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PREFACE 

The qubit mapping algorithms discussed in this thesis come from a paper title "Quan-

tum Circuit Mapping Using Binary Integer Nonlinear Programming" accepted for 

publishing as part of the 2024 IPDPS Workshop on Quantum Computing Algo-

rithms, Systems, and Applications (Q-CASA) [20]. I am frst author on this paper 

and all the ideas and methods described within are my own work. 
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Dynamic Programming and Constrained Optimization for Improved 
Parallel Quantum Circuit Execution 

Abstract 

by 

AARON ALEXANDER ORENSTEIN 

As Quantum Computers continue to increase in size, throughput has not increased 

proportionally [22]. Researchers have begun exploring ways of parallelizing circuit 

execution [6, 14–19, 21]. Due to the noisiness of quantum computers, this requires 

new algorithms for efcient resource allocation, qubit mapping, and scheduling. 

We improve on existing greedy algorithms by formulating the mapping search as 

a Binary Integer Non-Linear Programming (BINLP) problem. We model practical 

constraints and propose new heuristics for determining the goodness of a mapping. 

We observe similar fdelity compared to Qiskit’s transpiler for circuit cutting and 

throughput benchmarks. We observe greater fdelity over Qiskit’s transpiler for 

dense QAOA ansatzes. We fnd that parallel circuit cutting provides greater fdelity 

than full-circuit execution. We also propose a scheduling algorithm for paralleliz-

ing circuits of diferent lengths and shot counts. Our algorithm achieves a lower 

makespan for time and number-of-shots for diverse workloads as well as lower 

per-job runtimes in all cases. 
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C h a p t e r 1 

INTRODUCTION 

Quantum computers provide a new method of computation, which comes with new 

noise models as well. With Quantum computers, each qubit contributes diferently to 

the overall noise and limitations of the system [10]. Errors can occur in initializing, 

operating, and measuring qubits and from exceeding the decoherence time of qubits 

[10]. In the NISQ era, where such errors are signifcant, it is important to plan the 

execution of circuits to mitigate noise. As quantum computers continue to increase 

in size, this planning is crucial to achieve accurate results with larger circuits, even 

within the bounds of the hardware. Error correction provides a promising avenue 

for fault-tolerant circuit execution, but qubit demands are too large even as today’s 

machines become larger [11]. Quantum computers are often underutilized, where 

100+ qubit machines are used to run small circuits. 

Recent research has focused on optimizing execution of multiple circuits simul-

taneously on the same machine [6, 14–19, 21]. Such work benefts throughput both 

for the user and machine managers. For users, parallelism promises to run more 

circuits in fewer jobs, execute shots in parallel, and improve parameter exploration 

in iterative algorithms like QAOA. For machine managers like IBM, parallelism 

maximizes machine throughput, allowing more users to be served and reducing 

queue wait times. 

1.1 Qubit Mapping 

Parallel circuit optimization provides unique challenges over its serial counterpart. 

The frst challenge is the multiple local topologies. Single circuit mapping benefts 

from the contiguity heuristic where qubits are assigned to a connected subgraph of 

the topology. Contiguity reduces the need for SWAP gates and shrinks the search 
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space when fnding the optimal mapping. In the parallel case, we must separate 

the local topologies of each circuit and choose multiple connected subgraphs in an 

optimal confguration. 

The second challenge is gate crosstalk. When gates are applied between qubit 

pairs, they induce noise on the states of all neighboring qubits. Serial mappings do 

not seek to avoid this as separating qubits to mitigate crosstalk incurs heavy SWAP 

costs when those qubits must be operated on. In the parallel case, qubit usage is 

independent across circuits so we can and must mitigate crosstalk by separating the 

qubit clusters used for diferent circuits. IBM has recently announced near-total 

mitigation of crosstalk errors for new systems, which may remove this constraint in 

the future [8]. Crosstalk continues to be a challenge for current NISQ systems. 

Finally, quantum computers often contain non-operable qubits or nodes/edges 

with high error rates. Given this, running multiple smaller circuits provides an 

advantage over running a single large circuit as the smaller circuits can be mapped 

to avoid areas of low fdelity. However, this advantage is only realized if mapping 

algorithms are able to fnd a placement around these areas. Since fnding the 

optimal placement is NP-Hard, approaches fnd solutions by limiting the search 

space. Search-space reduction must be performed carefully as to not remove viable 

placements [23]. 

Current approaches utilize greedy methods to fnd a good mapping [6, 14, 15, 17– 

19, 21]. Greedy methods have good runtime, often scaling linearly or quadratically 

with the number of circuits, qubits, and gates. However, each circuit and qubit is 

assigned with little regard for the needs of future circuits. Given the unevenness of 

errors and topologies, this can lead to cases where initial circuit placements split the 

remaining qubits so that future circuit placements must choose low fdelity qubits. 

By optimizing placement for all circuits simultaneously, we search a greater portion 

of the search space and are able to reduce the fdelity of initial assignments in return 

for a greater increase to the fdelity of future assignments. 
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1.2 Job Scheduling 

Parallelism is also needed to improve throughput when processing jobs from diferent 

sources. Providers such as IBM provide access to multiple computers through job 

queue. Jobs are processed one at a time, regardless of their circuits’ resource usage. 

This is particularly sub-optimal for small circuits. Due to the high errors on current 

devices, benchmarks and circuits are small (<20 qubits) relative to the size of the 

computers (100+ qubits). For example, the largest circuit width used in [6, 14, 15, 

17, 21] is 16 qubits. Thus there are a large number of qubits sitting idle at each 

execution. 

We look to classical scheduling for inspiration. The feld of classical scheduling 

has produced numerous algorithms for scheduling jobs on machines of diferent or 

similar properties [5, 11]. However, our use case is more similar to the problem 

scheduling multiple jobs on one machine [25, 27]. Additional constraints regarding 

qubits, measurement synchronicity, and runtime similarity do not have analogies in 

existing classical solutions. 

Designing a parallel scheduling algorithm for quantum computing requires care-

ful consideration of the makespan-fdelity tradeof. Increased parallelism means 

quicker job completion but lower circuit fdelity. The only prior proposal for such 

an algorithm is QuCloud+ [14] which uses a simple greedy method to incrementally 

pair circuits. This method does not consider diference in job shot specifcations 

and only partially considers circuit runtime diferences. 

1.3 Proposed Methods 

We propose a new method for parallel circuit mapping using BINLP to optimize 

qubit placement for all circuits simultaneously. Our method uses the Gurobi opti-

mizer [10] to traverse the search space with state-of-the-art optimization techniques. 

We represent the problem in a matrix-vector format and present new heuristics for 
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modelling circuit error rates incurred by measurement and SWAP operations. 

We evaluate our method on applications of QAOAs and synthetic deep circuits. 

The ability to generate deep circuits is especially useful as they can be designed 

to have optimal gate counts [28]. This means no gates can be removed during 

compilation, which is the worst-case scenario for compiler optimization. 

Additionally, we evaluate our mapper for parallelizing circuit cutting algorithms. 

This method [24] reduces error by splitting circuits into smaller subcircuits. Execut-

ing smaller circuits, even at larger quantities, may result in better fdelity as smaller 

circuits can be placed with greater fexibility. 

We propose a new algorithm based on classical scheduling techniques that 

better encodes the constraints of quantum computing systems. This algorithm uses 

dynamic programming to reduce the slowdown from scheduling uneven circuits 

simultaneously. We use a binary linear programming formulation based on the 

identical-machines and bin-packing problem formulations to balance makespan and 

fdelity while reducing overheads incurred from workload changes. We include 

support for jobs with diferent shot lengths. 
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C h a p t e r 2 

BACKGROUND 

2.1 Topology and Gates Errors 

Quantum circuits evolve individual qubit states as well as qubit pair states, creating 

entanglement. Due to the limitations of the hardware, not all pairs of qubits can 

be operated on jointly. This is captured in the qubit connectivity of a hardware, 

represented as a graph. Qubits are shown as nodes, with edges indicating allowed 

operations between qubits. Pairwise gates are often implemented as either CNOT 

or ECR gates, which evolve the state of a target qubit based on the state of a control 

qubit. For some hardware types, edges are directed, indicating which qubits within 

each pair may be the target or control. 

Physical limitations on gate operations creates the need for a gate scheduler 

which designates the order of gates between qubits. Qubits involved in a gate must 

be connected prior to the gate’s execution. When this is not the case, we must 

identify a path between the qubits and apply the SWAP operator between qubits 

along the path. Each SWAP operator decomposes to 3 CNOT gates, so reducing 

SWAP paths through efcient scheduling is important to reduce circuit depth and 

runtime. 

Circuit compilation is separated into mapping, gate scheduling, and gate opti-

mization. Mapping selects which hardware qubits are used for each qubit in the 

quantum circuit. Maximum efciency of gate scheduling depends strongly on the 

hardware qubits chosen to execute the circuit. The subtopology used for a circuit 

determines how often SWAPs must be insert and how well they can be avoided. 

Thus achieving greater optimality in circuit mapping is important for improving 

scheduling techniques. 
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Because of the optimality dependence of scheduling on mapping, we seek a new 

approach to solving the mapping problem. 

2.2 Circuit Execution 

The goal of executing a quantum circuit is to measure the resulting probability 

distribution. Because we cannot do this with a single sample, we re-run each circuit 

several times. Each run is a shot. 

When circuits are parallelized, multiple circuits are executed simultaneously 

during each shot. Due to crosstalk from measurement operations, all circuits must 

be measured simultaneously at the end of the shot. This means that the runtime of 

the shot is the runtime of the slowest circuit. When scheduling parallelism, we must 

take care not to schedule together circuits with diferent runtimes. This will slow 

down the execution of the shorter circuit. 

There is signifcant overhead with executing a circuit. We must compile the 

circuit, which involves several NP hard problems including qubit mapping and 

gate/SWAP scheduling. Additionally, error mitigation techniques may be applied 

on the circuit results after execution. Both of these incur signifcant time costs. 

Every time we change the workload on a computer e.g. because a circuit fnishes or 

we add a new circuit, we incur the compilation and error mitigation overheads. It 

is important to reduce the number of times we change the set of parallel circuits to 

reduce this overhead. 

Finally, scheduling more jobs in parallel increases competition for high-fdelity 

qubits and gates, decreasing the fdelity of execution. This means we must be 

conservative when introducing parallelism as to maintain the usefulness of circuit 

results. 
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C h a p t e r 3 

RELATED WORK 

3.1 Greedy Methods for Mapping 

Many previous approaches [6, 14, 15, 17–19, 21] are greedy. Generally, these 

methods present heuristics for modeling qubit and gate fdelity, crosstalk, and other 

sources of error. They select qubits and gates sequentially based on their heuristic 

value. In the case of parallel mapping, multiple distinct circuits are represented 

through partitions, or sets of qubits allocated for each circuit. These partitions are 

also formed greedily. 

3.2 Optimizers for Mapping 

Nannicini et al. [16] employs a binary integer linear programming approach for 

qubit mapping and scheduling. However, the restriction to linear programming 

reduces the representability of hardware information, especially for 2-qubit gates. 

We devise a nonlinear programming approach focused on more accurate hardware 

error representation. 

3.3 Crosstalk 

Previous work [17, 19] determined that crosstalk can be almost fully mitigated with 

a 1-qubit gap between circuits. We follow these results by mitigating the number 

of inter-circuit connections, or edges between qubits of diferent circuits. This is 

necessary to minimize noise on current devices. IBM recently announced that new 

devices will be largely immune to crosstalk [8]. However, including separation 

between circuits provides more fexibility for scheduling SWAP operations and 

allocating ancilla qubits in later stages of the optimization pipeline. In our approach, 
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we consider the usefulness of crosstalk mitigation both for its intended purpose and 

for scheduling improvement. 

3.4 Measurement Crosstalk 

Das et al. [6] showed that measurement operations introduced errors on the states 

of qubits that had no entanglement with the measured qubits. In single-circuit 

applications, qubits are often measured all together at the end and thus measure-

ment crosstalk is a non-issue. For parallel circuit execution, circuits have diferent 

runtimes and end at diferent times. To avoid circuits from idling, it is important 

to schedule circuit execution as late as possible to fnish at the same time for syn-

chronous measurement. While this constraint does not afect mapping, it is crucially 

important for parallel job scheduling and we use this scheduling policy in all of our 

experiments. 

3.5 Classical Job Scheduling 

In classical scheduling, the identical-machines formulation is the simplest case 

where all machines are assumed to be identical. This problem has several polynomial-

time algorithms that can get arbitrarily close to the optimal solution [5, 11]. 

The problem can be generalized to the job-shop scheduling problem which 

considers machines with diferent properties [4, 7, 9]. Since the fdelity and runtime 

of circuits varies between computers, this is better suited for our situation. However, 

we need to schedule multiple jobs to one device, rather than the other way around. 

Assigning multiple jobs to one machine is an alternate formulation for e.g. 

scheduling containers to nodes in an HPC environment [25, 27]. This is closer 

to the problem we are trying to solve as we need to schedule multiple circuits on 

one computer, but is missing objectives analogous to fdelity maximization. While 

multiple scheduling models resource constraints and runtime costs for increasing 

the job count, classical errors are low enough that they are not considered. 
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3.6 Quantum Job Scheduling 

Liu et al. [14] propose a parallel scheduling algorithm specifc for quantum comput-

ing. They consider a single seed job and then sort the remaining jobs by similarity 

based on circuit depth. The jobs are considered one-by-one. If adding the job to the 

workload does not decrease the expected fdelity by more than a factor of � , then the 

job is added. 

QuCloud+ assumes all jobs require the same number of shots. Their depth sim-

ilarity metric seeks to reduce the runtime disparity during simultaneous execution. 

However, the depth is a soft constraint so circuits with signifcant dissimilarity can 

still be scheduled together. This can cause signifcant slowdown for certain jobs in 

the workload. 
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C h a p t e r 4 

QUBIT MAPPING WITH BINARY INTEGER NONLINEAR 
PROGRAMMING 

4.1 Solver 

We separate the mapping optimization problem into two parts, outlined in Algorithm 

1. The triangle symbol on the right side of certain lines indicates a corresponding 

section or equation that explains that line. 

The frst step (Cluster()) assigns each circuit a subset of qubits to use. This is 

equivalent to the partitioning phase in greedy algorithms, but extends it to optimize 

all qubit subsets simultaneously. Since subsets tend to be contiguous, we call this 

stage clustering. Clustering uses only information from the hardware (f,A,S) to 

produce the mapping (X). 

The second step (Place()) places each circuit on a cluster and assigns each 

virtual qubit to a qubit within the cluster. Circuits and clusters are split into groups 

based on length as circuits cannot be assigned to clusters of diferent length. The 

optimization produces a permutation (Y,Z) which we apply to � to derive the fnal 

mapping. Placement incorporates information about qubit and circuit usage (W,G). 

The following section describes the technical details and defnitions of this 

algorithm. 

4.1.1 Clusterer 

The goal of the clusterer is to fnd sets of qubits for each circuit that optimize 

measurement and gate fdelity. To do so, we must create a representation for the 

machine calibration data and qubit assignments so that we can easily represent 

constraints and objective terms. 
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Algorithm 1 Optimization Algorithm 
1: function Cluster(circuits, backend) 
2: � , �, � ← Model noise ⊲ 4.1.1, 4.1.1 
3: �,� ← Create assignment variables ⊲ 4.1.1 
4: � (�),� (�) Apply constraints ⊲ (4.5)-(4.7) 
5: � (�, � , �, �) Defne objective ⊲ (4.8)-(4.12) 
6: Optimize � w.r.t (4.12) 
7: return X 
8: end function 
9: 

10: function PlaceCohort(Q, circuits, backend) 
11: �, S ← Model noise ⊲ 4.1.2 
12: �,� ← Model circuit gates ⊲ 4.1.2 
13: �� � = � Initial mapping 
14: for all circuit� ,� � ∈ circuit-cluster pairs do 
15: � ← Create permutation variables ⊲ 4.1.2 
16: � (�) Apply constraints ⊲ (4.13) 
17: � (�,��,��, �� , S � ) Defne objective ⊲ (4.14)-(4.16) 
18: Optimize � w.r.t (4.16) 
19: end for 
20: � ← Create permutation variables ⊲ 4.1.2 
21: � (� ) Apply constraints ⊲ (4.13) 
22: �� � ← � (�� � ,��,��, �� , S � ) Compute pair values 
23: � (�,�) Defne objective ⊲ (4.17) 
24: Optimize � w.r.t (4.17) 

′ 25: �
� ← � � ⇔ �� � = 1 Choose best pairs 

26: � ′ 
� ← � � ⇔ �� � = 1 Permute circuits 

′ 27: � ′ ← � ′ ⇔ (� )� � = 1 Permute qubits 
� � �� � 

28: return � ′ 

29: end function 
30: 
31: function Place(X, circuits, backend) 
32: Split circuits/clusters into cohorts ⊲ 4.1.2 
33: cohorts� ← {�� ∈ �, ���� � ∈ �������� |� � = �}
34: for all ��, circs� ∈ cohorts do 
35: �� ← PlaceCohort(��, circs�, backend) 
36: end for 
37: � ← Combine �� into original circuit order 
38: return � 
39: end function 
40: 
41: function Optimize(circuits, backend) 
42: � ← Cluster(circuits, backend) 
43: � ← Place(X, circuits, backend) 
44: return � 
45: end function 
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Machine Information 

The variables and expressions used to represent the machine calibration data are 

summarised below. We use Z2 = {0, 1} to represent binary matrices and variables 

and I = [0, 1] to represent values in the unit interval such as probabilities. 

• �: The number of qubits on the target machine. 

• �: The number circuits to be executed in parallel. 

• � ∈ Z2 
�×� : Machine topography represented as an adjacency matrix. IBM’s 

machine topographies are directed graphs where direction indicates the al-

lowed control/target qubits. The control/target qubits can be reversed by 

applying Hadamard gates so for simplicity, we ignore direction. Then � is 

symmetric. Formally, �� � = 1 ⇔ a 2-qubit gate can be applied between �� and 

� � . 

• � ∈ I�×� : Error adjacency matrix where �� � is the probability of an error 

when executing a 2-qubit gate on �� and � � . The 2-qubit gate considered here 

depends on which basis gates are available in the quantum computer, but is 

often the CNOT or ECR gate. 

• � ∈ I� : Readout error vector where �� is the probability of an error when 

measuring ��. 

Swap Error Matrix 

Prior approaches generate objective functions by selecting qubits which have mini-

mal values in � and � [15, 17]. Such qubits are likely to be non-adjacent, incurring 

error and time costs from the necessary SWAP gates. Approaches address this 

by adding separate contiguity constraints, selecting qubits that are adjacent to a 

previously selected qubit. Rather than artifcially restricting the search space with 
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contiguity and closeness constraints, we propose a novel heuristic that more explic-

itly models the cost of introducing SWAP gates. 

A SWAP insertion between two qubits is represented by a path in the topology 

graph. We model the cost of a SWAP insertion as the probability of any error 

when applying gates along the path. For an unweighted adjacency matrix, �, the 

expression �� computes the number of �-length paths between all pairs of nodes 

in the graph. For a weighted adjacency matrix, � , this computes the sum of the 

product of path weights over all �-length paths. This expression is formalized in 

(�)(4.1), using � as the set of �-length paths between �� and � � . Because �� is
� � � � 

� � the number of paths, 
�

��

� 

is the average product of weights across all �-length paths 
� � 

between �� and � � . 

∑ Ö 
�� � 
� = ��� (4.1) 

(�) �� →�� ∈� 
�∈�

� � 

Now we consider (1 − �)� . For each �-length path �, the product becomes Î 
�� →�� ∈� (1 − ��� ). Since ��� is the probability of an error when applying a 

gate between �� and �� , 1 − ��� is the probability of a success. Gate errors are 

assumed to be independent and taking the product over all edges in the path gives 

the probability of success when applying all gates along the path. SWAP operations 

can be decomposed into three CNOT gates. Thus for CNOT-based machines, the 

SWAP success chance is exactly calculated by cubing the success probability for all 

edges except the one which applies the fnal post-swap gate. During the mapping 

phase, it is unknown at which edge the fnal gate will be applied so we ignore this 

technicality. Since �3 increases monotonically for � ∈ I, we do not need to cube 

the success probability. The heuristic is directly proportional to the SWAP success 

chance. Finally, we take the complement of the result to obtain the probability of at 

least one error during the SWAP, which we later minimize. 

However, this method only computes success chances for a fxed path length �. 
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Since qubit pairs vary in topological distance, we must determine � for each pair. 

Since increasing the length of a SWAP path will increase its error, we make the 

assumption that the SWAP scheduler will choose from the shortest SWAP paths. 

Then for each qubit pair, we set � as their geodesic distance. This is computed 

by applying Seidel’s algorithm to � to derive the distance matrix � ∈ Z�×� where 

�� � = geodesic path length between �� and � � [26]. The defnition for the swap error 

matrix, � ∈ Z2 
�×� , is given in (4.2). 

�� � (1 − �)
� � 

�� � = 1 − (4.2)
�� � 

�
� � 

This expression models the average probability of a SWAP error over all geodesic 

paths between two qubits. However, an intelligent SWAP scheduler will not choose 

a random SWAP path, but instead choose SWAP paths with higher success chances. 

It is more useful for our optimization to fnd the minimum probability of a SWAP 

error. In order to compute this without losing the polynomial formulation, we 

incorporate an approximation technique based on the p-norm. The p-norm can be 

used to approximate the maximum element of a vector by taking lim�→∞. Likewise, 

taking lim�→−∞ approaches the minimum element. For practical purposes, we use 

� with a large, fnite magnitude to approximate the minimum or maximum (see 

Fig. 4.1). 

Considering a vector which contains the SWAP success probability of every 

�-length path between �� and � � , the p-norm equation becomes (4.3). We do not 

need to use absolute value since probabilities are nonnegative. The � exponent is 

distributed into the product term and the resulting expression is analogous to (4.1) 

with (1 − �)◦� instead of � . We use ◦� to represent element-wise exponentiation 

(also called Hadamard exponentiation). We combine (4.2) and (4.3) to produce 

the fnal formulation of � in (4.4). We reintroduce the expression � into the 

denominator so that at � = 1, � approaches the average SWAP error probability. 

As � →∞, the denominator becomes 1 and � approaches the minimum SWAP 
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error probability. Using this metric indicates full trust for the scheduling phase 

to choose good SWAP paths. As � → −∞, the denominator again becomes 1 

and � approaches the maximum SWAP error probability. This models the case of a 

malicious scheduler, which is interesting but outside the scope of this paper. Fig. 4.1 

shows the relationship between � and �. 

1! � � ∑ Ö© ª®®� (�)
� � (1 − ��� )(�) = 

(�) �� →�� ∈� 
�∈�

� � « ¬ 
1 
� (4.3)∑ Ö© ª®®(1 − ��� )� = 

(�) �� →�� ∈� 
�∈�

� � « ¬ 
� = (((1 − �)◦�)� ) 
1 

� � 

1 
�� � � ((1 − �)◦�)© ª®� � 

�� � = 1 − (4.4)
�� � 

�
� � « ¬ 

Qubit Assignment 

We use the matrix and vector encoding of the machine data to constrain and optimize 

the selection of qubits using matrix and vector multiplication. We encode the 

assignment as a matrix � ∈ Z� 
2 
×� such that �� � = 1 ⇔ � � is assigned to cluster �. 

We defned an additional vector � ∈ Z2 
� such that �� = 1 ⇔ � � is unassigned. We 

use the notation �� and �∗ � to refer to the ��ℎ row and � �ℎ column vectors of � , 

respectively. 

From this formulation, we derive two constraints. Constraint �1 in (4.5) requires 

the number of assigned qubits to equal the number of qubits in the corresponding 

circuit. This ensures our cluster sizes match our circuit sizes. Constraint �1� in 

(4.6) requires that all remaining qubits be unassigned. Constraint �2 in (4.7) ensures 

each qubit is either unassigned or assigned to exactly one cluster. �1 and �2 imply 
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Figure 4.1: Swap error matrix value between �0 and �113 for varying values of �. 
�0 and �113 have multiple geodesic paths. Calculations used calibration data for 
IBM Brisbane on 2024-01-31 13:13:52 

�1�, however we explicitly encode �1� for optimization purposes as described in 

Section 4.2. 

�1 : ∥�� ∥1 = �� 1 ≤ � ≤ � (4.5) 
�∑ 

�1� : ∥�∥1 = 1 − �� (4.6) 
�=1 

�2 : �� + ∥�∗ � ∥1 = 1 1 ≤ � ≤ � (4.7) 

These constraints ensure that a solution can be turned into a valid mapping. 

To fnd a quality solution, we defne several objective terms and minimize their 

weighted sum. 
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�1 (�) = ∥� � ∥1 (4.8) 

(4.8) sums the readout error of all used qubits. We want to minimize this. 

�2 (�) = �� (���� ) (4.9) 

For (4.9), (���� )� � sums the SWAP error approximation for all edges between 

cluster � and cluster � . By taking the trace, we only consider when � = � . Thus this 

expression sums the SWAP error for all qubit pairs that are in the same cluster. We 

want to minimize the result. 

∑ 
�3 (�) = �� ��

� (4.10)� 
�≠ � 

For (4.10), �� ��
� computes double the number of edges between qubits of 
� 

cluster � and cluster � . We are iterating over � ≠ � so this expression is the number of 

inter-cluster edges. When this value is 0, we have at least a one-qubit gap between 

all clusters. By minimizing this expression, we protect against cross-talk error. 

�4 (�) = �� (� ��� ) (4.11) 

Equation (4.11) uses the same expression as �3, but iterates over � = � . This 

produces the number of intra-cluster edges. Maximizing these edges acts as a 

soft contiguity constraint. While �2 prefers contiguous assignments, varying gate 

and qubit fdelities means a non-contiguous assignment can be more optimal. The 

mapping stage does not consider circuit properties. We use this objective term to 

indicate preference towards contiguous assignments for e.g. circuits with a large 

number of 2-qubit gates. To maximize �4, we set the weight �4 < 0. 

4∑ 
� ∗ = ������� ���� (�) (4.12) 

�=1 
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�∗ in (4.12) optimizes our assignment matrix by minimizing the weighted sum 

of all the objective terms. The weighting allows us to fne-tune the impact of each 

term and disable terms. 

4.1.2 Placer 

The goal of the circuit placement problem is to decide which circuits will be assigned 

to which clusters and which virtual qubits will be assigned to which physical qubits. 

Circuits can only be assigned to clusters with the same number of qubits. Thus, 

we split our circuits and clusters into cohorts based on their width. We solve the 

placement problem for each cohort independently. 

Machine Information 

We reuse the machine information calculated for the clustering problem by extracting 

only the values relevant to each cluster. 

• �: The number of circuits and clusters in the cohort. 

• �: The number of qubits in each circuit/cluster. 

• � ∈ [[1, �]]�×� : This matrix encodes the qubits selected for each cluster by 

the mapper. �� � = � ⇔ �� is the � �ℎ qubit in the ��ℎ cluster. 

• � ∈ I�×� : The fdelity matrix derived from � . Each row is a cluster and each 

column is a qubit. �� � = ��� � . 

• S ∈ I�×�×� : The swap matrix for each cluster derived from �. (S�) � � = 

.��� � ��� 

Circuit Information 

If we only use machine information, then every circuit is identical and all solutions 

have the same optimality. To evaluate the goodness of solutions, we construct 
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metrics to encode circuit information that mirror the hardware information of � and 

S. 

• � ∈ Z�×� : The weight matrix describes how often we use each qubits. We 

use this to apply weights to �. Qubits that are used more often accumulate 

more errors and should be placed on higher fdelity qubits. �� � is the number 

of gates that use � � in circuit �. 

• � ∈ Z�×�×� : The gate matrix is used to weight S and describes how often 

qubits are operated on in pairs. (��) � � is the number of 2-qubits gates that use 

� � and �� in circuit �. The goal is that qubits that are used more often together 

should be placed on qubits with paths that are shorter and have higher fdelity 

edges. 

Permutation Matrices 

To encode the mappings for the placement problem, we use several permutation 

matrices. This ensures the mapping represented by each matrix is bĳective. 

• � ∈ Z2 
�×� : This is the permutation matrix for mapping circuits to clusters. 

Specifcally, �� � = 1 ⇔ circuit � is assigned to cluster � . 

• �� � ∈ Z2 
�×� : This is the qubit permutation matrix for circuit � and cluster � . 

(�� � )�� = 1 ⇔ �� of circuit � maps to �� of cluster � . 

To fully optimize the placement, we must optimize �� � for all circuit-cluster pairs 

(i.e. 1 ≤ �, � ≤ �). Using the results, we optimize � to decide which circuit-cluster 

pairs will actually be used. Since this is � (�2) optimization problems, we explore 

alternate techniques in Section 4.1.2 that reduce the number of pairs we consider. 

The only constraint we need is that �, �� � be permutation matrices. �1 in (4.13) 

shows the formulation for the permutation constraint on � and �� � . 
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�1 : � 1 = �� 1 = �� � 1 = �� 1 = 1 (4.13)� � 

We use the permutation matrices to construct objective terms. Our general 

strategy is to take the circuit information, and multiply it with the permutation 

matrix. This orders the circuit metrics to match which physical qubits are used by 

each virtual qubit. We multiply the permuted circuit weights with the hardware 

information and optimize the result. 

�1 (�� � ) = �� �� � �� (4.14) 

�1 in (4.14) sums the qubit errors weighted by how much each qubit is used. 

(�� ���)� is the weight for �� of the cluster and indicates how much �� would be 

used if �� � is the mapping. We want to minimize the result. 

∑ 
�2 (�� � ) = (S � )�� (�� � ���� � 

� )�� (4.15) 
�� 

�2 in (4.15) sums the SWAP errors weighted by how much each qubit pair is 

used. �� � ���
� permutes the rows and columns of �� so that index �, � is the number 
� � 

of times �� , �� of the cluster are used together under the mapping �� � . We mutliply 

these weights element-wise with S � and sum every entry. We want to minimize the 

result. 

2∑ 
�� � 
∗ = argmin ���� (�� � ) (4.16)

�� � 
�=1 

�∗ in (4.16) minimizes the weighted sum of each objective term. Once we’ve 
� � 

optimized the qubit mapping for each circuit-cluster pair, we decide which circuit-

cluster pairs we will actually use. (4.17) formulates the subsequent minimization 

problem. �� � selects the objective values for the circuit-cluster pairs that are used. 

� ∗ selects the pairs that provide the minimum errors. 
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2∑ ∑ 
� ∗ = argmin �� � ���� (�� � ) (4.17)

� 
� � �=1 

Optimization 

It is possible to combine (4.16) and (4.17) and produce a singular optimization 

problem over � and � . This produces a problem with cubic objectives which is 

difcult to solve. Solvers such as Gurobi do not allow cubic constraints, which 

must be decomposed into quadratic constraints, introducing a large number of 

intermediate variables. We observed that splitting the formulation into multiple 

subproblems drastically reduces the runtime needed to optimize the problem. 

The number of qubit optimization problems posed here grows quadratically with 

the number of circuits in the cohort. We propose modifed algorithms to reduce the 

number of pairs that are optimized. We still optimize (4.17) normally, but for every 

pair that is not optimized, we replace �� (�� � ) with �� (�). 

• Greedy: We continually remove the circuit or cluster that performs the best 

as we optimize mappings. This can also be performed over each circuit, 

removing the best cluster and vice versa. The rationale is that a circuit-cluster 

pair with a good objective value will likely be used so either the circuit or 

cluster do not need to be optimized for other combinations. 

• Linear: We pick a random mapping of circuits to clusters and optimize the 

qubit mappings for only those pairs. The rationale for this approach is that 

qubit mapping is more important than the circuit-cluster mapping. As long as 

we optimize the qubit mapping, we will achieve reasonably good results. This 

approach requires solving a linear number of qubit-mapping optimizations. 
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4.2 Meta-Optimization 

The method we use to encode constraints and objectives is very important to how 

well the optimizer performs. There are several ‘meta‘-optimizations that we applied 

to improve the efcacy of the solver. 

4.2.1 Equalities > Inequalities 

In the given formulation, we include an additional term � for unassigned qubits. This 

allows us to formulate (4.7) as an equality. Using an inequality such as ∥�∗ � ∥ ≤ 1 

has the same efect, but is harder for Gurobi to optimize. 

4.2.2 Soft Constraints 

We frst formulated �3 as a hard constraint enforcing a 1-qubit gap between circuits. 

However, we found that expressing this term in the objective function improved the 

optimality of solutions, especially with large numbers of circuits. By using a large 

� weight, we can still force the optimizer to reduce the number of inter-cluster edges 

to 0. For extreme cases of high throughput, relaxing this constraint allows Gurobi 

to search for solutions more freely. 
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C h a p t e r 5 

QGROUP - PARALLEL JOB SCHEDULER 

To ensure efcient scheduling of jobs without sacrifcing accuracy, we devise a 

three-part algorithm outlined in Algorithms 2-5. We call this algorithm QGroup 

due to the emphasis on grouping jobs prior to scheduling. 

Due to measurement synchronization, each shot has the runtime of the longest 

circuit in the group. For example, if circuit � takes � time per shot and is scheduled 

with circuit � which takes 2� time per shot, then circuit � will take twice as long to 

complete. We can only parallelize circuits with similar per-shot runtimes. Algorithm 

2 reduces this problem to a modifed instance of rod cutting, allowing us to fnd the 

optimal grouping of circuits with respect to a objective function in � (�3) runtime. 

Once we group the circuits by runtime, we must determine their order of exe-

cution (Algorithm 3). This problem is a tradeof between maximizing the fdelity 

and minimizing the makespan. The fdelity is trivially optimized by running all cir-

cuits sequentially, which also maximizes the makespan. This is undesirable, so we 

formulate the makespan minimization problem using binary integer linear program-

ming (BILP). We then partially encode the fdelity maximization using constraints. 

Fidelity is further maximized in the fnal assignment stage. 

At this point, we have methods for grouping circuits and scheduling parallelism 

with minimal makespan. We repeat this process for all available computers so that 

we may select the best computer for each group. To create a "goodness" score 

for each machine, we combine an extended makespan metric with an estimate of 

fdelity, as shown in Algorithm 4. Groups are assigned according to the order of 

jobs in the queue. 

Algorithm 5 shows how these sub-algorithms are orchestrated. This chapter 

provides greater detail of the formulation and mathematics of the algorithms. 
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Algorithm 2 Job Partitioning Algorithm 
1: function Reconstruct(�, �, �, �) 
2: � ← ��,� 
3: if i == 0 then 
4: return [��...�+� ]
5: else 
6: return Reconstruct(�, �, �, �) ∥ Reconstruct(�, �, � + �, � − �) 
7: end if 
8: end function 
9: 

10: function Partition(�, �, �, �, �) 
11: sort(�)
12: ��,� ← � (��...�+� ) ⊲ (5.4) 
13: � ′ 

�,1 ← � + ��� ⊲ (5.2) 
14: for all � in 2..� do 
15: for all � in 1..� − � do 
16: � ← {��,� } ∪ {(� ′ + � ′ + �) |1 ≤ � < �} ⊲ (5.1)

�,� �+�,�−� 
17: � ′ ← min � ⊲ (5.1)

�,� 
18: ��,� ← argmin � 
19: end for 
20: end for 
21: return Reconstruct(�, �, 1, �) 
22: end function 

Algorithm 3 Parallelism Scheduling Algorithm 
1: function Schedule(�, �, �,�) 
2: � ← �� 
3: �� ← ��.shots 
4: �� ← ��.qubits 
5: � ← max{�, gcd(�)} ⊲ 5.2.1 

= ⌈ �� 6: �� ⌉ ⊲ 5.2.1
� 

7: � ← |� |Í� 8: � ← �=1 �� 
9: �,�, � ← Create model variables ⊲ (5.9),(5.10) 

10: � (�,�, �) Apply constraints ⊲ (5.5),(5.6),(5.8) 
11: � (�,�, �) Apply objective ⊲ (5.7),(5.11) 
12: Optimize �,�, � ⊲ (5.12) 
13: return �,�, � 
14: end function 
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Algorithm 4 Machine Selection Algorithm 
1: function Assign(�,�, queue) ⊲ 5.3 
2: �� ← Partition(�, �, �, �, �) 
3: �� � ,�� � , �� � ← Schedule(��,�� � , �,�) 
4: for all � in queue do 
5: if � is assigned then 
6: continue 
7: end if 

// Iterate computer types 
8: for all � in � do 
9: � ← � ∈ �� |� ∈ � 

10: � ← makespan(���)
// Iterate computers 

11: for all � � in � do 
12: � � ← � (� � ) + � ⊲ (5.13) 

// Apply any mapping algorithm 
13: � ← map(�, � � )
14: � ← min� logEPST� (� � , �, �)
15: �(�, � � ) ← log � � − � ⊲ (5.14) 
16: end for 
17: end for 
18: �∗, �∗ ← argmin �(�, � � ) ⊲ (5.15) 
19: for all � in �∗ do 
20: assign � to �∗ according to ��∗ 

21: end for 
// Recompute and schedule groups 

22: � ′ ← �� � | � is not assigned 
23: for all � in � − {�∗} do 
24: �� ← Partition(� ′ , �, �, �, �) 
25: �� � ,�� � , �� � ← Schedule(��,�� � , �,�) 
26: end for 
27: end for 
28: end function 

Algorithm 5 Full QGroup Algorithm 
1: function QGroup(�, queue) 
2: ℎ ← {hash(�) |� ∈ �}
3: � ′ ← [� ∈ � |hash(�) = ℎ � ]� 
4: ��� ← � (queue� ,� ′ 

�0)
5: Assign(� ′ ,�, queue) 
6: end function 
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5.1 Job Grouping with Rod Cutting 

The number of possible partitions of jobs is exponential and thus searching for the 

optimal partition is intractable. We make the important observation that each job 

will be best scheduled either alone or in a group with at least one of its runtime 

neighbors. Then we can sort the list of jobs by runtime and only consider partitions 

of contiguous groups. This setup is a variant of the rod-cutting problem, where a 

rod must be cut and sold for the highest price with each segment-length having a 

fxed price. We defne the "price" to be an arbitrary measure of dissimilarity � (�) 

between the runtimes of the group, and we minimize the total dissimilarity. 

The rod-cutting problem defnes a price function that is independent of cut 

locations. However, job runtimes can vary and group dissimilarity changes based 

on both the location and length of the group. We need a dissimilarity matrix � 

where ��� = � (��...�+� ). We refect this change in the recursive formulation shown 

in (5.1). This is identical to the original rod-cutting formulation with the added 

location index. We discuss the � term later. 

� ′ �,� = min{��,� , (� ′ �,� + � ′ �+�,�−� + �) |1 ≤ � < �} (5.1) 

Any measure of dissimilarity is trivially minimized by grouping jobs by equal 

runtime. Since runtimes are expected to be diferent between jobs, this leads to zero 

parallelism. To prevent this, we add an initial cost to placing a job in its own group 

in (5.2). The � term is a fat cost for every group. � defnes a relative cost that scales 

with the runtime of each job. � ′ 
�,1 increases the similarity required of � ′ 

�+1,�−1 in 

order to separate �� into its own group. (5.3) shows this fact. A similar property 

holds when �� is at the end of the group. When dissimilarity grows with � , using � 

ensures the similarity bound scales with � as well. 

While �, � limit the number of single-job groups, � in (5.1) limits the overall 

number of groups. This prevents the group formation from creating groups of size 
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2 to mitigate the �, � constraints. 

� ′ = � + ��� (5.2)�,1 

Split �� ⇔ � ′ �,1 + � ′ �+1,�−1 < � ′ �,� + � ′ �+�,�−� for 2 ≤ � ≤ � − 2 
(5.3) 

⇒ � ′ �+1, �−1 < � ′ �, � + � ′ �+�,�−� − � ′ �,1 < � ′ �, � + � ′ �+�,�−� 

Finally, we need an objective function for the dissimilarity of a group. (5.4) 

uses the ratio of maximum to minimum runtime as the objective. This value is 

the greatest slowdown factor that any job in the group will experience when being 

scheduled in parallel. 

max� 
� (�) = − 1 (5.4)

min� 

5.2 Parallel Scheduling with BILP 

The result of Algorithm 2 is groups of jobs with similar runtimes. Let � = �1...� 

be one such group. Similar runtime indicates the these jobs may be scheduled in 

parallel. We must decide which jobs are actually scheduled while respecting qubit 

constraints, maximizing fdelity, and minimizing makespan. As discussed, the latter 

two objectives constitute a tradeof. 

There has been much research into minimal-makespan scheduling for classical 

workloads [5, 7, 9, 11]. However, little research considers the case of assigning 

multiple jobs to one machine [25] and we have found none that have analogous 

constraints to qubit count and parallel fdelity. Instead, we model these constraints 

by adapting linear programming techniques for classical scheduling. 

5.2.1 Representation 

• � ∈ Z: The number of qubits on the machine. 
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• � ∈ Z: The number of circuits in �. 

• � ∈ Z� : The number of shots in each circuit of �. 

• � ∈ Z� : The number of qubits required for each circuit of �. 

The unit of time for quantum circuit execution is a single shot. Because this is 

a discrete measure, we can represent the execution of quantum circuits exactly. We Í� defne � ∈ Z2 
�×� where � = �=1 �� such that �� � = 1 ⇔ circuit � is executing during 

shot � . � is the maximum number of shots that could execute, which is the case of 

zero parallelism. 

Using maximum granularity is expensive as the number of shots can be arbitrarily 

high and is often in the range of [1, 000..10, 000]. To reduce the number of variables 

in the model, we introduce a granularity parameter �. We resize our problem so that 

the unit of time is bins of � shots. � also helps us to align job executions, which we 

discussed later. Now we have � ∈ Z�×� .2 

The best value for � is gcd(�1..� ) as this reduces the problem size while allowing 

us to schedule the exact correct number of shots for each job. In the case that the 

gcd is too low, we use a minimum � which represents the maximum number of extra 

shots we are willing to run when scheduling a circuit. In most real-world cases, we 

are able to use the gcd with � = 500, 1000, or a multiple thereof. 

• � ∈ Z+: The shot granularity. 

= ⌈ �� • � ∈ Z� : The number of shot "bins" calculated as �� ⌉.
� Í� • � ∈ Z = �=1 ��: The maximum number of bins that we may need to execute. 

From here, we can defne constraints to make � meaningful. The number of 

qubits required to run all concurrent circuits cannot exceed �, which is captured 

in (5.5). Additionally, circuits must be scheduled for the correct number of bins, 

shown in (5.6). We introduce � ∈ [0, 1] to reduce the maximum number of qubits 
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we are allows to use concurrently. Using all or nearly all qubits on a computer is 

detrimental to fdelity due to crosstalk and low-fdelity gates/qubits. 

�∑ 
�1 : �� �� � ≤ �� 1 ≤ � ≤ � (5.5) 

�=1 
�∑ 

�2 : �� � = �� 1 ≤ � ≤ � (5.6) 
�=1 

5.2.2 Objectives 

The simplest objective is to minimize the makespan of the schedule. This is the 

highest value � where ∃� s.t. �� � = 1. While the maximum could be optimized 

by introducing temporary variables with constraints, we instead weight each �� � 

� � by for a simpler expression. We sum every �� � (5.7). This is minimized by 
� � 

executing circuits in lower bins. This minimizes not only the group makespan, but 

the makespan of each individual job within the group. 

� � ∑ ∑ 
�1 = 

� 
�� � (5.7)

� 
�=1 �=1 

We must also minimize the synchronicity of workload changes. These changes 

occur whenever a job begins or fnishes execution. We then have a new set of 

circuits which incurs an overhead cost for compiling and applying error mitigation 

techniques. To limit this, we use indicator variables and conditional constraints. 

Gurobi allows constraints of the form � ⇒ � where � = 1 ⇔ � is true. We Í
defne several �� = 1 ⇔ �� constraints and then maximize/constrain � ��. This 

maximizes/constrains the number of �� that are true. 

�−1∑ 
�3 : �� � + (1 − ��0) + (1 − �� � ) == � − 1 (5.8) 

�=1 
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�� � = 1 ⇒ ��, �+1 == ��, � (5.9) Í� 
�=1 �� � == � 1 ≤ � < �  

� � = 1 ⇒ Í 
�
� 
=1 ��0 == 0 � == � (5.10) Í�  
�=1 ��� == 0 � == � + 1 

• � ∈ Z�×�−1 (5.9): �� � = 1 indicates that circuit � maintained its execution2 

status from � to � + 1. (5.8) ensures that the number of times the execution 

status does change is ≤ 2. (5.6) prevents the number of changes from being 0. 

Having only 1 change is not possible. Then (5.8) requires that the job changes 

status exactly twice. This is equivalent to contiguous execution. 

• � ∈ Z�+1 (5.10): � � = 1 indicates no job changes when fnishing bin � .2 

��, ��+1 = 1 state that no jobs start/end in the frst and last bins, respectively. 

Minimizing (5.11) seeks to maximize the number of such bins. This minimizes 

the number of times we have to change the workload. 

�+1∑ 
�2 = − � � (5.11) 

�=1 

� ∗ = argmin(�1�1 + �2�2) (5.12)
� 

5.3 Machine Selection 

The job grouping and parallel scheduling algorithms provide us the optimal schedule 

for each group on each computer. The fnal task remains to assign groups to 

computers. Note that the group partitions may not be the same across diferent 

computer types. Algorithm 4 presents a greedy algorithm to make this selection. 

The goal of the algorithm is to minimize the makespan and maximize the fdelity 

for each job. We give preference to minimizing the makespan of the earlier jobs 
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in the queue as earlier queue status warrants earlier completion. We consider all 

jobs in the group when maximizing fdelity, as all jobs should be aforded similar 

execution fdelities. 

To evaluate fdelity, we use the expected probability of a successful trial (EPST) 

as defned by Liu et al. in [14]. Higher EPST indicates greater fdelity, which is 

desirable. 

We iterate through each job in the queue. If it has not been assigned, we rank 

each computer according to (5.14). �� (�) is the group for machine � which contains 

job �. (5.13) Is the expected fnish time of �� (�) if it were run on �. � (�) is the 

number of shots left to complete the current workload on �. In (5.15), we minimize 

the expected fnish time and maximize the minimum EPST of each job in �� (�). 

� � (�, �) = � (�) + makespan(�) (5.13) 

�(�, �) = log(� � (�, �� (�))) − log(minEPST � (�, �� (�))) (5.14)
� 

� ∗ = argmin �(�, �) (5.15)
� 

Because groups are not the same across computers, assigning jobs from ��∗ (�) 

will invalidate any other groups where ��≠�∗ ( �) ∩ ��∗ (�) ≠ ∅. Then the fnal step is 

to recompute the group partitions and schedules for all computers except �∗ . 

5.4 Performance 

5.4.1 Runtime 

Runtimes for the proposed algorithms are summarized in Table 5.1. Algorithm 

2 has runtime of � (�3) consistent with the rod cutting problem. Algorithm 3 is 

difcult to analyze since the runtime of BILP solvers is not well defned. Instead, 

we evaluate the scaling of the number of variables in the model, � (� �). Since the 

number of shots per job is limited by providers, � = �� for an upper bound �. Then 
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Algorithm 
2 
3 

4,5 
4,5 optimized 

Runtime 
� (�3)

# Vars: � (� �) = � (�2)
� (�� (� + �3)) 

� (��� +�4� ′) = � (�� + � ′) 

Table 5.1: The runtimes of the scheduling algorithms. � is the number of jobs 
and � is the number of computers. � ′ is the number of computer types. � is the 
runtime of the mapping function used in Algorithms 4,5. Runtime for BILP solvers 
is not specifed in general, so we provide the scaling of the number of variables in 
the model. 

the number of variables is � (�2). Algorithms 4,5 run the previous algorithms for 

each computer and (in the worst case) each job in the queue. Then the runtime is 

� (�� (� + �3)). We add � to be the runtime of the mapper used for computing 

EPST. The purpose of the mapper is to estimate the PST so we can reduce � by 

using a mapper that uses a high degree of approximation. 

The strongest dependence here is on �4. However, this is easily mitigated by 

defning a window size � and processing batches of � jobs from the queue. Then 

the runtime is bounded by � (��4) where �4 is a constant. This replaces the 

quartic scaling with a confgurable constant. 

5.4.2 Computer Groups 

While we can eliminate � from the runtime, the dependence on � is still problematic 

for performance, especially as providers release more and more quantum computers. 

As the number of computers goes up, the viable windows size goes down. 

To address this, we group quantum computers by similar properties. The purpose 

of computer information in the job grouping and scheduling algorithms is to estimate 

the runtime of each circuit. The runtime is dependent on the computer gate speed 

and circuit depth. Since gate speed afects all circuit evenly and we only care about 

relative runtimes, we can ignore diferences across computers. 

Circuit depth is associated with the basis gate set and topology of the computer. 

The former determines how many gates are produced by decomposition. The latter 
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determines how many SWAP gates will need to be inserted. Then we expect that 

quantum computers with identical basis gates and topologies will produce equal 

(or similar) optimal job partitions. We relax the topology similarity to ignore gate 

direction as the connectivity has a greater efect on SWAP insertion than direction. 

Now we can compute � based on the properties of each computer group rather 

than each singular computer. Similarly, algorithms 2, 3 can be applied per computer 

group. Only EPST is computed for every computer. The last row of Table 5.1 shows 

the runtime with all optimizations. 
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C h a p t e r 6 

RESULTS 

6.1 Qubit Mapping 

We ran several experiments to characterize the runtime and fdelity of our algorithm. 

For each experiment we explain our selections for �, ��� ��� , and the number of ���, � 
�� 

shots we use. ���� is the maximum time allocated for the clusterer (��) and placer 

(��), respectively. To quantify the results, we show values for ��� ,� �� , ����, ����, 

and ����. � is the objective value of the assignment, which we report for each 

step. � is the mean squared error (MSE) metric. We use mean squared error for � 

to quantify the diference between our experiments and the ground truth obtained 

from a statevector simulator. We compute and aggregate � for all circuits in the 

experiment. We used Qiskit’s transpiler with optimization level 3 to simplify gates 

and schedule SWAP gates. Qiskit’s routing pass may adjust qubit locations slightly 

from the initial mapping. To show this, we calculate the objective values for our 

mapping pre- and post-transpilation. When using Qiskit’s mapper as a baseline, we 

only provide the post-transpilation mapping. 

6.1.1 Runtime 

Gurobi’s optimization algorithms use an iterative approach, which allows us to 

specify iteration and time limits and receive solutions after those constraints are 

reached. Thus, the runtime of the optimization step is largely irrelevant as we can 

specify it ourselves. Instead, we characterize the runtime-optimality trade-of by 

observing the change in objective as we increase the time constraints. We evaluate 

runtime on the QAOA examples (Section 6.1.2). For each set of time parameters, 

we run 10 trials to account for stochasticity in the Gurobi optimizer. 
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Figure 6.1: Plot of clusterer objective value for diferent maximum time constraints. 

We plot the relationship between the objective value and run time for the clusterer 

and placer in Fig. 6.1 and Fig. 6.2. �1 is the objective term for the qubit readout error 

defned in (4.8) and (4.14). �2 is the objective term for the SWAP error defned in 

(4.9) and (4.15). We are interested in the trends of these terms, rather than their exact 

values. As we increase the run time, the objective value of the clusterer decreases. 

This pattern is more evident for the SWAP fdelity metric, likely because this term is 

quadratic and requires more time to optimize efectively. The qubit fdelity metric is 

linear and thus easier to optimize. The qubit error initially increases with time, due 

to the balance of optimizing the SWAP errors. With more iterations, the optimizer 

fnds high fdelity qubits while retaining a sub-topology with lower SWAP errors. 

When evaluating the placer, the time limit is applied globally so that each indi-

vidual optimization problem is allocated an equal fraction of the overall maximum 

time. 

In Fig. 6.3, we plot the dependence of the placer on the assignment produced by 
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Figure 6.2: Plot of placer objective value for diferent maximum time constraints. 
The placer was initialized with the fnal assignment produced by the clusterer in 
Fig. 6.1. 

the clusterer by varying the time allowed for the clusterer to produce an assignment 

while using a fxed time limit for the placer. The graph exhibits a strong dependence. 

Combined with the weak trend in Fig. 6.2, this shows that the placer is best optimized 

by allocating more time to the clusterer for small circuits. As the number and size of 

circuits on a fxed machine increases, so does the complexity of the placing problem. 

In this case, more time should be allocated to the placer. 

The beneft from increasing clusterer runtime drops of around 10-20s when 

compiling for a 127-qubit machine. Despite seeking greater optimality, using integer 

programming for mapping is viable for current NISQ devices. Additionally, our 

approach provides fexibility to users. Circuits whose results are mission-critical 

can be compiled for longer time to achieve greater optimality. Circuits that must be 

executed in real time (e.g. iterative quantum programs), can balance optimality and 
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Figure 6.3: Plot of placer objective value for diferent maximum clusterer time 
constraints. We fxed the placer time constraint at 2s. 

timeliness by stopping optimization before the level-of threshold. 

6.1.2 Evaluation on IBMQ Machines 

Circuit Cutting 

Circuit cutting is an error mitigation technique for the NISQ-era introduced by [24] 

and implemented as the CutQC library by [29]. The method splits a circuit into two 

subcircuits. The upstream circuit must be measured in 3 diferent bases (Z,X,Y) 

and the downstream circuit must be initialized in 4 diferent states (|0⟩ , |1⟩ , |+⟩ , |�⟩). 

This results in 7 subcircuits that must be run. The motivation is to allow circuits to 

be run on smaller machines. We use this technique as a benchmark for our mapping 

algorithm and to explore the optimization possibilities of placing multiple smaller 

circuits over one large circuit. 
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Peham et al. [23] showed that search space selection is very important for circuit 

mapping as it bounds the optimality of mappings. We explore the possibility that 

mapping several smaller circuits can achieve better fdelity than mapping a single 

larger circuit. 

To evaluate the use of parallelism with circuit cutting, we used the example from 

Tang et al. [29] which has a width of 5 qubits and is split into two 3-qubit circuits 

after cutting. We designed and ran three experiments using our mapping algorithm 

and Qiskit’s algorithm. 

• Full Circuit: We placed a single instance of the full circuit and ran it for 4000 

shots. This is our baseline for evaluation. 

• Parallel Subcircuits: We placed seven 3-qubit circuits corresponding to the 

diferent measurement and initialization bases and ran for 4000 shots. This 

experiment evaluates parallelism for circuit cutting. 

• Parallel Full Circuit: We placed four instance of the full circuit an ran it for 

1000 shots. This simulates the same throughput as the subcircuit experiment, 

but requires fewer shots. We use this to evaluate the use of parallelism for 

reducing the number of shots needed to obtain same-fdelity results. 

The parameters and results are shown in Table 6.1. Qiskit identifed better mappings 

in all experiments. The circuits used here have few qubits and gates, allowing greedy 

gate scheduling methods to fnd near-optimal mappings. Between experiments, the 

single circuit case had less error than the parallel circuit case. Adding more circuits 

introduces more competition for high-fdelity qubits and gates. Thus the parallel 

case is more error-prone. 

However, both experiments were outperformed by the parallelized subcircuits. 

By splitting the circuit, we reduce the gate and qubit count which increases fdelity 

[24, 29]. By mapping the subcircuits in parallel, we reduce the fdelity as seen 

with the full-circuit experiments. The parallel subcircuit experiment shows that the 
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Machine �cl �pl tcl 
max (�) tpl 

max (�)
Brisbane 2 1 1 -0.1 1 1 20 1 

Name Method Ocl Opl � 

Single Circuit BINLP 
Qiskit 

-0.5 
n/a 

-0.5 
-0.48 

0.10 
n/a 

0.11 
0.10 

0.04575 
0.02349 

Parallel Circuit BINLP 
Qiskit 

-1.86 
n/a 

-1.86 
0.46 

0.45 
n/a 

0.47 
0.51 

0.42079 
0.37069 

Subcircuits 
BINLP 
Qiskit 

-2.09 
n/a 

-2.09 
2.17 

0.34 
n/a 

0.36 
0.48 

0.00357 
0.00325 

Table 6.1: Experiment data comparing circuit cutting vs. parallel execution vs. sin-
gle execution. Executed on IBM Brisbane. ��� and ��� are shown pre-transpilation 
(left subcolumn) and post-transpilation (right subcolumn). 

fdelity gain from cutting outweighs the loss from parallelization. This has important 

ramifcations for cicuit scheduling as quantum computers become larger. 

QAOA Ansatz 

Quantum Approximate Approximation Algorithms (QAOAs) construct a parameter-

ized ansatz circuit which is executed iteratively. At each iteration, the parameters are 

updated based on the results of the ansatz. The ansatz is created so that optimizing 

the output of the ansatz solves a desired problem, such as MaxCut [2]. 

Much work has been done to parallelize gates within QAOA ansatz circuits [1, 

12, 13]. However parallelization by running multiple ansatzes simultaneously has 

not been explored. We use an ansatz to solve MaxCut for the graph in Fig. 6.4. 

QAOAs use especially dense circuits, which makes the mapping generation 

crucial to successful execution. We initialized the ansatz fve times with random 

parameters and mapped the instances on a parallel circuit. We evaluated on IBM 

Brisbane and Kyoto and tested �’s of −0.1 and −1 for the contiguity objective. Due 

to the high connectivity of the QAOA ansatz, greater contiguity is crucial to reduce 

the number of SWAPs that must be inserted. We optimized one iteration of the 

�� ansatzes with ��� = 10, 20, 30 and � = 2�. We summarize the results in table 6.2. ��� ��� 

We observe that our algorithm outperforms Qiskit’s transpiler for ansatz exe-
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Figure 6.4: Input graph for the MaxCut problem targeted by the QAOA ansatz 
benchmark. 

Machine �cl �pl tpl 
max (�)

IBM Brisbane 5 1 1 -0.1 2 1 2 
IBM Brisbane 5 1 1 -1 2 1 2 

IBM Kyoto 5 1 1 -0.1 2 1 2 

tcl 
max (�) t(�) Ocl Opl �min �max �avg 

10 33.8 1.6 1.4 6.9 9.2 0.012 0.084 0.039 
20 42.0 -0.1 -0.5 6.5 7.4 0.008 0.074 0.035 
30 52.7 -1.0 -1.1 5.9 7.2 0.007 0.095 0.038 

Qiskit 106.9 n/a 22.8 n/a 22.5 0.012 0.152 0.079 
10 32.7 -44.2 -44.2 7.2 8.9 0.006 0.077 0.035 
20 45.1 -44.2 -44.2 7.2 8.8 0.014 0.082 0.040 
30 56.1 -46.1 -46.1 6.2 7.1 0.006 0.091 0.039 

Qiskit 79.4 n/a -8.3 n/a 18.8 0.069 0.249 0.162 
10 9.7 -1.2 -1.2 5.8 6.1 0.004 0.101 0.042 
20 37.2 -1.6 -1.6 5.2 5.5 0.008 0.089 0.041 
30 43.3 -1.9 -1.9 4.8 5.0 0.009 0.087 0.040 

Qiskit 91.0 n/a 14.0 n/a 18.8 0.024 0.129 0.079 

Table 6.2: Results for QAOA experiments. The top table shows machine information 
and parameter values for each experiment. The lower table shows experiment results. 
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cution and requires less time to run. Results are consistent across � parameters, 

contrary to our initial expectations. Since the ansatzes were only 6 qubits, contiguity 

is easier to optimize. This term may be crucial for larger circuits. 

Deep Circuit Evaluation 

In Section 6.1.1, we evaluated the runtime-optimality trade-of for the circuit cutting 

example from Tang et al. [29]. Those circuits were shallow with only 3 and 5 

qubits, and Qiskit was able to identify a better mapping. In order to compare 

our algorithms on more complex circuits, we designed two stress tests using deep 

synthetic and benchmark circuits. 

• RevLib [30]: RevLib is library of reversible benchmarks for quantum com-

puting. We used three circuits described in Table 6.3. Since RevLib circuits 

are not in the QASM format, we used Real2QASM [3] to convert to QASM. 

• Queko [28]: Queko generates circuits with a specifed gate density, depth, and 

topology. We generated 4 circuits with Queko using the TFL preset density, 

depths of 100 and 200, and two subtopologies derived from IBM Brisbane 

shown in Fig. 6.5. 

Table 6.4 summarizes the results for the depth test. Our mapping algorithm matches 

and exceeds the fdelity of Qiskit’s algorithm. The fdelity does not have a clear trend 

with respect to the maximum optimizer runtime. The separation of the clustering 

and placing steps means that a clustering with a slightly better ��� score may not 

lead to a better ��� score. 

6.2 Job Scheduling 

To evaluate our job schedules, we use three metrics: 
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Name Width Depth 
aj-e11_165 4 83 
4gt4-v0_72 5 103 
sys6-v0_111 10 82 
sys6-v0_111 10 82 

Table 6.3: RevLib circuits used in the throughput stress test. We used sys6-v0_111 
twice. 

(a) Junction Topol-
ogy (b) Cell Topology 

Figure 6.5: Subtopologies of IBM Brisbane used to generate circuits using QUEKO 
for the throughput stress test. Used TFL density vectors and depths of 100 and 200. 

Source Machine �cl �pl tpl 
max (�)

RevLib Kyoto 10 1 1 -0.5 3 1 2 
Queko Brisbane 10 3 10 -0.1 1 3 2 

tcl 
max (�) t(�) Ocl Opl �min �max �avg 

10 39.6 -15.6 -14.5 27.7 25.3 0.963 0.997 0.988 
20 57.8 -15.6 -14.5 27.7 27.2 0.694 1.001 0.912 
40 75.4 -15.6 -14.5 27.7 28.3 0.976 1.001 0.992 
80 108 -18.5 -18.5 19.3 19.5 0.958 1.001 0.988 

Qiskit 32.0 n/a -10.9 n/a 34.9 0.946 1.001 0.982 
10 49.4 24.6 24.5 85.1 61.4 0.972 1.000 0.990 
20 49.0 21.8 35.0 81.0 67.4 0.993 1.001 0.997 
40 75.5 21.1 37.9 80.4 72.8 0.982 1.001 0.994 
80 112 21.1 27.4 80.4 71.6 0.978 1.000 0.993 

Qiskit 27.3 n/a 23.2 n/a 52.9 0.973 1.001 0.989 

Table 6.4: Results for the density test. The top table shows experiment setup 
information. The bottom table shows expermient results. 
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• Probability of a Successful Trial (PST): We used benchmark circuits from 

Revlib [30] which ideally measure to a fxed bit string � with probability 1. 
# b occurrences For a noisy machine, ��� = . We want to maximize PST. 

� Í 
� �� • Trial Reduction Factor (TRF) [14]: � �� = The numerator is the # shots ran . 

number of shots needed for a sequential workload. TRF measures the factor 

by which we reduced the total shot count. We want to maximize TRF. 

Í 
� �� • Time Reduction Factor (TiRF): ���� = Í . Similar to TRF, this measures 
� �� 

the time needed to run each job sequentially divided by the total time spent on 

all computers. We can estimate this from the circuits and computer calibration 

data. We want to maximize the TiRF. 

(0)
� 1 Í� � • Time Infation Factor (TiIF): ���� = where �� is the runtime of job 

� �=1 �� 

(0)
� in the schedule and � is the runtime of job � in a serial schedule. We want 

� 

to maximize the TiIf. 

We evaluated our machines using small and large queues. The small queue 

allows us to run our circuits on real machines to evaluate the PST, TiRF, and TRF. 

The large queue allows us to test the scalability of our system on complex workloads 

and evaluate the TRF and TiRF. 

For Algorithm 2, we used (5.4) for � with � = 0.1. For Algorithm 3, we used 

� = 1 since none of the schedules came close to using all qubits. We implemented 

the scheduler from QuCloud+ with � = 0.15 

6.2.1 Real Machine Evaluation 

We evaluated the scheduling algorithms using the Brisbane, Kyoto, and Osaka IBM 

computers. The circuits and shot counts used in the short queue are shown in 

Table 6.5. We chose circuits with a variety of depths to test the efcacy of our 

grouping algorithm. 
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Num Name Width Depth Shots 
0 
1 
2 
3 
4 
5 
6 
7 
8 

3_17_13 
4mod5-v1_22 
mod5mils_65 

alu-v0_27 
decod24-v2_43 

aj-e11_165 
sf_276 

sym9_146 
4gt4-v0_72 

3 
5 
5 
5 
4 
4 
5 
12 
5 

25 
13 
22 
24 
34 
83 
367 
140 
130 

4000 
2000 
2500 
5000 
1000 
4500 
4500 
2000 
3000 

Table 6.5: Revlib circuits used in the short queue with the number of shots. 

(a) (b) 

(c) b 

Figure 6.6: Execution schedule for each scheduling method. Black horizontal 
lines separate execution on each computer. The numbering and coloring of jobs 
is consistent across each chart. Groups are shown by the shaded backgrounds for 
QGroup. 
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Algorithm TRF TiRF TiIF �PST 

Serial 
QuCloud+ 
QGroup 

1.0 
1.583 
1.583 

1.0 
1.22 
1.38 

1.0 
0.848 
0.937 

0.291 
0.224 
0.210 

Table 6.6: Results for the small queue evaluation. Best values are bolded. For PST, 
we ignore the serial algorithm because we expect the serial PST to be higher than 
the parallel case. The same holds for TiIF. 

Fig. 6.6 shows the execution schedules generated by each algorithm with evalua-

tion results summarized in Table 6.6. Our method matched the TRF with QuCloud+. 

Both our algorithms attempt to maximize parallelism, thus maximizing the TRF. 

However, our TiRF was higher than QuCloud+. Our algorithm was able to bet-

ter able to use the depths and runtime estimates of the circuits to minimize the 

makespan. The PST for QGroup with lower than that of QCloud+, though still 

competitive. 

Our algorithm does far better in reducing TiIF than QuCloud+. This is most 

easily seen in job 2 in Fig. 6.6b. This job takes far longer to run than in either other 

schedules. This is because job 6 takes a lot longer to run per shot than job 2. Then 

is slows down job 2. QGroup directly minimizes this induced slowdown to improve 

per-job runtime. 

6.2.2 High Throughput Simulation 

The large queue consists of 2,750 circuits with an average width of 2.34 and average 

depth of 32.76. These circuits are very small and thus often have identical runtimes 

due to using the exact same gates albeit with diferent parameters. 

We set � = −0.01 to prevent massive groups of jobs from forming. We used 

a window of � = 25. We used all 17 IBM backends to simulate the scheduling 

process, though we did not have access to run on the machines. The results from 

scheduling and running the jobs on simulators are presented in Table 6.7. 

QuCloud+ achieves a higher TRF and TiRF, but QGroup again has a higher TiIF 
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Algorithm TRF TiRF TiIF 
Serial 1.0 1.0 1.0 

QuCloud+ 1.59 5.65 0.964 
QGroup 1.33 4.42 0.99 

Table 6.7: Results for the large queue simulation. 

score. The workload contains many small circuits. Since QuCloud+ determines its 

groups based on EPST rather than runtime, it is better at scheduling many small 

circuits in parallel. However, this leads to increased runtimes for some circuit as 

shown by the worse TiIF metric. 
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C h a p t e r 7 

DISCUSSION AND CONCLUSION 

7.1 Qubit Mapping 

We present a novel SWAP matrix heuristic to better model error probabilities of 

SWAP gates. We incorporate this with qubit fdelity information to construct a 

binary integer non-linear programming problem that optimizes circuit mapping and 

qubit placement. We use the Gurobi optimizer [Gurobi] and evaluate our approach 

vs. the Qiskit compiler using examples from circuit cutting [29], QAOAs [2], 

RevLib [3, 30], and Queko [28]. 

For the throughput benchmarks (RevLib and Queko), we observe that our algo-

rithm is able to match and, for the RevLib experiment, exceed Qiskit’s performance. 

For the QAOA benchmark, our algorithm achieves lower MSE than Qiskit by factor 

of ×1.88 and a runtime improvement of ×1.42. 

For the case of circuit cutting, we found that executing subcircuits in parallel 

maintains improved fdelity compared to single or parallel execution of the full 

circuit. Our results extend the improvements of circuit cutting [24, 29] into parallel 

execution. This also confrms the analysis of Peham et al. [23] that choosing good 

search spaces is important for optimization purposes. We can place the smaller 

subcircuits with more fexibility when compared to the full circuit. This result 

indicates that throughput maximization in the NISQ era will depend on splitting 

circuits and allocating more qubits to individual jobs, rather than executing multiple 

distinct circuits in parallel. 

Finally, our algorithm exhibits the early-termination property and allows fex-

ibility in objective terms so that optimization can be tailored to specifc circuits. 

Early-termination allows time resources to be explicitly allocated when balancing 
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fdelity and runtime. The � weights can be used to assign more emphasis to e.g. 

contiguity of circuit assignments for dense circuits such as QAOA. 

7.2 Job Scheduling 

We present a parallel job scheduling algorithm, QGroup, focused on optimizing the 

execution makespan. We use dynamic programming to group circuits by similar 

run time. This ensures there is no runtime performance loss when running circuits 

in parallel. We use linear programming to optimize the schedule of each job group. 

This process minimizes the makespan and reduce the number of changes to the 

workload. We use this to reduce the overhead induced by compilation and error 

mitigation. Finally, we use these algorithms to assign job groups to the machines 

with the best fdelity. QGroup is parameterized to provide fexibility for diferent 

circuit loads and sizes. 

We evaluated our algorithm against QuCloud+ and a naive serial scheduler. Our 

method succeeds in reducing the time-makespan and runtime of individual jobs, 

achieving higher TiRF and TiIF values. Our method sacrifces some fdelity to 

increase the parallelism. 

We evaluate our algorithm on a benchmark of 2,750 small circuits. Our method 

is able to achieve near-perfect TiIF values, ensuring that no jobs are signifcantly 

slowed down by parallelism. 
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C h a p t e r 8 

QUESTIONNAIRE 
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