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Random Walks with Variable Restarts for

Negative-Example-Informed Label Propagation

Abstract

by

Sean Maxwell

Label propagation is frequently encountered in machine learning and data mining

applications on graphs, either as a standalone problem or as part of node classifica-

tion. Many label propagation algorithms utilize random walks (or network propa-

gation), which provide limited ability to take into account negatively-labeled nodes

(i.e., nodes that are known to be not associated with the label of interest). Special-

ized algorithms to incorporate negatively labeled samples generally focus on learning

or readjusting the edge weights to drive walks away from negatively-labeled nodes

and toward positively-labeled nodes. This approach has several disadvantages, as it

increases the number of parameters to be learned, and does not necessarily avoid

regions of the network that are rich in negatively-labeled nodes.

We reformulate random walk with restarts and network propagation to enable

“variable restarts”, that is the increased likelihood of restarting at a positively-labeled

node when a negatively-labeled node is encountered. Based on this reformulation, we

develop CusTaRd, an algorithm that effectively combines variable restart probabil-

ities and edge re-weighting to avoid negatively-labeled nodes. To assess the perfor-

mance ofCusTaRd, we perform comprehensive experiments on four network datasets
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commonly used in benchmarking label propagation and node classification algorithms.

Our results show that CusTaRd consistently outperforms competing algorithms that

learn/readjust edge weights, when negatives are available in the close neighborhood

of positives.
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1 Introduction

Label propagation is a commonly encountered problem in data mining and machine

learning applications on network and graph-structured data [6, 20]. The problem

entails assigning labels to nodes of a graph based on knowledge of the labels of a

set of “seed” nodes, such that nodes that are proximate to seed nodes are assigned

similar labels. Label propagation can be considered a special case of the node classi-

fication problem, in which only graph topology is used in predicting the labels of the

nodes. In contrast, in the general setting for node classification, additional features

are available [21].

Label propagation and machine learning on graphs: While many machine

learning algorithms have been developed for semi-supervised node classification in

the last few years, label propagation is often encountered as part of node classifica-

tion [11]. In many cases, the set of training samples can be too small for effective

learning, thus label propagation is applied prior to training more sophisticated learn-

ing algorithms [14]. In addition, emerging evidence suggests that combination of

label propagation with simple models often outperforms more sophisticated models,

such as graph neural networks [8]. Despite the ubiquity of label propagation in su-

pervised learning, efforts on effectively utilizing negatively-labeled examples in label

propagation have been relatively scarce.

Existing approaches to negative-example-informed label propagation: Many

label propagation algorithms utilize random walks and their variants [5, 9, 24, 22, 15].

While classical random walks work with only positively-labeled examples, it has been

shown that the utilization of negatively-labeled examples in training improves the

accuracy of label propagation [25]. Existing approaches to informing random walks

with negative examples use optimization to learn edge weights [2, 13] or restart prob-

abilities [10, 3] that minimize flow into negatively-labeled nodes. Since the number of

edges in a network is much larger than the number of nodes, the number of parameters

that need to be learned is usually very large, making learning-based approaches vul-
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nerable to over-fitting. In addition, the optimization problems are often non-convex

and prone to getting stuck at local optima.

Our contributions: We improve negative-example-informed label propagation in

two ways. Firstly, we propose a new method that combines re-weighting of edges with

variable restart probabilities during label propagation. For this purpose, we reformu-

late random walks to model restarts as part of the network topology, i.e., as directed

edges from any node to the positively-labeled nodes. We then use this formulation

to readjust edge weights such that the flow into negatively-labeled nodes is redi-

rected as restarts to positively-labeled nodes. The resulting algorithm, CusTaRd,

utilizes negatively-labeled nodes within the random-walk/network-propagation frame-

work and a parameter controlling the aggressiveness of redirection to reduce the flow

into negatively-labeled nodes, without requiring training or optimization of a large

number of parameters.

Secondly, we propose a positive-neighborhood based approach to sampling negative

examples. This approach is motivated by two observations: 1) Propagation scores

are most intense near the seed nodes, so identifying negative examples near the seeds

would likely have the greatest effect, and 2) In some applications, negatively-labeled

samples may be larger in number than positively-labeled examples, thus sampling of a

smaller set of negative examples is usually needed. As opposed to sampling uniformly

from the entire set of negative examples, we propose sampling negative examples

from the close neighborhood of positive examples. We hypothesize the algorithm can

better learn how to distinguish positives from negatives if it is presented negatives

that are similar to the positives. In our experimental studies, we comprehensively

investigate the merit of this approach in the context of the proposed algorithm, as

well as competing algorithms.

Organization of the paper: In the next section, we define the label propagation

problem and describe random walk and network propagation based algorithms for

label propagation. Subsequently, we reformulate random walks to enable variable
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restarts, and show how this reformulation allows readjustment of edge weights into

restart probabilities. We then describe our approach to sampling negatively-labeled

nodes. In Section 3, we start by describing the four datasets we use for validation,

competing algorithms, and our experimental setup. We then present the comparison

of the predictive accuracy of CusTaRd and competing algorithms as well as their

robustness to scarcity of training examples, characterize the effect of the redirec-

tion factor on CusTaRd’s performance, and comprehensively investigate the effect

of the sampling of negative examples on the performance of all algorithms considered.

We conclude our discussion and outline future avenues for research in Section 4.

2 Methods

2.1 Problem Definition and Existing Approaches.

Let G = (V,E) denote a graph/network with node set V and edge set E. The

nodes in V are associated with categorical “labels”, where the nodes in subset Si ⊂

V are associated with label i. There may be multiple labels available, and S =

{S1, S2, ..., Sk} denotes the set of all available label sets. This information is usually

incomplete, i.e., ∪n
i=1Si ̸= V . A common problem is “label prediction” which, given

the labels in S, is the task of predicting labels for the unlabeled v ∈ V . This problem

is often approached using label propagation.

In label propagation, nodes v ∈ Si share their label information with their neigh-

bors, who in turn share with their neighbors etc. to “propagate” node labels across

the network [17, 24]. The algorithms used to propagate labels are similar to the

algorithms used for network propagation, where rather than discrete valued labels,

network propagation focuses on propagating continuous values such as flow or proba-

bility across a network [4]. Random walk with restarts is a commonly utilized network

propagation method that simulates a random walk across the network by making fre-

quent restarts at the nodes labeled by Si.
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Figure 1: The formulation of the label propagation problem. (a) The general

setting for label propagation where nodes can be labeled using multiple labels (shown under

the nodes) and we want to predict labels for unlabeled nodes (b) The known labels are

propagated from each node and the most likely label is assigned to unlabeled nodes. In this

case it is difficult to predict a label for node j because it is equally proximal to nodes h and

m. (c) Label propagation with negatively-labeled examples. The negative label for node j

(shown above the node) informs the prediction that node j should not be labeled by S1 so

it is labeled by S2.

Random walk with restarts (RWR): To formulate RWR, let A denote the ad-

jacency matrix of G. We use Ai,j to denote matrix entries, Ai,: for rows and A:,j

for columns. Given Si, were refer to the nodes v ∈ Si as seed nodes. RWR [16]

propagates the labels of Si to other nodes of G using a column stochastic transition

matrix A(cs) derived from A defined as A
(cs)
i,j = Ai,j/

∑
k Ak,j. A restart vector ri

is used to localize the random walk around the seed nodes, where ri(v) = 1/|Si| for

v ∈ Si and 0 otherwise (ri(v) denotes the vector element corresponding to node v).

A restart parameter, α (also called damping factor) is used to tune the frequency at

which the walker “teleports” back to the seed nodes. The RWR-based proximity is

defined as the steady state:

pi = (1− α)A(cs)pi + αri (1)

where pi(v) denotes the probability of being at node v when the walk continues for a

sufficiently long time. The steady state vector pi is used to rank nodes for prediction,

where higher values pi(v) correspond to higher likelihood that node v is labeled the
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same as nodes of Si. This procedure can be repeated for each label set Si, i = 1...n

and the most likely label (i.e. the pi(v) with highest value) is predicted for node v.

Random walks with symmetric degree normalization: While the above formu-

lation of RWR is intuitive, a different normalization technique is often used to scale

the transition probabilities by the in- and out-degree of nodes [23]. This “symmetric”

normalization technique uses transition matrix A(sym), where A(sym) = D−1/2AD−1/2

and Di,i =
∑

k Ai,k. Since A(sym) is not a stochastic matrix, a re-normalization step

is introduced to the RWR formulation to produce the probability vector p:

p̂ = (1− α)A(sym)p+ αr

p = p̂/|p̂|
(2)

Label propagation with negatively-labeled examples: In some applications,

a set of negatively-labeled nodes Ni (i.e., anti-labels that specify a node is not of a

specific class) is provided. When such information is not available, it is also potentially

useful to sample negatively-labeled nodes from nodes that are not positively labeled

(e.g. selecting Ni as a subset of ∪i ̸=jSi) and use them to inform label propagation.

The objective of label propagation with negative examples is to predict labels for

unlabeled nodes that do not contradict the anti-labels. This is illustrated in Figure 1.

Many existing methods for label propagation utilize negative examples by for-

mulating an optimization problem where the objective function penalizes predicting

positive labels for negatively labeled nodes [2, 3, 10, 13]. Supervised Random Walk

(SRW), one of the earliest algorithms that considers negative examples, learns a

function to optimize edge weights such that positive examples are ranked higher than

negative examples [2]. This is accomplished by embedding the restart vector r into

the transition matrix A and explicitly restricting updates that would alter the matrix

elements corresponding to r. A more recent work on query-specific optimal networks

(QUINT) takes a similar approach to adjusting the weight – or existence – of edges

defined by A, but it formulates the problem in terms of a single positive example (i.e.
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|Si| = 1) and uses an update approach that does not adjust the restart probability[13].

The teleportation tuning method of Berberidis et al. learns a weighted restart vector

ri for each label Si that optimizes within-class predictions [3], but this results in a

model where all nodes restart to a given node with the same probability. More re-

cently, random walk with extended restarts (RWER) attempts to learn an optimal

restart probability for each node v ∈ V [10] for a specific Si. However, the method

scales the strength of all edges incident to a node uniformly in relation to the restart

probability, resulting in no discrepancy between positive and negative neighbors.

2.2 Proposed Approach: Combining Edge Re-weighting and

Restart Tuning.

We propose to combine the ideas of edge re-weighting and restart tuning such that: (i)

the walker restarts with higher probability (> α) when it encounters an edge leading

to a negatively labeled node, but (ii) continues walking with the default probability

(1 − α) when it encounters an edge leading to an unlabeled or positively labeled

node. This has several benefits: 1) It does not artificially inflate the rank of nodes by

redirecting the walker to a smaller group of neighbors. 2) It does not reduce the rank

of unlabeled neighbor nodes by avoiding them in an effort to avoid the negatively

labeled node.

Here, we develop a framework to realize this approach by reformulating RWR in

an intuitive way that creates a single transition matrix composed of “restart edges”

and “transition edges”. We then adjust the entries of these matrices based on the

given set of positive (Si) and negative (Ni) examples.

Reformulation of random walks to unify transition and teleport: Consider-

ing the classical RWR formulation, the first term on the right-hand-side of Equation 1

captures the transition of the random walker from the current node to adjacent nodes,

and the second term captures the random walker “teleporting” to seed nodes. Ob-
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serving that |p| = 1 by definition, we can express αr as:

αr = αr1Tp

where 1T is a row vector of all 1’s of compatible dimension to r such that αr1T = R ∈

R|V |×|V |. Noting that Rp = αr and setting Q(cs) = (1 − α)A(cs), we can rearrange

Equation 1 as an ordinary eigenvector equation:

p = (Q(cs) +R)p, (3)

where Q(cs) captures the transition of the random walker to adjacent nodes and R

captures teleport to seed nodes. The intuition behind this formulation is illustrated

in Figure 2a, where the reformulation effectively adds an edge from every v ∈ V to

every u ∈ S with transition probability α. Similarly, for random walks with symmetric

normalization, Equation 2 can be reformulated as:

p̂ = (Q(sym) +R)p

p = p̂/|p̂|
(4)

where Q(sym) = (1 − α)A(sym). In our implementation, we use this reformulation of

symmetric random walk.

Variable restarts: Consider a more flexible model where rather than the walker

restarting with a fixed probability α at every node, the walker is free to restart

with a unique probability depending on the current location in the network. This

flexibility can be directly incorporated into the above formulation, since each entry of

R represents a directed edge from a given node to a seed node. The immediate benefit

to such a model is it allows the walker to restart to a seed whenever it encounters an

edge leading to a negative example, but to continue traversing edges to positive or

unlabeled nodes.
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Figure 2: Reformulation of random walks using transition and teleport matrices

to allow variable restarts. The seed node is shown in gray. The transition edges are

labeled by Q, the teleport edges are labeled by R. (a) A reformulated random walk with

restarts that is equivalent to the classical formulation with α = 0.5 where columns of

Q are column normalized. Note that the row Rh,: that corresponds to the seed node h

contains all uniform entries. (b) The random walk modified to avoid negative node i using

a redirection factor λ = 0.5, where re-weighted edges have been highlighted in bold and the

updated matrices Q′ and R′ are shown below. The edges that lead to the negative node

have been re-weighted as Q′
i,: = (1 − λ)Qi,:. The restart edges leaving nodes v ∈ Adj(i)

have been updated as R′
h,v = Rh,v + λQi,v to direct the walker back to the seed rather

than transitioning to the negative node. This formulation allows restarting with different

probabilities depending on the current node visited by the walk.

Optimization problem to learn restart and transition edge weights Given

query set Si and negative example set Ni, the following quadratically constrained

quadratic program (QCQP) demonstrates one approach to learning edge weights for

Q and R that minimize the time the walker spends at the negative nodes:

f = min
∑
u∈Ni

p(u) (5)
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Subject to:

(Q+R)j,:p− p(j) = 0∑
Q:,j +

∑
R:,j = 1∑
p(j) = 1

∀{u, v} ∈ E Qu,v ≥ 0

∀{u, v} : u ∈ S, v ∈ V Ru,v ≥ 0

(6)

Note that the variables Qu,v and Ru,v corresponding to edges that do not exist are

always equal to 0 and are excluded from the optimization problem. This QCQP suffers

from a large number of parameters to learn, and from being under-constrained. For

example, any cut of the graph that makes the negatives unreachable from the seeds

minimizes the objective. Adding additional terms to the objective, such as minimizing

the difference between the original Q + R and the learned Q′ + R′ may decrease

the solution space, but does not guarantee the optimal solution is necessarily better.

However, we can make a simple observation: To minimize the score at negatives nodes,

with minimal impact on the reachability of the remaining nodes, we can simply reduce

the capacity of inbound edges to all u ∈ Ni using the capacity of the restart edges

to absorb the difference. In the next section, we devise a direct method to modify Q

and R based on the query set Si and negative examples Ni.

Adjusting restart and transition edges based on negative examples: Let

u ∈ Ni be a negatively-labeled example for label i. For each v adjacent to u, we

reduce transition probability from v to u and redistribute these probabilities to the

seed vertices Si as follows:

Rs,v = Rs,v +
λQu,v

|Si|
if v ∈ Adj(u) and s ∈ Si

Qu,v = (1− λ)Qu,v if v ∈ Adj(u)

(7)

where λ is a “redirection” parameter used to tune the degree of aggressiveness in
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steering the walk away from negatively-labeled nodes. In the next section, we com-

prehensively characterize the effect of λ on predictive accuracy. Observe that this

adjustment retains the sum of the vth column of Q+R.

2.3 Label Propagation via CusTaRd.

The matrix Q(sym) is independent of the label that is to be propagated, thus we first

construct Q(sym) based on the input graph G(V,E). Then, for each label i with seed

set Si of positively-labeled nodes, we first construct the matrix R. If negatively-

labeled nodes are not available, we sample negatively-labeled nodes from ∪i ̸=jSi to

obtain Ni, using the methodology described in the next subsection. Subsequently,

we adjust R and Q(sym) based on Ni, using Equation 7. We then compute pi using

Equation 4 and rank the nodes in V \ (Si ∪Ni) according to this vector to prioritize

the assignment of label i.

2.4 Sampling Negatively Labeled Nodes.

If a set of negatively-labeled nodes is not available, it is necessary to sample negatively-

labeled nodes from the set of nodes that are not positively-labeled (i.e. from ∪i ̸=jSi or

using alternate heuristics or selection criteria). In the literature, negative sampling

methods have been proposed based on prioritizing confident false predictions [25].

It follows that false negatives are nodes that are close to one or more seed nodes.

For this reason, it can be a good strategy to select negatively-labeled examples from

the set of nodes that are in the neighborhood of positively-labeled nodes. The pre-

processing step of OBOE[12] that predicts positive/negative edge signs from toplogical

node features is directly applicable here for expanding the available negatives and/or

predicting negatives closer to the positive examples.

To investigate how the proximity of the sampled negatively-labeled nodes to seeds

affects predictive performance,we sample negatives from the nodes uniquely reachable

in exactly k-hops from each seed node. For this purpose, to generate a pool of
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candidate negatively-labeled nodes, we use breadth-first search and identify nodes

that (i) are at depth of k hops from the seeds, and (ii) do not have the same label

as the seed. From this pool, we draw uniformly at random a sample that is of size

at most (if possible, equal to) the number of seeds (positively-labeled nodes). This

ensures that the sets of positively and negatively labeled nodes are as balanced as

possible.

2.5 Complexity.

The space complexity to store the transition matrix scales as a factor of the seed set

size |S|, where the initial edge set E is expanded by the addition of restart edges from

each node v ∈ V of the network to every seed s ∈ S. Thus, the space complexity of

the transition matrix is Θ(|E|+ |S||V |) with worst case O(|V |2) when the full vertex

set is used as a seed set.

The time complexity involves the construction of the transition matrix and the

convergence of the random walk. Adding the restart edges to a single seed requires

|V | operations, so the full operation requires Θ(|S||V |) time with worst case O(|V |2)

when the full vertex set is used as the seed set. The random walk converges after

a finite number of steps c, where each step requires multiplying a vector of size |V |

by the sparse transition matrix with runtime Θ(c|V |(|E|+ |S||V |)). The overall time

complexity is dominated by the propagation which has asymptotic runtime O(|V |3)

when S = V . However, in practice |S| ≪ |V | so the expected runtime would be much

lower than the worst case.
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Table 1: Network datasets with node labels used to evaluate label prediction

performance.

Name # Nodes # Edges # Labels

CiteSeer 3312 4660 6
CORA 2,708 10,556 7
Polblogs 1,224 16,718 2
Facebook 22,470 171,002 4

3 Results

3.1 Experimental Setup.

We evaluate the predictive performance of CusTaRd against existing methods using

multiple network datasets that are often used to benchmark label propagation and

node classification algorithms. These datasets include the CORA dataset [19], a

CiteSeer dataset [7], the Political Blogosphere dataset [1] and a Facebook dataset [18].

The characteristics are summarized in Table 1. For consistency, we convert networks

with directed edges to undirected networks, and remove nodes that are isolated from

the rest of the network.

Sampling of training and validation sets: In our experiments, we consider the

case where positive examples are scarce, i.e., most of the seed labels in the network

are unknown, but negatives are readily available. Namely, from each set of labeled

nodes Si ∈ S for a given network, we sample, uniformly at random, 50 positive

training (seed) sets s1, s2, ..., s50 of fraction γ of the nodes in Si, e.g. sj ⊂ Si and

|sj| = γ ∗ |Si|. For each seed set sj, we draw up-to the same number of negative

training sets nj at distances k = [1, 2, 3] from the seeds using the strategies outlined

in Section 2.4. Due to network topology and the location of the nodes in sj, there are

cases where |nj| < |sj|, we perform the experiment as long as |nj| > 0. If |nj| = 0, we

sample a new seed set sj until at least one negatively labeled node at distance k can

be found. We use the set Tj = {sj ∪ nj} for training, leaving V \Tj for validation.
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Parameter settings: We determine through an initial parameter sweep that the

RWR based methods perform optimally with a restart probability α = 0.05, thus

we use this value in all experiments. During our baseline accuracy assessment, we

set CusTaRd’s redirection parameter to λ = 0.9 based on initial experiments that

showed higher values of this parameter provide better predictive performance. We

perform two additional experiments to characterize the effects of the redirection factor

λ and the training set size γ. We varied λ over the values [0.2, 0.4, 0.6, 0.8, 1.0] and γ

over the values [0.02, 0.05, 0.1].

Competing methods: We compare the predictive performance ofCusTaRd against

classical RWR with symmetric normalization [16], QUINT [13], and RWER [10],

where the latter two methods learn optimal transition strategies using gradient de-

scent. For QUINT, the authors provide several variations and we select their first

order Taylor polynomial approximation as all three variations show equivalent per-

formance in the benchmark experiments reported by the authors [13].

In CusTaRd, the positively labeled training nodes and the seed set are identical.

This is not the case forQUINT andRWER. For both algorithms, the setting involves

sets of positive and negative example nodes, as well as a single query (seed) node (i.e.

|si| = 1). The methods then learn optimal networks or restart profiles that rank

the positive nodes higher than the negative nodes while propagating the label only

from the single query node. This makes direct comparison to our set-based method

problematic, so we create a modified version of our method that also works with a

single query node. The modified CusTaRdsq accepts the same inputs as QUINT

and RWER, but adds edges to G between the query node and the positively-labeled

training nodes before applying the edge-weight redistribution for negatively-labeled

training nodes. This allows us to propagate the label from a single query node, but

leverage the positive nodes in a way that is similar to treating them as additional

seed nodes.

Evaluation of predictive performance. We use each method to propagate the
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Figure 3: (Left) Predictive performance of label propagation algorithms as a

function of training set size. Positive training sets are sampled of sizes 2%, 5% and

10% of available positive examples (seed nodes) for each label. Negative examples are

sampled to be of equal size as positives at a k-hop distance of 1 to positive examples.

The reported values are averages across 50 validation instances. (Right) The effects

of negative example proximity to seed nodes on predictive performance. As

discussed in Section 2.4, we sample negatively-labeled training nodes from the set of nodes

that are not positively labeled, by constructing pools of candidate nodes based on their

distance to positively-labeled nodes. The curves show the effect of this distance on predictive

performance for k-hop distances 1, 2 and 3 using positive node sample size of 2%.

labels of sample sj and then rank the nodes by confidence of predictions. The node

rankings are then evaluated from most confident to least confident, assigning “true

positive” or “false positive” to each prediction. The Area Under ROC Curve (AUCs),

Precision@20, and Precision@100 are computed by combining the TP/FP counts at

each rank position for all sj across all labeled sets Si to generalize the performance

for each dataset. We report the mean and standard deviation of these values across

the 50 validation instances.
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Table 2: Predictive performance of CusTaRd and competing methods on
four benchmarking datasets according to three different performance cri-
teria. For each algorithm, dataset, and performance metric, the mean performance
metrics ± standard deviation is shown across 50 randomly generated validation in-
stances, with 2% of positively-labeled nodes selected for training, and negatives sam-
pled at k-hop distance 1.
Network RWR CusTaRd CusTaRdsq QUINT RWER

AUC
CiteSeer 0.632±0.129 0.641±0.130 0.635±0.131 0.622±0.130 0.556±0.122
Cora 0.820±0.089 0.832±0.084 0.829±0.084 0.794±0.093 0.682±0.188

Polblogs 0.745±0.051 0.810±0.050 0.813±0.057 0.709±0.049 0.698±0.190
Facebook 0.865±0.037 0.890±0.034 0.897±0.035 0.789±0.063 0.613±0.142

Precision@20
CiteSeer 0.784±0.236 0.837±0.243 0.836±0.247 0.820±0.250 0.448±0.502
Cora 0.927±0.112 0.950±0.093 0.931±0.123 0.904±0.120 0.676±0.398

Polblogs 0.994±0.026 0.998±0.012 0.987±0.043 0.982±0.043 0.852±0.320
Facebook 0.985±0.039 0.989±0.026 0.981±0.038 0.957±0.083 0.786±0.353

Precision@100
CiteSeer 0.658±0.250 0.726±0.272 0.703±0.266 0.623±0.252 0.367±0.392
Cora 0.828±0.145 0.875±0.133 0.850±0.146 0.751±0.149 0.556±0.363

Polblogs 0.953±0.029 0.981±0.018 0.976±0.029 0.932±0.051 0.828±0.306
Facebook 0.984±0.020 0.989±0.013 0.975±0.033 0.935±0.082 0.673±0.401

3.2 Predictive Performance.

The predictive performance of all algorithms on all four datasets are shown in the left

panel of Figure 3 as a function of training set size, using three different performance

criteria. The average and standard deviation of the performance metrics for training

size 2% are also shown in Table 2.

CusTaRd consistently achieves highest scores for Precision@20 and Precision@100,

and for AUC the best performance is achieved by either CusTaRd or CusTaRdsq.

We observe that the CiteSeer network is the most difficult dataset for all methods

to deliver accurate predictions, where both QUINT and CusTaRd achieve better

early precision than the conventional RWR. For this network, Precision@20 is in the

low 80 percent range even for the best-performing algorithms. The minimum variance

in prediction accuracy is displayed by CusTaRd for most datasets and metrics, with

the exception of the CiteSeer network where the conventional RWR has the lowest
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variance.

Figure 4: Effects of redirection factor λ on predictive performance. Our reformu-

lated random walk depends on the redirection factor λ as defined in Equation 7. The plot

shows the effects of varying the redirection factor using training sets of size 2% for each

label and negative nodes sampled at a k-hop distance of 1. The value of λ was varied over

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0].

3.3 Effect of Sampling of Negative Examples.

The right panel of Figure 3 plots the different performance metrics versus the k-

hop proximity of negative examples for all four networks. It shows for all methods

except RWER that negatives at k-hop proximity 1 to the seeds result in optimal

performance. For RWR, CusTaRd, CusTaRdsq and some QUINT results, perfor-

mance was inversely correlated with k (i.e. performance decreased as k-hop distance

increased). However, some QUINT results exhibited lowest performance at k-hop

distance 2 rather than 3, making them less correlated but still consistent with the
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observation that the negatives sampled at distance 1 are most informative. RWER

achieved optimal performance at k-hop distance 2, though the performance was still

lower than the optimal performance of CusTaRd and CusTaRdsq. Based on the

results, it would be reasonable to sample negatives as close to the seeds as possible.

This behavior has the nice property of limiting the neighborhood of nodes that must

be evaluated in the search to manually annotate negatives.

3.4 Effect of Redirection Factor.

Figure 4 plots the performance metrics for CusTaRd versus the redirection factor λ

for sample sizes 2% and fixed negative node k-hop distance 1. The curves are quite

different between networks. The AUC curves for CORA and CITESEER show slight

decreases in performance at the highest values of λ, while the POLBLOGS result

shows increasing performance all the way to λ = 1.0. The gain in performance is

more pronounced for Precision@100 than for Precision@20 showing that increasing λ

helps to increase the ranking of more distant nodes.

3.5 Runtime

We did not perform a rigorous runtime comparison of the different methods as the

optimization methods in general were significantly slower than conventional RWR or

our two variations. RWR and our two variations were implemented in Python and

completed in a few seconds, with RWR being the fastest due to the lowest sparsity

and lack of modifications to the transition matrix. The optimization methods took

multiple minutes per run, but this may be partially related to their implementations

using a different language and inefficiency in how we were loading the adjacency

matrix.
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4 Conclusion

In this study, we reformulated random walks to enable variable restarts, which in

turn gave rise to CusTaRd, an algorithm for effectively utilizing negatively-labeled

nodes in label propagation. CusTaRd does not “learn” parameters or solve an op-

timization problem, it uses a single parameter to directly modify the entries of the

transition matrix to redirect flow from negatively-labeled nodes to positively-label

nodes. In addition to reformulation of random walks, CusTaRd samples negatively-

labeled nodes from the neighborhood of positively-labeled nodes, thereby learning to

discriminate between positively and negatively labeled nodes. Our experiments on

four benchmark networks showed that CusTaRd consistently outperforms compet-

ing optimization/learning-based algorithms, and its predictions are robust to scarce

training samples. Finally, our experimental results showed that sampling negative

examples in the neighborhood of positive examples improves prediction accuracy for

all algorithms.

These results lay the foundations for more effective incorporation of label prop-

agation into machine learning frameworks. Integration of the algorithm described

here with machine learning models that use node features can further improve the

accuracy and robustness of such models.
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then propagate: Graph neural networks meet personalized pagerank. In ICLR,

2019.

[12] Wonchang Lee, Yeon-Chang Lee, Dongwon Lee, and Sang-Wook Kim. Look

before you leap: Confirming edge signs in random walk with restart for person-

alized node ranking in signed networks. In Proceedings of the 44th International

ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’21, page 143–152, New York, NY, USA, 2021. Association for Computing

Machinery.

[13] Liangyue Li, Yuan Yao, Jie Tang, Wei Fan, and Hanghang Tong. Quint: On

query-specific optimal networks. In Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’16, page

985–994, New York, NY, USA, 2016. Association for Computing Machinery.

[14] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolu-

28



tional networks for semi-supervised learning. In Thirty-Second AAAI conference

on artificial intelligence, 2018.

[15] Yongxin Liao, Shenxi Yuan, Jian Chen, Qingyao Wu, and Bin Li. Joint classifica-

tion with heterogeneous labels using random walk with dynamic label propaga-

tion. In James Bailey, Latifur Khan, Takashi Washio, Gill Dobbie, Joshua Zhexue

Huang, and Ruili Wang, editors, Advances in Knowledge Discovery and Data

Mining, pages 3–13, Cham, 2016. Springer International Publishing.

[16] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. Au-

tomatic multimedia cross-modal correlation discovery. KDD ’04, page 653–658,

New York, NY, USA, 2004. Association for Computing Machinery.
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