good results. This

approach requires solving a linear number of qubit-mapping optimizations.

22

4.2 Meta-Optimization

The method we use to encode constraints and objectives is very important to how

well the optimizer performs. There are several ‘meta‘-optimizations that we applied

to improve the efcacy of the solver.

4.2.1 Equalities > Inequalities

In the given formulation, we include an additional term � for unassigned qubits. This

allows us to formulate (4.7) as an equality. Using an inequality such as ∥�∗ � ∥ ≤ 1

has the same efect, but is harder for Gurobi to optimize.

4.2.2 Soft Constraints

We frst formulated �3 as a hard constraint enforcing a 1-qubit gap between circuits.

However, we found that expressing this term in the objective function improved the

optimality of solutions, especially with large numbers of circuits. By using a large

� weight, we can still force the optimizer to reduce the number of inter-cluster edges

to 0. For extreme cases of high throughput, relaxing this constraint allows Gurobi

to search for solutions more freely.

23

C h a p t e r 5

QGROUP - PARALLEL JOB SCHEDULER

To ensure efcient scheduling of jobs without sacrifcing accuracy, we devise a

three-part algorithm outlined in Algorithms 2-5. We call this algorithm QGroup

due to the emphasis on grouping jobs prior to scheduling.

Due to measurement synchronization, each shot has the runtime of the longest

circuit in the group. For example, if circuit � takes � time per shot and is scheduled

with circuit � which takes 2� time per shot, then circuit � will take twice as long to

complete. We can only parallelize circuits with similar per-shot runtimes. Algorithm

2 reduces this problem to a modifed instance of rod cutting, allowing us to fnd the

optimal grouping of circuits with respect to a objective function in � (�3) runtime.

Once we group the circuits by runtime, we must determine their order of exe-

cution (Algorithm 3). This problem is a tradeof between maximizing the fdelity

and minimizing the makespan. The fdelity is trivially optimized by running all cir-

cuits sequentially, which also maximizes the makespan. This is undesirable, so we

formulate the makespan minimization problem using binary integer linear program-

ming (BILP). We then partially encode the fdelity maximization using constraints.

Fidelity is further maximized in the fnal assignment stage.

At this point, we have methods for grouping circuits and scheduling parallelism

with minimal makespan. We repeat this process for all available computers so that

we may select the best computer for each group. To create a "goodness" score

for each machine, we combine an extended makespan metric with an estimate of

fdelity, as shown in Algorithm 4. Groups are assigned according to the order of

jobs in the queue.

Algorithm 5 shows how these sub-algorithms are orchestrated. This chapter

provides greater detail of the formulation and mathematics of the algorithms.

24

Algorithm 2 Job Partitioning Algorithm
1: function Reconstruct(�, �, �, �)
2: � ← ��,�
3: if i == 0 then
4: return [��...�+�]
5: else
6: return Reconstruct(�, �, �, �) ∥ Reconstruct(�, �, � + �, � − �)
7: end if
8: end function
9:

10: function Partition(�, �, �, �, �)
11: sort(�)
12: ��,� ← � (��...�+�) ⊲ (5.4)
13: � ′

�,1 ← � + ��� ⊲ (5.2)
14: for all � in 2..� do
15: for all � in 1..� − � do
16: � ← {��,� } ∪ {(� ′ + � ′ + �) |1 ≤ � < �} ⊲ (5.1)

�,� �+�,�−�
17: � ′ ← min � ⊲ (5.1)

�,�
18: ��,� ← argmin �
19: end for
20: end for
21: return Reconstruct(�, �, 1, �)
22: end function

Algorithm 3 Parallelism Scheduling Algorithm
1: function Schedule(�, �, �,�)
2: � ← ��
3: �� ← ��.shots
4: �� ← ��.qubits
5: � ← max{�, gcd(�)} ⊲ 5.2.1

= ⌈ �� 6: �� ⌉ ⊲ 5.2.1
�

7: � ← |� |Í� 8: � ← �=1 ��
9: �,�, � ← Create model variables ⊲ (5.9),(5.10)

10: � (�,�, �) Apply constraints ⊲ (5.5),(5.6),(5.8)
11: � (�,�, �) Apply objective ⊲ (5.7),(5.11)
12: Optimize �,�, � ⊲ (5.12)
13: return �,�, �
14: end function

25

Algorithm 4 Machine Selection Algorithm
1: function Assign(�,�, queue) ⊲ 5.3
2: �� ← Partition(�, �, �, �, �)
3: �� � ,�� � , �� � ← Schedule(��,�� � , �,�)
4: for all � in queue do
5: if � is assigned then
6: continue
7: end if

// Iterate computer types
8: for all � in � do
9: � ← � ∈ �� |� ∈ �

10: � ← makespan(���)
// Iterate computers

11: for all � � in � do
12: � � ← � (� �) + � ⊲ (5.13)

// Apply any mapping algorithm
13: � ← map(�, � �)
14: � ← min� logEPST� (� � , �, �)
15: �(�, � �) ← log � � − � ⊲ (5.14)
16: end for
17: end for
18: �∗, �∗ ← argmin �(�, � �) ⊲ (5.15)
19: for all � in �∗ do
20: assign � to �∗ according to ��∗

21: end for
// Recompute and schedule groups

22: � ′ ← �� � | � is not assigned
23: for all � in � − {�∗} do
24: �� ← Partition(� ′ , �, �, �, �)
25: �� � ,�� � , �� � ← Schedule(��,�� � , �,�)
26: end for
27: end for
28: end function

Algorithm 5 Full QGroup Algorithm
1: function QGroup(�, queue)
2: ℎ ← {hash(�) |� ∈ �}
3: � ′ ← [� ∈ � |hash(�) = ℎ �]�
4: ��� ← � (queue� ,� ′

�0)
5: Assign(� ′ ,�, queue)
6: end function

26

5.1 Job Grouping with Rod Cutting

The number of possible partitions of jobs is exponential and thus searching for the

optimal partition is intractable. We make the important observation that each job

will be best scheduled either alone or in a group with at least one of its runtime

neighbors. Then we can sort the list of jobs by runtime and only consider partitions

of contiguous groups. This setup is a variant of the rod-cutting problem, where a

rod must be cut and sold for the highest price with each segment-length having a

fxed price. We defne the "price" to be an arbitrary measure of dissimilarity � (�)

between the runtimes of the group, and we minimize the total dissimilarity.

The rod-cutting problem defnes a price function that is independent of cut

locations. However, job runtimes can vary and group dissimilarity changes based

on both the location and length of the group. We need a dissimilarity matrix �

where ��� = � (��...�+�). We refect this change in the recursive formulation shown

in (5.1). This is identical to the original rod-cutting formulation with the added

location index. We discuss the � term later.

� ′ �,� = min{��,� , (� ′ �,� + � ′ �+�,�−� + �) |1 ≤ � < �} (5.1)

Any measure of dissimilarity is trivially minimized by grouping jobs by equal

runtime. Since runtimes are expected to be diferent between jobs, this leads to zero

parallelism. To prevent this, we add an initial cost to placing a job in its own group

in (5.2). The � term is a fat cost for every group. � defnes a relative cost that scales

with the runtime of each job. � ′
�,1 increases the similarity required of � ′

�+1,�−1 in

order to separate �� into its own group. (5.3) shows this fact. A similar property

holds when �� is at the end of the group. When dissimilarity grows with � , using �

ensures the similarity bound scales with � as well.

While �, � limit the number of single-job groups, � in (5.1) limits the overall

number of groups. This prevents the group formation from creating groups of size

27

2 to mitigate the �, � constraints.

� ′ = � + ��� (5.2)�,1

Split �� ⇔ � ′ �,1 + � ′ �+1,�−1 < � ′ �,� + � ′ �+�,�−� for 2 ≤ � ≤ � − 2
(5.3)

⇒ � ′ �+1, �−1 < � ′ �, � + � ′ �+�,�−� − � ′ �,1 < � ′ �, � + � ′ �+�,�−�

Finally, we need an objective function for the dissimilarity of a group. (5.4)

uses the ratio of maximum to minimum runtime as the objective. This value is

the greatest slowdown factor that any job in the group will experience when being

scheduled in parallel.

max�
� (�) = − 1 (5.4)

min�

5.2 Parallel Scheduling with BILP

The result of Algorithm 2 is groups of jobs with similar runtimes. Let � = �1...�

be one such group. Similar runtime indicates the these jobs may be scheduled in

parallel. We must decide which jobs are actually scheduled while respecting qubit

constraints, maximizing fdelity, and minimizing makespan. As discussed, the latter

two objectives constitute a tradeof.

There has been much research into minimal-makespan scheduling for classical

workloads [5, 7, 9, 11]. However, little research considers the case of assigning

multiple jobs to one machine [25] and we have found none that have analogous

constraints to qubit count and parallel fdelity. Instead, we model these constraints

by adapting linear programming techniques for classical scheduling.

5.2.1 Representation

• � ∈ Z: The number of qubits on the machine.

28

• � ∈ Z: The number of circuits in �.

• � ∈ Z� : The number of shots in each circuit of �.

• � ∈ Z� : The number of qubits required for each circuit of �.

The unit of time for quantum circuit execution is a single shot. Because this is

a discrete measure, we can represent the execution of quantum circuits exactly. We Í� defne � ∈ Z2
�×� where � = �=1 �� such that �� � = 1 ⇔ circuit � is executing during

shot � . � is the maximum number of shots that could execute, which is the case of

zero parallelism.

Using maximum granularity is expensive as the number of shots can be arbitrarily

high and is often in the range of [1, 000..10, 000]. To reduce the number of variables

in the model, we introduce a granularity parameter �. We resize our problem so that

the unit of time is bins of � shots. � also helps us to align job executions, which we

discussed later. Now we have � ∈ Z�×� .2

The best value for � is gcd(�1..�) as this reduces the problem size while allowing

us to schedule the exact correct number of shots for each job. In the case that the

gcd is too low, we use a minimum � which represents the maximum number of extra

shots we are willing to run when scheduling a circuit. In most real-world cases, we

are able to use the gcd with � = 500, 1000, or a multiple thereof.

• � ∈ Z+: The shot granularity.

= ⌈ �� • � ∈ Z� : The number of shot "bins" calculated as �� ⌉.
� Í� • � ∈ Z = �=1 ��: The maximum number of bins that we may need to execute.

From here, we can defne constraints to make � meaningful. The number of

qubits required to run all concurrent circuits cannot exceed �, which is captured

in (5.5). Additionally, circuits must be scheduled for the correct number of bins,

shown in (5.6). We introduce � ∈ [0, 1] to reduce the maximum number of qubits

29

we are allows to use concurrently. Using all or nearly all qubits on a computer is

detrimental to fdelity due to crosstalk and low-fdelity gates/qubits.

�∑
�1 : �� �� � ≤ �� 1 ≤ � ≤ � (5.5)

�=1
�∑

�2 : �� � = �� 1 ≤ � ≤ � (5.6)
�=1

5.2.2 Objectives

The simplest objective is to minimize the makespan of the schedule. This is the

highest value � where ∃� s.t. �� � = 1. While the maximum could be optimized

by introducing temporary variables with constraints, we instead weight each �� �

� � by for a simpler expression. We sum every �� � (5.7). This is minimized by
� �

executing circuits in lower bins. This minimizes not only the group makespan, but

the makespan of each individual job within the group.

� � ∑ ∑
�1 =

�
�� � (5.7)

�
�=1 �=1

We must also minimize the synchronicity of workload changes. These changes

occur whenever a job begins or fnishes execution. We then have a new set of

circuits which incurs an overhead cost for compiling and applying error mitigation

techniques. To limit this, we use indicator variables and conditional constraints.

Gurobi allows constraints of the form � ⇒ � where � = 1 ⇔ � is true. We Í
defne several �� = 1 ⇔ �� constraints and then maximize/constrain � ��. This

maximizes/constrains the number of �� that are true.

�−1∑
�3 : �� � + (1 − ��0) + (1 − �� �) == � − 1 (5.8)

�=1

30

�� � = 1 ⇒ ��, �+1 == ��, � (5.9) Í�
�=1 �� � == � 1 ≤ � < �

� � = 1 ⇒ Í
�
�
=1 ��0 == 0 � == � (5.10) Í�
�=1 ��� == 0 � == � + 1

• � ∈ Z�×�−1 (5.9): �� � = 1 indicates that circuit � maintained its execution2

status from � to � + 1. (5.8) ensures that the number of times the execution

status does change is ≤ 2. (5.6) prevents the number of changes from being 0.

Having only 1 change is not possible. Then (5.8) requires that the job changes

status exactly twice. This is equivalent to contiguous execution.

• � ∈ Z�+1 (5.10): � � = 1 indicates no job changes when fnishing bin � .2

��, ��+1 = 1 state that no jobs start/end in the frst and last bins, respectively.

Minimizing (5.11) seeks to maximize the number of such bins. This minimizes

the number of times we have to change the workload.

�+1∑
�2 = − � � (5.11)

�=1

� ∗ = argmin(�1�1 + �2�2) (5.12)
�

5.3 Machine Selection

The job grouping and parallel scheduling algorithms provide us the optimal schedule

for each group on each computer. The fnal task remains to assign groups to

computers. Note that the group partitions may not be the same across diferent

computer types. Algorithm 4 presents a greedy algorithm to make this selection.

The goal of the algorithm is to minimize the makespan and maximize the fdelity

for each job. We give preference to minimizing the makespan of the earlier jobs

31

in the queue as earlier queue status warrants earlier completion. We consider all

jobs in the group when maximizing fdelity, as all jobs should be aforded similar

execution fdelities.

To evaluate fdelity, we use the expected probability of a successful trial (EPST)

as defned by Liu et al. in [14]. Higher EPST indicates greater fdelity, which is

desirable.

We iterate through each job in the queue. If it has not been assigned, we rank

each computer according to (5.14). �� (�) is the group for machine � which contains

job �. (5.13) Is the expected fnish time of �� (�) if it were run on �. � (�) is the

number of shots left to complete the current workload on �. In (5.15), we minimize

the expected fnish time and maximize the minimum EPST of each job in �� (�).

� � (�, �) = � (�) + makespan(�) (5.13)

�(�, �) = log(� � (�, �� (�))) − log(minEPST � (�, �� (�))) (5.14)
�

� ∗ = argmin �(�, �) (5.15)
�

Because groups are not the same across computers, assigning jobs from ��∗ (�)

will invalidate any other groups where ��≠�∗ (�) ∩ ��∗ (�) ≠ ∅. Then the fnal step is

to recompute the group partitions and schedules for all computers except �∗ .

5.4 Performance

5.4.1 Runtime

Runtimes for the proposed algorithms are summarized in Table 5.1. Algorithm

2 has runtime of � (�3) consistent with the rod cutting problem. Algorithm 3 is

difcult to analyze since the runtime of BILP solvers is not well defned. Instead,

we evaluate the scaling of the number of variables in the model, � (� �). Since the

number of shots per job is limited by providers, � = �� for an upper bound �. Then

32

Algorithm
2
3

4,5
4,5 optimized

Runtime
� (�3)

Vars: � (� �) = � (�2)
� (�� (� + �3))

� (��� +�4� ′) = � (�� + � ′)

Table 5.1: The runtimes of the scheduling algorithms. � is the number of jobs
and � is the number of computers. � ′ is the number of computer types. � is the
runtime of the mapping function used in Algorithms 4,5. Runtime for BILP solvers
is not specifed in general, so we provide the scaling of the number of variables in
the model.

the number of variables is � (�2). Algorithms 4,5 run the previous algorithms for

each computer and (in the worst case) each job in the queue. Then the runtime is

� (�� (� + �3)). We add � to be the runtime of the mapper used for computing

EPST. The purpose of the mapper is to estimate the PST so we can reduce � by

using a mapper that uses a high degree of approximation.

The strongest dependence here is on �4. However, this is easily mitigated by

defning a window size � and processing batches of � jobs from the queue. Then

the runtime is bounded by � (��4) where �4 is a constant. This replaces the

quartic scaling with a confgurable constant.

5.4.2 Computer Groups

While we can eliminate � from the runtime, the dependence on � is still problematic

for performance, especially as providers release more and more quantum computers.

As the number of computers goes up, the viable windows size goes down.

To address this, we group quantum computers by similar properties. The purpose

of computer information in the job grouping and scheduling algorithms is to estimate

the runtime of each circuit. The runtime is dependent on the computer gate speed

and circuit depth. Since gate speed afects all circuit evenly and we only care about

relative runtimes, we can ignore diferences across computers.

Circuit depth is associated with the basis gate set and topology of the computer.

The former determines how many gates are produced by decomposition. The latter

33

determines how many SWAP gates will need to be inserted. Then we expect that

quantum computers with identical basis gates and topologies will produce equal

(or similar) optimal job partitions. We relax the topology similarity to ignore gate

direction as the connectivity has a greater efect on SWAP insertion than direction.

Now we can compute � based on the properties of each computer group rather

than each singular computer. Similarly, algorithms 2, 3 can be applied per computer

group. Only EPST is computed for every computer. The last row of Table 5.1 shows

the runtime with all optimizations.

34

C h a p t e r 6

RESULTS

6.1 Qubit Mapping

We ran several experiments to characterize the runtime and fdelity of our algorithm.

For each experiment we explain our selections for �, ��� ��� , and the number of ���, �
��

shots we use. ���� is the maximum time allocated for the clusterer (��) and placer

(��), respectively. To quantify the results, we show values for ��� ,� �� , ����, ����,

and ����. � is the objective value of the assignment, which we report for each

step. � is the mean squared error (MSE) metric. We use mean squared error for �

to quantify the diference between our experiments and the ground truth obtained

from a statevector simulator. We compute and aggregate � for all circuits in the

experiment. We used Qiskit’s transpiler with optimization level 3 to simplify gates

and schedule SWAP gates. Qiskit’s routing pass may adjust qubit locations slightly

from the initial mapping. To show this, we calculate the objective values for our

mapping pre- and post-transpilation. When using Qiskit’s mapper as a baseline, we

only provide the post-transpilation mapping.

6.1.1 Runtime

Gurobi’s optimization algorithms use an iterative approach, which allows us to

specify iteration and time limits and receive solutions after those constraints are

reached. Thus, the runtime of the optimization step is largely irrelevant as we can

specify it ourselves. Instead, we characterize the runtime-optimality trade-of by

observing the change in objective as we increase the time constraints. We evaluate

runtime on the QAOA examples (Section 6.1.2). For each set of time parameters,

we run 10 trials to account for stochasticity in the Gurobi optimizer.

35

Figure 6.1: Plot of clusterer objective value for diferent maximum time constraints.

We plot the relationship between the objective value and run time for the clusterer

and placer in Fig. 6.1 and Fig. 6.2. �1 is the objective term for the qubit readout error

defned in (4.8) and (4.14). �2 is the objective term for the SWAP error defned in

(4.9) and (4.15). We are interested in the trends of these terms, rather than their exact

values. As we increase the run time, the objective value of the clusterer decreases.

This pattern is more evident for the SWAP fdelity metric, likely because this term is

quadratic and requires more time to optimize efectively. The qubit fdelity metric is

linear and thus easier to optimize. The qubit error initially increases with time, due

to the balance of optimizing the SWAP errors. With more iterations, the optimizer

fnds high fdelity qubits while retaining a sub-topology with lower SWAP errors.

When evaluating the placer, the time limit is applied globally so that each indi-

vidual optimization problem is allocated an equal fraction of the overall maximum

time.

In Fig. 6.3, we plot the dependence of the placer on the assignment produced by

36

Figure 6.2: Plot of placer objective value for diferent maximum time constraints.
The placer was initialized with the fnal assignment produced by the clusterer in
Fig. 6.1.

the clusterer by varying the time allowed for the clusterer to produce an assignment

while using a fxed time limit for the placer. The graph exhibits a strong dependence.

Combined with the weak trend in Fig. 6.2, this shows that the placer is best optimized

by allocating more time to the clusterer for small circuits. As the number and size of

circuits on a fxed machine increases, so does the complexity of the placing problem.

In this case, more time should be allocated to the placer.

The beneft from increasing clusterer runtime drops of around 10-20s when

compiling for a 127-qubit machine. Despite seeking greater optimality, using integer

programming for mapping is viable for current NISQ devices. Additionally, our

approach provides fexibility to users. Circuits whose results are mission-critical

can be compiled for longer time to achieve greater optimality. Circuits that must be

executed in real time (e.g. iterative quantum programs), can balance optimality and

37

Figure 6.3: Plot of placer objective value for diferent maximum clusterer time
constraints. We fxed the placer time constraint at 2s.

timeliness by stopping optimization before the level-of threshold.

6.1.2 Evaluation on IBMQ Machines

Circuit Cutting

Circuit cutting is an error mitigation technique for the NISQ-era introduced by [24]

and implemented as the CutQC library by [29]. The method splits a circuit into two

subcircuits. The upstream circuit must be measured in 3 diferent bases (Z,X,Y)

and the downstream circuit must be initialized in 4 diferent states (|0⟩ , |1⟩ , |+⟩ , |�⟩).

This results in 7 subcircuits that must be run. The motivation is to allow circuits to

be run on smaller machines. We use this technique as a benchmark for our mapping

algorithm and to explore the optimization possibilities of placing multiple smaller

circuits over one large circuit.

38

Peham et al. [23] showed that search space selection is very important for circuit

mapping as it bounds the optimality of mappings. We explore the possibility that

mapping several smaller circuits can achieve better fdelity than mapping a single

larger circuit.

To evaluate the use of parallelism with circuit cutting, we used the example from

Tang et al. [29] which has a width of 5 qubits and is split into two 3-qubit circuits

after cutting. We designed and ran three experiments using our mapping algorithm

and Qiskit’s algorithm.

• Full Circuit: We placed a single instance of the full circuit and ran it for 4000

shots. This is our baseline for evaluation.

• Parallel Subcircuits: We placed seven 3-qubit circuits corresponding to the

diferent measurement and initialization bases and ran for 4000 shots. This

experiment evaluates parallelism for circuit cutting.

• Parallel Full Circuit: We placed four instance of the full circuit an ran it for

1000 shots. This simulates the same throughput as the subcircuit experiment,

but requires fewer shots. We use this to evaluate the use of parallelism for

reducing the number of shots needed to obtain same-fdelity results.

The parameters and results are shown in Table 6.1. Qiskit identifed better mappings

in all experiments. The circuits used here have few qubits and gates, allowing greedy

gate scheduling methods to fnd near-optimal mappings. Between experiments, the

single circuit case had less error than the parallel circuit case. Adding more circuits

introduces more competition for high-fdelity qubits and gates. Thus the parallel

case is more error-prone.

However, both experiments were outperformed by the parallelized subcircuits.

By splitting the circuit, we reduce the gate and qubit count which increases fdelity

[24, 29]. By mapping the subcircuits in parallel, we reduce the fdelity as seen

with the full-circuit experiments. The parallel subcircuit experiment shows that the

39

Machine �cl �pl tcl
max (�) tpl

max (�)
Brisbane 2 1 1 -0.1 1 1 20 1

Name Method Ocl Opl �

Single Circuit BINLP
Qiskit

-0.5
n/a

-0.5
-0.48

0.10
n/a

0.11
0.10

0.04575
0.02349

Parallel Circuit BINLP
Qiskit

-1.86
n/a

-1.86
0.46

0.45
n/a

0.47
0.51

0.42079
0.37069

Subcircuits
BINLP
Qiskit

-2.09
n/a

-2.09
2.17

0.34
n/a

0.36
0.48

0.00357
0.00325

Table 6.1: Experiment data comparing circuit cutting vs. parallel execution vs. sin-
gle execution. Executed on IBM Brisbane. ��� and ��� are shown pre-transpilation
(left subcolumn) and post-transpilation (right subcolumn).

fdelity gain from cutting outweighs the loss from parallelization. This has important

ramifcations for cicuit scheduling as quantum computers become larger.

QAOA Ansatz

Quantum Approximate Approximation Algorithms (QAOAs) construct a parameter-

ized ansatz circuit which is executed iteratively. At each iteration, the parameters are

updated based on the results of the ansatz. The ansatz is created so that optimizing

the output of the ansatz solves a desired problem, such as MaxCut [2].

Much work has been done to parallelize gates within QAOA ansatz circuits [1,

12, 13]. However parallelization by running multiple ansatzes simultaneously has

not been explored. We use an ansatz to solve MaxCut for the graph in Fig. 6.4.

QAOAs use especially dense circuits, which makes the mapping generation

crucial to successful execution. We initialized the ansatz fve times with random

parameters and mapped the instances on a parallel circuit. We evaluated on IBM

Brisbane and Kyoto and tested �’s of −0.1 and −1 for the contiguity objective. Due

to the high connectivity of the QAOA ansatz, greater contiguity is crucial to reduce

the number of SWAPs that must be inserted. We optimized one iteration of the

�� ansatzes with ��� = 10, 20, 30 and � = 2�. We summarize the results in table 6.2. ��� ���

We observe that our algorithm outperforms Qiskit’s transpiler for ansatz exe-

40

Figure 6.4: Input graph for the MaxCut problem targeted by the QAOA ansatz
benchmark.

Machine �cl �pl tpl
max (�)

IBM Brisbane 5 1 1 -0.1 2 1 2
IBM Brisbane 5 1 1 -1 2 1 2

IBM Kyoto 5 1 1 -0.1 2 1 2

tcl
max (�) t(�) Ocl Opl �min �max �avg

10 33.8 1.6 1.4 6.9 9.2 0.012 0.084 0.039
20 42.0 -0.1 -0.5 6.5 7.4 0.008 0.074 0.035
30 52.7 -1.0 -1.1 5.9 7.2 0.007 0.095 0.038

Qiskit 106.9 n/a 22.8 n/a 22.5 0.012 0.152 0.079
10 32.7 -44.2 -44.2 7.2 8.9 0.006 0.077 0.035
20 45.1 -44.2 -44.2 7.2 8.8 0.014 0.082 0.040
30 56.1 -46.1 -46.1 6.2 7.1 0.006 0.091 0.039

Qiskit 79.4 n/a -8.3 n/a 18.8 0.069 0.249 0.162
10 9.7 -1.2 -1.2 5.8 6.1 0.004 0.101 0.042
20 37.2 -1.6 -1.6 5.2 5.5 0.008 0.089 0.041
30 43.3 -1.9 -1.9 4.8 5.0 0.009 0.087 0.040

Qiskit 91.0 n/a 14.0 n/a 18.8 0.024 0.129 0.079

Table 6.2: Results for QAOA experiments. The top table shows machine information
and parameter values for each experiment. The lower table shows experiment results.

41

cution and requires less time to run. Results are consistent across � parameters,

contrary to our initial expectations. Since the ansatzes were only 6 qubits, contiguity

is easier to optimize. This term may be crucial for larger circuits.

Deep Circuit Evaluation

In Section 6.1.1, we evaluated the runtime-optimality trade-of for the circuit cutting

example from Tang et al. [29]. Those circuits were shallow with only 3 and 5

qubits, and Qiskit was able to identify a better mapping. In order to compare

our algorithms on more complex circuits, we designed two stress tests using deep

synthetic and benchmark circuits.

• RevLib [30]: RevLib is library of reversible benchmarks for quantum com-

puting. We used three circuits described in Table 6.3. Since RevLib circuits

are not in the QASM format, we used Real2QASM [3] to convert to QASM.

• Queko [28]: Queko generates circuits with a specifed gate density, depth, and

topology. We generated 4 circuits with Queko using the TFL preset density,

depths of 100 and 200, and two subtopologies derived from IBM Brisbane

shown in Fig. 6.5.

Table 6.4 summarizes the results for the depth test. Our mapping algorithm matches

and exceeds the fdelity of Qiskit’s algorithm. The fdelity does not have a clear trend

with respect to the maximum optimizer runtime. The separation of the clustering

and placing steps means that a clustering with a slightly better ��� score may not

lead to a better ��� score.

6.2 Job Scheduling

To evaluate our job schedules, we use three metrics:

42

Name Width Depth
aj-e11_165 4 83
4gt4-v0_72 5 103
sys6-v0_111 10 82
sys6-v0_111 10 82

Table 6.3: RevLib circuits used in the throughput stress test. We used sys6-v0_111
twice.

(a) Junction Topol-
ogy (b) Cell Topology

Figure 6.5: Subtopologies of IBM Brisbane used to generate circuits using QUEKO
for the throughput stress test. Used TFL density vectors and depths of 100 and 200.

Source Machine �cl �pl tpl
max (�)

RevLib Kyoto 10 1 1 -0.5 3 1 2
Queko Brisbane 10 3 10 -0.1 1 3 2

tcl
max (�) t(�) Ocl Opl �min �max �avg

10 39.6 -15.6 -14.5 27.7 25.3 0.963 0.997 0.988
20 57.8 -15.6 -14.5 27.7 27.2 0.694 1.001 0.912
40 75.4 -15.6 -14.5 27.7 28.3 0.976 1.001 0.992
80 108 -18.5 -18.5 19.3 19.5 0.958 1.001 0.988

Qiskit 32.0 n/a -10.9 n/a 34.9 0.946 1.001 0.982
10 49.4 24.6 24.5 85.1 61.4 0.972 1.000 0.990
20 49.0 21.8 35.0 81.0 67.4 0.993 1.001 0.997
40 75.5 21.1 37.9 80.4 72.8 0.982 1.001 0.994
80 112 21.1 27.4 80.4 71.6 0.978 1.000 0.993

Qiskit 27.3 n/a 23.2 n/a 52.9 0.973 1.001 0.989

Table 6.4: Results for the density test. The top table shows experiment setup
information. The bottom table shows expermient results.

43

• Probability of a Successful Trial (PST): We used benchmark circuits from

Revlib [30] which ideally measure to a fxed bit string � with probability 1.
b occurrences For a noisy machine, ��� = . We want to maximize PST.

� Í
� �� • Trial Reduction Factor (TRF) [14]: � �� = The numerator is the # shots ran .

number of shots needed for a sequential workload. TRF measures the factor

by which we reduced the total shot count. We want to maximize TRF.

Í
� �� • Time Reduction Factor (TiRF): ���� = Í . Similar to TRF, this measures
� ��

the time needed to run each job sequentially divided by the total time spent on

all computers. We can estimate this from the circuits and computer calibration

data. We want to maximize the TiRF.

(0)
� 1 Í� � • Time Infation Factor (TiIF): ���� = where �� is the runtime of job

� �=1 ��

(0)
� in the schedule and � is the runtime of job � in a serial schedule. We want

�

to maximize the TiIf.

We evaluated our machines using small and large queues. The small queue

allows us to run our circuits on real machines to evaluate the PST, TiRF, and TRF.

The large queue allows us to test the scalability of our system on complex workloads

and evaluate the TRF and TiRF.

For Algorithm 2, we used (5.4) for � with � = 0.1. For Algorithm 3, we used

� = 1 since none of the schedules came close to using all qubits. We implemented

the scheduler from QuCloud+ with � = 0.15

6.2.1 Real Machine Evaluation

We evaluated the scheduling algorithms using the Brisbane, Kyoto, and Osaka IBM

computers. The circuits and shot counts used in the short queue are shown in

Table 6.5. We chose circuits with a variety of depths to test the efcacy of our

grouping algorithm.

44

Num Name Width Depth Shots
0
1
2
3
4
5
6
7
8

3_17_13
4mod5-v1_22
mod5mils_65

alu-v0_27
decod24-v2_43

aj-e11_165
sf_276

sym9_146
4gt4-v0_72

3
5
5
5
4
4
5
12
5

25
13
22
24
34
83
367
140
130

4000
2000
2500
5000
1000
4500
4500
2000
3000

Table 6.5: Revlib circuits used in the short queue with the number of shots.

(a) (b)

(c) b

Figure 6.6: Execution schedule for each scheduling method. Black horizontal
lines separate execution on each computer. The numbering and coloring of jobs
is consistent across each chart. Groups are shown by the shaded backgrounds for
QGroup.

45

Algorithm TRF TiRF TiIF �PST

Serial
QuCloud+
QGroup

1.0
1.583
1.583

1.0
1.22
1.38

1.0
0.848
0.937

0.291
0.224
0.210

Table 6.6: Results for the small queue evaluation. Best values are bolded. For PST,
we ignore the serial algorithm because we expect the serial PST to be higher than
the parallel case. The same holds for TiIF.

Fig. 6.6 shows the execution schedules generated by each algorithm with evalua-

tion results summarized in Table 6.6. Our method matched the TRF with QuCloud+.

Both our algorithms attempt to maximize parallelism, thus maximizing the TRF.

However, our TiRF was higher than QuCloud+. Our algorithm was able to bet-

ter able to use the depths and runtime estimates of the circuits to minimize the

makespan. The PST for QGroup with lower than that of QCloud+, though still

competitive.

Our algorithm does far better in reducing TiIF than QuCloud+. This is most

easily seen in job 2 in Fig. 6.6b. This job takes far longer to run than in either other

schedules. This is because job 6 takes a lot longer to run per shot than job 2. Then

is slows down job 2. QGroup directly minimizes this induced slowdown to improve

per-job runtime.

6.2.2 High Throughput Simulation

The large queue consists of 2,750 circuits with an average width of 2.34 and average

depth of 32.76. These circuits are very small and thus often have identical runtimes

due to using the exact same gates albeit with diferent parameters.

We set � = −0.01 to prevent massive groups of jobs from forming. We used

a window of � = 25. We used all 17 IBM backends to simulate the scheduling

process, though we did not have access to run on the machines. The results from

scheduling and running the jobs on simulators are presented in Table 6.7.

QuCloud+ achieves a higher TRF and TiRF, but QGroup again has a higher TiIF

46

Algorithm TRF TiRF TiIF
Serial 1.0 1.0 1.0

QuCloud+ 1.59 5.65 0.964
QGroup 1.33 4.42 0.99

Table 6.7: Results for the large queue simulation.

score. The workload contains many small circuits. Since QuCloud+ determines its

groups based on EPST rather than runtime, it is better at scheduling many small

circuits in parallel. However, this leads to increased runtimes for some circuit as

shown by the worse TiIF metric.

47

C h a p t e r 7

DISCUSSION AND CONCLUSION

7.1 Qubit Mapping

We present a novel SWAP matrix heuristic to better model error probabilities of

SWAP gates. We incorporate this with qubit fdelity information to construct a

binary integer non-linear programming problem that optimizes circuit mapping and

qubit placement. We use the Gurobi optimizer [Gurobi] and evaluate our approach

vs. the Qiskit compiler using examples from circuit cutting [29], QAOAs [2],

RevLib [3, 30], and Queko [28].

For the throughput benchmarks (RevLib and Queko), we observe that our algo-

rithm is able to match and, for the RevLib experiment, exceed Qiskit’s performance.

For the QAOA benchmark, our algorithm achieves lower MSE than Qiskit by factor

of ×1.88 and a runtime improvement of ×1.42.

For the case of circuit cutting, we found that executing subcircuits in parallel

maintains improved fdelity compared to single or parallel execution of the full

circuit. Our results extend the improvements of circuit cutting [24, 29] into parallel

execution. This also confrms the analysis of Peham et al. [23] that choosing good

search spaces is important for optimization purposes. We can place the smaller

subcircuits with more fexibility when compared to the full circuit. This result

indicates that throughput maximization in the NISQ era will depend on splitting

circuits and allocating more qubits to individual jobs, rather than executing multiple

distinct circuits in parallel.

Finally, our algorithm exhibits the early-termination property and allows fex-

ibility in objective terms so that optimization can be tailored to specifc circuits.

Early-termination allows time resources to be explicitly allocated when balancing

48

fdelity and runtime. The � weights can be used to assign more emphasis to e.g.

contiguity of circuit assignments for dense circuits such as QAOA.

7.2 Job Scheduling

We present a parallel job scheduling algorithm, QGroup, focused on optimizing the

execution makespan. We use dynamic programming to group circuits by similar

run time. This ensures there is no runtime performance loss when running circuits

in parallel. We use linear programming to optimize the schedule of each job group.

This process minimizes the makespan and reduce the number of changes to the

workload. We use this to reduce the overhead induced by compilation and error

mitigation. Finally, we use these algorithms to assign job groups to the machines

with the best fdelity. QGroup is parameterized to provide fexibility for diferent

circuit loads and sizes.

We evaluated our algorithm against QuCloud+ and a naive serial scheduler. Our

method succeeds in reducing the time-makespan and runtime of individual jobs,

achieving higher TiRF and TiIF values. Our method sacrifces some fdelity to

increase the parallelism.

We evaluate our algorithm on a benchmark of 2,750 small circuits. Our method

is able to achieve near-perfect TiIF values, ensuring that no jobs are signifcantly

slowed down by parallelism.

49

C h a p t e r 8

QUESTIONNAIRE

50

BIBLIOGRAPHY

[1] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. “Circuit Compi-

lation Methodologies for Quantum Approximate Optimization Algorithm”.

In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO). 2020, pp. 215–228. doi: 10.1109/MICRO50266.2020.00029.

[2] Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao Li,

Komal Pandya, and Alessandro Summer. A Review on Quantum Approx-

imate Optimization Algorithm and its Variants. 2023. arXiv: 2306 .09198

[quant-ph].

[3] Kaun-Yu Chang and Chun-Yi Lee. “Mapping Nearest Neighbor Compliant

Quantum Circuits onto a 2-D Hexagonal Architecture”. In: IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (2021), pp. 1–

1. doi: 10.1109/TCAD.2021.3127868.

[4] V. Chaudhary and J.K. Aggarwal. “A generalized scheme for mapping parallel

algorithms”. In: IEEE Transactions on Parallel and Distributed Systems 4.3

(1993), pp. 328–346. doi: 10.1109/71.210815.

[5] E. G. Cofman Jr., M. R. Garey, and D. S. Johnson. “An Application of Bin-

Packing to Multiprocessor Scheduling”. In: SIAM Journal on Computing 7.1

(1978), pp. 1–17. doi: 10.1137/0207001. eprint: https://doi.org/10.1137/

0207001. url: https://doi.org/10.1137/0207001.

[6] Poulami Das, Swamit S. Tannu, Prashant J. Nair, and Moinuddin Qureshi.

“A Case for Multi-Programming Quantum Computers”. In: Proceedings of

the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

MICRO ’52. Columbus, OH, USA: Association for Computing Machinery,

2019, pp. 291–303. isbn: 9781450369381. doi: 10.1145/3352460.3358287.

url: https://doi.org/10.1145/3352460.3358287.

https://doi.org/10.1109/MICRO50266.2020.00029
https://arxiv.org/abs/2306.09198
https://arxiv.org/abs/2306.09198
https://doi.org/10.1109/TCAD.2021.3127868
https://doi.org/10.1109/71.210815
https://doi.org/10.1137/0207001
https://doi.org/10.1137/0207001
https://doi.org/10.1137/0207001
https://doi.org/10.1137/0207001
https://doi.org/10.1145/3352460.3358287
https://doi.org/10.1145/3352460.3358287

51

[7] Rudolf Fleischer and Michaela Wahl. “Online Scheduling Revisited”. In:

Algorithms - ESA 2000. Ed. by Mike S. Paterson. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2000, pp. 202–210. isbn: 978-3-540-45253-9.

[8] Gambetta Jay, IBM Quantum. The hardware and software for the era of

quantum utility is here. 2023. url: https://research.ibm.com/blog/quantum-

roadmap-2033.

[9] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In: The Bell

System Technical Journal 45.9 (1966), pp. 1563–1581. doi: 10.1002/j.1538-

7305.1966.tb01709.x.

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url:

https://www.gurobi.com.

[11] Xin Huang and Pinyan Lu. “An Algorithmic Framework for Approximating

Maximin Share Allocation of Chores”. In: Proceedings of the 22nd ACM Con-

ference on Economics and Computation. EC ’21. Budapest, Hungary: Associ-

ation for Computing Machinery, 2021, pp. 630–631. isbn: 9781450385541.

doi: 10.1145/3465456.3467555. url: https://doi.org/10.1145/3465456.

3467555.

[12] Ayse Kotil, Fedor Simkovic, and Martin Leib. Improved Qubit Routing for

QAOA Circuits. 2023. arXiv: 2312.15982 [quant-ph].

[13] Wolfgang Lechner. “Quantum Approximate Optimization With Parallelizable

Gates”. In: IEEE Transactions on Quantum Engineering 1 (2020), pp. 1–6.

doi: 10.1109/TQE.2020.3034798.

[14] Lei Liu and Xinglei Dou. “QuCloud+: A Holistic Qubit Mapping Scheme for

Single/Multi-programming on 2D/3D NISQ Quantum Computers”. In: 21.1

(Jan. 2024). issn: 1544-3566. doi: 10.1145/3631525. url: https://doi.org/

10.1145/3631525.

https://research.ibm.com/blog/quantum-roadmap-2033
https://research.ibm.com/blog/quantum-roadmap-2033
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://www.gurobi.com
https://doi.org/10.1145/3465456.3467555
https://doi.org/10.1145/3465456.3467555
https://doi.org/10.1145/3465456.3467555
https://arxiv.org/abs/2312.15982
https://doi.org/10.1109/TQE.2020.3034798
https://doi.org/10.1145/3631525
https://doi.org/10.1145/3631525
https://doi.org/10.1145/3631525

52

[15] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong,

and Margaret Martonosi. “Noise-Adaptive Compiler Mappings for Noisy

Intermediate-Scale Quantum Computers”. In: ASPLOS ’19. Providence, RI,

USA: Association for Computing Machinery, 2019, pp. 1015–1029. isbn:

9781450362405. doi: 10.1145/3297858.3304075. url: https://doi.org/10.

1145/3297858.3304075.

[16] Giacomo Nannicini, Lev S. Bishop, Oktay Günlük, and Petar Jurcevic. “Op-

timal Qubit Assignment and Routing via Integer Programming”. In: ACM

Transactions on Quantum Computing 4.1 (Oct. 2022). doi: 10.1145/3544563.

url: https://doi.org/10.1145/3544563.

[17] Siyuan Niu and Aida Todri-Sanial. “Enabling Multi-programming Mecha-

nism for Quantum Computing in the NISQ Era”. In: Quantum 7 (Feb. 2023),

p. 925. issn: 2521-327X. doi: 10.22331/q-2023-02-16-925. url: https:

//doi.org/10.22331/q-2023-02-16-925.

[18] Siyuan Niu and Aida Todri-Sanial. “How parallel circuit execution can be

useful for NISQ computing?” In: Proceedings of the 2022 Conference &

Exhibition on Design, Automation & Test in Europe. DATE ’22. Antwerp,

Belgium: European Design and Automation Association, 2022, pp. 1065–

1070. isbn: 9783981926361.

[19] Yasuhiro Ohkura, Takahiko Satoh, and Rodney Van Meter. “Simultaneous

Execution of Quantum Circuits on Current and Near-Future NISQ Systems”.

In: IEEE Transactions on Quantum Engineering 3 (2022), pp. 1–10. doi:

10.1109/TQE.2022.3164716.

[20] Aaron Orenstein and Vipin Chaudhary. “Quantum Circuit Mapping Using

Binary Integer Nonlinear Programming”. In: International Parallel and Dis-

tributed Processing Symposium Workshops (2024).

https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3544563
https://doi.org/10.1145/3544563
https://doi.org/10.22331/q-2023-02-16-925
https://doi.org/10.22331/q-2023-02-16-925
https://doi.org/10.22331/q-2023-02-16-925
https://doi.org/10.1109/TQE.2022.3164716

53

[21] Anabel Ovide, Santiago Rodrigo, Medina Bandic, Hans Van Someren, Se-

bastian Feld, Sergi Abadal, Eduard Alarcon, and Carmen G. Almudever.

“Mapping quantum algorithms to multi-core quantum computing architec-

tures”. In: (Mar. 2023). doi: 10.1109/ISCAS46773.2023.10181589. arXiv:

2303.16125 [quant-ph].

[22] P. Jurcevic and D. Zajac and J. Stehlik and I. Lauer and R. Mandelbaum.

Pushing quantum performance forward with our highest Quantum Volume

yet. 2022. url: https://research.ibm.com/blog/quantum-volume-256.

[23] Tom Peham, Lukas Burgholzer, and Robert Wille. “On Optimal Subarchi-

tectures for Quantum Circuit Mapping”. In: ACM Transactions on Quantum

Computing 4.4 (July 2023). doi: 10.1145/3593594. url: https://doi.org/10.

1145/3593594.

[24] Tianyi Peng, Aram W. Harrow, Maris Ozols, and Xiaodi Wu. “Simulating

Large Quantum Circuits on a Small Quantum Computer”. In: Phys. Rev. Lett.

125 (15 Oct. 2020), p. 150504. doi: 10.1103/PhysRevLett.125.150504. url:

https://link.aps.org/doi/10.1103/PhysRevLett.125.150504.

[25] Quazzaf Rabbani, Aamir Khan, and Abdul Quddoos. “Assignment of multi-

ple jobs scheduling to a single machine”. In: Advances in Mathematics Sci-

entifc Journal 10 (Feb. 2021), pp. 1003–1011. doi: 10.37418/amsj.10.2.29.

[26] R. Seidel. “On the All-Pairs-Shortest-Path Problem in Unweighted Undirected

Graphs”. In: Journal of Computer and System Sciences 51.3 (1995), pp. 400–

403. issn: 0022-0000. doi: https://doi.org/10.1006/jcss.1995.1078. url:

https://www.sciencedirect.com/science/article/pii/S0022000085710781.

[27] Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta ur Rehman Khan.

“A survey of Kubernetes scheduling algorithms”. In: Journal of Cloud Com-

puting 12.1 (June 2023), p. 87. issn: 2192-113X. doi: 10.1186/s13677-023-

00471-1. url: https://doi.org/10.1186/s13677-023-00471-1.

https://doi.org/10.1109/ISCAS46773.2023.10181589
https://arxiv.org/abs/2303.16125
https://research.ibm.com/blog/quantum-volume-256
https://doi.org/10.1145/3593594
https://doi.org/10.1145/3593594
https://doi.org/10.1145/3593594
https://doi.org/10.1103/PhysRevLett.125.150504
https://link.aps.org/doi/10.1103/PhysRevLett.125.150504
https://doi.org/10.37418/amsj.10.2.29
https://doi.org/https://doi.org/10.1006/jcss.1995.1078
https://www.sciencedirect.com/science/article/pii/S0022000085710781
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1

54

[28] Bochen Tan and Jason Cong. “Optimality Study of Existing Quantum Com-

puting Layout Synthesis Tools”. en. In: IEEE Transactions on Computers (July

2020). doi: 10.1109/TC.2020.3009140. arXiv: 2002.09783 [quant-ph].

[29] Wei Tang, Teague Tomesh, Martin Suchara, Jefrey Larson, and Margaret

Martonosi. “CutQC: using small Quantum computers for large Quantum cir-

cuit evaluations”. In: Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Sys-

tems. ASPLOS ’21. Virtual, USA: Association for Computing Machinery,

2021, pp. 473–486. isbn: 9781450383172. doi: 10.1145/3445814.3446758.

url: https://doi.org/10.1145/3445814.3446758.

[30] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W Dueck, and Rolf Drech-

sler. “RevLib: An online resource for reversible functions and reversible

circuits”. In: 38th International Symposium on Multiple Valued Logic (ismvl

2008). IEEE. 2008, pp. 220–225.

https://doi.org/10.1109/TC.2020.3009140
https://arxiv.org/abs/2002.09783
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3445814.3446758

	List of Tables
	List of Figures
	Preface
	Acknowledgements
	List of Abbreviations
	Abstract
	Introduction
	Qubit Mapping
	Job Scheduling
	Proposed Methods

	Background
	Topology and Gates Errors
	Circuit Execution

	Related Work
	Greedy Methods for Mapping
	Optimizers for Mapping
	Crosstalk
	Measurement Crosstalk
	Classical Job Scheduling
	Quantum Job Scheduling

	Qubit Mapping with Binary Integer Nonlinear Programming
	Solver
	Clusterer
	Placer

	Meta-Optimization
	Equalities > Inequalities
	Soft Constraints

	QGroup - Parallel Job Scheduler
	Job Grouping with Rod Cutting
	Parallel Scheduling with bilp
	Representation
	Objectives

	Machine Selection
	Performance
	Runtime
	Computer Groups

	Results
	Qubit Mapping
	Runtime
	Evaluation on IBMQ Machines

	Job Scheduling
	Real Machine Evaluation
	High Throughput Simulation

	Discussion and Conclusion
	Qubit Mapping
	Job Scheduling

	Questionnaire
	Bibliography

Accessibility Report

		Filename:

		Aaron_Orenstein_Thesis.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 3

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

