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Sequence Design and Reconstruction Optimization for 

Translation of Magnetic Resonance Imaging 

James N. Ahad 

Abstract 
Magnetic Resonance Imaging is a clinical imaging modality that has excellent 

soft tissue contrast, enabling it to answer clinical questions on a range of 

pathologies that other imaging methods cannot. However, conventional MR 

techniques typically have slow acquisitions that prevent applications in imaging 

physiological motion. In addition, other imaging modalities such as CT produce 

quantitative, reproducible pixel values, whereas MRI generally produces 

qualitative images. To address these issues, many new MR techniques have 

been developed but require additional optimization or development to be adopted 

clinically.  

Three main projects involving the translation of emerging techniques in MR to 

clinical application will be described in this thesis. In the first project, a fast 

imaging technique known as through-time radial GRAPPA is optimized to reduce 

total acquisition time and reconstruction overhead to enable free-breathing un-

gated cardiac CINE. The second project discusses a new quantitative imaging 

technique in the heart, known as Cardiac Magnetic Resonance Fingerprinting 

(cMRF), which requires a lengthy dictionary simulation step to be performed with 

each reconstruction. cMRF dictionary simulation is implemented and optimized 

on a reconstruction platform known as Gadgetron to enable clinically integration 

of cMRF. In the final project, in-bore MR-guided prostate biopsy is an 

interventional technique that requires long T2-weighted imaging. A simulation 
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approach taken to find a faster T2-weighted imaging sequence among Cartesian 

and spiral TSE sequence variants.   
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Chapter 1 Introduction 
 

Magnetic Resonance Imaging (MRI), nearly 50 years after Paul Lauterbur’s 

seminal paper on the subject, has become an integral component of the modern 

health care system. MRI is a powerful imaging modality that provides excellent 

soft tissue contrast without the use of ionizing radiation. In addition, image 

contrast can be made sensitive to a myriad of tissue properties, including 

magnetic tissue properties such as T₁ and T₂1, dynamic properties such as flow2, 

structural properties such as diffusion3,4, and even biochemical properties such 

as proton chemical exchange5. The versatility of MRI has driven the development 

of a multitude of applications beyond just anatomical imaging, including but not 

limited to functional imaging of the brain6,7, quantification of fat in the liver8 and 

muscle9, and real-time dynamic imaging of speech10 and the heart11. The 

advantages afforded by MRI make it an invaluable tool for answering clinical 

questions concerning a wide range of pathologies, making this technique vital to 

the modern practice of medicine. 

However, as compared to other imaging techniques such as computed 

tomography (CT) and ultrasound, MRI has a lengthy acquisition time. Firstly, the 

different contrasts in MRI are generated by the dynamics of nuclear spins within 

a tissue, which require time to evolve and differentiate themselves from other 

tissues. In addition, signal produced by the evolving spin dynamics within a 

tissue must be localized to form an image, which requires spatially encoding the 

NMR signal of an imaging object, a process that requires repeated 

measurements of the MR signal. In concert, these two factors result in MR 
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images being collected on the order of minutes in modern clinical imaging, in 

comparison to other imaging techniques that are collected on the order of 

seconds. Chapter 2 will provide a brief introduction to the fundamentals of 

MRI, and will cover the source of the NMR signal, basic pulse sequences 

for generating MR contrast such as spin echo and gradient echo imaging, 

spatial encoding of MR images, non-Cartesian sampling, and parallel 

imaging.  

The lengthy acquisition time of MRI presents challenges for imaging in the 

presence of motion. While external controls such as clinical instructions and 

breath-hold scans can mitigate artifacts due to breathing and physical motion 

during an MRI exam, these still do not mitigate physiological motion such as the 

beating of the heart, peristalsis of the bowel, or the flow of blood. While special 

acquisition techniques utilizing navigators12, gating13,14, or rapid imaging methods 

such as parallel imaging15,16 or non-Cartesian sampling17,18 can be used to 

overcome some of these difficulties, such techniques can be accompanied by 

lengthy image reconstructions, are prone to other non-motion related artifacts 

such as aliasing or are limited in resolution. In chapter 3, cardiac MRI using 

non-Cartesian Radial GRAPPA is optimized to enable real-time imaging of 

cardiac motion while reducing scanning and reconstruction time. In that 

chapter, we demonstrate how compression of the acquired signal reduces both 

the need for additional calibration scans and reconstruction complexity.  

Another disadvantage of MRI is the qualitative nature of MR images. Pixels in 

an MR image have magnitudes that vary between MR scanners, individuals, and 
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environments. In contrast, pixels in CT, PET or SPECT all correspond to distinct 

measurements of photon counts that are consistent and repeatable across a 

range of conditions and imaging subjects. However, MR mapping techniques can 

acquire quantitative maps of various MR properties such as T₁ and T₂ relaxation 

times. Most of these T₁ and T₂ mapping techniques rely on acquiring multiple 

images and fitting the pixel-wise signal evolution to an exponential decay curve. 

Not only is the acquisition of multiple images time-consuming, but these 

techniques also map only a single tissue property at a time. Magnetic Resonance 

Fingerprinting19 (MRF) is a newer technique that can acquire quantitative 

measurements of multiple tissue properties simultaneously, by using a designed 

pulse train to cause the dynamics of nuclear spins to evolve in a complex 

manner. The resulting signal evolutions from a variety of different tissue property 

permutations can be modeled using simulations, forming a dictionary of signal 

fingerprints for each potential combination of tissue properties. The signal 

evolutions of pixels in a highly undersampled image can be pattern matched to 

the dictionary, simultaneously producing maps of various tissue properties. MRF 

uses a predetermined excitation pattern, which then requires the fingerprint 

dictionary to be computed only once. However, cardiac MRF uses sequence 

timings that rely on variable ECG signal, necessitating the computationally 

complex generation of a new dictionary with each scan. In Chapter 4, cardiac 

MRF dictionary generation is optimized to enable online implementation of 

image reconstruction in a clinically feasible timeframe. Measurements of 

tissue properties between the optimized online implementation and previously 
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published technique are compared and show good agreement despite significant 

reductions in computation time.  

While MRI can be used to acquire images with an array of different tissue 

contrasts, acquiring some types of contrast can be time-consuming. A typical MR 

examination protocol can accommodate longer image acquisitions with good 

planning; however, interventional clinical applications are performed more 

efficiently and safely with shorter procedures which require shorter acquisition 

times. Prostate biopsies are routine procedures that are vital for the diagnosis 

and clinical management of prostate cancer patients. Of these prostate biopsy 

techniques in-gantry MR-guided prostate biopsy is the most sensitive and 

specific but requires lengthy T₂-weighted images with high resolution and field-of-

view requirements for interventional guidance. While faster interventional imaging 

techniques may not have the same image quality as current imaging, a faster 

technique with sufficient contrast and resolution to perform the procedure with 

safety and confidence would greatly improve the efficiency of in-gantry MR-

guided prostate biopsy. In chapter 5, the sequence design space for fast T2-

weighted imaging is explored via simulations using phantoms designed to 

mimic in-gantry prostate biopsy imaging. Simulations enable sampling a large 

part of the design space, and enabled comparisons between multiple sequence 

parameters including echo train length, echo spacing, acceleration factor, partial 

Fourier acquisition, and Cartesian and non-Cartesian sampling. Based on 

measured image quality metrics, comparisons are made between different fast 

imaging sequences for MR-guided prostate biopsy.  
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Chapter 2 MRI Fundamentals 
 

The goal of this chapter is the present the MRI concepts that form the 

foundation of the work presented in this thesis. To begin, an overview of the 

generation of the MR signal and signal differences due to relaxation is covered. 

Following that, spatial encoding is discussed to describe the localization of MR 

signal in space which is necessary for imaging. Then some basic imaging 

sequences used in this thesis are introduced along with common sources of 

imaging artifacts that accompany MR imaging in different body regions. Finally, 

parallel imaging and model-based reconstruction are discussed as methods to 

accelerate MR imaging.  

2.1: The Source of Signal in MRI 

The MR signal, in typical medical imaging, is derived from the NMR physics of 

atomic nuclei with non-zero quantum spin. There exist multiple candidate nuclei 

with non-zero spin that can be imaged, but due to the abundance of hydrogen in 

organic matter, hydrogen nuclei are the most common source of signal in 

medical MR imaging. The quantum mechanical property of spin results in a spin 

angular momentum. The spin angular momentum 𝑆 of any nuclei can be 

described as: 

𝑆2 = ℏ2𝑠(𝑠 + 1) (2-1) 

Where ℏ is Planck’s constant and 𝑠 is the spin quantum number of the 

nucleus. When measured along the z-axis, the spin angular momentum 𝑆𝑧 is: 

𝑆𝑧 = ℏ𝑚𝑠 (2-2) 

Where 𝑚𝑠 can assume the values: 
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𝑚𝑠 = 𝑠, 𝑠 − 1, 𝑠 − 2, … ,−𝑠 (2-3) 

The magnetic moment 𝜇 of the nucleus is related to the spin angular 

momentum: 

𝜇 = 𝛾𝑆 (2-4) 

Where 𝛾 is the gyromagnetic ratio of the nucleus. For the proton or hydrogen 

nuclei, the gyromagnetic ratio is equal to 42.58 MHz/T. When placing a magnetic 

moment in an external magnetic field B, the energy of the nucleus is: 

𝐸 = −𝜇 ∙ 𝐵 (2-5) 

From this, the Hamiltonian can be defined as: 

𝐻 = −ℏ𝛾𝑆 ∙ 𝐵 (2-6) 

If the external magnetic field is aligned with the z-axis, this equation simplifies 

to: 

𝐻 = −ℏ𝛾𝑆𝑧𝐵𝑧 (2-7) 

For the proton which has a spin quantum number of ½, two energy states can 

be assumed: 

𝐸 (𝑚𝑠 = +
1

2
) =

ℏ𝛾𝐵𝑧
2

𝐸 (𝑚𝑠 = −
1

2
) = −

ℏ𝛾𝐵𝑧
2

 (2-8) 

This energy separation of an otherwise degenerate energy level in the 

presence of an external magnetic field is known as Zeeman splitting.  

Absorption or emission of a photon with frequency 𝜔 can result in a proton 

transitioning between the two states: 

∆𝐸 = ℏ𝛾𝐵𝑧 = ℏ𝜔 (2-9) 

Which simplifies to the Larmor equation  
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𝜔0 = 𝛾𝐵0 (2-10) 

Where 𝜔0 is the Larmor frequency for a nucleus placed in external magnetic 

field 𝐵0.  

In reality, protons do not exist in isolation so in an ensemble of nuclei (or 

spins), known as a spin isochromat manifests quantum properties as 

macroscopic properties that can be modeled classically. Due to Zeeman splitting, 

the small energy differential between the parallel and antiparallel states caused 

by an external magnetic field, the spin populations in a spin isochromat reach a 

Boltzmann equilibrium between the two states, with a small excess of spins 

aligned parallel to external field. This results in a macroscopic net magnetization 

aligned parallel with the field typically referred to as 𝑀0. 𝑀0 is directly related to 

the SNR in an NMR experiment and is derived by multiplying the magnetic 

moment 𝜇 by the relative excess of parallel spins. This yields the following 

relationship: 

𝑀0 =
𝜌𝛾2ℏ2𝐵0
4𝑘𝐵𝑇

(2-11) 

Where 𝜌 is the spin density, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the 

temperature. 

When placed in an external magnetic field, individual nuclear spins within the 

ensemble will precess about the axis of the external field at their Larmor 

frequency 𝜔020–22 shown in equation 2-10. However, it should be noted that the 

net magnetization 𝑀0 is stationary and aligned with the z-axis, and thus does not 

precess. In this state, the net magnetization is not detectable and requires 

excitation by a separate external magnetic field 𝐵1. Under the influence of a 
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polarized 𝐵1 field rotating in resonance with the Larmor frequency of our 

isochromat, the net magnetization 𝑀0 experiences a torque that rotates it towards 

the transverse plane. This polarized 𝐵1 field is referred to as a radiofrequency 

(RF) pulse, and the angle that the net magnetization is tipped is known as the flip 

angle Φ. The process of excitation is shown in Figure 2-1. The flip angle Φ is 

related to the 𝐵1 as follows: 

𝛷(𝑡) = 𝛾∫ 𝐵1(𝜏)𝑑𝜏
𝑡

0

(2-12) 

where γ is the gyromagnetic ratio.  

 

Figure 2-1: Depiction of excitation of magnetization vector �⃗⃗�  due to the action of the  𝐵1⃗⃗⃗⃗  field. The flip angle 𝛷 is 
related to the magnitude of the RF pulse with the relationship shown in equation 2-2.  

Given Φ = 90⁰, the magnetization of our isochromat now exists entirely within 

the transverse plane with no longitudinal magnetization. This magnetization will 

now experience another torque caused by the main magnetic field 𝐵0 resulting in 

a precession of the magnetization about the longitudinal axis at the Larmor 
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frequency. The precessing magnetization produces a magnetic flux that can be 

detected using a loop of wire, or coil, through Faraday’s law, generating the NMR 

signal.  

Following excitation of the longitudinal magnetization by an arbitrary flip angle 

Φ, the net magnetization will then begin to relax away from the transverse plane 

back to the longitudinal axis, taking the form: 

𝑀𝑧(𝑡) = 𝑀𝑧(0) 𝑒
−𝑡

𝑇1
⁄ +𝑀0 (1 − 𝑒

−𝑡
𝑇1
⁄ )

𝑀⊥(𝑡) = 𝑀⊥(0) 𝑒
−𝑡

𝑇2
⁄

(2-13) 

where: 

𝑀𝑧(0) = M0𝑐𝑜𝑠(Φ)

𝑀⊥(0) = M0𝑠𝑖𝑛(Φ)
(2-14) 

and where T₁ and T₂ are time constants characterizing recovery of 

longitudinal magnetization 𝑀𝑧 and decay of transverse magnetization 𝑀⊥, 

respectively. T₁ and T₂ relaxation are phenomena typically characterized by 

different processes, but it should be noted that they are not fully independent, as 

mechanisms causing T₁ relaxation also cause T₂ relaxation. As indicated in 

equation 2-13, T₁ relaxation describes the regeneration of longitudinal relaxation 

and is often called spin-lattice relaxation. During this process, spins exchange 

energy with their environment to return to a Boltzmann equilibrium between the 

parallel and antiparallel spin states. However, due to the small energy differential 

between the two states, spontaneous emission of a photon to transition states is 

rare. Instead, a local oscillating magnetic field is required to effectively behave as 

an RF pulse, exchanging energy between the spin and environment, to allow the 

state transition to happen. Such local fields can arise due to molecular motion 
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and optimally allow energy transfer when they oscillate at the Larmor frequency. 

Thus, T1 tends to be long in both highly mobile and immobile environments, 

where the frequency of molecular tumbling is at a mismatch with the Larmor 

frequency. Most tissues containing protein and fat have molecular tumbling rates 

that favorably oscillate near the Larmor frequency and have relatively shorter T1. 

Interestingly, increasing the strength of the main external magnetic field 𝐵0 

results in an increase in Larmor frequency and increase the mismatch between 

tumbling frequency and the Larmor frequency, thus prolonging the T1 time.  

In contrast, T2 relaxation is due to a loss of phase coherence of excited spins 

within a spin ensemble. The resulting effect, described in equation 2-13, is a loss 

of net transverse magnetization. It should be noted, the same mechanism that 

results in T1 relaxation also adds random phase, and thus also causing 

decoherence and contributing to T2 effects. In addition to spin-lattice relaxation, 

loss of phase coherence can also be due to spin-spin interactions as well as 

microscopic field inhomogeneities. Spin-spin interactions are a type of dipolar 

interaction, where two local spins simultaneously exchange their longitudinal spin 

state, switching from parallel to anti-parallel and vice versa. The resulting 

interaction does not cause T1 relaxation, but the exchange of energy still results 

in quantum decoherence and T2 relaxation. In addition, microscopic field 

inhomogeneities due to additive contributions from local nuclei can cause 

dephasing by slightly changing the precession frequencies of local spins. These 

field inhomogeneities require low molecular motion to persist, and thus T2 is 

directly proportional to the molecular tumbling rate.  
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In addition to T2 relaxation, another phenomenon known as T₂* relaxation can 

also cause loss of phase coherence. T₂* relaxation is often due to macroscopic 

inhomogeneities of the main external magnetic field 𝐵0, and classically causes 

loss of phase coherence at a much faster rate than T₂ mechanisms. However, 

due to the static nature of external field inhomogeneities, methods of recovering 

lost magnetization due to T₂* relaxation do exist and are visited later in this 

chapter. However, the remainder of this discussion will assume negligible T2* 

effects. 

While the magnetization dynamics in MR are complex, they can be succinctly 

described by the Bloch equations which can be considered the equations of 

motion for NMR applications. The Bloch equations as presented in block-matrix 

form are: 

𝑑

𝑑𝑡
(

𝑀𝑥
𝑀𝑦
𝑀𝑧

) =

(

 
 
 
 
−
1

𝑇2
𝛾𝐵𝑧 −𝛾𝐵𝑦

−𝛾𝐵𝑧 −
1

𝑇2
𝛾𝐵𝑥

𝛾𝐵𝑦 −𝛾𝐵𝑥 −
1

𝑇1 )

 
 
 
 

(

𝑀𝑥
𝑀𝑦
𝑀𝑧

) + (

0
0
𝑀0
𝑇1

) (2-15) 

The relaxation effects of T1 and T2 form much of the contrast between tissues 

seen in MR, but there exist other effects such as diffusion or flow that can be 

modeled using the Bloch equations. Chapter 5 will discuss using Bloch equations 

to simulation the effects of MR acquisitions and artifacts and will go into Bloch 

equation simulations in further detail.  

2.2: MR Imaging by Spatially Encoding the NMR signal 

In an MR imaging experiment, the object to be imaged is composed of many 

populations of spins with different relaxation properties distributed in space. 
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Thus, to distinguish spin isochromats in different spatial locations, magnetic field 

gradients are utilized to spatially encode the NMR signal. Recall from equation 2-

10, that the Larmor frequency of a spin is directly proportional to the external 

magnetic field that it experiences. For a set of spins distributed along the x-axis, 

the application of a magnetic field gradient 𝐺𝑥 would cause the following 

distribution of Larmor frequencies: 

𝜔0(𝑥) = 𝛾(𝐵0 + 𝑥 ∙ 𝐺𝑥) (2-16) 

Thus, the signal detected from a coil near an object experiencing an x-axis 

magnetic field gradient would be the superposition of sinusoids, with each 

frequency corresponding to a location in space. Assuming no relaxation occurs, 

the resulting signal contribution from one infinitesimal block along the x-axis is: 

𝑑𝑆(𝑥, 𝑡) = 𝜌(𝑥) ∙ 𝑒𝑖2𝜋𝜑(𝑡)𝑑𝑥 (2-17) 

Where ρ(x) is a detectable spin density that is proportional to the transverse 

magnetization and 𝜑(t) is a time-varying phase term due to the spatial encoding 

gradient. This term has the form: 

𝜑(𝑡) =
𝛾

2𝜋
∫ 𝑥 ∙ 𝐺𝑥(𝜏)𝑑𝜏
𝑡

0

(2-18) 

If we define a parameter 𝑘: 

𝑘(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏
𝑡

0

(2-19) 

And integrate the signal over the x-domain, the total signal 𝑆 is: 

𝑆(𝑡) = ∫𝜌(𝑥) ∙ 𝑒𝑖2𝜋𝑥𝑘𝑑𝑥 (2-20) 
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Note that this signal is the Fourier transform of the spin density distribution in 

space, and that the time-dependence of the signal is implicitly encoded in spatial 

frequency 𝑘. Thus the relationship between the spatially encoded time-domain 

signal and the physical spin density is: 

𝑆(𝑡)
ℱ
⇔𝜌(𝑥) (2-21) 

Where ℱ is an operator representing the continuous Fourier transform. In 

practice, data cannot be acquired continuously over infinite time, and thus the 

finite sampled signal s(t) is said to collected in k-space and related to the 

reconstructed spin density �̂�(𝑥) via the discrete Fourier transform.  

The spatial encoding process using gradients can be extended to two and 

three dimensions by using additional gradients along the y and z axes. The 

sampling in k-space due to these additional equations is an extension of equation 

2-19, with additional equations describing the sampling trajectory through ky and 

kz: 

𝑘𝑥(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑥(𝜏) 𝑑𝜏
𝑡

0

𝑘𝑦(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑦(𝜏) 𝑑𝜏
𝑡

0

𝑘𝑧(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑧(𝜏) 𝑑𝜏
𝑡

0

(2-22) 

Any combination of gradient waveforms can be used to sample k-space, 

however, a Cartesian sampling scheme with equidistant samples is often used to 

enable compatibility with the Fast Fourier Transform (FFT). In the Cartesian 

sampling scheme, an axis is selected as the so-called frequency encoding 

direction, and the other axes become so-called phase encoding directions. The 
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frequency encoding gradient is turned on simultaneously with the ADC for signal 

acquisition and thus are also called the readout gradients. During the signal 

acquisition process, due to the frequency encoding gradient, spins along the 

frequency encoding direction precess at different frequencies, resulting in a 

signal that is a superposition of all contributing frequencies as described in 

equation 2-20. Phase encoding gradients are not used during signal acquisition, 

but rather prior to the readout gradient where they add a linear phase shift over 

the direction along which they are applied, which is encoded in the acquired time-

domain signal. Thus the signal is acquired in a rasterized fashion, repeatedly 

acquiring a line of frequency encoded data for all the phase encoding steps.  

The model for discrete sampling is to multiply the continuous signal by a Dirac 

comb, otherwise known as an impulse train of Dirac delta functions separated by 

some sampling time period 𝑇𝑠. The sampled function 𝑠 is then related to the 

continuous signal as: 

𝑠(𝑡) = 𝑆(𝑡) ∙ Ш𝑇𝑠
(𝑡) (2-23) 

Where 

Ш𝑇𝑠
(𝑡) = ∑ 𝛿(𝑡 −  ℓ𝑇𝑠)

∞

ℓ = −∞

(2-24) 

The resulting Fourier representation of the discrete signal is: 

ℱ{𝑠(𝑡)} = 𝜌(𝑥) ∙ Ш1
𝑇𝑠
⁄
(𝑥) (2-25) 

The resulting reconstructed image is therefore composed of periodic 

representations of the image every 1 𝑇𝑠
⁄  intervals. Recall from equation 2-19, the 
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spatial frequency 𝑘 is inherently time dependent, so for a constant strength 

readout gradient with magnitude 𝐺RO, each sample is spaced ∆𝑘 apart:  

∆𝑘RO =
𝛾

2𝜋
𝐺RO ∙ 𝑇𝑠 (2-26) 

The phase encoding gradients also traverse k-space, doing so by linearly 

stepping the magnitude of the gradient: 

∆𝑘PE =
𝛾

2𝜋
∆𝐺PE ∙ 𝑇𝑃𝐸 (2-27) 

Where ∆𝐺PE is the linear step in gradient magnitude on the phase encoding 

axis, and 𝑇𝑃𝐸 is the duration the gradient is turned on. Thus from equations 2-26 

and 2-27, the resulting sampled data falls on a regular Cartesian grid in k-space, 

such that the acquired data can be directly transformed to the image domain via 

the Fast Fourier Transform (FFT). The simplicity of this image reconstruction is 

part of the reason that Cartesian sampling schemes form the backbone of 

modern clinical MR imaging.  

The Fourier relationship between the time-domain signal and the object does 

enforce constraints in real-world imaging applications for which sampling occurs 

for a finite period and at discrete sampling intervals. The k-space spacing ∆𝑘 

defines the locations of aliases of our imaging object, which then occur every 
1

∆𝑘
 

mm. This quantity is referred to as the field-of-view (FOV) and is related to the 

selected acquisition parameters in both the readout and phase encoding axes: 

𝐹𝑂𝑉 =
1

∆𝑘
=

2𝜋

𝛾𝐺ROTs
=

2𝜋

𝛾∆𝐺PE𝑇𝑃𝐸
(2-28) 

To satisfy the Nyquist criterion, the 𝐹𝑂𝑉 must be set sufficiently large to 

prevent aliasing in the MR image.  
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In addition to sampling frequency, real-world imaging experiments also 

sample for finite duration which also has consequences for the resulting MR 

imaging due to Fourier properties. From the Nyquist criterion, the spatial 

frequency bandwidth limits the spatial resolution ∆𝑤. Typically the boundaries of 

k-space are defined as −𝑘𝑚𝑎𝑥 to +𝑘𝑚𝑎𝑥, so the resolution is related to the 

maximum sampled spatial frequency as: 

∆𝑤 =
1

2𝑘𝑚𝑎𝑥
=

2𝜋

𝛾𝐺ROTADC
=

𝜋

𝛾𝐺PE,Max𝑇𝑃𝐸
(2-29) 

In summary, the Fourier relationship between the MR signal and the object 

designates the requirements for imaging large objects requiring large field-of-

views and for imaging at high resolution to resolve small anatomical features. 

These requirements can be met by setting six degrees of freedom from which the 

FOV and resolution can be designed: 𝐺RO, Ts, TADC, 𝐺PE, 𝐺PE,Max, and 𝑇𝑃𝐸. There 

are many considerations for choosing specific values for these parameters, such 

as reducing artifacts, improving SNR, or improving acquisition speed. The 

relationships between FOV, resolution, and k-space are shown in Figure 2-2. 

Due to the rasterized acquisition method of Cartesian MRI, the total acquisition 

time is typically bound by the number of phase encoding steps: 

𝑇𝑎𝑐𝑞 = 𝑇𝑅 ∙ 𝑁𝑃𝐸1 ∙ 𝑁𝑃𝐸2 (2-30) 

Where 𝑇𝑅 is the repetition time between phase encoding steps. Methods do 

exist to reconstruct undersampled images, which will be discussed later in this 

chapter.  

From this discussion, it can be observed that spatial encoding of the object 

relies on spins to be stationary. Spins in motion would not experience a constant 
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field strength due to the frequency encoding gradient and would accumulate 

phase that would prevent the correct spatial localization of said spin and cause 

image “ghost” artifacts. In fact, any process that causes unintended 

accumulations of phase can cause such imaging artifacts to appear during 

reconstruction. For many of these processes, there are imaging techniques to 

either mitigate or leverage their effects utilizing gradients or other MR sequence 

elements for the purposes of altering image contrast. Such imaging techniques 

are not the topic of this thesis, but it should be noted that these techniques, such 

as diffusion-weighted imaging, MR elastography, and others, also provide 

significant value to modern clinical practice.  

 

Figure 2-2: (Left) Relationship between resolution (∆𝑤), FOV, ∆𝑘 and 𝑘𝑚𝑎𝑥  are shown for fully sampled k-space. 
Sampled k-space points are shown in green. Pixels in image space are shown in yellow. Cartesian k-space and the 
image domain are related via the Fast Fourier Transform. (Center) Uniform undersampling in a single direction leads 
to aliasing of the image along the x-axis. (Right)Acquiring a reduced k-space while retaining k-space spacing also 
reduces the number of collected lines, but results in loss of resolution instead. Blurring can be seen in the image 
domain along the x-axis.  

2.3: Basic MR Sequences 
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The previous section on spatial encoding neither accounted for spin 

relaxation nor considered how sampling is repeated over several phase encoding 

steps to acquire sufficient k-space data to reconstruct an image. A MRI pulse 

sequence is a set of timings for various elements, such as gradients, RF pulses, 

and ADC sampling periods, that are played out and repeated to acquire k-space 

data. From equation 2-11 and 2-13, tissues can be distinguished by a vast array 

of different properties including relaxation parameters such as T1, T2, and T2*, 

spin density, and temperature among other things. By controlling the timing 

intervals between sequence events, a pulse sequence can generate contrast 

between spins with different properties. This section will cover two basic pulse 

sequences: spin echo (SE) and gradient echo (GRE) imaging, but it should be 

noted that a myriad of pulse sequences exist to generate tissue contrast in 

different ways that may dependent on a variety of tissue properties besides T1 

and T2 relaxation. In addition to these basic pulse sequences, a brief overview of 

multi-echo sequence is also included, due to their importance in fast spin echo 

sequences and steady state sequences which are utilized in this work.  

As described earlier, isochromats excited by a RF pulse typically undergo T₁ 

and T₂ relaxation. Measurement of the signal directly after RF excitation, also 

known as the free-induction decay (FID) signal23, could theoretically provide 

sufficient contrast information to distinguish different isochromats. However, T₂* 

relaxation often causes rapid loss of signal, causing low SNR and poor image 

quality. The prototypical MR sequence, the spin-echo sequence24, is designed to 

recover magnetization lost due to T₂* relaxation and acquire signal during the 



30 
 

“spin-echo” where signal is maximally recovered. The spin-echo pulse sequence 

is shown schematically in Figure 2-3. 

 

Figure 2-3: The spin-echo pulse sequence utilizes two RF pulses, an excitation pulse at 𝑡 = 0 and a refocusing pulse at 
𝑡 = 𝜏. The excitation pulse produces an FID signal that decays due to T2* relaxation. The refocusing pulse inverts the 
phase of the magnetization resulting in refocusing at the echo time 𝑡 = 2𝜏, at which time the echo forms. Spatial 
encoding and data acquisition occur during the spin echo to maximize signal. A prephaser is played on the frequency 
encode axis prior to the refocusing pulse to minimize time spent on dephasing gradients during acquisition. Note that 
the spin echo has lower peak signal compared to the FID which is due to T2 decay.  

Following an excitation pulse, spins in an inhomogeneous field experience a 

Larmor frequency shift: 

𝜔 = 𝛾(𝐵0 + ∆𝐵0) = 𝜔0 + ∆𝜔 (2-31) 

Where ∆𝐵0 is the magnitude of the field inhomogeneity in the spin’s local 

environment and ∆𝜔 is the relative change in the Larmor frequency. Thus, over 

time the phase accumulation of this spin following excitation relative to the 

reference frame rotating at ∆𝜔 is: 

𝜑(𝑡) = ∆𝜔 ∙ 𝑡 (2-32) 
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Resulting in loss of phase coherence, reduction in the net magnetization, and 

loss of signal. To recover phase coherence, the spin echo pulse sequence plays 

out a 180° refocusing pulse at some time 𝜏 following the excitation pulse. The RF 

phase of the refocusing pulse is shifted 90° from the excitation pulse, thus if the 

excitation pulse tips the magnetization onto the x-axis, the refocusing pulse 

rotates the magnetization about the x-axis. Spins that have maintained phase 

coherence are unaffected by the refocusing pulse, but spins that have dephased 

have their phase inverted. Thus the phase behavior of spins around the 

refocusing pulse, played at time 𝜏 is: 

𝜑(𝑡) = {
∆𝜔 ∙  𝑡 𝑡 < 𝜏 

∆𝜔(𝑡 − 𝜏) − ∆𝜔 ∙ 𝜏 𝑡 > 𝜏
(2-33) 

At time 2𝜏, also known as the echo time or TE, all spins regardless of their 

local magnetic field environment are in phase coherence. This phenomenon is 

known as a spin echo and results in recovery of signal lost due to T2* relaxation 

but not due to T2 relaxation which is unrecoverable. The magnetization of 

isochromats at different precession frequencies during a spin echo sequence is 

shown in Figure 2-4. 

Following data acquisition around the spin echo, the pulse sequence has a 

waiting period up until some time TR known as the repetition time. This waiting 

period allows the longitudinal magnetization to recover due to T1 relaxation. At 

the repetition time, the pulse sequence is repeated for a new phase encoding 

step. The overall signal for a spin echo sequence, due to refocusing at the spin 

echo, is then dominated by T1 and T2 effects and can be described by the 

following signal equation: 
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𝑆~𝜌 ∙ 𝑒𝑥𝑝 (−
𝑇𝐸
𝑇2
) [1 −  𝑒𝑥𝑝 (

𝑇𝑅
𝑇1
)] (2-34) 

Where 𝜌 is the proton spin density. Based on this signal equation, the spin 

echo sequence can be performed with different timing choices for TE and TR to 

yield T1-weighted, T2-weighted, and proton density weighted images, where 

weighting refers to the predominant source of contrast in the image. Typically T1-

weighted images have short TE and short TR, T2-weighted images have long TE 

and long TR, and proton density-weighted images have short TE and long TR.  

 

Figure 2-4: Illustration depicting the evolution of the magnetizations of various off-resonant isochromats during a 
spin-echo sequence. At 𝑡 = 0, an excitation pulse tips the magnetization into the transverse plane. After some time 𝜏, 
isochromats at different precession frequencies have dephased resulting in loss of transverse signal. A 180° refocusing 
pulse rotates the magnetizations of off-resonant isochromats, inverting their phase. Following the refocusing pulse, 
the magnetization begins to rephase culminating in a coherent transverse magnetization at 𝑡 = 2𝜏. 

In contrast to the spin echo pulse sequence, the gradient echo pulse25–27 

sequences do not use a refocusing pulse to restore phase coherence. Thus all 

flavors of GRE are in part affected by T2* relaxation. Fundamentally, GRE uses 

imaging gradients to produce a so-called gradient echo shown in Figure 2-5. A 

gradient echo is formed with the application of two gradients. First a dephasing 

gradient is used to disperse the FID signal. Because this dephasing process is 

done with a gradient, it disperses the signal in a predictable fashion described by 

equation 2-18. Then, at any point in time later in the sequence, a rephasing 

gradient is used to refocus the phase dispersion caused by the dephasing 
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gradient producing a gradient echo. Typically, the readout gradient also serves 

as the refocusing gradient and the dephasing gradient has half the area of the 

readout so that the gradient echo and maximum signal is collected at the center 

of k-space. Because GRE sequences do not play out a refocusing pulse, data 

can be collected with much shorter TE limited only by maximum gradient strength. 

In addition, excitation flip angles for GRE sequences are typically less than 90° 

which reduces the need for longer TR to recover longitudinal magnetization. 

Thus, GRE sequences often have faster acquisition times compared to spin echo 

sequences. However, because GRE sequences do not refocus phase dispersing 

effects other than the frequency encoding gradient, they are particularly prone to 

imaging artifacts caused by off-resonance, B0 field inhomogeneity, and motion. 

There exist many ways of compensating for these effects in reconstruction, but 

the overall performance of GRE at mitigating these effects is much less than spin 

echo.  

 

Figure 2-5: A gradient echo pulse sequence is shown here. Following an RF excitation pulse, the signal is dephased due 
to the action of the dephasing gradient with reverse polarity to the frequency encoding gradient. The action of the 
dephasing gradient is reversed due to the frequency encoding gradient resulting an echo at the echo time and 
maximum signal during the acquisition of the center of k-space. Note that the area of the dephasing gradient (A) 
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matches the area of the first half of the frequency encoding gradient. The remainder of the frequency encoding 
gradient completes spatial encoding, and can be lengthened for various other functions such as spoiling the transverse 
magnetization to enable lower TR.  

Relative to the spin echo sequence, GRE sequences have short TR with many 

RF pulses occurring in rapid succession. Such a train of RF pulses leads to the 

production of additional echoes through additional signal pathways in addition to 

the FID signal produced following each pulse. As shown in Figure 2-6, a pulse 

train of only three RF pulses can result in additional signal pathways that 

contribute to the signal at different times. In the case of GRE sequences, due to 

the equal spacing of RF pulses, primary, secondary, and stimulated echoes all 

begin to refocus directly prior to each RF pulse. As a result, FID signals following 

pulses will have additional echo components added to them. Thus, at steady 

state, GRE sequences are said to have an FID-like signal post-excitation and an 

echo-like signal pre-excitation known as the S+ and S- signals respectively. 

Flavors of GRE can be divided into incoherent and coherent GRE sequences, 

the prior making use of gradient and RF spoiling to eliminate the unwanted 

transverse magnetization and echo signal pathways prior to each excitation and 

the latter using a TR on the order of tissue T2 to maintain transverse coherence of 

the signal pathways. Careful timing of gradients can enable collection of the S+ 

signal, the S- signal, or both together. This has implications for image weighting, 

as the FID-like S+ signal is generally T2
* weighted, and the echo-like S- signal is 

more T2 weighted.   
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Figure 2-6 : Signal pathways resulting from a train of RF pulses of arbitrary flip angle and phase. Primary spin echoes 
are generated from refocusing the transverse magnetization from the first RF pulse. The locations of these echoes 
depend on the timing between the RF pulses and primary spin echoes themselves. Secondary spin echoes are 
generated from refocusing the transverse magnetization produced by RF pulses other than the first pulse. Stimulated 
echoes occur due to the ability of an RF pulse to store transverse magnetization as longitudinal magnetization. During 
the period indicated by the grey dotted arrow (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜏2) the transverse magnetization has been stored as 
longitudinal magnetization and thus does not accumulate additional phase. Once this magnetization is excited back 
into the transverse plane, rephasing occurs in a delayed fashion following the third RF pulse equal to the phase 
accumulated between the first and second pulses. FID signals (not shown) are also generated following each RF pulse, 
which contributes to the FID-like S+ signal in steady state sequences.  

One spin-echo sequence variant, known as Rapid imaging with Refocused 

Echoes (RARE), Turbo Spin Echo (TSE) or Fast Spin Echo (FSE), also uses an 

RF echo train, but prevents signal pathways from producing secondary spin 

echoes by using crusher gradients around each refocusing pulse. However, 

stimulated echoes cannot be spoiled from the signal. Because stimulated echoes 

experience T1 relaxation while the magnetization is stored along the longitudinal 

axis, the contribution of stimulated echoes to the TSE signal results in a mix of 

both T2 and T1 weighting. The TSE sequence is the subject of optimization in 

Chapter 5.  
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2.4: Non-Cartesian Sampling 

The previous discussions primarily covered Cartesian sampling on an 

equispaced grid in k-space; however, equation 2-22 states that spatial encoding 

can be performed with any gradient input, barring scanner and safety limitations, 

to sample k-space with any arbitrary trajectory. Conventional Cartesian sampling 

has many benefits such as being directly compatible with the FFT algorithm, 

being highly efficient in terms of k-space coverage per unit of ADC time, and 

having well studied image and image artifact characteristics. However, the 

convenience of Cartesian sampling comes at a cost. As mentioned previously, 

spatial encoding in the presence of motion causes an additional accumulation of 

phase which prevents accurate localization of spin isochromats. While the 

degree of motion during frequency encoding is typically not significant, motion 

between phase encoding steps separated by TR are often significant and can 

cause ghosting artifacts in the phase encode direction. While these ghosts can 

be mitigated, these techniques either require clinical controls which may have 

poor patient adherence or require complex reconstructions or acquisition 

schemes to circumvent. 

Non-Cartesian acquisition schemes often sample k-space with non-uniform 

density and thus have aliasing patterns that appear more noise-like rather that 

the coherent aliasing artifacts in Cartesian sampling. As a result, non-Cartesian 

trajectories can generally tolerate higher undersampling factors with parallel 

imaging. In addition, undersampling with non-Cartesian trajectories occurs in 

multiple directions, making better use of coil geometries.  
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Figure 2-7: Undersampled (R=4) k-space trajectories for Cartesian, radial, concentric rings, spiral interleaved, and 
spiral annular rings are shown here (top row). Collected data are shown as solid blue lines and uncollected data are 
shown as dashed red lines. Point spread function (PSF) of each undersampled trajectory are also shown in log scale 
(middle row). Zero-filled phantom reconstruction using undersampled k-space trajectories are shown as well (bottom 
row). Note that aliasing patterns for non-Cartesian trajectories do not result in coherent replicas of the images, as in 
the Cartesian case. However, aliasing artifacts do obscure parts of the image depending on the sampling trajectory.  

The work in this thesis focuses primarily on projection sampling (also known 

as radial sampling) and spiral sampling. As shown in Figure 2-7, the radial 

trajectory involves sampling k-space via spokes that pass through k0
18,28. Radial 

sampling results in a non-uniform sampling density over k-space resulting in 

oversampling of the center of k-space and undersampling at the periphery. Due 

to it’s relatively lower sampling density at the periphery of k-space, radial imaging 

typically requires more acquisition shots to achieve the same resolution and field 

of view of a Cartesian image. However, radial sampling does not have a specific 

phase encoding direction, thus artifacts from motion or undersampling appear 

more diffuse over the image domain and form streaking artifacts rather than 

coherent ghosts or aliases. Radial sampling’s reduced sensitivity to motion and 
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tolerance of undersampling make it suitable for imaging physiological motion, 

with residual motion and aliasing artifacts following motion correction or parallel 

imaging being particularly diffuse and unobtrusive28,29. Radial sampling also 

redundantly acquires the center of k-space which can be useful for self-gating30 

or self-navigation31. Sufficiently high acceleration factors can even acquire 

images with sufficient temporal resolution to resolve motion without motion 

correction, enabling free-breathing ungated acquisition32.  

Spiral trajectories can take a variety of potential shapes17,33,34 that can be 

designed for a variety of different applications such as motion insensitivity35, 

improved SNR36, self-navigation37, flow compensation among many other 

functions. Like radial sampling, spiral sampling also does not have a distinct 

phase encoding direction, and has similarly diffuse aliasing and motion artifacts 

(Figure 2-7). One distinct benefit of spiral sampling is the ability to design the 

sampling density, shape, and number of interleaves of the trajectory, enabling 

considerable flexibility in trajectory function. However, spiral readouts are 

typically longer due to gradient maximums and slew rate limitation than either 

Cartesian or radial readouts, making them more prone to off-resonance blurring. 

Thus trade-offs must be made between acquisition time, resolution, and off-

resonance tolerance when designing a spiral trajectory.  

The aliasing patterns seen in all undersampled images are dependent on the 

direction in k-space that is undersampled. In Cartesian sampling, as shown in 

Figure 2-7, undersampling occurs in the 𝑘𝑦 direction, which results in replicas in 

regular intervals in the y-direction of the image domain. Because the 
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undersampling is uniform through k-space, the resulting aliasing artifacts are 

coherent. Accelerated radial data are undersampled in the 𝑘𝜃 direction but fully 

sampled in 𝑘𝑟. The sampling density near the center of k-space, 𝑘0, meets the 

Nyquist criterion but the sampling density at the edge of k-space is low. Thus, 

high frequencies at specific angles are lost from the image resulting in aliased 

streaks at those unsampled projection angles which can be seen in the point 

spread function. These radial streaks often appear as a more benign aliasing 

pattern than Cartesian undersampling which only mildly obscures image details. 

In comparison to radial sampling, concentric ring sampling instead is 

undersampled in 𝑘𝑟 and fully sampled in 𝑘𝜃. The resulting aliasing artifacts are 

then radially symmetric, as shown in the point spread function, and fold over from 

the opposite side of the object. This can be seen in the image, as the top, 

bottom, and sides of the phantom fold over radially and appear as an artifact in 

the center of the field of view. Similarly, the phantom edges fold over and form a 

symmetric circular ring at the edge of the image. Spiral sampling patterns can be 

seen as a range of intermediate trajectories between radial and concentric 

circles. The interleaved spiral pattern requires multiple rotated shots akin to radial 

spokes. However, because of rotation in the trajectory, spirals also resemble 

concentric rings. Undersampled interleaved spiral trajectories are thus 

undersampled in both 𝑘𝜃 and 𝑘𝑟 and have aliasing characteristics of both the 

radial and concentric circles trajectories, which can be observed in both the point 

spread function and the zero-filled reconstruction. The design of the spiral 

trajectory can control the radial-like or circle-like undersampling pattern, with a 
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spiral trajectory designed with a large number of interleaves having aliasing 

patterns akin to radial and long single-shot spirals having aliasing patterns akin to 

concentric circles. The spiral annular rings sampling pattern is one such extreme, 

using a single shot spiral trajectory that is broken up into multiple shots that 

sample ring-like portions of k-space. The resulting undersampling pattern 

resembles variable density undersampling using concentric circles, and as a 

result, the undersampled image has prominent radial fold-over as shown by the 

circular shape of the point spread function, and the aliasing artifact in the center 

of the field of view. 

Both radial and spiral sampling have reconstruction challenges not required of 

Cartesian sampling. Non-Cartesian sampling schemes require a non-uniform fast 

Fourier transform (NUFFT) for image reconstruction, which is often performed via 

a process called gridding38–40. Gridding uses the collected non-Cartesian points 

to interpolate the values of the underlying Cartesian grid. The resulting 

interpolated Cartesian k-space is reconstructed with a FFT to produce an image. 

The computational complexity of a NUFFT is 𝑂 (𝑁 ∙ 𝑙𝑜𝑔 𝑁 +  𝑁 ∙  𝑙𝑜𝑔 (
1

𝜀
)) in 

comparison to the complexity of the FFT which is 𝑂(𝑁 ∙ 𝑙𝑜𝑔 𝑁 ), thus leading to 

longer reconstructions for non-Cartesian data.  

2.5: Parallel Imaging 

Parallel imaging15,16,41,42 is an approach used to reconstruct unaliased MR 

images from undersampled data by exploiting the additional spatial information 

inherent to data acquisition from multiple “parallel” receiver coils. Because the 

acquisition time of an MR image scales with the number of phase encoding steps 



41 
 

required for a fully sampled image, undersampling along the phase encoding axis 

can greatly decrease the acquisition time. This section will discuss two parallel 

imaging methods, SENSE and GRAPPA, that reconstruct undersampled data in 

the image domain and in k-space respectively.  

SENSitivity Encoding or SENSE is a method to reconstruct undersampled 

data in the image domain by using coil sensitivity maps to unfold aliased 

images43. Each pixel in an aliased reduced FOV image has signal superimposed 

from multiple locations in the full FOV image. This aliasing occurs identically in 

each detector coil; however, the signal from the superimposed points are 

weighted by the coil sensitivity when aliased. Thus, for each coil 𝑖, the signal at 

the aliased point 𝑃𝑖 for coil 𝑖 is: 

𝑃𝑖 =∑𝑆𝑖,𝑘𝐼𝑘

𝑁𝑝

𝑘=1

(2-35) 

Where 𝑁𝑝 is the number of superimposed points, 𝑆𝑖,𝑘 is the coil sensitivity at 

each superimposed point 𝑘 for coil 𝑖 and 𝐼𝑘 is the signal in the unaliased full FOV 

image at superimposed point 𝑘. The location of each superimposed point 𝐼𝑘 is 

known due to the regularity of aliasing with a uniformly undersampled Cartesian 

trajectory, with aliases separated by 
𝐹𝑂𝑉

𝑅
 where R is the undersampling factor. 

Because 𝑃𝑖 and 𝑆𝑖,𝑘 are also known, for each aliased point P, a system of 𝑁𝑐 

equations can be solved for all superimposed points 𝐼𝑘. This system is 

overdetermined if 𝑁𝑐 > 𝑁𝑝, thus the least squares optimization finds the optimal 

solution to the matrix equation: 

𝑣 = 𝑈𝑎 (2-36) 
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Where 𝑣 is the vector of length Np containing the separated signals from all 

the superimposed points, 𝑎 is a vector of size Nc containing the aliased signals 𝑃𝑖 

for each coil I, and 𝑈 is the least squares optimal unfolding matrix that takes the 

form: 

𝑈 = (𝑆𝐻𝛹−1𝑆)−1𝑆𝐻𝛹−1 (2-37) 

Where 𝑆 is the sensitivity matrix containing the coil sensitivities at each 

superimposed point and Ψ is the noise covariance matrix between all the 

detector coils. The SENSE algorithm is outlined in Figure 2-8. 

 

Figure 2-8: The SENSE algorithm is shown for an acceleration factor of 2 with phase encoding in the left-right direction. 

Aliased pixels in the undersampled coil images (𝑃1,𝑃2) have signal folded over from two locations in the unaliased 
image. These aliased points are separated by a distance equal to the FOV over the acceleration factor R (in this case 
R=2). These locations have corresponding coil sensitivity values. Using a system of linear equations shown on the right, 
a matrix inverse operation can be used to solved for a composite unaliased image.  

To perform a SENSE reconstruction, prior knowledge of the coil sensitivities 

is required, and accurate coil sensitivities are necessary for a high-quality 

reconstruction. Non-Cartesian trajectories have irregular aliasing patterns and 

require iterative conjugate gradient minimization to unfold the aliased images44.  
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 Another parallel imaging technique known as GeneRalized Autocalibrating 

Partial Parallel Acquisition or GRAPPA instead reconstructs data in the k-space 

domain45. GRAPPA builds on Simultaneous Acquisition of Spatial Harmonics 

(SMASH) which demonstrated that sinusoidal coil sensitivities can be leveraged 

to perform k-space shifts that mimic phase encoding46. This is done with a set of 

weights that form a linear combination of coil sensitivities which allow the lines of 

k-space to be shifted to uncollected phase encoding locations. The original 

SMASH algorithm required prior knowledge of the coil sensitivities and 

demanded specific coil configurations to generate the requisite composite 

sinusoidal coil sensitivities. AUTO-SMASH47 and VD-AUTO-SMASH48 eliminated 

these restrictions, instead requiring a portion of k-space to be fully sampled to 

serve as an auto-calibration signal (ACS) to solve for reconstruction weights 

within k-space. GRAPPA generalizes the process of VD-AUTO-SMASH, solving 

for weights that reconstruct missing phase encoding lines for each individual coil 

rather than a composite coil signal. The resulting reconstructed coil images are 

combined to obtain a final image in contrast to SENSE and older SMASH 

methods which generate combined images. A schematic representation of 

GRAPPA is shown in figure  
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Figure 2-9: A schematic representation of the GRAPPA algorithm. (A) Data from multiple coils is multiplied by a weight 
kernel to generate a single target point within a single coil. (B) Shown is the three dimensional representation of the 
GRAPPA source point locations, illustrated without GRAPPA weights. The value of the target point is generated by 
multiplying source points by the GRAPPA weights. Within a single coil image, the GRAPPA kernel is shifted to 
reconstruct all the missing lines. A separate kernel is required for each coil image.  

The GRAPPA algorithm reconstructs uncollected k-space locations in the 

undersampled data by utilizing GRAPPA weights which can be represented in 

matrix form as: 

�̃�𝑡𝑎𝑟𝑔 = 𝑆𝑠𝑟𝑐 ∙ 𝑤 (2-38) 

Where 𝑆𝑠𝑟𝑐 corresponds to the collected points in the undersampled data, 

�̃�𝑡𝑎𝑟𝑔 refers to the target points that are not acquired but are to be estimated with 

GRAPPA, and 𝑤 are the GRAPPA weights. From the ACS data, the weights are 

calculated with a least squares approximation using the Moore-Penrose pseudo-

inverse as follows:  

𝑤 = 𝑆𝐴𝐶𝑆−𝑡𝑎𝑟𝑔 ∙ 𝑝𝑖𝑛𝑣(𝑆𝐴𝐶𝑆−𝑠𝑟𝑐) (2-39) 

where 𝑆𝐴𝐶𝑆−𝑠𝑟𝑐 are the source points and 𝑆𝐴𝐶𝑆−𝑡𝑎𝑟𝑔 are the target points found 

in the ACS data corresponding to collected and uncollected lines of k-space in 

the under sampled data. The number of equations in this linear system is equal 

to the number of GRAPPA kernel repetitions in the ACS data, and the number of 
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unknown variables is equal to the number of points in the GRAPPA kernel (i.e. 

the kernel size x the number of receiver channels). To produce a unique solution, 

the number of known equations must be equal to or greater than the number of 

unknown variables. A new equation can be generated by shifting the GRAPPA 

kernel within the ACS data to obtain a new kernel repetition, as the GRAPPA 

weights are invariant to k-space location if the kernel geometry does not change. 

The minimum number of kernel repetitions required to calculate the GRAPPA 

weights is 

𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 > 𝑁𝑘𝑟𝑁𝑘𝑝𝑁𝑐 (2-40) 

Where 𝑁𝑘𝑟 and 𝑁𝑘𝑝 are the GRAPPA kernel dimensions in the readout and 

phase encoding directions and 𝑁𝑐 is the number of coils. An overdetermined 

system will reduce any bias in the weight computation by preventing overfitting of 

correlated noise or coil imperfections thus in practice more ACS data is collected 

to have a larger number of kernel repetitions. In Cartesian GRAPPA, the 

acquisition of a few additional central lines of k-space provides hundreds of 

kernel repetitions with high SNR enabling a robust reconstruction with fewer 

artifacts. 
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Chapter 3 Optimization of Through-time Radial 
GRAPPA with Coil Compression and Weight Sharing 
 

The results presented in this chapter have been published in an original research 

article in Magnetic Resonance in Medicine.  

In this chapter, a non-Cartesian parallel imaging technique, through-time 

radial GRAPPA, is optimized to reduce ACS acquisition time and GRAPPA 

weight calibration time to enable online reconstruction at the scanner in a 

clinically feasible timeframe. Utilizing radial GRAPPA as opposed to Cartesian 

GRAPPA allows for free-breathing ungated scans, but variable GRAPPA kernel 

geometry demands calibration of unique GRAPPA weights for each kernel 

location in k-space, which requires additional calibration data and computational 

demand. Coil compression is a data compression technique that both reduces 

the need calibration data and improves reconstruction performance. In addition, 

weight sharing reduces the number of unique GRAPPA weights to compute, 

further improving the reconstruction performance. Optimized parameters for coil 

compression and weight sharing applied to reconstructions enables images to be 

collected with a temporal resolution of 66ms/frame and spatial resolution of 

2.34mm x 2.34mm while reducing calibration acquisition time from 34s to 6.7s, 

weight calculation time from 200s to 3s, and weight application time 18s to 5s.  

3.1: Developments in Cardiac Cine MR Imaging 

Cardiac cine MRI is a well-established dynamic imaging technique with high 

spatial and temporal resolution to assess both cardiac structure and physiological 

motion49. In clinical practice, cardiac cine is a precise and reproducible method 
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for assessment of function and mass of both ventricles though the cardiac cycle. 

In comparison to other approaches to functional assessment of the heart, cardiac 

MR is non-invasive, does not use ionizing radiation, and provides superior soft 

tissue contrast with more possible imaging planes. For these reasons, cardiac 

cine is considered to be the gold standard for clinical assessment of cardiac 

function50.  

Despite the success of cardiac cine, patient pathologies can reduce the 

quality of acquired images. To eliminate motion artifacts, a long acquisition 

through multiple cardiac cycles is performed with retrospective ECG gating to 

obtain enough data to resolve motion during each cardiac phase. Due to the long 

acquisition time, multiple breath-holds are required to eliminate respiratory 

motion. However, cardiac dysrhythmia can reduce the accuracy of cardiac gating 

and introduce motion artifacts into acquired images and non-cooperative patients 

such as children or patients with dyspnea are unable to perform the long breath-

holds required for high-quality cardiac cine. Thus, imaging failure due to motion 

artifacts is a challenge with cardiac cine.  

Real-time cardiac imaging techniques have been proposed that do not 

require breath holds or ECG gating by using rapid data sampling and image 

reconstruction methods, such as parallel imaging and compressed sensing.51–55 

Non-Cartesian parallel imaging techniques have enabled free-breathing and 

ungated cardiac imaging with comparable image quality to conventional 

Cartesian cine32,56. Radial and spiral sampling trajectories oversample the signal-

rich central region of k-space reducing their sensitivity to motion-related artifacts. 
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In addition, undersampled non-Cartesian trajectories often produce less 

obtrusive aliasing artifacts than their Cartesian counterparts, enabling higher 

acceleration factors and, thus, improved temporal resolution to resolve motion. 

One such non-Cartesian parallel imaging-based approach for rapid cardiac 

imaging is through-time radial GRAPPA which has been previously deployed for 

real-time imaging57–61 due to its low reconstruction latency (<1s). 

However, through-time radial GRAPPA requires several fully sampled 

datasets to calibrate GRAPPA weights, resulting in lower acquisition efficiency. 

Reported implementations of through-time radial GRAPPA have typically 

required between 25s57 to up to 150s61 per slice for the collection of this 

calibration data, though calibration times have been reduced to 2.6s32 by using 

large reconstruction segment sizes that may introduce blurring and artifacts that 

can degrade image quality. Longer GRAPPA calibration acquisition may be 

acceptable in interventional applications57 where a single calibration scan can be 

used to reconstruct multiple accelerated acquisitions. In contrast, cardiac cine not 

only is acquired in a single acquisition, but also requires several slices for 

ventricular coverage, each slice requiring a new calibration scan. Thus, while 

capable of generating high-quality cardiac images, through-time radial GRAPPA 

is inefficient for cardiac cine imaging; reduction of the acquisition time for 

calibration data without loss of image quality could facilitate the deployment of 

through-time radial GRAPPA for functional cardiac imaging in the clinic62.   

In addition, growing multichannel receiver arrays and an increasing demand 

for higher resolution63–66 place additional computational burden on through-time 
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radial GRAPPA reconstructions. Previously reported real-time applications57 

have demonstrated reconstruction latencies of <1s only during application of the 

GRAPPA weights, as the calculation of GRAPPA weights are performed only 

once and do not contribute significantly to the overall reconstruction efficiency. 

However, compared to GRAPPA weight application, GRAPPA weight calculation 

is far more computationally intensive and is a major contributor to reconstruction 

latency for cardiac functional imaging.  

Thus, the purpose of this work is to minimize calibration acquisition and 

GRAPPA weight computation time for through-time radial GRAPPA without 

impacting image quality. PCA coil compression and weight sharing are the two 

approaches explored in this work to meet this goal. As both calibration 

acquisition time and reconstruction latency scale with receiver array size, PCA 

coil compression can potentially reduce both calibration acquisition time and 

reconstruction latency while retaining the SNR and encoding benefits of a large 

array. In addition, reusing GRAPPA weights across small regions of k-space 

reduces the number of GRAPPA weights required and can thus reduce the time 

spent on calculating the GRAPPA weights. Calibration acquisition time and 

GRAPPA weight calculation time is compared between previously reported 

through-time radial GRAPPA reconstructions and optimized reconstructions with 

coil compression and weight sharing. In addition, image RMSE of reconstructions 

with different settings are compared to determine if coil compression or weight 

sharing can be performed without loss of image quality.  

3.2: Through-time Radial GRAPPA 
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Theory 

In radial GRAPPA, and many other non-Cartesian GRAPPA 

implementations, the relationship between the source and target points is 

different in different areas of k-space, and thus the GRAPPA kernel, and 

associated weights, also differs across k-space. As a result, a unique set of 

weights must be computed for each kernel geometry.  

In through-time radial GRAPPA, multiple fully sampled datasets are collected 

and used as calibration data. However, acquiring a sufficient number of kernel 

repetitions solely from repeated fully-sampled data results in a long acquisition 

time for the calibration data. The original work on through-time radial GRAPPA 

proposes a hybrid method which takes calibration data over a small (often 8x1) k-

space segment to reduce the number of fully-sampled calibration frames which 

must be collected59,61. The lower bound of calibration frames needed to estimate 

the GRAPPA weights can be written as:  

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑎𝑚𝑒𝑠 >
𝑁𝑘𝑟𝑁𝑘𝑝𝑁𝑐

𝑁𝑟𝑠𝑒𝑔𝑁𝑝𝑠𝑒𝑔
(3-1) 

Where 𝑁𝑟𝑠𝑒𝑔 and 𝑁𝑝𝑠𝑒𝑔 are the k-space segment sizes used for calibration in 

the readout and phase encoding directions respectively.  

PCA coil compression is a dimensionality reduction technique along the 

coil dimension that has been used to improve image SNR and reduce 

reconstruction time63–66. When applied to through-time GRAPPA, PCA coil 

compression also reduces the lower bound of calibration frames required to 

estimate the GRAPPA weights as shown in equation 3-1. We hypothesize PCA 

coil compression will significantly reduce the number of calibration frames 
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needed for through-time radial GRAPPA, thereby reducing the acquisition time, 

which is a limiting factor in efficient implementation of radial GRAPPA in clinical 

practice.  

 

Figure 3-1: Schematic of through-time radial GRAPPA, divided into calibration and reconstruction steps. In the 
calibration step, GRAPPA weights are generated using ordinary least squares using source points (shown in blue) and 
target points (shown in red). In this calibration schematic, a single unique weight set is generated from the highlighted 
source and target points. In the reconstruction step, the weight set generated in the calibration step is applied to three 
separate reconstructions schema, which are shown to illustrate the differences between reconstructions with and 
without weight sharing. On the left, a conventional through-time radial GRAPPA reconstruction is performed, with 
each target point reconstructed with a unique weight set (represented as target points of different colors). In the 
middle, GRAPPA weights are shared between four locally adjacent target points in the readout direction, 
corresponding to a weight sharing factor of four. The target points reconstructed with the same weight set are shown 
as a single color. On the right, an example of a weight sharing factor of eight is shown, with eight target points 
reconstructed with a single weight set. Regardless of the reconstruction method used, the resulting reconstructed k-
space resembles fully sampled data and is reconstructed using NUFFT and coil combination. 

In radial GRAPPA, the relationship between each target point and source 

point kernel in k-space is unique. However, computing a set of GRAPPA weights 

for each missing point in an undersampled radial dataset is a computationally 

intensive reconstruction step due to the need for repeated pseudoinverse 



52 
 

operations. A diagram detailing this algorithm can be found in Figure 3-1. While 

every GRAPPA kernel in radial k-space is unique, kernels that are locally 

adjacent are geometrically similar, and the GRAPPA weights can be assumed to 

be approximately the same. Thus, one weight set could be applied to reconstruct 

several adjacent target points, and the number of unique GRAPPA weights 

required for a complete reconstruction could be reduced, in turn reducing the 

GRAPPA weight computation time. The “weight sharing factor” is the is the 

number of target points reconstructed with a single GRAPPA weight set. Note 

that weight sharing is distinct from the use of k-space segments for calibration, 

where several kernel repetitions are collected over a region of k-space to 

estimate the GRAPPA weights. 

3.3: Data Acquisition and Analysis 

In vivo cardiac data were collected from 15 healthy volunteers in an IRB 

approved study on a 1.5T Sola Siemens MRI scanner using a 30-channel body 

receiver array. A total of 400 frames of calibration data were collected during 

free-breathing with no ECG-gating in the short axis orientation using a radial 

bSSFP readout with the following imaging parameters: 128x128 matrix, 144 

radial projections, 256 readout points per projection, TR/TE=2.94/1.48ms, 37o flip 

angle, 8mm slice thickness, 300mm2 FOV. Following the collection of calibration 

data, ten seconds of accelerated data were collected with a similar imaging 

protocol using acceleration factors of 4, 6, 9 and 12 (36, 24, 16, and 12 

projections, respectively), resulting in temporal resolutions of 100ms/frame, 

67ms/frame, 44ms/frame, and 36ms/frame respectively.  
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Gold Standard Reconstruction 

A gold standard image for each acceleration factor was generated via 

through-time radial GRAPPA reconstruction of collected undersampled data 

using 400 calibration frames, no k-space segmentation for calibration (1x1 

segment), and a 3x2 GRAPPA kernel (in read and projection directions 

respectively)61. Following through-time radial GRAPPA reconstruction, a non-

uniform Fast Fourier Transform (NUFFT) from the MIRT toolbox67 was performed 

and coils were combined using adaptive combination68. 

Impact of Coil Compression on Required Calibration Data 

The radial k-space data, with 30 independent receiver channels, were 

projected onto a virtual coil subspace at each k-space location using a linear 

PCA coil compression algorithm64,69,70. The through-time radial GRAPPA 

reconstruction was performed using truncated subsets of the virtual coil space, 

from 30 virtual coils to 8 virtual coils, with 30 virtual coils accounting for 100% of 

the signal from the original data. Signal content of the compressed data is 

defined as the sum of the singular values of the virtual coil subset over the total 

sum of all singular values. Reconstructions were also performed at specific 

compression levels (95%, 90%, 80%), defined as the smallest number of virtual 

coils to needed exceed a signal content threshold. For our system, these 

compression levels corresponded to 16, 12, and 8 virtual coils.  

Through-time radial GRAPPA reconstructions were performed with a 8 x 1 

(read x projection) k-space segment size and 3x2 kernel size, as suggested in 

Seiberlich, et al.61. For each virtual coil subset, the number of calibration frames 
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employed to generate GRAPPA weights was monotonically decreased from 80 to 

the lower bound described by equation 3-1. Any fewer frames would result in the 

GRAPPA calibration being underdetermined, where a unique solution for the 

weights cannot be calculated. In addition, reconstructions where the number of 

coils were insufficient to perform parallel imaging at a given acceleration factor 

were not considered.  

Image quality of accelerated acquisitions was quantified by calculating the 

root mean squared error (RMSE) between grayscale normalized gold standard 

and reconstructed images in an ROI drawn around the heart.  

Impact of GRAPPA Weight Sharing on Reconstruction Time and Quality 

The through-time radial GRAPPA reconstruction algorithm was modified 

such that a single GRAPPA weight set was used to estimate multiple target 

points along the same radial projection. The extent of weight sharing was varied 

from no weight sharing (weight sharing factor of one, where each target point 

was associated with a unique weight set) to weight sharing over 32 points 

(weight sharing factor of 32) for all acceleration factors. Reconstructions with 

weight sharing were performed with no coil compression and 80 calibration 

repetitions to assess image quality changes due to weight sharing independently 

of coil compression. Image quality was assessed by computing the RMSE 

between images reconstructed with weight sharing and previously described gold 

standard images.  

Reconstruction with Coil Compression and Weight Sharing 



55 
 

A set of reconstruction parameters were chosen based on coil 

compression and weight sharing results that demonstrated improved calibration 

acquisition and reconstruction time performance with minimal image quality 

degradation. The parameters selected were 12 virtual coils, 16 calibration 

frames, and a weight sharing factor of 8. Reconstructions with the selected 

optimized parameters were performed at acquired acceleration factors and were 

compared to the gold standard reconstruction via RMSE.  

Reconstruction Performance 

All reconstructions were performed on a dual 12-core Intel Xeon Silver 4214 

platform with 128GB of RAM. Reconstruction times for through-time radial 

GRAPPA with coil compression and weight sharing were normalized to the most 

computationally intensive reconstruction (no coil compression, no weight sharing, 

80 calibration frames). Reconstruction times were subdivided into the three most 

computationally intensive tasks: Non-uniform fast Fourier transform (NUFFT), 

GRAPPA weight calculation, and GRAPPA weight application.  

 

Figure 3-2: Right: A representative heatmap indicating the log(RMSE) between the gold standard and 

reconstructions performed with a specific number of virtual coils and calibration frames for R=8. Left: The 
gold standard image for this heat map is shown as image A. Images B, C and D correspond to 
reconstructions from specific regions of the heatmap with similar RMSE and are reconstructed with coil 
compression to signal content of 100%, 90%, and 80% respectively. The acquisition time of the calibration 
data (Tacq) is shown in the bottom right of each image. The RMSE between the gold standard and each 
reconstruction is shown on the top right of each image. 
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Figure 3-3: Left: A series of boxplots indicating the signal content remaining after coil compression to a specific virtual 
coil count. Each boxplot represents information from N=15 healthy subjects. The median is shown as a white circle 
with a central blue dot, the interquartile range is shown as a thick blue box, and the minimum and maximum values 
are shown as whiskers extending from the interquartile range. Right: A series of boxplots indicating the number of 
virtual coils required to yield a specific signal content threshold.  The median is shown as a red line, the interquartile 
range is shown as a blue box, and the minimum and maximum are shown as whiskers extending from the interquartile 
range. Outliers beyond 1.5x the interquartile range are shown as red pluses.  

3.4: Results 

Figure 3-2 shows a heatmap of the RMSE values for reconstructions 

performed across the range of coil compression factors and calibration frames for 

a single subject at acceleration factor of 8. Figure 3-3 shows boxplots 

demonstrating that signal content at specific compression levels is consistent 

across the 15 volunteers. Going from right to left, decreasing the number of 

virtual coils (e.g. decreasing the signal content threshold) improves the RMSE for 

a given number of calibration frames. Going from top to bottom, decreasing the 

number of calibration frames worsens the image quality, with a sharp increase in 

RMSE as the GRAPPA weight equation approaches being exactly determined 

(as described in equation 13-). Representative images from the heatmap, 

together with the gold standard reconstruction (Figure 3-2a, 1x1 segment, 30 

coils, 400 calibration frames), are also shown. Figure 3-2b shows a 

reconstruction with no coil compression (8x1 segment, 30 coils, 40 calibration 
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frames).  Figure 3-2c shows a reconstruction with coil compression to a 90% 

signal content threshold (8x1 segment, 12 coils, 16 calibration frames). Figure 

3-2d shows a reconstruction with coil compression to an 80% signal content 

threshold (8x1 segment, 8 coils, 12 calibration frames). Compared to the gold 

standard, the reconstructed images have comparable image quality, with RMSE 

of 1.09% for the reconstruction with no coil compression, 1.24% for the 

reconstruction with coil compression toa 90% signal content threshold, and 

1.32% for the reconstruction with coil compression to an 80% signal content 

threshold. In addition, the total acquisition time of the calibration data required to 

perform the reconstruction with coil compression is reduced from 17s to 4.2s per 

slice.  

 

Figure 3-4  Reconstructed images over a range of weight sharing factors and acceleration factors. Images 

were reconstructed with no coil compression and 80 calibration frames. The leftmost column of images was 
reconstructed with no weight sharing, equivalent to a weight sharing factor of one. The RMSE between the 
gold standard and reconstructed image is shown on the top left of each image. 
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Figure 3-5  Reconstructions performed with weight sharing in the projection direction for acceleration factor of 8. 
Relevant images have RMSE compared with the gold standard in the bottom left corner. Left: Gold standard 
reconstruction. Middle Left: Reconstruction with 30 virtual coils, 40 calibration frames, and no weight sharing. Middle 
Right: Reconstruction with 30 virtual coils, 40 calibration frames, and WSF=2 in the projection direction. Right: 
Reconstruction with 30 virtual coils, 40 calibration frames, and WSF=3 in the projection direction. 

Diastolic images from a matrix of reconstructions at acceleration factors of 

4,6,8 and 9 with weight sharing factors of 1, 8,16, and 32 along the readout 

direction are shown in Figure 3-4. In addition, diastolic images at acceleration 

factor of 8 with weight sharing factors of 1,2, and 3 in the projection direction are 

shown in Figure 3-5 for comparison. All reconstructions are performed with no 

coil compression and 80 calibration frames. Reference images with no weight 

sharing are shown on the left and labeled with a weight sharing factor of 1. The 

RMSE of the reconstruction increases along with both acceleration factor and the 

weight sharing factor. All reconstructions with a weight sharing factor of 8 in the 

readout direction have similar RMSE to the reference. A weight sharing factor of 

32 leads to artifacts and loss of image quality across all acceleration factors. In 

the projection direction, weight sharing factor of 2 leads to artifacts and global 

loss of image quality and is comparable to image quality loss at a weight sharing 

factor of 32 in the readout direction. 
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Figure 3-6  (Top) A representative plot showing the total reconstruction time (purple) for reconstructions with 

varying numbers of virtual coils at an acceleration factor of 9. All reconstructions were performed with 80 
calibration frames. The calculation time of the GRAPPA weights is shown in blue and the reconstruction 
time, where the weights are applied to reconstruct undersampled data, is shown in red. Time taken to 
perform radial gridding is shown in yellow. Other computational tasks, such as data transfer or IO overhead, 
are negligible compared to GRAPPA and NUFFT time. (Bottom) A representative plot showing the reduction 
in weight calculation time due to weight sharing at an acceleration factor of 9. Weight sharing does not 
impact NUFFT or weight application time.  

Figure 3-6 shows the radial GRAPPA reconstruction performance 

improvements associated with coil compression and weight sharing. With no coil 

compression, the reconstruction time was 237s. At a 95% coil compression level 

(16 coils), the reconstruction time is reduced to 104s. At a 90% coil compression 

level (12 coils), the reconstruction time is reduced to 68s. The primary contributor 

to these performance improvements is the reduction of weight calculation time. 

While weight sharing does not impact NUFFT or weight application performance, 

it does affect the weight calculation time, as shown in the bottom plot of Figure 

3-6. A weight sharing factor of 8 reduces the time required to calculate the 
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GRAPPA weights from 134s to 18s, an 86.6% reduction in weight computation 

time, independent of coil compression.  

In Figure 3-7 and Figure 3-8, systolic and diastolic images are shown in three 

representative healthy subjects at acceleration factors of six and nine 

respectively (frame rates of 15 frames/s and 27.5 frames/s) and compared 

between optimized reconstructions with coil compression and weight sharing, 

and reconstructions without. The associated calibration data acquisition of 

optimized reconstructions was obtained retrospectively from the gold standard 

dataset and could be collected in 6.77s/slice compared to reconstructions with 80 

calibration frames, where calibration data are acquired in 34s/slice. In addition, 

weight computation time for the optimized reconstructions was reduced from 

201s to 3.1s per slice for an acceleration factor of 6, and 144s to 2.0s per slice 

for an acceleration factor of 9.  
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Figure 3-7  Reconstructed images from diastole and systole from three healthy subjects at an acceleration 

factor of 6. Image RMSE are shown in the top left of each image. Optimized reconstructions performed with 
12 virtual coils, 16 calibration frames, and a weight sharing factor of 8 are compared to reconstructions 
performed with no coil compression, 80 calibration frames, and no weight sharing. In plane resolution is 
2.34x2.34mm2 and temporal resolution is 67ms/frame resulting in a 15 frame/s acquisition. The acquisition 
time for the calibration data used in the optimized reconstruction was 6.77s, average weight computation 
time was 3.13s and average weight application time was 4.1s. In contrast, reconstructions with no coil 
compression or weight sharing have a calibration acquisition time of 34s, average weight computation time 

of 201s, and average weight application time of 15.1s. 



62 
 

 

Figure 3-8  Reconstructed images from diastole and systole from three healthy subjects at an acceleration 

factor of 9. Image RMSE are shown in the top left of each image. Optimized reconstructions performed with 
12 virtual coils, 16 calibration frames, and a weight sharing factor of 8 are compared to reconstructions 
performed with no coil compression, 80 calibration frames, and no weight sharing. In plane resolution is 
2.34x2.34mm2 and temporal resolution is 44ms/frame resulting in a 27.5 frame/s acquisition. The acquisition 
time for the calibration data used in the optimized reconstruction was 6.77s, average weight computation 
time was 2.0s and average weight application time was 4.9s. In contrast, reconstructions with no coil 
compression or weight sharing have a calibration acquisition time of 34s, average weight computation time 
of 144s, and average weight application time of 18.5s.  
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3.5: Discussion 

In this work, through-time radial GRAPPA, a real-time free-breathing ungated 

acquisition technique for functional cardiac MRI, is optimized for clinical 

application by reducing the calibration acquisition time and GRAPPA weight 

computation time. While prior work has optimized the radial GRAPPA weight 

application step to enable real-time imaging in an interventional setting57, such 

optimizations do not address the calibration acquisition time and GRAPPA weight 

computation time. However, in functional cardiac MRI, the calibration acquisition 

and GRAPPA weight computation time are the primary sources of inefficiency: 

calibration requirements can increase scan time by a factor of 2 or more, and 

GRAPPA weight computation accounts for nearly 60% of the total reconstruction 

time. Indeed, the long acquisition time for calibration data has been a limiting 

factor when implementing through-time radial GRAPPA in a clinical setting. As 

proposed in Seiberlich et al61, a through-time radial GRAPPA acquisition for a 

cardiac imaging application with 75 calibration frames would take 31.5s per slice 

solely for calibration, and would be inefficient in a clinical setting where 10-15 

slices are required for whole heart coverage. In addition to long calibration 

acquisition times, long GRAPPA weight computation times are impractical for on-

line implementation, as more than 20 minutes would be required to calculate the 

GRAPPA weights for a typical short-axis stack, adversely affecting clinical 

workflow. To address these issues, an optimized acquisition and reconstruction 

(12 virtual coils, 16 calibration frames, and weight sharing factor of 8) is 

suggested, in which images can be generated with image quality comparable to 
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the gold standard despite requiring only 6.7s of calibration data per slice. Weight 

sharing in the projection direction could potentially further improve reconstruction 

performance, but is poorly tolerated and introduces artifacts and blur as shown in 

Figure 3-5. From these optimizations, GRAPPA weight calculation times were 

reduced from 201s to 3.1s per slice for an acceleration factor of 6, and 144s to 

2.0s per slice for an acceleration factor of 9. With the suggested optimization, the 

combined calibration acquisition and weight calculation steps may have a 

reduced impact on clinical workflow, especially as all data collection steps can be 

performed without ECG gating during free-breathing. 

In this work, calibration frames were retrospectively reduced during 

reconstruction, but in practice, the number of calibration frames must be selected 

at the time of acquisition. This problem can be addressed by an a priori selection 

of the number of virtual coils to use in reconstruction at acquisition time. This 

selection creates a lower bound on the number of calibration frames required to 

perform GRAPPA, as shown in equation 3-1. For the experimental arrangement 

at our institution, coil compression to 12 virtual coils results in 90% of the 

information to be retained with little variability between subjects (see Figure 3-3). 

Correspondingly, the image reconstructed with weights generated using only 16 

calibration frames and 12 virtual coils had an RMSE (1.24%) comparable to an 

uncompressed reconstruction with 80 calibration frames (1.09%).  

It should be noted that coil compression reduces the total signal content used 

in reconstruction, but despite reduced signal, reconstruction with coil 

compression either has similar or better RMSE to a reconstruction with no 
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compression but similar number of calibration frames. The effect of improved 

image quality with coil compression has been described in other work with 

Cartesian SENSE70 and Cartesian GRAPPA66 and is due to truncation of virtual 

coils with the lowest signal content which can be dominated by noise. Removal of 

these virtual coils prevents fitting to noise during GRAPPA weight estimation. 

The noise reduction performance due to coil compression is expected to depend 

on a variety of factors including the SNR of the imaging application, the size of 

the real multichannel array, and the geometry of the array. In addition, truncating 

too many virtual coils can result in pruning real signal instead of noise. For 

functional cardiac imaging, the RMSE of through-time radial GRAPPA 

reconstructions with coil compression was reduced at all compression levels 

compared to an uncompressed reconstruction for a fixed number of calibration 

frames, as shown in Figure 3-2, suggesting that the signal from a smaller number 

of virtual coils contains sufficient structural and contrast information for robust 

image reconstruction.  

In comparison to many other techniques for rapid functional cardiac MRI, 

such as machine learning based parallel imaging approaches71,72 or compressed 

sensing73, non-Cartesian GRAPPA methods acquire images with sufficient 

temporal resolution to not require ECG-gating or breath holds. While compressed 

sensing approaches have the advantage of greatly reducing acquisition time, the 

non-linear reconstruction is not conducive to parallelization, impeding 

optimization of reconstruction performance54,73,74. Machine learning based 

approaches have excellent reconstruction speed but have not yet been shown to 
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be generalizable. Thus, many newer cardiac MR approaches still require breath-

holds or ECG-gating which are points of imaging failure in patients with dyspnea 

or arrhythmia. Non-Cartesian GRAPPA techniques are clinically robust to many 

pathologies32 and the presented optimized strategy for through-time radial 

GRAPPA resolves long-standing issues with clinical implementation without 

compromising image quality. In addition, coil compression and weight sharing 

should be applicable to other though-time non-Cartesian GRAPPA 

implementations.  

3.6: Conclusions 

Through-time radial GRAPPA enables free-breathing ungated functional 

cardiac imaging with high temporal resolution. However, the initial formulation of 

through-time radial GRAPPA requires a time-consuming calibration acquisition 

and long weight computation times. In this work, these disadvantages are 

mitigated via coil compression and weight sharing. Coil compression to 12 virtual 

coils (90% compression factor) results in minimal impact on image quality across 

all tested acceleration factors. The associated reduction in requisite calibration 

data to 16 frames enables calibration acquisition time to be reduced from 31.5s 

to 6.7 seconds per slice and GRAPPA weight calculation time to be reduced by 

63%. Weight sharing further reduces GRAPPA weight calculation time with minor 

impact on image RMSE at a weight sharing factor of eight. Combined application 

of coil compression and weight sharing does not degrade image quality while 

retaining calibration and reconstruction benefits of each processing step and 

reducing GRAPPA weight calculation to <3s across all acceleration factors. This 
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work demonstrates that coil compression and weight sharing can be used to 

reduce calibration acquisition time and reconstruction latency of through-time 

radial GRAPPA for functional cardiac imaging without compromising image 

quality.  
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Chapter 4 Integrating Cardiac MRF into the Clinical 

Workflow using the Gadgetron Framework 
 

In this chapter, a new quantitative imaging technique used in the heart, 

cardiac Magnetic Resonance Fingerprinting or cMRF, is integrated into a 

standard clinical interface to enable accessibility to a new imaging technique. 

Cardiac MRF (cMRF) is an MRF technique that allows the simultaneous 

acquisition of T1, T2, and M0 maps in the heart. cMRF is unique in that a new 

MRF dictionary must be simulated after every scan to incorporate subject- and 

scan-specific variations in heart rate. These simulations are incompatible with 

current clinical reconstruction software and, thus, must be performed off-site. As 

a solution, dictionary simulation tools and cMRF reconstruction were 

implemented in Gadgetron, an open-source modular reconstruction platform that 

allows complex reconstruction algorithms to interface directly with MRI scanners. 

The Gadgetron cMRF implementation was found to have no significant bias in 

relaxation parameter measurements with the prior technique and improved 

reconstruction performance by 61%. In addition, the Gadgetron cMRF 

implementation no longer required human intervention for cumbersome data 

transfer steps between the MR scanner, an off-site reconstruction computer, and 

the clinical electronic medical record, enabling seamless integration into standard 

clinical and research workflow. The availability of such a vendor-independent 

cardiac MRF reconstruction system will allow rapid scientific and clinical 

evaluation of cMRF at other clinical sites. 
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4.1: Introduction to Magnetic Resonance Fingerprinting 

Magnetic resonance fingerprinting (MRF) is a quantitative imaging method 

that produces multiple tissue property maps simultaneously. Conventional 

quantitative imaging measures only one parameter at a time and required a 

collection of images with different acquisition times to fit a signal model to 

estimate the parameter of interest, resulting in a relatively time-consuming 

procedure. In contrast, MRF utilizes a pseudo-random imaging sequence in a 

highly accelerated imaging framework and matching pixel-wise signal evolutions 

to pre-computed dictionaries of signal evolutions. Within the dictionary, each set 

of imaging parameters has a unique “fingerprint” signal evolution in response to 

the imaging sequence19. By modularly adding sequence blocks with different RF 

pulses and gradients, MRF imaging sequences can be made more sensitive to 

mapping different tissue properties such as T₁ and T₂ relaxation19,75,76, volume 

fraction77, or saturation transfer77,78. In addition, sources of artifact in the imaging 

system can be compensated by adding artifact sources, such as B0 and B1 

inhomogeneity79–81 and off-resonance19, into the signal evolution model. As a 

result, MRF-acquired tissue property maps have been shown to be robust to 

artifact and reproducible across scanners, healthy volunteers, and patients80,82–86. 

The rapid and accurate acquisition of tissue property maps generated by MRF 

have garnered significant clinical interest in MRF imaging techniques and 

applications.  

As most MR vendors do not have a commercially available MRF sequence, 

clinical validation of MRF is done in partnership with MR researchers, and 
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requires time-consuming transfer of both raw and reconstructed MR data 

between clinical systems and laboratory workstations. Gadgetron, an open 

source image reconstruction platform that can interface directly with the MR 

scanner, has previously been successful at eliminating data transfer steps and 

delays between imaging and clinical reading for commercially unavailable 

imaging techniques87. Gadgetron reconstructed images are seamlessly returned 

to the MRI scanner display, enabling non-intrusive integration into the diagnostic 

workflow (Figure 1). In addition, Gadgetron has in-built algorithms for graphics 

processing unit (GPU) accelerated image reconstructions which can improve 

reconstruction performance of computationally intenstive reconstructions to 

clinically appropriate timescales. GPU accelerated image reconstructions for 

other imaging techniques such as parallel imaging88, phase velocity mapping89, 

and perfusion imaging90,91.  Gadgetron MRF has been developed for clinical 

prostate tissue property mapping, by integrating dictionary matching into 

Gadgetron with a pre-computed prostate MRF dictionary92. In addition, 

Gadgetron applications are deployable as encapsulated virtual images using 

Docker, enabling rapid clinical collaboration. As a result, Gadgetron is an 

excellent platform to deploy future MRF technologies. 

4.2: Cardiac Relaxometry and MRF 

Quantitative cardiac tissue property mapping has been shown to provide 

clinically actionable information in acute situations93 such as early detection of 

acute myocardial infarction94,95, reperfusion hemorrhage96 and monitoring of 

vasodilator function in acute coronary syndrome and acute myocardial 
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infarction97. Fluid integration of cardiac MRF (cMRF) into clinical workflow can 

greatly improve acquisition time for these applications. However, cMRF differ 

from other implementations of MRF in that the image sequence timings depend 

on heart rate and vary from scan to scan. These timings must be modeled when 

generating the dictionary to ensure accurate quantification of relaxation 

parameters. Thus, each cMRF acquisition requires a unique signal dictionary 

which cannot be precomputed75. Dictionary simulation is the most 

computationally expensive portion of MRF reconstruction workflow, and while 

MEX-c compilation of existing MATLAB code can improve performance of 

dictionary simulations to clinically feasible timescales, this method requires 

additional software and licenses that are not provided with MR scanner 

installations and are rarely found in clinical practice.  

Clinical interest in cMRF provides the impetus for implementation and 

optimization of dictionary simulation within Gadgetron to deploy cMRF images on 

clinically appropriate timescales.   

4.3: Gadgetron Reconstruction Framework for Online Imaging 

A flowchart of the Gadgetron-based cMRF reconstruction pipeline is shown in 

Figure 1. Each step is described in detail in the following sections. 

cMRF Pulse Sequence and Data Acquisition 

Data were collected with a previously described 15-heartbeat 2D cMRF 

sequence comprised of three 5-heartbeat blocks75. An inversion preparation 

pulse is applied every five heartbeats and adiabatic T₂-preparation pulses are 

applied every third, fourth and fifth heartbeats with echo times of 30ms, 50ms 
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and 80ms, respectively. Flip angles are varied from 4° to 25° and the TR/TE are 

held constant at 5.1/1.4ms. Data are sampled along a variable density spiral 

trajectory that rotates by the golden angle every TR. Fifty TRs are acquired every 

heartbeat during a diastolic scan window of 255ms, and a total of 750 TRs are 

collected over the entire scan. 

 

Figure 4-1: Flowchart of Gadgetron cMRF workflow. Prior to implementation of Gadgetron cMRF, tasks shown to be 
performed on Gadgetron host were previously performed by a research associate who would manually transfer data 
and run reconstruction in MATLAB environment at off-site laboratory workstation. 

As shown in Figure 4-1, the raw cMRF data are transferred from the scanner 

in native scanner format to the Gadgetron computer, where it is converted into 

the ISMRM raw data format98. Raw data is then parsed and passed on to 

dictionary simulation and pattern matching modules within Gadgetron for 

reconstruction.  

Dictionary Simulation 

cMRF dictionary generation is performed via Bloch simulation with an 

isochromat of 50 spins. Variable heart rate timings for each individual cMRF scan 

are integrated into the dictionary simulation using recorded ECG timestamps. 

cMRF dictionary has an exponential step size in T₁ and T₂ of 5%, with minimum 

values of 2ms scaling to a maximum T₁ of 6000ms and a maximum T₂ of 
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1000ms. Dictionary entries where T₂ is greater than T₁ are truncated from the 

dictionary, resulting in 6473 pairs of T₁ and T₂ values to be simulated. Off-

resonance is not simulated in the dictionary because the FISP sequence is 

relatively insensitive to this parameter. Bloch equation simulations generate a 

final dictionary of signal evolutions specific for a particular scan made up of 6473 

entries with 750 timepoints.  

The MATLAB cMRF pipeline was mirrored and optimized in Gadgetron by 

writing new gadgets to implement tools for optimized Bloch equation simulations 

and MRF reconstruction processes. Heart rate independent simulation 

components, such as rotation matrices for the flip angle excitation train, 

preparation pulses, and spoiler phase dispersion, were pre-computed upon 

initiating image acquisition to reduce apparent reconstruction overhead.  

SVD Compression 

As shown in Figure 1, the resulting dictionary is compressed along the time 

dimension using singular value decomposition (SVD) from 750 timepoints to 47 

singular values to reduce memory requirements and accelerate pattern matching. 

Singular values past 47 collectively contain less than 0.5% of signal required for 

pattern matching. The right singular matrix from the SVD is stored to project 

accelerated MRF images onto the same SVD space as the compressed 

dictionary prior to pattern matching. The low-rank approximation of the dictionary 

reduces memory requirements and accelerates pattern matching performance99. 

SVD implementation in Gadgetron was performed using the SVD algorithm in the 

Intel Matrix Kernel Library (MKL).  
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Image Reconstruction and Pattern Matching 

Acquired undersampled image data (30 coils, 750 images) undergoes SVD 

coil compression along the coil dimension to compress the data to 12 virtual 

coils. For the same reason as dictionary SVD, 12 coils are selected as singular 

values past 12 contained less than 0.5% of acquired signal.  

Undersampled cMRF images were gridded every TR using the Gadgetron-

native GPU-accelerated non-uniform Fast Fourier Transform (NUFFT). The time 

series of undersampled images are projected onto the SVD space of the 

compressed dictionary to yield 47 singular images.  

Coil sensitivity maps were estimated from the first singular image using the 

Inati algorithm100 and the reconstructed images are coil combined via Gadgetron-

native adaptive coil combination. As a result, prior to pattern matching, the image 

space contains 47 singular images. The reconstructed images are then pattern 

matched to the dictionary using vector dot-product matching.  

Projection of acquired data onto dictionary SVD space and vector dot-product 

matching both require multiplication of large matrices. Gadgetron implementation 

of these steps were implemented on the GPU using CuBLAS library algorithms to 

leverage GPU-based parallel processing algorithms.  

Offline MATLAB reconstruction 

The Gadgetron-based cMRF reconstruction was compared to an offline 

MATLAB reconstruction, which has been described previously75. The MATLAB 

dictionary simulation and cMRF reconstruction uses CPU-parallelized, compiled 

Mex code. Gridding is performed using the NUFFT implementation in the 
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Michigan Image Reconstruction Toolbox (MIRT). Finally, coil sensitivity maps are 

estimated using adaptive coil combination method. The only differences between 

Gadgetron and MATLAB-Mex C reconstruction are algorithmic; All dictionary 

simulation and image reconstruction parameters are unchanged between the two 

reconstruction. 

Bloch equation simulation, data reconstruction and pattern matching for both 

platforms were performed on the same machine to insure performance 

comparability (Ubuntu 16.04, 16-core Intel Core i7-7820X, Nvidia GTX1080, 

32GB RAM). Performance was assessed by reconstruction time spent in 

dictionary simulation, SVD compression, NUFFT, pattern matching and overall 

time.  

Phantom Validation 

Phantom data are collected on a 1.5T Siemens Aera scanner using the T₂ 

array of the ISMRM/NIST MRI system phantom29,82. EKG signal is simulated at 

the scanner using vender-provided tools to emulate physiological input into 

cMRF dictionary simulation. Simulated EKG recapitulated a defined heart rate of 

80 beats per minute with no arrhythmia or irregular beats.  

4.4: Data Acquisition and Analysis 

In Vivo Patient Scans 

In vivo data were also acquired on a 1.5T Siemens Aera scanner from 66 

patients undergoing MR cardiomyopathy assessment. Patients were chosen as 

the test group as the variable heart rates observed in pathology would have the 

greatest impact on tissue property measurement error. Homogenization of B0 
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was achieved over phantom vials and heart regions by pre-scan shimming. Mid-

cavity pre- and post- contrast MRF datasets were collected in 66 and 64 patients, 

respectively, in an IRB-approved study.  

Analysis of T₁ and T₂ Maps 

The accuracy of cMRF T₁ and T₂ maps generated using the Gadgetron 

pipeline was compared to those generated using MATLAB in the ISMRM/NIST 

MRI system phantom using average T₁ and T₂ values from circular regions of 

interest with a 25-pixel diameter (ROIs) drawn in tubes with known relaxometry 

values. For in vivo assessment, ROIs were drawn by trained radiologists on 

maps of the mid-chamber short axis view. These ROIs drawn corresponded to 

AHA heart segments 7-12101 and were approximately 6 pixels per region, over 

which relaxometry values were averaged to obtain mean T₁ and T₂ per scan. In 

vivo measurement differences between Gadgetron and MATLAB reconstructions 

were assessed by Bland Altman102,103 analysis between average T₁ and T₂ 

values over the whole image slice. Scans were partitioned into pre and post 

contrast comparison groups and measurement biases were determined 

separately in each group.  

4.5: Results 

Figure 2 depicts the T₁ and T₂ maps generated from NIST phantom data and 

demonstrates good visual agreement between Gadgetron and MATLAB-Mex C 

reconstruction methods. No artifacts are observed in the NIST system phantom 

images in either the Gadgetron or MATLAB-Mex C reconstruction. In addition, 

both Gadgetron and MATLAB-Mex C measured T₁ and T₂ values have high 
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correlation with the reference T₁ and T₂ values in the ISMRM/NIST phantom. 

Over T₁, Gadgetron and MATLAB both had a R2 values of 0.998 and over T₂, 

Gadgetron had an R2 value of 0.996 and MATLAB had an R2 value of 0.997. 

Bland-Altman analysis indicated that the maps generated with Gadgetron had no 

statistically significant bias in T₁ or T₂ measurement in comparison to the maps 

generated in MATLAB. The maximum differences between measurements from 

Gadgetron and MATLAB were 0.19% in T₁ and 0.7% in T₂.   

 

Figure 4-2: T₁ and T₂ maps of ISMRM/NIST phantom calculated using Gadgetron (left) and MATLAB-Mex C  
reconstruction pipelines. The maps show good visual agreement. ROIs were drawn in each vial and average T₁ and T₂ 
values were computed. Scatter plots between cMRF measurements made with Gadgetron and MATLAB-Mex C and T₁ 
and T₂ values provided by NIST show strong correlation with Gadgetron T₁ R2=0.998, Matlab T₁ R2=0.998, Gadgetron T₂ 
R2=0.996 and Matlab T₂ R2=0.997. Bland Altman plots demonstrate strong agreement with statistically insignificant 

bias in T₁ and T₂ with a narrow reproducibility coefficient (RPC), namely 1.2ms in T₁ and 0.44ms in T₂. Maximum 
error in T₁ is 0.19% and maximum error in T₂ is 0.7% which are well within the 5% dictionary step size. 

Representative T₁ and T₂ maps are shown in Figure 4-3 and Figure 4-4 and 

demonstrate good overall visual agreement in T₁ and T₂ values in non-lung 

tissue regions; however, large deviations up to 18% between the calculated 

values occur in the lung region, where there is significantly reduced SNR.  
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Figure 4-3: Representative pre- and post-contrast T₁ and T₂ maps collected from a representative patient with prior 
myocardial infarction. Absolute difference maps are shown on the right most column. A transmural scar of the 
inferolateral wall due to prior infarction is shown with hypertensive changes in wall thickness. Maps show excellent 
agreement in myocardial and abdominal regions. Differences arise in areas of low signal, specifically the lung and 
outside the body. These differences are visibly indiscernible and occur in regions outside of clinical interest.  
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Figure 4-4: Representative diastolic pre- and post-contrast T₁ and T₂ maps collected from a representative patient 
dilated cardiomyopathy. Absolute difference maps are shown on the right most column. Maps show excellent 
agreement in myocardial and abdominal regions. Differences arise in areas of low signal, specifically the lung and 
outside the body. These differences are visibly indiscernible and occur in regions outside of clinical interest.  
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Figure 4-5: Bland Altman plots for pre- and post-contrast average T₁ and T₂ values in radiologist-drawn cardiac ROIs 
are shown. N=66 for pre-contrast patients and N=64 for post-contrast patients. Pre- and post-contrast T₁ and post-
contrast T₂ times show no statistically significant bias and narrow limits of agreement as demonstrated by low RPC. 
Pre-contrast T₂ measurements show a statistically significant but clinically insignificant different of 0.07ms. The 
maximum error in pre-contrast T₁ is 0.19% and post-contrast T₁ is 0.21%. The maximum error in pre-contrast T₂ is 
0.54% and post-contrast T₂ is 0.64%. All maximum error values are smaller than the 5% step size dictionary resolution.  

Figure 4-5 illustrates that Bland-Altman analysis of measured relaxometry 

values in radiologist-drawn cardiac segment ROIs shows no statistically 

significant bias between Gadgetron or Matlab-Mex C implementations in both 

pre- and post-contrast T₁ maps and post-contrast T₂ and a statistically significant 

in pre-contrast T₂ of 0.07ms (p < 0.05) representing a maximum bias of 0.18%. 

Reproducibility coefficients (RPC) are all less than 1.8s for T₁ measurements and 

less than 0.25s for T₂ measurements indicating narrow limits of agreements. 

Maximum measured error is 1.4% and falls well within the predetermined 

dictionary resolution (<5%). 
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Benchmark MATLAB-Mex C reconstruction was performed on the same 

computer configuration as the Gadgetron reconstructions (Ubuntu 16.04, 16-core 

Intel Core i7-7820X, Nvidia GTX1080, 32GB RAM) and took 62.46s to perform 

on a stand-alone PC, with dictionary simulation and NUFFT as the largest 

reconstruction bottlenecks. As shown in Table 1, Gadgetron optimizations 

achieved 64% overall reconstruction performance improvement over MATLAB. 

Optimizations in dictionary simulation and the GPU-accelerated NUFFT algorithm 

improved bottleneck performance and were the major contributors to reducing 

reconstruction time with 61% improvement in dictionary simulation time and 88% 

improvement in NUFFT time. SVD compression and pattern matching had minor 

contributions to reconstruction performance, and GPU optimization of these 

reconstruction steps slightly reduced the overall reconstruction performance. 

Gadgetron provided additional performance gains by eliminating the data transfer 

requirements between scanner and computation system which were not 

quantified but are significant and cumbersome.  

 

Table 4-1: Dictionary simulation and reconstruction performance in MATLAB-MEX C and Gadgetron. Gadgetron shows 
a 64% overall reconstruction improvement with most improvement gains in the computationally intensive dictionary 
simulation and NUFFT steps. GPU acceleration of SVD compression and pattern matching had considerable memory 
overhead which eliminated gains in processing speed, but did not contribute significantly to reconstruction time.   
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4.6: Discussion 

This study demonstrated that despite algorithmic differences between cMRF 

tissue property generation implementations in Gadgetron and MATLAB, no 

statistically significant differences in myocardial relaxometry values are found. 

Both reconstruction pipelines recapitulated literature T₁ and T₂ values as 

supported by the NIST phantom maps with no significant measurement 

differences between the two reconstruction platforms. In addition, both platforms 

have good agreement with previously measured NIST phantom T₁ and T₂ in the 

physiological range.  

In vivo data, encapsulated in Figure 4, demonstrates that Gadgetron and 

MATLAB cMRF reconstructions had narrow limits of agreement in clinically 

significant regions of interest in the heart. The largest measured reproducibility 

coefficient was 1.8ms for T1 measurement and 0.25ms for T2 measurement. 

Because the finest resolution in the dictionary are 2ms for T1 and T2 respectively, 

these differences are comparable to noise-induced variance and are not large 

enough to affect clinical decision making. Differences in myocardial relaxometry 

values are either not statistically significant (pre-contrast T₁ and T₂, post-contrast 

T₂) or quantitatively negligible (post-contrast T₁, bias of 0.07ms) compared to the 

dictionary resolution.  

There are specific steps in the cMRF reconstruction pipeline that differ 

algorithmically between the Gadgetron and MATLAB-Mex C implementation: low-

rank approximation from SVD, NUFFT, and coil combination. Debugging of 

individual pipeline outputs found that the SVD algorithms used on the two 
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platforms did have mathematical differences of up to .12% in the calculation of 

singular values but did not lead to any significant differences in the final 

reconstructed maps when compared in isolation. Differences in the NUFFT 

algorithms between Gadgetron and MATLAB cause a different distribution of 

aliasing artifacts in the underlying undersampled cMRF data, however, these 

differences also did not propagate further down the reconstruction pipeline and 

did not result in significant differences in the reconstructed maps. Differences in 

adaptive coil map estimation and combination algorithms did result in significant 

differences in relaxometry values in the lungs as well as the appearance of non-

Cartesian aliasing artifacts outside the imaging region but did not lead to 

differences in myocardial values. Pattern matching in the lung region, which has 

low SNR, is significantly impacted by noise, and coil combination algorithms 

propagate this noise error in different ways. However, the lung region is not of 

clinical interest in myocardial mapping and is not considered to be a drawback to 

the improved afforded by the Gadgetron implementation. However, these 

algorithmic differences should be shown careful consideration when porting MRF 

reconstruction pipelines for other body regions, where different coil geometries 

may considerably enhance the differences due to coil combination algorithms. A 

potential solution is to utilize a sum-of-squares coil combination step, though this 

solution may not be suitable for applications that require the preservation of 

image phase.  

The in vivo dataset utilized contained patients with a wide variety of 

pathological conditions. Patients with dilated cardiomyopathy who have thinner 
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myocardium, and thus fewer pixels per ROI, have considerably higher variance in 

measured relaxometry values. The increased variance in average T₁ and T₂ 

measurements may have contributed to the small bias seen in the post-contrast 

T₁ maps. However, as stated before, these differences amount to a quantitatively 

negligible bias of .07ms compared to the dictionary spacing of the physiological 

T₁ range. In the physiological T₁ range, a 5% dictionary resolution translates to 

between 40ms to 60ms dictionary spacing. Despite all sources of variability and 

algorithmic differences, the T₁ and T₂ values calculated using the Gadgetron and 

MATLAB implementations largely agree and all limits of agreement in both pre 

and post contrast T₁ and T₂ fall well within the dictionary resolution (<5%).  

In terms of computational performance, single-slice cMRF reconstructions as 

performed in this report, had poor scaling in GPU-accelerated SVD compression 

and pattern matching due to data transfer overhead that contributed to worse 

reconstruction performance. SVD performance would be improved with larger 

dictionary sizes to take advantage of parallel processing available on the GPU. In 

addition, GPU acceleration of pattern matching is unlikely to lead to any 

performance improvement in the context of SVD compression, as matrix sizes 

are too small to enable parallel processing power to compensate for additional 

data transfer overhead. However, the GPU acceleration pattern matching has 

potential utility for future applications that may not want to utilize a low-rank 

dictionary approximation or use particularly large dictionaries such as MRF with 

proton exchange77,78. All GPU accelerated reconstruction steps will scale 

considerably better with acquisitions that will lead to increase data throughput 
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such as simultaneous multi-slice or 3D imaging sets which are future directions 

for cMRF development. These larger datasets will enable better utilization of 

GPU accelerated reconstruction components, as data transfer overhead will be 

overshadowed by performance gains at large matrix sizes. In addition, MRF 

applications that require larger dictionaries, such as when modeling off 

resonance or B1 inhomogeneity, will also benefit from the GPU-accelerated tools 

developed in this work. These advantages can be leveraged to enable cMRF to 

run on older scanner hardware which may require additional modeling to account 

for scanner imperfections. Overall, performance improvements in Gadgetron over 

MATLAB are considerable but modest in the context of one-hour clinical 

scanning sessions. 

The significant value provided by Gadgetron implementation come from 

scanner integration, which enables online cMRF reconstruction that eliminates 

the need for data transfer from scanner hardware to research computation 

systems. After integration, Gadgetron reconstructed T₁ and T₂ maps are easily 

uploaded by radiology technicians with all other cardiac imaging done during a 

clinical imaging procedure to hospital imaging databases to be read by 

radiologists, allowing cMRF to fit within the existing clinical workflow. By enabling 

faster access to clinically actionable tissue property maps, the utility of cMRF can 

be expanded to more acute situations93. As an open source software, a 

Gadgetron cMRF dictionary simulation and reconstruction package is now 

available upon request as a portable Docker104 virtual machine image.  
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4.7: Conclusion 

The exploration of cMRF for clinical applications has been impeded by the 

need for scan-specific cMRF dictionaries and reconstruction tools that are not 

available on commercial scanner software. Gadgetron implementation of the 

cMRF reconstruction pipeline not only recapitulates the accuracy observed with 

the currently employed MATLAB-Mex C reconstruction tools, but also improves 

reconstruction performance and eliminates time intensive and error-prone data 

transfers. The work presented herein will allow rapid implementation of cMRF in 

the clinical setting and enable further research in cMRF applications.  
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Chapter 5 Balancing Acquisition Time and Image 

Quality for Fast T2-weighted Imaging 
 

This chapter will discuss the acceleration of T2-weighted imaging, which is 

essential for many clinical applications. Clinically, T2-weighted imaging is 

performed with slow Cartesian TSE sequences. While it is possible to accelerate 

TSE sequences by altering sequence parameters, such as echo train length, 

partial Fourier acquisition, or sampling trajectory, these changes may affect 

image contrast and introduce artifacts leading to a difficult-to-predict reduction of 

image quality. Using digital phantoms that replicate specific imaging conditions, 

namely prostate biopsy, simulations were performed to explore the balance 

between acquisition time and image quality for accelerated TSE-based T2-

weighted imaging. 

5.1: Introduction 

T2-weighted imaging is essential in clinical practice for several applications 

and is commonly performed using Cartesian TSE sequences. These sequences 

are comprised of an excitation pulse followed by a train of 180 pulses to refocus 

the signal that is dephased due to field inhomogeneities (T2*). To avoid weighting 

due to T1 relaxation, long repetition times (TR), typically between 4000-6000ms, 

are used to recover longitudinal magnetization between acquisition shots. These 

constraints result in long acquisition times for many applications, specifically, 

those that require a large field-of-view (FOV = 400mm2) and high resolution 

(1mm x 1mm x 3mm), such as prostate imaging. Parallel imaging with GRAPPA 

has enabled acquisition time reduction, but acceleration factors are limited to 
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R=3, resulting in acquisition times of 40-60s. For interventional applications, 

including in-gantry prostate biopsy, which relies heavily on T2-weighted images, 

such long acquisition times result in a considerable latency in visual feedback. 

Such long acquisition times can make performing these procedures cumbersome 

and technically challenging. Thus, faster T2-weighted imaging would benefit more 

efficient diagnostic imaging and improved MR-guided procedures. 

There are several approaches to reducing the acquisition time of T2-

weighted TSE images. The TR can be shortened to reduce the acquisition time 

directly. However, this results in increased T1-weighting, altering image contrast, 

and a reduction in the recovery of longitudinal magnetization and, thus, SNR. 

Increasing the echo train length (the number of phase encoding lines collected 

for each TR) reduces the number of repetitions required for the acquisition; 

single-shot TSE sequences such as HASTE are extreme examples of this 

approach. However, a longer echo train can result in a loss of resolution due to 

blurring from shorter T2 species which can obscure small anatomical structures 

and lesions. Another regularly used approach is to reduce the number of 

acquired lines using undersampling and a dedicated image reconstruction 

strategy such as parallel imaging. However, acceleration factors greater than 3 

are prone to reduced SNR and residual aliasing artifacts, limiting its efficacy. 

Another method is to alter the sampling trajectory to increase the k-space that 

can be covered during the same echo train duration. Non-Cartesian spiral 

sampling trajectories can potentially increase k-space sampling efficiency in TSE 

but have been shown to have different image artifacts and contrast 
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characteristics105,106 resulting from T2-decay induced signal modulation due to 

repeated sampling of the k-space center. In addition, spiral trajectories typically 

have longer readouts that are prone to off-resonance artifacts107 that manifest 

differently from Cartesian TSE. Thus, the impact of TSE imaging parameters and 

the sources of image quality degradation with faster imaging is expected to differ 

significantly for spiral and Cartesian TSE. However, non-Cartesian trajectories in 

conjunction with advanced reconstruction techniques such as parallel imaging or 

compressed sensing are helpful for rapid imaging in cardiac imaging57,108,109, 

abdominal imaging110,111, magnetic resonance angiography112, and arterial spin 

labeling113,114 and can potentially be applied to other applications. A solution to 

faster T2-weighted TSE is likely a combination of these strategies; given the large 

number of parameters that can be adjusted and the differing needs of different 

applications, the optimal sequence may depend on the goal of imaging as well as 

the hardware available. 

In-bore MR-guided prostate biopsy is one application that relies on T2-

weighted guidance imaging for accurate lesion targeting. Due to complex and 

variable pelvic anatomy and the high variability of lesion contrast, size, and 

location, in-bore MR-guided prostate biopsy is a technically challenging 

procedure that requires considerable operator expertise115,116. Long Cartesian 

TSE acquisitions are commonly used as image guidance, though gradient echo 

sequences117,118 and single-shot HASTE119 have also been used to reduce visual 

feedback latency. However, GRE sequences have poor image contrast and are 

sensitive to the variety of off-resonance sources in the pelvis, leading to signal 
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dropout and distortion. Single-shot HASTE has T2-weighted contrast but can also 

suffer from blurring, preventing accurate visualization of small or low-contrast 

lesions which could lead to inaccurate targeting. To provide adequate image 

quality for image guidance during a prostate biopsy, a fast T2-weighted sequence 

must retain the sufficient resolution and contrast to visualize and target lesions 

while adding minimal additional artifacts. Thus, there is a need to identify a 

method for rapidly acquiring T2-weighted images for specific applications, such 

as in-bore prostate biopsies, and to characterize the trade-off between faster 

acquisition time and image quality. 

In this work, a simulation approach is taken to explore the parameter space of 

fast T2-weighted TSE sequences to characterize trade-offs between image 

quality and acquisition time for use in prostate biopsy. Digital phantoms were 

designed to replicate specific imaging conditions during a prostate biopsy: 

variable lesion size, lesion T2, and off-resonance sources. Fast T2-weighted 

sequences with a range of echo train lengths, echo spacings, acceleration 

factors, and acquisition trajectories were simulated. Image quality metrics of 

contrast, image sharpness, and artifact power were measured from these 

phantom images and the results compared to determine if the acquisition time for 

the T2-weighted images used in prostate biopsy could be shortened without 

significantly impacting image quality.  

5.2: Methods 

Simulation 
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The images produced by various TSE sequences were simulated using a 

discrete-event model, as described in Kwan et al120 and Petersson et al121. For 

the specific application of prostate biopsy, the effects of T1, T2, T2*, and off-

resonance were simulated; other tissue characteristics were neglected. The spin 

density of the image object 𝜌(𝑥, 𝑦) is partitioned to N groups of spin densities 

𝜌𝑛(𝑥, 𝑦), where the nth spin density matrix corresponds to all voxels with the nth 

unique set of tissue properties <T₁,T₂,∆B0,…>n. The Fourier representation of 

each such spin density partition is represented in k-space as 𝑃𝑛(𝑘𝑥(𝑡), 𝑘𝑦(𝑡)) 

where the position in k-space is temporally dependent on spatial encoding 

events. For each spin density partition, tissue properties of each non-zero voxel 

in 𝜌𝑛(𝑥, 𝑦) and the resulting spin evolutions of any voxel in that group are 

identical. Thus, the acquired time-domain signal of the nth partition, 𝑆𝑛, can be 

described as  

𝑆𝑛(𝑘𝑥(𝑡), 𝑘𝑦(𝑡), 𝑡) = 𝑀⊥,n(𝑡) ∙ 𝑃𝑛 (𝑘𝑥(𝑡), 𝑘𝑦(𝑡)) (5-1) 

where 𝑀⊥,n(𝑡) represents the complex transverse magnetization at time 𝑡. 

This expression can be written as: 

𝑆𝑛(𝑡) = 𝑀⊥,𝑛(𝑡) ∙ 𝑃𝑛(𝑡) (5-2) 

The time domain signal S(t), acquired from the whole object, is then the sum 

of the signals from each spin group.  

S(t) =∑M⊥,𝑖(t) ∙ Pi(t)

N

i=0

(5-3) 

The simulated image is obtained by applying a gridding operator 𝒢 to the 

simulated signal and applying the inverse Fourier transform as follows: 
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Im(x, y) = ℱ−1{ 𝒢{S(t)} } (5-4) 

For this simulation, the spin dynamics of relaxation and off-resonance during 

the TSE sequences are modeled using a Bloch matrix formalism122,123. M⊥,𝑖(t) is 

generated from a Bloch simulation of a voxel with relaxation properties 

<T₁,T₂,∆B0,…>i corresponding to the ith partitioned spin density. To accurately 

model spin rephasing in forming the spin-echo, T2* is modeled using an 

ensemble of spin isochromats with a Lorentzian frequency spectrum to model 

intravoxel field inhomogeneities and reproduce T₂* effects. The frequency 

spectrum is parameterized as follows24,120: 

𝑀0(𝜔) =
2𝑇2

′

1 + [2𝜋𝑇2
′𝜔]2

(5-5) 

where  

1

𝑇2
∗ =

1

𝑇2
+
1

𝑇2
′ (5-6) 

Off-resonance is modeled in the Bloch equation simulator by multiplying the 

simulated transverse magnetization by a complex phasor: 

𝑀⊥,n(𝑡) = 𝑀⊥,n(𝑡) ∙ 𝑒
𝑖2𝜋∆𝜔(𝑡−𝑘𝑡𝐸𝑆𝑃) (5-7) 

where k is the current echo in the echo train. A diagrammatic representation of 

the simulation is shown in Figure 5-1.  
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Figure 5-1: Functional block diagram describing the simulation process, where the tissue property maps are 

input to yield an image. A Cartesian sampling scheme is shown here, but the simulation process for a spiral 
sampling scheme is identical with a NUFFT instead of an FFT, and with a different reconstruction process to 
for the double encoded data.  

Digital Phantoms 

A set of digital phantoms was designed to mimic conditions of in-bore MR 

guided prostate biopsy that include T1, T2, T2*, and off-resonance effects, as 

shown in Figure 5-2. Bloch equation simulations as described above were used 

to generate images from these digital phantoms.  
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Figure 5-2: Set of phantoms used in simulation, with the top row showing T2 relaxation maps and the bottom row 
showing off-resonance maps. (Left and Middle Left) In the “TZ” and “PZ” phantoms, the T₂ of lesions are varied in each 
radial projection. The T₂ values span the range of average T₂ values for either transition zone or peripheral zone to 
±3𝜎. Background has relaxation properties that mimic healthy tissue. (Middle Right) An off-resonance phantom was 
designed with constant relaxation properties in each area corresponding to the average relaxation properties of a 
peripheral zone lesion. The off-resonance offset of lesions in each radial projection were varied (0Hz,20Hz,40Hz) in 
addition to the off-resonance of the healthy tissue background (0Hz, 50Hz, 100Hz, 200Hz) (Right) A phantom designed 
to mimic in vivo conditions, including off-resonance from adjacent non-prostate tissue. The outer ring is set to the off-
resonance frequency and apparent relaxation properties of fat at 3T (T1 = 400, T2 = 200, 440Hz) and the inner circle is 
set to an off-resonance frequency and relaxation properties to mimic rectal wall (T1 = 2000, T2 = 100, 110Hz). See 
Error! Reference source not found. for relaxation parameters for individual lesions and the healthy background.  

The first two digital phantoms imitate lesions found in the transition zone and 

peripheral zone of the prostate. These phantoms are referred to as the “TZ 

phantom” and the “PZ phantom,” respectively. Lesions are mimicked as circles 

embedded in a matrix with relaxation properties reflecting healthy prostatic 

tissue. Lesion T2 is varied over three standard deviations of previously measured 

T2 values and lesion size is varied from 1mm to 10mm in radius124,125. Variable T2 

values are used to compare the effects of T2-decay induced signal modulation. 

The third phantom mimics imaging in the presence of mild to moderate off-

resonance sources such as main field inhomogeneity. Off-resonance values are 

assigned to the lesions and the surrounding healthy tissue. The resonance 



95 
 

frequency offsets used spanned those typically found in the peripheral zone (0-

200Hz) either due to main field inhomogeneity or susceptibility from rectal gas126. 

In this phantom, the lesions range in size from 1mm to 10mm and with T1 = 

1650ms and T2 = 56ms, mimicking relaxation properties of cancerous peripheral 

zone lesions. This phantom is referred to as the “PZ + off-resonance phantom”. 

The fourth phantom mimics large sources of off-resonance due to rectal gas and 

fat, which primarily impacts the peripheral zone and overall image quality. 

Lesions were placed in a matrix mimicking the peripheral zone, with a central 

region of rectal wall (∆𝜔 = 110𝐻𝑧) and surrounded by an outer region of fat 

(∆𝜔 = 440𝐻𝑧). This phantom is referred to as the “PZ + fat/gas phantom”.  

Table 5-1: Relaxation properties of prostate lesions modeled in digital phantoms shown as binary pairs of [T1, T2]. The 
properties of sector 6, which corresponds to the 3 o’clock position on the digital phantoms, are the average relaxation 
properties of prostatic lesions in the transition and peripheral zones. Note, as mentioned previously, the T₂* is set to 
T₂/2.  

The values for T1, T2, and off resonance assigned to each of the spaces 

for the four digital phantoms are enumerated in 
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Table 5-1. Literature describing 𝑇2
∗ properties of the prostate127–129 is sparse, so 

𝑇2
∗ was approximated to be equal to 

𝑇2

2
 based on published values of quantitative 

𝑇2
130–135 and 𝑇2

∗128 measurements and to enforce 𝑇2
∗  < 𝑇2 for all tissues.  

Simulation Parameters 

For both Cartesian TSE and spiral TSE, the following sequence parameters 

were held constant: TR = 4000ms, FOV = 400mm, Resolution = 1.04mm x 

1.04mm (matrix size 384x384). The excitation flip angle was 90 degrees, and the 

refocusing flip angle was 180 degrees. The TE used for Cartesian TSE was 

100ms. Spiral TSE has a variable effective TE dependent on both echo train 

length (ETL) and echo spacing (ESP) and thus this parameter was not held 

constant. ETL was varied between 8 and 64 in steps of 8, ESP was varied from 

5ms to 20ms in steps of 3ms, and the acceleration factor (R) is varied between 1, 

2, and 3. In addition, for Cartesian TSE, the Partial Fourier Factor (PFF) was 

selected from the following: [
9

16
,  
3

4
, 1]. In addition to this parameter space, single-

shot Cartesian TSE sequences acquired in one TR (4s) were included by 
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removing ETL constraints; these sequences are referred to as HASTE-type 

sequences. The maximum echo train length of these sequences was equal to the 

matrix size (384) and had a PFF = 1 and R = 1. The minimum echo train length 

of these HASTE sequences was 72 and had a PFF = 9 16⁄  and R = 3. 

Combinations of sequence parameters that were unfeasible due to hardware 

limitations were excluded.  

Within this parameter space is the Cartesian TSE sequence that resembles 

clinical sequences used now in prostate biopsy (ETL = 16, ESP = 8, R = 1, PFF 

= 1, Tacq = 96s); this sequence is used as a gold-standard for comparison of 

other accelerated sequences. This sequence parameter space enables 

simulations of Cartesian sequences with total acquisition times of 4s, 8s, 16s, 

24s, 32s, 48s, 64s, and 96s and spiral sequences with acquisition times of 4s, 

8s, 16s, 24s, 32s, 56s, and 112s.  

Spiral TSE 

To simultaneously mitigate T2-decay-induced spiral artifacts and off-

resonance artifacts while minimizing reconstruction and acquisition overhead, a 

modified double encoding strategy, outlined in Figure 5-3, is used. Here a second 

acquisition with both a reversed view order as demonstrated in Li et al106 and 

redundant trajectory retracing as demonstrated in Fielden and Meyer136 is 

collected. This scheme simultaneously mitigates artifacts due to T2-decay-

induced signal modulation and off-resonance without additional B0 maps, 

although the acquisition time is doubled compared to uncorrected spiral TSE 

sequences. 
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Figure 5-3: The view order and sampling directions of the first and second acquisitions of the corrected spiral TSE 
acquisition. (Left) In the first acquisition, each spiral arm is sampled in the numerical order indicated by both the 
number and color. The direction that the spiral trajectory traverses during the readout is indicated by the colored 
arrows. Lines that are left uncollected that will be reconstructed are dotted, in this case for R=3. (Right) During the 
second acquisition, each interleaf is retraced but with a reversed view order and readout direction (indicated by the 
arrows and r designation) 

A spiral in/out trajectory was designed in consideration of the modified double 

encoding strategy and the requirements suggested for the redundant trajectory 

retracing to mitigate off-resonance artifacts. The redundant trajectory retracing 

causes a cosine amplitude modulation over k-space, dependent on the amount 

of phase accumulated over the readout due to off-resonance. Given that the total 

phase accumulated over the readout is less than 𝜋, the resulting cosine 

amplitude modulation leads to a mild attenuation of high-frequency components 

and corresponding image blur. Further reduction of the accumulated phase, such 

as by shortening the readout duration, reduces the degree of attenuation and 

associated blurring. However, to cover k-space with shorter duration spirals 

would requires a larger number of interleaves which would contribute to longer 

acquisition times. Given that off-resonance values in the prostate are rarely 

greater than 100Hz126 a maximum readout time of 5ms was used as a constraint 

to design a spiral in/out trajectory with 108 interleaves and a readout duration of 
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3.23ms for a field of view of 400mm2 and an in plane resolution of 1.04mm x 

1.04mm.  

Reconstruction 

Simulated partial Fourier Cartesian TSE data were reconstructed with 

projection over convex sets algorithm137 and FFT. Simulated spiral TSE data 

were reconstructed with algorithms described in Li et al138 and Fielden and 

Meyer136 for corrections using modified doubled encoding strategy, then 

transformed to an image using NUFFT. No additional off-resonance corrections 

were applied during reconstruction. It was assumed that undersampled 

acquisitions would be reconstructed without additional noise or artifacts in order 

to focus on the selection of sequence parameters; thus uncollected lines were 

filled with simulated data. 

Image Quality 

Quantitative image quality metrics of image sharpness, contrast, and artifact 

power were used to compare the performance of each set of sequence 

parameters. Image sharpness was measured as the 10%-90% rise time of lesion 

edges from healthy tissue to lesion tissue and is expressed as a percent ratio 

relative to the gold standard. Image sharpness was measured in eight radially 

symmetric line profiles through the lesion edge for each lesion and then 

averaged to obtain an overall image sharpness metric for the entire image. 

Contrast was measured as the ratio between mean lesion signal and mean 

healthy tissue signal. Prior to calculating the contrast metrics, each image was 

windowed and leveled such that the relative signal intensity of the healthy tissue 
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background and largest lesion with average T2 was similar across all simulations. 

The measured contrast is expressed as a percent ratio relative to the gold 

standard and averaged over every lesion to obtain an overall contrast metric for 

the image. Contrast was only assessed in the TZ and PZ phantoms, as only 

these phantoms had variable lesion relaxation values. Artifact power was 

measured as the Shannon entropy139 of the healthy tissue regions of the image. 

The histogram of the healthy region grayscale pixel intensities is generated from 

256 bins and the Shannon entropy is calculated as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑𝑝(𝑖) 𝑙𝑜𝑔 𝑝(𝑖) 

where 𝑝(𝑖) is the relative frequency of the 𝑖𝑡ℎ bin. Healthy tissue regions of the 

four phantoms used in this study were designed to have a constant signal 

magnitude and thus zero entropy, and thus a non-zero entropy measurement in 

the healthy tissue region can be attributed to image artifacts. Due to expected 

contrast differences between sequences, artifact power was not quantified in 

lesion tissue. An overall artifact power metric is expressed as a percent ratio 

relative to the measured gold standard artifact power. The overall image quality 

score for each sequence is the average of the image sharpness, contrast, and 

artifact power metrics over all tested phantoms. 

5.3: Results 

In Figure 5-4 and Figure 5-5, images from the sequences with the lowest 

image quality score (indicating the best overall images) for each acquisition time 

are shown for each phantom variant for both Cartesian and spiral sampling 

trajectories. Highly accelerated Cartesian TSE images have reduced edge 
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sharpness around the lesions and ringing artifacts. At acquisition times of 16s 

and greater, Cartesian TSE images appear comparable to the gold standard 

images. In contrast, images simulated with accelerated spiral TSE sequences 

have swirl-like artifacts within lesions and streaking artifacts across the field of 

view. These artifacts are reduced when using an acquisition time of at least 16s, 

but some residual artifacts remain resulting in variable image intensity in the 

healthy tissue regions.  

 

Figure 5-4: Zoomed image of simulated Cartesian and spiral TSE images of sequences with best image quality 
performance, determined by lowest image quality score, in both the transition zone phantom (Top) and peripheral 
zone phantom (Bottom). Right to left is the phase encoding direction for the Cartesian sequences. Sequence 
parameters can be found in Table 5-2. Cartesian sequences show blurring and ringing in the phase encoding direction 
due to T2 decay over k-space with reduced acquisition time. In spiral imaging, T2-decay induced “swirl” artifacts 
worsen with reduced acquisition time. These T2-decay effects can be seen to worsen in the transition zone which has 
lower lesion T2 values and in darker lesions which have lower T2.  
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Figure 5-5: Images generated using the PZ + off-resonance and PZ + fat/gas phantoms. Right to left is the phase 
encoding direction for the Cartesian sequences. (Top) Zoomed portion of peripheral zone in the off-resonance 
phantom. In this portion of the phantom, the lesion off-resonance is set to 40Hz, and the background off resonance 
increases clockwise from 0Hz, 50Hz, 100Hz, 200Hz. Cartesian sequences show mild chemical shift artifacts in the read-
out direction. Spiral TSE sequences show similar image quality despite further reduction of acquisition time, except at 
a 4s acquisition time where considerable streaking artifacts reduce lesion and lesion edge visibility. (Bottom) Zoomed 
portion of peripheral zone with fat/gas phantom. Larger off-resonance values in due to fat and rectal gas lead to 
larger chemical shift artifacts in both Cartesian and spiral acquisitions, though Cartesian image artifacts are mild 
relative to spiral TSE. 

The image contrast between lesions and the healthy tissue background in the 

TZ and PZ phantoms is shown relative to the gold standard sequence in Figure 

5-6. Spiral TSE has an altered contrast profile over the span of lesion T2 values 

in both the TZ and PZ phantoms. When using an acquisition time of 16s, spiral 

TSE in the TZ and PZ phantoms shows increased contrast in lesions with T2 

values below the average lesion T2 (TZ - 36ms, PZ – 56ms). Cartesian TSE, 

when using the same acquisition time of 16s, has comparable contrast to the 
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gold standard with less than a 1% difference in lesion contrast over the lesion T2 

range. With Tacq < 16s, differences between spiral TSE and the gold standard 

have no discernable pattern while differences in Cartesian TSE have lower 

contrast at low T2 values. However, for highly accelerated sequences, spiral TSE 

has greater image contrast when averaged over the lesion T2 range compared to 

both Cartesian TSE at equivalent acquisition time and the gold standard 

sequence.  

   

Figure 5-6: Contrast between lesion and healthy tissue background for the best image quality performance (e.g. lowest 
image quality score) by acquisition time relative to the gold standard sequence (% contrast = 100). A relative contrast 
measurement of 100% indicates that the contrast of the accelerated scan is equivalent to that of the gold-standard; 
values greater than 100% indicate that the contrast between that lesion and the background is lower than the gold 
standard. Conversely, contrast values less than 100% indicate that the contrast between the lesion and background is 
superior to the gold standard (Left) In transition zone phantom, images collected using spiral TSE with acquisition 
times of 24 and 16s have a higher contrast in low T2 lesions compared to the gold standard sequence; Cartesian 
acquisitions lead to lower contrast for lower T2 value lesions for these acquisition times. At lower acquisition times, 
spiral TSE does not have a predictable contrast pattern due to T2-decay spiral artifacts within the lesions. (Right) In the 
peripheral zone phantom, spiral TSE has consistently greater contrast over the lesion T2 range than both Cartesian TSE 
sequences collected at similar acquisition time and the gold standard Cartesian sequence.  
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The image sharpness relative to the gold-standard image is shown in Figure 

5-7 for the sequences with the best image quality performance (e.g. lowest 

image quality score) at each acquisition time for both Cartesian and spiral 

sampling trajectories; a value greater than 100% suggests that the measured rise 

time at lesion edges was larger than in the gold standard on average, and the 

image is thus less sharp than the gold standard. As the acquisition time 

decreases, image sharpness for both Cartesian and spiral sampling trajectories 

also decreases in every phantom variant. The reduced image sharpness is most 

significant in the TZ phantom, where the average rise time of a lesion edge of a 

Cartesian TSE sequence acquired in 4s was 76% longer relative to the gold 

standard. Cartesian TSE acquired in 24s has modest reduction in image 

sharpness across all phantom variants, with a 4.9% increase in average rise time 

at lesion edges. In the PZ and PZ + Off-resonance phantoms, not only did spiral 

TSE had shorter measured rise time compared to Cartesian TSE with similar 

acquisition times, but spiral TSE at acquisition times of 8s and greater also had 

shorter measured rise time relative to the gold standard. However, using an 

acquisition time of 16s results in images with comparable image sharpness to the 

gold-standard. In contrast, images generated using Cartesian TSE have longer 

measured lesion edge rise time at shorter acquisition times, although images 

acquired in 24s or more have comparable sharpness to the gold standard 

images. In the PZ + fat/gas phantom, while Cartesian TSE had a similar pattern 

of decreased image sharpness at an acquisition time of 8s to the other peripheral 

zone phantoms, spiral TSE had additional artifacts due to high off-resonance 
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sources resulting in decreased measured image sharpness, which was lower 

than Cartesian TSE except at an 8s acquisition time.  

 

Figure 5-7: Measured image sharpness and artifact power for sequence parameters with the best image quality 
performance (e.g. lowest image quality score) at each acquisition time relative to the gold standard sequence (% 
difference = 100). Lower values indicate greater image quality for both image sharpness and artifact power. (Left) In 
the PZ and PZ+Off-resonance phantom, spiral TSE has superior image sharpness compared to Cartesian TSE. Image 
sharpness in the TZ phantom is comparable between Cartesian and spiral TSE. Lesions in the PZ + Fat/Gas phantom 
are close to off-resonance sources that result in chemical shift; the resulting artifact results in larger rise time 
measurement due to difficulty of distinguishing lesion edges with healthy tissue or artifacts. (Right) Spiral TSE has 
increased artifact power compared to Cartesian TSE over all acquisition times and phantom variants. 

Figure 5-7 also shows changes in measured artifact power resulting from 

reduced acquisition times. Spiral TSE has higher artifact power for every 
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phantom variant at all acquisition times compared to Cartesian TSE. Both spiral 

and Cartesian TSE have sharp increases in artifact power relative to the gold 

standard sequence at an acquisition time of 8s in the TZ and PZ phantoms, and 

at an acquisition time of 4s in the PZ + Fat/Gas phantoms. In the PZ + Off-

resonance phantom, artifact power in the Cartesian TSE sequences are not 

associated with acquisition time. For all phantoms, artifact power in spiral TSE is 

much larger than Cartesian TSE.  

 

Figure 5-8: Overall image quality metrics for sequences with the best image quality performance (e.g. lowest image 
quality score) at each acquisition time relative to the gold standard sequence (% difference = 100). Gold standard 
corresponds to point on Cartesian graphs at a Tacq = 96s. Lower image quality metric values correspond to greater 
image quality. For all image quality metrics, reducing the acquisition time results in a rapid rise in image quality 
metrics and correspondingly lower image quality. In the 16s-24s acquisition time regime, both Cartesian and spiral TSE 
sequences have comparable image quality to longer counterparts. (Top Left) Spiral TSE has better contrast than 
Cartesian TSE, including the gold standard over the entire acquisition time range. (Top Right) Cartesian TSE and Spiral 
TSE have comparable image sharpness, with spiral TSE having sharper images at lower acquisition times where 
Cartesian TSE has considerably longer echo train lengths that contribute to blur. (Bottom Left) Spiral TSE has greater 
artifact power than Cartesian TSE over the entire acquisition time range. (Bottom Right) Based on the image quality 
score metric in this work, overall performance of Cartesian TSE is superior over the entire acquisition time range.  
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In Figure 5-8, the overall image quality metrics of sequences with the best 

image quality performance at each acquisition time are shown. The overall image 

quality score, which is the product of each of the averaged relative image quality 

metrics, indicates that the acquisition time for Cartesian TSE can be reduced to 

24s while maintaining image quality comparable to the gold standard. Further 

reducing acquisition time to 16s leads to only a 7% increase in image quality 

score. Despite the higher contrast and image sharpness compared to the gold-

standard, images collected with spiral TSE have an overall lower image quality 

compared to the gold standard at all acquisition times due to significant artifact 

power. 

The sequence parameters of the best performing sequences at acquisition 

times of 4s, 8s, 16s, 24s are shown in Table 5-2, with their corresponding image 

quality metrics relative to the gold standard sequence. For Cartesian TSE, the 

best performing sequences generally had the shortest possible echo train length 

for each acquisition time without partial Fourier acquisition, as partial Fourier 

acquisitions lead to higher artifact power. For an acquisition time of 4s, using 

partial Fourier acquisition to reduce echo train length improved the measured 

image sharpness at the cost of additional artifact power that resulted in an overall 

reduction in image quality score. At an acquisition time of 24s, the total image 

quality score for the best performing Cartesian TSE sequence is 1, which is 

equivalent to the gold standard. For spiral TSE, reducing the ETL was also the 

best strategy to achieve the best image quality for a given acquisition time. Spiral 



108 
 

TSE sequences that have been corrected by the modified double encoding 

strategy had a higher level of performance compared to uncorrected spirals.  

 

Table 5-2: Sequence parameters for the top three performing accelerated sequences at different acquisition times. 
Image quality metrics for each sequence parameter set are also shown for image contrast (CON), image sharpness 
(IS), artifact power (AP), and overall image quality score (Score). Image quality metrics are relative to the gold 
standard, with measured values less than one indicating greater image quality performance than the gold standard. 
Best performing sequences in each acquisition time category are typically those with the shortest echo train length, 
though partial Fourier acquisition leads to an increase in artifact power that does not provide a sufficient benefit 
except at long echo train lengths at acquisition times of 4s and 8s.  

5.4: Discussion 

In this work, different options for rapid collection of T2-weighted images were 

assessed in simulation, with examples for the specific application of in-bore 

prostate biopsy. Based on the results these simulations, it may be possible to 

accelerate T2-weighted imaging for prostate biopsy from current times of 96s to 

24s without significant degradation in image quality. 

Image contrast is one of the largest sources of value provided by MRI for 

image-guided intervention, such as prostate biopsy, and thus is a key image 

quality metric for fast imaging sequences. In contrast to Cartesian TSE, where 

view ordering can be used to control the contrast in the final image, each shot in 
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spiral TSE contributes to the overall image contrast. It was previously reported 

that this effect leads to improved contrast in the brain106. In the prostate, spiral 

TSE does have higher image contrast between lesions and background tissue 

compared to Cartesian TSE sequences collected at similar acquisition times, and 

often has greater contrast than the gold standard at many acquisition times and 

for many lesion T2 values (Figure 5-6). However, the improvement in contrast is 

small, and is, on average, 2% higher than the gold standard. Compared to GRE 

sequences140,141, which have considerably altered contrast that prevents 

visualization of most prostate lesions, spiral TSE provides excellent tissue 

contrast that is comparable to Cartesian TSE. 

T2-decay-induced signal modulation is source of artifacts in TSE sequences 

that has ramifications for image quality in both Cartesian and spiral TSE. The 

primary source of blur in Cartesian TSE is T2-decay, which causes significant 

loss of image sharpness in the transition zone due to lower lesion T2 values. In 

Cartesian TSE, the view order of phase encoding lines typically places later 

echoes in the periphery of k-space, which results in an attenuation of high-

frequency signals. This leads to a non-uniform apodization effect along the phase 

encoding direction, resulting in blurring dependent on T2 (Figure 5-9). Thus, 

sequences with minimized echo train lengths, which reduces T2-decay over k-

space, have the best performance in terms of image sharpness. Another impact 

of T2-decay in Cartesian TSE images is the so-called pseudo-edge enhancement 

artifact. Due to a widening of the point spread function, constructive signal 

interference at edges between tissues with considerably different T2 values can 
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form a bright edge. For prostatic lesions, this effect was observed primarily in 

transition zone lesions with T2 values of less than 27ms. These lesions would be 

relatively rare in practice, so this artifact should not impact image quality in most 

cases. 

 

Figure 5-9: Figure showing simulated blur in the image domain due to T2 decay over the phase encoding direction. 
Echo train duration refers to the echo train length multiplied by the echo spacing. As the amount of T2 decay decreases 
(going down), the point spread function narrows and image sharpness is improved. 

In comparison to Cartesian TSE, T2-decay induced signal modulation in spiral 

TSE results in low signal intensity contributions from interleaves collected at later 

echo times, reducing signal throughout k-space. A spiral undersampling analogy 

can be used to explain this phenomenon, where low signal interleaves are 

analogous to uncollected lines and produce aliasing-like artifacts. With correction 

from the modified double encoding strategy, these T2-decay artifacts are 

noticeably reduced but not fully eliminated, leading to ringing-like artifacts that 

reduce contrast and increasing artifact power. However, unlike Cartesian TSE, 
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T2-decay effects do not cause significant blurring. This is a potential trade-off 

between the two sampling trajectories that should be considered for prostate 

biopsy, in particularly for small lesions where improved image sharpness can 

increase targeting accuracy.  

T2-decay effects in Cartesian and spiral TSE both result in image changes 

that can also impact image contrast. At short acquisition times of 4s and 8s, 

blurring and ringing artifacts in Cartesian TSE resulted in an increase in lesion 

brightness at low T2 values in both the TZ and PZ phantoms (Figure 5-4) that led 

to a measurable reduction in image contrast relative to the gold standard (Figure 

5-6). Similarly, T2-decay induced spiral artifacts in spiral TSE within the lesions 

resulted in a measured reduction in lesion contrast. 

Pelvic imaging has several sources of off-resonance and chemical shift which 

can cause artifacts that degrade image quality. Compared to Cartesian TSE, off-

resonance effects present a major challenge for spiral imaging, as the longer 

readout leads to an increase in phase accumulation compared to Cartesian 

acquisitions. Off-resonance and chemical shift effects in Cartesian TSE manifest 

as pixelwise shifts in the frequency encoding direction, leading to characteristic 

bright and dark bands due to signal overlap between shifted off-resonant tissue 

and unshifted tissue with sufficiently large chemical shifts, and partial volume 

effects with small off-resonance values leading to mild loss of edge sharpness. In 

spiral TSE, off-resonance artifacts appear as radially symmetric chemical shift 

artifacts (Figure 5-5). Off-resonance effects can also cause streaks and signal 

dropout in non-Cartesian imaging due to partial phase cancellations during 
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gridding. With the modified double encoding strategy presented in this work, and 

a short spiral readout of 3.23ms, small off-resonant shifts up to 155Hz are 

reduced and instead cause mild blurring. In the PZ + off-resonance phantom, the 

blurring caused by this effect had a smaller impact on measured average image 

sharpness than the chemical shift artifacts that occurred with Cartesian TSE. 

However, at higher off-resonance values, spiral TSE exhibits considerable 

ringing and blurring artifacts as observed in the PZ + Fat/Gas phantom. While 

these artifacts would normally occur outside the prostate region, additional B0 

correction could potentially improve overall image quality.  

 

Figure 5-10: PZ phantom simulated using a Cartesian TSE sequence with ETL = 24, ESP = 5, and R = 3 with varying 
partial Fourier factor. Partial Fourier factor of 1 is fully sampled. As the partial Fourier factor decreases, the individual 
lesions appear blurrier and additional ringing artifacts appear.  

Based on the results of this work, it may be possible to reduce the time 

needed to collect T2-weighted images for in-bore MR-guided prostate biopsy from 

96s to 24s without a significant reduction in image quality by using a higher 

acceleration factor and echo train length with a Cartesian sampling trajectory. 

While spiral TSE does not perform as well as Cartesian TSE, other corrections 

such as off-resonance corrections or a KWIC filter may reduce artifact power and 

make spiral TSE an appealing choice for acceleration. The simulated data also 

indicates that the single-shot sequences examined as part of this work, HASTE 
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and uncorrected spiral TSE, considerably degrade image quality. HASTE 

sequences have poor image sharpness as measured in Figure 5-7 and appear 

visually blurry in both the transition and peripheral zone, as seen in Figure 5-4. 

Partial Fourier acquisition decreases blur but leads to additional artifacts, even 

after applying the POCS reconstruction, that lead to an overall decrease in image 

quality based on the image quality metrics presented in this work (Figure 5-10). 

However, for large lesions where blur and lesion visibility are less of a concern, 

HASTE may be suitable for image guidance. When targeting smaller lesions, 

Cartesian TSE with longer acquisition time should be used to resolve smaller 

targets with minimal blur (Figure 5-7). Single-shot spiral TSE without corrections 

has significant image artifacts that not only obscure small lesions (Figure 5-4) but 

lead to streaks over the whole field-of-view (Figure 5-5) in the presence of off-

resonance. Thus, spiral TSE requires corrections to mitigate these artifacts and 

prevent degradation of image quality. With corrections applied with the modified 

double encoding strategy, single-shot spiral TSE has an acquisition time of 8s. In 

comparison with Cartesian TSE collected in the same acquisition time, single-

shot spiral TSE with corrections has higher image sharpness and contrast but 

comes with nearly twice as much artifact power. While spiral TSE does perform 

worse overall compared to Cartesian TSE, improved image sharpness and 

contrast provided by spiral TSE may be useful for targeting small, intermediate 

grade lesions.  

Reducing the acquisition time of T2-weighted imaging could greatly improve 

imaging efficiency during in-bore MR-guided prostate biopsy procedures. Faster 
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imaging can impact clinical workflow for prostate biopsy by reducing visual 

feedback latency and enabling use of procedure robotics. Most importantly, with 

faster imaging and thus faster MR-guided biopsy procedures, the MR scanner 

can be made available for a larger volume of patients, increasing accessibility to 

the highest sensitivity and specificity biopsy technique for prostate cancer142.  

This work has several limitations. Due to highly variable pelvic anatomy and 

presentation of prostate lesions on imaging, a single anatomically correct 

phantom model may be representative of only a narrow slice of the potential 

patient population, and as a result, more generalized uniformly shaped phantoms 

were designed to be agnostic to individual variation. However, the combination of 

image quality metrics from these digital phantoms to obtain an overall score is 

subjective and dependent on the needs of application that is to be optimized. 

Other clinical applications may value specific image quality characteristics such 

as contrast, and certain designed digital phantoms may more closely replicate 

the use case of the technology being optimized. Thus, different weighting factors 

could be applied to calculating the mean imaging metrics or even to determine 

the contributions of individual digital phantoms for a given use-case.  

In addition, the reconstruction of accelerated datasets (R=2 and R=3) was 

assumed to be ideal and was not explicitly modeled. In reality, accelerated 

images would suffer from a loss in SNR, along with other reconstruction-induced 

artifacts. Noise was also not modeled in simulation, and the performance of 

different sequences at different noise levels was not considered. While the digital 

phantoms used in this study were designed to be proxies for in vivo prostate 
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biopsy, no anatomically correct model was designed. Furthermore, in vivo data 

were not collected to confirm the sequence assessments in this work.  

One aspect of TSE not addressed in this study is the impact of refocusing flip 

angle. By modeling all refocusing pulses as ideal 180-degree flip angles, the 

effects of stimulated echoes, which add additional T1 contrast, are mitigated. 

However, low flip angle and variable flip angle schemes can reduce the total 

signal variation due to T2-decay over the echo train, reducing blur at the cost of 

altering contrast. In Cartesian TSE in particular, variable flip angle schemes like 

smooth transitions between pseudo steady states (TRAPS)143 could be used to 

reduce blurring by flattening the T2-decay-induced apodization filter over k-space. 

Other variable flip angle schemes143,144 can be designed to reach a steady state, 

which could eliminate T2 decay from both Cartesian TSE and spiral TSE. 

Alternatively, reduction of the read-out time could be achieved by using different 

trajectory designs such as a variable density spiral33 or WHIRL34 which may 

prove to be more suited for prostate applications due to the prevalence of off-

resonance sources. 

5.5: Conclusion 

In this work, a simulation study was performed over a range of sequence 

parameters for accelerated T2-weighted imaging, specifically for use in in-bore 

MR-guided prostate biopsy. Based on the results of this simulation, the 

acquisition time of the 96s Cartesian TSE sequence currently used for guidance 

imaging could be reduced to 24s without degradation in image quality; a 

reduction of the acquisition time further to 16s may be possible with a minor 
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reduction in image quality. While spiral TSE was demonstrated to have higher 

image sharpness and contrast characteristics compared to Cartesian TSE, these 

acquisitions lead to additional artifacts that reduced their performance in the 

simulated prostate biopsy setting.  
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Chapter 6 Conclusions and Future Directions 
 

6.1: Summary 

In this thesis, several approaches to optimize MR imaging for clinical 

applications by identifying a clinical aspect of imaging that needed improvement 

and optimizing towards that goal.  

First in chapter 3, fast cardiac CINE imaging using through-time radial 

GRAPPA was optimized using coil compression and weight sharing to reduce 

both acquisition and reconstruction time by leveraging a data compression to 

minimize required ACS data and local k-space geometry to share GRAPPA 

weights. Optimized parameters for coil compression and weight sharing applied 

to reconstructions enables 66ms/frame temporal resolution and 2.34mm x 

2.34mm spatial resolution while reducing calibration acquisition time from 34s to 

6.7s, weight calculation time from 200s to 3s, and weight application time 18s to 

5s. These optimizations applied to through-time radial GRAPPA enables fast 

free-breathing ungated cardiac cine in a clinically feasible timeframe without 

compromising image quality.  

In chapter 4, cardiac MRF dictionary simulation was optimized and 

implemented online via the Gadgetron framework. In phantom experiments, there 

are no significant differences in T1 or T2 measurements between the Gadgetron-

based and offline MATLAB reconstructions. In vivo Tissue property maps 

showed no statistically significant difference between the two reconstructions in 

the myocardium or blood. The Gadgetron implementation reduced the total 

reconstruction time by 64% from 62.5s to 22.5s, and has the additional benefit of 
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providing the tissue property maps directly at the scanner. The Gadgetron 

implementation of cMRF yields accurate quantitative myocardial T1 and T2 maps 

while eliminating data transfer overhead by processing raw data and outputting 

maps directly to clinical MR systems, which improves clinical workflow and 

efficiency. 

Finally in Chapter 5, a spiral TSE acquisition with a double encoding strategy 

to mitigate T2-decay and off-resonance effects was proposed as a fast-imaging 

candidate for MR-guided in-gantry prostate biopsy. The proposed spiral TSE 

acquisition was compared to currently used Cartesian TSE on an image quality 

per unit acquisition time basis via simulations. Spiral TSE was shown to have 

better blur performance from T2-decay effects compared to Cartesian TSE but 

had poor image quality in the presence of strong off-resonance sources like fat or 

gas. Off-resonance artifact mitigation from the proposed double encoding 

strategy did reduce both T2-decay based swirl artifacts and off-resonance 

blurring but can be improved by additional B0 correction in the future. Further 

optimizations of both Cartesian and spiral TSE may be possible using 

compressed sensing or machine learning reconstructions.  

6.2: Future Directions 

Exploration of other Non-Cartesian Trajectories for TSE 

One pitfall of the spiral TSE approach is the sensitivity to off-resonance 

effects that results from long readout times. While long readout times can be 

reduced by increasing the number of spiral interleaves, this approach minimizes 

the acquisition time benefits from reducing the number of phase encoding steps. 
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Other sampling approaches that can reduce readout time may have fewer 

imaging artifacts while retaining fast acquisition time. At one extreme, radial TSE 

uses many projections with minimized readout duration comparable to Cartesian 

TSE. In addition, radial GRAPPA is more robust to higher acceleration factors 

which may mitigate the increased number of phase encoding steps required for 

projection imaging. However, the radial trajectory repeatedly samples the center 

of k-space leading to contrast mixing and artifacts associated with T2-decay. 

Usage of a k-space weighted image convolution filter (KWIC) to eliminate 

contrast mixing from echoes collected away from the intended effective TE can 

potentially mitigate this effect but comes at the cost of scan efficiency, as 

collected data must be thrown out. An intermediary trajectory between spiral and 

radial sampling is the WHIRL trajectory34 which increases the acquisition speed 

and improves the off-resonance properties of a spiral, but improvements are 

likely to be modest at best. At the other extreme, a single interleaf spiral sampling 

scheme can be performed by segmenting the spiral into a series of equal 

duration spiral segments and acquiring data at each echo with a different 

segment145. This approach has the advantage of solving the contrast mixing 

problem at the center of k-space for non-Cartesian TSE, as the center of k-space 

is sampled only with the central segment of the segmented spiral interleaf. 

However, this approach lacks compatibility with non-Cartesian GRAPPA as any 

under sampling would be non-uniform. In addition, phase errors due to off-

resonance can introduce additional artifacts. Parallel imaging with compressed 

sensing may be one way to enable further acceleration.  
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Low field sequence optimization for prostate intervention 

Another approach to minimize off-resonance artifacts is to optimize spiral TSE 

for low field systems. Off resonance frequencies are directly proportional to B0 

field strength, and low-field systems can minimize the maximum off-resonance in 

a sequence which can minimize blur and chemical shift artifacts due to fat and 

gas. Not only would one of the major disadvantages of spiral imaging, namely it’s 

sensitivity to off-resonance effects, be minimized at lower field, but longer spiral 

readouts reducing the number of interleaves and further accelerating acquisition. 

However, low field imaging also provides less SNR, which is particularly 

problematic in prostate MRI which is often performed at 3T to maximize signal 

and enable the use of external pelvic coils rather than an endo-rectal coil. With 

sufficient acquisition speed, SNR could potentially be recovered by acquiring 

additional averages.   

Variable flip angle sequences  

Variable flip angle sequences and smooth transitions between pseudo steady 

states (TRAPS) are both TSE flip angle trains that could provide better contrast 

and fewer artifacts in both Cartesian and non-Cartesian TSE sequences. 

Variable flip angle trains can be designed to read a pseudo steady state signal 

resulting in each echo having equal signal and not only allows spiral imaging 

without requiring a double encoding strategy to correct for swirl artifacts 

produced by T2-decay induced signal modulation but also enables longer echo 

train lengths without loss of signal. However, these sequences significantly alter 

the effective TE of TSE sequences, and further investigation is necessary to 
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determine if the contrast provided by variable flip angle TSE is sufficient to 

visualize prostatic lesions. TRAPS is another variable flip angle sequence that 

produces a temporary pseudo-steady state during which data could be acquired. 

In theory, TRAPS allows for even greater signal than pseudo-steady state 

variable flip angle schemes, and already has shown success in Cartesian 

imaging.  
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