RECOVERY METHODS FOR
CLIENT-SERVICE BASED ACTION

ENTROPY ACTIVE SENSING

By: ALEXIS SCOTT

Submitted in partial fulfillment of the requirements for the degree of

Master of Science
Department of Computer Science and Data Science
CASE WESTERN RESERVE UNIVERSITY

August, 2023

CASE WESTERN RESERVE UNIVERSITY
SCHOOL OF GRADUATE STUDIES
We hereby approve the thesis/dissertation of
Alexis Scott

candidate for the degree of Master of Science

Committee Chair

Vincenzo Liberatore

Committee Member

Vincenzo Liberatore

Committee Member

M. Cenk Cavusoglu

Committee Member

Orhan Ozguner

Date of Defense
June 1, 2023

*We also certify that written approval has been obtained

for any proprietary material contained therein

Table of Contents

List of Tables
List of Figures
Chapter 1 Introduction
Chapter 2 Background

2.1 Cloud Robotics

2.3 ROS Master

2.4 Docker

2.5 OpenVPN

2.6 Amazon Web Services (AWS)
Chapter 3 Related Work

3.1 Task Action Entropy

3.2 Cloud Task Action Entropy
Chapter 4 Architecture

4.1 The Docker Structure

4.2 Kubernetes Structure

4.3 Great Bear Structure
Chapter 5 Methodology

5.1 Hardware Specifications

10

10

12

13

13

14

15

15

18

21

21

21

22

24

24

5.2 The Network Setup

5.3 The Original Model

5.5 ROS WaitForExistence
5.6 Statuses and Definitions
5.7 Standard Operation

5.8 Recovery Launch

5.9 Operation in Recovery
5.10 Cloud Service Detection

5.11 Operation in Keep Alive

Chapter 6 Simulation and Results

6.1 Peg in Hole 2D Problem

6.2 Cloud Sensing ActionTime

6.3 Local Sensing Action Time

6.4 Side by Side Sensing Action Times
6.5 Round Trip Time Comparison

6.6 Success Comparison

6.7 Time to Launch Local Recovery

6.8 Time to Call Relaunched Cloud Service

Chapter 7 Discussion

7.1 Analysis of Sensing Action Time

7.2 Analysis of the Round Trip Time

26

26

31

31

33

34

35

36

37

39

39

41

42

42

43

43

44

45

47

47

47

7.3 Rewards Analysis

7.4 Analysis of Recovery Launch Time

7.5 Analysis of Time to Detect Cloud
Chapter 8 Conclusion and Future Work

8.1 Conclusion

8.2 Changes to the Simulation Environment

8.3 Changing from TCP ROS to UDP ROS

8.4 Improving the Resilience of ROS Master

Reference

48

48

49

51

51

52

52

53

55

List of Tables

38. Table 1. List of Configurations in YAML

List of Figures

16. Figure 1. Planner Structure

19.

24.

25.

27.

29.

31.

35.

39.

40.

40.

41.

42.

43.

43.

Figure 2. Task Action Entropy Algorithm
Figure 3. Standard Hardware Communication
Figure 4. The Network Setup.

Figure 5. Original Model Communication.
Figure 6. Revised Model Communication.
Figure 7. Status Transition Diagram.

Figure 8. Communication in Recovery Mode.
Figure 9. Cloud Active Sensing Time

Figure 10. Local Sensing Action Time.
Figure 11. Compared Sensing Action Times.
Figure 12. Round Trip Time in Seconds
Figure 13. Successful Trials.

Figure 14. Time to Launch Local Recovery.

Figure 15. Time to Call Cloud Service.

Recovery Methods for Client-Service Based

Action Entropy Active Sensing

Abstract

By: ALEXIS SCOTT

Action entropy active sensing represents huge leaps forward in the field of active sensing.
Previous papers have found that while action entropy increases the accuracy of the
simulation, it also increases the time required to calculate sensing actions. The time cost
can be reduced by implementing parallel processing that splits the computations over
multiple cores. This can be done on a local machine and via implementation of the cloud.
This paper focuses on implementing a detection and recovery mechanism for a potential
cloud crash. The communication is facilitated through Docker and OpenVPN, using the
ROS client-service architecture. This paper adjusts the methodology of the existing
model to make it more robust to failures. The simulation results indicate that the time to
recovery is feasible, and that this new structure increases the reliability of the existing

model.

Chapter 1 Introduction

As the complexity of tasks assigned to robots increases, the computation power needed
for these tasks increases as well. Although currently most tasks can be completed via a
local processor, the need for cloud technology will increase. However, cloud technology
requires network communication and is susceptible to crashes. In some cases, a delay or
pause in computation is acceptable. In other time sensitive situations however, it is not.
Consider the case where a robot is performing surgery, and deciding which action to take
while suturing a wound. A crash that leads to a long delay, or pauses the program until

the cloud component is fixed entirely would be unacceptable in this situation.

In these cases it is important to have a reliable recovery or backup mechanism. This
project focuses on a previously implemented action entropy sensing action calculation
through a client-service architecture. The existing architecture did not account for the
need for recovery. This project adjusts the structure so that a recovery mechanism is
possible. One is implemented, the time to recovery is measured, and the time costs of
running the simulation entirely on a local machine versus a cloud and local machine are

discussed and compared.

The rest of the paper will proceed as follows, Chapter Two: Background, Chapter Three:
Related Work, Chapter Four: Architecture, Chapter Five: Methodology, Chapter Six:
Simulation and Results, Chapter Seven: Discussion, Chapter Eight: Conclusion and

Future Work.

Chapter 2 Background

This chapter will cover the necessary background to understand the project. It will
discuss the theory of cloud robotics, the robotic operating systems or ROS used in the

project, and the various other softwares implemented in the project.

2.1 Cloud Robotics

As computing needs increase, the motivation to offload processes and share data among
systems increases as well. For larger tasks more storage space and computing capacity is
needed, but it is often expensive to upgrade the hardware of existing systems. The cloud
provides a valuable solution to this problem. The cloud allows systems to access a shared
pool of information, without the hardware to host it independently [1]. Additionally, the
cloud can perform virtual computing to offload heavy computation tasks from local
computers [2]. As the cloud has become more reliable, the use cases for it have expanded

into robotics [2].

Cloud Robotics encompasses a wide variety of different programs. Broadly, it can be
defined as any robot or automation system that uses code or data from a network to
support the operation [3]. This allows for the system to have a local component to handle
specific elements of the task, while still following under the broad definition of cloud
robotics. There are four main benefits to using cloud robotics, which are Big Data, Cloud
Computing, Collective Robot learning, and Human computation [3]. This project
primarily focuses on the Cloud Computing aspect, utilizing the cloud to get more

resources for parallel grid computing.

Since different robotic systems have different communication and computation needs,
cloud robotics does not have a one size fits all solution [1]. Therefore a programmable
and adaptable solution is needed on the cloud. Many companies have proposed different
solutions over the years. Some solutions involve specific software and hardware
structures for the involved components, while others are more adaptable to different

systems.

Some of the most notable solutions include AWS Robomaker, which gives programmers
the ability to develop code in the cloud, test it on the gazebo simulator and then apply it
to their own machines [1]. Another proposed program is ABC Robot. This service
focuses on vision based perception, objection recognition, facial recognition, and text
recognition [1]. While the software it provides is useful, it does require robots to be

compatible with its specific system.

More general cloud parallel computing can be found from many commercial sources, like
Google’s Compute Engine, Amazon’s Elastic Cloud Computer, and Microsoft’s Azure
[3]. While these computing resources are not explicitly designed for use with cloud
robotics, the additional computing capabilities they provide are extremely useful in

robotic planning problems [4].

This project does not use any pre-existing robotic software designed to function with the

cloud. Instead, it uses OpenVPN and docker containers to simulate a local network, in

10

combination with the Robotic Operating System or ROS which facilitates the robotics
side of the system. However, it still utilizes the resources provided by the cloud and

builds on theories proposed by previous cloud robotics research.

2.2 Robotic Operating System (ROS)

The Robot Operating System or ROS is an open source library for robotics work. It
allows researchers to develop code that can be shared among systems with a common
framework [5]. ROS is a language neutral messaging system, so it works well for many

projects and is easily adaptable [5].

ROS programs operate through nodes, which are analogous to software modules. Most
systems end up being composed of many different nodes due to the modular nature of
ROS [5]. In order to communicate with other nodes, nodes pass messages to each other.
Messages can consist of primitive data types, or be customized depending on the needs of

the system. Messages are published to topics, which are defined with a string name [6].

This project used the client-service architecture. A ROS service is a callable node with a
strictly typed request, and response structure [6]. This structure is then called by a client
node, which formats the request messages to fit the service’s needs and processes the
response from the service. This type of communication works better for synchronous

messaging than the other option, publish and subscribe.

11

The communication type used for this layer of transport is TCPROS [7]. It uses standard
TCP/IP sockets to transport data between nodes. Different fields route to service nodes or
publisher nodes. A service is always required to reply with an ‘ok’ byte in response to

each service request message. This allows for detection of when a service call fails [7].

2.3 ROS Master

Due to the peer to peer nature of the ROS architecture, an additional component is
required so that nodes can find each other [5]. The ROS master is a node that must be run
at start-up for all other nodes to communicate with each other. The master node tracks
services and other nodes, and allows them to pass messages to each other [8]. Once the
nodes have located each other through the master they are able to communicate on a peer
to peer connection, however the master must be running for the eternity of the system’s
operation [8]. If ROS master crashes, the nodes are unable to communicate with each

other, or run their own functions.

2.4 Docker

For ease of portability and network simulation this project was run on Docker containers.
Docker containers are a means of encapsulating code and all of its dependencies into an
isolated environment that can be run with simple commands [9]. The environments are
created as images, and then turn into containers when they are run [9]. They are ideal for
cloud environments as they can be easily deployed on a number of different machines,

with limited setup. The Docker architecture is expanded on in section five.

12

2.5 OpenVPN

Openvpn was used for communication in this project [10]. It is a virtual private network
or VPN. Openvpn uses an encrypted tunnel to send packets over a network [10]. This
allows traffic to pass securely and privately even without a local connection. This allows
the program to treat network traffic as though it is on a local network. Since they are
connected as though through a local network, ROS is able to send information through
the tunnel and communicate with the other nodes on the network. This adds an additional
layer of security that ROS requires, as ROS is unable to pass messages through non-local

networks.

2.6 Amazon Web Services (AWS)

Amazon Web Services is a cloud computing platform that provides web services to both
companies and individuals [11]. Amazon Web Services was used for this project, as they
provide reliable and scalable virtual machines for the user [11]. Specifically, an elastic

cloud compute or EC2 instance was used for this project.

The EC2 instance is a scalable virtual machine that comes preset up with various memory
allocations and operating systems [12]. This project used an Ubuntu c5.4xlarge EC2
instance with 16 virtual cpus, and 8 GBS of storage. This AWS instance is referred
throughout the project as the cloud, and is used to simulate an environment where work

needs to be offloaded from a local machine for faster processing.

13

Chapter 3 Related Work

3.1 Task Action Entropy

Most robotics problems are continuous in nature and thus pose a unique challenge in
sequential decision making [13]. Various state space planners have been developed in an
attempt to address the problem of sequential decision making. A sensing action is an
action that has no effect on the environment, but provides the state space planner with
useful information about it [13]. Active sensing is the act of choosing the best sensing
action. [13]. The sensing actions are chosen in order to reduce state uncertainty, and so

the “best” sensing action is one that reduces the state uncertainty the most [13].

The action-entropy active sensing method proposed by Greigarn, et al uses an
active-sensing method in combination with a state space planner in order to solve
continuous state problems. It uses particle filters to model belief propagation, mapping
the belief over the state space based on the task planner’s provided policy [13]. A nearest
neighbor method gets the entropy of the task action, and then a sensing action is chosen

to minimize that entropy [13].

The action space can be divided into two spaces when the sensing action does not affect
the overall state, an action space that only affects sensing called the sensing action space,

and a space that changes the state of the system called the task action space [13].

14

The state transition model used is a probability density function of the next state given
that a specific task action is performed at a state. The measurement model is a probability
density function of the measurement given that the sensing action is performed at that
same state [13]. The belief represents the information that the robot has about the state of
the environment.
The following equation is used for belief:

b(xt) = p(xt|b0, U oV Zl:t)' thE X. (1)
Where b(xo) = p(xo) is the initial belief. t is dropped where it will not cause confusion
for the rest of the calculations [12]. Predicted belief is calculated with the following
equation,

b(x) = [p(x' |u,x)b(x)dx . (2)

And then updated with

b(x) = np(zlv, x) b(x). (3)

This work also uses a state space planner for task related planning, referred to as the task

planner [13]. The planner is divided into submodules as shown below

15

Planner

Active Sensing

A A
b v

r
]
]
]
]
]
]
]
]
]
]
]
I
]
I
]
I
]
i
i i
| A

Y

> (Coordinator Environment

A

Task Planner

1
[]
1
]
1
]
1
1
1
1
1
:
i U, v
]

Figure 1. Planner Structure

The full process of the system is as follows [13]:

I.

4,

5.

At initialization the planner will solve the planning problem in the state space for
a policy and then pass the policy to the active-sensing module. The coordinator
will pass the internal belief to the active-sensing module.

The belief is then mapped through the policy by the active-sensing module to
calculate task action entropy and return the sensing action that minimizes the task
action entropy.

The coordinator then performs the sensing action and gets a measurement,
updating the belief according to the measurement.

Then the coordinator selects a task action based on the most likely state.

The task action is performed and the coordinator updates its internal belief.

The sensing action is the minimizer of the entropy as follows

16

v = argmin h(U|Z; v, E) wherev € V. (4)

Action entropy selection was found to have higher average rewards than state entropy, as
well as taking less time [13]. This made it a viable candidate for task selection that is

expanded on in future works as well as this project.

3.2 Cloud Task Action Entropy

The action entropy approach to state space planning represented a leap forward in the
accuracy and efficiency of the state space planning solutions. However, improvements
still existed. Liu proposes a model that adjusts the computation of the various actions so

that it can take place in parallel [14].

The first step in this new model is to divide Greigan’s planner into two parts [14]. The
local planner maintains only the coordinator, while the cloud planner has a coordinator,
an active sensing module, and a task planner. The cloud portion is also given a virtual

environment with which to simulate task action and update the belief [14].

In this setup the local sends a request to the cloud, the task planner calculates the sensing
action for the state space and returns it to the local [113. The local then calculates and
sends the updated belief which is mapped to calculate the best task action which is

returned. The coordinator on the local side then performs the task action and updates its

17

belief of the state space. This cycle continues until either the amount of steps are

exceeded or the goal is reached.

A publish and subscribe method of communication between these two portions is
discussed in the paper, but ultimately deemed ineffective. It had an overly high
communication time for each step of the process, and overall was not a good fit [14]. The
client and service model however showed promising results and is the model expanded

on in this project [14].

The initial algorithm contained two for loops, one inside of the other, where the outer
loop was the for each loop and the inner loop did the Monte Carlo simulation [14]. If split
up and computed at the same time, the order of the simulation may be random, which
leads to unacceptable results. To apply parallel computing without this error, the
algorithm is modified to store the sum of the cumulative entropy in a position in an array
where the position corresponds to each sensing action [14]. After the parallel computing
is complete, the lowest cumulative entropy is found from the array. The following

method is used for this process.

18

Algorithm 2 OpenMP based Minimum Task-Action Entropy Active Sensing

1: procedure PARALLELGETSENSINGACTION(m, P,.)
2: hyarray = zeros[Amount of sensing actions]
Parallel computing part

3. for j=1,..., Number of Sensing actions do

4 for i=1,...,M do

5t sample x from Py

6: sample z from p(z|v.ai(j), x)

7 P, = MeasurementUpdate(P,,v. at(j),z)
8: P, =mn(Py)

9: hyarray[jl+= hP,(u)

10: end for

11: end for

End Parallel computing

12: return argmin,harray

13: end procedure

Figure 2. Task Action Entropy Algorithm
The revised model was found to perform faster than the original model. Applying

multiple cores to the processing also improved the model [14]. The local version was
found to perform slightly better than cloud and local version when the appropriate

amount of cores were available.

19

Chapter 4 Architecture

4.1 The Docker Structure

This project uses Docker to manage each of the respective processes. Docker allows for
the processes to be packaged up and deployed with ease, without having to install the

robotic operating system on each individual machine.

The Local Machine has a docker container with both the client and the backup service
built. This container also runs the ROS master and an OpenVPN client. When the
container is started ROS master, the ROS client, and the OpenVPN client are running.

The backup service only starts if triggered by the recovery mechanism.

The Cloud Machine has a docker container with the regular service inside of it. It uses the
network host flag to connect to the OpenVPN server running on the AWS instance
instead of hosting the service within the container. On start up it runs the cloud service
for standard operation. Both containers can be easily built and run with a single
command, with only Docker installed on the machine. This allows the processes to run on
machines with smaller memory as well. This setup was the one ultimately used in the

project.

4.2 Kubernetes Structure

Kubernetes was explored as an option for this project, but ultimately was not

implemented. It was considered for container management. It would have provided an

20

additional way to scale the container size and experiment with that aspect of the project.
However, the primary benefit of Kubernetes is its ability to manage multiple containers

that need to stay up consistently.

For this project, only two containers are implemented and they are on different systems
and need to be managed separately. This would mean having a separate Kubernetes
cluster for each of the Docker containers. While this was possible, it added a layer of
complexity that was not needed to the project. Ultimately the project did not focus on

scaling container size either, and so Kubernetes was not implemented.

4.3 Great Bear Structure

Another option that was explored but ultimately not used in the project was Cisco’s Great
Bear cloud management system. Similar to Kubernetes, Great Bear would have served as
a way to manage the various containers and keep track of their status. It used Docker and

Kubernetes as well as its own management system.

A few problems came up while trying to implement Great Bear that ultimately meant it
was not feasible for the project in its current form. Great Bear was primarily designed to
track programs on a high level, making sure that they were up and running. This project
required a level of fine tune control that meant it still needed to be monitored via

Kubernetes even while using Great Bear.

21

Additionally, the network requirements of ROS meant that a VPN was required. Getting a
container to run both the VPN and Great Bear ended up not being possible. The
conflicting network requirements created problems that were not feasible to fix in the
given timeframe. The overhead of setting up Great Bear every time a container needed to

be reloaded, also meant that Great Bear was not a good fit for this instance of the project.

22

Chapter 5 Methodology

5.1 Hardware Specifications

The cloud machine in this project is an AWS Ubuntu c5.4xlarge EC2 instance with 16
virtual cpus, and 8 GBS of storage. The previous project used an Ubuntu instance with 36
virtual cpus, but since only 10 cores were required for the optimal speedup this instance
was scaled down. The local desktop that was used had an Intel Core 17-8700 CPU with
12 cores and 16 GB of memory. It is running Ubuntu 22.04, with the project running in a

Docker container.
Though the da Vinci robot was not ultimately used in this version of the project, a

hardware diagram with how the cloud and local computer in this project would

communicate with it in standard operation is included below for reference.

23

Standard Operation

8
D -
i =
| . - - g
: > Active Sensing Module 18 g
! Calculates optimal sensing action to be ! Q
H taken in order to reduce uncertainty in i % %
; current task TSR
] o
| 7y 2
L [[
3
a
e e e i E
¥ LB
; i Task Planner Module -3
' | Maintains beliefofthe state and faciltates ¢ Generales lask actions upon which aclive | 1 g
| . ! - B sensing module calculates optimal |
i selection of sensing actions sensing action i % E
i [P8
L [[
v g g
2 g
CWRU's Kinematics Control -1 =
Wrapper Code 2 g
3
I l— ------------------- ! E Low level machine vision %
! CISST to ROS Bridge | @ (s Image segmentation and object tracking =
| I ig A
| =
: Mid level control i
! Arm's specific kinematics computation, !
| [trajectory generation, and manipulator-level| |
: state transition i
| [|
i Low level control i _ L
: Joint-level PID controller i Raw video stream digitization
: E Samples at 60 FPS
| I |
| ! A
: Hardware Interface |
i [using IEEE 1394 (Firewire) as primary bus i
R | SE—
Firewire Port
Firewire Port rm— Firewire Port Firewire Port
Controller Boards Controller Boards Controller Boards
2x(FPGA +QLA) 2 x(FPGA+ QLA) 2 x (FPGA + QLA)
IDs: 67 IDs: 8/19 IDs: 4/5
F Y Y Y Y LY
——
L4 h 4 h 4 | 5
Motors Sensors Mators Sensors Motors ‘ Sensors
Patient Side Manipulator 1 Patient Side Manipulator 2 Endoscopic Camera Manipulator
(PSM 1) (PSM 2) (ECM)

Figure 3. Standard Hardware Communication

24

5.2 The Network Setup

In the network setup the Cloud Machine and the Local Machine are connected with an
OpenVPN connection, hosted on the AWS instance. They communicate through a
tunneled connection. The Ros Master is hosted on the local machine. The local client and

the cloud service both connect to the Ros Master and each other respectively.

Cloud Machine Local Machine
Docker Container
Dper;ngnOS;e rver [» Ros Master |
—— 10.8.0.2
Local
Docker Container Client/Recovery
Service 10.8.0.2
Cloud Service l
10.8.01 I
OpenVpn Client

Figure 4. The Network Setup.

5.3 The Original Model

In the original model the ROS client-service architecture is used. The cloud functions as
the client, and the local as the service. In this model, when the programs are both
initialized the cloud client calls the local service when it has generated a sensing action. If
the cloud client can not find a local service, it prints an error that the service was not

found. If the local service is not called it waits until the program is killed or called.

The local container has only the coordinator and simulator. The coordinator interacts with

the environment and maintains internal belief [14]. The coordinator in this project

25

however, was a virtual environment designed to simulate a 2-dimensional Peg in Hole

model. Therefore a simulator also runs on the local container. The cloud container

contains an active sensing module, a task planner module, a coordinator and a virtual

environment [14]. The cloud container generates the sensing action, and task action based

on the feedback from the local. The virtual environment allows the cloud container to

maintain belief and feedback about the environment so it can generate actions.

The following are the steps in the original model's primary operation [14].

1.

The cloud container launches the ROS client and the local container launches the
ROS service.

The cloud container calls the local container, with the request message set as the
generated sensing action from its virtual environment.

The local container receives the sensing action, performs it, and gets the
observation. It then sends the observation as a response message.

The cloud container receives the observation, updates its belief and then
calculates the task action. It calls the local service with the task action as the
request message.

The local service performs the task action and updates its belief. It then sends a
continue signal to the cloud container.

The cloud updates its virtual environment and checks to see if a sensing action is
allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

26

7. When a sensing action is allowed the cloud generates it and sends it as a request
to the local service.

8. The virtual environments are updated in tandem, when they both have reached
their goal or exceeded the maximum allowed amount of steps the simulation ends

and the results are recorded.

Sensing Action

Local Observation Cloud
Service Client

Task Action

Continue Signal

Figure 5. Original Model Communication.

The diagram above details the messages sent throughout this process. The cloud client

sends the sensing action message as a request when it calls the local service.

5.4 The Revised Model

While the original setup was sufficient when a recovery mechanism was not needed,
some changes needed to be made in order to support one. As is, ROS services have no

method of detecting how long has passed since they’ve been called. ROS clients

27

however, have a built-in method of detecting when a service is available, and waiting for

a set amount of time if it is not, through the waitForExistence() function.

The ability to use this function was highly desirable for a system that was robust to
recovery. To accommodate the use of this function, the local process was switched to a
ROS client, and the cloud process was switched to a ROS service. The following are the

updated steps in the revised model.

1. The cloud container launches the ROS client and the local container launches the
ROS service.

2. The local container calls the cloud container, sending the observation as a request
message.

3. The cloud container generates the sensing action and returns it to the local
container.

4. The local container performs the sensing action, updates the belief, and sends the
new observation as a request.

5. The cloud container receives the observation request. It updates the belief and
calculates the task action.

6. The task action is sent from the cloud container as a response.

7. The local service performs the task action and updates its belief. It then sends a

continue signal to the cloud container.

28

8. The cloud updates its virtual environment and checks to see if a sensing action is

allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

9. When a sensing action is allowed the cloud generates it and sends it as a request

to the local service.

10. The virtual environments are updated in tandem, when they both have reached

their goal or exceeded the maximum allowed amount of steps the simulation ends

and the results are recorded.

The communication process during standard operation in the new model is outlined

below.

Local
Client

Request for
Sensing Action

Sensing Action

<

Observation

Task Action

Continue Signal

Figure 6. Revised Model Communication.

29

Cloud
Service

Additionally, the revised model has statuses to keep track of which state the program is

in.

5.5 ROS WaitForExistence

Now that the service and client have been switched, the local container is able to take
advantage of the in-built ROS function waitForExistence(). WaitForExistence() is a
blocking call that takes a timeout value and a service as a parameter. If the service it is
waiting for exists, it returns True and continues normal operation. Otherwise it will block

the program until either the service exists, or the timeout is exceeded.

When the timeout is exceeded it returns False. This return can then be handled
accordingly by the recovery method. Depending on the status that the local program is in,

different recovery methods are executed.

5.6 Statuses and Definitions

Statuses are a set of enums implemented in the code to keep track of what events have
occurred in the local service. The status is changed depending on the events and affects
which recovery process should be followed. The status transition diagram is shown

below.

30

1.

[Standard State]

Timeout Occurs
k4

[Local Recovery }:

Cloud Senvice Comes
Back Online

h 4

[Keep Alive]
J Timeout Occurs

Figure 7. Status Transition Diagram.
Standard State:

Standard operation indicates that the program is running as expected, and has not
entered recovery mode at any point in the process. The cloud service has stayed
active the whole time, and the client has been able to communicate with it. The

local client starts in this state.

Local Recovery:

Local recovery indicates that the cloud service is currently inaccessible. This
status does not distinguish between whether it is the first time the local recovery
has been activated, or the second. While in this state the local client attempts to
call the cloud client each turn. If it cannot, it uses the local service. If it is able to

then the status is switched to Keep Alive.

Keep Alive:
Keep alive indicates that the client is currently able to access the cloud service,

but that the local service has been launched previously. This status is used to

31

indicate that the local service does not need to be relaunched, but simply called in

case of another failure.

5.7 Standard Operation

Two clients are made when the local container is started. One client is connected to the
service “cloud active sensing” which is the cloud service that traditionally runs the
operation. A second client is connected to “cloud_active sensing_recovery”, which is the

service that is launched when the recovery mode is activated.

In standard mode all communication is run through the initial client. At the start of each
sensing loop, the program uses the waitForExistence function to make sure that the

service exists as expected.

This check is placed at the top of the while loop that occurs when a sensing action is
permitted. After each message is sent, the program returns to the top of the while loop
and waits for the service to exist. The timeout is set to five seconds to allot for a delay in
starting the cloud service at the start of the program, and to allow time for small network
errors. When the service is unavailable after the timeout, the recovery mechanism is

launched.

The method for that is outlined below

32

Algorithm 1: Timeout Detection

procedure: COMMUNICATION
if step_number % sensing_interval == 0 && (status == Standard or

keepAlive):
3 while ros::ok
4 if waitForExistence:
5 request sensing action, send observation
6. case sensing action received:
7 perform sensing action
8 request task action
9 case task action received:
10. perform task action
11. request service continue
12. Break Loop
13. else:
14. Activate Recovery Service

The process to activate the recovery service is detailed in the section below.

5.8 Recovery Launch

The recovery program consists of another ROS program, run on the local container. It is
not launched from the start to conserve resources, however in the case of a timeout a bash

script is run that launches the program.

The program is the same as cloud service, except that it is run in the same container as
the local client. In theory, on launch it would be sent the current state of the program and
would resume operation from there. However, due to the constraints of the virtual

environment being used, this particular recovery mechanism only functioned when the

33

cloud service never launched. This problem is explored in more detail in simulation and

results and future work.

When the recovery mechanism is launched the status is changed from standard operation
to local recovery. While in local recovery the second client connected to
“cloud active sensing recovery’ is used to communicate with the local service and get

the sensing and task actions. The full operation is detailed in the following section.

5.9 Operation in Recovery

Two clients are made when the local container is started. One client is connected to the
service “cloud active sensing” which is the cloud service that traditionally runs the
operation. A second client is connected to “cloud_active sensing recovery”’, which is the

service that is launched when the recovery mode is activated.

The communication structure for local client and local service mirrors the one for local

client and cloud service, and is outlined in the diagram below.

34

Request for
Sensing Action
-
Sensing Action
Local |& Local
Client Service
Observation
>
Task Action
<
Continue Signal
>

Figure 8. Communication in Recovery Mode.

5.10 Cloud Service Detection

Before each call is made with the second client connected to the recovery service, an
attempt is made to call the cloud service. The call function in ROS allows for a client to
try and call the service, if the service is not available the call function will return false.
This is not used for the timeout detection method as it is instantaneous, and has no room
for a delay in the service. However, when the client is already running in recovery mode,

this is an effective way to see if the cloud service is available again.

If the cloud service is available, the status is switched to Keep Alive, and the cloud

service is called again with a recovery flag activated. The recovery flag lets the cloud

35

service know that the backup has been running, and the cloud service is passed the

current state with the recovery flag.

Below is an outline of the method that has the cloud detection in local recovery.

Algorithm Two: Detect Cloud Service in Recovery

procedure: RECOVERYCOMMUNICATION
15. if step_number % sensing_interval == 0 && (status ==

localRecovery):
16. while ros::ok
17. if client.call(srv):
18. status = keepAlive
19. else:
20. client2 request sensing action, send observation
21. case sensing action received:
22. perform sensing action
23. client2 request task action
24. case task action received:
25. perform task action
26. client2 request service continue
27. Break Loop

5.11 Operation in Keep Alive

Keep Alive operation follows the standard operation with the exception of the recovery
mechanism. If the waitForExistence timeout is exceeded, the status is switched to
localRecovery with the recovery flag activated and the active client is switched from

client to client2. The operation then follows the recovery operation.

36

Chapter 6 Simulation and Results

6.1 Peg in Hole 2D Problem

This project used the peg in hole 2D problem to test the recovery mechanisms. The peg in
hole problem is a traditional robotics problem, in which the robot tries to manipulate a
peg into an appropriately sized hole, and drop the peg in the hole. The goal is considered

reached if the peg successfully enters the hole, and not reached if it does not [14].

This problem is appropriate for a continuous space approximation, and is able to use the
action entropy method developed by Greigarn [13]. The 2D space is used in this

simulation to simplify the problem and focus testing on the recovery mechanism.

Let x represent the location of the peg, and let Pw and Ph represent the width and height
respectively. The state of the peg at time t is represented by the x and y coordinates of the

peg. The action is initially set to u = 0 when the simulation is started.

First, u will be set to approach the hole on the x-axis. The policy will calculate the peg’s
estimated location, if it is less than half of the width of the peg from the hole, the action
will tell the peg to go to that location. When it reaches the location a new action is
generated. If the X1 location is acceptable, then the X3, or angle is generated and

compared. Finally, the X2 location is generated to drop the peg into the hole.

37

The belief is generated with a Gaussian distribution. The sensing action selects the

direction of state space that should be observed to determine where the peg goes.
— i —a

x =x _ + utmm(l, I) + n . (5)
The noise is generated following a Gaussian distribution as well.
Since this project builds on Liu’s work, we use the same settings for the Peg in Hole 2D
simulation, with a few small changes. The simulation is repeated ten times in our
experiment, and the maximum number of steps is set to 700 steps. If the simulation fails
to reach the goal state within 700 attempts, that trial is considered to be a failure. If the

simulation reaches the goal state, the trial is a success.

The following table represents the model configurations, which are stored and loaded

from a YAML file [11].

state size 3
peg_width 1
peg_height 2
hole_tolerance 0.1
init_mean [4, 2, 0]
motion_cov [2,1,1.57]
sensing_cov .001

38

collision_tol .001

num_trials 10

max_steps 700

Table 1. List of Configurations in YAML

6.2 Cloud Sensing ActionTime

Below are the average times for the calculation of the sensing action when both the cloud
and local were operational for the entire run time of the program. The particles represent
how many particles were used in each calculation, and the sensing action time is in
seconds. The sensing action time is how long it takes from when the service receives the

request for a sensing action to when it has finished calculating the desired sensing action.

06d — Cloud Communication

05 4

0.4 1

03 A

0.2 A

Sensing Action Time in Seconds

01 4

100 150 200 250 300 350 400 450 500
Number of Particles

Figure 9. Cloud Active Sensing Time

39

6.3 Local Sensing Action Time

Below are the sensing action times for the local communication, when the cloud service
never came up and the simulation was run entirely in recovery mode. The data is

represented in seconds.

= | pcal Communication

0.5

04 4

03 A

0.2 A

Sensing Action Time in Seconds

100 150 200 250 300 350 400 450 500
Number of Particles

Figure 10. Local Sensing Action Time.

6.4 Side by Side Sensing Action Times

The following graph is a side by side comparison of the local and cloud computation

sensing action times. The time is represented in seconds.

ned — Local Communication
“ Cloud Communication
5
o 0.5 4
un
=
£ 04
=
[=
2
T 03
=
oh
E
% . /
[F5]
01

100 150 200 250 300 350 400 450 500
Number of Particles

40

Figure 11. Compared Sensing Action Times.
6.5 Round Trip Time Comparison

The round trip time is the time it takes for a sensing action to be requested and received,
minus the time to calculate the sensing action. This is to get a measurement of the time it
takes for a message to travel from the local container to the cloud, or from one local
container to the other program in the local container. The round trip times of both

scenarios are shown below.

0.10
[V}
E 0.08 1
[=]
3
= 4
u 006 —— Local Communication
E Cloud Communication
2 004
|_
=
=
=3
2 002 1
.-—-—'_'_'_'_'_'_‘_‘_‘_'_
‘‘_‘_'_‘——
0.00 1

100 150 200 250 300 350 400 450 500
Number of Particles

Figure 12. Round Trip Time in Seconds

6.6 Success Comparison

Below is the graph representing the number of successful trials out of ten for each of the
simulations. Only one line can be seen on the graph because they had the same number of

successful trials out of ten.

41

10 A

Successful Trips Out of Ten

= Local Communicaticn
Cloud Communication

100 150 200 250 300 3=0 400 450 500
Number of Particles

Figure 13. Successful Trials.

6.7 Time to Launch Local Recovery

Below is the time it takes for the local to come up when the cloud service is running and
fails during the operation. In this measurement the sensing action is not calculated prior
to the response time being sent, a response time is sent as soon as the service is called by
the local. This was with a timeout of five seconds applied to the waitForExistence. The
five second timeout is adjustable depending on the desired wait time, and so is shown on

the graph as a baseline.

42

5.35 1 i/—//_/

530 1

525 1

5.20 1 = | pcal Communication

Timeout
515 A

210

Recovery Time In Seconds

505 1

.00

T T T T T T T T T
100 150 200 250 300 350 400 450 500
Number of Particles

Figure 14. Time to Launch Local Recovery.
6.8 Time to Call Relaunched Cloud Service

The following is the time from when the cloud service was first rebooted to when it was
first called by the local client. This timing indicates how long it takes the local client to

realize that the new service exists, and switch operation over to it.

[
=

- Cloud Communication

[=] = =1
- h (=]

Time from Cloud Up to Call in Seconds
==
[

L=
[=]

100 150 200 250 300 350 400 450 500
Number of Particles

Figure 15. Time to Call Cloud Service.

43

Chapter 7 Discussion

7.1 Analysis of Sensing Action Time

When comparing the sensing action calculation times between the local and cloud, there
is not a noticeable improvement when using the cloud service over the local. The only
case in which the average sensing action calculation was faster on the cloud versus on the

local was in the case of 100 particles, and it was only a speed up of 0.013 seconds.

If there is a sufficiently powerful local machine, the cloud does not provide a significant
speedup in the time, and even took more time than the local machine. The local machine
in this case had an 17-8700 CPU @ 3.20GHz % 12 and was running Ubuntu 22.04. It was
able to be entirely dedicated to the task of running the local calculations, and the CPUs it
uses are of consistent quality. Liu’s work found that the AWS CPUs are often of

non-consistent quality, which could lead to the timing mismatch [14].

These timing results are similar to the results of Liu’s model [14]. This shows that the
changed methodology does not cause an undue increase in the time taken to calculate the

sensing action.

7.2 Analysis of the Round Trip Time

The round trip times varied dramatically between the all in recovery method and the

cloud and local communication method. When run entirely on the same machine, the

44

round trip time never went above six milliseconds, and when the local and cloud were
communicating the round trip time never went below eighty seven milliseconds. This can
largely be attributed to the communication gap between the AWS web service and the
local computer. Additionally, while OpenVPN was able to run with a UDP connection,
the ROS messages had to be sent with TCPROS, which increased the round trip time

considerably.

7.3 Rewards Analysis

In Figure 17 it is clear that both the Cloud and Local share the same number of successful
trials, as only one of the lines is visible. This is to be expected as they are run on the same
situation with the same number of particles, and thus should come to the same results. In
testing this matched up as expected, showing no difference between the overall success

performance of the Local and Cloud Simulations.

Increasing the number of particles improved the overall performance from the initial
number of eight successes. Once the particles exceeded 300 however, the performance
ceased to increase and went down to nine successes. While fewer trials were performed
since the focus of this project was on recovery, the percentage success rate is consistent

with Liu’s results. A decrease in performance is not seen with the change in methodology.

7.4 Analysis of Recovery Launch Time

The timeout is adjustable depending on the desires of the operator of the system. For the

purposes of this experiment it was set at five seconds. The client would wait five seconds

45

for the cloud service to become available before either activating the local service or

switching to using the local service depending on the state.

Due to the adjustability of the five second timeout that timeout will not be included when
considering how long the recovery takes to launch. The backup never took more than 370
milliseconds from when it was booted to when it became available. This is an acceptable
amount of time for a recovery mechanism, in particular when the alternative is waiting a

potentially indefinite amount of time for the cloud service to return.

There was little variance in how long it took the recovery method to be available, and so

this method of recovery proved to be scalable at least up to 500 particles.

7.5 Analysis of Time to Detect Cloud

The time from when the cloud service became available and was first called is shown in
the function. This time varied more dramatically between the number of particles, but this
variance can be explained by the service returning at different points in the local’s
operation.

When the program does not yet need a sensing action it waits to call the service, so if the
cloud is started while it is performing a task action it will take longer to request the cloud

service.

Regardless of the variance, all of the recovery times are acceptable. It never takes more

than a second for the local client to find the cloud service once it's initiated, and from

46

there it can switch back and forth as needed with ease. Once the cloud service is available

it is the only service utilized.

47

Chapter 8 Conclusion and Future Work

8.1 Conclusion

Despite the minimal or non-existent speedup when using the cloud versus running the
processes separately on a local machine, having a cloud alternative is valuable. Cloud
systems are more scalable than hardware, and thus can be upgraded more cheaply if the
local machine is found to be insufficient. Having a backup for the cloud is still a

worthwhile investment.

This project restructured the existing communication of Liu’s OpenMP action-sensing
calculation in order for it to support a timeout detection for when the cloud service
failed.We did this by switching which process used the ROS service and client in order

to utilize the ROS client waitForExistence function.

States were implemented to track which service the local should communicate with, and
which recovery mechanism should be launched. The time to recovery with each method

was measured, and found to be acceptable.
Future work has three main directions, changing the virtual simulation so the process can

be picked up from the current state, implementing UDP ROS communication with

services, and creating a more resilient ROS master.

48

8.2 Changes to the Simulation Environment

Currently the simulator uses a virtual environment on both the local container and the
cloud container, with the local container’s environment standing in for the robot.
However, the way that the simulations are coded on both sides means that they have an
additional amount of noise coded in. When they’re started at the same time with the same
seed, that random noise matches up on both ends and the simulators are able to stay in

sync.

If one simulator is started later than the other however, and generates a different number
of sensing actions, task actions, or observations, the random noise patterns do not match
up, and the simulators fall out of sync. This means that the recovery mechanism is unable
to be fully implemented, because even if the current state is passed to the virtual
environment on the cloud and implemented, the noise will keep the states from being
correct. This is initially a small displacement, but as the cloud generates sensing and task
actions from this noise, the states diverge further. Fixing this is essential to a functional

recovery mechanism.

8.3 Changing from TCP ROS to UDP ROS

The current project uses TCP connections to pass messages between the Service and
Client in ROS. While TCP is more reliable than UDP, it is much slower than a UDP
connection. Since this project is designed with the hope of eventually being able to plan

in real time, those delays are untenable.

49

A UDPROS protocol is currently in development, however at the time of this project it
was only functional for publishers and subscribers, and not for clients and services [15].
Documentation exists for a UDPROS protocol for clients and services, but the page is
simply an outline of a plan to implement it [15]. Test cases are described, but do not seem
to have been executed, and there are no instructions on how to utilize it [16]. A fully
implemented and tested version of ROSUDP for services and clients would improve the

speed of network communication in the future.

8.4 Improving the Resilience of ROS Master

The ROS master is a key part of the communication system used in this project. It must
be running in order for the other nodes to start and function. It provides naming and
registration services, as well as tracking publishers and subscribers to services. All other
nodes rely on the ROS master.. No programs will run without it. The ROS infrastructure
uses a Bridge design pattern, allowing it to use multiple different types of implementation
on an abstract level. This is somewhat handled when the processes are made into
packages and run, but ROS master is still essential for packages built with different

underlying code to communicate.

Due to the essential nature of ROS master for communication, having a way to detect the
failure and restart it is crucial. Unfortunately, the current structure of the ROS master

makes this difficult. If the ROS master crashes, a new one must be started. When the new

50

master is started, all of the current programs have to be restarted as well so they can be

registered with the new master.

This process is functionally a system restart, even with the state saved. The time cost to
fully restart the system, as well as the inability to predict the behavior of the robot on the
system shutdown, lead to this being an unacceptable solution. Future work that focused
on adding resilience to the ROS master architecture would be a huge improvement in the

overall reliability of the system.

51

Reference

[1]. Y. Liu and Y. Xu, "Summary of Cloud Robot Research," 2019 25th International
Conference on Automation and Computing (ICAC), Lancaster, UK, 2019, pp. 1-5, doi:

10.23919/IConAC.2019.8895254.

[2]. Tian Guohui, Xu Yaxiong, “Cloud Robotics: concept, architectures and key
technologies” Journal of ShanDong University, (Engineering Science), vol 44, no. 6, pp.

46-54, Dec. 2014.

[3]. Kehoe, Ben, et al. "A survey of research on cloud robotics and automation." IEEE

Transactions on automation science and engineering 12.2, 2015: 398-409.

[4]. Juve, G., Deelman, E., Berriman, G.B., et all, “An Evaluation of the Cost and
Performance of Scientific Workflows on Amazon EC2.”J Grid Computing 10, 5-21,

2013.

[5].“What is Ros?,” Ubuntu, https://ubuntu.com/robotics/what-is-ros (accessed May 21,

2023).

[6]. Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA

workshop on open source software. Vol. 3. No. 3.2. 2009.

52

[7]. “TCPROS”, ROS.org, http://wiki.ros.org/ROS/TCPROS, April 15, 2013. (accessed

May 22, 2023).

[8]. “Master”, ROS.org, http://wiki.ros.org/Master, January 15, 2018. (accessed May 22,

2023).

[9]. “What is a Container”, docker, https://www.docker.com/resources/what-container/.

(accessed May 22, 2023).

[10]. “What is a VPN”, OpenVPN, https://openvpn.net/what-is-a-vpn/. (accessed May 22,

2023).

[11]. “Overview of Amazon Web Services”, Amazon Web Services,

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html, April

15, 2023. (accessed May 22, 2023).

[12]. “What is Amazon EC2”, Amazon Web Services,

https://docs.aws.amazon.com/AWSEC?2/latest/UserGuide/concepts.html (accessed May

22,2023).

[13]. Greigarn, Tipakorn, Michael S. Branicky, and M. Cenk Cavusoglu,, "Task-Oriented

Active Sensing via Action Entropy Minimization.", IEEE Access 7 (2019): 135413-

135426.

53

http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/Master
https://www.docker.com/resources/what-container/
https://openvpn.net/what-is-a-vpn/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

[14]. Liu, Yuwei. "OpenMP based Action Entropy Active Sensing in Cloud Computing."

Master's thesis, Case Western Reserve University, 2020.

http://rave.ohiolink.edu/etdc/view?acc_num=case1584809369789769

[15]. “Publishers and Subscribers”, ROS.org,

http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers#Transport Hints,

April 10, 2018. (accessed May 22, 2023).

[16]. “UDPROS”, ROS.org, http://wiki.ros.org/ROS/UDPROS, April 20, 2013. (accessed

May 22, 2023).

54

http://rave.ohiolink.edu/etdc/view?acc_num=case1584809369789769
http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers#Transport_Hints
http://wiki.ros.org/ROS/UDPROS

	Structure Bookmarks
	RECOVERY METHODS FOR

	RECOVERY METHODS FOR

	CLIENT-SERVICE BASED ACTION

	ENTROPY ACTIVE SENSING

	By: ALEXIS SCOTT

	Submitted in partial fulfillment of the requirements for the degree of

Master of Science

	Department of Computer Science and Data Science

	CASE WESTERN RESERVE UNIVERSITY

	August, 2023

	CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

Alexis Scott

	CASE WESTERN RESERVE UNIVERSITY

SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of

Alexis Scott

	candidate for the degree of Master of Science

	Committee Chair

Vincenzo Liberatore

	Committee Member

Vincenzo Liberatore

	Committee Member

M. Cenk Cavusoglu

	Committee Member

Orhan Ozguner

	Date of Defense

June 1, 2023

	Date of Defense

June 1, 2023

	*We also certify that written approval has been obtained

for any proprietary material contained therein

	1

	List of Tables List of Figures
	List of Tables List of Figures
	5

	6

	Chapter 1 Introduction 8

	Chapter 1 Introduction 8

	Chapter 1 Introduction 8

	Chapter 2 Background 10

	Chapter 2 Background 10

	2.1 Cloud Robotics 10

	2.1 Cloud Robotics 10

	2.1 Cloud Robotics 10

	2.3 ROS Master 12

	2.3 ROS Master 12

	2.4 Docker 13

	2.4 Docker 13

	2.5 OpenVPN 13

	2.5 OpenVPN 13

	2.6 Amazon Web Services (AWS) 14

	2.6 Amazon Web Services (AWS) 14

	Chapter 3 Related Work 15

	Chapter 3 Related Work 15

	3.1 Task Action Entropy 15

	3.1 Task Action Entropy 15

	3.1 Task Action Entropy 15

	3.2 Cloud Task Action Entropy 18

	3.2 Cloud Task Action Entropy 18

	Chapter 4 Architecture 21

	Chapter 4 Architecture 21

	4.1 The Docker Structure 21

	4.1 The Docker Structure 21

	4.1 The Docker Structure 21

	4.2 Kubernetes Structure 21

	4.2 Kubernetes Structure 21

	4.3 Great Bear Structure 22

	4.3 Great Bear Structure 22

	Chapter 5 Methodology 24

	Chapter 5 Methodology 24

	5.1 Hardware Specifications 24

	5.1 Hardware Specifications 24

	5.1 Hardware Specifications 24

	5.2 The Network Setup 26

	5.2 The Network Setup 26

	5.2 The Network Setup 26

	5.2 The Network Setup 26

	5.3 The Original Model 26

	5.3 The Original Model 26

	5.5 ROS WaitForExistence 31

	5.5 ROS WaitForExistence 31

	5.6 Statuses and Definitions 31

	5.6 Statuses and Definitions 31

	5.7 Standard Operation 33

	5.7 Standard Operation 33

	5.8 Recovery Launch 34

	5.8 Recovery Launch 34

	5.9 Operation in Recovery 35

	5.9 Operation in Recovery 35

	5.10 Cloud Service Detection 36

	5.10 Cloud Service Detection 36

	5.11 Operation in Keep Alive 37

	5.11 Operation in Keep Alive 37

	Chapter 6 Simulation and Results 39

	Chapter 6 Simulation and Results 39

	6.1 Peg in Hole 2D Problem 39

	6.1 Peg in Hole 2D Problem 39

	6.1 Peg in Hole 2D Problem 39

	6.2 Cloud Sensing ActionTime 41

	6.2 Cloud Sensing ActionTime 41

	6.3 Local Sensing Action Time 42

	6.3 Local Sensing Action Time 42

	6.4 Side by Side Sensing Action Times 42

	6.4 Side by Side Sensing Action Times 42

	6.5 Round Trip Time Comparison 43

	6.5 Round Trip Time Comparison 43

	6.6 Success Comparison 43

	6.6 Success Comparison 43

	6.7 Time to Launch Local Recovery 44

	6.7 Time to Launch Local Recovery 44

	6.8 Time to Call Relaunched Cloud Service 45

	6.8 Time to Call Relaunched Cloud Service 45

	Chapter 7 Discussion 47

	Chapter 7 Discussion 47

	7.1 Analysis of Sensing Action Time 47

	7.1 Analysis of Sensing Action Time 47

	7.1 Analysis of Sensing Action Time 47

	7.2 Analysis of the Round Trip Time 47

	7.2 Analysis of the Round Trip Time 47

	7.3 Rewards Analysis 48

	7.3 Rewards Analysis 48

	7.3 Rewards Analysis 48

	7.3 Rewards Analysis 48

	7.4 Analysis of Recovery Launch Time 48

	7.4 Analysis of Recovery Launch Time 48

	7.5 Analysis of Time to Detect Cloud 49

	7.5 Analysis of Time to Detect Cloud 49

	Chapter 8 Conclusion and Future Work 51

	Chapter 8 Conclusion and Future Work 51

	8.1 Conclusion 51

	8.1 Conclusion 51

	8.1 Conclusion 51

	8.2 Changes to the Simulation Environment 52

	8.2 Changes to the Simulation Environment 52

	8.3 Changing from TCP ROS to UDP ROS 52

	8.3 Changing from TCP ROS to UDP ROS 52

	8.4 Improving the Resilience of ROS Master 53

	8.4 Improving the Resilience of ROS Master 53

	Reference 55

	Reference 55

	List of Tables

	List of Tables

	38.
	38.
	38.
	Table 1.
	List of Configurations in YAML

	List of Figures

	List of Figures

	16.
	16.
	16.
	Figure 1. Planner Structure

	19.
	19.
	Figure 2. Task Action Entropy Algorithm

	24.
	24.
	Figure 3. Standard Hardware Communication

	25.
	25.
	Figure 4. The Network Setup.

	27.
	27.
	Figure 5. Original Model Communication.

	29.
	29.
	Figure 6. Revised Model Communication.

	31.
	31.
	Figure 7. Status Transition Diagram.

	35.
	35.
	Figure 8. Communication in Recovery Mode.

	39.
	39.
	Figure 9. Cloud Active Sensing Time

	40.
	40.
	Figure 10. Local Sensing Action Time.

	40.
	40.
	Figure 11. Compared Sensing Action Times.

	41.
	41.
	Figure 12. Round Trip Time in Seconds

	42.
	42.
	Figure 13. Successful Trials.

	43.
	43.
	Figure 14. Time to Launch Local Recovery.

	43.
	43.
	Figure 15. Time to Call Cloud Service.

	Recovery Methods for Client-Service Based

Action Entropy Active Sensing

	Recovery Methods for Client-Service Based

Action Entropy Active Sensing

	Abstract

	By: ALEXIS SCOTT

	Action entropy active sensing represents huge leaps forward in the field of active sensing.

Previous papers have found that while action entropy increases the accuracy of the

simulation, it also increases the time required to calculate sensing actions. The time cost

can be reduced by implementing parallel processing that splits the computations over

multiple cores. This can be done on a local machine and via implementation of the cloud.

This paper focuses on implementing a detection and recovery mechanism for a potential

cloud crash. The communication is facilitated through Docker and OpenVPN, using the

ROS client-service architecture. This paper adjusts the methodology of the existing

model to make it more robust to failures. The simulation results indicate that the time to

recovery is feasible, and that this new structure increases the reliability of the existing

model.

	Chapter 1 Introduction

	Chapter 1 Introduction

	As the complexity of tasks assigned to robots increases, the computation power needed

for these tasks increases as well. Although currently most tasks can be completed via a

local processor, the need for cloud technology will increase. However, cloud technology

requires network communication and is susceptible to crashes. In some cases, a delay or

pause in computation is acceptable. In other time sensitive situations however, it is not.

Consider the case where a robot is performing surgery, and deciding which action to take

while suturing a wound. A crash that leads to a long delay, or pauses the program until

the cloud component is fixed entirely would be unacceptable in this situation.

	In these cases it is important to have a reliable recovery or backup mechanism. This

project focuses on a previously implemented action entropy sensing action calculation

through a client-service architecture. The existing architecture did not account for the

need for recovery. This project adjusts the structure so that a recovery mechanism is

possible. One is implemented, the time to recovery is measured, and the time costs of

running the simulation entirely on a local machine versus a cloud and local machine are

discussed and compared.

	The rest of the paper will proceed as follows, Chapter Two: Background, Chapter Three:

Related Work, Chapter Four: Architecture, Chapter Five: Methodology, Chapter Six:

Simulation and Results, Chapter Seven: Discussion, Chapter Eight: Conclusion and

Future Work.

	Chapter 2 Background

	Chapter 2 Background

	This chapter will cover the necessary background to understand the project. It will

discuss the theory of cloud robotics, the robotic operating systems or ROS used in the

project, and the various other softwares implemented in the project.

	2.1 Cloud Robotics

	As computing needs increase, the motivation to offload processes and share data among

systems increases as well. For larger tasks more storage space and computing capacity is

needed, but it is often expensive to upgrade the hardware of existing systems. The cloud

provides a valuable solution to this problem. The cloud allows systems to access a shared

pool of information, without the hardware to host it independently [1]. Additionally, the

cloud can perform virtual computing to offload heavy computation tasks from local

computers [2]. As the cloud has become more reliable, the use cases for it have expanded

into robotics [2].

	Cloud Robotics encompasses a wide variety of different programs. Broadly, it can be

defined as any robot or automation system that uses code or data from a network to

support the operation [3]. This allows for the system to have a local component to handle

specific elements of the task, while still following under the broad definition of cloud

robotics. There are four main benefits to using cloud robotics, which are Big Data, Cloud

Computing, Collective Robot learning, and Human computation [3]. This project

primarily focuses on the Cloud Computing aspect, utilizing the cloud to get more

resources for parallel grid computing.

	Since different robotic systems have different communication and computation needs,

cloud robotics does not have a one size fits all solution [1]. Therefore a programmable

and adaptable solution is needed on the cloud. Many companies have proposed different

solutions over the years. Some solutions involve specific software and hardware

structures for the involved components, while others are more adaptable to different

systems.

	Since different robotic systems have different communication and computation needs,

cloud robotics does not have a one size fits all solution [1]. Therefore a programmable

and adaptable solution is needed on the cloud. Many companies have proposed different

solutions over the years. Some solutions involve specific software and hardware

structures for the involved components, while others are more adaptable to different

systems.

	Some of the most notable solutions include AWS Robomaker, which gives programmers

the ability to develop code in the cloud, test it on the gazebo simulator and then apply it

to their own machines [1]. Another proposed program is ABC Robot. This service

focuses on vision based perception, objection recognition, facial recognition, and text

recognition [1]. While the software it provides is useful, it does require robots to be

compatible with its specific system.

	More general cloud parallel computing can be found from many commercial sources, like

Google’s Compute Engine, Amazon’s Elastic Cloud Computer, and Microsoft’s Azure

[3]. While these computing resources are not explicitly designed for use with cloud

robotics, the additional computing capabilities they provide are extremely useful in

robotic planning problems [4].

	This project does not use any pre-existing robotic software designed to function with the

cloud. Instead, it uses OpenVPN and docker containers to simulate a local network, in

	10

	combination with the Robotic Operating System or ROS which facilitates the robotics

side of the system. However, it still utilizes the resources provided by the cloud and

builds on theories proposed by previous cloud robotics research.

	combination with the Robotic Operating System or ROS which facilitates the robotics

side of the system. However, it still utilizes the resources provided by the cloud and

builds on theories proposed by previous cloud robotics research.

	2.2 Robotic Operating System (ROS)

	2.2 Robotic Operating System (ROS)

	The Robot Operating System or ROS is an open source library for robotics work. It

allows researchers to develop code that can be shared among systems with a common

framework [5]. ROS is a language neutral messaging system, so it works well for many

projects and is easily adaptable [5].

	ROS programs operate through nodes, which are analogous to software modules. Most

systems end up being composed of many different nodes due to the modular nature of

ROS [5]. In order to communicate with other nodes, nodes pass messages to each other.

Messages can consist of primitive data types, or be customized depending on the needs of

the system. Messages are published to topics, which are defined with a string name [6].

	This project used the client-service architecture. A ROS service is a callable node with a

strictly typed request, and response structure [6]. This structure is then called by a client

node, which formats the request messages to fit the service’s needs and processes the

response from the service. This type of communication works better for synchronous

messaging than the other option, publish and subscribe.

	The communication type used for this layer of transport is TCPROS [7]. It uses standard

TCP/IP sockets to transport data between nodes. Different fields route to service nodes or

publisher nodes. A service is always required to reply with an ‘ok’ byte in response to

each service request message. This allows for detection of when a service call fails [7].

	The communication type used for this layer of transport is TCPROS [7]. It uses standard

TCP/IP sockets to transport data between nodes. Different fields route to service nodes or

publisher nodes. A service is always required to reply with an ‘ok’ byte in response to

each service request message. This allows for detection of when a service call fails [7].

	2.3 ROS Master

	Due to the peer to peer nature of the ROS architecture, an additional component is

required so that nodes can find each other [5]. The ROS master is a node that must be run

at start-up for all other nodes to communicate with each other. The master node tracks

services and other nodes, and allows them to pass messages to each other [8]. Once the

nodes have located each other through the master they are able to communicate on a peer

to peer connection, however the master must be running for the eternity of the system’s

operation [8]. If ROS master crashes, the nodes are unable to communicate with each

other, or run their own functions.

	2.4 Docker

	For ease of portability and network simulation this project was run on Docker containers.

Docker containers are a means of encapsulating code and all of its dependencies into an

isolated environment that can be run with simple commands [9]. The environments are

created as images, and then turn into containers when they are run [9]. They are ideal for

cloud environments as they can be easily deployed on a number of different machines,

with limited setup. The Docker architecture is expanded on in section five.

	12

	Openvpn was used for communication in this project [10]. It is a virtual private network

or VPN. Openvpn uses an encrypted tunnel to send packets over a network [10]. This

allows traffic to pass securely and privately even without a local connection. This allows

the program to treat network traffic as though it is on a local network. Since they are

connected as though through a local network, ROS is able to send information through

the tunnel and communicate with the other nodes on the network. This adds an additional

layer of security that ROS requires, as ROS is unable to pass messages through non-local

networks.

	Openvpn was used for communication in this project [10]. It is a virtual private network

or VPN. Openvpn uses an encrypted tunnel to send packets over a network [10]. This

allows traffic to pass securely and privately even without a local connection. This allows

the program to treat network traffic as though it is on a local network. Since they are

connected as though through a local network, ROS is able to send information through

the tunnel and communicate with the other nodes on the network. This adds an additional

layer of security that ROS requires, as ROS is unable to pass messages through non-local

networks.

	2.6 Amazon Web Services (AWS)

	2.6 Amazon Web Services (AWS)

	Amazon Web Services is a cloud computing platform that provides web services to both

companies and individuals [11]. Amazon Web Services was used for this project, as they

provide reliable and scalable virtual machines for the user [11]. Specifically, an elastic

cloud compute or EC2 instance was used for this project.

	The EC2 instance is a scalable virtual machine that comes preset up with various memory

allocations and operating systems [12]. This project used an Ubuntu c5.4xlarge EC2

instance with 16 virtual cpus, and 8 GBS of storage. This AWS instance is referred

throughout the project as the cloud, and is used to simulate an environment where work

needs to be offloaded from a local machine for faster processing.

	13

	Chapter 3 Related Work

	Chapter 3 Related Work

	3.1 Task Action Entropy

	Most robotics problems are continuous in nature and thus pose a unique challenge in

sequential decision making [13]. Various state space planners have been developed in an

attempt to address the problem of sequential decision making. A sensing action is an

action that has no effect on the environment, but provides the state space planner with

useful information about it [13]. Active sensing is the act of choosing the best sensing

action. [13]. The sensing actions are chosen in order to reduce state uncertainty, and so

the “best” sensing action is one that reduces the state uncertainty the most [13].

	The action-entropy active sensing method proposed by Greigarn, et al uses an

	active-sensing method in combination with a state space planner in order to solve

continuous state problems. It uses particle filters to model belief propagation, mapping

the belief over the state space based on the task planner’s provided policy [13]. A nearest

neighbor method gets the entropy of the task action, and then a sensing action is chosen

to minimize that entropy [13].

	The action space can be divided into two spaces when the sensing action does not affect

the overall state, an action space that only affects sensing called the sensing action space,

and a space that changes the state of the system called the task action space [13].

	The state transition model used is a probability density function of the next state given

that a specific task action is performed at a state. The measurement model is a probability

density function of the measurement given that the sensing action is performed at that

same state [13]. The belief represents the information that the robot has about the state of

the environment.

	The state transition model used is a probability density function of the next state given

that a specific task action is performed at a state. The measurement model is a probability

density function of the measurement given that the sensing action is performed at that

same state [13]. The belief represents the information that the robot has about the state of

the environment.

	The following equation is used for belief:

	𝑏(𝑥 ∈ X. (1)

𝑡

) = 𝑝(𝑥

𝑡

|𝑏

0

, 𝑢

1:𝑡

, 𝑣

1:𝑡

, 𝑧

1:𝑡

), ∀𝑥

𝑡

	Where 𝑏(𝑥
	is the initial belief. t is dropped where it will not cause confusion

	0

) = 𝑝(𝑥

	0

)

	for the rest of the calculations [12]. Predicted belief is calculated with the following

equation,

	𝑏
	. (2)

	Figure
	(𝑥') = ∫ 𝑝(𝑥' |𝑢, 𝑥)𝑏(𝑥)𝑑𝑥

	𝑥

	And then updated with

	𝑏(𝑥) = η𝑝(𝑧|𝑣, 𝑥) 𝑏. (3)

	Figure
	(𝑥)
	This work also uses a state space planner for task related planning, referred to as the task

planner [13]. The planner is divided into submodules as shown below

	15

	Part
	Figure
	Figure 1. Planner Structure

	The full process of the system is as follows [13]:

	1. At initialization the planner will solve the planning problem in the state space for

a policy and then pass the policy to the active-sensing module. The coordinator

will pass the internal belief to the active-sensing module.

	1. At initialization the planner will solve the planning problem in the state space for

a policy and then pass the policy to the active-sensing module. The coordinator

will pass the internal belief to the active-sensing module.

	2. The belief is then mapped through the policy by the active-sensing module to

calculate task action entropy and return the sensing action that minimizes the task

action entropy.

	3. The coordinator then performs the sensing action and gets a measurement,

updating the belief according to the measurement.

	4. Then the coordinator selects a task action based on the most likely state.

	5. The task action is performed and the coordinator updates its internal belief.

	The sensing action is the minimizer of the entropy as follows

	16

	𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℎ(𝑈|𝑍; 𝑣,
	𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛 ℎ(𝑈|𝑍; 𝑣,
	𝑏
) 𝑤ℎ𝑒𝑟𝑒 𝑣
	∈ V. (4)

	Action entropy selection was found to have higher average rewards than state entropy, as

well as taking less time [13]. This made it a viable candidate for task selection that is

expanded on in future works as well as this project.

	3.2 Cloud Task Action Entropy

	The action entropy approach to state space planning represented a leap forward in the

accuracy and efficiency of the state space planning solutions. However, improvements

still existed. Liu proposes a model that adjusts the computation of the various actions so

that it can take place in parallel [14].

	The first step in this new model is to divide Greigan’s planner into two parts [14]. The

local planner maintains only the coordinator, while the cloud planner has a coordinator,

an active sensing module, and a task planner. The cloud portion is also given a virtual

environment with which to simulate task action and update the belief [14].

	In this setup the local sends a request to the cloud, the task planner calculates the sensing

action for the state space and returns it to the local [113. The local then calculates and

sends the updated belief which is mapped to calculate the best task action which is

returned. The coordinator on the local side then performs the task action and updates its

	17

	belief of the state space. This cycle continues until either the amount of steps are

exceeded or the goal is reached.

	belief of the state space. This cycle continues until either the amount of steps are

exceeded or the goal is reached.

	A publish and subscribe method of communication between these two portions is

discussed in the paper, but ultimately deemed ineffective. It had an overly high

communication time for each step of the process, and overall was not a good fit [14]. The

client and service model however showed promising results and is the model expanded

on in this project [14].

	The initial algorithm contained two for loops, one inside of the other, where the outer

loop was the for each loop and the inner loop did the Monte Carlo simulation [14]. If split

up and computed at the same time, the order of the simulation may be random, which

leads to unacceptable results. To apply parallel computing without this error, the

algorithm is modified to store the sum of the cumulative entropy in a position in an array

where the position corresponds to each sensing action [14]. After the parallel computing

is complete, the lowest cumulative entropy is found from the array. The following

method is used for this process.

	Part
	Figure
	Figure 2. Task Action Entropy Algorithm

	The revised model was found to perform faster than the original model. Applying

multiple cores to the processing also improved the model [14]. The local version was

found to perform slightly better than cloud and local version when the appropriate

amount of cores were available.

	19

	Chapter 4 Architecture

	Chapter 4 Architecture

	4.1 The Docker Structure

	This project uses Docker to manage each of the respective processes. Docker allows for

the processes to be packaged up and deployed with ease, without having to install the

robotic operating system on each individual machine.

	The Local Machine has a docker container with both the client and the backup service

built. This container also runs the ROS master and an OpenVPN client. When the

container is started ROS master, the ROS client, and the OpenVPN client are running.

The backup service only starts if triggered by the recovery mechanism.

	The Cloud Machine has a docker container with the regular service inside of it. It uses the

network host flag to connect to the OpenVPN server running on the AWS instance

instead of hosting the service within the container. On start up it runs the cloud service

for standard operation. Both containers can be easily built and run with a single

command, with only Docker installed on the machine. This allows the processes to run on

machines with smaller memory as well. This setup was the one ultimately used in the

project.

	4.2 Kubernetes Structure

	Kubernetes was explored as an option for this project, but ultimately was not

implemented. It was considered for container management. It would have provided an

	20

	additional way to scale the container size and experiment with that aspect of the project.

However, the primary benefit of Kubernetes is its ability to manage multiple containers

that need to stay up consistently.

	additional way to scale the container size and experiment with that aspect of the project.

However, the primary benefit of Kubernetes is its ability to manage multiple containers

that need to stay up consistently.

	For this project, only two containers are implemented and they are on different systems

and need to be managed separately. This would mean having a separate Kubernetes

cluster for each of the Docker containers. While this was possible, it added a layer of

complexity that was not needed to the project. Ultimately the project did not focus on

scaling container size either, and so Kubernetes was not implemented.

	4.3 Great Bear Structure

	Another option that was explored but ultimately not used in the project was Cisco’s Great

Bear cloud management system. Similar to Kubernetes, Great Bear would have served as

a way to manage the various containers and keep track of their status. It used Docker and

Kubernetes as well as its own management system.

	A few problems came up while trying to implement Great Bear that ultimately meant it

was not feasible for the project in its current form. Great Bear was primarily designed to

track programs on a high level, making sure that they were up and running. This project

required a level of fine tune control that meant it still needed to be monitored via

Kubernetes even while using Great Bear.

	Additionally, the network requirements of ROS meant that a VPN was required. Getting a

container to run both the VPN and Great Bear ended up not being possible. The

conflicting network requirements created problems that were not feasible to fix in the

given timeframe. The overhead of setting up Great Bear every time a container needed to

be reloaded, also meant that Great Bear was not a good fit for this instance of the project.

	Additionally, the network requirements of ROS meant that a VPN was required. Getting a

container to run both the VPN and Great Bear ended up not being possible. The

conflicting network requirements created problems that were not feasible to fix in the

given timeframe. The overhead of setting up Great Bear every time a container needed to

be reloaded, also meant that Great Bear was not a good fit for this instance of the project.

	Chapter 5 Methodology

	Chapter 5 Methodology

	5.1 Hardware Specifications

	5.1 Hardware Specifications

	The cloud machine in this project is an AWS Ubuntu c5.4xlarge EC2 instance with 16

virtual cpus, and 8 GBS of storage. The previous project used an Ubuntu instance with 36

virtual cpus, but since only 10 cores were required for the optimal speedup this instance

was scaled down. The local desktop that was used had an Intel Core i7-8700 CPU with

12 cores and 16 GB of memory. It is running Ubuntu 22.04, with the project running in a

Docker container.

	Though the da Vinci robot was not ultimately used in this version of the project, a

hardware diagram with how the cloud and local computer in this project would

communicate with it in standard operation is included below for reference.

	Part
	Figure
	Figure 3. Standard Hardware Communication

	5.2 The Network Setup

	5.2 The Network Setup

	In the network setup the Cloud Machine and the Local Machine are connected with an

OpenVPN connection, hosted on the AWS instance. They communicate through a

tunneled connection. The Ros Master is hosted on the local machine. The local client and

the cloud service both connect to the Ros Master and each other respectively.

	Figure
	Figure 4. The Network Setup.

	5.3 The Original Model

	In the original model the ROS client-service architecture is used. The cloud functions as

the client, and the local as the service. In this model, when the programs are both

initialized the cloud client calls the local service when it has generated a sensing action. If

the cloud client can not find a local service, it prints an error that the service was not

found. If the local service is not called it waits until the program is killed or called.

	The local container has only the coordinator and simulator. The coordinator interacts with

the environment and maintains internal belief [14]. The coordinator in this project

	25

	however, was a virtual environment designed to simulate a 2-dimensional Peg in Hole

model. Therefore a simulator also runs on the local container. The cloud container

contains an active sensing module, a task planner module, a coordinator and a virtual

environment [14]. The cloud container generates the sensing action, and task action based

on the feedback from the local. The virtual environment allows the cloud container to

maintain belief and feedback about the environment so it can generate actions.

	however, was a virtual environment designed to simulate a 2-dimensional Peg in Hole

model. Therefore a simulator also runs on the local container. The cloud container

contains an active sensing module, a task planner module, a coordinator and a virtual

environment [14]. The cloud container generates the sensing action, and task action based

on the feedback from the local. The virtual environment allows the cloud container to

maintain belief and feedback about the environment so it can generate actions.

	The following are the steps in the original model's primary operation [14].

	1. The cloud container launches the ROS client and the local container launches the

ROS service.

	1. The cloud container launches the ROS client and the local container launches the

ROS service.

	2. The cloud container calls the local container, with the request message set as the

generated sensing action from its virtual environment.

	3. The local container receives the sensing action, performs it, and gets the

observation. It then sends the observation as a response message.

	4. The cloud container receives the observation, updates its belief and then

calculates the task action. It calls the local service with the task action as the

request message.

	5. The local service performs the task action and updates its belief. It then sends a

continue signal to the cloud container.

	6. The cloud updates its virtual environment and checks to see if a sensing action is

allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

	7. When a sensing action is allowed the cloud generates it and sends it as a request

to the local service.

	7. When a sensing action is allowed the cloud generates it and sends it as a request

to the local service.

	7. When a sensing action is allowed the cloud generates it and sends it as a request

to the local service.

	8. The virtual environments are updated in tandem, when they both have reached

their goal or exceeded the maximum allowed amount of steps the simulation ends

and the results are recorded.

	Figure
	Figure 5. Original Model Communication.

	The diagram above details the messages sent throughout this process. The cloud client

sends the sensing action message as a request when it calls the local service.

	5.4 The Revised Model

	While the original setup was sufficient when a recovery mechanism was not needed,

some changes needed to be made in order to support one. As is, ROS services have no

method of detecting how long has passed since they’ve been called. ROS clients

	27

	however, have a built-in method of detecting when a service is available, and waiting for

a set amount of time if it is not, through the waitForExistence() function.

	however, have a built-in method of detecting when a service is available, and waiting for

a set amount of time if it is not, through the waitForExistence() function.

	The ability to use this function was highly desirable for a system that was robust to

recovery. To accommodate the use of this function, the local process was switched to a

ROS client, and the cloud process was switched to a ROS service. The following are the

updated steps in the revised model.

	1. The cloud container launches the ROS client and the local container launches the

ROS service.

	1. The cloud container launches the ROS client and the local container launches the

ROS service.

	2. The local container calls the cloud container, sending the observation as a request

message.

	3. The cloud container generates the sensing action and returns it to the local

container.

	4. The local container performs the sensing action, updates the belief, and sends the

new observation as a request.

	5. The cloud container receives the observation request. It updates the belief and

calculates the task action.

	6. The task action is sent from the cloud container as a response.

	7. The local service performs the task action and updates its belief. It then sends a

continue signal to the cloud container.

	8. The cloud updates its virtual environment and checks to see if a sensing action is

allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

	8. The cloud updates its virtual environment and checks to see if a sensing action is

allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

	8. The cloud updates its virtual environment and checks to see if a sensing action is

allowed in the step. If not it performs nothing as a task action until a sensing

action is allowed.

	9. When a sensing action is allowed the cloud generates it and sends it as a request

to the local service.

	10. The virtual environments are updated in tandem, when they both have reached

their goal or exceeded the maximum allowed amount of steps the simulation ends

and the results are recorded.

	The communication process during standard operation in the new model is outlined

below.

	Figure
	Figure 6. Revised Model Communication.

	Additionally, the revised model has statuses to keep track of which state the program is

in.

	Additionally, the revised model has statuses to keep track of which state the program is

in.

	5.5 ROS WaitForExistence

	Now that the service and client have been switched, the local container is able to take

advantage of the in-built ROS function waitForExistence(). WaitForExistence() is a

blocking call that takes a timeout value and a service as a parameter. If the service it is

waiting for exists, it returns True and continues normal operation. Otherwise it will block

the program until either the service exists, or the timeout is exceeded.

	When the timeout is exceeded it returns False. This return can then be handled

accordingly by the recovery method. Depending on the status that the local program is in,

different recovery methods are executed.

	5.6 Statuses and Definitions

	5.6 Statuses and Definitions

	Statuses are a set of enums implemented in the code to keep track of what events have

occurred in the local service. The status is changed depending on the events and affects

which recovery process should be followed. The status transition diagram is shown

below.

	Part
	Figure
	Figure 7. Status Transition Diagram.

	1. Standard State:

	1. Standard State:

	Standard operation indicates that the program is running as expected, and has not

entered recovery mode at any point in the process. The cloud service has stayed

active the whole time, and the client has been able to communicate with it. The

local client starts in this state.

	2. Local Recovery:

	2. Local Recovery:

	Local recovery indicates that the cloud service is currently inaccessible. This

status does not distinguish between whether it is the first time the local recovery

has been activated, or the second. While in this state the local client attempts to

call the cloud client each turn. If it cannot, it uses the local service. If it is able to

then the status is switched to Keep Alive.

	3. Keep Alive:

	3. Keep Alive:

	Keep alive indicates that the client is currently able to access the cloud service,

but that the local service has been launched previously. This status is used to

	indicate that the local service does not need to be relaunched, but simply called in

case of another failure.

	indicate that the local service does not need to be relaunched, but simply called in

case of another failure.

	5.7 Standard Operation

	Two clients are made when the local container is started. One client is connected to the

service “cloud_active_sensing” which is the cloud service that traditionally runs the

operation. A second client is connected to “cloud_active_sensing_recovery”, which is the

service that is launched when the recovery mode is activated.

	In standard mode all communication is run through the initial client. At the start of each

sensing loop, the program uses the waitForExistence function to make sure that the

service exists as expected.

	This check is placed at the top of the while loop that occurs when a sensing action is

permitted. After each message is sent, the program returns to the top of the while loop

and waits for the service to exist. The timeout is set to five seconds to allot for a delay in

starting the cloud service at the start of the program, and to allow time for small network

errors. When the service is unavailable after the timeout, the recovery mechanism is

launched.

	The method for that is outlined below

	32

	Algorithm 1: Timeout Detection

	Algorithm 1: Timeout Detection

	1. procedure: COMMUNICATION

	2. if step_number % sensing_interval == 0 && (status == Standard or

keepAlive):

	2. if step_number % sensing_interval == 0 && (status == Standard or

keepAlive):

	3. while ros::ok

	4.
	5.
	6.
	7.
	8. 9. 10. 11. 12. 13. 14.
	if waitForExistence:

	request sensing action, send observation

	case sensing action received:

	perform sensing action

request task action

	case task action received:

	perform task action

request service continue

	Break Loop

else:

	Activate Recovery Service

	The process to activate the recovery service is detailed in the section below.

	5.8 Recovery Launch

	The recovery program consists of another ROS program, run on the local container. It is

not launched from the start to conserve resources, however in the case of a timeout a bash

script is run that launches the program.

	The program is the same as cloud service, except that it is run in the same container as

the local client. In theory, on launch it would be sent the current state of the program and

would resume operation from there. However, due to the constraints of the virtual

environment being used, this particular recovery mechanism only functioned when the

	cloud service never launched. This problem is explored in more detail in simulation and

results and future work.

	cloud service never launched. This problem is explored in more detail in simulation and

results and future work.

	When the recovery mechanism is launched the status is changed from standard operation

to local recovery. While in local recovery the second client connected to

“cloud_active_sensing_recovery” is used to communicate with the local service and get

the sensing and task actions. The full operation is detailed in the following section.

	5.9 Operation in Recovery

	5.9 Operation in Recovery

	Two clients are made when the local container is started. One client is connected to the

service “cloud_active_sensing” which is the cloud service that traditionally runs the

operation. A second client is connected to “cloud_active_sensing_recovery”, which is the

service that is launched when the recovery mode is activated.

	The communication structure for local client and local service mirrors the one for local

client and cloud service, and is outlined in the diagram below.

	Part
	Figure
	Figure 8. Communication in Recovery Mode.

	5.10 Cloud Service Detection

	Before each call is made with the second client connected to the recovery service, an

attempt is made to call the cloud service. The call function in ROS allows for a client to

try and call the service, if the service is not available the call function will return false.

This is not used for the timeout detection method as it is instantaneous, and has no room

for a delay in the service. However, when the client is already running in recovery mode,

this is an effective way to see if the cloud service is available again.

	If the cloud service is available, the status is switched to Keep Alive, and the cloud

service is called again with a recovery flag activated. The recovery flag lets the cloud

	service know that the backup has been running, and the cloud service is passed the

current state with the recovery flag.

	service know that the backup has been running, and the cloud service is passed the

current state with the recovery flag.

	Below is an outline of the method that has the cloud detection in local recovery.

	Algorithm Two: Detect Cloud Service in Recovery

	procedure: RECOVERYCOMMUNICATION

	15. if step_number % sensing_interval == 0 && (status ==

localRecovery):

	15. if step_number % sensing_interval == 0 && (status ==

localRecovery):

	16. while ros::ok

	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.
	27.
	if client.call(srv):

	status = keepAlive

	else:

	client2 request sensing action, send observation

	case sensing action received:

	perform sensing action

client2 request task action

	case task action received:

	perform task action

	client2 request service continue

	Break Loop

	5.11 Operation in Keep Alive

	5.11 Operation in Keep Alive

	Keep Alive operation follows the standard operation with the exception of the recovery

mechanism. If the waitForExistence timeout is exceeded, the status is switched to

localRecovery with the recovery flag activated and the active client is switched from

client to client2. The operation then follows the recovery operation.

	Chapter 6 Simulation and Results

	Chapter 6 Simulation and Results

	6.1 Peg in Hole 2D Problem

	6.1 Peg in Hole 2D Problem

	This project used the peg in hole 2D problem to test the recovery mechanisms. The peg in

hole problem is a traditional robotics problem, in which the robot tries to manipulate a

peg into an appropriately sized hole, and drop the peg in the hole. The goal is considered

reached if the peg successfully enters the hole, and not reached if it does not [14].

	This problem is appropriate for a continuous space approximation, and is able to use the

action entropy method developed by Greigarn [13]. The 2D space is used in this

simulation to simplify the problem and focus testing on the recovery mechanism.

	Let x represent the location of the peg, and let Pw and Ph represent the width and height

respectively. The state of the peg at time t is represented by the x and y coordinates of the

peg. The action is initially set to u = 0 when the simulation is started.

	First, u will be set to approach the hole on the x-axis. The policy will calculate the peg’s

estimated location, if it is less than half of the width of the peg from the hole, the action

will tell the peg to go to that location. When it reaches the location a new action is

generated. If the X1 location is acceptable, then the X3, or angle is generated and

compared. Finally, the X2 location is generated to drop the peg into the hole.

	The belief is generated with a Gaussian distribution. The sensing action selects the

direction of state space that should be observed to determine where the peg goes.

	The belief is generated with a Gaussian distribution. The sensing action selects the

direction of state space that should be observed to determine where the peg goes.

	𝑥 𝑡

= 𝑥

𝑡 −1

+ 𝑢

𝑡

𝑚𝑖𝑛(1, 𝑎

||𝑢

𝑡

)
	. (5)

+ 𝑛

𝑢

	The noise is generated following a Gaussian distribution as well.

	Since this project builds on Liu’s work, we use the same settings for the Peg in Hole 2D

simulation, with a few small changes. The simulation is repeated ten times in our

experiment, and the maximum number of steps is set to 700 steps. If the simulation fails

to reach the goal state within 700 attempts, that trial is considered to be a failure. If the

simulation reaches the goal state, the trial is a success.

	The following table represents the model configurations, which are stored and loaded

from a YAML file [11].

	state_size
	state_size
	state_size
	3

	peg_width
	peg_width
	1

	peg_height
	peg_height
	2

	hole_tolerance
	hole_tolerance
	0.1

	init_mean
	init_mean
	[4, 2, 0]

	motion_cov
	motion_cov
	[2,1,1.57]

	sensing_cov
	sensing_cov
	.001

	38

	collision_tol
	collision_tol
	num_trials
	max_steps
	.001

	10

	700

	Table 1. List of Configurations in YAML

	Table
	TR
	TD
	TD

	TR
	TD
	TD

	TR
	TD
	TD

	6.2 Cloud Sensing ActionTime

	Below are the average times for the calculation of the sensing action when both the cloud

and local were operational for the entire run time of the program. The particles represent

how many particles were used in each calculation, and the sensing action time is in

seconds. The sensing action time is how long it takes from when the service receives the

request for a sensing action to when it has finished calculating the desired sensing action.

	Figure
	Figure 9. Cloud Active Sensing Time

	6.3 Local Sensing Action Time

	6.3 Local Sensing Action Time

	Below are the sensing action times for the local communication, when the cloud service

never came up and the simulation was run entirely in recovery mode. The data is

represented in seconds.

	Figure
	Figure 10. Local Sensing Action Time.

	6.4 Side by Side Sensing Action Times

	6.4 Side by Side Sensing Action Times

	The following graph is a side by side comparison of the local and cloud computation

sensing action times. The time is represented in seconds.

	Figure
	40

	Figure 11. Compared Sensing Action Times.

	Figure 11. Compared Sensing Action Times.

	6.5 Round Trip Time Comparison

	The round trip time is the time it takes for a sensing action to be requested and received,

minus the time to calculate the sensing action. This is to get a measurement of the time it

takes for a message to travel from the local container to the cloud, or from one local

container to the other program in the local container. The round trip times of both

scenarios are shown below.

	Figure
	Figure 12. Round Trip Time in Seconds

.

	6.6 Success Comparison

	Below is the graph representing the number of successful trials out of ten for each of the

simulations. Only one line can be seen on the graph because they had the same number of

successful trials out of ten.

	41

	Part
	Figure
	Figure 13. Successful Trials.

	6.7 Time to Launch Local Recovery

	6.7 Time to Launch Local Recovery

	Below is the time it takes for the local to come up when the cloud service is running and

fails during the operation. In this measurement the sensing action is not calculated prior

to the response time being sent, a response time is sent as soon as the service is called by

the local. This was with a timeout of five seconds applied to the waitForExistence. The

five second timeout is adjustable depending on the desired wait time, and so is shown on

the graph as a baseline.

	42

	Part
	Figure
	Figure 14. Time to Launch Local Recovery.

	6.8 Time to Call Relaunched Cloud Service

	6.8 Time to Call Relaunched Cloud Service

	The following is the time from when the cloud service was first rebooted to when it was

first called by the local client. This timing indicates how long it takes the local client to

realize that the new service exists, and switch operation over to it.

	Figure
	Figure 15. Time to Call Cloud Service.

	43

	Chapter 7 Discussion

	Chapter 7 Discussion

	7.1 Analysis of Sensing Action Time

	7.1 Analysis of Sensing Action Time

	When comparing the sensing action calculation times between the local and cloud, there

is not a noticeable improvement when using the cloud service over the local. The only

case in which the average sensing action calculation was faster on the cloud versus on the

local was in the case of 100 particles, and it was only a speed up of 0.013 seconds.

	If there is a sufficiently powerful local machine, the cloud does not provide a significant

speedup in the time, and even took more time than the local machine. The local machine

in this case had an i7-8700 CPU @ 3.20GHz × 12 and was running Ubuntu 22.04. It was

able to be entirely dedicated to the task of running the local calculations, and the CPUs it

uses are of consistent quality. Liu’s work found that the AWS CPUs are often of

	non-consistent quality, which could lead to the timing mismatch [14].

	These timing results are similar to the results of Liu’s model [14]. This shows that the

changed methodology does not cause an undue increase in the time taken to calculate the

sensing action.

	7.2 Analysis of the Round Trip Time

	7.2 Analysis of the Round Trip Time

	The round trip times varied dramatically between the all in recovery method and the

cloud and local communication method. When run entirely on the same machine, the

	44

	round trip time never went above six milliseconds, and when the local and cloud were

communicating the round trip time never went below eighty seven milliseconds. This can

largely be attributed to the communication gap between the AWS web service and the

local computer. Additionally, while OpenVPN was able to run with a UDP connection,

the ROS messages had to be sent with TCPROS, which increased the round trip time

considerably.

	round trip time never went above six milliseconds, and when the local and cloud were

communicating the round trip time never went below eighty seven milliseconds. This can

largely be attributed to the communication gap between the AWS web service and the

local computer. Additionally, while OpenVPN was able to run with a UDP connection,

the ROS messages had to be sent with TCPROS, which increased the round trip time

considerably.

	7.3 Rewards Analysis

	In Figure 17 it is clear that both the Cloud and Local share the same number of successful

trials, as only one of the lines is visible. This is to be expected as they are run on the same

situation with the same number of particles, and thus should come to the same results. In

testing this matched up as expected, showing no difference between the overall success

performance of the Local and Cloud Simulations.

	Increasing the number of particles improved the overall performance from the initial

number of eight successes. Once the particles exceeded 300 however, the performance

ceased to increase and went down to nine successes. While fewer trials were performed

since the focus of this project was on recovery, the percentage success rate is consistent

with Liu’s results. A decrease in performance is not seen with the change in methodology.

	7.4 Analysis of Recovery Launch Time

	7.4 Analysis of Recovery Launch Time

	The timeout is adjustable depending on the desires of the operator of the system. For the

purposes of this experiment it was set at five seconds. The client would wait five seconds

	45

	for the cloud service to become available before either activating the local service or

switching to using the local service depending on the state.

	for the cloud service to become available before either activating the local service or

switching to using the local service depending on the state.

	Due to the adjustability of the five second timeout that timeout will not be included when

considering how long the recovery takes to launch. The backup never took more than 370

milliseconds from when it was booted to when it became available. This is an acceptable

amount of time for a recovery mechanism, in particular when the alternative is waiting a

potentially indefinite amount of time for the cloud service to return.

	There was little variance in how long it took the recovery method to be available, and so

this method of recovery proved to be scalable at least up to 500 particles.

	7.5 Analysis of Time to Detect Cloud

	7.5 Analysis of Time to Detect Cloud

	The time from when the cloud service became available and was first called is shown in

the function. This time varied more dramatically between the number of particles, but this

variance can be explained by the service returning at different points in the local’s

operation.

	When the program does not yet need a sensing action it waits to call the service, so if the

cloud is started while it is performing a task action it will take longer to request the cloud

service.

	Regardless of the variance, all of the recovery times are acceptable. It never takes more

than a second for the local client to find the cloud service once it's initiated, and from

	there it can switch back and forth as needed with ease. Once the cloud service is available

it is the only service utilized.

	there it can switch back and forth as needed with ease. Once the cloud service is available

it is the only service utilized.

	Chapter 8 Conclusion and Future Work

	Chapter 8 Conclusion and Future Work

	8.1 Conclusion

	Despite the minimal or non-existent speedup when using the cloud versus running the

processes separately on a local machine, having a cloud alternative is valuable. Cloud

systems are more scalable than hardware, and thus can be upgraded more cheaply if the

local machine is found to be insufficient. Having a backup for the cloud is still a

worthwhile investment.

	This project restructured the existing communication of Liu’s OpenMP action-sensing

calculation in order for it to support a timeout detection for when the cloud service

failed.We did this by switching which process used the ROS service and client in order

to utilize the ROS client waitForExistence function.

	States were implemented to track which service the local should communicate with, and

which recovery mechanism should be launched. The time to recovery with each method

was measured, and found to be acceptable.

	Future work has three main directions, changing the virtual simulation so the process can

be picked up from the current state, implementing UDP ROS communication with

services, and creating a more resilient ROS master.

	8.2 Changes to the Simulation Environment

	8.2 Changes to the Simulation Environment

	8.2 Changes to the Simulation Environment

	Currently the simulator uses a virtual environment on both the local container and the

cloud container, with the local container’s environment standing in for the robot.

However, the way that the simulations are coded on both sides means that they have an

additional amount of noise coded in. When they’re started at the same time with the same

seed, that random noise matches up on both ends and the simulators are able to stay in

sync.

	If one simulator is started later than the other however, and generates a different number

of sensing actions, task actions, or observations, the random noise patterns do not match

up, and the simulators fall out of sync. This means that the recovery mechanism is unable

to be fully implemented, because even if the current state is passed to the virtual

environment on the cloud and implemented, the noise will keep the states from being

correct. This is initially a small displacement, but as the cloud generates sensing and task

actions from this noise, the states diverge further. Fixing this is essential to a functional

recovery mechanism.

	8.3 Changing from TCP ROS to UDP ROS

	8.3 Changing from TCP ROS to UDP ROS

	The current project uses TCP connections to pass messages between the Service and

Client in ROS. While TCP is more reliable than UDP, it is much slower than a UDP

connection. Since this project is designed with the hope of eventually being able to plan

in real time, those delays are untenable.

	A UDPROS protocol is currently in development, however at the time of this project it

was only functional for publishers and subscribers, and not for clients and services [15].

Documentation exists for a UDPROS protocol for clients and services, but the page is

simply an outline of a plan to implement it [15]. Test cases are described, but do not seem

to have been executed, and there are no instructions on how to utilize it [16]. A fully

implemented and tested version of ROSUDP for services and clients would improve the

speed of network communication in the future.

	A UDPROS protocol is currently in development, however at the time of this project it

was only functional for publishers and subscribers, and not for clients and services [15].

Documentation exists for a UDPROS protocol for clients and services, but the page is

simply an outline of a plan to implement it [15]. Test cases are described, but do not seem

to have been executed, and there are no instructions on how to utilize it [16]. A fully

implemented and tested version of ROSUDP for services and clients would improve the

speed of network communication in the future.

	8.4 Improving the Resilience of ROS Master

	8.4 Improving the Resilience of ROS Master

	The ROS master is a key part of the communication system used in this project. It must

be running in order for the other nodes to start and function. It provides naming and

registration services, as well as tracking publishers and subscribers to services. All other

nodes rely on the ROS master.. No programs will run without it. The ROS infrastructure

uses a Bridge design pattern, allowing it to use multiple different types of implementation

on an abstract level. This is somewhat handled when the processes are made into

packages and run, but ROS master is still essential for packages built with different

underlying code to communicate.

	Due to the essential nature of ROS master for communication, having a way to detect the

failure and restart it is crucial. Unfortunately, the current structure of the ROS master

makes this difficult. If the ROS master crashes, a new one must be started. When the new

	50

	master is started, all of the current programs have to be restarted as well so they can be

registered with the new master.

	master is started, all of the current programs have to be restarted as well so they can be

registered with the new master.

	This process is functionally a system restart, even with the state saved. The time cost to

fully restart the system, as well as the inability to predict the behavior of the robot on the

system shutdown, lead to this being an unacceptable solution. Future work that focused

on adding resilience to the ROS master architecture would be a huge improvement in the

overall reliability of the system.

	[1]. Y. Liu and Y. Xu, "Summary of Cloud Robot Research," 2019 25th International

Conference on Automation and Computing (ICAC), Lancaster, UK, 2019, pp. 1-5, doi:

10.23919/IConAC.2019.8895254.

	[1]. Y. Liu and Y. Xu, "Summary of Cloud Robot Research," 2019 25th International

Conference on Automation and Computing (ICAC), Lancaster, UK, 2019, pp. 1-5, doi:

10.23919/IConAC.2019.8895254.

	[2]. Tian Guohui, Xu Yaxiong, “Cloud Robotics: concept, architectures and key

technologies” Journal of ShanDong University, (Engineering Science), vol 44, no. 6, pp.

46-54, Dec. 2014.

	[3]. Kehoe, Ben, et al. "A survey of research on cloud robotics and automation." IEEE

Transactions on automation science and engineering 12.2, 2015: 398-409.

	[4]. Juve, G., Deelman, E., Berriman, G.B., et all, “An Evaluation of the Cost and

Performance of Scientific Workflows on Amazon EC2.”J Grid Computing 10, 5-21,

2013.

	[5].“What is Ros?,” Ubuntu, https://ubuntu.com/robotics/what-is-ros (accessed May 21,

2023).

	[6]. Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA

workshop on open source software. Vol. 3. No. 3.2. 2009.

	[7]. “TCPROS”, ROS.org,
	[7]. “TCPROS”, ROS.org,
	[7]. “TCPROS”, ROS.org,
	http://wiki.ros.org/ROS/TCPROS,
	April 15, 2013. (accessed

	May 22, 2023).

	[8]. “Master”, ROS.org,
	[8]. “Master”, ROS.org,
	http://wiki.ros.org/Master,
	January 15, 2018. (accessed May 22,

	2023).

	[9]. “What is a Container”, docker,
	[9]. “What is a Container”, docker,
	https://www.docker.com/resources/what-container/.

	(accessed May 22, 2023).

	[10]. “What is a VPN”, OpenVPN,
	[10]. “What is a VPN”, OpenVPN,
	https://openvpn.net/what-is-a-vpn/.
	(accessed May 22,

	2023).

	[11]. “Overview of Amazon Web Services”, Amazon Web Services,

	https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html,
	https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html,
	https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html,
	15, 2023. (accessed May 22, 2023).

	April

	[12]. “What is Amazon EC2”, Amazon Web Services,

	https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
	https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
	https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
	22, 2023).

	(accessed May

	[13]. Greigarn, Tipakorn, Michael S. Branicky, and M. Cenk Çavuşoğlu,, "Task-Oriented

Active Sensing via Action Entropy Minimization.", IEEE Access 7 (2019): 135413-

135426.

	53

	[14]. Liu, Yuwei. "OpenMP based Action Entropy Active Sensing in Cloud Computing."

	[14]. Liu, Yuwei. "OpenMP based Action Entropy Active Sensing in Cloud Computing."

	[14]. Liu, Yuwei. "OpenMP based Action Entropy Active Sensing in Cloud Computing."

	Master's thesis, Case Western Reserve University, 2020.

	http://rave.ohiolink.edu/etdc/view?acc_num=case1584809369789769

	[15]. “Publishers and Subscribers”, ROS.org,

	http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers#Transport_Hints,

	http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers#Transport_Hints,

	http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers#Transport_Hints,

	April 10, 2018. (accessed May 22, 2023).

	[16]. “UDPROS”, ROS.org,
	[16]. “UDPROS”, ROS.org,
	http://wiki.ros.org/ROS/UDPROS,
	April 20, 2013. (accessed

	May 22, 2023).

	54

Accessibility Report

		Filename:

		Thesis, Final Draft-5.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		 Needs manual check:2

		 Passed manually:0

		 Failed manually:0

		 Skipped:2

		 Passed:28

		 Failed:0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		 Passed		Accessibility permission flag is set

		Image-only PDF		 Passed		Document is not image-only PDF

		Tagged PDF		 Passed		Document is tagged PDF

		Logical Reading Order		 Needs manual check		Document structure provides a logical reading order

		Primary language		 Passed		Text language is specified

		Title		 Passed		Document title is showing in title bar

		Bookmarks		 Passed		Bookmarks are present in large documents

		Color contrast		 Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		 Passed		All page content is tagged

		Tagged annotations		 Passed		All annotations are tagged

		Tab order		 Passed		Tab order is consistent with structure order

		Character encoding		 Passed		Reliable character encoding is provided

		Tagged multimedia		 Passed		All multimedia objects are tagged

		Screen flicker		 Passed		Page will not cause screen flicker

		Scripts		 Passed		No inaccessible scripts

		Timed responses		 Passed		Page does not require timed responses

		Navigation links		 Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		 Passed		All form fields are tagged

		Field descriptions		 Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		 Passed		Figures require alternate text

		Nested alternate text		 Passed		Alternate text that will never be read

		Associated with content		 Passed		Alternate text must be associated with some content

		Hides annotation		 Passed		Alternate text should not hide annotation

		Other elements alternate text		 Passed		Elements require alternate text

		Tables

		Rule Name		Status		Description

		Rows		 Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		 Passed		TH and TD must be children of TR

		Headers		 Skipped		Tables must have headers

		Regularity		 Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		 Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		 Passed		LI must be a child of L

		Lbl and LBody		 Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		 Passed		Appropriate heading nesting

Back to top

