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Novel Approaches for Optimal Therapy Design in Drug-Resistant 

Populations

Abstract

by

DAVIS T WEAVER

The current maximum tolerated dose treatment paradigm for cancer and bacteria fails to 

account for the capacity of these disease agents to evolve. When treatment fails to achieve 

rapid extinction, drug resistant clones rapidly proliferate into an uncontrollable tumor. To 

make significant progress for cancer patients, we need to better understand the evolutionary 

processes that drive cancer, and design treatments that explicitly account for them. In this 

dissertation, I will describe 3 projects that support the design of evolutionary therapies 

that explicitly account for the capacity of cancer (and bacteria) to evolve resistance in 

response to drug therapy. In Chapter 2, we developed two novel methods to support 

precision targeting of tumors; a novel leave-one-out style method for node ranking and a 

novel algorithm for ranking miRNA combinations that maximizes tumor disruption while 

minimizing toxicity. In Chapter 3, we described crosstalkr, an open-source software 

package to facilitate interactomic analyses. In Chapter 4, we described a novel approach 

for designing evolutionary therapies that leverages reinforcement learning to learn drug 

cycling policies given only limited information about an evolving system.
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Part I

Bioinformatic Methods for Drug Target Identification and

Optimal Therapy Design in cancer.

1



Chapter 1

Graph methods for drug-target

identification.

2



1.1 Introduction

In the last 25 years, graph or network-based methods have transformed biological sci-

ence. Interactomics, or the use of large-scale biological network data, has enabled more

effective drug target identification, disease gene prioritization, drug repurposing, and al-

lowed researchers to more deeply understand the signaling context of specific proteins and

phenotypes [3]. The rapid expansion of tools and applications that leverage interactomic

resources has led some to declare that we are living in the biological network era [4].

Interactomics includes the analysis of varied biological networks, including coexpression

networks [5–8], metabolic networks [9, 10], drug-target networks [11], and protein-protein

interaction networks (PPIs) [12]. Some resources combine different evidence channels to

generate integrated "Functional Association Networks" [13, 14].

We will focus our discussion on genome scale interaction networks, particularly those

provided by centralized databases. These interaction networks attempt to represent known

interactions among proteins, genes, drugs, and more to facilitate integrative analyses that

leverage the molecular context of a given protein or pathway [15]. Genome-scale func-

tional interaction networks have become the default interactomic data resource for the

vast majority of new methods for drug target identification [13]. Pipelines for drug target

identification can be summarized as three-step processes. First, an interaction database is

queried and structured as a graph. Second, the genome-wide graph is pruned to a more

tractable subgraph. Third, a node scoring or ranking algorithm is applied to generate

potential targets for drug therapy. Additional phenotypic data (i.e. RNA sequencing) can

be incorporated during steps 2 or 3.

In this chapter, we will introduce graph-based data structures, notation, and algorithms.

Next, we will discuss the landscape of genome-scale interaction databases. We will then
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describe graph-based methods that contextualize genome-scale interaction databases and

identify phenotype-specific subnetworks. Finally, we will highlight major advances in drug

development that have been made possible by these methods.

1.2 A primer on Graph Theory

A graph (usually called a ‘network’ in biology) is a relational data structure defined by

pairwise interactions between objects. Graphs are composed of a set of nodes or vertices

(V ). Nodes are connected by a group of edges (sometimes called interactions, links, or

arcs) E. A graph can therefore be described as G = (V,E). Imagine a simple signaling

network comprised of 5 proteins, EGFR, EGF, KRAS, PI3K, and PIP3. We can represent

this process as a graph by describing a set of nodes G(V ) and edges G(E):

G(V ) = {EGFR,EGF,KRAS, PI3K,PIP3}

G(E) = {(EGFR,EGF ), (EGFR,KRAS), (EGFR,PI3K),

(KRAS, PI3K), (PI3K,PIP3)}

.

As shown in Fig 1.1, an edge ei−>j represents either a one-way (in the case of a directed

graph) or a two-way binary interaction (in the case of an undirected graph) between two

nodes vi and vj . Interactions can be either weighted or unweighted. Any node vj that

is connected by an edge to a node vi is considered to be a neighbor of vi. For example,

N(EGFR) = {PI3K,KRAS,EGF} while N(PIP3) = {PI3K}. Degree is a related

concept, and describes the number of edges incident to a given node. In simple graphs

4



Figure 1.1: Examples of directed and undirected graphs

(i.e. no loops or multi-edges), deg(v) is equal to the number of neighbors of node v. For

example, deg(EGFR) = 3. Another key concept is the idea of a simple graph. A simple

graph is constrained to only allow a single edge between a given pair of nodes. A multi-

graph, by comparison, allows multiple edges between a given pair of nodes as well as

"loops" (an edge between a node and itself). A comparison between a simple graph and a

multi-graph is provided in Fig 1.2.

Figure 1.2: Examples of simple and multigraphs.

While there are certainly examples of loops and multi-edges in biology, most analyses

of biological networks treat them as simple graphs. Graph methods make use of the
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relational structure of graphs. One key concept that is used frequently is a walk. A walk

is a sequence of nodes defined by a starting node vi and an ending node vj . In the directed

version of our graph G (shown in Fig 1.1A), the longest walk traverses all nodes and is

of length 4 (EGF− > EGFR− > KRAS− > PI3K− > PIP3). A random walk

is then a walk where the edge (if there are multiple options) that is traversed is chosen

based on a given probability distribution (typically uniform). A biased random walk is a

walk in which the edge probabilities are assigned based on some non-uniform probability

distribution. For a more thorough introduction to the mathematical field of graph theory,

see "Introduction to Graph Theory" [16].

Graphs are an excellent proxy for biological systems due to the widespread presence

of interacting components. Proteins, metabolites, genes, and RNA complexes can all

be represented as nodes. Biological processes like RNA interference, protein binding,

metabolic cascades, and many other signaling processes can then be faithfully represented

using edges. Once biological networks have been represented using graphs, additional

experimental attributes such as protein or gene expression can be integrated.

1.3 Protein-Protein interactions networks

Protein-protein interaction networks (PPIs) are some of the most widely applied biological

networks. PPIs represent biological signaling networks as graphs where the proteins are

nodes and known interactions between proteins are edges [17]. Beginning in the early

2000s, many research groups around the world developed ambitious PPI databases that

were meant to capture all known interactions between all known proteins [17–19]. These

invaluable resources enable users to analyze proteins or pathways of interest in their local

context. The graph-based structure also facilitates incorporation into neural networks [20].
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In this section, we will discuss network inference, the process by which modern interac-

tion databases are constructed from the primary literature. Next, we will summarize and

evaluate freely available interaction databases. Finally, we will touch on the most pressing

limitations that users must account for in their analyses.

1.3.1 Network Inference

Expert manual curation of the literature remains the gold standard for generating and

updating interaction databases [21]. In this process, new edges are added to the interaction

database when proteins are linked by a gold standard functional association assay in a peer-

reviewed research paper [12,22]. Gold standard functional assays are based on the "guilt by

association principle", and are designed to record an undirected interaction whenever two

proteins come in close contact. Typically, researchers will tag a set of "bait proteins" that

fluoresce when they are within a certain distance of a prey protein. One of the most common

methods relies on Affinity Purification and Mass Spectrometry (AP-MS) to identify the

proteins involved in a given binary interaction [23].

Expert manual curation is limited by the curators ability to find relevant papers and

the supply of relevant papers in the literature. Text mining applications, including natural

language processing, have helped reduce the first bottleneck by scoring and recommending

relevant publications to teams of expert curators [24–26]. Some database projects have

taken to using NLP to directly predict functional associations from the literature without

relying on manual human checks [14, 15, 27].

In addition to direct evidence of interactions that are curated from the literature, there

are a number of indirect evidence streams that are used to infer interactions. First, RNA

sequencing experiments and high throughput mass spectrometry are used to infer protein

interactions based on coexpression [15]. In addition, relative genomic position can be used
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to infer protein interactions, particularly in bacterial species where genes are known to

be clustered based on shared functions [13]. Gene co-evolution can also be used to infer

protein interaction based on the hypothesis that alleles that evolve together across many

lineages are likely to be involved in the same function [13].

Finally, researchers have developed Bayesian and machine learning methods to predict

protein interactions that are not adequately covered by other evidence streams. In one study,

researchers incorporated protein structural information to predict more than 300,000 hu-

man protein protein interactions as accurately as comparable high-throughput screens [28].

Others have incorporated recent advances in machine learning like XGBoost to improve

protein protein interaction prediction [29–31]. In addition, dramatic improvements in the

prediction of protein structure [32] have been incorporated into structure-based prediction

of protein interactions [33] to yield even more accurate predictions of protein complexes.

As computational efficiency continues to increase, machine learning predictions of protein

structure should enable dramatic improvements in genome-wide prediction of protein-

protein interactions.

1.3.2 Available Resources

The 2000s and 2010s saw a dramatic expansion in publicly available tools and databases

for interactomic analyses. Dozens of groups began ambitious curation efforts with the goal

of converting thousands of academic papers into high-quality, machine-readable protein-

protein interaction databases. According to pathguide.org, more than 700 functional inter-

action resources have been deployed [34]. Despite the large number of potential resources,

the vast majority of bioinformaticians rely on a few primary interaction resources and a few

meta-databases.
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Primary Databases

Primary databases house empirical protein-protein interactions and are typically built through

expert curation of the biomedical literature. The most used resources are Biogrid [12],

the Database of Interacting Proteins [17], the Human Protein Reference Database [35],

IntAct [22], and Mint [36]. As noted above, many many more of these resources have

been created over the years, but they tend to be extremely difficult to find and use due

to lack of ongoing support and development. IRefIndex helps to alleviate some of these

concerns by providing a centralized warehouse for 10 of the largest available empirical

PPI repositories [19]. The latest release of Biogrid contains 842,363 edges in the human

binary interactome (after removing loops and multi-edges), more than twice as many as

were available in 2019 [37].

Meta-databases

Primary databases remain limited to a subset of the true interactome. Empirical methods to

identify PPIs have known biases and error rates that limit the ability of expert curation

to capture all PPIs [29]. Meta-databases attempt to work around this shortcoming by

integrating additional sources of evidence beyond expert-curated literature. These sources

are described in section 1.3.1, and include RNA or protein co-expression, model predicted

interactions, and gene co-evolution [13]. The most popular resources for genome-wide

functional association data are String [13], HumanNet [14], and FunCoup [27]. These

resources incorporate the same primary data, apply similar transformations, and even pro-

vide somewhat similar tools for the analysis of their data [13, 14, 27]. The vast majority of

interactomic methods rely on these critical resources [13,14,27]. Stringdb stores 5,934,147

binary functional associations for homo sapiens, 5.2 million of which are estimated using
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methods other than expert curation of the primary literature.

1.3.3 Limitations

Despite new and cheaper assays for characterizing protein interactions, the literature clearly

does not cover all possible functional interactions. As such, databases that rely solely on

expert manual curation will suffer from selection bias. "Themed Curation Drives" - disease-

specific curation efforts only exacerbate this problem [12]. Further, the high through-

put assays that measure the vast majority of interactions that populate publicly available

databases are not perfectly accurate, leading to possible error propagation throughout the

literature [27]

The most comprehensive PPIs are available as undirected graphs. Directed graphs,

which encode both unidirectional and bidirectional interactions, would be much more

faithful representations of the underlying biology. However, they are far less comprehen-

sive than their undirected counterparts due to limitations in PPI detection assays, and are

likely to suffer from extreme selection bias. The vast majority of methods to measure PPIs

empirically rely on bio-luminescence which is triggered when two proteins come in very

close contact [23]. Direction of interaction cannot be inferred from these data.

Further, PPIs are typically measured in a generic context, or outside the context of the

cell entirely. For example, Affinity Purification followed by Mass Spectrometry (AP-MS)

allows researchers to measure thousands of interactions simultaneously. Unfortunately,

these interactions must me measured in a cellular lysate, an unnatural extracellular "soup"

of proteins [23]. Other popular methods are limited to certain cellular compartments,

leading to enrichment of measured interactions in these areas and a comparable blind

spot in other parts of the cell. For example, the yeast-two-hybrid method (Y2H) relies on

the expression of a transcription factor that promotes the production of luciferase. The
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Y2H method is therefore limited to PPIs that occur in the nuclear compartment [23].

Finally, the vast majority of methods for measuring PPIs are much more accurate when

measuring durable PPIs compared to transient ones. Overall, PPI databases are likely to be

biased towards strong interactions that occur in the nuclear or submembrane regions in the

cell [23].

PPIs are also not typically measured in the context of a given disease state. This is

particularly problematic when studying cancer due to the known re-wiring of the healthy

cell signaling network that occurs during oncogenesis [38]. Tissue-specific and disease-

specific PPIs can be generated by combining the full PPI network with gene expression or

protein expression data. Edges between nodes that are not jointly expressed in the target

phenotype are pruned, resulting in a more specific network. Unfortunately, this process

cannot account for the generation of new interactions in the disease state, a particularly

damaging limitation in the context of cancer. In one study, researchers measured the EGFR

PPI network for two cancer cell lines, one with low KRAS expression and one with high

KRAS expression [38]. Of the roughly 4,420 interactions they discovered in total, less

than 20% were available in genome-scale PPI repositories. Further, more than 1,000 of the

discovered interactions were edges in just one of the conditions, highlighting the context-

dependent nature of cell signaling networks [38].

1.4 Drug Target Identification

Researchers have leveraged functional association databases to develop novel methods for

drug target identification and disease gene prediction. While drug target identification may

be used to describe the process of predicting an interaction between a specific compound

and a physical target, we will focus here on the process of identifying critical proteins that
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are likely to be useful targets for drugs in a given disease. This process is sometimes called

"disease-gene prediction" or "disease-gene association". Many of these methods make use

of multiple phenotypic measurements, using an interaction database as a scaffold [39–41].

In Table 1.4, we highlight some of the graph-theoretic approaches that have been developed

for this purpose.

Category Methods citations

Centrality Measures

betweenness, degree centrality,

closeness, local average connectivity,

DiffSLC

[42–52]

Path-based
Random-walk with Restarts, network flow,

shortest path
[53–59]

Thermodynamic Gibb’s Free Energy, Entropy, Complexity [39, 40, 60–63]

Leave one out in-silico knockdown, network rewiring [39, 40, 45, 63, 64]

Machine Learning GNN, random forest [41, 65–67]

1.4.1 Graph Reduction

As mentioned above, a key limitation of publicly available PPI databases is a lack of

context-specificity. As a result, bioinformaticians have developed a number of methods

to identify phenotype-specific subnetworks using a publicly available genome-wide PPI

as a starting point. Smaller, phenotype-specific subnetworks also tend to be more easily

interpreted and computationally tractable.

Graph reduction techniques can be stratified into many categories, and have been sum-

marized and benchmarked extensively elsewhere [68]. For the purposes of this chapter, we

12



will briefly summarize path-based approaches for graph reduction. It should be noted that

unsupervised module identification can be accomplished with a number of another meth-

ods, including kernel-based methods, machine learning methods, modularity optimization,

and more [65, 68].

Path-based approaches take advantage of the local structure of the protein-protein in-

teraction network to score proteins based on affinity to one another. Initial attempts to

detect phenotype-specific subnetworks focused on simple nearest neighbor and shortest-

path based approaches [54]. Using known disease-gene interactions as seeds, these ap-

proaches categorized direct neighbors or near neighbors as candidate genes for a novel

disease-specific subnetworks. Modern approaches instead rely on graph search algorithms

such as random walk with restarts to traverse the interactome [54, 55, 68]. Random Walk

with restarts is an extremely well studied algorithm that has been used to prioritize nodes

in wide-ranging graph applications [69]. Many formal descriptions of random walk with

restarts are available in the literature [70]. Briefly, random walk with restarts performs

many random walks on a given graph G. A random walk is a stochastic process that begins

at a given node Vi and traverses the edges E of a graph according to some edge probability

such that the walk visits nodes Vj . Each step, there is a probability of restarting the process

at the original node Vi. Nodes Vj are then scored based on the frequency with which they

are visited on the walk that began at Vi. These scores can be used as a measure of node Vj’s

affinity for node Vi. Vi can be either a single node or a set of several nodes, in which case

the random walk begins at a randomly selected node from among the node set Vi.

RWR can be solved extremely quickly using matrix multiplication [70], making it

an attractive method for subnetwork identification on extremely large networks. In one

study, researchers used a random-walk based approach to generate a colorectal-cancer

specific subnetwork based on previously defined colorectal cancer-specific seed proteins
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[55]. Network flow is a related approach that models information flow through a graph

from sources to sinks [57]. Network flow has been used extensively to combine multiple

biological networks into integrated analyses.

Many bioinformaticians use prior data to inform the subnetwork detection process. The

most commonly integrate form of phenotypic data are previously identified disease genes.

Previously identified disease genes can be used as seeds to bias path-based methods like

random walk with restarts [55]. Selection of seeds can be informed through experimental

evidence or publicly available repositories of known disease-gene interactions such as

OMIM [71]. Phenotype-specific RNA-sequencing data is also commonly used to inform

the subnetwork detection process [40,41,65]. For example, scientists have filtered nodes in

the full PPI based on an RNA expression cutoff. Researchers have also limited the PPI to

only genes that are significantly differentially expressed in relevant RNA sequencing data.

Finally, researchers have computed a number of derivative metrics from RNA expression

that have then been used to reduce the size of the PPI [39, 40]. Protein expression data

would be even more informative for this context, but is rarely measured genome-wide due

to technical constraints [2].

1.4.2 Node Ranking

In the last 20 years, researchers have developed or repurposed a number of different ap-

proaches to rank nodes for the purpose of drug target identification or disease-gene pri-

oritization. Many researchers have applied or developed measures of centrality to use for

node ranking [42–52]. Centrality measures are hypothesized to effectively rank proteins

by importance due to the scale-free nature of PPI networks [48]. Scale-free networks tend

to have hub and spoke architectures. Such networks are highly susceptible to targeted

disruption of the hub nodes [48, 72].

14



For example, researchers developed the radiation sensitivity index (RSI) by ranking

differentially expressed genes by degree to build a gene signature out of critical hubs in

the cell signaling network [52]. RSI has since been validated as a predicted signature

of radiation response across cancer subtypes, and has the potential to transform radiation

dosing [73]. In another study, researchers developed a network-science pipeline to identify

key proteins associated in resistance to first-line therapy to glioma, the most common brain

cancer. They first identified proteins that were associated with the glioma phenotype in

the literature. Next, they used these proteins to construct a glioma-specific subnetwork

using shortest-path methodologies to filter the genome-wide interaction database. Finally,

they used degree and betweenness to rank nodes to identify proteins critical to treatment-

resistant glioma and validated these targets in silico [44].

The goal of improving disease-gene prioritization has led some researchers to develop

novel measures of node centrality [49–51]. For example, researchers in 2014 defined

hierarchical closeness, a structural centrality measure that outperformed other centrality

measures at predicting known disease genes [49]. In another study, researchers defined

local average connectivity to fulfill a similar funtion [51].

Thermodynamic measures have also been used to prioritize nodes in biological net-

works [39, 40, 61–63, 74, 75]. These measures attempt to represent fundamental properties

of a network like energy or complexity using formulae imported from chemistry or physics.

Finally, these ranking functions can be used in combination with "leave one out" style

network disruption analyses to attempt to quantify the relative importance of each node in

a given network. We will discuss leave one out and thermodynamic methods in greater

detail in Chapter 2.
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1.5 Discussion

Network biology is transforming biological research and biotechnology. Significant invest-

ment in PPI repositories has led to the wide-spread availability of genome-scale interaction

networks with millions of putative edges [14, 15]. Researchers and industry scientists are

using these resources to add signaling context to a wide variety of analyses. One of the

most common use cases for network biology is disease-gene prioritization, a critical step

in modern drug development pipelines. In this review, we described the three main compo-

nents of a bioinformatic pipeline for drug target identification or disease-gene prioritization;

online PPI repositories, subnetwork identification, and node ranking. We first defined core

concepts in graph theory. Next, we surveyed available online PPI repositories, including

the process of network inference and its limitations. Finally, we described methods for

phenotype-specific subnetwork identification and node ranking.

While significant progress in network biology has been made in the last 20 years, limi-

tations remain. Even with nearly a million curated interactions available in the most recent

iteration of Biogrid, new PPI studies routinely measure 80% novel interactions, suggesting

relatively poor coverage of the true interactome. New research suggests the relatively

low coverage is due to the context-specific nature of protein protein interactions [38].

Measuring most of the true interactome will require a large number of PPI detection studies

in every cellular context imaginable. Further, most genome-wide association databases do

not provide information about the context in which interactions were measured, forcing

researchers to rely on subnetwork identification methods to contextualize the interaction

network and reduce noise. One notable exception is the Integrated Interactions Database

(IID), which provides functional annotations along with binary interactions [76].

Despite the cambrian explosion of methods and online tools to facilitate interactomic
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analysis, comprehensive benchmarking for different node ranking methods is not available

in the literature. In contrast, researchers have attempted to systematically benchmark

algorithms for subnetwork identification. In one study, researchers set up a Kaggle-style

data science competition to evaluate dozens of subnetwork identification methods using

GWAS-detected gene sets as a ground truth. They then reported which methods and classes

of methods were most effective at identifying these network modules across a diverse set of

complex diseases. They found that Kernel-based approaches, random-walk based methods,

and modularity optimization methods to be the most popular and effective [68]. Similar

benchmarking studies to assess the many novel node ranking methods are a major unmet

need in network biology. Despite these limitations, network biology continues to improve

the drug development process and help scientists bring advances to patients.
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Chapter 2

Network potential identifies therapeutic

miRNA cocktails in Ewing sarcoma

Published as: Weaver, D. T., Pishas, K. I., Williamson D., Scarborough J. A., Lessnick
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2.1 Introduction

Ewing sarcoma is a rare malignancy arising from a gene fusion secondary to rearrange-

ments involving the EWS gene [77]. There are 200-300 reported cases each year in the

United States, disproportionately affecting children [78]. High levels of inter-tumor het-

erogeneity are observed among Ewing sarcoma patients despite a shared EWS gene fusion

initiating event [79]. Ewing sarcoma is also extremely prone to developing resistance to

available chemotherapeutics [80]. These features make it an ideal system to develop per-

sonalized therapies for resistant tumors or to avoid the development of resistance altogether.

MicroRNA (miRNA)-based therapeutics, including anti-sense oligonucleotides, are an

emerging class of cancer therapy [81]. Recent work has highlighted the critical importance

of miRNAs in the development and maintenance of the cancer phenotype [80–82]. MiRNA

dysregulation has been implicated in the development of each of the hallmark features of

cancer [83], and restoration of expression of some of these critical downregulated miRNAs

has been studied as a potential treatment for several different cancers [82, 84, 85]. In par-

ticular, in the past decade, anti-sense oligonucleotide inhibitors of the STAT3 transcription

factor have shown promise in the settings of lymphoma [86, 87] and neuroblastoma [88].

MiR-34 has shown to be effective in pre-clinical studies for treatment of both lung can-

cer [89–91] and prostate cancer [92]. Finally, miR-34 and let-7 combination therapy has

been shown to be effective in pre-clinical studies of lung cancer [91].

MiRNAs have been recognized as potential high-value therapeutics in part due to their

ability to cause widespread changes in a cell-signaling network [81]. A single miRNA

molecule can bind to and repress multiple mRNA transcripts [82, 93–95], a property that

can be exploited when designing therapy to maximally disrupt a cancer cell signaling net-

work. This promiscuity of miRNA binding may also increase the risk of off-target effects
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Figure 2.1: Cartoon describing rationale for focusing on miRNA combination therapy. With single-
agent therapy, both target mRNA and non-target mRNA are inhibited an equal amount, potentially resulting
in toxicity due to off-target effects. With miRNA combination therapy, the common target mRNA is inhibited
to a greater degree than any individual non-target miRNA.

and toxicity (Figure 2.1). For example, miR-34 was effective in pre-clinical studies for the

treatment of a variety of solid tumors [89–92], only to fail in a phase I clinical trial due

to “immune-related serious adverse events” [96]. To capitalize on the promise of miRNA-

based cancer therapy while limiting potential toxicity, we developed a systematic, network-

based approach to evaluate miRNA cocktails. We focused on miRNA cocktails rather than

single miRNA therapeutics due to the potential for miRNA cocktails to minimize toxicity

compared to single miRNA regimens [97] (Figure 2.1).

In this work, we build on previous studies applying thermodynamic measures to cell

signaling networks in the field of cancer biology [74,98,99], as well as works that describe

a method to use gene homology to map miRNAs to the mRNA transcripts they likely

repress [82, 93, 94]. Reitman et al. previously described a metric of cell state analogous

to Gibbs free energy that can be calculated using the protein-protein interaction network

of human cells and corresponding transcriptomic data [98]. Gibbs free energy has been

correlated with a number of cancer-specific outcomes, including cancer grade and patient

survival [99]. Additionally, Reitman et al. leveraged Gibbs and other network measures to

identify personalized protein targets for therapy in a dataset of low-grade glioma patients
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from The Cancer Genome Atlas (TCGA) [98]. Previous work has also highlighted the crit-

ical importance of miRNAs to maintenance and development of the oncogenic phenotype,

and demonstrated the utility of applying miRNA-mRNA mappings. [82] In this work, we

developed and applied a computational pipeline that leverages these network principles to

identify miRNA cocktails for the treatment of Ewing sarcoma.

2.2 Results

2.2.1 Network Overview

We calculated the network potential, a unitless measure of cell state, for each protein in

the cell signaling networks for each of the six Ewing sarcoma cell lines in our experiment.

An overview comparing network potential to normalized mRNA expression can be found

in Figure 2.2. An additional overview of the total network potential for each cell line and

biological replicate compared to total mRNA expression is presented in Figure 2.6. The

histograms of network potential and mRNA expression demonstrate markedly different

distributions (Figure 2.2), indicating that network potential describes different features of

a cell signaling network compared to mRNA expression alone. Notably, network potential

and mRNA expression for these cell lines are stable across different biological replicates,

as demonstrated by the low interquartile range (Figure 2.6C and 2.6D). There were larger

differences in both mean expression and network potential across cell lines (Figure 2.6C

and 2.6D) when compared to between-replicate differences. The global average network

potential across all samples was −3.4× 105 with a standard deviation of 1605.

The included patient samples (beginning with SJEWS on Figure 2.6) demonstrate

substantially more variation in both mRNA expression and network potential. Much of
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Figure 2.2: Network potential demonstrates a different distribution compared to mRNA expression.
Main panel: scatterplot comparing mRNA expression and network potential for all genes in our 18 Ewing
Sarcoma cell lines. For each gene, we averaged across all samples for both mRNA expression and network
potential. Unlike network potential (top axis histogram), mRNA expression (right axis histogram) has a
bimodal distribution.

what we are capturing here can likely be attributed to batch effects, as these patient samples

may have been sequenced years apart on machines with dramatically different capabilities.

2.2.2 Identification of Protein Targets

We identified TRIM25, APP, ELAV1, RNF4, and XPO1 as top 5 targets for therapy for

each of the 6 cell lines based on the degree of network disruption induced following in

silico repression of each gene. Of these 5 genes, only XP01 has been previously implicated
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in oncogenesis [1], while only ELAVL1 is a known essential housekeeping gene. There

was a high degree of concordance between cell lines among the top predicted targets

(Table 2.1). Of the top ten predicted targets, all 10 targets are conserved for all 6 cell

lines. The top 50 protein targets are presented in Figure 2.3. Many of the top identified

genes fell within the 99.99% confidence interval of the computed null distribution (Figure

2.3), suggesting that these genes are highly connected hub genes that are likely to score

high in ∆G regardless of the tumor-specific RNA-sequencing information provided. As

a sensitivity analysis, we repeated our protein identification pipeline using stringdb as the

PPI network provider rather than biogrid. Using stringdb, we identified broadly similar

targets, with the majority of identified genes being either essential housekeeping genes or

genes causally implicated in cancer. 13 out of the 50 identified targets were shared between

stringdb and biogrid. In contrast to our main results using biogrid, the vast majority of top

targets identified with stringdb fell within the 99.99% confidence interval of the computed

null distribution (Figure 2.8) In addition, the distribution of network potential across all

genes looks extremely similar regardless of which PPI was used (Figures 2.2 and 2.8).

Surprisingly, there was very little overlap between the top predicted targets between

the cell line data and the patient samples (Figure 2.3). The genes that appeared most fre-

quently among the top projected targets for the 15 patient tumor samples were SLC24A1,

ARTN, DHRSX, TEX261, and FRMD8. Compared to the cell line samples, fewer of

the most frequent projected targets were cancer-associated or defined housekeeping genes

(Figure 2.3)

Some of these identified genes in the cell line data are likely essential housekeeping

genes highly expressed in all or most cells in the body, making them inappropriate drug

targets (Figure 2.3). TRIM25, and ELAV1, for example, are involved in protein modifica-

tion and RNA binding, respectively [100]. We therefore repeated this analysis, limiting our
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search to gene targets that have been causally implicated in cancer [1]. With this limitation

in place, we identified XPO1, LMNA, EWSR1, HSP90AA1, and CUL3 as the top 5 targets

for therapy when ∆G was averaged for all cell lines. The top 10 cancer-related targets

for each cell line can be found in (Table 2.2). The top 50 protein targets (limited to those

causally implicated in cancer) can be found in Figure 2.7.

We also conducted gene set enrichment analysis for the all the genes represented in our

cell signaling network (averaged across all samples). We ranked genes by network potential

(averaged across all samples) and compared our gene set to the “hallmarks” pathways set,

downloaded from the Molecular Signatures Database (MSigDB) [101, 102]. This analysis

was conducted using the fGSEA package in R, which uses the Benjamini - Hochberg

procedure to correct the false discovery rate [103,104]. Our gene set was enriched (adjusted

p-value < 0.05) in 24 of the 50 pathways included in the hallmarks set; including apoptosis,

DNA repair, mTOR signaling, MYC signaling, and WNT β-catenin signaling. Our gene set

was also highly enriched (normalized enrichment score = 1.73) in the miRNA bio-genesis

pathway. The full results are presented in Table 2.3.

2.2.3 Identification of miRNA Cocktails
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Figure 2.3: TRIM25, APP, ELAVL1, AND RNF4, and XPO1 are the top protein targets ranked by
predicted disruption following in silico repression. Panel A: Box and whisker plot describing the change
in network potential following in silico repression for each of the top 50 proteins. 99.99% confidence interval
from the permutation test are displayed alongside the box and whisker plots. It is notable that EWSR1, the
kinase associated with Ewing sarcoma development, is considered highly influential in the cell signaling
network by this method, even in comparison to the computed null distribution. Genes that have previously
been causally implicated in cancer according to the Cosmic database are highlighted in red [1]. Essential
housekeeping genes (excluding those that are causally implicated in cancer) are highlighted in blue. The
heat-map on the x-axis corresponds to the protein-mRNA correlation of each gene in the Cancer Cell Line
Encyclopedia [2]. Panel B: Histogram depicting the distribution of Pearson correlation between mRNA
expression and protein expression from the Cancer Cell Line Encyclopedia for all nodes included in our final
Ewing sarcoma cell signaling networks. Proteins that were ranked particularly highly in panel A were labeled
in panel B. Pancel C: Bar chart describing the most frequently observed genes among the top projected targets
for the 15 patient tumor samples we analyzed. There was very little overlap in top projected targets between
the cell line and patient data, reflecting the transcriptional heterogeneity present in Ewing Sarcoma.
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Figure 2.4: Many of the most promising miRNA candidates repress large numbers of essential
housekeeping genes. We identified the top miRNA for treatment of Ewing sarcoma, ranked by their predicted
disruption of the Ewing sarcoma cell signaling network. A: Boxplot showing the projected disruption in
network potential for the top miRNA candidates (averaged across all samples). The heatmap on the x-axis
describes the number of essential housekeeping genes that each miRNA is predicted to target. B: Scatterplot
showing the relationship between projected network disruption and the number of putative mRNA targets
for a given miRNA. C: Heatmap showing z-score normalized miRNA expression for 622 of the evaluated
miRNA for the 6 cell lines under study. The Y axis is clustered by the projected ∆G associated with a given
miRNA. There doesn’t seem to be a clear pattern of miRNA expression based on projected ∆G.
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We identified several miRNAs that were predicted to dramatically disrupt the Ewing

sarcoma cell signaling network (Figure 2.4). When averaging all cell lines, we identified

miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p as the ideal miRs for prefer-

ential repression of proteins predicted to be important for Ewing sarcoma signaling network

stability. miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p were predicted to

cause an average network network potential increase (driving the system less negative)

of 17382, 13034, 12746, 12364 and 12280, respectively (see Figure 2.4). It should also

be noted that we were able to identify a substantial number of miRNAs with potential

activity against the Ewing sarcoma cell signaling network. We identified 27 miRNAs with

an average predicted network potential disruption of greater than 10, 000. For comparison,

the largest network change in network potential that could be achieved with a single gene

repression across all cell lines was just 2064 (TRIM25). miRNA sequencing of the 6 cell

lines under study did not reveal any clear pattern of miRNA expression based on predicted

network potential disruption.
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Figure 2.5: We identified miR-483-3p, miR-5695, and miR-4514s as the optimal 3-miRNA cocktail for
Ewing Sarcoma therapy. We identified cocktails that are predicted to maximally downregulate target genes
(red shading on the figure), while avoiding downregulation of essential housekeeping genes to limit toxicity
(blue shading on the figure). Panel A. shows the targeting heatmap for the best predicted cocktail for cell
line A673. The miRNA that make up the cocktail are presented on the y-axis. Putative gene targets are
highlighted on the x-axis. Lines that span multiple miRNAs occur when a gene is downregulated by 2 or
more miRNAs in the cocktail. Panel B. shows a histogram of the number of microRNA that target a given
housekeeping gene in the best cocktail. Panel C. displays the targeting heatmap for the worst-performing
cocktail for cell line A673 among those tested for reference. Panel D. shows a histogram of the number of
microRNA that target a given housekeeping gene in the worst predicted cocktail. Panel E shows a bar graph
showing the miRNA that most frequently appear in either the bottom or top 10 predicted cocktails (averaged
across cell lines) for Ewing Sarcoma therapy.
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These individual miRNAs target large numbers of transcripts in the cell and therefore

may be difficult to administer as single-agents due to extreme toxicity. For example, the top

miR candidate, miR-3613-3p, was predicted to repress 144 distinct mRNA transcripts in the

full target set. We therefore sought to identify cocktails of miRNA that could cooperatively

down-regulate key non-housekeeping genes while avoiding cooperative down-regulation

of housekeeping genes that may be associated with toxicity. When targeting the top 10

predicted proteins from our in silico repression experiments, a 3 miRNA cocktail of miR-

483-3p, miR-379-3p, and miR-345-5p was predicted to be the most optimal across all

cell lines (Figure 2.5A and Figure 2.5B). Under the same conditions, a 3-miR cocktail

of miR-300, let-7b-3p, and let-7a-3p was predicted to be the least optimal among 16,215

tested combinations (Figure 2.5C and Figure 2.5D). Notably, the most and least optimal

miRNA combinations had similar activity against the 10 targets (Figure 2.5A and Fig-

ure 2.5C). The worst cocktail was defined by high levels of cooperative downregulation

of housekeeping genes rather than lack of efficacy against putative targets (Figure 2.5C

and Figure 2.5D). Let-7b-3p and let-7a-3p were heavily represented in the least optimal

cocktails tested, appearing in 10 of the 10 worst 3 miRNA cocktails (Figure 2.5E). These

highly promiscuous miRNA target large numbers of housekeeping genes, limiting their

therapeutic utility alone or in combination (Figure 2.4B).

Notably, many of the most promising miRNA when considering only their total pre-

dicted network disruption tend to appear in the least optimal cocktails (Figure 2.4). This

likely occurs because these miRNA tend to target large numbers of housekeeping genes

and large numbers of genes overall. In contrast, the best miRNA cocktails tend to be

composed of miRNA that target relatively few genes overall but exhibit some degree of

target specificity. Put another way, they target the desired target genes while repressing

relatively few essential housekeeping genes. An extreme example of this is the case of
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miR-483-3p. MiR-483-3p is in the bottom 50% of all miRNA when ranked by predicted

network disruption, and is only predicted to repress 10 different transcripts. However,

because it selectively targets several of our targets of interest, this relative small total

projected network disruption is actually an attractive feature that makes it easy to build

effective cocktails that include miR-483-3p. As a result, miR-483-3p appears in 7 of the

top 10 predicted 3 miRNA cocktails. To assess the stability of our results, we repeated this

analysis, focusing on the top 5 or top 15 predicted protein targets. We also repeated this

analysis, assuming 10 % and 50% repression per miRNA that target a given mRNA. The

top and bottom predicted cocktails were similar across these conditions and across all six

cell lines. We have included the full ranked list of all miRNA cocktails tested across all

conditions on Github

2.2.4 Additional Analyses

First, we provide some additional summary plots describing mRNA expression and net-

work potential in our samples.

As described in the main text, we ranked proteins according to their contribution to

network stability by calculating the change in network potential following complete in

silico repression of each protein. In the main text, we limited our analysis to proteins

that had been causally implicated in cancer according to the cosmic database [1]. Here, we

present the top 50 proteins (when network potential for all 6 cell lines was averaged) ranked

by contribution to network stability, not limited to proteins that were causally implicated in

cancer (Figure 2.3).

We also analyzed each cell line individually to identify the top protein targets for each

cell line. In the main text, we limited this analysis to proteins that had been causally

implicated in cancer [1]. Here, we present the top protein targets for each cell line, not
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Figure 2.6: Network potential describes different features of a cell signaling network compared to
mRNA expression alone. Panel A: Histogram of mRNA expression for each gene (averaged across all
samples). Panel B: Histogram of the network potential for each gene (averaged across all samples) mRNA
transcripts with an expression level of zero were excluded from both histograms to better visualize the
distribution of genes that are expressed. Panel C: Box plot showing the total mRNA expression for each cell
line and patient sample (patient samples begin with SJEWS). Panel D: Box plot showing the total network
potential for each cell line and patient sample.

limited to those proteins that had previously been causally implicated in cancer (Table 2.1).

To evaluate the impact of PPI choice on our findings, we repeated the protein target

selection portion of our analysis using an entirely different PPI, stringdb (Figure 2.8). To

ensure a similar number of total edges to the biogrid database, we modulated the provided

"interaction score" until the resulting stringdb derived network contained about 400000

edges. We ultimately used an interaction score cutoff of 700 (indicating a high confidence
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Figure 2.7: Protein targets ranked by contribution to network stability. When averaging across cell lines,
XPO1, LMNA, EWSR1, HSP90AA1, and CUL3 were identified as the most important proteins in the Ewing
sarcoma cell signaling network (when limiting our analysis to proteins causally implicated in cancer [1]).
When each protein was simulated as completely repressed in silico, network potential was increased by 654,
456, 429, 425, and 399, respectively. The heatmap at the bottom of the plot describes the protein-mRNA
correlation for each gene in the cancer cell line atlas. Grey indicates no data was available. It is reassuring
that EWSR1, the kinase associated with Ewing sarcoma development, is identified as highly influential in the
cell signaling network by this method.

in the observed interaction).
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Figure 2.8: Overview of our findings, using the stringdb protein-protein interaction network. Panel
A: Scatterplot with marginal histograms comparing mRNA expression to network potential. Panel B: Box
and whisker plot showing the change in network potential for the top 50 genes, as well as 99.99% confidence
intervals from the permutation test. We also show a histogram comparing the top 50 genes identified by our
pipeline using stringdb compared to biogrid as the protein-protein interaction network.

33



TC252 ES2 A673 TC32 EWS502 TC71
1 TRIM25 TRIM25 TRIM25 TRIM25 TRIM25 TRIM25
2 APP APP APP APP APP APP
3 ELAVL1 ELAVL1 ELAVL1 ELAVL1 ELAVL1 ELAVL1
4 RNF4 RNF4 RNF4 RNF4 RNF4 RNF4
5 HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL
6 XPO1 XPO1 XPO1 XPO1 XPO1 XPO1
7 NXF1 NXF1 NXF1 NXF1 NXF1 NXF1
8 UBC TNIP2 UBC UBC UBC UBC
9 TNIP2 UBC TNIP2 TNIP2 TNIP2 TNIP2

10 MOV10 MOV10 MOV10 MOV10 MOV10 MOV10

Table 2.1: Top protein targets for each cell line. We ranked potential targets by predicted change in network
potential when each protein was modeled as repressed.

TC252 ES2 A673 TC32 EWS502 TC71
1 XPO1 XPO1 XPO1 XPO1 XPO1 XPO1
2 LMNA LMNA LMNA LMNA NTRK1 EWSR1
3 EWSR1 HSP90AA1 HSP90AA1 EWSR1 HSP90AA1 LMNA
4 HSP90AA1 EWSR1 EWSR1 HSP90AA1 EWSR1 HSP90AA1
5 CUL3 CUL3 CUL3 CUL3 LMNA CUL3
6 NTRK1 KRAS NTRK1 NTRK1 CUL3 RECQL4
7 TP53 TP53 RECQL4 TP53 RECQL4 KRAS
8 RECQL4 RECQL4 KRAS KRAS TP53 NTRK1
9 KRAS EGFR TP53 RECQL4 KRAS BRCA1

10 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 TP53

Table 2.2: Top cancer-associated protein targets for each cell line. We ranked potential targets by
predicted change in network potential when each protein was modeled as repressed, limited to proteins
causally associated in cancer according to the Cosmic database. Proteins that appear in the same position
for ≥ 3 cell lines are bolded.

Gene set enrichment analysis We conducted gene set enrichment analysis, using all

genes in our Ewing sarcoma cell signaling network as the gene set. We ranked this set

of genes by change in network potential and used the “hallmarks” pathways set from the

Molecular Signatures Database as the genomic background [101, 102]. We also included

a gene set corresponding to the miRNA biogenesis pathway [84]. We used the “fgsea” R
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package version 1.8.0 to conduct the analysis using the following settings: nperm = 500,

minSize = 1, maxSize = ∞, nproc = 0, gseaParam = 1, BPPARAM =NULL [103]. We

found our gene set to be significantly enriched in several pathways related to oncogenesis,

including DNA repair, apoptosis, and MTOR signaling (Table 2.3). These results indicate

that network potential can identify a cancer-specific signal from mRNA expression data.

pathway pval padj ES NES nMoreExtreme size
1 MITOTIC_SPINDLE 0.00 0.01 0.62 1.47 0.00 197
2 DNA_REPAIR 0.00 0.01 0.59 1.37 0.00 146
3 G2M_CHECKPOINT 0.00 0.01 0.72 1.68 0.00 187
4 APOPTOSIS 0.00 0.01 0.62 1.44 0.00 158
5 PROTEIN_SECRETION 0.00 0.01 0.63 1.44 0.00 94
6 APICAL_SURFACE 0.00 0.01 0.73 1.57 0.00 42
7 UNFOLDED_PROTEIN_RESPONSE 0.00 0.01 0.62 1.43 0.00 106
8 PI3K_AKT_MTOR_SIGNALING 0.00 0.01 0.69 1.58 0.00 104
9 MTORC1_SIGNALING 0.00 0.01 0.61 1.43 0.00 193

10 E2F_TARGETS 0.00 0.01 0.72 1.69 0.00 195
11 MYC_TARGETS_V1 0.00 0.01 0.80 1.89 0.00 193
12 OXIDATIVE_PHOSPHORYLATION 0.00 0.01 0.61 1.42 0.00 184
13 ALLOGRAFT_REJECTION 0.00 0.01 0.54 1.27 0.00 191
14 MIRNA_BIOGENESIS 0.00 0.01 0.80 1.73 0.00 40
15 WNT_BETA_CATENIN_SIGNALING 0.01 0.02 0.68 1.47 2.00 42
16 ANGIOGENESIS 0.01 0.02 0.72 1.53 2.00 34
17 TGF_BETA_SIGNALING 0.01 0.03 0.65 1.43 4.00 53
18 MYC_TARGETS_V2 0.01 0.03 0.64 1.41 4.00 58
19 P53_PATHWAY 0.01 0.03 0.51 1.19 5.00 194
20 UV_RESPONSE_UP 0.01 0.04 0.53 1.23 6.00 153
21 SPERMATOGENESIS 0.02 0.04 0.54 1.24 7.00 126
22 ADIPOGENESIS 0.02 0.04 0.50 1.18 8.00 191
23 INTERFERON_GAMMA_RESPONSE 0.02 0.04 0.50 1.18 8.00 193
24 INTERFERON_ALPHA_RESPONSE 0.02 0.05 0.56 1.28 10.00 91

Table 2.3: Genes ranked by network potential are enriched for several biological pathways related
to cancer as well as the miRNA bio-genesis pathway Pathways with an adjusted p-value < 0.05 are
shown above. “ES” refers to enrichment score and “NES” refers to the normalized enrichment score.
“nMoreExtreme” refers to the number of random gene sets (out of 500) that were more enriched than the
test set. Size refers to the number of genes in the pathway that were also present in our mRNA expression
dataset.
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2.3 Discussion

In this work, we described a novel methodology for the identification of potential miRNA

cocktails for Ewing sarcoma therapy. First, we performed paired miRNA and mRNA

sequencing on six Ewing sarcoma cell lines (GEO accession GSE98787). We then defined

a metric of cell state, network potential, based on mRNA expression and signaling network

topology. Using in silico repression and change in network potential, we identified the

most important proteins in the cell signaling network for each of the 6 cell lines. We

then repeated this process for 15 patient tumor samples derived from the St. Jude Cloud

[105]. Notably, this set of proteins was enriched in 24 of the 50 pathways included in

the “halmarks” gene set [101, 102]. The ranked protein set was also enriched for genes

involved in the canonical miRNA biogenesis pathway [82]. We then evaluated more than

16000 3-miRNA cocktails (per cell line) based on predicted ability to disrupt key proteins

in the Ewing Sarcoma cell signaling network while avoiding cooperative down-regulation

of essential housekeeping genes. We ranked these 3-miRNA cocktails to identify promising

miRNA combinations for therapy of Ewing Sarcoma.

The protein targets and miRNA candidates we identified in our dataset are consis-

tent with the literature on Ewing sarcoma and cancer cell signaling, suggesting biologi-

cal plausibility of our methodology. Of the top 50 protein targets that we identified, 15

were previously causally implicated in cancer [1], including EWSR1, the proposed driver

of Ewing sarcoma development. In addition, our network-based approach suggests that

known oncogenic hub genes such as KRAS and MYC are prime targets for disruption in

cancer cells. We also identified a number of plausible targets that were not previously

implicated in cancer, such as MOV10. MOV10 is an RNA helicase involved in the RNA-

induced silencing complex (RISC), a key complex involved in epigenetic signaling by

36



miRNA [106]. As mentioned previously, our findings suggest that the miRNA biogenesis

pathway is enriched in the setting of Ewing Sarcoma. The central role of MOV10 in

the EWS cell signaling network provides further evidence for the importance of miRNA

signaling in EWS oncogenesis.

Many of the miRNA we identified as potential therapeutic candidates have been pre-

viously studied due to their association with cancer outcomes, including members of the

let-7 family, miR-300, miR-424-5p, miR-4282, miR-15a-5p, and miR-590-3p. Loss of

expression of the let-7 family of miRNA has been widely implicated in cancer devel-

opment [107–110]. In Ewing sarcoma specifically, low levels of let-7 family miRNA

have been correlated with disease progression or recurrence [107]. The let-7 family of

miRNA have also been studied as treatment for non-small cell lung cancer in the pre-

clinical setting [91]. Loss of miR-300 has been previously correlated with development and

aggressiveness of hepatocellular carcinoma [111] as well as in oncogenesis of pituitary tu-

mors [112]. Reduced expression of miR-424-5p and miR-4282 have each been implicated

in the development of basal-like breast cancer [113, 114]. MiR-15a-5p has been shown to

have anti-melanoma activity [115]. In addition, miR-590-3p has been show to suppress

proliferation of both breast cancer [116], and hepatocellular carcinoma [117]. The broad

literature linking many of our proposed miRNA candidates for Ewing sarcoma treatment

to the development and maintenance of cancer highlights the ability of our computational

pipeline to identify potentially promising therapeutic candidates in this setting. Prior to

application of these findings for treatment of Ewing sarcoma or any other disease, specific

in vitro and in vivo validation is needed.

The process by which putative miRNA targets were selected was based on sequence

homology rather than direct experimental validation. As a result, it is possible that we

included false positive miRNA targets in our analysis. For this study we relied on a protein-
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protein interaction network presumably curated from analyzing normal human cells. It

is possible that the derangements observed in cancer cells could change the underlying

interaction network of a tumor cell. In the future, it may be possible to utilize protein-

protein interaction networks specific to cancer or even specific to the cancer type under

study. In addition, we did not consider specific binding sites that these miRNA may use to

repress target mRNA. Certain miRNA may share binding sites on their target mRNA (i.e.

the let-7 family of miRNA), which may make our assumption of linear additive miRNA

effects invalid. We also used mRNA concentration as a surrogate for protein concentration

in designing our cell signaling network. While this is not true in all cases, it is likely a

reasonable approximation under steady state conditions [118–121] (see Section 2.4.2 for

more details). In addition, protein-mRNA correlations in the cancer cell line atlas for the

top proteins identified by our pipeline were fairly good, ranging from 0.07 to 0.8 for the

top 50 identified protein targets. [2] (Fig 2.3).

Despite these limitations, our findings may facilitate the development of novel therapies

for patients suffering from Ewing Sarcoma. To this point, severe toxicity has limited the

translation of miRNA-based cancer therapies to the clinical setting. Our pipeline may

enable the development of better miRNA therapies that clear this hurdle and open up this

promising avenue of therapy for patients suffering from cancer. In addition, this novel

method can facilitate the rapid identification of key proteins in any cancer cell signaling

network for which mRNA sequencing data is available. This may facilitate more rapid

drug discovery and assist in the discovery of proteins and miRNA that play a significant

role in the cancer disease process.

38



2.4 Methods

2.4.1 Overview

Figure 2.9: Simplified schematic of our computational pipeline. We defined a measure of tumor state,
which we term network potential (Equation 2.1), based on both mRNA gene expression and the underlying
protein-protein interaction (PPI) network. Next, we ranked mRNA targets based on their contribution to
network potential of each cell line, aiming to approximate the relative importance of each mRNA to network
stability. After identifying these mRNA targets, we then identified miRNA and miRNA cocktails that
preferentially acted to repress the most influential of the ranked mRNA targets, with the aim of defining
synthetic miRNA-based therapy for down-regulation of these targets.

We characterized six previously described Ewing sarcoma cell lines in triplicate [122]

– A673, ES2, EWS502, TC252, TC32, and TC71 – using paired miRNA and mRNA se-
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quencing. By evaluating 6 distinct cell lines, we aimed to assess the heterogeneity inherent

to Ewing sarcoma in-vitro. We also utilized mRNA sequencing data for 15 ewing sarcoma

patient tumor samples made available on the St. Jude Cloud [105]. We then defined a

measure of tumor state, which we term network potential (Equation 2.1), based on both

mRNA gene expression and the underlying protein-protein interaction (PPI) network. Next,

we ranked mRNA targets based on their contribution to network potential of each cell line,

aiming to approximate the relative importance of each mRNA to network stability. Relative

importance of each mRNA to network stability was determined by calculating the change

in network potential of each network before and after in silico repression of each mRNA

(∆G, described in Section 2.4.5). After identifying these mRNA targets, we then identified

miRNA and miRNA cocktails that preferentially acted to repress the most influential of the

ranked mRNA targets, with the aim of defining synthetic miRNA-based therapy for down-

regulation of these targets. Our computational pipeline is schematized in Figure 2.9.

2.4.2 Data sources

We utilized three data sources to develop our Ewing sarcoma cell signaling networks:

the BioGRID protein-protein interaction database [37], mRNA expression data from 6

Ewing sarcoma cell lines, which are available on GEO (accession GSE98787), and mRNA

expression data from 15 Ewing sarcoma patient samples, which are available on the St.

Jude Cloud [105].

Protein Protein Interaction Databases The BioGRID interaction database contains cu-

rated data detailing known interactions between proteins for a variety of different species,

including Homo sapiens. The data were generated by manual curation of the biomedical

literature to identify documented interactions between proteins [37]. To assist in manual
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curation, the BioGRID project uses a natural language processing algorithm that analyzes

the scientific literature to identify manuscripts likely to contain information about novel

PPIs. The dataset is therefore limited to protein interactions that are reliably reported in the

scientific literature. As new research accumulates, substantial changes to the PPI network

may occur. For example, between 2016 and 2018, the number of documented PPIs in Homo

sapiens grew from 365,547 to 449,842. The 449,842 documented interactions in 2018

were identified through curation of 27,631 publications [37]. Importantly, the PPI network

is designed to represent normal human tissue. To assess the importance of the specific

PPI used to our results, we repeated much of our analysis using stringdb, another publicly

available PPI with millions of documented interactions. To maintain some consistency

with biogrid, we modulated the provided "interaction score" until the resulting network

had around the same number of edges as the biogrid network. Interaction score is a number

ranging from 0 to 1000 that describes the likelihood that a given protein protein interaction

is biologically relevant. For our analysis, we included only interactions with an interaction

score ≥ 700.

Ewing sarcoma transcriptomics Second, we utilized mRNA expression data from in

vitro experiments conducted on six Ewing sarcoma cell lines (3 biological replicates per

cell line). RNA/miRNA extraction was performed with a Qiagen kit with on-column DNase

digestion. These mRNA and miRNA expression data were then normalized to account for

between sample differences in data processing and further adjusted using a regularized

log (Rlog) transformation [123, 124]. In order to extend our study to patient samples,

we repeated our analysis on 15 patient tumors from the St. Jude Cloud for which RNA

sequencing data was available. The St. Jude Cloud is a comprehensive, cloud-based data-

sharing ecosystem that provides genomic data on thousands of samples from patients with
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pediatric cancer [105].

Notably, methods for calculating network potential from this type of data require pro-

tein concentrations rather than mRNA transcript concentrations. For the purposes of this

analysis, we assumed that concentration of protein in an Ewing sarcoma tumor was equiv-

alent to the concentration of the relevant mRNA transcript. A large body of work suggests

that mRNA levels are the primary driver of protein levels in a cell under steady state

conditions (i.e. not undergoing proliferation, response to stress, differentiation etc) [118–

121]. However, recent work in a 375 cancer cell lines has shown that mRNA expression

may not be predictive of protein expression in the setting of malignancy [2]. For this reason,

we included the protein-mRNA correlations from their experiments alongside some of our

key findings to provide needed context.

2.4.3 Network development

We first developed a generic network to represent human cell signaling networks using the

BioGRID interaction database [37]. The BioGRID protein-protein interaction network can

be downloaded as a non-linear data structure containing ordered pairs of proteins and all

the other proteins with which they interact. This data structure can be represented as an

undirected graph, with vertex set V , where each vertex represents a protein, and edge set

(E) describes the interactions between proteins.

Using mRNA sequencing data from 6 Ewing sarcoma cell lines in triplicate, we then

ascribed mRNA transcript concentration for each gene as an attribute to represent the

protein concentration for each node in the graph. Through this process, we developed

networks specific to each cell line and replicate in our study (18 total samples). We then

repeated the same process to develop networks specifics to the 15 patient tumor samples.
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2.4.4 Network potential calculation

Using the cell signaling network with attached cell line and replicate number specific

normalized mRNA expression data, we defined a measure of tumor state following Reitman

et al. [98], which we term network potential. Our Network potential metric was inspired

by Gibbs free energy in physics or chemistry. We first calculate the network potential of

the i-th node in the graph:

Gi = Ci ln

[
Ci∑

Cj + Ci

]
. (2.1)

where Gi is equal to the network potential of an individual node of the graph, Ci is equal

to the concentration of protein corresponding to node Gi, and Cj is the concentration of

protein of the j-th neighbor of Gi. Because of the natural log transformation, Gi will

always return a negative number. Total network potential (G) of the network can then be

calculated as the sum over all nodes:

G =
∑
i

Gi. (2.2)

where G is equal to the total network potential for each biological replicate of a given cell

line. We then compared total network potential across cell lines and biological replicates.

More negative network potentials were interpreted as being "larger" in the absolute sense.

2.4.5 Ranking of protein targets

After calculating network potential for each node and the full network, we simulated

"repression" of every node in each network by reducing their expression (computationally)

to zero, individually [72]. Clinically, this would be akin to the application of a drug that
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perfectly inhibited the protein/mRNA of interest. Next, we re-calculated network potential

for the full network and calculated the change in network potential (∆G) by subtracting the

new network potential value for the network potential value of the “unrepressed” network.

Because the network potential of each node was negative, systematic repression of a given

node always drove the total network potential to be less negative. As a result, this approach

will always return a positive ∆G. We then ranked each node in the network according to

∆G for further analysis.

We also evaluated the top predicted genes by ∆G against a null model of ∆G to evaluate

the likelihood that these observed disruptions were due to random chance. To construct our

null distribution of ∆G, we repeated the following process 1000 times for each sample

under study:

1. We constructed a random graph that preserves the original degree distribution for the

underlying protein-protein interaction network by iteratively swapping edges. For

each random graph, we performed n× 100 swaps where n is the number of nodes in

the original graph.

2. We then constructed a cell signaling network using the random graph and the mRNA

expression data for that sample. mRNA expression was left unchanged for each

random graph.

3. We computed the ∆G for the top 50 proteins under study on the new random graph.

We then calculated the average and standard deviation ∆G from all 1000 iterations of

the above process to compute a bootstrapped null distribution of ∆G. We then computed

confidence intervals for ∆G, employing the bonferroni correction to account for multiple

hypothesis testing.

44



Our pipeline was designed to make use of parallel computing on the high-performance

cluster (HPC) at Case Western Reserve University.

2.4.6 Identification of miRNA cocktails

To generate miRNA-mRNA mappings, we implemented a protocol described previously [125].

Briefly, we identified all predicted mRNA targets for each miRNA in our dataset using

the miRNAtap database in R, version 1.18.0, as implemented through the Bioconductor

targetscan org.Hs.eg.db package, version 3.8.2 [93]. We used all five possible databases

(default settings): DIANA version 5.061 [95], Miranda 2010 release62 [126], PicTar 2005

release63 [127], TargetScan 7.164 [128] and miRDB 5.065 [94], with a minimum source

number of 2, and the union of all targets found was taken as the set of targets for a given

miRNA. Through this mapping, we identified a list of mRNA transcripts that are predicted

to be repressed by a given miRNA. Our code and processed data files are available on

Github at: https://github.com/DavisWeaver/MiR_Combo_Targeting/.

Using this mapping, as well as our ranked list of promising gene candidates for repres-

sion from our network analysis, we were able to identify a list of miRNA that we predict

would maximally disrupt the Ewing sarcoma cell signaling network when introduced syn-

thetically. To rank miRNA targets, we first identified all the genes on the full target list that

a given miRNA was predicted to repress (described in Section 2.4.5). Next, we summed the

predicted ∆G when each of these genes was repressed in silico to generate the maximum

potential disruption that could be achieved if a given miRNA were introduced synthetically

into an Ewing sarcoma tumor. We then ranked miRNA candidates in descending order of

the maximum predicted network disruption (Figure 2.4).

Given the documented cases of systemic toxicities associated with miRNA-based thera-

pies, the miRNA that inhibits the most targets might not necessarily be the best drug target.
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We therefore sought to identify combinations of miRNAs that individually repressed key

drug targets, while avoiding repression of housekeeping genes that may lead to toxicity.

We defined housekeeping genes using a previously described gene set [129]. In this study,

housekeeping genes were identified by evaluating RNA sequencing data from a large num-

ber of normal tissue samples. Genes that are consistently expressed in all or nearly all tissue

types were assumed to be so-called housekeeping genes. Our hypothesis is that by giving a

cocktail of miRNAs with predicted activity against one or multiple identified drug targets,

each individual miRNA could be given at a low dose such that only the mRNA transcripts

that are targeted by multiple miRNAs in the cocktail are affected (Figure 2.1). Also with

an eye towards limiting toxicity, we restrained our search to endogenous miRNAs rather

than broadening to engineered exogenous miRNA mimics. To that end, we designed a loss

function (see equation below) to balance the the effects of repressing the housekeeping

gene set I as well as the target gene set J :

L(µ) =
∑
i,j

A(c)(Gi)− A(c)(Gj) for i ∈ I and j ∈ J, (2.3)

A(c) =


0, if c ≤ 1

0.2c, if 1 < c < 6

1, otherwise

(2.4)

Where A(c) determines the degree of repression as a function of the number of times,

c, that a given gene, i, is targeted by a given miRNA cocktail, µ. We recognize that

assuming each additional miRNA additively represses 20% of a given gene is somewhat

arbitrary. Future work could improve on this miRNA cocktail optimization approach by

more formally addressing miRNA repression in different contexts.
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We first transformed the projected change in network potential for each gene such

that housekeeping genes exerted a positive change in network potential and the top 10

predicted targets exerted a negative change in network potential. We then ranked 3-miRNA

combinations according to their projected effect on network potential, where more negative

changes in network potential were interpreted as most effective for maximizing on-target

effects while minimizing off-target effects. As a further constraint, a gene had to be targeted

by 2 or more miRNA in a given cocktail to be considered repressed. Each miRNA was

assumed to downregulate a given gene by 20%, such that genes targeted by 2 miRs were

assumed to have their expression decreased by 40%, and genes targeted by 3 miRs were

assumed to have their expression decreased by 60%. We repeated our analysis, varying

between 10% and 50% repression to assess the impact of this assumption on our predicted

miRNA cocktails. Rather than evaluate every potential 3-miRNA combination, we limited

our analysis to miRNA that target at least 2 of our 10 target genes. These constraints were

defined a priori. We repeated this analysis to identify cocktails that target larger or smaller

groups of mRNA (the top 5 or 15 mRNA targets) in order to assess the stability of the

predicted cocktail to changing conditions.
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3.1 Introduction

In the last few decades, interest in graph-based analysis of biological networks has grown

substantially. Researchers have leveraged gene regulatory networks, protein-protein inter-

action networks, and metabolic networks to make predictions about disease gene priori-

tization, drug target identification, drug repurposing, and patient outcomes [3, 39, 40, 98,

130, 131]. The explosion of methods and data repositories has led some to call this the

"Biological Network Era" [4]. For the purpose of this chapter, we will focus on genome-

scale protein association networks, often called protein-protein interaction networks (PPI

networks). Genome scale PPI databases attempt to represent the relationships between

every known protein and every other known protein. PPI networks can be inferred through

expert curation of the literature to identify empirical interactions between proteins [12].

PPI networks can also be inferred using gene or protein co-expression, gene coevolution,

and other methods to reduce the false negative rate associated with expert curated PPI

networks [14, 15].

Researchers have found many uses for PPI networks. For example, they have applied

graph search and graph clustering algorithms to biological networks in an effort to derive

disease-specific subgraphs [55, 65, 132] or identify potential drug targets [11, 39, 40, 75].

Further, researchers have applied simple node ranking methods to prioritize genes during

the generation of predictive biomarkers [133]. Many of the key bioinformatic steps are

shared between these use cases. Researchers must interface with a publicly available

genome-scale interaction database, reduce the size of the total network to a manageable

subnetwork, and finally score nodes so that they can be ranked.

Graph filtration (some times called graph pruning or graph reduction) is a critical step

in interactomic pipelines due to the continued expansion of known protein-protein inter-
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actions [12, 19]. The best available PPIs have catalogued more than 1 million individual

interactions [15]. Network pruning is a key step due to the lack of context specificity

in PPI repositories. All recorded interactions between proteins are made available to

users, regardless of the cell cycle or phenotypic context in which they were measured.

Therefore, it is critical to reduce the full PPI to a more phenotype-specific subgraph.

Finally, manipulation of these data structures is extremely cumbersome and makes analysis

slow. For example, the full PPI downloadable from StringDB contains 19,271 nodes and

5,934,147 edges. It requires 191.4 MB of memory.

PPI filtration is typically performed using a walk-based algorithm or through integration

with additional phenotypic data such as gene expression [40, 55]. One of the most well-

studied algorithms in this context is random walk with restarts. Random walk with restarts

(RWR) has been used and adapted across disciplines and industries for applications ranging

from internet search engines to drug target identification [70,134,135]. There are a growing

suite of tools available in R for analyzing graph-structured data [136, 137], including a

few R packages that implement RWR [138, 139]. These tools require some understanding

of graph data structures and ask the user to find, download, and manipulate the relevant

biological networks into adjacency matrices or igraph objects. In this chapter, we will

describe crosstalkr, a free, open-source R software package. Crosstalkr provides a stream-

lined interface to facilitate all three of the most common steps of an interactomic analysis.

Users can interface with online PPI repositories, prune or filter the resulting networks, and

rank nodes based on a variety of graph-based scoring methods. In addition, crosstalkr

is optimized to facilitate one-line implementation of an RWR-based algorithm designed

to identify functional subgraphs of protein-protein interaction networks (PPI) [55]. In

addition to providing a clean interface for non-graph theorists, crosstalkr improves upon

existing tools by implementing methods to facilitate in silico repression.
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3.2 Design and Data Sources

Crosstalkr facilitates all 3 of the most common steps in an interactomic pipeline; interfacing

with online PPI repositories, pruning the resulting network, and ranking nodes to produce

scored gene sets (Figure 3.1). We implemented this functionality in the “load_ppi”, “gfil-

ter”, and “node_repression” methods (described below).

Figure 3.1: Example workflow for crosstalkr software package. crosstalkr supports all 3 of the most
common steps in an interactomic pipeline; interfacing with online PPI repositories, pruning the resulting
network, and ranking nodes to produce scored gene sets.

3.2.1 load_ppi

‘load_ppi’ allows users to interface directly with online protein interaction repositories.

Currently, we support StringDB [15], and Biogrid [12]. If users specify StringDB as the

ppi, they can customize the incoming PPI based on species code, interaction confidence

score, and interaction type. Of note, StringDB incorporates Biogrid curated interactions in

their network inference process [15]. Biogrid can therefore be thought of as a more strict

subset of the PPI provided by StringDB. load_ppi will standardize the incoming data and

return an igraph object where proteins are vertices and binary interactions are undirected
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edges. However, users do not necessarily need to interact with load_ppi directly. The

methods below will call load_ppi if the ‘use_ppi’ bool is set to TRUE. Finally, users are

encouraged to provide a file path to the ‘cache’ argument. The returned igraph object will

then be stored at the local file path as a .Rda file rather than requiring users to repeatedly

download resources from online repositories. By default, cached resources will be used

when load_ppi is called subsequently.

3.2.2 gfilter

‘gfilter’ and related methods allow users to reduce large graphs to subgraphs based on a

user-supplied method. Users can supply a graph as an igraph object or use a PPI network.

All node scoring methods in the igraph package [136] are supported, in addition to simple

node ranking based on a user-provided named numeric vector (i.e. gene expression). Node

scoring methods also include one thermodynamic measure, network potential (also called

Gibbs free energy) [74]. Finally, users can use an RWR-based method (described below).

In all cases, users specify the number of nodes to be kept (n), and whether nodes should

be ranked in descending order. After computing the node score based on the user-supplied

method, a subgraph is creating using the ‘induced_subgraph’ igraph method.

3.2.3 compute_crosstalk

In the compute_crosstalk function, we implement a system for identification of phenotype-

specific subnetworks. If users plan to search a supported protein protein interaction net-

work, they are only required to provide a vector of seeds proteins. Seed proteins are used

as the starting point for construction of the phenotype-specific sub-network, analogous to

search terms in a web search. In this situation, compute_crosstalk will:
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1. Download the requested PPI (or load it from the provided cache)

2. Process the requested PPI into a sparse adjacency matrix.

3. Perform a random walk with restart using the user provided seeds to generate affinity

scores for every protein in the PPI.

4. Perform many random walks with restarts from n random seeds with a matching

degree distribution to generate a null distribution of affinity score.

5. Compare the affinity scores to the null distribution to compute an adjusted p-value

(using the method specified in p_adjust)

6. Remove proteins with an adjusted p-value < significance_level

Users can make use of caching to store processed PPIs and speed up future analyses

substantially. Users can also make use of parallel computing by setting the ncores parame-

ter > 1. For a formal definition of the algorithm, refer to Section 3.5.

3.2.4 node_repression

The node repression function provides support for in silico repression, a method to rank

nodes for the identification of potential drug targets. In silico repression attempts to score

the importance of a given node by computing some global measure of network state before

and after node removal. A more formal definition of our in silico repression implementation

can be found in Section 3.5. Currently, network potential (sometimes called Gibbs Free

Energy) is the only state function available. Generalizing node_repression to any state

function that scores nodes is an active area of development.
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3.2.5 Data Sources

Users can leverage two high quality PPI networks through crosstalkr; StringDB and Biogrid

[12, 13]. Biogrid is the most comprehensive available database of expert-curated empiri-

cally measured protein-protein interactions. StringDB expands the coverage of Biogrid

by estimating interactions using gene expression, genomic context, and other evidence

streams. While Biogrid supports dozens of species, we only provide direct integration

for homo sapiens. Crosstalkr provides direct access to all core species support by String.

For a more thorough discussion of these resources, refer to Chapter 1.

3.3 Example Uses

Here, We present two possible bioinformatic pipelines for drug target identification. Both

rely on the integration of RNA or protein expression data from a given model system

with interactomic data from protein-protein interaction networks. Integration of specific

phenotypic data helps address the shortcoming that publicly available PPI repositories

are not context-specific [13]. In the first, we execute a two-step pipeline, where the PPI

network is filtered based on RNA expression data. We then rank the nodes again based on

betweenness centrality to identify the most critical hub genes of the network. In the second,

we use in silico repression to rank the nodes rather than a simple node scoring method after

a filtration step.

For these examples, we will rely on previously published gene expression data from

a Ewing Sarcoma cell line (A673)g (described in more detail here). Ewing Sarcoma is a

rare bone malignancy primarily seen in pediatric and adolescent patients. It is thought to

be driven by a fusion event that creates an abberant EWS-FLI1 transcription factor [80].

EWS-FLI1 then activates downstream effectors that drive cellular growth and proliferation.
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The specific transcriptional effects have been studied extensively in the last 30 years [107,

140,141]. Despite improved knowledge about the molecular mechanisms that cause Ewing

Sarcoma, meaningful clinical improvements have not been made in decades [78]. While it

is not our goal here to suggest specific targets for therapy, novel therapeutics with efficacy

in Ewing Sarcoma are sorely needed. We will first isolate a single replicate for convenience

and log2 normalize (E = log2(E)) the gene expression values E. Then we will format the

expression values into a named numeric vector, the preferred format for interacting with

crosstalkr.

3.3.1 Pipeline 1

Graph Filtering

First, we will use the gene expression values to reduce the size of the PPI network we need

to analyze (Listing 3.1). gfilter.value performs the following actions:

1. Download and modify PPI according to user-provided parameters (passed to load_ppi)

2. Take the maximum or minimum n genes according to the user provided named

numeric vector (passed to the val parameter)

3. Call the igraph::induced_subgraph method to create a new igraph object that contains

only the genes from step 2.

4. Add gene expression to the new graph object as an attribute to allow further manip-

ulation.

g <- gfilter(method = "value", cache = NULL, val=exp,

val_name = "expression", use_ppi = TRUE,
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min_score= 800,desc = TRUE,n=100)

length(igraph::V(g))

#> [1] 100

head(igraph::get.vertex.attribute(g, name = "expression"))

#> [1] 3.846040 3.961776 3.980389 3.843208 3.982157 3.955569

Listing 3.1: gfilter can reduce the size of a graph using a user-provided value to rank nodes.

Node Scoring

Next, we will use gfilter again to score this smaller subgraph according to the betweenness

centrality and return only the top 5 proteins (Listing 3.2). It is worth noting that there are

a number of potential measures of centrality that could be used here, as well as many other

potentially useful node scoring methods provided in the igraph package [136].

g <- gfilter(g=g, igraph_method = "betweenness", n = 5, desc=

TRUE,

use_ppi=FALSE, val_name = "betweenness")

igraph::V(g)

#> + 5/5 vertices, named, from cbf2833:

#> [1] GAPDH HSP90AA1 EEF1A1 HNRNPC TPT1

Listing 3.2: gfilter can return the top n nodes ranked by centrality measures like betweenness

The top 5 proteins, ranked by betweenness centrality on this reduced subgraph were

GAPDH, HSP90AA1, EEF1A1, HNRNPC, and TPT1. GAPDH is a glycolytic enzyme

that has also been assigned a number of other functions, and is highly expressed in normal

bone marrow. HSP90AA1 encodes for a heat shock protein and has been implicated
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in drug resistance development in cancer. EEF1A1 is involved in protein translation.

HNRNPC is a ubiquitously expressed RNA binding protein. TPT1 is a regulator of cellular

proliferation, and is causally implicated in cancer development [1]. Of our 5 candidate

proteins, 4 are either ubiquitously expressed housekeeping genes or proteins involved in the

generic cellular stress response. Our very simple pipeline (applied to just a single sample)

identified a potentially promising candidate in TPT1. TPT1 was recently associated with

Ewing Sarcoma drug resistance development in the literature [140]. TPT1 was found to be

significantly upregulated in a doxorubicin-resistant Ewing Sarcoma cell line compared to

an embryonic fibroblast cell line.

Disease-Specific Subnetwork Identification

Next, we use the compute_crosstalk function to identify a Ewing Sarcoma specific subnet-

work from the full protein-protein interaction network (Listing 3.3). Here, we rely on the

proteins identified above as seeds in the RWR-based algorithm.

out <- gfilter.ct(seeds = names(igraph::V(g)), use_ppi = TRUE,

min_score=800, return_df=TRUE, cache = NULL,

seed_name = "vignette")

plot_ct(out[[2]], out[[1]])

Listing 3.3: gfilter can reduce the size of a graph using the compute_crosstalk pipeline to rank nodes

We identified 341 proteins in the subnetwork defined by GAPDH, HSP90AA1, EEF1A1,

HNRNPC, and TPT1. Most of these are neighbors of the highly connected HSP90AA1

(heat shock protein). The proteins with the highest affinity for the 5 seeds are labeled.

‘plot_ct‘ is a convenience function to quickly plot the returned subgraph (Figure 3.2).
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Figure 3.2: Protein-protein interaction subnetwork for GAPDH, HSP90AA1, EEF1A1,HNRNPC, and
TPT1. HSP90AA1 was identified as a critical hub in the computed subnetwork.

Users can specify ‘prop_keep‘ to improve readability by only plotting the top x% of iden-

tified proteins, ranked by affinity score. gfilter.ct also returns additional information about

the proteins in the identified subnetwork (Table 3.1).

Not including the initial seeds, NUDCD2, TSSK6m RALYL, POTEF, and TOMM34

showed the highest affinity for the provided seed proteins. Next, we will re-analyze these

data using a different combination of analytic steps to illustrate more features of crosstalkr.

3.3.2 Pipeline Two

In this pipeline, we will reduce the graph two times, first using degree (number of neighbors

for a given node), and then using gene expression (Listing 3.4). The resulting graph has
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node seed affinity_score adj_p_value
GAPDH yes 0.122 0
EEF1A1 yes 0.122 0

HSP90AA1 yes 0.121 0
TPT1 yes 0.121 0

HNRNPC yes 0.121 0
NUDCD2 no 0.049 0

TSSK6 no 0.049 0
RALYL no 0.048 0
POTEF no 0.025 0

TOMM34 no 0.024 0

Table 3.1: Top 10 proteins ranked by affinity to Ewing Sarcoma-related seeds.

500 nodes, all with both high connectivity in the PPI network and high expression in our

Ewing Sarcoma cell line. There are 9624 edges (interactions) between these 500 nodes

(proteins).

g <- gfilter(g = g_ppi, use_ppi=FALSE, cache = NULL, n = 2000,

igraph_method = igraph::degree, val_name = "degree")

g <- gfilter(g=g, use_ppi = FALSE, n = 500, method = "val",

val_name = "expression", val = exp)

igraph::gsize(g)

#> [1] 9624

Listing 3.4: gfilter can reduce the size of a graph using centrality measures like degree to rank nodes.

Node Scoring

Next, we will demonstrate a method for node scoring that uses in silico repression (Listing

3.5). For this example, we will use network potential as the state function. The resulting

data structure is sparse matrix that shows the effect of removing the node in a given column

on the state function value for the node represented in a given row. The global effect of
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removing a given node is then the column sum.

dnp <- node_repression(g=g, v_rm = names(igraph::V(g)), exp = exp)

dnp <- Matrix::colSums(dnp)

dnp <- sort(dnp, decreasing = TRUE)

names(dnp)[1:5]

#> [1] "HSP90AA1" "RPS27A" "UBA52" "CDK1" "CCNB1"

Listing 3.5: node_repression ranks nodes through in-silico repression.

Using this modified pipeline, we identified HSP90AA1, RPS27A, UBA52, CDK1,

and CCNB1 as the most critical proteins in this Ewing Sarcoma cell signaling network.

HSP90AA1 was also identified in the first instance. RPS27A is a ribosomal protein that is

involved in RNA binding. UBA52 is a paralog of RPS27A and appears to be an unlikely

candidate for cancer therapy. CDK1 is a cyclin dependent kinase, involved in cellular

proliferation and causally associated with cancer in the literature. CCNB1 is a cyclin, a

cellular regulator of mitosis.

As with the method above, our bioinformatic pipeline identified a number of ubiq-

uitiously expressed housekeeping genes. Interactomic analyses are often biased towards

proteins with extremely high connectivity (i.e. high degree). For example, HSP90AA1

was also identified as a key hub in the Ewing Sarcoma network when we analyzed these

data in Chapter 2. However, in that study, we performed a permutation test that showed

the impact of HSP90AA1 was likely driven by the underlying network connectivity rather

than by the actual phenotype under study. To do this, we computed a null distribution

for our state function of interest by generating thousands of rewired graphs with preserved

degree and then re-calculating our metric of interest. More details about this process can be

found in Chapter 2 [39]. In crosstalkr, We support this capability for the network potential
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example (see compute_null_dnp). Supporting this feature for additional state functions is

an area of development.

3.4 Discussion

Despite the widespread integration of interactomics into bioinformatic workflows, no ac-

tively maintained R packages directly supported the core functions of an interactomic anal-

ysis. To remedy this, We developed crosstalkr, a free, open-source R package. Crosstalkr

provides a toolkit for drug target identification, and supports users at every step in the

pipeline. Crosstalkr ships with functions that helps users interface with centralized reposi-

tories of functional interactions, filter or prune the resulting PPI networks, and score nodes.

Many organizations have developed web applications to help industry and academic

stakeholders perform basic interactomic analyses, including simple queries of protein neigh-

borhood and random-walk inspired tests to identify functionally related proteins [13, 55,

138, 142, 143]. Unfortunately, closed-source web applications are often limited by the

lack of programmatic access to the resources. We developed crosstalkr as an R package

to enable rapid integration into modular, R-native bioinformatic pipelines. Further, users

cannot rely on long-term maintenance of products in this sector. The vast majority of web

applications (and software packages) that have been developed to assist with interactomic

analyses fall into disrepair within a few years of their release [38, 144, 145]. Against that

backdrop, open-source frameworks that can be extended and maintained by third-parties

are far more likely to provide to provide long-term value to the academic community.

Overall, crosstalkr builds on a vibrant landscape of tools to help users interact with

functional interaction networks, and provides a novel implementation of in silico repres-

sion. Crosstalkr has been downloaded more than 1700 times and has 13 stars on github,
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highlighting the potential impact of this work. Crosstalkr can be download directly from

CRAN using “install.packages("crosstalkr")” from any R environment. The most recent de-

velopmental version can be found on github (https://github.com/DavisWeaver/crosstalkr).

3.5 Algorithm Definitions

3.5.1 Random Walks with Restarts

As mentioned above, compute_crosstalk is an implementation of the random walk with

restarts, followed by a permutation test for signficance. The mathematical definition for a

random-walk with restarts has been written many times, and can be found at [70]. Here, we

provide pseudocode to describe the algorithm implementation in crosstalkr. w is a square

adjacency matrix describing the graph. seeds is a vector describing the indexes of the

provided seeds. gamma is a number describing the discount rate. eps describes the stop

condition, when the change in p in a single iteration is less than eps, the algorithm will

stop. tmax describes the largest number of iterations that the algorithm will attempt. The

ouput is p, a vector containing the affinity score of all nodes in w relative to the provided

seeds.

Input: w, seeds, gamma, eps, tmax

DO

Normalize w,

Initialize p0

Initialize p to be a vector of zeros with length nrow(w)

for t in 1:tmax, DO

SET

pold = p
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p = ((1-gamma) * w %*% pold + gamma * p0

IF

p-pold < eps

STOP

ELSE

CONTINUE

output: vector of affinity scores

Listing 3.6: psuedocode for crosstalkr implementation of random walk with repeats

3.5.2 Bootstrapped Null Distributions

We computed bootstrapped null distributions using two related methods. In the algorithm

implemented by compute_crosstalk, we bootsrapped a null by re-calculating affinity scores

(through RWR) associated with a series of randomly selected seeds that shared a similar

degree distribution compared to the user-provided seeds. For more details on this method,

refer to [55]. In the algorithm implemented by compute_null_dnp, we bootstrapped a

null by generating n completely new graphs with preserved degree distribution using the

“keeping_degseq” method. We described this method in detail in Chapter 2 and in [39].

3.5.3 Network Potential

Network Potential (i.e. Gibbs Free Energy) is a node-specific metric that depends on the

local context of each node in a graph. We discuss network potential in detail in Chapter 2.

For a given node Vi and node weight (Ci) in a graph G(V,E), network potential (Gi) can

be computed as follows:
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Gi = Ci ln

[
Ci∑

Cj + Ci

]
, (3.1)

where Cj refers to the node weights for all neighbors of Vi.

3.5.4 Betweenness Centrality

Betweenness centrality measures the number of shortest paths that traverse a given node v.

Betweenness can be computed as follows:

g(v) =
∑
s ̸=v ̸=t

σst(v)/σst (3.2)

where σst is the number of shortest paths from node s to nodet and σst(v) is the number of

shortest paths from node s to node t that traverse node v.

3.5.5 In silico repression

In silico repression attempts to quantify the importance of a given node v in some graph

G(V,E) by computing the a global measure of graph state S before and after the removal

of node v from the graph. In crosstalkr, in silico repression is a 6-step process:

1. Calculation of a node score sv for all nodes v ∈ V in the graph using some state

function s(v).

2. Calculation of the total network state S =
∑

sv

3. Removal of a given node i from the graph.

4. Re-calculation of node score siv for all nodes v ∈ V . (In practice, we only re-

calculate the node score of those nodes affected by the removal of node i)
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5. Re-calculation of total network state Si =
∑

i ̸=v siv

6. Calculation of ∆Si = S − Si where ∆Si is used to score and rank nodes.
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Part II

AI-enabled treatment of evolving cell populations
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Chapter 4

Reinforcement Learning informs

optimal treatment strategies to limit

antibiotic resistance

Pre-printed as: Weaver, D. T., Maltas, J, & Scott J. G. (2023, January). Reinforcement

Learning informs optimal treatment strategies to limit antibiotic resistance, BioRxiv, DOI:

https://doi.org/10.1101/2023.01.12.523765
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4.1 Introduction

Drug resistant pathogens are a wide-spread and deadly phenomenon that were responsi-

ble for nearly 5 million deaths worldwide in 2019 [146]. In the US alone, 3 million

cases of antimicrobial resistant infections are observed each year [147]. The increasing

prevalence of pan-drug resistance has prompted the CDC to declare that we have entered a

“post-antibiotic era” [147]. Despite this evident public health crisis, development of novel

antibiotics has all but ceased due to the poor return on investment currently associated

with this class of drugs [148]. Novel approaches to designing therapies that explicitly take

into account the adaptive nature of microbial cell populations while leveraging existing

treatment options are desperately needed.

Evolutionary medicine is a rapidly growing discipline that aims to develop treatment

strategies that explicitly account for the capacity of pathogens and cancer to evolve [149–

155]. Such treatment strategies, termed “evolutionary therapies”, typically cycle between

drugs or drug doses to take advantage of predictable patterns of disease evolution. Evolu-

tionary therapies are typically developed by applying optimization methods to a mathemati-

cal or simulation-based model of the evolving system under study [156–166]. For example,

in castrate-resistant prostate cancer, researchers developed an on-off drug cycling drug

protocol that allows drug-sensitive cancer cells to regrow following a course of treatment

[167, 168]. Clinical trials have shown this therapy prevents the emergence of a resistant

phenotype and enables superior long-term tumor control and patient survival compared to

conventional strategies [167, 168].

Current methods for the development of evolutionary therapies require an enormous

amount of data on the evolving system. For example, many researchers have optimized

treatment by using genotype-phenotype maps to define evolutionary dynamics and model
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the evolving cell population [160, 169–177]. However, most methods for optimization

of these models requires a complete understanding of the underlying system dynamics

[159, 160, 178, 179]. Such detailed knowledge is currently unobtainable in the clinical

setting. Approaches that can approximate these optimal policies given only a fraction of

the available information would fill a key unmet need in evolutionary medicine.

We hypothesize that reinforcement learning algorithms can develop effective drug cy-

cling policies given only experimentally measurable information about the evolving pathogen.

Reinforcement learning (RL) is a well-studied subfield of machine learning that has been

successfully used in applications ranging from board games and video games to manu-

facturing automation [178, 180–182]. Broadly, RL methods train artificial intelligence

agents to select actions that maximize a reward function. Importantly, RL methods are

particularly suited for optimization problems where little is known about the dynamics

of the underlying system. Further, RL and related optimal control methods have been

previously applied for the development of clinical optimization protocols in onocology and

anesthesiology [165, 183–188].

In this study, we develop of a novel approach to discovering evolutionary therapies,

using a well studied set of empirical fitness landscapes as a model system. We will explore

"perfect information" optimization methods such as dynamic programming in addition to

RL methods that can learn policies given only limited information about a system. We

show that it is possible to learn effective drug cycling treatments given extremely limited

information about the evolving population, even in situations where the measurements

reaching the RL agent is extremely noisy and the information content is low.
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index drug code drug
1 AMP Ampicillin
2 AM Amoxicillin
3 CEC Cefaclor
4 CTX Cefotaxime
5 ZOX Ceftizoxime
6 CXM Cefuroxime
7 CRO Ceftriaxone
8 AMC Amoxicillin + Clavulanic acid
9 CAZ Ceftazidime

10 CTT Cefotetan
11 SAM Ampicillin + Sulbactam
12 CPR Cefprozil
13 CPD Cefpodoxime
14 TZP Pipercillin + Tazobactam
15 FEP Cefepime

Table 4.1: Reference codes for drugs under study

4.2 Methods

As a model system, we simulated an evolving population of Escherichia coli (E. coli)

using the well-studied fitness landscape paradigm, where each genotype is associated with

a certain fitness under selection [160,170,173]. We relied on a previously described 4 allele

landscape of the E. Coli β-lacatamase gene where each mutation has a measured impact

on the sensitivity of an E. coli population to one of 15 β-lactam antibiotics [170, 173].

We then defined 15 different fitness regimes on the same underlying genotype space, each

representing the selective effect of one of 15 β-lactam antibiotics (Table 4.1) [170]. We

used this well-studied E. coli model system because it is one of the few microbial cell

populations for which a combinatorially complete genotype-phenotype mapping has been

measured [170,173]. By simulating an evolving E. coli cell population using the described

fitness landscape paradigm, we were able to define an optimization problem on which to
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train RL agents (Fig 4.1).

Figure 4.1: Schematic of artificial intelligence system for controlling evolving cell populations. A: E.
coli population evolving on fitness landscapes under the strong selection, weak mutation evolutionary regime.
At each time step, a reward signal r and a measure of system state s are sent to the replay memory structure.
B: Replay memory array stores (s, a, r, s’) tuples where s’ is state s+1. These are then used to batch train
the neural network. C: Deep Neural network estimates the value of each action given information about the
environment’s state. The action with the largest estimated value is then applied to the evolving cell population.

4.2.1 Simulation of Evolution Using Fitness Landscapes

We use a previously described fitness-landscape based model of evolution [160, 171]. In

brief, we begin by modeling an evolving asexual haploid population with N mutational

sites. Each site can have one of two alleles (0 or 1). We can therefore represent the genotype

of a population using an N-length binary sequence, for a total of 2N possible genotypes.

We can model theoretical drug interventions by defining fitness as a function of genotype.

These “drugs” can then be represented using N-dimensional hyper-cubic graphs (Fig 4.1A).

Further, if we assume that drug evolution under drug treatment follows the strong selection

and weak mutation paradigm, we can then compute the probability of mutation between

adjacent genotypes and represent each landscape as a Markov chain as described by Nichol
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et al. [160]. At each time step, we sampled from the probability distribution defined by the

Markov chain to simulate the evolutionary course of a single population.

4.2.2 Optimization approaches

We applied two related optimization approaches to identify effective drug cycling policies

in this setting. First, we extended the Markov chain framework to formulate a complete

Markov Decision Process (MDP). An MDP is a discrete-time framework for modeling

optimal decision-making [178]. Critically, the system under study must be partially under

the control of the decision-making agent. MDPs can be solved using dynamic program-

ming to generate optimal policies for the defined control problem [178]. The dynamic

programming algorithm requires perfect information (e.g. the complete transition matrix

and instantaneous state from the MDP) in order to yield optimal policies. Next, we trained

agents with imperfect information using reinforcement learning to approximate a clinical

scenario where perfect information will never be available. Notably, the state set, action

set, and reward assignment were shared between the perfect and imperfect information

conditions. The action set corresponded to the drugs available to the optimization process.

We considered this system to have a finite time horizon (20 evolutionary steps in the base

case). We chose a finite time horizon rather than an infinite time horizon assumption in

order to more faithfully represent clinical disease courses. For our purposes, we assume

that one evolutionary time step is the equivalent of one day of evolution.

Perfect Information

The state set S represents all potential genotypes (16 total in our base case) that the evolv-

ing population can explore. The action set A corresponds to the 15 available β-lactam

antibiotics. Finally, we define the reward set (R) and the set of transition probabilities (P )
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as a function of the current genotype s as well as the chosen action, a (eq 4.1):

R = 1− f(s|a) for s ∈ S and a ∈ A, and,

P = f(st+1|st, at) for s ∈ S and a ∈ A.

(4.1)

We solved the defined MDP using backwards induction, a dynamic programming approach

designed to solve MDPs with finite time horizons [189], to generate an optimal drug cycling

policy for each evolutionary episode. Backwards induction is used to estimate a value

function V (s) which estimates the discounted reward of being in each state s. Optimal

policies Π(s) are then inferred from the value function. Throughout the remainder of the

paper we will refer to this optimal drug cycling policy as the “MDP” condition.

Imperfect Information

In order to assess the viability of developing optimal drug therapies from potentially clin-

ically available information, we trained a Deep Q learner to interact with the evolving E.

Coli system described above. Deep Q learning is an extremely well-studied and charac-

terized method of reinforcement learning, and is particularly suited to situations where

very little a priori knowledge about the environment is available [178, 190]. We used

two different training inputs to model a gradient of information loss. In the first condition,

termed RL-genotype, the instantaneous genotype of the population was provided as the key

training input at each time point. For this condition, the neural architecture was composed

of an input layer, two 1d convolutional layers, a max pooling layer, a dense layer with 28

neurons, and an output layer with a linear activation function.

In the second condition, termed RL-fit, instantaneous population fitness of the popu-

lation was provided as the key training input at each time point. The neural architecture
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of RL-fit was composed of a neural network with an input layer, two dense hidden layers

with 64 and 28 neurons, and an output layer with a linear activation function. RL-fit takes

population fitness at time t and one-hot encoded action at time t− 1 as inputs and outputs

Q-values. Q-values are estimates of the future value of a given action. Q-value estimates

are improved by minimizing the temporal difference between Q-values computed by the

current model and a target model, which has weights and biases that are only updated

rarely. We used mean squared error (MSE) as the loss function.

We further explored the effect of information content on learned policy effectiveness

by introducing a noise parameter. With noise active, fitness values s ∈ S that were used as

training inputs were first adjusted according to:

st = st + w ∈ W ∼ N (µ, 0.05× σ2). (4.2)

For the noise experiment, µ was set to 0 such that σ2 = 0 would introduce no noise. We

then varied σ2 (referred to as ’noise parameter’) from 0 (no noise) to 100 (profound loss of

signal fidelity).

All code and data needed to define and implement the evolutionary simulation and re-

inforcement learning framework can be found at https://github.com/DavisWeaver/evo_dm.

The software can be installed in your local python environment using ’pip install git+https://github.com/DavisWeaver/evo_dm.git’

4.3 Results

In this study, we explored the viability of developing effective drug cycling policies for

antibiotic treatment given less and less information about the evolving system. To this end,
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Figure 4.2: Performance of RL agents in a simulated E. coli system. A: Line plot showing the effectiveness
of the average learned policy as training time increases on the x-axis for RL agents trained using fitness (red)
or genotype (blue). B: Boxplot showing the effectiveness of 10 fully trained RL-fit replicates as a function
of noise. Each data point corresponds to a single episode. The width of the distribution provides information
about the episode by episode variability in RL-fit performance. C: Density plot summarizing the performance
of the two experimental conditions (measured by average population fitness) relative to the three control
conditions. D: Signal to noise ratio associated with different noise parameters. Increasing noise parameter
decreases the fidelity of the signal that reaches the reinforcement learner.

we developed a reinforcement learning framework to design policies that limit the growth

of an evolving E. Coli population in silico. We evaluated this system in a well-studied E.

coli system for which empirical fitness landscapes for 15 antibiotics are available in the

literature [170]. A given RL agent could select from any of these 15 drugs when designing

a policy to minimize population fitness. We defined three experimental conditions. In

the first, we solved a Markov decision process formulation of the optimization problem

under study. In doing so, we generated true optimal drug cycling policies given perfect

information of the underlying system (described in Section 4.2.1). In the second, RL agents

were trained using the current genotype of the simulated E. Coli population under selection

(RL-genotype). Stepping further down the information gradient, RL agents were trained
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drug sequence replicate condition
CTX,AMC,CTX,CPR,CTX,CPR,CTX,CPR,CTX,CPR 53 RL-fit
CTX,CPR,CPR,CPR,CTX,CPR,CPR,CPR,CTX,SAM 53 RL-genotype

CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,CPR 23 RL-fit
CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC 23 RL-genotype
CTX,AMC,CTX,AMC,CTX,CPR,CTX,AMC,CTX,CPR 96 RL-fit
CTX,SAM,CTX,SAM,CTX,CPR,CTX,CPR,CTX,CPR 96 RL-genotype

Table 4.2: Example drug sequences. Here, we show the first 10 selected drugs for representative episodes
of the three top-performing replicates.

using only observed fitness of the E. Coli population (RL-fit). Finally, we introduced

noise into these measures of observed fitness to simulate real-world conditions where only

imprecise proxy measures of the true underlying state may be available. Each experimental

condition was evaluated based on its ability to minimize the fitness of the population under

study. We compared these conditions to two negative controls; a drug cycling policy that

selects drugs completely at random (which we will refer to as “random”), and all possible

two-drug cycles (i.e AMP-AM-AMP-AM-AMP). We tested 100 replicates of RL-fit and

RL-genotype against each of these conditions. Each replicate was trained for 500 episodes

of 20 evolutionary steps (10000 total observations of system behavior). We chose 500

episodes as the training time after extensive hyper-parameter tuning showed decreased or

equal effectiveness with additional training.

Comparison of RL drug cycling policies to negative controls.

We found that both RL conditions dramatically reduced fitness relative to the random

policy. In both cases, the RL conditions learned effective drug cycling policies after about

100 episodes of training and then fine-tuned them with minimal improvement through

episode 500 (Fig 4.2A). As expected, RL-genotype learned a more effective drug cycling

policy on average compared to RL-fit. RL-genotype had access to the instaneous state
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(genotype) of the evolving population, while RL-fit was only trained using a proxy measure

(population fitness). In 98/100 replicates, we observed a measurable decrease in population

fitness under the learned RL-fit policy versus a random drug cycling policy (Fig 4.7A). Fur-

ther, we found that the average RL-fit replicate outperformed all possible two-drug cycling

policies (Fig 4.2C). RL-genotype outperformed both negative controls in all 100 replicates

(Fig 4.2C). In some replicates, RL-genotype achieved similar performance compared to

the MDP policy (Fig 4.7D). In addition, the distribution of performance for RL-genotype

policies nearly overlapped with MDP performance (Fig 4.2C). Introduction of additional

noise to the training process for RL-fit led to degraded performance. However, even with

a large noise modifier, RL-fit still outperformed the random drug cycling condition. With

a noise modifier of 40 (fitness +N (µ = 0, σ2 = 0.05 × 40)), RL-fit achieved an average

population fitness of 1.41 compared to 1.88 for the random drug cycling condition (Fig

4.2D).

Overview of learned drug cycling policies for RL-fit and RL-genotype.

We evaluated the learned drug cycling policies of RL-fit, RL-genotype for the 15 β-

lactam antibiotics under study. We compared these to the true optimal drug cycling policy

as a reference. For this system, we show that the optimal drug cycling policy relies heavily

on Cefotaxime, Ampicillin + Sulbactam, and Ampicillin (Fig 4.3A). Cefotaxime was used

as treatment in more than 50% of time-steps, with Ampicillin + Sulbactam and Ampicillin

used next most frequently. The optimal drug cycling policy used Cefprozil, Pipercillin

+ Tazobactam, and Cefaclor infrequently. The remaining drugs were not used at all.

The different RL-fit replicates largely converged on a similar policy. They relied heavily

on Cefotaxime and Amoxicillin + Clavulanic acid. However, they relied infrequently

on Cefprozil. RL-genotype replicates also converged on a relatively conserved policy.

Further, RL-genotype replicates showed a much more consistent mapping of state to action
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Figure 4.3: Drug cycling policies learned by RL-genotype and RL-fit. A: Heatmap depicting the learned
policy for 100 replicates (on the x-axis) of the RL-genotype and 100 replicates of RL-fit. Far left column
(enlarged) corresponds to the optimal policy derived from the MDP condition. The Y-axis describes the β-
lactam antibiotics each RL agent could choose from while the color corresponds to the probability that the
learned policy selected a given antibiotic. Bottom heatmap shows the median fitness benefit observed under
the policy learned by a given replicate. B: Heatmap showing the average learned policy for RL-fit and RL-
genotype. RL-genotype learns a more consistent mapping of state to action compared to RL-fit.

compared to RL-fit (Fig 4.3B). All optimization paradigms identified complex drug cycles

that use 3 or more drugs to treat the evolving cell population. None of the tested two-

drug combinations compete with policies learned by RL-genotype, and are generally out-

performed by RL-fit. We show that policies that do not rely on Cefotaxime are suboptimal

in this system. The three replicates that showed the least benefit compared to the random

drug cycling case did not use Cefotaxime at all (Fig 4.3B). The importance of Cefotaxime

is likely explained by the topography of the CTX drug landscape (Fig 4.12). More than

half of the available genotypes in the CTX landscape lie in fitness valleys, providing ample

opportunities to combine CTX with other drugs and "trap" the evolving population in low-

fitness genotypes.
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Figure 4.4: Comparison of evolutionary trajectories seen under different regimes A-C: Selected
Pairwise comparisons of state transition frequency under different experimental conditions. State transition
frequency is nearly identical for the RL-genotype and MDP conditions (R=0.97). In contrast, state-transition-
frequency for the RL-fit and MDP conditions are related but less strongly correlated (R=0.75). As expected,
state transition frequency is not very similar between the RL-fit and random conditions (R=0.62). D: Bar
chart comparing the frequency that states are observed under different experimental conditions. The value of
each state (to the learner) is highlighted for each state by the bottom heatmap. High value states are observed
more frequently in RL-fit, RL-genotype, and MDP conditions compared to the random condition.

Evolutionary trajectories observed under RL-Genotype, RL-fit, and

MDP drug policies.

Next, we compared the evolutionary paths taken by the simulated E. coli population

under the MDP, RL-fit, RL-genotype, and random policy paradigms. The edge weights

(corresponding to the probability of observed state transitions) of the RL-genotype and

MDP landscapes show a 0.96 pearson correlation (Fig 4.4). In contrast, the edge weights

of the RL-fit and MDP landscapes show a 0.82 pearson correlation (Fig 4.4). During the

course of training the MDP condition, the backwards induction algorithm generated a value

function V (s, a) for all s ∈ S and a ∈ A. In Figure 4.4D, we use this value function to

show that certain genotypes (namely 1,5,6, and 13) were more advantageous to the evolving
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population than to the learner. These states were frequented much more often under the

random drug cycling condition compared to any of the experimental conditions (Fig 4.4D).

We also show that other genotypes (namely 12 and 11) were particularly advantageous for

the learner compared to the evolving population. These states were frequented much more

often under the experimental conditions compared to the random drug cycling condition

(Fig 4.4D).

We also show that certain state transitions occur more frequently than others, indepen-

dent of experimental conditions. For example, the population nearly always transitioned

from genotype 5 to genotype 7 (Fig 4.5). This transition highlights the way these learned

policies use drug landscapes to guide evolution. Genotype 5 (0100) is a fitness peak in most

of the drug landscapes used in the learned policies, and is therefore a very disadvantageous

state for the controlling agent. CTX, the most commonly used drug in all effective policies,

has a slightly higher peak at genotype 7 (0110), which forces the population away from

genotype 5 (Fig 4.10). As another example, the evolving population very rarely transitioned

from state 1 to state 9 in the RL-fit condition. This state transition occurred commonly in

the MDP and RL-genotype conditions (Fig 4.5). This difference is explained by the policies

shown in Figure 4.3B. Under the RL-genotype policy, CTX was selected every time the

population was in state 1 (the initial condition). The CTX landscape topography allows

transition to 3 of the 4 single mutants, including state 9 (1000) (Fig 4.12). Under the RL-fit

policy, CTX and AMC were used in about equal proportion when the population is in state

1. Unlike the CTX landscape, the AMC landscape topography does not permit evolution

from state 1 to state 9 (Fig 4.12)).

Characteristics of selected drug policies

To better understand why certain drugs were used so frequently by RL-genotype, RL-

fit, and the MDP policies, we developed the concept of an “opportunity landscape”. An
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Figure 4.5: Movement of simulated E. Coli population through the genomic landscape. Top row:
Heatmap depicting the joint probability distribution for each state transition under the different experimental
conditions. The second two show the difference in state transition probability compared to the MDP
condition. Bottom row: Graph depicting the fitness landscape, beginning with the wild type (bottom) all
the way to the quadruple mutant (top). Size of arrow depicts the frequency with which a state transition was
observed under the labeled experimental condition. The color of each node corresponds with the expected
value (to the learner) of being in that state. As above, the second two arrows correspond to the observed
difference between RL-Fit or RL-genotype and the MDP condition.

opportunity landscape is an optimistic summation of n fitness landscapes. We computed

each opportunity landscape by taking the minimum fitness value for each genotype from

a given set of fitness landscapes. This simplified framework gives a sense of a potential

best case scenario if the drugs in a given combination are used optimally. For example, the

MDP policy relied heavily on CTX, CPR, AMP, SAM, and TZP to control the simulated

E. Coli population. The resultant opportunity landscape (Fig 4.6A) contains only a single

fitness peak, with 15/16 of the genotypes in or near fitness valleys. In Figure 4.6B, we

show the actual state transitions observed during evolution under the MDP policy. We also
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color the nodes based on the value function estimated by solving the MDP. As expected, the

value function estimated by the MDP aligns closely with the topography of the opportunity

landscape. There is only one genotype that the value function scores as being very poor for

the learner, corresponding to the single peak in the opportunity fitness landscape (Fig 4.6).

Interestingly, the opportunity landscape predicted that the population would evolve to the

single fitness peak and fix. In contrast, the observed state transitions suggest that the MDP

policy was able to guide the population away from that single fitness peak. A more detailed

discussion of opportunity landscapes can be found in the supplemental materials.

We also show that both the MDP and RL-genotype conditions select the drug with the

lowest fitness for most genotypes (Fig 4.6C). There are a few notable exceptions to this

rule, which highlight RL-genotype’s capacity for treatment planning. A greedy policy that

selects the lowest drug-fitness combination for every genotype would select Amoxicillin

(AM) when the population is identified as being in genotype 5. The AM drug landscape

then strongly favors transition back to the wild-type genotype (state 1). From state 1, most

available drugs encourage evolution back to the genotype 5 fitness peak. As we see in

Figure 4.6B, state 5 is by far the least advantageous for the learner. The greedy policy

therefore creates an extremely disadvantageous cycle of evolution. In fact, none of the

tested policies rely heavily on AM in state 5 (Fig 4.3B), instead taking a fitness penalty

to select Cefotaxime (CTX). The CTX drug landscape encourages evolution to the double

mutant, which has access to the highest value areas of the landscape. Finally, we rank drug

landscapes based on the number of genotypes with a fitness value < 1 (Fig 4.6D). Based

on the defined reward function, these genotypes would be considered advantageous to the

learner. We show that drugs identified as useful by the optimal policy or RL-genotype

tend to have more advantageous genotypes in their drug landscape. The only two highly

permissive landscapes (CPD, CPR) that aren’t used have extremely similar topography to
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CTX, which most policies were built around.
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Figure 4.6: MDP value function closely matches opportunity landscape for drugs commonly used
under MDP policy. Panels A and B show the 16-genotype fitness landscape under study, starting with
the wild type at the top, progressing throw the single mutants, double mutants, triple mutants, and finally
the quadruple mutant at the bottom. A: Opportunity landscape for the 5 drugs most commonly used under
the MDP policy (CTX, CPR, AMP, SAM, and TZP). B: Observed state transitions under the MDP policy.
The node color corresponds to the value function estimated by solving the MDP. Lower values correspond to
states the MDP policy attempts to avoid while higher values correspond to states the MDP policy attempts
to steer the population. C: Scatter Plot showing the distribution of fitness with respect to genotype for the
15 β -lactam antibiotics under study. The drug selected by RL-genotype in a given genotype is highlighted
in light blue. In cases where the MDP selected a different drug than RL-genotype, that drug is highlighted
in orange. D: Number of genotypes with fitness above or below 1 for each drug under study. Drugs that are
used by both the MDP and RL-genotype are highlighted in orange. Drugs that are used by only the MDP are
highlighted in green. Drugs that are used by only RL-genotype are highlighted in blue.
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4.3.1 Additional Analyses

Hyperparameter tuning

We varied key hyperparameters one at a time in order to identify optimal values to promote

learning in this setting. Parameter ranges and the selected value are shown in Table 4.3.

Due to the long run-times of the training process, we were unable to make use of more

formal hyper-parameter optimization approaches. Future work will increase the efficiency

of training reinforcement learners in this setting, opening up a number of interesting follow-

on studies.

Additional performance data for RL agents

As mentioned in the main text, we tested both the RL-fit and RL-genotype conditions 100

times each. In Figure 4.7, we show the perfomance of all 100 RL-fit and RL-genotype

replicates. In 98/100 replicates, RL-fit outperformed the random drug cycling case (Fig

4.7A). The very best RL-fit replicates still fell short of the MDP-derived optimal policy

(Fig 4.7B). In all 100 replicates, RL-genotype outperformed the random drug cycling case

((Fig 4.7C). RL-genotype performance approached the performance of the optimal policy

(Fig 4.7D).

Table 4.3: Key Hyperparameters for reinforcement learner

Parameter Value Range

gamma 0.99 0-1

learning rate 0.0001 0.000001-0.1

minibatch size 60 20-500

update target model frequency 310 100-1000
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Figure 4.7: Performance of RL-fit and RL-genotype for each replicate. A: Fitness observed under RL-fit
policy compared to random drug cycling condition. B: Fitness observed under RL-fit policy compared to
fitness observed under optimal policy. C: Fitness observed under RL-genotype policy compared to random
drug cycling condition. D: Fitness observed under RL-genotype policy compared to fitness observed under
optimal policy.

Policy Clustering

We performed PCA on the policies for all 100 replicates from the RL-genotype and RL-fit

conditions. We then used the silhouette method, implemented in the factoextra package,

to estimate the appropriate number of clusters. We found that either 2 or 5 clusters would

be optimal. As two clusters would only recapitulate our orignal RL-genotype and RL-fit

conditions, we performed kmeans clustering with 5 centers. Results are shown in Fig 4.8.

We plotted the top 3 pairwise comparisons of principal components, which together

account for about 56.4% of the variance in this dataset. The RL-fit and RL-genotype

policies were clearly separated by this method, with RL-genotype being split between

clusters 1,2, and 4. RL-fit was split between clusters 3 and 5 (Fig 4.8). Clusters 3 and 5

represent meaningfully different policy motifs that RL-fit found frequently over the course
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Figure 4.8: Identification of policy groups using PCA and kmeans clustering. RL-fit replicates were
separated into 2 distinct replicates. RL-genotype replicates were separated into 3 distinct groups but it is
unclear if these groups are meaningfully different.

Figure 4.9: policy heatmaps for groups identified using PCA and kmeans clustering. Groups 1,2, and 4
correspond to RL-genotype policies. Groups 3 and 5 correspond to RL-fit policies. color gradient represents
probability that a given drug (x-axis) will be selected when population is in a given state (y-axis).
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of 100 replicates. Cluster 3 replicates were Cefprozil dominant, and used Cefotaxime

and Amoxicillin + Clavulanic acid infrequently. Cluster 5 replicates were Cefotaxime

and Amoxicillin + Clavulanic acid dominant, and used Cefprozil infrequently (Fig 4.9).

Notably, cluster 3 replicates tended to have worse performance compared to cluster 5

replicates (Fig 4.3).
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Opportunity Landscapes

We define an opportunity landscape to be the most optimistic combination of n landscapes,

formed by taking the minimum possible fitness at each genotypic position. This construct

can help us better understand how the learner uses different combinations of drugs to

maintain the evolving population at extremely low fitness values. Figure 4.10 describes

Figure 4.10: Opportunity Landscape for MDP-derived policy. Opportunity landscape is an optimistic
combination of 5 empirically measured drug landscapes. Just 1/16 genotypes is near a fitness peak on
the opportunity landscape, helping to explain the extremely low fitness observed in the simulated E.Coli
population when the MDP-derived policy is applied.

the opportunity landscape discovered by the MDP condition. As noted in the main text,

the MDP primarily uses 5 drugs (CTX, CPR, AMP, SAM, and TZP) in combination to trap

the evolving population of E. Coli at extremely low fitness genotypes. In the combined

opportunity landscape, just one genotype (0100) had a high fitness in all 5 drugs. As

expected, the opportunity landscape closely matches the value function estimated by the

MDP (Fig 4.5)
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Figure 4.11: Opportunity landscape for most common policy identified in the RL-genotype condition.
As in the MDP-derived policy, just 1/16 genotypes is near a fitness peak in the opportunity landscape.
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The opportunity landscape for the RL-genotype is almost identical to the opportunity

landscape observed for the MDP policy (Fig 4.11). Interestingly, RL-genotype only uses

3 of the 5 drugs in the MDP policy; CPR, CTX, and SAM. RL-fit discovered policies that

Figure 4.12: Opportunity landscape for the most common policy identified in the RL-fit condition. The
most common RL-fit policy relies on AMC and CTX to control the E. Coli population. Assuming the most
optimistic combination of these two drug landscapes, 4/16 genotypes are near a fitness peak.

typically only used two drugs. The most effective RL-fit policies relied heavily on AMC

and CTX. We present the resulting opportunity landscape in Figure 4.12. As expected,

there are more genotypes with high fitness values under this two-drug paradigm compared

to the 4 or 5 drug policies discovered by RL-genotype and the MDP, respectively.

MDP policy

As mentioned in the main text, we computed the MDP policy by formulating a markov

decision process of the strong selection, weak mutation model of evolution under study.

We then solved the MDP using backward induction, an algorithm designed to identify an

optimal policy for a finite time discrete MDP. The identified policy is a function of current
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state and current time step, making it even more specific than the policies identified by

the reinforcement learning conditions. We show the time and state-specific MDP policy in

Figure 4.13. Near the end of an episode (steps 19 and 20), we see a switch to a greedy

policy that simply selects the drug with the minimum fitness for a given genotype. We

Figure 4.13: MDP-derived optimal policy.

also varied the discount rate (gamma), between 0 and 1 during the hyperparameter tuning

process. In Figure 4.14, we show the effect of gamma on the avergage fitness achieved by

the MDP policy. While gamma didn’t have a large effect, likely due to the relatively short

length (20 time steps) of each episode, we show that increasing gamma led to increased

performance of the computed MDP policy. We also show that increasing gamma led to

increased use of CTX (drug 4).
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Figure 4.14: Effect of variation in gamma on optimal policy performance and composition
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Two-Drug Combinations

As noted in Figure 4.2C in the main text, we evaluated the performance of all A-B-A-B

two-drug cycles to use as a comparison group for RL-fit and RL-genotype. In Figure

4.15A, we examine these combinations in greater depth. We also show the landscape

correlation between the two drugs in every combination. We show that anti-correlated

landscapes tend to make more effective combinations, likely due to collateral sensitivity.

Highly correlated landscapes tend to make ineffective drug combinations, likely due to

collateral resistance.

Finally, we evaluated the effect of starting population genotype on the performance of

each two-drug combination. We found that the starting genotype of the population had

no effect on the overall distribution of performance for these two-drug combinations (Fig

4.15).

Figure 4.15: Two-drug cycling policies.
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4.4 Discussion

The evolution of widespread microbial drug resistance is driving a growing public health

crisis around the world. In this study, we show a proof of concept for how existing drugs

could be leveraged to control microbial populations without increasing drug resistance. To

that end, we tested optimization approaches given decreasing amounts of information about

an evolving system of E.Coli, and showed that it is possible to learn highly effective drug

cycling policies given only empirically measurable information. To accomplish this, we

developed a novel reinforcement learning approach to control an evolving population of

E. Coli in silico. We focused on 15 empirically measured fitness landscapes pertaining to

different clinically available β-lactam antibiotics (Table 4.1). In this setting, RL agents

selected treatments that, on average, controlled population fitness much more effectively

than either of the two negative controls. We showed that RL agents with access to the

instantaneous genotype of the population over time approach the MDP-derived optimal

policy for these landscapes. Critically, we showed that RL agents were capable of devel-

oping effective drug cycling protocols even when the measures of fitness used for training

were first adjusted by a noise parameter. This suggests that even imperfect measurements

of an imperfect measure of population state (the kind of measurements we are able to make

in clinical settings) may be sufficient to develop effective control policies. We also show

that RL or MDP-derived policies consistently outperform simple alternating drug cycling

policies. Finally, we introduced the concept of the "Opportunity Landscape" which can

provide powerful intuition into the viability of various drug combinations.

Our work expands a rich literature on the subject of evolutionary control through formal

optimization approaches. Our group and others have developed and optimized perfect

information systems to generate effective drug cycling policies [156, 157, 159, 161, 162].
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Further, a limited number of studies have used RL-based methods for the development of

clinical optimization protocols [165,183–186,188]. These studies have been limited so far

to contrived simulated systems, including a recent study that introduced Celludose, a RL

framework capable of controlling evolving bacterial populations in a stochastic simulated

system [187].

Much like the studies noted above, we show that AI or MDP-based policies for drug

selection or drug dosing dramatically outperform sensible controls in the treatment of an

evolving cell population. We also extend this literature in two key ways. To our knowledge,

ours is the first optimization protocol capable of learning effective drug cycling policies

using only observed population fitness (a clinically tractable measure) as the key training

input. Second, we grounded our work with empirically measured fitness landscapes which

will facilitate more natural extension to the bench.

There are several limitations to this work which bear mention. We assume that selection

under drug therapy represents a strong-selection and weak mutation regime in order to

compute transition matrices for our models. While this is likely true in most cases, it is

possible that other selection regimes emerge in cases of real world pharmacokinetics where

the drug concentration fluctuates dramatically. In addition, we chose to keep drug concen-

tration constant throughout are analysis, largely owing to the lack of robust empirical data

linking genotype to phenotype under dose varying conditions (sometimes called a fitness

seascape) [191]. As more empirical fitness seascape data becomes available, a natural

extension would be to explore the efficacy of the RL system in controlling a population by

varying both drug and dose.

While we present the most extensive genotype-phenotype modeling work to date on

this subject, we still only modeled the effect of mutations at 4 genotypic positions. The real

E. Coli genome is approximately 5× 106 base pairs [192]. The evolutionary landscape for
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living organisms is staggeringly large, and not tractable to model in silico. It is possible that

empirical measures of fitness like growth rate or cell count may not provide a robust enough

signal of the underlying evolutionary state on real genomes. In vitro implementations of

reinforcement learning-based drug cycle optimization systems are needed to address this

potential shortcoming. Another potential alternative would be to use the comparatively

low-dimensional phenotype landscape of drug resistance [193].

In this work, we present a novel reinforcement-learning framework capable of con-

trolling an evolving population of E. Coli in silico. We show that RL agents stably learn

multi-drug combinations that were state specific and reliably out-performed a random drug

cycling policy as well as all possible two-drug cycling policies. We also highlight key

features of the types of drug landscapes that are useful for the design of evolutionary control

policies. Our work represents an important proof-of-concept for AI-based evolutionary

control, an emerging field with the potential to revolutionize clinical medicine.
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optimization
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5.1 Introduction

The field of medical decision-making strives to improve patient outcomes and increase

efficiency in healthcare by applying mathematical and simulation models. For disease

areas or patient populations that lack robust clinical trials, medical decisions are often

made based on a combination of retrospective studies, expert guidelines, and physician

intuition. Clinical trial data may be unavailable due to lack of financial incentives for drug

companies, newness of a disease area or treatment, or other factors. Cancer screening in

particular is often extremely under-served by clinical trials due to the massive accruals and

long follow-up required to uncover a robust signal. Mathematical models and simulations

can fill the void left by missing clinical trial data and help physicians better understand

the real-world costs and benefits of potential treatment or screening options. Training in a

medicial decision-making lab helped prepare me for the modeling and bioinformatic work

that I undertook during my PhD. Many of the stochastic and deterministic frameworks we

employed are similar to models used in evolutionary biology. Further, model parameteriza-

tion required me to parse large databases and apply statistical models. My work focused on

ovarian and pancreatic cancer, two deadly diseases where outcomes haven’t significantly

improved in decades.
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5.2 Modeling outcomes for patients with co-morbid con-

ditions

In this study, we set out to determine the effects of patient age and comorbidity level on life

expectancy (LE) benefits associated with imaging follow-up of Bosniak IIF renal cysts and

pancreatic side-branch (SB) intraductal papillary mucinous neoplasms (IPMNs) [194]. We

were motivated by the lack of consideration of patients with significant age and comorbidity

in other studies on the subject. We developed a decision-analytic Markov model to evaluate

LE benefits. Hypothetical cohorts with varied age (60–80 years) and comorbidities (none,

mild, moderate, or severe) were evaluated. For each finding, LE projections from two

strategies were compared: imaging follow-up and no imaging follow-up. Under follow-

up, it was assumed that cancers associated with the incidental finding were successfully

treated before they spread. For patients without follow-up, mortality risks from Bosniak

IIF cysts (renal cell carcinoma) and SBIPMNs (pancreatic ductal adenocarcinoma) were

incorporated. Model assumptions and parameter uncertainty were evaluated in sensitivity

analysis.

In the youngest, healthiest cohorts (age, 60 years; no comorbidities), projected LE

benefits from follow-up were as follows: Bosniak IIF cyst, 6.5 months (women) and

5.8 months (men); SBIPMN, 6.4 months (women) and 5.3 months (men). Follow-up of

Bosniak IIF cysts in 60-year-old women with severe comorbidities yielded a LE benefit of

3.9 months; in 80-year-old women with no comorbidities, the benefit was 2.8 months, and

with severe comorbidities the benefit was 1.5 months (Figure 5.1). Similar trends were

observed in men and for SBIPMN. Results were sensitive to the performance of follow-up

for cancer detection; malignancy risks; and stage at presentation of malignant, unfollowed

Bosniak IIF cysts. With progression of age and comorbidity level, follow-up of low-risk
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Figure 5.1: Projected benefit in life years as a function of patient comorbidity and age.

incidental findings yields increasingly limited benefits for patients.

5.3 Modeling Treatment Outcomes in Ovarian Cancer

For patients with advanced stage epithelial ovarian cancer (EOC), substantial emphasis

has been placed on diagnostic tests that can discern which of two treatment options -

primary cytoreductive surgery (PCS) or neoadjuvant chemotherapy followed by interval

cytoreductive surgery (NACT+ICS) - optimizes patient-level outcomes [195]. Our goal

was to project potential life expectancy (LE) gains that could be achieved by use of such

a test. To address this question, we developed a microsimulation model to project LE

for patients with stage IIIC EOC. We compared: a "standard-of-care" strategy, in which

patients were triaged to PCS vs. NACT+ICS based on current clinical practice; and a

"test" strategy, in which patients were triaged based on results of a hypothetical test. We
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identified those test performance characteristics for which the test strategy outperformed

the standard-of-care strategy, from a LE standpoint. Effects of parameter uncertainty were

evaluated in sensitivity analysis.

Figure 5.2: Life expectancy (LE) differences (in months) between two strategies (“test” – “standard-of-
care”) for treatment selection in patients with stage IIIC ovarian cancer, across varied performance
assumptions for a hypothetical test. The black line represents test characteristics where the life
expectancy gain = 0. High test specificity (correct triage of patients with resectable disease to primary
cytoreductive surgery) is more important than high test sensitivity (correct triage of patients with
unresectable disease to neoadjuvant chemotherapy plus interval cytoreductive surgery) for achieving
life expectancy gains. Even with a perfect test (top right), the life expectancy gain is modest (1.2 months)

Even with a perfect test, We found that the LE gain was modest (LE with test vs.

standard-of-care strategy = 67.6 vs. 66.4 months; LE gain = 1.2 months) (Figure 5.2).

In order to outperform the standard-of-care, the test had to have a high probability of
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correctly identifying "resectable" patients at PCS (i.e. those for whom complete or optimal

cytoreduction would be possible); this test property was more important than correct triage

of unresectable patients to NACT+ICS. Results were sensitive to the proportion of patients

whose underlying disease was resectable at PCS. In conclusion, we showed that diagnostic

tests that are designed to triage patients with advanced stage EOC will likely have only a

modest effect on LE.

5.4 Computing the rate of progression for pre-malignant

pancreatic lesions

The objective of our study was to test for the possibility that published malignancy risks for

side-branch intraductal papillary mucinous neoplasms (IPMNs) are overestimates, likely

due to verification bias [196]. We tested for possible verification bias using simulation

modeling techniques. First, in age-defined hypothetical cohorts of 10 million persons, we

projected the frequency of pancreatic ductal adenocarcinoma (PDAC) arising from side-

branch IPMNs over 5 years using published estimates of their prevalence (4.4%) and rate of

malignant transformation (1.9%). Second, we projected the total number of PDAC cases in

corresponding cohorts over the same time horizon using national cancer registry data. For

each cohort, we determined whether the percentage of all PDAC cases that arose from side-

branch IPMNs (i.e., side-branch IPMN–associated PDAC cases) was clinically plausible

using an upper limit of 10% to define plausibility, as estimated from the literature. Model

assumptions and parameter uncertainty were evaluated in sensitivity analysis.

Across all cohorts, percentages of side-branch IPMN–associated PDACs greatly ex-

ceeded 10%. In the base case (mean age = 55.7 years), 80% of PDAC cases arose from

side-branch IPMNs (7877/9786). In the oldest cohort evaluated (mean age = 75 years),
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this estimate was 76% (14,227/18,714). In a secondary analysis, we found that if an upper

limit threshold of 10% for side-branch IPMN–associated PDAC was imposed, the model-

predicted rate of malignancy for side-branch IPMNs would be less than 0.24% over a 5-

year time horizon, substantially lower than most literature-based estimates. Our results

suggest that reported malignancy risks associated with side-branch IPMNs are likely to be

overestimates and imply the presence of verification bias.

5.5 Forecasting the trajectory of the opioid pandemic

Deaths due to opioid overdose tripled between 2008-2018. Efforts to curb this trend

have focused on restricting the prescription opioid supply; however, the near-term effects

of such efforts are unknown. Our objective was to project effects of interventions to

lower prescription opioid misuse on opioid overdose deaths from 2016 to 2025 [197]. We

defined a mathematical model using of the US opioid epidemic using ordinary differential

equations. We then projected outcomes of simulated individuals who engage in nonmedical

prescription or illicit opioid use from 2016 to 2025. The analysis was performed in 2018

by retrospectively calibrating the model from 2002 to 2015 data from the National Survey

on Drug Use and Health and the Centers for Disease Control and Prevention [198]. We

compared interventions that would lower the incidence of prescription opioid misuse from

2016 to 2025 based on historical trends (a 7.5% reduction per year) and 50% faster than

historical trends (an 11.3% reduction per year), vs a circumstance in which the incidence

of misuse remained constant after 2015.

Under the status quo, the annual number of opioid overdose deaths is projected to

increase from 33,100 in 2015 to 81,700 (95% uncertainty interval: 63,600 - 101,700)

in 2025 (a 147% increase from 2015). From 2016 to 2025, 700,400 (95% UI: 590,200-
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817,100) individuals in the United States are projected to die from opioid overdose, with

80% of the deaths attributable to illicit opioids. The number of individuals using illicit

opioids is projected to increase by 61% - from 0.93 million (95% UI, 0.83-1.03 million) in

2015 to 1.50 million (95% UI, 0.98-2.22 million) by 2025. Across all interventions tested,

further lowering the incidence of prescription opioid misuse from 2015 levels is projected

to decrease overdose deaths by only 3.0% to 5.3%. Our findings suggest that interventions

targeting prescription opioid misuse such as prescription monitoring programs may have

a modest effect, at best, on the number of opioid overdose deaths in the near future.

Additional policy interventions are urgently needed to change the course of the epidemic.
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Chapter 6

Discussion

When I was young, I learned that my family suffers from a hereditary cancer syndrome. My

grandmother was diagnosed with cancer at a young age, followed by an aunt, my mother,

an uncle, and one of my first cousins. Due to advances in cancer therapy beginning in

the 1970s, my grandmother, mother, and cousin were able to survive their disease. My

grandmother’s story in particular inspired me to study cancer. She was diagnosed with

stage III breast cancer when she was in her early 40s in the 1970s. Her oncologist at

Duke University told her that most patients with her disease don’t survive more than a year.

They did, however, offer her a place in a clinical trial for a new hormonal therapy called

tamoxifen. She joined the clinical trial and lived another 40 years, getting to know all 10

of her grandchildren in the process. When my mother (also alive thanks to modern cancer

care) told me that story, I knew that I would spend my career studying or treating cancer.

My first foray into cancer research was in a quantitative patient outcomes institute in

Boston. While working in Boston, I became acutely aware that recent advances had not

translated particularly well to improved patient outcomes. One of our functions was to
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assess new drugs based on their cost-effectiveness from the perspective of a health system

or payer. We defined reasonable ranges of what drugs should cost based on standard

willingness-to-pay thresholds. Put another way, we tried to estimate how much a drug

should cost to deliver value to both patients and society. We then compared those estimates

to what drug companies were actually charging. The results for new cancer drugs were not

particularly encouraging. They typically extended life by a few months at great financial

cost to the patient and society. I found myself extremely discouraged and jaded by the

time I started thinking about pursuing research as a career prior to medical school. When

people would ask me "Do you think we are close to curing cancer?" (a surprisingly common

question when people find out you research cancer), I would respond with some variation

of "Don’t count on it". It was in this state of mind that I first encountered Professor Scott.

To my great surprise, Professor Scott and his lab members agreed with my skepticism

about recent cancer advances. Unlike me, they had an explanation for why the precision

medicine revolution hasn’t cured cancer: evolution. While working with Professor Scott,

I learned that the current maximum tolerated dose treatment paradigm for cancer fails to

account for the capacity of these disease agents to evolve. When treatment fails to achieve

rapid extinction, drug resistant clones rapidly proliferate into an uncontrollable tumor. I

also adopted the lab’s philosophy: To make significant progress for cancer patients, we need

to better understand the evolutionary processes that drive cancer, and design treatments that

explicitly account for them. The majority of my PhD has been dedicated to the final clause

of that philosophy, the design of so-called "evolutionary therapies" that explicitly account

for the capacity of cancer (and bacteria) to evolve resistance in response to drug therapy.
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6.1 Summary of Contributions

In Chapter 2, we developed two novel methods to support precision targeting of tumors;

a novel leave-one-out style method for node ranking and a novel algorithm for ranking

miRNA combinations that maximizes tumor disruption while minimizing toxicity. As a

proof of concept, we applied these methods to a set of Ewing Sarcoma cell lines. We

identified candidate genes and miRNA cocktails that are predicted to be effective therapies

in this setting.

In Chapter 3, we described crosstalkr, an open-source software package to facilitate

interactomic analyses. In late 2020, I began to work on a few follow-up ideas from the

miRNA study. We were (and are) particularly interested in adding a graph reduction step

to the pipeline to make it more computationally tractable. When I couldn’t find a suitable

third-party R package to help facilitate disease-specific subnetwork identification, I decided

to write one. Over time, crosstalkr grew to encompass all 3 of the most common steps in

an interactomic pipeline; interaction with genome-scale PPI repositories, graph reduction,

and node ranking.

In Chapter 4, we described a novel approach for designing evolutionary therapies that

leverages reinforcement learning. We developed software that allows us to define and

simulate model systems of evolution, apply any number of selective pressures (i.e. drugs),

and finally solve for optimal drug cycling policies to minimize growth of the evolving

population. Using this framework, we found that reinforcement learning agents were

capable of superior control of a simulated population of E. coli given only information

about instantaneous growth rate over time. We further introduced noise into the signal

reaching the reinforcement learner, and show that the performance benefits do not decay

until the signal to noise ratio is less than 0.5.
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6.2 Next Steps

We are excited to validate the methods from Chapter 2 further computationally and in

vitro. I am working with Kristi Lin, a PhD student in Dr. Scott’s lab to validate the node

ranking method using a large drug sensitivity dataset that she is generating for the Ewing

Sarcoma cell lines we studied. In addition, I am collaborating with Dr. Andrew Dhawan to

design validation experiments for our miRNA combination therapy algorithm, using glioma

as a model system. We plan to develop a pre-clinical model system of toxicity to assess our

ability to identify non-toxic or less toxic miRNA combinations that still effectively inhibit

glioma cell lines. I am also interested in improving the algorithm by using evolutionary

algorithms rather than direct search. This change would allow us to search a much larger

space of miRNA combinations, generalizing to any number of miRNA rather than being

constrained to 3-miRNA combinations.

Crosstalkr (Chapter 3) has drawn significant interest from the bioinformatic commu-

nity. In just a few months after we published the beta version of the software on CRAN

(the central repository for R packages), crosstalkr has been downloaded more than 1,700

times. Crosstalkr is also up to 13 stars on github. I have no specific plans to extend the

software, but am looking forward to maintaining it and collaborating with users to identify

the most useful improvements.

In Chapter 4, we used reinforcement learning to explore how well an agent could

learn drug cycling policies given less and less information about the system it is con-

trolling. We have planned at least three studies that build on these foundations. While

therapy optimization has received significant attention in the literature, most studies limit

to so-called "perfect information" conditions where the optimizer understands complete

system dynamics. Further, many studies constrain themselves to analytically tractable
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model systems. By instead relying on algorithms from the field of computer science (i.e.

reinforcement learning), we can relax both constraints substantially.

In one future study, we will modify this framework to instead explore how well agents

can learn to "speed up" evolution and drive populations to specific steady states more

quickly. In another study, we will test the hypothesis that horizontal gene transfer makes

drug cycling policies less effective. To do so, we will develop a stochastic system of

evolution based on the Wright-Fisher model with additional terms to account for frequency-

dependent recombination of alleles. We will further model an arbitrary number of alleles

using a fitness-landscape based framework [199, 200]. While our model is expected to

be analytically intractable, we can still solve for near-optimal drug cycling policies using

methods to solve Markov decision-processes with continuous state space. Deep Q learning

is one such method. Finally, we plan to validate the proposed methods in vitro using a high-

throughput, massively parallel system of experimental evolution. In brief, we will evolve at

least 1,000 replicates (10 or more 96-well plates) of E. coli under drug selection in parallel.

After several two-week "episodes", we will batch train a reinforcement learner and then

begin a period of on-policy learning where the reinforcement learner assumes control of

the liquid handling robot and determines which drug should be applied to which replicate

at each time point.

6.3 Conclusions

In 7 years in academics, I have been privileged to have exceptional mentors. In my post-

baccalaureate work and then throughout my PhD, I was given nearly complete academic

freedom to pursue my own ideas, make mistakes, and grow as a scientist and human.

Through the completion of my PhD, I developed a passion for science that I know will
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drive me to conduct research throughout my career. I hope to become the PI of an NIH-

funded laboratory focused on the design and validation of more intelligent approaches to

cancer therapy.
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