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Using the ECG to Predict Cardiac Rearrest 

Abstract 
By 

LAKEN S. IRISH 

Recurrent cardiac arrest, or cardiac rearrest, remains a significant barrier to 

successful resuscitation from cardiac arrest and is associated with worse outcomes. 

Metrics calculated from the electrocardiogram, including heart rate variability (RR 

variability) and repolarization variability, have been associated with cardiac arrest 

occurrence and arrhythmias. These metrics, called features, were utilized in a machine 

learning model to test the hypothesis that combining repolarization variability 

features with RR variability features can improve the prediction of cardiac rearrest 

occurrence and its type: no rearrest, pulseless electrical activity rearrest, and 

pulseless ventricular tachycardia/fibrillation rearrest. Repolarization features 

enhanced prediction of rearrest occurrence as evidenced by increased specificity and 

validation accuracy but failed to improve prediction of rearrest type. Analysis of 

variance revealed that repolarization features were associated with rearrest 

occurrence and type. With further development and refined clinical implementation, 
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machine learning models represent a potential novel method of predicting rearrest 

and improving resuscitation outcomes.  



18 
 

Introduction 
 

Cardiac Arrest and Rearrest: 

Cardiac arrest (CA) is a medical emergency that occurs when the heart 

suddenly and unexpectedly stops beating, resulting in circulatory failure, end organ 

ischemia, particularly to the heart and brain, and death1. As many as 300-450,000 

Americans every year suffer CA1,2. Tragically, it is often the first manifestation of 

underlying cardiovascular disease, resulting in death typically within minutes if left 

untreated1. Successful resuscitation from CA requires rapid intervention by 

emergency medical services (EMS) with initiation of advanced cardiac life support 

(ACLS) therapies including cardiopulmonary resuscitation (CPR), administration of 

vasopressors (epinephrine), antiarrhythmics, and defibrillation or cardioversion of 

malignant ventricular arrhythmias3,4.  

There are 4 different mechanisms (types) of CA: ventricular fibrillation (VF), 

pulseless ventricular tachycardia (VT), pulseless electrical activity (PEA) and asystole4. 

In VF, there is no organized electrical ventricular activity, resulting in no effective 

myocardial contraction and no pulse5. On the electrocardiogram (ECG), VF looks 
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chaotic with deflections that vary in shape and amplitude5. Sustained VT is 

characterized by ventricular beats typically occurring at a rate of 150-300 beats per 

minute, causing a significant decrease in cardiac output leading to pulseless VT and 

CA. PEA is also known as electromechanical dissociation, where electrical activity is 

relatively normal, but there is a disturbance in contraction4,6. Asystole is a total 

absence of atrial and ventricular electrical and contractile activity: the classic “flatline” 

ECG5. Figure 1 shows representative ECG traces of the four arrhythmias causing CA.  

If a patient is resuscitated from CA, a return of spontaneous circulation (ROSC) 

is achieved. However, CA can occur again soon after ROSC (rearrest), typically within 

the time period up to hospital admission7. The problem of rearrest affects 30-80% of 

successfully resuscitated patients and is associated with low rates of survival to 

hospital discharge7,8. As rearrest is associated with poor outcomes, preventing, or 

effectively treating it is an opportunity to intervene and improve CA outcomes.  

It is important to note that ACLS treatment guidelines differ depending on the 

type of CA3. Since VT and VF are abnormal ventricular rhythms (arrhythmias) that 

result from disturbances in impulse formation and impulse conduction5,9, their 

treatments are similar. For VT/VF, ACLS guidelines indicate prompt CPR, defibrillation 
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(VF) or cardioversion (VT), and administration of vasopressors and antiarrhythmics3,5,9. 

Because of the similarity in causes and management of PEA and asystole, they are 

grouped together under ACLS treatment guidelines3,4. These treatments include CPR 

and vasopressors3,4. Specific treatments are oftentimes not initiated until after the 

onset of rearrest, once the type (e.g., VF, PEA, etc.) is known. If impending rearrest and 

its mechanism were apparent prior to onset, targeted treatments could be initiated, 

leading to abatement or prevention of rearrest altogether. This would improve 

survival rates and diminish the extent of myocardial and brain injury caused by 

rearrest. Moreover, knowledge of the rearrest type would be necessary for successful 

abatement/prevention of rearrest, because treatments for PEA and VT or VF are 

diametrically opposed. For example, treatments for PEA including vasopressors, 

epinephrine, and catecholamines can cause VT/VF, whereas treatments for VT/VF 

such as antiarrhythmics (amiodarone) and beta blockers may worsen or cause PEA9,10. 

Herein lies the gap in knowledge: it is unknown if rearrest and its type can be 

predicted such that  early treatment therapies could be implemented to improve 

resuscitation outcomes.  
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ECG Biomarkers of Cardiac Arrest & Rearrest:  

The ECG is the heart’s electrical activity as it appears on the body surface and 

is routinely measured to monitor the health of a patient’s heart3. More specifically, the 

ECG depicts changes in body surface voltage waveforms that are generated by 

depolarization and repolarization of the heart’s cells5. An ECG recording is always 

performed on CA patients to provide an ongoing, real-time, and sensitive measure of 

heart rhythm. Numerous cardiac pathologies can be made with an ECG including 

metabolic and electrolyte disturbances, myocardial ischemia, structural remodeling, 

and arrhythmias including those that cause CA/rearrest5. Additionally, the ECG has 

been used to stratify long term risk of sudden CA.  

Depolarization Parameters to Predict Cardiac Outcomes: 

Coordinated depolarization through the ventricle of the myocardium, as 

evidenced by a narrow QRS wave, is necessary for effective cardiac output. 

Abnormalities of myocardial depolarization have been associated with poor cardiac 

outcomes11,12,13. Late potentials are given by low amplitude deflections at the end of 

the QRS complex on the ECG11. These deflections represent delayed conduction 

through diseased myocardium potentially due to genetic causes, ischemia, or other 
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cardiomyopathies, and provide a substrate for reentrant ventricular arrhythmias11. 

Although the presence of late potentials has shown increased risk for VT/VF, the 

amplitude of ECG deflections is small, making them difficult to identify11. For this 

reason, an improved approach to identifying depolarization abnormalities that are 

linked to CA/rearrest is needed. The ECG R-wave represents depolarization of the 

myocardium, and the RR interval, or cycle length is analogous to instantaneous heart 

rate. Heart rate variability (HRV) is the fluctuation of the time intervals between 

heartbeats and is a measure of neurocardiac regulation, generated by heart-brain 

interactions through the autonomic nervous system14. Heart rate varies to provide 

rapid compensation in cardiac output needed to respond to demands in the external 

or internal environment, such as stress or exercise, in order to maintain homeostasis. 

Disease states can negatively impact this flexibility, by increasing or decreasing HRV 

beyond normal physiological limits14. Note that traditional HRV measurements are 

analyzed on ECGs in sinus rhythm without ectopic beats, allowing for the measure to 

reflect autonomic regulation of heart rate more specifically.  Studies have shown that 

abnormal HRV has been associated with multiple pathologies including myocardial 

infarction and myocardial dysfunction, which can increase the risk of CA1,13. Huikuri et 

al identified multiple studies that found associations between HRV and sudden CA12. 
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Other studies have more specifically identified acutely decreased HRV preceded both 

sustained and non-sustained VT and VF15,16,17. Importantly, in the peri-cardiac arrest 

setting, a variant of HRV (measuring RR variability on available beats, regardless of 

underlying rhythm) has successfully been used in machine learning models to predict 

in-hospital-CA due to PEA18 and the occurrence of rearrest after out-of-hospital-CA19. 

These studies suggest the possibility of using RR interval metrics as a biomarker for 

predicting rearrest occurrence and rhythm type. 

Repolarization Parameters to Predict Cardiac Outcomes: 

Other ECG waveforms such as the T-wave, which represent myocardial 

repolarization, show predictive promise as well. Abnormalities in repolarization 

measures on the ECG have been established in patients with conditions that can 

cause CA. Prolongation of the QT interval may result from genetic disorders like the 

Long QT syndromes, drug toxicity, metabolic imbalances such as hypokalemia, or 

certain types of heart block, and can cause VT or VF to develop1,5,9,20. Abnormalities in 

the ST segment and T-wave including diminished or elevated amplitude and inverted 

morphology are also observed in conditions like acute coronary syndromes, which are 
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a common cause of CA/rearrest1,5,9,21-22. These data indicate the potential utility of the 

QT interval and T-wave amplitude as positive predictors for rearrest.  

Importantly, variability or dynamic oscillations of the T-wave have also been 

associated with cardiac pathology.  For example, repolarization or T-wave alternans 

(TWA), defined as a beat-to-beat fluctuation in the amplitude or morphology of the ST 

segment and/or T-wave, has also been associated with risk of arrhythmia 

development. Studies have shown TWA to precede VT or VF in patients with varying 

pathologies including long QT syndrome, myocardial infarction, heart failure, 

pericardial effusion, and electrolyte derangements21,23,24. That TWA can predict 

arrhythmias consistently across numerous clinical diseases and experimental models, 

supports its potential as a positive predictor for arrhythmias causing CA/rearrest23-27. 

ECG TWA is mostly a manifestation of alternating calcium transient amplitude caused 

by dysfunctional proteins involved in calcium-induced-calcium-release (CICR)9,26,28-34. 

Mechanistically, alternations in the calcium transient lead to action potential (AP) 

shortening/prolongation (AP duration, or APD, alternans) via calcium-dependent 

repolarization currents active during phases 2 and 3 of the action potential (AP). This 

links cellular calcium alternans to the process of repolarization, which ultimately 

manifests as alternans of the T-wave on an ECG9,23,24,28-30,32,33,35,36. Figure 2, adapted 
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from Chudin et al, illustrates how APD alternans is caused by calcium transient 

alternans.  

When APD alternans initially develops, APs of a particular duration (shortened 

or prolongated) are concordant, or in phase across all cells of a particular region. This 

manifests as alternating T-wave amplitude (2:1 alternans) on the surface ECG (Figure 

3). During concordant alternans, an ectopic beat or increase in heart rate can trigger 

APs in a particular region to become discordant, or spatially out of phase with those in 

a neighboring region (Figure 4). Discordant alternans greatly increases spatial 

dispersion of repolarization which increases the tissue’s susceptibility to conduction 

block, reentrant excitation and thus arrhythmias like VT and VF25,26,28,29,35,38. On the 

surface ECG, discordant APD alternans manifest as T-wave amplitude oscillating at 

lower frequencies (3:1, 4:1) or in a more complex pattern24,25. Complex T-wave 

amplitude oscillations may therefore be a biomarker for impending VT/VF rearrest. 

This hypothesis is further supported by preliminary data from an in vivo translational 

resuscitation model where 90% of all VT/VF rearrest events were preceded by 

complex T-wave oscillations. 
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Examining the clinical conditions associated with PEA may suggest evidence 

for an ECG biomarker that can be used to predict it. Studies have found that up to 50% 

of primary PEA rhythms were attributable to a cardiac event, suggesting ischemia 

may be important to developing PEA39. It has also been shown that PEA can occur 

following prolonged VF that was successfully terminated by defibrillation. In this case, 

prolonged VF provides a substrate for metabolic and electrolyte disturbances that 

could support the development of PEA39. Derangements in calcium handling have 

been implicated in PEA, since intracellular calcium is critical for myocardial 

contraction, which is severely impaired during PEA6,39. Ischemia and metabolic 

derangements impair cellular calcium handling and are known to trigger concordant 

TWA. TWA has also been associated with experimental and human heart failure, in 

which the central feature is impaired myocardial calcium handling. Given that impaired 

calcium handling underlies concordant TWA and PEA, we contend that concordant 

TWA may be a positive marker for PEA in the CA/rearrest setting. Preliminary data in 

an in vivo translational resuscitation model further supports this hypothesis, where 

88% of all PEA rearrest events were preceded by concordant TWA. To date, there is no 

reliable method to predict rearrest occurrence and rhythm type.  
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Prediction with Machine Learning:  

Machine learning (ML) is a branch of artificial intelligence that aims to find 

generalizable, predictive patterns in data. Classification is a type of ML that predicts 

categorical outcomes or classes by using input metrics known as features that are 

calculated on a population of interest. Individuals belonging to a population are 

assigned a class label that describes the group or class they belong to, and features 

that characterize the individual are calculated or recorded. Features can be 

quantitative or qualitative descriptors of the individual being studied. The ML model 

works by identifying patterns in the features that characterize individuals belonging 

to the same class. The ML model then derives a mathematical function that serves as 

a boundary to distinguish and separate the classes. ML models use multiple subsets 

of the population data, known as training data, to find the best possible boundary that 

separates the classes. The performance of the model can be assessed by how well it 

correctly classifies a different subset of the population data, known as testing data. A 

process known as cross-validation (CV) determines how the population data is divided 

for training and testing. Sometimes calculated features are unrelated to the output 

classes, or otherwise do very little to distinguish them. ML models can be overfitted if 

redundant or unrelated features are used. Models that are overfit tend to be less 
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generalizable, leading to poor performance and higher misclassification. In cases like 

this, feature selection can be used to identify features that are strongly correlated or 

associated with the output classes. Getting rid of features that are unrelated to the 

output class or otherwise redundant improves the performance of the model. In 

addition to improving the predictive capacity of the ML model, the features identified 

as strongly correlated with the output can provide insight into important phenomena 

that underlie the population data and serve to differentiate the classes. 

Multiple studies have used features calculated from cardiac action potentials40 

or the ECG18,41 in ML models to predict CA occurrence or CA outcomes including 

survival. The models in these studies showed strong predictive capacity, with 

performance metrics such as the area under the receiver operating curve (AUROC) 

values exceeding 85%. Importantly, only one study to date has used a ML model to 

successfully predict occurrence of rearrest on successfully resuscitated out-of-

hospital CA patients using features measured on the ECG19. Elola et al reported a 

median AUROC of 69% for predicting rearrest occurrence19. Together, these studies 

suggest that ML models have the potential to predict rearrest and its mechanism 

(VT/VF, PEA, etc.) from features measured on a surface ECG. 
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Hypothesis: 

We hypothesize that, with a machine learning model, ECG repolarization 

variability features will enhance the predictive capability for cardiac rearrest occurrence 

and cardiac rearrest type (PEA rearrest, or VT/VF rearrest), compared to RR variability 

features alone.  
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Figure 1: The four different mechanisms causing cardiac arrest and rearrest. 

Figure 2:  Action potentials and calcium transients recorded from a rabbit ventricular 
myocyte. Panel A shows pacing induced action potential duration alternans (top) and alternating 

calcium transients (bottom). Panel B shows the same, except the cell is voltage clamped. No action 
potential duration alternans are present, however alternating calcium transients still exist, 

suggesting that abnormalities in calcium handling – not membrane voltage – cause APD alternans. 
Adapted from Chudin E., Goldhaber J., Garfinkel A., Weiss J., Kogan B. Biophysical Journal 1999; 77: 

2930-2941 
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Figure 3: Relating ECG T-wave alternans (left) and action potential duration (APD) alternans. 
T-wave alternans (TWA) typically present as microvolt changes in amplitude. APD alternans that 
underlie TWA are much larger. Adapted from Cutler MJ, Rosenbaum DS. Heart Rhythm 2009; 6: 

S22-S28 

Figure 4: Mechanisms of concordant and discordant cellular action potential alternans. Concordant 
alternans (left) present as an in phase long-short-long pattern from location A to B on the myocardium. The spatial 

repolarization gradient given by the vertical dotted lines is relatively small. A premature beat (*) travels slowly 
through repolarized tissue to location B. This prolongs the diastolic interval, increasing the APD at location B, and 
leading to spatially out of phase, or discordant, alternans. Spatial dispersion of repolarization is greatly increased 

(red, shaded area), leading to slow conduction. With another premature beat, conduction is blocked due to 
refractoriness at B, and the impulse propagates around it, creating a reentrant circuit, and causing ventricular 

fibrillation. Adapted from Wilson LD, Rosenbaum DS. Europace 2007; 9: vi77-vi82. 
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Methods 

Overview: 

 Figure 5 shows an overview of the methods used to  test our hypotheses. 

First, EMS patients included in the study were sorted into one of three outcome 

groups (classes): no rearrest, PEA rearrest, and VT/VF rearrest. ECGs were then 

annotated and processed, after which RR variability and repolarization variability 

features were calculated. All features and their respective outcome groups are 

assembled for machine learning. After feature selection and CV settings are 

determined, a linear support vector machine (SVM) is trained using the feature data 

and respective class labels. The median performance metrics from 5 iterations of 

classification were reported. Further details regarding each step are reported in the 

following sections. 
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Data Collection: 

This study was approved by the MetroHealth System Institutional Review 

Board. Three hundred thirty-eight Cleveland EMS patients who experienced an out of 

hospital cardiac arrest and were treated at MetroHealth Medical Center between 

January 1, 2018, through December 31st, 2022, were screened for inclusion in this 

study. Only patients who had ROSC were included. Patients including children <18, 

prisoners, and pregnant women were excluded. Additionally, patients with 

unconfirmed rearrest rhythms, or missing/illegible ECG signals were excluded. The 

remaining 87 individual patients with 94 ECGs (some had multiple rearrests) were 

Figure 5: An overview of the methods for using RR variability and repolarization features derived 
from the ECG to predict cardiac rearrest occurrence and mechanism. 
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analyzed. ECG rhythm strips were initially reviewed with Zoll RescueNet Code Review 

software. The times of ROSC and rearrest were identified, along with rearrest 

rhythms. Of the 94 ECGs, 48 had no rearrest, 30 had a rearrest due to PEA and 16 had 

a pulseless VT or VF rearrest. From each ECG, a period after ROSC with minimal noise 

was selected for further analysis. Importantly, because we were interested in 

predicting rearrest, the analysis period was selected to be as close as possible to the 

rearrest event. In patients that did not rearrest, a similar time after ROSC was chosen.  

ECG Processing: 

ECG traces were first uploaded into custom software that allows users to view 

and annotate signals. When available, a 2-minute window beginning after ROSC from 

primary arrest was selected for analysis. Window selection was based on the 2-

minute window used in a similar study (Elola et al) who used RR variability to predict 

occurrence of rearrest19. Otherwise, the largest available window was used. Of the 94 

ECGs, 55% had the desired 2-minute window and 86% had at least a 1-minute 

window. For each beat in the ECG, 3 time points were automatically annotated and 

manually verified for subsequent interval analysis and removal of baseline wander: 

the R-wave peak, T-wave peak, and mid-PQ isoelectric point. The PQ interval was 
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chosen over the more common TP interval because it was more reliably present in the 

post-cardiac arrest setting. Figure 6 shows example annotations on a single beat 

from a representative ECG. 

 

 

After annotation, ECGs were then processed to remove high and low frequency 

noise using MATLAB. First, high frequency noise was filtered out using a low-pass 

digital filter. A Butterworth filter was selected for its maximally flat behavior in the 

passband and the lack of rippling typically observed in the passband or stopband of 

Chebyshev and Elliptic filters. A filter order of 5 and a cutoff frequency of 30 Hz was 

chosen for the filter design. Figure 7 shows a sample ECG with high frequency noise, 

Figure 6: Annotations (purple lines) identifying the 
indices of the mid-PQ isoelectric (I) point, R-wave (R) and T-

wave (T) peaks on a sample beat from a representative ECG. 
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before and after low-pass filtering. A cubic spline was fitted to the mid-PQ isoelectric 

points with a sampling frequency equal to the ECG (250 Hz). This isoelectric spline 

served as an estimate of baseline wander and was subtracted from the ECG to 

remove low frequency noise. The method of subtracting an isoelectric spline was 

adopted from Nearing et al, who used the same method prior to analysis of TWA27. 

Figure 8 shows a sample ECG with baseline wander, before and after subtraction of 

the isoelectric spline. 

 

 

 

 

Figure 7: Original ECG with high frequency noise (left) and after low-pass filtering (right). 
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Calculation of RR Variability Features for ML: 

The RR interval was calculated as the time difference between successive R-

wave peaks for every beat in an ECG trace (RR interval series). Figure 9 shows the 

beat level measurement made on a representative ECG that constitutes the RR 

interval series. For a total of 𝑁𝑁 analyzed beats, the RR interval series is 𝑁𝑁 − 1 in 

length. Figure 10 shows a sample RR interval series. 

 

Figure 8: Original ECG (left, blue) with baseline wander estimated by a cubic spline (black) fit to 
mid-PQ isoelectric points and after removal by subtracting the spline (right). 
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Figure 9: The RR interval series (red bidirectional arrow) on a representative ECG. 

Figure 10: RR Interval series taken from the period of ROSC for a 
patient who had a VT/VF rearrest. 
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From the RR interval series, multiple measures of variability were calculated as 

features to use in ML. Metrics typically used to measure heart rate variability for 

clinical testing were borrowed for this purpose. These features were calculated 

according to the standards defined by the Task Force of The European Society of 

Cardiology and The North American Society of Pacing and Electrophysiology13 and 

were grouped as described below. The Task force recommends that HRV is calculated 

on ECGs in normal sinus rhythm, free of ectopic beats, over a sufficient time window; 

recommendations that many of the ECGs used in this study do not satisfy. To 

acknowledge these differences, the effects they may have on our results, and the 

potentially different mechanisms compared to traditional HRV, we refer to HRV as RR 

variability in the context of this study.  

Time Domain Features: 

Time domain features include descriptive statistics and geometric methods 

that describe the histogram shape of the RR interval series. Descriptive statistics 

included measures of beat-to-beat and overall variance and measures of central 

tendency. 
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Frequency Domain Features: 

For frequency domain features, resampling of the RR interval series was 

necessary for estimation of the periodogram from which all frequency domain 

features are calculated. The RR interval series was resampled by interpolation with a 

cubic spline. A Welch periodogram with a Hann window was then used to estimate 

the power spectral density of the interpolated RR interval series and calculate the 

frequency domain features. Figure 11 shows the ECG, resampled RR interval series, 

and resulting periodogram for a patient who had a PEA rearrest. Low and high 

frequency bands are shaded in blue and red, respectively. All traditional frequency 

domain features were used except those belonging to the ultra-low frequency range. 

This period of recording was excluded because a very long recording time of 24 hours 

is recommended13,14. 

Non-linear Features:  

The Poincaré plot of the RR interval series was necessary for the calculation of 

4 non-linear features, including SD1, SD2, SD1/SD2, and ellipse area. To create the 

plot, each RR interval was plotted against its successive interval. SD1 measures the 

standard deviation of points along the line perpendicular to the line of identity. SD2 

measures the standard deviation of points along the line of identity. The ellipse is 
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measured as 𝜋𝜋 ∗ SD1 ∗ SD2. These features are intended to measure short term and 

long term variability14. Figure 12 shows a sample Poincaré plot for two patients: one 

who did not rearrest, and one who had a PEA rearrest. The respective lines along 

which SD1 and SD2 are measured are also shown in Figure 12. The other two non-

linear features are approximate entropy and sample entropy. Two algorithms were 

developed for approximate and sample entropy with guidance from Delgado-Bonal et 

al42. Exact replica examples from their study were utilized and tested on both 

algorithms. Trivial examples including vectors with either zero variability or various 

repeating patterns were also tested. Algorithms were accepted for implementation 

when the outputs exactly matched those reported in Delgado-Bonal et al42. Entropy 

measures predictability by assessing how “similar” points are relative to each other in 

𝑁𝑁 dimensional space. Similarity is quantified by comparing the pointwise distance 

between subsequences of the RR interval series. The total number of similar patterns 

within a specified tolerance level are counted and then used to calculate approximate 

or sample entropy42. The size of the subsequence vectors was set to 2, and the 

tolerance level was set to 0.2 times the standard deviation of the RR interval series. It 

is important to note that sample entropy and approximate entropy are very similar 

measures of predictability. However, approximate entropy has a self-counting bias 
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when considering the total number of similar patterns between subspaces, because it 

will compare a subspace with itself. This results in the RR interval series being more 

predictable, and having lower entropy, than it would without the self-counting bias. 

Detrended fluctuation analysis was excluded in this study because it was designed to 

measure recordings that are hours long in duration14. 

 
 

 

Figure 11: Panel A – Normalized ECG from a patient with bigeminy who had a PEA 
rearrest. Panel B – Resampled RR interval series. The short-long-short pattern from bigeminy is 
apparent. Panel C – The resulting Welch periodogram over the traditional physiologic range. The 

blue shaded region indicates the low frequency band, while red indicates the high frequency band. 
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Calculation of Repolarization Variability Features for ML: 

Repolarization variability features were calculated from repolarization time 

series constructed using T-wave peak annotations including T-wave amplitude, QT 

interval, and repolarization area, similar to that for the RR interval. The peak T-wave 

amplitude of each beat was extracted from the ECG using the T-wave annotation 

indices identified previously. The time of R-wave and T-wave peaks was extracted 

using the R-wave and T-wave peak annotation indices, the sampling rate, and the 

number of elements or points in the ECG. T-wave peak amplitude was measured as 

Figure 12: A Poincaré plot for a patient who did not rearrest (yellow 
stars) and a patient who had a PEA rearrest (pink squares). Feature SD1 

measures variability along the red dotted line while feature SD2 measures 
variability along the blue dotted line. 
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voltage (mV) relative to the mid-PQ isoelectric point. The QT interval was measured as 

the time from the R-wave peak to the T-wave peak, in seconds. This measurement is 

approximate since, clinically, the QT interval is measured from the beginning of the of 

the QRS complex to the end of the T-wave. The repolarization area was calculated as 

the product of the QT interval and the T-wave peak amplitude and measured in 

millivolt-seconds. Figure 13 shows the beat-level measurements that comprise each 

time series and Figure 14 shows a sample T-wave amplitude series. Ten applicable 

features from RR variability were adopted, including time domain and non-linear 

features that measure the predictability of the repolarization series’. Sample entropy 

was used exclusively as the measure of series predictability. Approximate entropy 

was excluded because of the self-counting bias explained above.  
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Figure 13: Beat level measurements that constitute the T-wave amplitude, QT 
interval and repolarization area series’. 
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Given that the RR variability features we borrowed do not describe T-wave 

oscillating patterns that have been previously associated with cardiac pathology, we 

calculated a beat-by-beat measure of T-wave amplitude oscillations. TWA (2:1), and 

T-wave amplitude oscillations (3:1 and 4:1) were calculated from the T-wave 

amplitude series described above (resulting in a series of a series). The oscillation 

amplitude of the T-wave at frequencies of 1/2, 1/3, and 1/4 was extracted by 

complex demodulation of the T-wave amplitude series to construct a new series that 

describes beat-by-beat T-wave oscillations. Complex demodulation is an analysis 

Figure 14: T-wave amplitude series from a representative 2-minute ECG 
trace. 
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technique that similar studies have used to provide a continuous measure of the 

magnitude of T-wave oscillations at different frequencies25,27,43,44. This method of 

analysis is advantageous because it requires less than 30 seconds of ECG trace, is 

tolerant of stationarity changes, and is resistant to phase shifts43,44. Complex 

demodulation of the T-wave will therefore provide a beat-by-beat measure of the 

oscillation amplitude at any specified frequency of interest. First, the T-wave 

amplitude series was extended on both ends to eliminate an undesirable edge effect 

that appears when filtering the demodulated signal. This was done by reflecting a 

portion of the T-wave amplitude series at both end points. The demodulating function 

was defined as a cosine waveform with a frequency equal to the oscillation frequency 

of interest (1/2, 1/3, or 1/4). Next, the T-wave amplitude series was multiplied by the 

demodulating function. A low-pass Butterworth filter was used to isolate the time 

varying oscillation amplitude at the frequency of interest using a filter order of 6 and 

cutoff frequency of 0.183𝜋𝜋, as used by Nearing et al44. After filtering, the extended 

signal portions containing the edge effect are removed, and the demodulated signal is 

restored to its original size. Figure 15 shows the resulting time varying amplitude 

series, 𝑎𝑎(𝑡𝑡), for a simulated ECG with transient TWA after complex demodulation. The 

same ten features from RR variability used on the other repolarization series’ 
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described above were calculated on the T-wave amplitude oscillation series’. These 

include 5 time domain and 5 non-linear features. Figure 16 shows beat-level sample 

measurements made on representative ECGs for each of the T-wave amplitude 

oscillation series. 

In summary, a total of 60 repolarization features were calculated for machine 

learning (10 from each of the six series’). Table 1 lists all features and identifies those 

applied to the six repolarization series’. Equations used to calculate each feature can 

be found in Tables 2-4. 
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Figure 15: Panel A – Simulated ECG with TWA present in the first half and no amplitude 
oscillations present in the second half. Panel B – The T-wave amplitude series. Panel C – The time 

varying amplitude series, a(t), after complex demodulation of the T-wave. 
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Figure 16: T-wave amplitude oscillations at frequencies of every other beat or 1/2 
(top), every third beat or 1/3 (middle), and every fourth beat or 1/4 (bottom). Oscillation 

amplitude is represented by the red bidirectional arrows. 
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 Feature 
Number 

Feature 
Repolarization 

Series’ 
RR Interval 

Series 
Ti

m
e 

Do
m

ai
n 

1 Standard Deviation X X 
2 Average X X 
3 pNN50  X 
4 RMSSD  X 
5 Minimum Value X X 
6 Maximum Value X X 
7 Range X X 
8 Triangular Index  X 
9 TINN  X 

Fr
eq

ue
nc

y 
Do

m
ai

n 

10 VLF Abs. Power  X 
11 VLF Peak Frequency  X 
12 LF Abs. Power  X 
13 LF Peak Frequency  X 
14 HF Abs. Power  X 
15 HF Peak Frequency  X 
16 LF:HF Ratio  X 
17 Total Abs. Power  X 
18 VLF Relative Power  X 
19 LF Relative Power  X 
20 HF Relative Power  X 

N
on

-L
in

ea
r 

21 SD1 X X 
22 SD2 X X 
23 SD1:SD2 Ratio X X 
24 Ellipse Area X X 
25 Approximate 

Entropy 
 X 

26 Sample Entropy X X 
Total Features (# of series x # features) 60 26 

Table 1: List of features measured on RR interval and repolarization series. 
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Ti

m
e 

Do
m

ai
n 

Standard 
Deviation 

(SDRR), ms 
�

1
𝑁𝑁
�(𝑥𝑥𝑖𝑖 −  𝜇𝜇𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

Average, 
ms 

1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

pNN50, % Given 𝑋𝑋 = (𝑥𝑥2:𝑁𝑁 − 𝑥𝑥1:𝑁𝑁−1), 𝑝𝑝𝑁𝑁𝑁𝑁50 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋 ≥ 50)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) � ∗ 100 

RMSSD, ms �
1
𝑁𝑁
�(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2
𝑁𝑁−2

𝑖𝑖=1

 

Minimum 
Value, ms 

Given  𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑁𝑁}, 𝑋𝑋𝑀𝑀𝑖𝑖𝑀𝑀 =  min (𝑋𝑋) 

Maximum 
Value, ms 

Given  𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑁𝑁}, 𝑋𝑋𝑀𝑀𝑐𝑐𝑀𝑀 =  max (𝑋𝑋) 

Range, ms (𝑋𝑋𝑀𝑀𝑐𝑐𝑀𝑀 − 𝑋𝑋𝑀𝑀𝑖𝑖𝑀𝑀) 
Triangular 

Index 
Given  𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑁𝑁}, 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑇𝑇 𝐼𝐼𝐼𝐼𝑥𝑥. = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚(𝑋𝑋)�
 

TINN, ms 

Given 𝑥𝑥 as the smoothed histogram of input series and 𝑥𝑥𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 as the 
maximum frequency, 

𝑀𝑀 = 𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓𝑡𝑡(𝑥𝑥 > 𝑥𝑥𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 == 0), 𝑁𝑁 = 𝑇𝑇𝑎𝑎𝑓𝑓𝑡𝑡(𝑥𝑥 < 𝑥𝑥𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 == 0) 
𝑇𝑇𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑀𝑀 −𝑁𝑁 

Table 2: Equations for time domain features measured on RR interval and repolarization 
series. 

 
 
 
 
 
 
 
 
 
 



53 
 

Fr
eq

ue
nc

y 
Do

m
ai

n 
VLF 

Absolute 
Power, ms2 

Given periodogram 𝑆𝑆𝑤𝑤 with discrete frequencies 𝑓𝑓, 

𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑆𝑆𝑤𝑤,𝑓𝑓=0 − 𝑆𝑆𝑤𝑤,𝑓𝑓=0.04

2𝑁𝑁
��𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖) + 𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖+1)�
𝑁𝑁

𝑖𝑖=1

 

VLF Peak 
Frequency, 

Hz 

Given periodogram 𝑆𝑆𝑤𝑤, 
𝑉𝑉𝑉𝑉𝑉𝑉 𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 𝑓𝑓𝑇𝑇𝑃𝑃𝑓𝑓. =  𝑓𝑓𝑀𝑀𝑐𝑐𝑀𝑀(𝑆𝑆𝑤𝑤,0≤𝑓𝑓≤0.04) 

LF Absolute 
Power, ms2 

Given periodogram 𝑆𝑆𝑤𝑤 with discrete frequencies 𝑓𝑓, 

𝑉𝑉𝑉𝑉 =
𝑆𝑆𝑤𝑤,𝑓𝑓=0.04 − 𝑆𝑆𝑤𝑤,𝑓𝑓=0.15

2𝑁𝑁
��𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖) + 𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖+1)�
𝑁𝑁

𝑖𝑖=1

 

LF Peak 
Frequency, 

Hz 

Given periodogram 𝑆𝑆𝑤𝑤, 
𝑉𝑉𝑉𝑉 𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 𝑓𝑓𝑇𝑇𝑃𝑃𝑓𝑓. =  𝑓𝑓𝑀𝑀𝑐𝑐𝑀𝑀(𝑆𝑆𝑤𝑤,0.04<𝑓𝑓≤0.015) 

HF 
Absolute 

Power, ms2 

Given periodogram 𝑆𝑆𝑤𝑤 with discrete frequencies 𝑓𝑓, 

𝐻𝐻𝑉𝑉 =
𝑆𝑆𝑤𝑤,𝑓𝑓=0.15 − 𝑆𝑆𝑤𝑤,𝑓𝑓=0.4

2𝑁𝑁
��𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖) + 𝑆𝑆𝑤𝑤(𝑓𝑓𝑖𝑖+1)�
𝑁𝑁

𝑖𝑖=1

 

HF Peak 
Frequency, 

Hz 

Given periodogram 𝑆𝑆𝑤𝑤, 
𝐻𝐻𝑉𝑉 𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃 𝑓𝑓𝑇𝑇𝑃𝑃𝑓𝑓. =  𝑓𝑓𝑀𝑀𝑐𝑐𝑀𝑀(𝑆𝑆𝑤𝑤,0.15<𝑓𝑓≤0.4) 

Ratio 
(LF/HF) 

𝑉𝑉𝑉𝑉
𝐻𝐻𝑉𝑉

 

Total 
Absolute 

Power, ms2 
𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉 + 𝐻𝐻𝑉𝑉 

VLF 
Relative 
Power 

𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉 + 𝐻𝐻𝑉𝑉

 

LF Relative 
Power 

𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉 + 𝐻𝐻𝑉𝑉

 

HF Relative 
Power 

𝐻𝐻𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉 + 𝐻𝐻𝑉𝑉

 

Table 3: Equations for frequency domain features measured on the RR interval series. 
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N
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-L
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SD1, ms �
1

𝑁𝑁 − 1
��

𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖
√2

�
2𝑁𝑁−1

𝑖𝑖=1

 

SD2, ms �
1

𝑁𝑁 − 1
��

𝑥𝑥𝑖𝑖+1 + 𝑥𝑥𝑖𝑖
√2

�
2𝑁𝑁−1

𝑖𝑖=1

 

SD Ratio  𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆2

 

Ellipse 
Area, ms2 

𝐶𝐶𝑀𝑀 = 𝜋𝜋 ∗ 𝑆𝑆𝑆𝑆1 ∗ 𝑆𝑆𝑆𝑆2 

ApEn −
1

𝑁𝑁 −𝑚𝑚
� log(

∑ [𝑐𝑐𝑎𝑎𝑇𝑇𝐼𝐼(|𝑥𝑥𝑚𝑚+1(𝑗𝑗) − 𝑥𝑥𝑚𝑚+1(𝑇𝑇)| < 𝑇𝑇𝑟𝑟(𝑅𝑅𝑅𝑅))]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

∑ [𝑐𝑐𝑎𝑎𝑇𝑇𝐼𝐼(|𝑥𝑥𝑚𝑚(𝑗𝑗) − 𝑥𝑥𝑚𝑚(𝑇𝑇)| < 𝑇𝑇𝑟𝑟(𝑅𝑅𝑅𝑅))]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 

SampEn −log (
∑ ∑ [𝑐𝑐𝑎𝑎𝑇𝑇𝐼𝐼(|𝑥𝑥𝑚𝑚+1(𝑗𝑗) − 𝑥𝑥𝑚𝑚+1(𝑇𝑇)| < 𝑇𝑇𝑟𝑟(𝑅𝑅𝑅𝑅))]𝑁𝑁−𝑚𝑚

𝑗𝑗=1,𝑖𝑖≠𝑗𝑗
𝑁𝑁−𝑚𝑚
𝑖𝑖=1

∑ ∑ [𝑐𝑐𝑎𝑎𝑇𝑇𝐼𝐼(|𝑥𝑥𝑚𝑚(𝑗𝑗) − 𝑥𝑥𝑚𝑚(𝑇𝑇)| < 𝑇𝑇𝑟𝑟(𝑅𝑅𝑅𝑅))]𝑁𝑁−𝑚𝑚
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑁𝑁−𝑚𝑚
𝑖𝑖=1

 

Table 4: Equations for non-linear features measured on RR interval and repolarization 
series. 

 

Input Data and Cross Validation Settings: 

To predict rearrest occurrence and type, ML was used in MATLAB’s 

Classification Learner App (software version 2022b). Class labels were assigned to all 

94 ECGs. For prediction of rearrest occurrence (a binary response) class labels “no 

rearrest” and “rearrest” were used. In this case, patients who really had a PEA or 

VT/VF rearrest were simply labeled as having a “rearrest.” For prediction of rearrest 

type (a multiclass response) class labels “no rearrest,” “PEA rearrest,” and “VT/VF 

rearrest” were used. Features and their corresponding class labels were assembled 
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into a matrix consisting of 𝒑𝒑 columns of features (depending on the number of 

features used) and a class label for all 94 ECGs, resulting in a matrix of size [94 x 𝒑𝒑].  

For cross validation, K-fold stratified and unseeded CV was used to partition 

the data into training and testing sets using 𝑃𝑃 = 10 folds. The fold value 𝑃𝑃 = 10 was 

chosen over 𝑃𝑃 = 5 to increase the partition of data in the training set. Stratified CV 

ensures that class representation in each fold is proportionate to class representation 

in the whole dataset. This was necessary to ensure that the minority VT/VF rearrest 

class, which had only 16 events, was well represented in each fold. For 10-folds, this 

was approximately 1.6 VT/VF patients per fold. Unseeded cross-validation was 

specified to allow variability in the partitioning of data to each of the 10-folds. If a 

seed state were specified, the same events would be assigned to the same folds 

whenever data was trained on the classifier. Allowing variation in the assignment of 

data to different folds offered a more balanced view of classifier performance. In 

conjunction with unseeded CV, each classification problem was analyzed 5 separate 

times to estimate the degree of variability in classifier performance with different CV 

partitions.  
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In order to determine whether models were affected by overfitting, we 

performed analyses with and without feature selection. A simple filter method was 

used for feature selection, which ranked Analysis of Variance (ANOVA) p-values on a 

transformed negative logarithm scale. The transformation scaled and emphasized the 

p-value significance. When feature selection was used, the top 25 features were 

chosen for use in the ML models. In this study, feature importance is determined by 

the value of the ANOVA rank from feature selection, where the feature with the 

smallest p-value and therefore the highest rank is considered the most important.   

Classifier Selection Options: 

In preliminary testing of both the binary response (no rearrest vs. rearrest) and 

multiclass response (no rearrest vs. PEA rearrest vs. VT/VF rearrest), support vector 

machines (SVM) and ensemble methods (bagged or boosted decision trees), 

performed comparably well. In addition to its relatively high preliminary performance, 

the linear SVM was ultimately selected for its popularity, flexibility, effectiveness in 

high dimensional spaces, and robustness to overfitting45. To optimize model 

performance, the box constraint parameter that determines where the dividing 

hyperplane lies, was optimized. Tuning the box constraint parameter allows the 
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model to find a balance between achieving a large margin (the hyperplane that is 

farthest from training data) and minimizing misclassification error45. Optimization was 

enabled to give the classifier the flexibility to find its best operating point for a given 

input matrix and CV partition. For multiclass response, a “one-vs-one” classification 

method was used, which uses majority voting on multiple binary models to classify 

observations45. 

For direct comparison to a similar study by Elola et al19, we used MATLAB’s 

ensemble classifiers – bootstrap aggregated, or bagged, decision trees and adaptive 

boosted decision trees. It is worth noting that RF, bagged, and boosted decision trees 

are very similar tree-based ensemble methods that use numerous weak learners, or 

shallow trees, to make predictions. Higher preliminary performance led to the 

selection of adaptive boosted (Adaboost) decision trees for comparison to Elola et al’s 

RF classifier. Three tuning parameters were left unassigned for optimization: the 

maximum number of tree splits, number of weak learners, and learning rate. These 

tuning parameters are optimized in parallel to find a balance between generalizability 

and complexity of the model. As before, optimization was enabled to identify the 

classifier’s best operating point for a given input matrix and CV partition. 
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Machine Learning Models: 

We analyzed a total of six machine learning models. They are summarized in 

Table 5 below. First, we used RR variability features to predict rearrest occurrence 

using a linear SVM and an AdaBoosted decision tree. We next used all features to 

predict rearrest occurrence using a linear SVM both without and with feature 

selection. We then used RR variability metrics to predict rearrest type using a linear 

SVM. Next, all features were used to predict rearrest type using a linear SVM with 

feature selection. When only RR variability features were used, the number of input 

features, 𝒑𝒑, was 27 (26 features +1 column for class labels). If all features were used, 

𝒑𝒑 was 87 (86 features + 1 column for class labels).  

 

Model Type Feature Set Feature Selection Response 
Linear SVM RR No Rearrest Occurrence 

AdaBoost Decision Trees RR No Rearrest Occurrence 
Linear SVM RR & Repolarization No Rearrest Occurrence 
Linear SVM RR & Repolarization Yes Rearrest Occurrence 
Linear SVM RR & Repolarization Yes Rearrest Type 

Table 5: Summary of the five machine learning problems we addressed in this study. We 
varied the model type, feature set, the use of feature selection and the response type to address the 

research question. 
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Performance Metrics Chosen: 

Six metrics were selected to assess the performance of the classifiers 

including area under the receiver operating curve (AUROC), sensitivity, specificity, and 

validation accuracy. All performance metrics were chosen at the model’s optimized 

operating point. The median performance value for each metric from 5 classification 

iterations was reported. 
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Results 

Patient Population Characteristics: 

ECG characteristics, patient demographics and arrest characteristics were 

compared using one-way ANOVA or Chi-Square statistical tests and are shown by 

rearrest type/group in Table 5. The ECG characteristics, ECG analysis window length 

and number of beats per analysis window were not statistically different between the 

three groups. Moreover, the groups were well matched regarding both demographics 

and arrest characteristics, suggesting that these patient-level differences alone 

cannot be predictors of rearrest occurrence or type. This patient population had 

demographic and arrest characteristics that are similar to other studies of 

CA/rearrest46-50.  
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Metric No RA PEA RA VT/VF RA p-value 
ECG Characteristics 

Window length (seconds) 100 ± 32 105 ± 40 98 ± 70 0.83 
Number of beats analyzed 175 ± 66 164 ± 74 173 ± 127 0.85 

Demographics 
Age 52 ± 14 59 ± 12 60 ± 8 0.07 

Sex (% Male) 61% 61% 45% 0.63 
Race (% White) 72% 64% 64% 0.75 

Ethnicity (% Hispanic) 17% 19% 9% 0.75 
Arrest Characteristics 

Bystander CPR 57% 54% 45% 0.80 
AED use 22% 39% 27% 0.27 

Time from arrest to initial ROSC 
(min) 

20 ± 12 22 ± 11 14 ± 10 0.18 

Epinephrine 72% 93% 82% 0.09 
Table 6: ECG characteristics, demographics, and arrest characteristics by rearrest type. The 

groups are well matched, and no significant differences exist. 

Survival by Primary and Rearrest Rhythms: 

Figure 17, Panel A shows survival rates by primary arrest type and Panel B 

shows survival rates by rearrest type. As shown by others, patients who had a VT/VF 

primary arrest rhythm were much more likely to survive than those who had asystole 

or PEA (p<0.004, p<0.002)46-48,51. Similarly, patients who had a VT/VF rearrest were 

more likely to survive than those who had a PEA rearrest (p<0.002). Figure 18, Panel 

A shows primary arrest etiology by rearrest type. Etiology is presented as two 

categories: cardiac vs. respiratory, which also includes, overdose, drowning, and 
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“other.” The primary arrest etiology in the no rearrest and PEA rearrest groups were 

balanced between cardiac and respiratory, while the VT/VF rearrest group etiology 

was predominantly cardiac in nature. Figure 18, Panel B shows the number of 

patients with each different primary arrest type (VT/VF, PEA, asystole) in each 

rearrest group. For the VT/VF rearrest group, the primary arrest type was largely 

VT/VF. The PEA rearrest group had relatively balanced amounts of asystole, PEA, and 

VT/VF primary arrest types. Patient survival rates, rhythm proportions and arrest 

etiology are consistent with other reports of CA and rearrest7,52. These results suggest 

that our patient population is representative of the larger CA populations, such that 

our results are potentially generalizable and may be applied to a broader group of 

CA/rearrest populations. 
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Figure 17: Panel A – Percent survival by primary arrest type. Panel B – Percent survival by 
rearrest type. Patients who have a VT/VF primary or rearrest type have the greatest odds of survival. 

Figure 18: Panel A – Arrest Etiology by rearrest group. Etiology is analyzed as two separate 
groups: cardiac or respiratory, which also includes overdose, drowning, and others. Etiology was 
predominantly cardiac for patients who had a  VT/VF rearrest. Panel B – Primary arrest type by 

rearrest type. Most patients who had a VT/VF rearrest had VT/VF primary arrest. 
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Machine Learning to Predict Rearrest Occurrence with RR Variability Features: 

We first tested in our patient population if RR variability features could predict 

no rearrest or rearrest as described previously19. Twenty six RR variability features 

were used to predict cardiac rearrest occurrence (No RA vs. RA) using a 10-fold CV 

linear SVM classifier. The median area under the receiver operating curve (AUROC), 

sensitivity, and specificity from 5 iterations was used to assess performance (Table 7, 

Column 3-4). The SVM classifier had a median AUROC of 0.66, sensitivity (No RA) of 

75% and specificity (No RA) of 53%. Elola et al similarly used RR variability features 

calculated from 2 minutes of post-ROSC ECG to predict rearrest in a cohort of out-of-

hospital CA patients19. Compared to Elola et al, (Table 7, Column 3) our SVM classifier 

had a comparable AUROC (0.69 vs. 0.66), but lower specificity (67% vs. 53%.). It is 

possible that differences in ML models may be responsible for discrepancies between 

the outcomes. Although the linear SVM and RF classifiers performed comparably, the 

RF classifier likely had better performance because of its ability to handle non-linear 

relationships. To compare the datasets more fairly, we repeated the analysis using the 

ensemble method specified earlier (Adaptive boosted Decision Trees - AdaBDT). No 

other model parameters were changed (Table 7, Column 4). The AdaBDT classifier had 

a median AUROC of 0.69, sensitivity (No RA) of 73%, and a specificity (No RA) of 64%. 
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Now when compared to Elola et al, performance differences are absent or marginal. 

Figure 19 shows the ROC for the linear SVM and AdaBDT classifiers. These results 

suggest that classifier details account for performance discrepancies more than 

potential differences in patient population, CV, and number of features when 

comparing our results to Elola et al. 

 
Model Specifications Elola et al Current Study Current Study 
Number of Features 21 (17 RR variability) 26 26 

Feature Set RR Variability & Signal RR Variability  RR Variability 
Number of Patients 162 (33% RA) 94 (49% RA) 94 (49% RA) 

Cross-Validation 5 10 10 
Algorithm Random Forest AdaBoosted Trees Linear SVM 

Metric Validation Median, 100 iterations Median, 5 iterations Median, 5 iterations 
Classes No RA RA No RA RA No RA RA 

AUC 0.69 0.69 0.66 
Sensitivity - 0.67 0.73 0.64 0.75 0.53 
Specificity 0.67 - 0.64 0.73 0.53 0.75 

Validation Accuracy (%) - 66 64 
Table 7: Classifier performance compared to Elola et al, who also used RR variability 

features calculated from the ECG to predict cardiac rearrest occurrence. Green boxes indicate similar 
or better performance, while red indicates worsening performance when compared to Elola et al. 
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Effect of Adding Repolarization Variability Features to RR Variability to Predict 

Rearrest Occurrence:  

We hypothesized that repolarization variability features may improve the 

predictive capacity for rearrest occurrence, so we next evaluated whether addition of 

repolarization variability features affected classifier performance. The 10-fold CV 

linear SVM model using 26 RR variability features described in the previous section 

was used as the basis for comparison except that 60 repolarization variability 

features were combined with the RR variability features. Compared to the same 

Figure 19: Receiver operating curves and model operating points for a linear SVM classifier 
(left) and an adaptive boosted (AdaBoost) decision tree classifier (right). Both classifiers predict cardiac 

rearrest occurrence using only RR variability features. The AdaBoosted decision tree model had 
improved performance over the linear SVM model. 
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classifier with just RR variability features, performance overall was lower with 

decreased AUROC (0.66 to 0.64), specificity (No RA) (53% to 45%), and average 

validation accuracy (64% to 62%). Given the relatively poor performance of the 

classifier using all features (86 total), it’s possible that this may be caused by 

overfitting. To test this, we next evaluated the model with a reduced number of input 

features. 

Feature selection avoids overfitting by selecting a subset of features that are 

correlated or strongly associated with the output classes. The ranked ANOVA feature 

selection method was applied to the combined RR variability and repolarization 

variability feature set. The top 25 ANOVA ranked features were used to predict cardiac 

rearrest occurrence (each feature comparing no rearrest and rearrest) using the 10-

fold CV linear SVM. The model using the top 25 features marginally improved 

performance when compared to the model using just RR variability features. Model 

specificity (No RA) increased (53% to 59%) and validation accuracy increased (64% to 

66%) when using the top 25 features. Figure 20 shows the ROCs for representative 

models without and with feature selection. These models used the same input data 

and CV partitions but the model using the top 25 features shows improved sensitivity 

and AUROC (Figure 20). Figure 21 shows the confusion matrices for two 
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representative classifiers that use all features, and the top 25 features, respectively, 

to predict rearrest occurrence. The confusion matrices show how applying feature 

selection improved the true positive rate for the rearrest class by over 10%. These 

results suggest that the previous model using all features (86 total) was overfit. 

Identification of the top 25 features allows us to determine which features 

were most statistically significant and likely important in predicting cardiac rearrest 

(Figure 22). Repolarization features comprised 44% of the top 25 features, with 

sample entropy of the QT interval being the top ranked and most important ANOVA 

ranked feature. Of the repolarization features in the top 25 overall, 64% were non-

linear, of which 57% were measures of entropy. Additionally, measures of entropy 

comprise nearly a quarter of the top 25 features (24%). The distribution of time, 

frequency, and non-linear features among the top 25 is 36%, 16%, and 48%, 

respectively. These results suggest that repolarization variability features, and 

measures of entropy in particular, are important to successful prediction of rearrest   

occurrence. 
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Figure 20: Receiver operating curves for the linear SVM models used to predict rearrest 
occurrence without feature selection (left) and with feature selection (right), using the top 25 ANOVA 

ranked features. 

Figure 21: Representative confusion matrices for the linear SVM classifiers with RR 
variability features only (left) and the top 25 ANOVA ranked features (right) to predict rearrest 

occurrence. The true positive rate for the rearrest class improved by over10% when repolarization 
features were added, and feature selection was used. Hues of blue indicate true positive rates, 

with dark blue representing the highest true positive rate. Hues of orange represent false 
positive/negative rates, with dark orange representing the highest false positive/negative rate. 
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Effect of Adding Repolarization Features to Predict Rearrest Type: 

We next evaluated whether RR variability could predict the rearrest type (i.e., 

PEA, VT/VF) and if the addition of repolarization variability features would improve the 

prediction. A 10-fold CV linear multiclass SVM using the 26 RR variability features to 

classify rearrest type was used as the basis for comparison. A one-vs-one method 

Figure 22: The top 25 features identified by the ANOVA ranking algorithm used in 
the Linear SVM classifier to predict cardiac rearrest occurrence. Features were selected from 
the combined RR variability and repolarization feature set. Repolarization features comprise 

44% of the top 25. Measures of entropy comprise nearly a quarter of the top 25. The 
distribution of time, frequency and non-linear features is 36%, 16%, and 48%, respectively. 
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was specified for the multiclass SVM method. From 5 iterations, the model had a 

median AUROC of 0.68, 0.61, and 0.61 for the No RA, PEA RA, and VT/VF RA groups, 

respectively (Table 8). Similarly, sensitivity was 99%, 20%, and 34% while specificity 

was 32%, 93%, and 92%. Finally, validation accuracy was 57%. 

The model using repolarization and RR variability features did not generally 

improve performance when compared to the model using just RR variability features 

(Table 8). The only metric that improved was specificity of the VT/VF RA group. 

Although some performance metrics did not improve after using feature selection, 

they nevertheless remained high. These metrics include sensitivity of the No RA group 

(94%) and specificity of the PEA RA group (90%). The confusion matrices (Figure 23) 

show how adding the top 25 ranked features increased the true positive rate for the 

No RA group while also increasing false negative rates for both the PEA and VT/VF RA 

groups.  

Identification of the top 25 ranked features from a one-way ANOVA (each 

feature comparing no rearrest, PEA rearrest, and VT/VF rearrest) elucidated which 

features were likely most important in predicting cardiac rearrest type (Figure 24). 

Repolarization features comprised 40% of the top 25 features, with sample entropy of 
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the QT interval remaining the most important ANOVA ranked feature. Measures of 

entropy comprise 20% of the top 25, and 40% of the top repolarization variability 

features. Adding repolarization features improved AUROC and specificity for the 

VT/VF rearrest group, however, most performance metrics remained unchanged or 

worsened. The distribution of time, frequency and non-linear features is 24%, 24%, 

and 52%, respectively. With the given classifier constraints, these results suggest that 

adding repolarization features to RR variability did not improve prediction of cardiac 

rearrest type. 

Model Specifications RR Variability Only RR Variability  & Repolarization 
Number of Features 26 Top 25 

Metric Validation Median by 5 iterations Median by 5 iterations 
Classes No RA PEA VT/VF No RA PEA VT/VF 

AUC 0.68 0.61 0.61 0.66 0.57 0.60 
Sensitivity 0.99 0.20 0.34 0.94 0.20 0.10 
Specificity 0.32 0.93 0.92 0.20 0.9 0.96 

Validation Accuracy (%) 57 55 
Table 8: Performance metrics for a 10-fold CV, multiclass, linear SVM using RR variability 

features, all features (RR and repolarization), and the top 25 ANOVA ranked features, respectively, to 
predict rearrest type. Green boxes indicate similar or better performance, while red indicates 
worsening performance when compared to the classifier using RR variability features only. 
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Figure 23: Representative confusion matrices for the 10-fold CV, multiclass, linear SVM 
classifiers using RR variability features only (left), and the top 25 ANOVA ranked features (right) to 

predict rearrest type. Hues of blue indicate true positive rates, with dark blue representing the highest 
true positive rate. Hues of orange represent false positives/negative rates, with dark orange 
representing the highest false positive/negative rate. The propensity of the model to classify 

observations as no rearrest (No RA) increases when using the top 25 ANOVA ranked features. 
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Figure 24: The top 25 most important features identified by the ANOVA ranking algorithm 
used in the 10-fold CV, multiclass, linear SVM. Features were selected from the combined RR 
variability and repolarization feature set. Repolarization features comprise 40% of the top 25. 

Measures of entropy comprise 20% of the top 25, and 40% of the top repolarization features. The 
distribution of time, frequency and non-linear features is 24%, 24%, and 52%, respectively. 
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Discussion 
We hypothesized that addition of ECG repolarization variability features, 

including TWA, to RR variability features would enhance the predictive capability for 

cardiac rearrest occurrence and rhythm type (No rearrest, PEA rearrest, or VT/VF 

rearrest) in a machine learning model. For the first time, we show that addition of 

repolarization features to RR variability features improved model performance in 

predicting rearrest occurrence. However, the addition of repolarization variability 

features generally did not improve model performance of the overall ML model in 

predicting rearrest type.  

RR Variability to Predict Rearrest Occurrence – Comparison to Prior Studies: 

Using the ECG to predict cardiac outcomes is very appealing because it is a 

cost effective, non-invasive measurement. Previous studies have shown that ECG 

depolarization such as late potentials in the QRS wave11 and repolarization such as T-

wave alternans23-25,27,43-44, and QT dispersion53 can be effective. However, none so far 

are fully accepted. With the development of ML, numerous studies have been able to 

detect major adverse cardiac events (e.g., arrhythmias) from the ECG, and some have 

shown that events can be predicted40-41. Elola et al is the first and only study to predict 
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rearrest occurrence using 17 RR variability features calculated from the ECGs of out-

of-hospital CA patients. We confirmed that RR variability is a useful tool for predicting 

rearrest occurrence. They report an AUROC of 0.69, which we confirmed when using a 

similar ensemble classifier. RR variability features SD2 and entropy were both among 

the top 5 most important features for both our study and Elola et al.  

The most important RR variability features in our study were RR interval 

range, followed by SD2 and standard deviation. We speculate that higher variability 

for RR interval range, SD2, and standard deviation is associated with rearrest. 

Considering our analysis window is ≤ 2 minutes, high variation over a short duration 

with minimal change in external activity likely indicates abnormally high RR variability 

and may be a marker for impending rearrest. The sample Poincaré plot (Figure 12) 

shows SD2 is increased for the patient who had PEA rearrest compared to the patient 

who did not rearrest. Other studies have reported increased RR variability is 

associated with increased risk of mortality and atrial fibrillation54,55. Additionally, Elola 

et al reported increased variability in features like SD2 and standard deviation of the 

RR interval series, further supporting the observation that increased RR variability is a 

marker for and likely linked to a mechanism of rearrest. This is in contrast to what 

most HRV studies report, which examine the relationship between HRV and longer 
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term risk of CA. Typically, these studies demonstrate that decreased HRV is linked to 

increased risk of CA. However, these studies analyze HRV on ECGs over a 24 hour 

period and are not applied to acute (within minutes) risk of sudden CA, but rather long 

term risk. Increased HRV is associated with increased parasympathetic tone whereas 

decreased HRV is associated with increased sympathetic tone, which is likely very 

high post CA, due to both intrinsic response to resuscitation and external factors such 

as administration of epinephrine and defibrillation. Enhancement of sympathetic tone 

will increase atrial and ventricular excitability and presence of ectopic beats will 

increase HRV, potentially exacerbated by impaired parasympathetic modulation. So 

although increased HRV may be associated with rearrest, this result may not be due 

to parasympathetic factors, but rather increased sympathetic modulation. Our 

recordings were very short, and included non-sinus beats, where typically only long 

recordings of sinus beats are used to determine HRV. Therefore, physiological 

interpretation of these results relative to other studies examining HRV and 

arrhythmia risk must be done with care.  
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Addition of Repolarization Variability Features to Predict Rearrest Occurrence 

& Type: 

Abnormalities of ECG T-wave are well known to be associated with poor 

cardiac outcomes18,23-29,35,43,44.  Adding repolarization variability features to RR 

variability improved predictive capacity for rearrest occurrence. Model performance 

metrics improved, including specificity (No RA) (53% to 59%) and validation accuracy 

(64% to 66%). Additionally, repolarization variability features were well represented in 

the top 25 overall, suggesting they have important qualities that distinguish rearrest 

from no rearrest. These results support our hypothesis that adding repolarization 

variability features will improve predictive capability for cardiac rearrest occurrence 

when compared to RR variability features alone. 

For predicting rearrest type, addition of repolarization variability features to RR 

variability features generally did not improve predictive capacity. In this case, only one 

performance metric improved: specificity for the VT/VF rearrest group (92% to 96%). 

All other performance metrics decreased, although some nevertheless remained high 

(sensitivity of No RA, specificity of PEA RA). These results do not support our 

hypothesis that addition of repolarization variability features will improve predictive 
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capability for rearrest type (no rearrest, PEA rearrest, VT/VF rearrest) over RR 

variability features alone. Despite this, repolarization features were well represented 

in the top 25 overall at 44%. Compared to the number of features among the top 25 

used to predict rearrest occurrence, the number used to predict rearrest type increased 

(9 to 11). These results suggest that repolarization variability features remain 

important in differentiating rearrest type, however the PEA and VT/VF rearrest 

classes may not be linearly separable. This could also explain the low performance of 

the baseline classifier that used RR variability features to predict rearrest type.  

Alternatively, these results could imply that the calculated features (both RR 

variability and repolarization variability) do not sufficiently distinguish the PEA and 

VT/VF rearrest classes. One explanation for why the calculated features may not 

distinguish PEA from VT/VF is changing dynamics of the ECG. As an example, if TWA is 

only present for 15 seconds of a 2 minute window, the average oscillation amplitude 

will tend towards zero because the majority of the trace had no TWA. Assuming the 

hypothesized differences between rearrest classes exist, the nature of feature 

calculation over a long analysis windows could mask these results. Future work 

includes segmenting analysis windows based on changes in ECG stationarity to 

effectively isolate significant events, like transient TWA, which may help separate the 
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classes. Some studies have used segmented analysis on the ECG or cardiac action 

potential recordings, using fixed windows of short duration40,41. No studies are 

currently known to use ECG segments based on changes in signal dynamics for 

prediction of rearrest occurrence or type using ML. This provides a unique opportunity 

to identify the presence, occurrence, and duration of transient repolarization patterns 

that we have shown to be strongly associated with rearrest occurrence and type. 

Non-Linear Repolarization Features & Entropy: 

The top 25 ANOVA ranked features provided valuable insight into feature types 

and characteristics that were important to predicting rearrest occurrence and type. Of 

the repolarization variability features included in the top 25 overall, non-linear was 

the most dominant feature type. In predicting rearrest occurrence, 64% of the top 

repolarization features were non-linear. Similarly, for predicting rearrest type, 89% of 

the top repolarization features were non-linear. These results may implicate 

important non-linear physiologic processes, such as calcium transient alternans, 

which underpin the development of arrhythmias that lead to cardiac rearrest. Other 

studies have implicated the importance of non-linear dynamics in arrhythmia 
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development56,57. Further investigation is needed to fully comprehend and consider 

these results in the context of this study. 

Of the non-linear features, sample entropy of the QT interval, T-wave 

amplitude, repolarization area, and 4:1 T-wave oscillation amplitude series were the 

most prevalent of the top repolarization features for predicting rearrest occurrence 

and type, with sample entropy of the QT interval series being the single most 

important ANOVA ranked feature in both models. Sample entropy estimates the 

degree of randomness, or lack thereof via predictable patterns, in each repolarization 

series. This suggests that the repolarization patterns of some groups are more 

predictable than others. We had proposed that alternations or oscillations in T-wave 

amplitude would precede cardiac rearrest occurrence. More specifically, alternating 

patterns of T-wave amplitude (TWA) may be a marker for mechanical dysfunction and 

PEA rearrest, while complex patterns of T-wave amplitude may be a biomarker for 

VT/VF rearrest (see Repolarization Patterns to Predict Cardiac Outcomes). Although the 

methods in this study were unable to identify whether specific patterns (TWA or 

complex) were associated with specific rearrest types (PEA or VT/VF), the importance 

of features like sample entropy support the idea that predictable patterns of 

repolarization exist and that unique patterns distinguish the groups. Further analysis 
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can be directed at elucidating the types of repolarization patterns that are associated 

with rearrest occurrence and type and will be considered for future work. 

Clinical Implications from Machine Learning: 

Although the classifier predicting rearrest type had generally poor 

performance, important clinical implications can still be considered with these results. 

The median performance of the classifier used to predict rearrest type showed high 

sensitivity for the no rearrest group (94%), and high specificity for the PEA and VT/VF 

rearrest groups (90%, 96%). This implies the classifier is good at correctly classifying 

observations that did not rearrest and good at correctly excluding observations that 

did not have a PEA or VT/VF rearrest. This suggests that the model will have a high 

probability of correctly classifying observations that truly belong to the PEA and 

VT/VF rearrest groups. 

These results could have important clinical implications with regard to 

prophylactic treatments to prevent rearrest depending on the underlying mechanism. 

With high sensitivity for correctly detecting patients who will not rearrest, clinicians 

could withhold further treatments which would have no benefit and only expose 

patients to adverse effects of some unnecessary therapies. For example, 
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antiarrhythmic drugs can decrease ventricular contractile function, potentially 

predisposing a patient to PEA, while epinephrine by further increasing sympathetic 

tone, can promote VT/VF9,10. However, with a low false positive rate for the PEA and 

VT/VF rearrest groups, when a patient is identified as belonging to one of those 

groups, the benefit of prophylactic antiarrhythmics or vasopressors theoretically 

could outweigh the potential risk and  abate the impending rearrest, which clearly 

worsens outcomes. Unfortunately, as currently developed, once the model identifies 

rearrest, it cannot decipher PEA from VT/VF. Clinically, this makes it difficult to apply 

targeted treatments based on rearrest type. Moreover, in the future, clinical features 

may be used to improve the ML algorithm. For example, primary arrest rhythm was 

identified in our study as a highly sensitive marker for VT/VF rearrest and it is likely 

that incorporating this, or other potential resuscitation/clinical parameters could 

significantly improve the model’s correct identification of rearrest type. Additionally, 

these models could potentially be used to predict impending arrhythmias or primary 

CA in patients who present with other conditions such as acute heart failure or 

ischemic chest pain and have not yet had an arrhythmia or CA. Ultimately, machine 

learning algorithms such as those explored in this study could be implemented into 
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clinical monitoring equipment to identify patients who are at risk for rearrest 

occurrence and possibly rearrest type in real time.  

Conclusions:  

Our study confirmed, by showing equivalent performance to Elola et al 19 that 

RR variability features can be used in a ML model to successfully predict rearrest 

occurrence. Compared to RR variability alone, addition of repolarization variability 

features with feature selection improved prediction of rearrest occurrence as 

evidenced by improved model specificity and validation accuracy (Figures 20, 21), 

supporting our primary hypothesis. Prediction of rearrest type using RR variability 

features alone in a ML model was generally poor as given by low rearrest sensitivity 

and validation accuracy (Table 8). The addition repolarization variability features with 

feature selection did not improve prediction of rearrest type as evidenced by 

decreased validation accuracy, AUROC, and rearrest sensitivity, in contrast to our 

secondary hypothesis (Figure 23).  Nevertheless, identification of the top 25 most 

important ANOVA ranked features demonstrated that repolarization features were 

strongly associated with both rearrest occurrence and type (Figures 22, 24).  With 

further development and refined clinical implementation, machine learning models 
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represent a potential novel method of predicting rearrest and improving resuscitation 

outcomes. 

Future Directions: 

In order to improve the ML model, we plan to determine the causes underlying 

the lack of separability between the PEA and VT/VF rearrest classes. Additionally, 

predictability of rearrest and rearrest class may be improved by examining changing 

dynamics of the features by exploring the utility of segmenting the ECG to better 

capture transient, amplifying, or diminishing phenomena that may be related to 

rearrest occurrence and type. Finally, we plan to determine the statistical differences 

of response classes for the top features identified by the ANOVA ranking algorithm 

and potentially explore the use of additional descriptors, such as phase space 

analysis, which captures important underlying nonlinear dynamics that may implicate 

arrhythmia development. Finally, testing and modifying this model to predict primary 

cardiac arrest, a significant clinical problem, would be an very important next step.   
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