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Goal-Directed Language Generation with Multiple Boolean

Operators

Abstract

by

ALEXANDER RAMBASEK

We consider the problem of goal-directed natural language generation, where the

aim is to produce sentences whose semantic meaning is as close as possible to the

semantics of a communicative goal. A previous approach, Sentence Tree Realiza-

tion with Upper Confidence Trees (STRUCT) could generate sentences with con-

junctive semantics. In this thesis, we develop an extension, Disjunctive/Implicative

STRUCT (diSTRUCT) to handle non-conjunctive semantics such as disjunction

and implication. To do this we reformulate the reward component of STRUCT to

explicitly model the semantic fidelity between truth tables, and introduce a new

syntactic reward to encourage the generation of trees lexicalized with words cor-

responding to Boolean operators. Distributional heuristics are proposed to guide

the search towards syntactically-promising sentences. We also create new seman-

tically annotated Lexicalized Tree Adjoining Grammar (LTAG) trees to enable gen-

eration and a new dataset to evaluate our approach. We show that our approach

is able to generate non-conjunctive goals and investigate the computational effi-

ciency of the approach compared to only conjunctive goals.
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Chapter 1

Introduction

In today’s world, there is a gargantuan amount of data. A myriad of databases con-

tain everything from photos and videos to social media posts, transaction ledgers,

electronic health records, and so much more. Data is constantly being dumped by

smartphones, industrial equipment, IoT devices, and the like. Consequently, it can

be difficult if not impossible to manually extract useful information from big data.

Instead, natural language generation (NLG) systems can be used to synthesize the

information stored in structured data into text. The outputs of these systems can

then be used to make informed decisions, such as what drug to prescribe or where

to get Chinese takeout.

Natural language generation describes any system that produces natural lan-

guage as an output. In goal-directed NLG, there is specific information that we

want the system to convey via language: this is our communicative goal. It is also

important to precisely express the goal. The output should contain neither too

much or too little information to get the point across. This goal is commonly in

reference to a knowledge-base of facts about the world. Exactly how the semantics

of worlds and goals should be represented is a matter of open research. Different

paradigms include logical approaches as well as statistical ones.
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Figure 1.1: Basic Markov Decision Process
NLG systems can be leveraged to tackle many generation tasks, such as factual

question answering, code completion, language translation, and image
captioning.

To approach goal-directed NLG, we build on the work of the existing STRUCT

(Sentence Tree Realization with UCT) system [25] [31] [6] from our lab. At a high

level, STRUCT treats language generation as a planning problem and is a Markov

decision process (MDP). States are partially-formed sentences, and actions are the

addition of words to sentences that transform one state into another. The reward

function calculates the similarity between the current partial sentence and the

goal. Feedback from the reward function informs how we explore the search tree

of possible actions.

As a baseline, we utilize the logical sentence-level generation system STRUCT.

We offer a number of improvements over the existing STRUCT system. We address

a key limitation of STRUCT by expanding its capabilities to handle worlds and

goals that do not consist solely of conjunctive semantics, which are unit clauses
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separated by logical “AND.” We generalize the reward function of STRUCT to

align the FOL goal semantics with the partial sentence semantics, as opposed to

checking fulfilled relations. To do this, we leverage the Prolog logical inference

engine [41] as well as FOL theorem provers. To combat the added time complexity

of such an approach, we investigate how to adapt the existing method of prun-

ing bindings to work with our new version, as well as using heuristics to inform

the UCT search. Furthermore, we address the issue of semantically valid but im-

probable utterances by designing a syntactic reward to guide generation toward

the goal. Finally, we make contributions to the semantic annotations of STRUCT’s

grammar.

We provide an overview of the current work in NLG and the relevance to our

work in Chapter 2. In Chapter 3, we formally introduce the STRUCT system and

its successors: S-STRUCT and HS-STRUCT. The motivation, methods, and design

of the new system, diSTRUCT, is discussed in Chapter 4. The performance of

diSTRUCT on our newly minted dataset for non-conjunctive goals, as well as a

comparison of diSTRUCT to its predecessors on conjunctive goals, is presented in

Chapter 5. Finally, in Chapter 6, we re-examine our contributions, and discuss po-

tential future work in NLG, with an emphasis on the recent success and adoption

of ChatGPT.
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Chapter 2

Background and Related Work

2.1 NLG Pipeline

The NLG pipeline [11, 33] details the components necessary to convert raw inputs

into natural language. Traditionally, NLG systems have modeled this pipeline ex-

plicitly, and significant research is available for all the pieces. However, it should

be noted that the current trend—modeling NLG end-to-end with neural encoder-

decoder architectures—omits the explicit representation of the pipeline and in-

stead allows the model to learn whatever operations are necessary to get the de-

sired outcome. These systems have achieved state-of-the-art performance on a

plethora of NLG tasks, but a limitation is that the “black box” approach of these

systems hinders examination of the inner workings, creating an obstacle when re-

searchers try to resolve shortcomings such as hallucinations [28] and information

repetition [15].

2.1.1 Content Determination

During content determination, parts of the input data relevant to the communica-

tive goal are identified. If the input data is a collection of articles or a knowledge
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Figure 2.1: The NLG pipeline.

base, then the desired information to communicate is a small subset of the avail-

able information. The criticality of this step widely varies based on the specifics

of the NLG task, and may be omitted entirely. In the template approach of [42], a

degree of content determination is done implicitly as templates may only permit

certain kinds of information to be captured. The work in [37] models content de-

termination over an input text as a sequence-labeling task. A selector model masks

tokens in the input text that are not related to the desired content, and the quality

of the output text decoded from the encoding vectors of the unmasked tokens is

used as a surrogate to evaluate the selector. The pipeline is thus able to generate

novel text by attending to the specific tokens selected in the input text.

2.1.2 Document Structuring

Closely related to content determination, the results are divided up into sentences

and paragraphs in document structuring. Different NLG systems model document

structuring in very different ways. The simplest involves choosing in what order

a list of generated sentences will appear in the output text [22]. A more sophisti-

cated approach involves a discourse plan, by which facts from a knowledge base

are divided up into the sentences that they should appear in; this information is

then used downstream for the actual realization of these sentences via neural net-
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Figure 2.2: Content Determination in (Shen et al., 2019)
An example of results from a latent variable approach to controllable content
determination. The decoder model is trained to produce sentences from the

selected tokens while remaining faithful to the original text.

works [27]. For instance, consider the following fragment of a knowledge base:

name(z53,“Sammy Sosa”)

baseball player(z53)

born in(z53,“Dominican Republic”,1968-11-12)

paternal surname(z43,“Peralta”)

position(z43,“right field”)

career start(z53,“Texas Rangers”,1989)

career duration(z53,19yr)

is retired(z53,TRUE)

home runs(z53,609)

allstar awards(z53,7)

Figure 2.3: A toy knowledge base.

The highlights represent one possible grouping of the facts into sentences.
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Downstream, the realized text might read: “Sammy Peralta Sosa is a Dominican

former professional baseball right fielder. He made his debut for the Texas Rangers

in 1989, and his career spans 19 years. He is a distinguished hitter, boasting 609

career home runs and 7 All-Star MVP awards.” Some systems plan and generate

synchronously, wherein latent variables are conditioned on when both templating

and generating tokens. This can be realized in a hidden semi-Markov model, since

it defines a joint distribution over inputs and latent segmentations [42].

2.1.3 Lexicalization

Lexicalization is the specific realization of input symbols as words in the generated

text. An example is the lexicalization of a cat. A few possible lexicalizations might

be “kitty,” “kitten,” “pussycat,” “feline,” “my pet cat,” or “Mittens.” Each different

lexicalization imbues a different connotation into the text. The specific lexicaliza-

tion to use depends on the context of previously generated text, and therefore is

usually handled implicitly when decoding. The best example of an explicit lexical-

ization scheme is the “copy mechanism” [35]. Here, a “switch variable” is learned,

which decides whether a token from the input text should be left unchanged or

generated by a S2S model. This is especially useful to realize a text plan once it

has been linearized. For instance, the linearization

Marquesita→ country [Mexico]→ [Yucatán].

Dessert← course [Marquesita]→ ingredient [Caramelized Milk]].

is a rough outline of two sentences: the division of content between the sen-

tences and the content ordering is correct (assuming this is what we want to say).

Furthermore, the relational triplets contain words that should probably appear in

the realization. The model will need to figure out when to copy the word from

the plan and when other words need to be added. Such a lexicalization system
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would be expected to yield something similar to: “Marquesita is a food found in

the Mexico region Yucátan. The Dessert Marquesita requires Caramelized Milk

as an ingredient.”

2.1.4 Referring Expression Generation

After choosing what to say and where to say it, the next step is microplanning how

to say it, such as via the generation of referring expressions. A referring expression

is a noun phrase that uniquely identifies an entity in the world. Let us refer back

to the example knowledge base in Figure 2.3, and suppose we added the facts

baseball player(z54,“Reggie Jackson”)

position(z54,“right field”)

home runs(z54,563)

to the world. Now, there are two professional baseball right-fielders. So these

two facts alone are no longer sufficient to uniquely identify Sammy Sosa. We would

need to also mention something else, like the fact that Sammy Sosa hit 609 home

runs.

Referring expression generation is one of the most widely studied topics in NLP

Generating an arbitrary referring expression is trivial with sufficient information

about the world, but a more challenging and interesting problem is the generation

of a minimal referring expression: any referring expression with as few descriptors

as possible. To achieve this, researchers have modeled REG as a search problem

and proposed iterative algorithms [8]. However, this approach has been criticized

in recent years, as the computational cost of computing REs is very high, and the

results need not align with how humans generally describe things in discourse

[21]. Imagine if in a baseball periodical, the referring expression “Dominican right

fielder who debuted with the Texas Rangers” was used in place of “Sammy Sosa”
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every time he was referred to besides in name. This would quickly devolve into

borderline illegible writing. Instead, more recent work is concerned with referring

expressions that are both natural and varied enough to avoid repetitive prose [29].

2.1.5 Surface Realization

The generated phrases are post-processed in surface realization to form a syntactically-

valid and coherent text, taking into account any stylistic constraints. Surface re-

alization can include the generation of any number of a broad array of elements,

such as determiners, functional prepositions, morphologies, word inflections, and

punctuation. Like many of the previous steps of the pipeline, systems often omit

explicit surface realization and instead rely on the decoding process to produce

clear and concise text.

2.2 Syntax

Natural language generation systems must concern themselves with both syntax

and semantics. Syntax refers to the rules that govern how valid utterances in nat-

ural language can be formed. Semantics refers to the actual meaning of the utter-

ances themselves. Syntax is often modeled as a formal grammar: a set of rules for

rewriting strings. Formal grammars are comprised of production rules of the form

X →Y1Y2...Yn.

Here, X is a nonterminal symbol, and the production rule above allows for X to

be replaced with the symbols Y1Y2...Yn wherever it appears. Every grammar starts

with a single nonterminal S (the “start symbol” or “sentence symbol”), from which

all sentences are derived. For instance, a basic rule that exists in English might be

described as “a noun phrase followed by a verb phrase is a valid sentence.” Another

9



is “a verb followed by a noun phrase is a valid verb phrase.” Here is a formalization

of both:

S → ⟨NP⟩⟨VP⟩

⟨VP⟩ → ⟨V⟩⟨NP⟩.

To generate a valid sentence in the grammar, production rules must contin-

uously be applied until the string contains only terminal symbols: symbols that

cannot be expanded further. In natural languages, these correspond to words.

⟨N⟩ → aardvark |abacus | ... |zygote

⟨V⟩ → abandon |abate | ... |zoom.

This is a general form for all formal grammars. However, there are different

kinds of formal grammars, each with certain restrictions on the structure and use

of rewrite rules. The Chomsky hierarchy [2] groups formal grammars based on

their expressivity. The expressivity of a formal grammar is a notion of the vari-

ety of utterances that are valid strings in the language modelled by the grammar.

The higher the expressivity, the more sophisticated the utterances that can exist

in the language. In increasing order of expressivity, the four levels are regular,

context-free, context-sensitive, and recursively enumerable. At the lowest level, a

regular language is any language that can be recognized by a finite-state machine,

while a recursively enumerable language is defined in terms of a Turing machine.

We would like to strike a balance between complexity and simplicity such that

our formal language of choice can represent any structure in natural language,

while being as simple as possible. This is because learning a grammar for lan-

guage is done statistically with corpora of text, and more sophistication requires
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more training data. It is generally accepted that a mildly context-sensitive grammar

is sufficient to adequately describe natural language syntax [18], lying in complex-

ity between context-free grammars (CFG) and context-sensitive grammars (CSG).

That is, natural language is mostly context-free but does allow for cross serial de-

pendencies that cannot be captured by a context-free formalism. One specific type

of mildly context-sensitive grammar is a tree-adjoining grammar (TAG) [17].

2.2.1 Tree Adjoining Grammars

In addition to being unable to model natural language, general CFGs, in which

rewriting symbols with other symbols is the only operation, cannot be lexicalized.

To lexicalize a grammar is to convert it into an equivalent grammar in which every

action also induces the addition of a terminal symbol, or anchor. The result is that,

at any point during parsing or generation, we can reason about the current partial

sentence. As it turns out, a tree-adjoining grammar (TAG) is one such formalism

that is both mildly context-sensitive and permits lexicalization. Instead of having

rules for rewriting strings, a TAG has rules for rewriting the nodes of a tree as

other trees. This operation is called substitution. In substitution, a node of a tree

is replaced with another entire tree whose root node label matches the label at the

substitution site. TAGs are equipped with another operation, adjunction, which

permits trees to be embedded into the centers of trees. That is, adjunction operated

similarly to substitution except that adjunction sites are in the middle of trees

while substitution sites are leaf nodes. Trees that can be substituted and trees

that can be adjoined are called initial trees and auxiliary trees, respectively. A

TAG in which every tree has at least one lexical anchor is called a Lexicalized

Tree Adjoining Grammar (LTAG). Figure 2.4 [6] shows how these LTAG trees are

combined via substitution and adjunction to form utterances.

It is no surprise that phrases and sentences can have many different LTAG
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Figure 2.4: TAG Substitution and Adjunction
(a) The initial tree representing “dog” is substituted into the leaf NP node,

changing “⟨NP⟩ chased cat” to “dog chased cat.” (b) The auxiliary tree for “black”
has a root label of N, so it can be adjoined at the N node in the “dog” subtree. The
auxiliary tree’s root takes the place of the old subtree root, and the “dog” subtree

is substituted back into the foot node of the auxiliary tree.

parses. After all, there is semantic information encoded into words that lets hu-

mans know how a sentence should be mentally “parsed.” A classic example is

“time flies like an arrow” and “fruit flies like a banana.” In the first sentence,

the prepositional phrase “like an arrow” modifies the clause “time flies.” But in

the second example, “fruit flies” is a compound noun, and “like” is a transitive

verb with object “a banana.” Human beings can recognize this distinction auto-

matically: fruit can’t fly, and “fruit fly” is a well-known concept. But general TAG

parsers are not privy to this, and will parse the second sentence like the first. Prob-

abilistic Lexicalized Tree Adjoining Grammars (PLTAGs) aim to address this by

formalizing the concept of the likelihood of a specific parse, informed by human-

annotated parses on a text corpus. PLTAGs are the natural extension of n-gram

statistics to trees. That is, for every tree τ and every lexicalization τ(x) of τ , the

probability of τ(x) being substituted onto node α of a lexicalized tree τ
′
(x
′
) is

∑
derived tree∈ corpus

∑
γ ∈derived tree

1(γ = τ
′
(x
′
) and τ(x) subst. ontoγ)
1(γ = τ ′ (x′ ))

,

12



and a similar formulation for adjunction. However, there are sparsity concerns

with PLTAGs [5]: there will be plenty of specific substitutions/adjoins with spe-

cific lexicalizations that will appear in novel sentences, but did not appear in the

training corpora. For this reason STRUCT does not use PLTAGs.

2.2.2 XTAG Project

The XTAG project from the XTAG Research Group of the University of Pennsyl-

vania [1], specifically their wide-coverage LTAG grammar for English, is a major

reason why this research is possible. The XTAG grammar has a total of 1004 trees,

and captures linguistic structures such as relative clauses and wh-movement. A

large part of this work involved hand-annotating XTAG tree nodes with FOL se-

mantics so that, when the XTAG parser creates derivation trees from text corpora,

the associated semantics of the sentence would also be automatically generated.

As a result, ground-truth semantics of the goal trees are available for evaluation.

The manual annotation of XTAG trees with semantics has been done before [16];

unfortunately, this work has been lost to time. As will be discussed later, there is

a critical need for an updated grammar and parser that takes advantage of recent

developments in neural NLG. There are many sentences that are parsed improp-

erly or not parsed at all, and first-order semantics are not capable of expressing all

semantic structures found in natural language.

2.3 Semantics

Natural language generation systems must define both a syntax and semantics,

explicitly or otherwise. The benefit of the syntax of TAGs is that the formalism

makes no assumptions about the semantics of language. Indeed, any semantic

representation can be used to annotate the nodes of TAG trees. When substituting

13



and adjoining trees, semantic labelings can be combined with custom composi-

tional rules, in effect creating a “semantic tree” that is parsed synchronously with

the syntax tree. This is called a Synchronous Tree Adjoining Grammar [38]. In

this work we use first-order logic abstracted with lambda calculus, resulting in a

compositional first-order logic, but the theory of this work is extendable to more

powerful semantic representations, like Neo-Davidsonian semantics [30], frame

semantics [12], and more broadly, distributional semantics.

2.3.1 First-Order Logic

First-order logic is best understood as an extension of propositional logic. Propo-

sitional logic deals with propositions, symbols that are either true or false, and

logical connectives between propositions. In practice the allowed logical connec-

tives are {¬,∧,∨,→,↔} with the English interpretations “not”, “and,” “or,” “im-

plies,” and “if and only if.” The set of well-formed strings in propositional logic

is recursively defined as any proposition or any logical connective between two

well-formed strings. For example, let P be the proposition “it is raining” and Q “it

is cloudy.” Then the following are well-formed strings:

¬P

(P ∧Q)∨ (¬P ∧¬Q)

P ↔¬(¬P )

Q∧¬Q.

Every statement in propositional logic evaluates either to true (⊤) or false (⊥) un-

der an assignment of truth values to propositions. The assignment “P = ⊤,Q = ⊥”

gives “¬P =⊥, (P ∧Q)∨ (¬P ∧¬Q) =⊥.” Notice how, regardless of the assignment,
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the third statement is always true and the fourth statement always false. These

types of statements are called tautologies and contradictions, respectively.

Propositional logic also comes equipped with inference rules. Inference rules

allow for the derivation of new formulae from known ones. Modus ponens is the

simplest:
P →Q,P
∴Q

.

That is, if P implies Q, and it is known that P = ⊤, modus ponens can be used to

derive Q =⊤.

The set of well-formed strings under the formal grammar of propositional logic

defines a formal language, and the inference rules define a deductive system. To-

gether, a formal language and a deductive system make a formal system. First-

order logic is another such formal system. Like propositional logic, well-formed

strings can be built by combining two well-formed strings with a Boolean connec-

tive. However, first-order logic generalizes the propositions of propositional logic

into predicate functions. Predicate functions have a number of variables, deter-

mined by their arity. When world entities are bound to the variables, the predicate

expression evaluates to ⊤ or ⊥. The truth value changes based on the bound enti-

ties. For example, the predicate function likes(x,y) accepts two arguments. It may

be the case that likes(Alice,Bob) = ⊤ but likes(Bob,Alice) = likes(Carol,Bob) = ⊥.

Furthermore, first-order logic allows for the quantifiers “∀” and “∃,” read as “for

all” and “there exists” The FOL statement

∀x ∃y loves(x,y)

reads “For every x, there exists a y such that loves(x,y)” or more simply, “ev-

erybody loves somebody.” First-order logic is called as such to distinguish it from

higher-order logics such as second-order logic, which permits predicates to be
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quantified over and accept other predicates as arguments.

As it turns out, to make first-order logic suitable for use with STRUCT, it must

be augmented with lambda calculus. This is because otherwise, first-order logic

expressions could not be composed together in any more sophisticated ways than

joining them with a Boolean connective. The specific piece of lambda calculus nec-

essary for this purpose is the lambda extraction. A lambda extraction is a function

definition of the form

(λx.M)

that takes as input x and returns the body M. Suppose that a TAG tree is rooted

with “because” and the two subtrees have semantics matching “it is raining” and

“it is cloudy.” It is not possible to introduce a predicate “because” that accepts both

sentences as arguments without transitioning into second-order logic. Instead, the

lambda extraction

λxy.(x→ y)

allows for the formation of the sentence “it is raining because it is cloudy” with

the appropriate first-order semantics. This is useful to STRUCT because TAG trees

have to reason over FOL expressions propagated upwards by subtrees.

Neo-Davidsonian Semantics

In first-order logic, there is no notion of time. First-order logic only permits one

to discuss named entities and predicates defined over those entities. There is not

a way to discuss events or anything about events, including where and when they

happened. Consider the sentence

After the game, Mary took a walk in the park.

The four nouns in this sentence correspond to entities in FOL: “game,” “Mary,”

“walk” and “park.” A natural first step in building a FOL expression representing
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this sentence is to declare four entities, characterize their role in the sentence, and

model the main clause.

person(z1,Mary) ∧ game(z2) ∧ walk(z3) ∧ park(z4) ∧ took(z1, z3)

But, there is an issue. There is not an obvious way to model in FOL the fact

that Mary’s walk was located “in the park” and happened chronologically “after

the game.” As it turns out, there is no way to do this directly in FOL without

modifying the logic or switching to a higher-order logic. The modifications “in the

park” and “after the game” qualify an event, not an entity, and FOL does not allow

predicates or quantification over anything except non-logical objects (variables).

Furthermore, it is preferable to remain in first-order logic instead of a higher-order

logic in reasoning systems because FOL is complete: any valid formula can be

proved without additional inference rules. However, re-casting events into event

variables circumvents this issue; this is precisely what is dubbed neo-Davidsonian

semantics [30], a variation of Donald Davidson’s original event semantics from

1967 [10].

In Davidson’s original work, he argues that transitive verbs implicitly intro-

duce an “event” variable that is important to the meaning. Consider the following

sentence:

John bakes a cake.

“Bakes,” in this context, is a transitive verb; there is a “baker” (John) and a

thing that is baked (the cake). The semantics would reasonably read as

BAKES(John, the cake).

However, Davidson points out that representations like above are a dead end in
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that no more can be specified about the cake or the circumstances surrounding

John’s baking of it. If the next sentence reads “John baked it hastily in an oven in

his basement at midnight,” it is not clear what “it” refers to in the continuation.

Thus, Davidson proposes an alternate logical form.

∃e [(BAKES)(John, the cake, e)].

The continuation is now obvious.

∃e [BAKES(John, the cake, e) ∧ ASPECT(e,hastily)

∧ INSTRUMENT(e,oven)∧LOCATION(e,basement)

∧TIME(e,midnight)].

(2.1)

Linguists began to realize that, even though Davidson intended event vari-

ables to be linked to action verbs, any predicate may have a “hidden” Davidsonian

event argument associated with it. Such an observation gave birth to the neo-

Davidsonian paradigm [30]. The event is thus separated from the predicate and

stands alone in neo-Davidsonian semantics:

∃e [BAKES(e) ∧ AGENT(e, John)

∧PATIENT(e, John) ∧ ASPECT(e,hastily)

∧ INSTRUMENT(e,oven) ∧LOCATION(e,basement)

∧TIME(e,midnight)].

(2.2)

Under the neo-Davidsonian paradigm, all verbs are predicates with arity 1

ranging over events, and the verb’s arguments are introduced via roles like “agent”

and “experiencer.” This allows logicians to decompose verbs into more granular
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elements such as cause and effect, which further permits the introduction of a

temporal ordering on events.

Neo-Davidsonian semantics offer NLG systems more linguistic power, but for

the sake of simplicity STRUCT is considered under the existing framework of FOL

semantics. As will be shown, STRUCT’s architecture is semantically agnostic, so

the methods in this paper are generalizable to any compositional semantics.

2.3.2 Distributional Semantics

“You shall know a word by the company it keeps.” This quote is attributed to

linguist John Rupert Firth [13], and captures the motivation for distributional se-

mantics. Distributional semantics is concerned with the co-occurrence statistics

of words and phrases in natural language. From these statistics, high-dimensional

embeddings can be learned for utterances, allowing for the direct quantification of

the meaning of language. A good embedding will be smooth; i.e., small changes in

the embedding space correspond to small changes in meaning. For instance, one

would expect the vector for “happy” to be reasonably close to the vector for “joy-

ous” and far away from the vectors for “carburetor” and “Arizona Diamondbacks.”

With a set of learned embeddings, models can autocomplete missing words or

phrases from text. This technique is the main theory behind Google’s word2vec

[26], where log-linear classifiers are trained to predict words based on context.

Often, a desired property of these embedding spaces is compositionality. A word

that illustrates a concept can usually be broken down into smaller words (e.g.,

“mercenary” could be subdivided into “soldier” and “contractor”). An embed-

ding space that exhibits additive compositionality might allow for assertions like
−−−−→
king − −−−−→man + −−−−−−−→woman = −−−−−→queen . Such constraints can be enforced during training

to guide the space towards this more interpretable form [36]. Note that, under this

regime, the similarity between a candidate utterance and a communicative goal
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can be found by simply taking a dot product; this has been explored in previous

work on STRUCT [6].

2.4 NLG Strategies

The pipeline illustrated in Section 2.1 is merely an abstraction of common themes;

a reification of this pipeline frequently involves merging or even omitting steps.

NLG systems generally adhere to a planning approach, a statistical approach, or

a combination of both. Most modern NLG is done with neural networks, but re-

searchers look to the NLG-as-planning literature to address some of the pitfalls of

neural NLG.

2.4.1 NLG as Planning

In this paper, NLG is treated as a planning problem. A planning problem is de-

fined by states, actions that transfer the agent from one state to another, and a

desired “goal” state. Here, states are partial utterances, and actions modify these

utterances by adding words. The actions of the planning problem are constrained

by the grammar of language. The goal state is the target utterance. There is a

rich literature of different formulations of the language planning problem, but the

system most similar to the work done in this paper is SPUD (Sentence Planner

Using Descriptions) [39]. SPUD is a question-and-answer system designed to be

a librarian. That is, SPUD queries the knowledge base of the catalog of a library

to answer questions about the library’s books. For instance, the system might be

asked “Do you have the books for Syntax 551 and Pragmatics 590?” The main idea

of the creators of SPUD is to treat the realization of sentences as closely tied to re-

ferring expression generation. SPUD parses the question to determine the entities

(books) and relations (things describing books) that are important to the speaker.
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The system maintains two knowledge bases: information known to the system,

and information known to the speaker. This allows for a single session of multiple

questions and answers that do not convey any redundant information to the user.

To distinguish entities for the speaker, SPUD generates minimal referring expres-

sions for all necessary entities. Then, in a greedy fashion, SPUD substitutes and

adjoins the TAG trees rooted with these entities to try and realize the communica-

tive goal. There are many limitations of this system. The most onerous is the fact

that many trees and semantic annotations are hand-tailored to be amenable specif-

ically to the library-related task. Also, the allowed questions are very rudimentary

in nature, only pertaining to distinguishing books from others and talking about

whether a book has been lent. The CRISP system [20, 5] expands on SPUD by

integrating an off-the-shelf graph planner as well as probabilistic LTAG trees to

improve search speed and quality.

2.4.2 Neural NLG

The Transformer [40] network is a real tour de force, having captivated the compu-

tational natural language world and forming the backbone of popular generation

systems like ChatGPT [9] and Google Bard. Inspired in part by the limitations of

Recurrent Neural Networks (RNNs), the Transformer boasts faster training times

and improved performance in the presence of long-range dependencies. The archi-

tecture is based on the multi-head attention mechanism [4]. Simply put, attention

layers allow individual tokens to amplify signals from other parts of the input that

are relevant to it.
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Chapter 3

Conjunctive Goal-Directed NLG

Using STRUCT

Sentence Tree Realization using UCT (STRUCT) is an NLG system that generates

at the sentence level. Given a world of entities and relationships between enti-

ties expressed in first-order logic, STRUCT is tasked with generating a sentence

that satisfies a communicative goal, while remaining logically consistent with the

world. A communicative goal is some subset of the world that we want to talk

about, precisely. STRUCT does this by iteratively modifying a semantic expression

by introducing entities, relationships, and qualifiers on relationships. The perfor-

mance of the system is obtained by comparing the semantic expression generated

by STRUCT to that of the communicative goal.

STRUCT models NLG as a Markov decision process (MDP). The states S are all

syntactically-valid XTAG trees with associated first-order logic (FOL) semantics.

From any given state, the available actions A are all the ways that any trees in the

grammar can be validly substituted into or adjoined onto the state. The transition

probabilities T associated with actions capture the plausibility of the utterance

of the resulting state. One possible way of doing this is to compute conditional
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Figure 3.1: Natural Language Generation
(1) The agent selects and performs an action that is available to it in the current
state. (2) The action results in a new state. (3) The agent receives feedback from

the environment in the form of a reward or penalty. (4) The agent updates its
policy based on the reward to perform better.

probabilities of lexicalized trees over text corpora. The reward function R maps

actions from any state to a real-valued number that describes the “goodness” of

the resulting state. Finally, the discount factor γ ∈ [0,1] is used to scale future

rewards, realizing an agent’s preference for immediate rewards above future ones.

In this domain, a stable environment and lack of time preference means that it is

sensible to set γ = 1.

The search begins with the initial empty state ϵ. From this starting state,

STRUCT can substitute any initial tree from the grammar. So, the next state could
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be something like “(S (NP) (VP)),” intuitively meaning “the sentence has a noun

phrase followed by a verb phrase.” Since there are no words in our state yet, there

can be no associated FOL semantics. Another action could be the substitution of

a noun tree anchored with “dog” to form “(S (NP (N dog)) (VP),” which parses

as the incomplete sentence “dog” and FOL semantics ∃ x dog(x). From this state,

the possibility for more actions opens up. Two such actions would be the addi-

tion of the determiner “the” and the adjective “brown,” both adjunctions. This

produces “(S (NP (D the) (NP (N (A brown) (N dog)))) (VP)),” with semantics

∃ x dog(x) ∧ brown(x). This process continues until STRUCT can obtain no better

expected future reward by performing an action, or the search is cut off prema-

turely. STRUCT is an “anytime algorithm,” meaning that whenever the algorithm

is terminated, STRUCT can return a syntactically valid answer.

3.1 UCT Algorithm

STRUCT uses a Monte Carlo tree search (MCTS) to plan in the MDP. MCTS is a

stochastic method for heuristically exploring the decision process. MCTS is neces-

sary because the number of possible states is enormous, and STRUCT could never

explore all of them, even for very simple goals. Furthermore, a single goal means

that exploring many of them is unnecessary. There are four steps in MCTS:

1. Begin at the root of the tree (the current state), and continue expanding child

nodes until a leaf node (a child with no explored children) is reached. This

step can be biased to expand towards the most promising nodes.

2. From the leaf node, apply one or more valid actions, and choose a child node

from one of them.

3. Complete a random policy rollout from the child node until a terminal node
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(or a specified depth) is reached. The rollout could be uniform random, or a

more informed procedure.

4. Back up the reward from the rollout to update nodes on the path back to the

root.

Algorithm 3.1: Monte Carlo Tree Search
Input: s0 root state, d depth limit, γ discount
Output: best action from root

1 τ0←− BuildTree(s0)
2 repeat
3 s←− τ0.state
4 r←− 0
5 τ←− null
6 while Nonterminal(s) do
7 a←− SelectAction(s)
8 ŝ←− Transition(s,a)
9 r←− r +R(s,a)

10 if τ.children[a][ŝ] = null then
11 τ.children[a][ŝ]←− BuildTree(ŝ)
12 break

13 τ←− τ.children[a][ŝ]
14 s←− ŝ
15 r←− r +γ · PolicyRollout(s,d)
16 while τ , null do
17 τ.reward←− τ.reward + r
18 τ.count←− τ.count + 1
19 τ←− τ.parent
20 until Timeout()

21 return argmaxa∈A

∑
τ
′ ∈τ.children[a][·] τ

′
.reward∑

τ
′ ∈τ.children[a][·] τ

′ .count

The important part to notice is that the “select action” step of MCTS can be

parameterized in many different ways. The trick is to balance exploration and

exploitation: we want to explore enough of the search tree to find a good reward,

but also exploit the best reward we’ve found thus far. For instance, it might be

worthwhile to to explore an action with smaller reward but more unexplored states
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to take advantage of the fact that we could encounter an even better reward than

we’ve seen up to this point. However, after a sufficient amount of exploration,

the likelihood that we will find a better reward diminishes, so it is better to take

advantage of our best policy. UCT solves what is known as a multi-armed bandit

problem. The motivation is that you are in a casino, standing in front of k slot

machines. Every time you play a slot machine, you receive a reward sampled from

that machine’s unknown probability distribution. The goal is to obtain as great a

reward as possible with a fixed number of slot pulls. Notice that, if we knew the

machine with the highest expected reward, we would always pull that machine.

But we can only estimate the expected reward of each machine by repeated pulls.

If we calculate the cumulative expected reward from pulling some machines a total

of k times and subtract that from the expected reward of pulling the best machine

k times, we get a quantity known as regret. Regret minimization is one way to

measure the goodness of a bandit algorithm.

To formalize this notion, STRUCT uses an upper confidence bound (UCB) [3]

to select actions. That is, with high probability, we can know that the true expected

payoff of an action is less than the upper bound. The upper bound is computed as

ŷi + β

√
2ln(n)
ni

where ŷi is the average reward of machine i thus far, ni is the number of times

machine i was played previously, n is the total number of machine plays thus far,

and β is a constant. As it turns out, always playing the machine that maximizes an

expression of this form results in the smallest expected regret of any policy under

uncertainty [3].

The Upper Confidence Bounds applied to Trees (UCT) algorithm [19] is a mod-

ified MCTS that uses UCB to select actions.
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Algorithm 3.2: UCT
Input: State state, Timeout T

1 while time < T do
2 if state has unexplored actions then
3 action← GetRandOpenAction(state)

4 else
5 initialize policy
6 actions←− GetValidActions(state)
7 for action in actions do

8 policy[action]← avgRewards[s,a] + c
√

ln(stateV isits[s])
stateActionV isits[s,a]

9 action← argmax(policy)

10 nextState, reward ← SimulateAction(state,action)
11 q← reward +γ · Explore(nextState,1)
12 UpdateValue(state,action,q,0)

13 return bestAction(state,0) // The best action from state at depth 0

3.2 STRUCT Algorithm

STRUCT leverages the UCT algorithm to explore actions over the tree grammar,

with a goal of realizing English text whose meaning most closely matches the se-

mantics of the communicative goal. This section lays out the foundations of the

algorithm and provides intuition on certain design choices. It should be noted that

previous research has yielded many variations of STRUCT with mixed results. The

most impactful variations are touched upon briefly, but for the sake of brevity, fo-

cus stays on the essential building blocks. Furthermore, STRUCT (prior to this

work) has always made the assumption that the semantics of the world, goal, and

grammar are purely conjunctive (predicates connected with logical AND). Empha-

sis is placed on which components take advantage of this assumption to simplify

the search procedure and reduce runtime.
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3.2.1 Actions

Every action at STRUCT’s disposal is either a substitution of an initial tree, or an

adjunction of an auxiliary tree as discussed in Section 2.2.1. Through these actions,

STRUCT incrementally alters the meaning of the current sentence. The procedure

for action selection is illustrated in Algorithm 3.3.

Algorithm 3.3: getAction
Input: Grammar R, State state, NumTrials N , Lookahead D

1 for N do
2 testState← state
3 if testState has unexplored actions then
4 action← pick with open action policy

5 else
6 action← pick with tree policy

7 testState← applyAction(action, testState)
8 depth← 1
9 while depth < D do
10 action← sample PLTAG tree from R
11 testState← applyAction(test,State)
12 depth← depth+ 1
13 reward← calcRewardBindings(testState)

14 associate reward with first action taken

15 action← action with max associated reward

At every iteration, a candidate action is selected from the set of all valid (“open”)

actions for the current state. Initially, unexplored actions are sampled at random.

The weights of the multinomial distribution for random action selection can be

weighted by the probabilities associated with the PLTAG trees. For previously ex-

plored actions, the tree policy (Algorithm 3.1) is used, balancing the preferences

of exploring less-seen actions, and exploiting the best actions thus far.
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3.2.2 World Pruning

The communicative goal for STRUCT is only a subset of its total knowledge, taken

from the world. The world lists all entities and relations that are known to STRUCT

before generation. STRUCT tailors its generations based on their satisfiability and

specificity with respect to the world: utterances should not be contradicted by the

world, nor be overly ambiguous. As the size of the world increases, it is more com-

putationally expensive to generate referring expressions for entities. To alleviate

this, it is natural to consider ways to limit the attention of STRUCT to only parts

of the world.

The entities in the goal are a subset of all of the entities in the world. The

world may contain lots of information that is either only indirectly related to the

goal, or not related at all. Consider the toy goal “The dog chased the cat.” The

goal references a specific named entity, but omits many other modifiers. This goal

makes no mention of the fact that, say, this particular dog is a 9-year-old golden

retriever named Chelsea. But assuming the world contains mention of multiple

dogs, some or all of this information may be necessary to uniquely refer to Chelsea.

Alternatively, a separate fact in the goal asserting that “the mitochondria is the

powerhouse of the cell” is superfluous to the task at hand. The latter can simply

be excised from the world entirely, while the former is taken into account during

referring expression generation.

3.2.3 Grammar Pruning

STRUCT’s grammar—the set of all available annotated XTAG trees— needs to be

as large as necessary to provide expressivity in generating a myriad of utterances.

However, the “ideal” derivation tree for a communicative goal contains only a

handful of these trees. It would not be sound to tell STRUCT exactly the trees

and lexicalizations necessary to represent the goal, as this information would not
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Figure 3.2: STRUCT flow of execution.

be available outside of testing. But grammar pruning, similar to world pruning,

is a means of eliminating trees that are not essential to generation. Algorithm 3.4

details the process for pruning the grammar.
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Algorithm 3.4: pruneGrammar
Input: Grammar R, World W , Goal G

1 G′← ∅

2 visited← ∅

3 queue← G.entities
4 while |queue| > 0 do
5 e← queue.dequeue()
6 neighborhood← {relations of G in which e is an argument}
7 G′← G′ ∪neighborhood
8 neighbors← neighborhood.entities
9 queue+ = neighbors − visited

10 visited.append(e)

11 R′← ∅

12 for tree ∈ R do
13 if tree fulfills semantic constraints or tree.relations ⊆ G′.relations then
14 R′← R′ ∪ {tree}

15 return R′

First, STRUCT generates what is known as the closure of the goal. The closure

contains every relationship that involves at least one goal entity. Adding relations

in this manner can introduce new entities into the closure, so the procedure is iter-

ated until there are no more relations left to add. Thus, the closure contains every

predicate that can be used to distinguish a goal entity. Then, the semantics of ev-

ery tree is compared with the semantics of the closure, and trees that do not add

relevant information are discarded. There are many additional trees that should

not be pruned from the grammar. These include trees that combine the seman-

tic representation of other trees in different ways, such as a tree anchored with a

comma used to connect two clauses together.

3.2.4 Reward

In order to reach the goal, STRUCT must explore many intermediate states. To

inform the search, STRUCT needs a reward signal that represents how well the

current state represents the goal. But, the utterances produced by tree substitu-
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tion and adjunction do not directly model the entities in the goal. That is to say, for

instance, a noun phrase tree introducing the phrase “the dog” into the state con-

tributes semantics like ∃x dog(x), which does not reference a named entity. World

entities must be bound to the free variables for direct comparison with the goal.

Then, the reward can be calculated as in Algorithm 3.5 by counting the number of

predicates shared between the expressions, minding entities, order, and arity.

Algorithm 3.5: calcReward
Input: Partial Sentence S, World W , Goal G

1 score← 0
2 bindings← getV alidBindings(S,W )
3 if |bindings| > 0 then
4 binding← bindings[0]
5 S← apply binding to S
6 score += C1|G.relations∩ S.relations|
7 score −= C2|G.conds − S.conds|
8 score −= C3|G.entities⊖ S.entities|
9 score /= C4|bindings|

10 score −= C5|S.sentence|
11 return score

A number of penalties are assessed to the reward. The reward is divided by the

total number of world bindings. The motivation is that the more bindings there

are, the more ambiguous the state is. STRUCT should be as specific as the world

allows. Also, the reward is reduced by the length of this state’s utterance. This is

based on a heuristic similar to Occam’s razor in that, between otherwise semanti-

cally equivalent sentences, STRUCT should prefer the shortest one. It should be

noted that sentence length need not correlate with other desirable properties of ut-

terances, like coherence and style. Such considerations would be handled further

along in the NLG pipeline.

32



3.2.5 Pruning and Caching Bindings

Before this reward is calculated, STRUCT must determine all the ways the partial

semantics can be bound with world entities. This is a combinatorial problem: there

are
(N
K

)
bindings of N world entities into K free variables. Fortunately, there are

ways of reducing the computational strain, the most straightforward of which is

caching bindings to avoid repeated calculations when different tree states produce

the same semantics. In the setting of conjunctive-only bindings, another modifica-

tion can be made by realizing that, if a specific binding is invalidated for one state,

then it can never become valid again in a future state, as future states will only be

more specific.

Algorithm 3.6: getValidBindings
Input: Partial Sentence S, World W

1 validBindings← emptyset
2 k←min(|s.entities|, |W.entities|)
3 for worldEntities in {length k permutations of W.entities} do
4 bindings←mapping of {S.entities→ worldEntities}
5 S ′← applyBinding(binding,S)
6 if S ′ is consistent with W then
7 validBindings.add(binding)

8 return validBindings

With a more general FOL semantics, the set of all bindings cannot be computed

efficiently because first-order logic satisfiability is undecidable.

Distributional Heuristics

The size of the search space and the difficulty of binding checking are major hur-

dles in scaling up STRUCT. It is natural to look to circumvent these issues by

means of heuristics, where a degree of accuracy is sacrificed for efficiency. The

introduction of distributional semantics is a potential solution. Rather than solely

reasoning over FOL representations of meaning, STRUCT could work with word
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vectors. Under this new regime, several things change. Entity relations, previ-

ously modeled via predicates, are now represented with the word vectors of the

predicates themselves. If the word vectors obey some form of compositionality,

then distributional meanings of the states and the goal itself can be constructed

by composing the vectors of the individual relations. Now, the binding problem

reduces to finding the world entity vectors that are most similar to the vectors of

the free variables in the current state. A suitable choice of data structure (e.g., a

k-d tree) allows for efficient lookup of these vectors. The reward, then, is obtained

via cosine similarity between the state’s vector and the goal’s.
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Chapter 4

STRUCT with First-Order Logic

A major shortcoming of the current STRUCT system is that it is not suited to han-

dle non-conjunctive Boolean connectives. That is to say, STRUCT assumed that

all goals and facts in the world are lists of predicate functions connected by log-

ical “and.” This assumption is built into the reward and bindings calculations

discussed in Sections 3.2.4 and 3.2.5, respectively, and allows for many of the

shortcuts and performance increases STRUCT enjoys. This section details Dis-

junctive/Implicative STRUCT (diSTRUCT), a re-factoring of STRUCT to properly

handle non-conjunctive semantics like negation (“not”), disjunction (“or”), impli-

cation (“if”) and double implication (“if and only if”). A new reward function

and bindings cache compatible with this new regime are proposed and evaluated.

Also, additional enhancements are made to the system with the goal of increasing

expressivity and practicality of use.

It is worth commenting on what is meant, specifically, by “goals with non-

conjunctive semantics.” In this work, such goals represent uncertainty, either in

an agent’s knowledge about the world, or in a broader, epistemological sense. That

is to say, an agent might be aware of the existence of a particular dog d1, but is

uncertain of its exact breed, and only knows enough to say with certainty that it is
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either a golden retriever, or a dachshund. In this case, such a factoid might appear

as ∃ d1 dog(d1)∧ (golden retriever(d1)∨dachshund(d1)). This would in principle

require the world to be represented by uncertain facts [7]. However, reasoning

within such first-order probabilistic worlds can be undecidable in the worst case.

Furthermore, the absence of a co-reference resolution pipeline makes it difficult

to perform inference to deduce new information about the world during search.

For example, if a dog is mentioned in two different sentences, it can be difficult to

determine if they are in fact the same dog, as human speakers use context clues

not directly captured in utterances. And without access to some global knowledge

base, who is to say whether rules introduced in text apply to only a specific dog or

to all dogs across all texts? Instead, this work concerns itself with the generation

of sentences that are in agreement with a particular logical form.

4.1 Non-conjunctive Semantics

diSTRUCT, unlike STRUCT, handles the introduction of logical OR and logical

NOT in the world and goals. Notice that once diSTRUCT can handle these op-

erators, it can handle any logical formulae since these operators are functionally

complete. It follows that the same is possible with only logical AND and logi-

cal NOT, but the introduction of logical NOT (as well as implication) allows for

more natural-sounding utterances. It should be noted that logical OR and XOR

are indistinguishable in conversation without context clues (e.g., “The dog barked

or chased the cat” may be inclusive, but “Bob is dead or alive” is certainly not).

As this is outside of the scope of this work, “or” is assumed to be “inclusive or”

wherever it appears, and exclusion is possible but less concise (e.g., “Bob is dead

or alive, and Bob is not both dead and alive”).
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4.1.1 Logical OR

Logical “or” in the world is interpreted to represent uncertainty. That is to say, if

the fact “The dog or the pig chased the cat” is asserted to be true, then there are

three possible models:

1. The dog chased the cat.

2. The pig chased the cat.

3. The dog and the pig both chased the cat.

However, diSTRUCT is penalized for generating sentences that are not logically

entailed by the world. In this example, none of the possible models are entailed by

the world, forcing diSTRUCT to only generate sentences that are as strong as the

world permits. That is to say, if the world is only strong enough to assert that either

the dog chased the cat or the pig chased the cat, allowing the system to generate

“The dog chased the cat” is bad because this need not be true of the world.

4.1.2 Logical NOT and the CWA

STRUCT’s adherence to the closed-world assumption (CWA) means that logical

negation should follow naturally: there is no difference in logic between a negated

literal in the world and an absent literal. In practice, however, STRUCT has no

mechanism to explicitly interpret or generate negated utterances. Furthermore,

STRUCT would be forced to generate prohibitively large sentences to satisfy a

negated goal. Consider a world of N dogs, of which N − ϵ have bushy tails for

ϵ << N , with a goal involving the unique identification of one of the dogs without

a bushy tail. For a sufficiently large N , the number of distractors could be huge

(e.g., “the dog with a brown wavy coat that is longer than 2 inches and shorter than

3 inches and blue eyes and floppy ears and...”). The ability to instead say “the dog
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without a bushy tail” (∃ x ¬has bushy tail(x)) allows diSTRUCT to only concern

itself with disambiguation among the ϵ entities without bushy tails.

Recall also the core algorithm of STRUCT’s binding checking: traversing the

entity-relation hypergraph of the goal and world to determine which entities sat-

isfy which predicate functions. However, this approach breaks down with the in-

troduction of logical NOT. For starters, adapting this approach to handle negation

means explicitly encoding negated predicates as relations in and of themselves on

the hypergraph. That is to say, “dog” and “not dog” are both their own relations.

To find entities that aren’t dogs, simply figure out which entities enter into the

“not dog” relationship with other entities. The problem is that, typically, the at-

tributes that an entity does have will be dwarfed by the allowed attributed in the

world that it could have. Consequently, for every world entity, there is a combina-

toric explosion of negated relations added to the graph that makes computation

infeasible. As discussed later, this is a major reason that this approach was substi-

tuted with the resolution engine of Prolog.

4.1.3 Implication

Logical implication can be built from the operators already discussed:

x→ y ≡ ¬x∨ y.

Despite this logical equivalence, it has its own place in natural language. For

instance, a sentence like “if the dog chased the cat, the dog is tired” (p =⇒ q), is

logically equivalent to “the dog didn’t chase the cat, or the dog is tired” (¬p ∨ q)

and “it is not true that the dog chased the cat and the dog isn’t tired” (¬(p∧¬q)),

but the latter two representations are difficult to decipher. It is thus preferable to

guide search towards the first representation.
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4.2 Bindings in diSTRUCT

The ability to determine what world entities can be bound to free variables in a

statement such that the resulting proposition is entailed by the world is crucial

to the functioning of STRUCT. Goal bindings allow for semantic comparison be-

tween an expression and the goal, and world bindings reveal the ambiguity of a

statement. The Prolog resolution engine is leveraged to find entities satisfying one

or more predicate functions, which may be negated.

In its current form, STRUCT is able to generate sentences like “The dog which

chased the grey cat has long fur.” An example of a potential generation path is:

The dog.

The dog has fur.

The dog has long fur.

The dog which chased the cat has long fur.

The dog which chased the grey cat has long fur.

At the beginning, STRUCT arrives at the partial sentence “The dog,” introduc-

ing accompanying semantics ∃ x dog(x). The binding checker reports that there

are many world entities which may be bound to the free variable x (i.e., the world

contains many dogs). STRUCT receives a positive reward for satisfying the “dog”

predicate in the world, and some negative reward for the number of bindings. The

next partial sentence, “The dog has fur,” now satisfies both the “dog” and “fur”

predicates in the goal, while having a smaller number of bindings: there cannot

be more dogs with fur than there are dogs. There are fewer dogs with long fur,

fewer yet that have chased cats, and fewer yet that have chased grey cats. At every

iteration in the search, the number of candidates for x is non-increasing. Suppose

then, at the beginning of the search, it is determined that some world entity x
′

is

not a dog, making the binding x → x
′

inconsistent. Because the set of consistent
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bindings either shrinks or stays the same, x → x
′

will never again be consistent

with the world. This is intuitively pleasing: a non-dog can’t be a dog, or a furry

dog, or a furry dog that chases cats. STRUCT capitalizes on this observation by

never again checking any bindings that have been invalidated before. As it turns

out, such a strategy falls apart with non-conjunctive semantics. Consider a new

communicative goal:

The dog or the pig chased the cat.

Starting with the same initial partial sentence, the set of bindings consists of all

dogs in the world, which excludes x
′
. Supposing that the next partial sentence is

“The dog or the pig,” the semantics are ∃ x dog(x)∨pig(x), and the valid bindings

for x are all dogs and pigs in the world. If x
′

is indeed a pig, then x→ x
′

is once

again a valid binding. However, it was noted that STRUCT will never again recon-

sider this binding. Thus, the introduction of disjunction disallows this pruning

strategy. A similar argument applies to negation. This presents an issue: the bind-

ing problem is combinatoric (
(n
r

)
ways to bind n world entities to r free variables),

and this binding pruning strategy was a major defense against combinatoric ex-

plosion. Unfortunately, the undecidability of first-order logic dictates that there is

no algorithm more efficient than checking bindings brute-force. There are several

recourses, which are explored in diSTRUCT:

1. Sample a random subset of the possible bindings as a heuristic estimate.

2. Recursively use previously-computed bindings when building up new bind-

ings.

3. Use good search heuristics to avoid excessive binding calculation.

Idea (1) appears in the reward pseudocode in Section 4.3. Idea (2) forms the

basis for the caching of Prolog’s bindings, and (3) is explored in the context of

distributional heuristics.
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4.2.1 Prolog and Undecidability

As mentioned, no efficient method exists for the general bindings problem as a

consequence of the undecidability of first-order logic. However, Prolog operates

over Horn clauses, a decidable fragment of first-order logic. This means that Pro-

log is by itself inadequate to solve this problem. Indeed, consider a simple dis-

junction of two unnegated literals:

p∨ q

This cannot be written as a Horn clause, which may only contain a single un-

negated literal. But previously, the Prolog rule

dog(X) |= brown(X);black(X).

was provided, containing two unnegated literals in the statement body. How

can this be? The answer is that calling the semicolon a “disjunction” is misleading.

The above statement was already said to be equivalent to

dog(X) |= brown(X).

dog(X) |= black(X).

When Prolog is asked to check if d1 is a dog, it first encounters the rule dog(X) |=

brown(X). It then attempts to resolve brown(d1). If brown(d1) is true, Prolog can

stop and return true. If not, it moves on to the rule dog(X) |= brown(X) and does

the same thing. This is exactly what the semicolon tells Prolog to do. The sub-

tle point to notice is that this procedure is indifferent to the “disjunction” and will

proceed the same if both brown(d1) and black(d1) are asserted separately, like they
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would be in a conjunction. The result is that Prolog returns bindings which entail

p∧ q, even when the world is only strong enough to entail p∨ q. Since these “con-

junctive” bindings are a superset of the “disjunctive” bindings (any binding that

makes p∧ q true must also make p∨ q true), explicit theorem proving via a truth

table is used to validate the Prolog world bindings before the reward calculation.

4.3 Truth Table Reward

Once bindings are computed, a reward signal is necessary to give STRUCT feed-

back on how close the current state is to the communicative goal. The new algo-

rithm is built around the previous algorithm, but makes some crucial changes. It

is no longer enough to simply compare the number, arity, and arguments of the

predicates that appear in the current state and in the goal, because there are many

different FOL statements that are indistinguishable under this metric. Instead, the

logical extension is to compare the truth tables of the goal and the current state,

computed over the union of their entities. The larger the norm is of the difference

of the truth tables, the less similar they are. This is used to scale the old reward. In

addition, a “syntactic penalty” is assessed that penalizes STRUCT for generations

that don’t match the syntax that is desired in the goal. More concretely, if the goal

is “If the dog chased the cat, then the dog is tired,” another logically-equivalent

way of saying this is “The dog didn’t chase the cat or the dog is tired,” but it is

preferred that STRUCT maintain the explicit implication. This way, generation

control can be implemented by changing the structure of the goal logic.

To create truth tables for the goal semantics and the semantics of a candidate

utterance, all literals are replaced with variables, such that two literals are as-

signed the same variable if the name, arity, and arguments of the literal all match.

The distance between the two truth tables is the (L0) norm of the logical XOR of the
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result columns. This effectively counts the number of models that differ between

the tables.

The reward is scaled down by the difference between the number of world bind-

ings and the number of bindings found in the reward calculation. Originally this

was a simple penalty on the number of world bindings, but diSTRUCT should not

be penalized for being ambiguous when the goal itself is also ambiguous. Since

there can be very many bindings, a controllable hyperparameter is introduced to

only sample some of the bindings as a heuristic estimate. This is the “k” that ap-

pears in line 14.

Algorithm 4.1: calcReward2
Input: Partial Sentence S, World W , Goal G, max bindings k

1 score← 0
2 goal bindings← getP rologBindings(S,G)
3 for gb ∈ goal bindings do
4 temp← 0
5 S

′ ← apply gb to S

6 temp += C1|G.relations∩ S ′ .relations|
7 temp −= C2|G.conds − S ′ .conds|
8 temp −= C3|G.entities⊖ S ′ .entities|
9 temp −= C4 · |truthT ableDistance(S

′
,G)|

10 score←max(score, temp)

11 score −= C5|S.sentence|
12 score −= C6 · |syntacticP enalty(S,G)|
13 world bindings← getP rologBindings(S,W ,k)
14 score /= min(max(1, |#world bindings −#getP rologBindings(G,W )|), k)
15 return score
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Algorithm 4.2: truthTableDistance
Input: Semantic State S1, Semantic State S2

1 S1,S2← replace predicates in S1 and S2 with variables
2 numV ars← [0] ∗#({S1.relations} ∪ {S2.relations})
3 T 1← [0] ∗numV ars
4 T 2← [0] ∗numV ars
5 i← 0
6 for case in

�n
i=1[TRUE,FALSE] do

7 T 1[i]← evaluate S1 at case
8 T 2[i]← evaluate S2 at case

9 return ||T 1⊕ T 2|| \\Element-wise XOR

An important detail about the new reward algorithm is that a maximum is

taken over all goal bindings, instead of just applying the first one. This is because,

in the old formulation, there was only ever one binding consistent with goal en-

tities, but the uncertainty introduced by disjunction means there can be several.

Unfortunately, the simplifying assumptions made to avoid explicit theorem prov-

ing (which is not tractable) means that the Prolog bindings are a superset of the

actual valid goal bindings. Valid goal bindings will always have a better reward,

so the maximum will pick them out.

Algorithm 4.3: syntacticPenalty
Input: Semantic State S1, Semantic State S2

1 ops1← [0,0,0]
2 ops2← [0,0,0]
3 i← 0
4 for op in [∨,¬, =⇒ ] do
5 ops1[i]← #(x for x in S1.operators if x = op)
6 ops2[i]← #(x for x in S2.operators if x = op)
7 i← i + 1

8 return
∑
|ops1− ops2|

The syntactic penalty is motivated by the idea that there are many semantically-

equivalent ways to say the same sentence, but only some are ideal. Specifically,

diSTRUCT is encouraged to produce a sentence whose semantic form is closely
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aligned with the goal’s semantics. To accomplish this, a penalty is added for every

logical operator that appears in the goal and not in the semantic state, and vice

versa.

Algorithm 4.4: getPrologBindings
Input: Semantic State S, max bindings k

1 relations← getRelations(S)
2 query← prologFormatting(relations)
3 bindings← RESOLUT ION (query)
4 return randomSample(bindings,max(k, |bindings|))

In the first line of getPrologBindings, the relations are extracted from the partial

sentence. These relations are any predicates that appear in S, including whether or

not each is negated. Keep in mind that at this stage of generation, the variables in S

are unbound, so they do not reference any labeled entities. Since the disjunctions

are not present in the relation set, the resulting bindings may not all be valid.

This is OK; Prolog is not capable of finding all satisfiable bindings of an arbitrary

CNF formula anyways, and this is dealt with in the main body of the reward. The

relations are then combined into a single Prolog query with proper formatting.

In this step, negated relations must be moved to the end of the expression. This

is because Prolog uses negation as failure, which means that ¬p is asserted to be

true if an exhaustive search for p fails. Consider the FOL expression ¬fluffy(x)∧

chased(x,y). If Prolog is queried with “\+ fluffy(X),chased(X,Y ).”, it will begin by

trying to prove fluffy(X). Assuming there is at least one fluffy thing in the world,

fluffy(X) resolves as true with X bound to something that is fluffy. Therefore, \ +

fluffy(X) resolves as false. Since Prolog has nowhere else to back the search up to,

the query simply fails. On the other hand, if chased(X,Y ) has already resolved as

true, Prolog can then figure out for which X it is not true that fluffy(X). This is

a consequence of the CWA: Prolog is evaluating the expressions against a “mini

world model” that only includes facts known to the interpreter.
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4.4 Caching Bindings

Caching bindings is an important part of keeping computation costs low. At its

simplest, the signature of a particular FOL expression and the bindings can be

cached so that if it is ever encountered again, further querying is avoided. An ad-

dition modification to caching is that it can be done recursively, so that the bind-

ings of individual predicates (negated and otherwise) are used as building blocks

to create bindings for larger expressions that contain them. A potential issue that

arises is when the number of bindings for an expression is so large that comput-

ing all of them is intractable. In cases like this, a solution is to instead compute

bindings for the negation of the original expression, and adjust the penalty appro-

priately.

An interesting problem arises with such a bottom-up procedure for caching

bindings. As mentioned, the number of world bindings for some semantics can

be arbitrarily large, especially with negated predicates (e.g., “How many non-dogs

didn’t chase non-cats?”). As a heuristic, the bindings calculation can be cut off

prematurely. But if those bindings are involved in set operations to produce new

bindings, the error due to missing bindings can compound. To circumvent this,

one could prevent truncated bindings from being used again in downstream bind-

ing calculations, and instead simply re-query. However, if binding sizes are suffi-

ciently large to cause this to happen, it is unlikely that a very precise set of world

bindings is useful to the reward.
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Algorithm 4.5: getCachedBindings
Input: Semantic State S, max bindings k

1 if S in cache then
2 return cache[S]

3 else if S is a unit clause then
4 cache[S]← getP rologBindings(S,T ,K)
5 return cache[S]

6 else if S is a negated clause then
7 bindings← getCachedBindings(S,T ,k)
8 res← bindingsC

9 cache[S]← res
10 return res

11 else if S is a conjunctive expression then
12 resl ← getCachedBindings(S.f irst,k)
13 resr ← getCachedBindings(S.second,k)
14 cache[S]← intersect resl and resr
15 return cache[S]

16 else
17 \\S is a disjunctive expression
18 resl ← getCachedBindings(S.f irst,k)
19 resr ← getCachedBindings(S.second,k)
20 cache[S]← union resl and resr
21 return cache[S]

If there is no cache entry, Algorithm 4.5 first checks if the expression is a unit

clause (a single predicate). This is the base case, and the original bindings method

is called. With a negated expression, the method recurses on the term and then

takes the complement of the returned bindings with all possible world bindings.

Note that it does not matter whether negation has been distributed here. For bi-

nary expressions, logical conjunctions and negations correspond to intersections

and unions, respectively, of the cached bindings of the sub-terms, if they exist.

This routine sacrifices a degree of overhead to reduce reliance on Prolog; it is likely

that the speed increases, if they exist, are variable on the structure of the input.
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4.5 Caching Truth Tables

The crux of the reward calculation is the truth table distance. Since truth tables

do not change when renaming variables, 2 sets of expressions that are equivalent

under a bijection of predicate functions have identical truth tables (the most trivial

example is any unit clause having the same 2-element truth table). In a similar

manner to the bindings cache, truth tables can be cached in a bottom-up fashion.

By the time expressions reach the reward function, the only logical operators they

contain are {∧,∨,¬}. It follows that every expression X can be written as Q∧R or

Q∨R, where Q and R are themselves expressions (for unit clauses, X ≡ X∧TRUE ≡

X ∨FALSE).

4.6 Distributional Search Heuristics

The search space for STRUCT/diSTRUCT is very large, and it is important that the

system has a notion of the potential viability of an action, even before that action

is explored. This is realized both in the “inner heuristic” and “outer heuristic” of

STRUCT. The outer heuristic selects the next action/state to consider, while the

inner heuristic guides exploratory actions taken from that state.

In previous work [31], a linear perceptron was trained based on previous runs

of the system. After a run of the system, the weights of the perceptron were tuned

to be more favorable to the most successful actions in every intermediate state.

Doing this achieved a small but noticeable improvement in reward and time to

generation. However, there are a few issues with this approach. First, there is a real

potential for overfitting to the types of actions that work well for the specific trees

encountered in the dataset. Also, there is no guarantee that an action favorable in

one state on a path to the goal is also favorable when the goal becomes something

else. To this end, a pretrained large language model (LLM) [34] is leveraged to
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estimate the perplexity of a given sentence, providing a sense of how plausible a

given sentence is, syntactically.

More formally, let X = (x0,x1, ...,xt) be a tokenized sequence. Perplexity is the

exponentiated average negative log-likelihood of X:

P P (X) = exp

−1
t

t∑
i

logpθ(xi |x<i)


where pθ(xi |x<i) is the model’s parameterization of the likelihood of the ith to-

ken conditioned on the preceding tokens in the context window. The larger the

perplexity, the less likely it is that the given sequence was sampled from p. The

assumption is that p accurately models the distribution of the English language,

so that perplexity is a surrogate for the sensibility of the sentence.
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Chapter 5

Experimental Results

STRUCT and diSTRUCT were both evaluated on a dataset of five buckets, each

bucket consisting of roughly 100 samples. The buckets are sentences that include

conjunctions, disjunctions, negations, implications, and mixed Boolean operators,

respectively. Evaluation is based both on obtained reward, generation time, sen-

tence quality, and semantic fidelity of generations.

5.1 Dataset Creation

Every data point is a single sentence. Sentences are either generated by hand or

sourced from text corpora such as the Brown corpus [14] and the WSJ section of

the Penn TreeBank corpus [24]. Collected sentences are then tagged with part of

speech tags and fed to an LTAG parser [1]. The LTAG parser produces two trees: a

parse tree and a derivation tree. The derivation tree is built from the XTAG trees

that are substituted and adjoined according to the rules of the grammar to produce

the final parse tree, where the internal nodes are parts of speech and the leaf nodes

are words. Since the XTAG trees are annotated with FOL semantics extended with

lambda calculus, α-conversion and β-reduction are performed in tandem with the

tree operations, resulting in a FOL expression associated with the parse tree.
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Figure 5.1: An example of the semantic annotation for the “betaARBax1CONJax2” tree
from XTAG, anchored with “but+not.” This tree can then be adjoined as an adjective
phrase itself, resulting in something like “The dog is not sad, but happy” (∃x dog(x) ∧
¬sad(x)∧ happy(x)).

The FOL semantics must be inspected to make sure they are syntactically valid,

as there is no such guarantee. This is because it is difficult to map out the exact

functions necessary to make the semantics valid, when a single tree can appear

in many different contexts. (The need for a flexible, automatic, and content-aware

semantic annotation of TAG trees is discussed as an area of future work.) Also, FOL

is only sufficient to express certain fragments of natural language, and a number

of linguistic constructs are out of reach. The semantics of each sentence is a goal,

and the amalgamation of all goals into a single knowledge base is the world.

Previous work on STRUCT relied on hand-annotations of XTAG trees with

compositional FOL semantics. In this work, the semantics for trees lexicalized

with “not,” “or”, “nor,” and “if-then,” are necessary for the system to function

properly. The semantic coverage is additionally expanded to a broader variety of

trees with similar effects, such as “unless,” “provided (that)”, and “but-not” (e.g.,

“The dog chased the cat but not the pig”). It became necessary to support the in-
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Figure 5.2: An example parse tree for the sentence “The Fed’s market role ought not to
be ambitious.” Original semantic annotations are in red. Semantics propagate upwards
towards the root. Nodes without labelings leave the semantics unchanged. Semantics
created from β-reductions are shown in purple. The semantics of the entire sentence are
at the root.
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clusion of multi-lexicalized trees, or trees having multiple lexical anchors, to allow

for the inclusion of the necessary linguistic constructs. Furthermore, it is necessary

to change the semantics of trees based on the specific lexicalization, whereas be-

fore there was only one semantic annotation per tree, regardless of lexicalization.

For instance, a sentential adjunct tree (betaPss in XTAG) anchored with “if” has

semantics like p =⇒ q, while the same tree lexicalized with “unless” introduces

semantics like ¬q =⇒ p.

5.2 Baseline STRUCT/diSTRUCT

The baseline version of both STRUCT and diSTRUCT are initialized with an ex-

ploration breadth (n) of 60 and a depth (d) of 4. That is to say, 60 rollouts are

performed in each iteration, and every rollout explores 4 states deep. Both sys-

tems are run on the entire dataset. Every trial has a cutoff time of 60 seconds, so

the search is cut off prematurely and the current best state is returned. This is a

soft cutoff, so the program permits STRUCT/diSTRUCT to finish the iteration it

is currently in before termination. Because diSTRUCT’s bindings for certain ex-

pressions (especially with negation) can be computationally intractable, Prolog is

capped at a maximum of 50 bindings for each query.

The quality of generations is assessed with the search score normalized by the

best possible reward, as well as a ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) score [23]. The normalized reward score is a good indicator of whether

STRUCT/diSTRUCT converges to a sentence whose reward is close to that of the

goal. However, since both systems have their own reward functions, it is diffi-

cult to directly compare the quality of the generations with these scores. Instead,

the ROUGE score gives an objective measure of similarity to the goal sentence by

calculating co-occurrence of n-grams:
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ROUGE-N =

∑
gramn∈S Countmatch(gramn)∑

gramn∈S Count(gramn)

ROUGE scores work by comparing machine generated-text to expert reference

summaries written by humans.

Another metric used to measure semantic overlap of two sentences is via the

distance between their embeddings in a high-dimensional vector space. Sentence-

BERT [32] uses siamese BERT models to learn semantically-meaningful vector

representations of sentences. The cosine similarity between the embeddings of the

goal sentence and the generated sentence gives another notion of semantic related-

ness. Unfortunately this cannot be used during the search, as STRUCT/diSTRUCT

cannot have access to the target sentence (they could just parrot it back as the out-

put).

Time to maximum reward for both systems is shown in Figure 5.3. In the

conjunctive, disjunctive, and negative tests, both systems quickly converge to a

maximum, although diSTRUCT takes longer before terminating. This is a conse-

quence of STRUCT having a more “lenient” surface-level reward function, while

it is less straightforward to ensure semantic fidelity between generations and the

world/goal.

For the implication and mixed experiments, the tail of the reward curve is more

elongated, indicating that diSTRUCT had more trouble finding a good sentence.

This can likely be explained away by the fact that both types of sentences will on

average be more complicated than the others because they contain both disjunc-

tion and negation. Furthermore, disjunction and negation together provide the

opportunity for bindings computations to slow down the system: negative bind-

ings will usually be more numerous than otherwise, and disjoining them creates

multiple possible models of the world. So, while considerable time can be shaved

off simply by stopping diSTRUCT prematurely when it is within a certain distance
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Figure 5.3: Baseline comparisons of time to maximum reward for STRUCT and diSTRUCT.

55



Figure 5.4: Average results for the baseline versions of each system, divided by logical
operator. Time is given in seconds. “Vanilla STRUCT” is STRUCT without considering
negation to be a part of a predicate’s signature.

of the best possible reward, the Implicative and Mixed experiments show that fur-

ther compute optimizations are in order.

diSTRUCT is more logically faithful to the communicative goal than STRUCT,

as demonstrated by the decreased average truth table distance. ROUGE-1 scores

and embedding similarity scores do not vary that much between systems and

across datasets. It is not expected that ROUGE-1 scores should increase in diS-

TRUCT, because the semantic fidelity of the sentence does not depend on its well-

formedness. But, it is nice to see that it does not dramatically decrease, indicat-

ing the quality of generations is high relative to STRUCT. Embedding similarity as

measured by SentenceBERT also does not see much change, and actually decreases

slightly from baseline in most of the experiments. It is difficult to discern exactly
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why this happens, as the embedding space is not readily interpretable. However,

the embedding space is ultimately only a surrogate for semantic similarity, and

logically-equivalent utterances will not always be close.

Despite not being designed for it, baseline STRUCT is still able to generate

some of the sentences with disjunctive semantics. The reasons for this are twofold:

• STRUCT was modified to interpret negation as part of the function signature.

That is to say, chased(x1,x2) and ¬chased(x1,x2) are not counted as the same

function, despite name and arity. Consequently, STRUCT can handle its own

with negated semantics, even though there’s no guarantee that what it says

aligns with the world. The version of STRUCT without this modification is

referred to as “Vanilla STRUCT.”

• Grammar pruning is done to avoid an excessively large action space. When

STRUCT has to choose between using “and” and “or,” it can get lucky and

choose the correct one. Ideally, diSTRUCT should thrive in a more logically-

diverse action space, but a limitation is the added search time associated with

such a space.

It is worth noting that, due to STRUCT’s design, there is nothing stopping it

from making false utterances if asked to do so. On the contrary, diSTRUCT’s

reward function forces it to be logically consistent with the world. Since exper-

iments are conducted with subsets of the world that are always satisfiable, this

phenomenon is observed less.

While diSTRUCT can beat STRUCT in terms of truth table distance, it is not as

consistent at doing so as one might hope. A possible explanation is that, along the

best path to the goal, there are states whose truth table-based rewards can be very

bad. A simple example is any negated expression: if the goal is −P , then P is almost

certainly an intermediate state (transformed into the goal after the adjunction of
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Model Sentence STRUCT Generation diSTRUCT Generation
If he is arrogant, he may
not be good.

he good because he arro-
gant

he not arrogant because he
good

A flashlight or electric
lantern should be avail-
able.

electric lantern and flash-
light available

electric lantern available
or flashlight available

Unless Ken arrives, the
meeting starts without
him.

meeting starts without
him and Ken arrives

unless Ken arrives meeting
starts without him

“not”). But the rewards of P and −P are inversely correlated because they have

exactly the opposite bindings of each other. Unfortunately, the simple solution to

this problem—increasing the search depth—exacerbates the existing issue of long

search times. The negation-aware STRUCT doesn’t stumble into this pitfall as it

doesn’t compute bindings for negated expressions (and consequently cannot be

sure that what it is saying is allowed).
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Chapter 6

Conclusion and Future Work

At the beginning of this work, the building blocks of the STRUCT system are de-

scribed and their strengths and weaknesses discussed. Specifically, simplifying

assumptions used to prune bindings are no longer sound once the world is intro-

duced to non-conjunctive semantics. diSTRUCT, unlike its predecessor, computes

a semantic fidelity metric by means of truth tables to address the fact that com-

paring function names and arities is no longer sufficient. To address the increased

time complexity of the system, caching algorithms are proposed for both bindings

and truth tables. Distributional heuristics via a Transformer neural network are

used to guide the search towards syntactically-promising sentences, to avoid wast-

ing time searching states that are unlikely to be useful. System is done on a novel

dataset tagged with an expanded semantic grammar, separated by prevalence of

logical operator, and hand-checked for coherence.

Unfortunately, technical limitations and time constraints hindered some as-

pects of the project. Finding negated bindings does not scale well with world size,

requiring binding limits and other creative heuristics to avoid overflow. Had the

extent of this problem been known prior to implementation, different approaches

for state representation would have been explored more thoroughly. Furthermore,
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the TAG approach detailed in this work is not popular in the literature, as most

authors have moved away from structured generation and towards neural gen-

eration, especially with Transformer-based models. The XTAG project at UPenn

concluded in the early 2000s, and no additional releases of XTAG or XTAG-based

tools have come out since then. Hand-annotating trees with semantics is laborious,

not scalable, and prone to human error as it is difficult to predict how semantic an-

notations will behave in all scenarios.

While STRUCT/diSTRUCT achieve promising results, their scope is still quite

narrow. This is the case, in part, because:

• The system cannot handle universal quantification

• Despite supporting it, the system lacks a “plug-and-play” semantic frame-

work and is currently dependent on FOL

• The system does not have a bona-fide co-reference resolution pipeline or ac-

cess to real-world knowledge bases

• The system cannot infer new facts about the world

These are all potential areas of future research, resulting in a system that seam-

lessly combines inference and generation over multi-modal knowledge bases.
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