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ABSTRACT

USING REGULATORYNETWORKS
TO ENHANCE SINGLE-CELL CLUSTERING

ALEX USELOFF

The clustering of single-cell RNA-sequencing data has been established as an im-
portant first step in single-cell gene expression data analysis for scientists to iden-
tify cell type based on RNA level expression. This is important because once a
cell type has been identified, the phenotype association, as well as the spatio-
temporal dynamics of specific cell types, can be characterized, which could lead
to identifying cells associated with cancers and other diseases. However, the high-
dimensionalityof thedataposescomputationalchallenges,whiledrop-outs (genes
that are not identified despite being expressed) hamper the reliability of inference.
Since established knowledge on transcriptional regulatory networks provide in-
formation on the regulatory relationships between genes, we hypothesize that
regulatory networks can help remedy missing data, while also reducing dimen-
sionality. To test this hypothesis, we use a previously existing regulatory network,
modern clusteringmethods, and network propagation together to help enhance
clustering performance, which enhances accurate identification of cell types.

1



1 Introduction

1.1 Background and Motivations

In recent years, technological advances have allowed for the analysis of individual

cells using single-cell sequencing technologies23. Monitoring ofmolecular expres-

sion and activity at the single-cell level provides unique opportunities to break

down the interactions between cells aswell as theprocesses that cells go through23.

Single-cell studies are also important in clinical settings because they contribute

massively to our understanding of how an individual cell can influence the out-

come of infections, drug or antibody resistance, and cancers1,5,17,18,23.

Unsupervised learning, specifically clustering, is themain way that we are cur-

rently able to analyze single-cell RNA-sequencing data because it groups cells to-

gether without having to know each cell’s type. This is important as the identifica-

tion of cell type is a critical first step in data analysis; if we know a cell belongs to

a certain group, then we can infer certain characteristics about it that we would

not otherwise know based on the other cells in that grouping. The issue that most

people facewith clustering single-cell data, however, is that these datasets are very

high-dimensional and sparse, which presents computational challenges9.

There are five main ways that researchers currently are trying to get around

this computational challenge, andwe explain thosemethods with some examples

in Chapter 2. Themain two issues with them are that the vectors being clustered,

2



Introduction 3

which represent cells, are very high in dimensions, which represent genes, and

clustering algorithms are sensitive to sequencing platforms and dropouts, which

can greatly reduce the quality and performance of clustering4,13. In addition to

these problems, RNA level expression alone does not provide the full picture of

activity in a cell; there are a lot of different types of regulation occurring, accounted

for by mRNA-level expression. It is for this reason that we incorporate a known

network of gene-to-gene interactions to enhance the clustering of single-cell RNA-

sequencing data. Our hypothesis is that using a gene-to-gene interaction network

in combination with the methods that currently exist to cluster single-cell data

will result in better clustering performance, which will in turn lead to more cell

types being identified properly. This is important because if more cell types are

identified properly, then the correct courses of action can be taken as reactionary

measures.

1.2 Contributions

We found that incorporating a known gene-to-gene interaction network in con-

junction with network propagation, all of which will be described inmuch further

detail in Chapter 3, enhances how clustering algorithms are able to perform on

single-cell data.We specifically found clustering to be enhancedwhenwe incorpo-

rate this regulatory network of interactions and perform propagation with genes

that are known to be regulators. Thismakes sense because compared to genes that

are solely targets, genes that are also regulators interactwithmanymore genes in a

number of different ways, leading there to bemuchmore interaction information
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available for regulators. To add on to this, thinking back to the dropout issue with

most existing clustering algorithms for single-cell data mentioned in the previous

paragraph, our network propagation step uses the regulatory network to enhance

the information on the expression of each gene in each cell based on the way it

interactswithother genes. This leaves uswithmany less dropouts as the regulatory

network we use has information on most of the genes in the datasets we found,

which is another reason as to why ourmethods lead to better clustering.



2 Related Works and State of the Art

There are five main strategies that existing algorithms developed to cluster

single-cell gene expression data employ, and they all have advantages and draw-

backs depending on what is trying to be accomplished22. The first of these is to

reduce the dimensionality of the data before performing cluster analysis22. This

category includes somewell-known single-cell clustering algorithmmethods such

asSC3,CIDR,pcaReduce,SEURAT2,SIMLR,andSHARP8,10,16,24,25,33. Typically, inor-

der to reduce the dimensions of the input data, thesemethods apply dimension re-

duction techniques, such as PCA, t-SNE, andUMAP to obtain a lower-dimensional

representation of the data, and thenpartition the cells using established clustering

algorithms like kmeans. Themain drawback that needs to be kept inmind when

using these methods is that they tend to be sensitive to sequencing platforms and

dropouts, and the quality of clustering results can vary greatly.

The second category that these single-cell clustering algorithms can fall into

is ones that iteratively search forhierarchical structures overbothcells andgenes22.

This category includeswell-knownmethods suchasBackSPIN,SAIC,andPanoview6,27,30.

Thesemethods attempt to iteratively divide cells and genes into sub-groups, and

then compare those subgroups to one another. The main drawback with these

algorithms are that they require excessive computational power and tend to over-

estimate the number of cell types.

5



RelatedWorks and State of the Art 6

The third category is community detection algorithms22. These are some of

the most commonly utilized single-cell clustering algorithms in general, and in-

clude ones like Louvain, Leiden, SEURAT3, SCANPY, andMonocle2,3,19,21,26. These

methods embed community detection algorithms in their analysis pipeline by

first converting single-cell RNA-sequencing data into networks, and then parti-

tioning those networks using community detection algorithms. One thing to note

about this particular category of algorithm in relation to what we are trying to do

is that although thesemethods sound similar to ours since they create their own

networks rather than using outside ones based off of other factors, the quality of

these strongly depends on how their network is created, and although they can

produce good results, they often overestimate the number of cell communities.

Thenextcategoryofsingle-cellalgorithms is clusterensemblealgorithms,which

includes SAFE, SAME, and Sc-GPE7,22,28,32. Thesemethods aggregate results from

other algorithms, so they don’t do anything new necessarily, but they try to com-

bine complementary methods in order to limit drawbacks as much as possible.

The main drawback is that these don’t scale well for large datasets, whichmakes

sense as they are having to go through the computational complexities of multi-

ple algorithms. Another thing to note with these are that evaluating can be tough

since each clusteringmethod will have its own results, so combining them is not

straight-forward at all.

The last category of single-cell clustering algorithms are ones that use func-

tional information, which is usually in the form of regulatory networks. There are

a number of algorithms that infer regulatory networks and other functional in-

formation from single-cell data, and most of these fall under the third category
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menetioned above. None of these, however, use known interactions to improve

how the clustering algorithms perform - they simply infer networks when given

data, and then go through their dimensionality reduction and other processing

techniqueswith those inferred networks.We, on the other hand, use a list of prede-

fined, validated regulatory interactions in order to find trends in the genes. Those

trends are then used to reduce dropouts and to propagate gene expression values,

which in turn leads to enhanced clustering of single-cell data.



3 Methods

Data Sources

Single-Cell Gene 
Expression 
Datasets

Matrices

Regulatory 
Network

RoKAI
Network Propagation

Full Propagated 
Matrix

Full Raw Matrix

Full Integrated 
Matrix

kmeans

Evaluate 
Performance

Leiden

SC3

SIMLR

Clustering Algorithms

Figure 3.1. A Summary of the Overall Process Flow from Beginning
to End

3.1 Gathering, Ingesting, and Cleaning the Data

The whole process the data goes through from beginning to end is outlined in

Figure 3.1. Aswill be discussed inmore detail in Section 4.1, the six single-cell gene

expression datasets we use all come from one reliable source20. Tian et al., the

creators of the datasets, store them all as .csv files in a GitHub repository, so that

is where we downloaded them from20. For each of these .csv files, we load it into

RStudio, then clean it up15.

8



Methods 9

As can also be seen under "Data Sources" in Figure 3.1, completely separate

from these six datasets, we also use a regulatory network so that we can know

how the genes in the datasets interact with one another11. This regulatory net-

work, which the creators call RegNetwork, is an integrated database of transcrip-

tional and post-transcriptional regulatory networks in human andmice11. Essen-

tially, they created this regulatory network by building a knowledge-based data-

base of gene regulatory interactions for human andmice11. This knowledge base

was built by collecting and integrating the documented regulatory interactions

among transcription factors, microRNAs, and target genes from 25 carefully se-

lected databases11. I explain more about specific numbers of genes in the regu-

latory network in Section 4.1, but what matters here is that once the regulatory

network is loaded into RStudio along with the six datasets, we then only select

genes in the datasets that are also in the regulatory network as well since other-

wise, we would not know how a gene interacts with the others, and that is vital

information we want to use to enhance clustering later on in the process.

3.2 Network Propagation with RoKAI

At this point in the process, each dataset has been cleaned,we have brought in and

cleaned the regulatory network, and we have selected to only keep the genes that

are also in the regulatory network, nomatter what side of the network they are on

(regulator, target, or both). Next, we perform some exploratory data analysis (EDA)

on each cleaned and transformed dataset to make sure everything looks relatively

normal, and then start to prepare for our next step: network propagation.
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In our specific case,we incorporate a networkpropagation algorithmknown as

RoKAI29. RoKAI was created by Yilmaz et al. as a network-based framework to en-

hance the reliability of kinase activity inference29. To do this, RoKAI combines sev-

eral sources of functional information so that it can capture coordinated changes

in the ways proteins communicate with one another29. Since the signaling infor-

mation that we have is in the form of the regulatory networkmentioned in Section

3.1, that is the information we used in conjunction with the expression datasets

fromTian et al. alsomentioned in Section 3.1 as inputs into RoKAI’s network prop-

agation algorithm20,29. To elaborate on this some more, if we let n represent the

total number of genes in the regulatory network, RoKAI’s network propagation al-

gorithm takes in twomatrices: the firstmatrix, denoted as b, is an n x 1matrix that

represents an individual cell’s expression, and the secondmatrix, denoted as C, is

an n x nmatrix that represents the gene-to-gene regulatory interaction network29.

Before we can create b and C, we first need to create a dictionary for all the

possible genes that we are working with. This was already mentioned in Section

3.1,but rememberthatwealreadyselectedonlygenes thatarealso in the regulatory

network in eachof the six datasets. Thismeans that the union of the regulators and

the targets in the regulator network are the gene names in this dictionary, so each

name will be assigned to an index. Then, to create each matrix for an individual

cell’s expression,b, we parse through each gene that is in the dictionary, and if that

gene is expressed in that cell, we copy its expression under the index respective to

that gene name in the dictionary; if that gene is not expressed in that cell, we put

a "0" under the gene’s respective index and move on to the next gene29. Next, to

create thematrix for the gene-to-gene regulatory interaction network, C, we first
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create an n xnmatrix that is all 0s, and then for each row in our regulatory network

that represents a gene-to-gene interaction, we switch the "0" at the coordinates of

the indices of the two gene names in the dictionary to a "1"29. We do this to denote

that there is an interaction between the two genes that are represented by those

coordinates, andwe also switch the "0" to a "1" for the inverse coordinates as those

also represent an interaction between the same genes29. As an example, let us say

the first row of the regulatory network has gene A in the first column and gene B

in the second column. In this example, gene A would match up to the index 1 in

the dictionary and gene B would match to the index 2, and so we would switch

the "0" to a "1" to represent this interaction at (1,2) and (2,1) in the gene-to-gene

regulatory interactionnetwork,C. Note that although the network is directed (with

edges from the regulators to their targets), this matrix is symmetric since targets

report on the expression/activity of their regulators, while regulators also report

on the expression/activity of their targets.

Now that we have created the b and Cmatrices, the last matrix involved in this

network propagation process is denoted as v, and it is a 1 xn vector that represents

the cell’s inferred activity29. These threematrices can then be represented by the

linear system Cv = b, and using linear algebra, how v is computed when C and v

are known can be seen in Equation 3.1:

v = (C⊤C)−1C⊤b (3.1)

This process is repeated for each cell in the dataset as b will be different for

each cell.C, on the other hand, will stay the same each time since it represents the

regulatory network and we are only using one. Once this process is repeated for
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each cell in the dataset, we have as many v vectors as there are cells in the dataset.

These v vectors, however, are each 1 x n in dimension, which is essentially a row,

so to get the full Propagated datamatrix, we simply row append all of the v vectors

together. To get the full Raw data matrix that is comparable to this Propagated

matrix, we do this same process with all the bmatrices.

3.3 Clustering and Matrix Comparisons

We now have a full Rawmatrix and a full Propagatedmatrix for each dataset. We

keep each of these two full matrices, but for each one, we also create a copy where

only the regulators are selected. This way, we can see the true effect of the prop-

agation when we run thematrices through all the different clustering algorithms

we decided to use, which is the next step. These four clustering algorithms are

kmeans, SIMLR, SC3, and Leiden8,15,21,25. We started with kmeans because it is the

simplest form of clustering, and wanted to compare it to the other methods that

were created more specifically for clustering single-cell RNA-sequencing data15.

SIMLRwas secondbecause although itwasmade for clustering single-cell data, it’s

much simpler thanmost of the other methods, so again we felt as though it was a

good place to get basicmetrics, and it is certainly a step up from kmeans25. Next is

SC3, and this onewe used becausewe had seen itmorewidely used thanmost oth-

ers, so we wanted to be consistent and to again give a good basis for comparison8.

Lastly is Leiden, and if you think back to Chapter 2, we hadmentioned Leiden and

that it falls into the "community detection" category of clustering algorithms21.

This is different from SC3, which falls into the "reduce the dimensionality before
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performing clustering" category, and so because they are in different categories

and we wanted a couple of very reliable clustering algorithms that weremeant for

single-cell data, that is why we went with these8. Once we had chosen the four

different clustering algorithms we wanted to put the four matrices through, we

did so, and then recorded some performancemetrics which will be described in

Chapter 4.



4 Experimental Results and Discussion

4.1 Experimental Setup

We used six diverse datasets in our computational experiments tomake sure that

our results were not solely due to the specific dataset we used. Although all six

datasets came from the same source, they were all designed in different ways, and

have a varying number of ground truths, which we explain below20. According to

Tian et al., these datasets were all created as "gold-standard benchmark datasets"

that are designed to be used for the exact purpose we need them for: to compare

the performance of different clusterings of single-cell RNA-sequencing data20. To

create these datasets, Tian et al. designed a series of experiments usingmixtures

of cells in up to five cancer cell lines20. These cell lines are from human lung ade-

nocarcinoma, and they were cultured separately20. They were made by mixing

single cells from each cell line in equal proportions, with libraries generated using

three different protocols: CEL-seq2, Drop-seq with Dolomite equipment, and 10x

Chromium12,20,31. As mentioned earlier, we specifically used 6 of these datasets:

one generated using CEL-seq2 from three cell lines (let us refer to this one as CEL-

seq2-3gt), one generated using Drop-seq from three cell lines (let us refer to this

one as Drop-seq), one generated using 10x Chromium from three cell lines (let us

14
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refer to this one as 10x), and threemore generated using Drop-seq, though these

from five cell lines (let us refer to these as CEL-seq2-3gt-p1, CEL-seq2-3gt-p2, and

CEL-seq2-3gt-p3)12,20,31. The details of these datasets can be seen in Table 4.1 be-

low:

Dataset Name # of Cells # of Genes # of Clusters
CEL-seq2 274 27,983 3
Drop-seq 225 15,096 3
10x 902 16,431 3
CEL-seq2-5gt-p1 297 15,475 5
CEL-seq2-5gt-p2 307 14,011 5
CEL-seq2-5gt-p3 305 13,371 5

Table 4.1. Single-Cell Gene Expression Datasets. Datasets used
along with their respective number of cells, genes, and clusters.

As mentioned in Section 3.1, in addition to these six datasets, we also use a

regulatory network so thatwe can knowhow the genes in the datasets interactwith

one another11. This regulatory network has 20,737 genes between both regulators

and targets11. As also mentioned in Section 3.1, one of our uses of the regulatory

network is to select only the genes in the expression datasets that are also in the

regulatory network as otherwise, we would have no information on those genes,

so we could not say confidently whether they act as regulators, targets, or both.

Table 4.2 below shows details of how the six single-cell gene expression datasets

intersect with the genes in the regulatory network.

Since we used 6 different datasets with a number of different matrices based

off each one and then put all of thosematrices through 4 different clustering algo-

rithms, we needed a way to evaluate the performance each time we put a matrix

through a clustering algorithm. This is where AdjustedMutual Information (AMI)
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Dataset Name Total # of Genes
in RegNetwork

# of Regulators # of Targets

RegNetwork 20,737 1,902 20,714
CEL-seq2 11,939 1,090 11,937
Drop-seq 9,451 906 9,449
10x 10,292 974 10,290
CEL-seq2-5gt-p1 9,904 959 9,902
CEL-seq2-5gt-p2 9,439 918 9,437
CEL-seq2-5gt-p3 9,167 906 9,165

Table 4.2. Regulatory Network Intersection Information. RegNet-
work intersection details with each of the 6 single-cell gene expres-
sion datasets regarding total number of genes, number of regulators,
and number of targets.

and Adjusted Rand Index (ARI) come in, the two clustering performancemetrics

we use14. AMI is calculated using the following equation:

AMI(U, V ) =
MI(U, V )− E{MI(U, V )}

max{H(U), H(V )} − E{MI(U, V )}
(4.1)

whereU and V are the two sets of labels being compared,MI(U,V) is themutual

information betweenU andV,H(U) andH(V) are the entropies ofU andV, respec-

tively, andE{MI(U,V)} is the expectedmutual information betweenU andV under

the assumption of independence.

In our case,we had the ground truth of each cell for eachdataset, so please note

that U and V are the clustering outcomes and their ground truths, respectively.

AMI ranges from 0 to 1, where an AMI as close to 1 as possible is desired since

an AMI of 0 indicates the ground truths are largely independent to the clustering

results, and an AMI of exactly 1 indicates that the clustering results are equal to

the ground truths14. AMI is an adjusted version ofMutual Information (MI), so not

only does it measure the amount of information shared between two sets of data
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likeMI does, but AMI takes into consideration the expected amount ofMI to occur

by chance and adjusts itself accordingly14.

Keeping in mind that Rand Index (RI) is derived using equation 4.2 directly

below:

RI =
TP + TN

TP + FP + FN + TN
(4.2)

where TP is the number of true positives, TN is the number of true negatives, FP

is the number of false positives, and FN is the number of false negatives between

U and V, ARI is determined using the following calculation:

ARI =
RI − E{RI}

max{RI} − E{RI}
(4.3)

where E{RI} is the expected RI of random clusterings. Contrary to AMI, ARI ranges

from -1 to 1, but similar to AMI, a higher ARI is desired; an ARI of exactly 1 indi-

cates perfect similarity between the clustering results and the ground truths,while

an ARI of 0 suggests they are as similar as would be expected by random chance,

and an ARI of less than 0 signifies that they are less similar than random chance14.

And again, similar to how AMI differs fromMI, ARI accounts for the expected sim-

ilarities that could occur by random chance while Random Index (RI) alone does

not14.

4.2 Benchmarking Clustering Algorithms

After our earlier processes of ingesting and cleaning the data and network propa-

gation with RoKAI, we now have fourmatrices that we’re working with: a full raw
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matrix, a full propagated matrix, a raw matrix with regulators only, and a propa-

gatedmatrixwith regulators only.We alsohave fourdifferent clustering algorithms

to compare results for each of thematrices: SC3, Leiden, SIMLR, and kmeans.
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(a) Average AMI of SC3, Leiden, SIMLR, and kmeans Clustering Algorithms on all
6 Datasets for the Full RawDataMatrix

(b) Average ARI of SC3, Leiden, SIMLR, and kmeans Clustering Algorithms on all
6 Datasets for the Full RawDataMatrix

Figure 4.1. The Performance of All Clustering Algorithms on Raw
DataMatrices
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(a) AMI of SC3, Leiden, SIMLR, and kmeans Clustering Algorithms on Each of the
6 Datasets for the Full RawDataMatrix

(b) ARI of SC3, Leiden, SIMLR, and kmeans Clustering Algorithms on Each of the
6 Datasets for the Full RawDataMatrix

Figure 4.2. Comparing the Performance of the 4 Clustering Algo-
rithms on Each RawDataMatrix
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The results of running the fourmatrices through the four clustering algorithms

can be seen in Figures 4.1 and 4.2. Figure 4.1 clearly shows that based on average

AMI and ARI, SC3 and Leiden aremuchmore accurate and havemuch less uncer-

tainty when compared to SIMLR and kmeans. Figure 4.2 goes on to further show

this across each of the 6 individual datasets - for five out of the six datasets for both

AMI and ARI, SC3 and Leiden far outperform SIMLR and kmeans. After looking at

these figures, it is clear to see that SC3 and Leiden consistently perform the best

based on Average AMI and Average ARI values. Because SC3 and Leiden are clearly

themost reliable and consistent of these clustering algorithms, we decided to fo-

cus on just their metrics for the next couple of sections as we needed consistent

results since we would be creating and comparing other as you will see shortly.

4.3 Using Regulators as Features

After deciding that SC3 and Leiden’s metrics are clearly the best to use in terms of

both accuracy and precision, we want to keep the clustering algorithms constant

so we can see the variations in how each individual matrix is performing. To do

this, we look at themetrics of SC3 and Leiden for the six different datasets by the

four different matrix inputs.
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4.3.1 SC3

(a) Average AMI of SC3 Clustering on all 6 Datasets for the Raw and Prop-
agated DataMatrices, Both Full and with Regulators Only

(b) Average ARI of SC3 Clustering on all 6 Datasets for the Raw and Prop-
agated DataMatrices, Both Full and with Regulators Only

Figure 4.3. Summarizing of the Effect ofNetworkPropagation on the
Performance of SC3 Clustering
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(a) AMI of SC3 Clustering on Each of the 6 Datasets for the Raw and Propagated
DataMatrices, Both Full and with Regulators Only

(b) ARI of SC3 Clustering on Each of the 6 Datasets for the Raw and Propagated
DataMatrices, Both Full and with Regulators Only

Figure 4.4. The Effect of Network Propagation on the Performance
of SC3 Clustering on Each Dataset
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Looking at Figures 4.3 and 4.4 with the different matrix results for SC3 across the

datasets, there are a fewdifferent things to notice. First, looking at just the Rawand

Propagated bars in both figures, they appear to average about the same AMI and

ARI across the datasets, meaning that sometimes one will be a bit more than the

other, but there is never an extreme difference, and one is not always higher than

the other. This means that the propagation on the full matrices seems to make

a difference, but that difference is sometimes positive, and sometimes negative.

After seeing these results, we wanted to dive deeper into when the propagation

makes a positive difference, and when it makes a negative difference. If we are

able to find that out, then we can use the propagation only when it helps, and not

when it hurts. More about this will come shortly, but first we needed to confirm

that results for Leiden, the other reliable clustering algorithm,were consistentwith

these.

Before that, however, another thing to note in Figures 4.3 and 4.4 are that look-

ing at just the two regulators only bars, the Propagated matrix performed better

for six out of six datasets when comparing AMI values and five out of six datasets

when comparing ARI values. So even though the twomatrices with only regulators

performedworse than the two fullmatrices, it appears as thoughwhenonly cluster-

ing regulators that the propagation is making a positive difference, which is what

we wanted to look further into regarding the propagation. Again, after confirming

Leiden results are consistent with these, the next section will look into confirming

that the propagationmakes a positive difference, but only on regulators.
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4.3.2 Leiden

(a) Average AMI of Leiden Clustering on all 6 Datasets for the Raw and
Propagated DataMatrices, Both Full and with Regulators Only

(b) Average ARI of Leiden Clustering on all 6 Datasets for the Raw and
Propagated DataMatrices, Both Full and with Regulators Only

Figure 4.5. Summarizing of the Effect ofNetworkPropagation on the
Performance of Leiden Clustering
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(a) AMIof LeidenClustering onEachof the 6Datasets for theRawandPropagated
DataMatrices, Both Full and with Regulators Only

(b) ARI of LeidenClustering on Eachof the 6Datasets for the RawandPropagated
DataMatrices, Both Full and with Regulators Only

Figure 4.6. The Effect of Network Propagation on the Performance
of Leiden Clustering on Each Dataset
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TheLeiden results for the full rawmatrix, the full propagatedmatrix, the rawmatrix

with just regulators, and the propagated matrix with just regulators can be seen

in Figures 4.5 and 4.6, and as we had hoped, they are very consistent with the SC3

results. In fact, they are actually slightly better. Looking at only the Raw and Prop-

agated bars for the six datasets in Figure 4.6, they are both either the same, or the

Propagated is higher. Similar to with SC3, this means that sometimes the propaga-

tion is making a positive difference, and sometimes it just is not doing anything.

Again, we would like to find out what in the propagation is making the positive

difference so we can isolate it and only use that part, but we will talk about that in

the next section.

The other thing to notice in Figure 4.6 is that looking at just the two regulators

only bars, the Propagatedmatrix performed better for five out of six datasets when

comparing AMI values and five out of six datasets when comparing ARI values.

This keeps consistent with our SC3 results pointing to the propagationmost likely

contributing in a positive way when performed on regulators.

4.4 Assessment of Value Added by Regulatory Networks

Now that it appears as though the propagation is enhancing clustering with reg-

ulators, we want to confirm that this is the case and that our results are not due

to simply clustering on a subset of data. To do this, we compare the results for the

Raw and Propagatedmatrices with only regulators to the average results of taking

the same size subset of genes from both the full Raw and Propagated matrices,
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although each time that subset being a random subset of genes rather than just

regulators.
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4.4.1 SC3

(a) Average AMI of SC3 Clustering on all 6 Datasets for the Raw and Prop-
agated DataMatrices, Both with Regulators Only and Random Permuta-
tions of Genes

(b) Average ARI of SC3 Clustering on all 6 Datasets for the Raw and Prop-
agated DataMatrices, Both with Regulators Only and Random Permuta-
tions of Genes

Figure 4.7. Summarizing SC3 Clustering Performance with Only a
Subset of Genes
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(a) Average AMI of SC3 Clustering on Each of the 6Datasets for the Raw and Prop-
agated DataMatrices, Both with Regulators Only and Random Permutations of
Genes

(b) Average ARI of SC3 Clustering on Each of the 6 Datasets for the Raw and Prop-
agated DataMatrices, Both with Regulators Only and Random Permutations of
Genes

Figure 4.8. SC3 Clustering Performance with Only a Subset of Genes
on Each Dataset
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Looking at Figures 4.7 and 4.8, you can see the results of these random permuta-

tions compared to the Raw and Propagatedmatrices with just regulators for SC3

clustering. If you compare the two Rawmatrix bars across the different datasets in

Figure 4.8, so the first and third bars, you’ll see that six out of six times for both AMI

and ARI, the average with the randompermutations performs better than the Raw

matrixwith just regulators. This is really interesting tonotebecause in theprevious

section,we saw thatwhen comparing the fullmatrices, sometimes the Propagated

performs better than the Raw, and sometimes it performs worse. We also saw that

the Propagatedmatrix with just regulators performed better than the Rawmatrix

with just regulators, leadingus tobelieve that thepropagationhasapositive impact

when performed on regulators. This new information just adds to this hypothesis,

leading us to believe that the propagation has negative results when performed on

non-regulators, which explains the full Propagatedmatrix sometimes performing

worse than the full Rawmatrix.

The other thing to note in Figure 4.8 is that if you compare the two Propagated

matrix bars across the different datasets, so the second and fourth bars, you’ll see

the opposite trend than we sawwith the two Rawmatrix bars - that five out of six

times for both AMI and ARI, the average with the random permutations performs

worse than the Propagated matrix with just regulators. Again, this stays consis-

tent with the results we discussed in the previous section, and further proves that

propagating regulators leads to enhanced clustering.
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4.4.2 Leiden

(a) Average AMI of Leiden Clustering on all 6 Datasets for the Raw and
Propagated DataMatrices, Both with Regulators Only and Random Per-
mutations of Genes

(b) Average ARI of Leiden Clustering on all 6 Datasets for the Raw and
Propagated DataMatrices, Both with Regulators Only and Random Per-
mutations of Genes

Figure 4.9. Summarizing Leiden Clustering Performance with Only
a Subset of Genes
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(a) Average AMI of Leiden Clustering on Each of the 6 Datasets for the Raw and
PropagatedDataMatrices, BothwithRegulatorsOnly andRandomPermutations
of Genes

(b) Average ARI of Leiden Clustering on Each of the 6 Datasets for the Raw and
PropagatedDataMatrices, BothwithRegulatorsOnly andRandomPermutations
of Genes

Figure 4.10. Leiden Clustering Performance with Only a Subset of
Genes on Each Dataset
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The Leiden results look very similar to the SC3 results when comparing the Raw

and Propagatedmatrices with just regulators to the average results of the random

permutations of genes. Looking at just theRawmatrix bars in Figure 4.10, you’ll see

that for five out of six datasets for bothAMI andARI, the average of the randomper-

mutations outperformed the regulators only, which is to be expected. Also, when

looking at just the Propagated matrix bars, you’ll again see the opposite results -

that the average of the random permutations is outperformed by the regulators.

4.5 Comparison of the Integrated Matrix to the Raw and Propa-

gated Matrices

After finding that the propagation appears to enhance clustering for regulators

and impair it for non-regulators, we decided to create whatwe call an "Integrated"

matrix. This Integratedmatrix is essentially just a hybrid of the full Raw and Prop-

agated matrices: we include the row from the full Raw matrix if the gene is just

a target, while if the gene is listed as a regulator in the regulatory network we’re

using, we use the row from the full Propagatedmatrix. This can be seen in the top

right corner of Figure 3.1. Also,wewanted to bring SIMLR and kmeans results back

into this comparison to see how the Integratedmatrix performs with less accurate

and precise clustering algorithms since not everyone will always be able to cluster

using these better techniques such as SC3 and Leiden.
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4.5.1 SC3

(a) AMI of SC3 Clustering on Each of the 6 Datasets for the Raw, Propa-
gated, and Integrated DataMatrices

(b) ARI of SC3 Clustering on Each of the 6 Datasets for the Raw, Propa-
gated, and Integrated DataMatrices

Figure 4.11. The Effect of the IntegratedMatrix on the Performance
of SC3 Clustering
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Looking at Figure 4.11, you will see the comparison of AMI and ARI values for SC3

clustering for the three full matrices: Raw, Propagated, and Integrated. The first

thing tonotice is thatwith thefirst twobars for the full Rawmatrix and the full Prop-

agatedmatrix, these are the same as the first two bars when we initially compared

the differentmatrices for SC3 and Leiden. Sometimes the Propagated bar is higher

than the Raw, and sometimes the Raw is higher than the Propagated, so this is why

wemade the third Integrated bar that is a mixture. Since the third bar is a mixture

of the better-performing parts of the first two, you’ll notice that it is consistentwith

whichever between the rawmatrix and the inferredmatrix has a higher AMI and

ARI value. Again, this makes complete sense because the Integratedmatrix takes

rows form the Rawmatrix for target genes since the propagation impaired these

results, while it takes rows from the Propagatedmatrix for regulator genes because

the propagation enhances these results.

We believe this to be an improvement since clusteringwith the rawdata,which

is the state of the art, would get us the Rawmatrix results, but there are some in-

stances where the Propagatedmatrix outperforms the Rawmatrix, which is where

the Integratedmatrix shines.
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4.5.2 Leiden

(a) AMI of Leiden Clustering on Each of the 6 Datasets for the Raw, Prop-
agated, and Integrated DataMatrices

(b) ARI of Leiden Clustering on Each of the 6 Datasets for the Raw, Prop-
agated, and Integrated DataMatrices

Figure 4.12. The Effect of the IntegratedMatrix on the Performance
of Leiden Clustering
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TheLeiden resultswith three fullmatrices are consistentwith theSC3 results as can

be seen in Figure 4.12. Again, if you look at the third bar which is for the Integrated

matrix results, it’s either as high as the others, or is the highest on its own, which is

what we we’re looking for.
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4.5.3 SIMLR

(a) AMI of SIMLR Clustering on Each of the 6 Datasets for the Raw, Prop-
agated, and Integrated DataMatrices

(b) ARI of SIMLR Clustering on Each of the 6 Datasets for the Raw, Prop-
agated, and Integrated DataMatrices

Figure 4.13. The Effect of the IntegratedMatrix on the Performance
of SIMLR Clustering
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The SIMLR results are very interesting, whichmakes sense since its AMI and ARI

results on the raw data alone was not particularly accurate or consistent. Start by

looking at just the first two bars in Figure 4.13, so the bars for the full Raw and

Propagated matrices. For both AMI and ARI, six out of six times the Raw matrix

outperforms the Propagatedmatrix. Again, don’t think toomuch into these results

as SIMLRdoesnotperformamazingly on this data anyways,but the thing tonotice

here is that even though theRawmatrixoutperformed thePropagatedmatrix every

time, it performed about the same as the Integratedmatrix because of the way it’s

setup. So even though in this particular case it doesn’t seem like the propagation

does any enhancing with this clustering algorithm, the Integratedmatrix doesn’t

impair the results at all, so there is no negative to it here, while it does appear to

enhance in other situations.
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4.5.4 kmeans

(a) AMI of kmeansClustering onEachof the 6Datasets for the Raw,Prop-
agated, and Integrated DataMatrices

(b) ARI of kmeans Clustering on Each of the 6Datasets for the Raw, Prop-
agated, and Integrated DataMatrices

Figure 4.14. Summarizing the Effect of the IntegratedMatrix on the
Performance of kmeans Clustering



Experimental Results and Discussion 42

The kmeans results in Figure 4.14 are very similar to what we sawwith the SIMLR

results. This means that when comparing the bars for the Raw and Propagated

matrices, the Raw outperforms the Propagated each time. When comparing the

Raw bar to the Integrated bar, however, the Integrated bar looks to be about the

same as the Raw bar on average, which again shows that the Integratedmatrix has

no disadvantages in situations where it doesn’t improve performance.
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4.5.5 Overall

(a) Average AMI of All 4 Clustering Algorithms on All 6 Datasets for the
Raw, Propagated, and Integrated DataMatrices

(b) Average ARI of All 4 Clustering Algorithms on All 6 Datasets for the
Raw, Propagated, and Integrated DataMatrices

Figure 4.15. Summarizing the Effect of the IntegratedMatrix on the
Performance of All Clustering Algorithms
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You’ll see the average results for all clustering algorithms for the three fullmatrices

in Figure 4.15. As you can see, the Integrated bar is the highest of the three bars

for both AMI and ARI. This means that overall, the Integratedmatrix performs the

best of the three.



5 Conclusions

Basedonour results,we conclude that the Integrateddatamatrix is thebestma-

trix to usewhen clustering on single-cell data because it appears to be consistently

tied to having the best results, which can’t be said for the Raw and Propagated data

matrices. As is described in Chapter 4 and can be seen in Figures 4.11, 4.12, 4.13,

and 4.14, the Integrated matrix consistently performs the same as the better be-

tween the Raw and Propagatedmatrices, which is important because neither the

Raw nor the Progapagatedmatrix consistently outperforms the other.

Since the Integrated matrix outperforms both the Rawmatrix and the Propa-

gatedmatrix, we can also conclude that incorporating a gene-to-gene regulatory

interactionnetworkbasedoffof transcription factors into the single-cell clustering

process allows us to get enhanced results. Now, as can also be seen in Figures 4.11,

4.12, 4.13, and 4.14, and what was our main reason for creating the Integratedma-

trix, the Propagatedmatrix does not always outperform the Rawmatrix. This is sig-

nificantbecause it proves that incorporating regulatory interactions, specifically in

regulators, leads to enhanced results, rather than incorporating interactions with

all genes, which leads tomixed results.

Lastly, as incorporating a gene-to-gene regulatory interaction network based

off of transcription factors allows us to get better results when clustering single-

cell RNA-sequencing data, this leads us conclude that the relationships between

45
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different genes does, in fact, play a role in how well single-cell RNA-sequencing

data is able to be clustered.
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