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Data Driven Approaches for Dissecting Tumor
Heterogeneity

Abstract

by

ARDA DURMAZ

Molecular heterogeneity in cancer has been recognized as one of the main drivers of disease

relapse and drug resistance. In addition, effects of tumor-microenvironment have shown to

contribute to the diversity as well. Consequently, cancer research has aimed at generating

and utilizing inherently high-dimensional molecular datasets for the past decade to character-

ize tumors specifically with the development of ‘sequencing-by-synthesis’ Next-Generation

Sequencing (NGS) platforms. Large collections of high-dimensional multi-omics datasets

exemplified by TCGA and PCAWG, 1) elaborate on the heterogeneity of cancer progression

and 2) allow for increasingly complex models to be utilized. Respecting the black-box nature

of machine-learning driven models, here we develop multiple strategies to leverage molec-

ular information to delineate disease progression/mechanisms in Leukemia. Furthermore,

we show the requirement of careful selection of strategies in noisy scRNA-Seq datasets in

solid tumors and we propose an integrative model to investigate collateral drug-responses

in a pan-cancer fashion.

We present multiple strategies in two parts. First, we present a Bayesian Latent Class

Analysis to incorporate molecular information in a large cohort of (𝑛 = 2681) AML

patients with heterogeneous characteristic and generate novel unsupervised clusters with

clinical relevance. Furthermore, we utilize Autoencoder structure to develop distance-

based, low dimensional clustering model to group MDS patients (𝑛 = 3588) into 14 novel

xxv



groups. This approach allowed us to extract relevant features otherwise difficult to capture

with Bayesian strategies in noisy datasets. In the second part, we conduct a comprehensive

benchmarking study to evaluate the vast repository of methods developed for scRNA-Seq

analysis. We show, in contrast with the current practice, scRNA-Seq analysis is amenable

to variation and results, specifically unsupervised clustering, is of qualitative nature rather

than quantitative. Finally, borrowing from the power of complex neural-network based

models, we develop an integrative model to capture co-varying features of gene-expression

and mutation profiles of cell-lines and patient samples relevant to collateral drug response

profiles.
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Chapter 1

Introduction & Motivation
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2

C h a p t e r 1

INTRODUCTION & MOTIVATION

The inherent complexity of cancer both as a population of cells and as individual cells

results in cancer’s fascinating ability to adapt to environmental stress whether in the form of

resistance evolution, immune evasion or radiation resistance. In order to better understand

and consequently devise better treatment regimens and control the adaptation process, mod-

els ranging from purely theoretical to purely data-driven have been developed. However, the

heterogeneity of tumors, genetic and non-genetic, have hindered a one size fits all solution,

specifically in high-grade tumors both for solid tumors and leukemias. Single-cell se-

quencing technologies elaborated further on the ‘uniqueness’ of cancer and identified novel

mechanisms/cell populations driving this observed heterogeneity. This issue is further exac-

erbated by the high-dimensionality of biological processes. Fortunately, the exponentially

increasing availability of data in repositories and progress in the machine-learning (ML)

models have made cancer research amenable to increasingly complex integrative models.

Herein we apply multiple ML strategies in different settings and cancers to integrate these

high-dimensional heterogeneous processes to clinically amenable features. In part 1, for

Leukemia, we utilize sparse mutation profiles obtained from whole-exome sequencing as

binary inputs to cluster the patients in an unsupervised fashion via both a model based and

distance based approach (Fig.1.1). In contrast, in part 2, for solid tumors we use single-cell

RNA sequencing to model the variability in combinatorial analysis followed by multi-omics

integration for drug sensitivity prediction in a pan-cancer fashion using whole-transcriptome

and whole-exome datasets (Fig.1.2).



1.1 Current State of Genomic Classification in Myeloid Neoplasms

Figure 1.1: Datasets and analysis steps used in Leukemia. Peripheral blood and or bone-
marrow samples were in a targeted fashion. Obtained mutation profiles are binarized based
on frequency and quality threshold. Using these mutation profiles, unsupervised clustering
via consensus approach followed by clinical validation by time-to-event modeling was
performed.

Myeloid Neoplasms (MN) are a complex group of clonal diseases of the haematopoietic

system primarily characterized by morphological features and cytogenetic abnormalities.

Whole exome and genome sequencing studies have been performed for about a decade

and have shown a much higher level of mutational complexity compared to what was

previously known. Hotspot mutations in components of the RNA-splicing machinery
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(among the most frequent: PRPF8, SF3B1, SRSF2, U2AF1, ZRSR2) have been discovered;

however discovery of these mutations have not yet translated in clinical applicability. In

fact pharmacologic agents directed against such hotspot have failed in experimental clinical

trials [1, 2].

A large number of studies have instead focused on the description of mutations in master

transcription factors regulating the differentiation process from hematopoietic stem cells

(HSCs) to common myeloid/lymphoid progenitors (CMP/CLP) such as RUNX1 and GATA2.

However, the characterization of disease subtypes is complicated by possible clinically

relevant interactions in addition to the continuous nature of these clinical features. For

instance, blast percentage cut points have been used to distinguish myelodysplastic syndrome

(MDS) from acute myeloid leukemia (AML) with a threshold of 20% myeloblasts in bone

marrow or peripheral blood [3]. Similarly in chronic myeloid leukemia (CML) which is

primarily characterized by the BCR-ABL1 fusion, is further stratified as progressive/blast

phase (BP) depending on ≥ 20% myeloid blasts in blood or bone marrow, or the presence

of extramedullary proliferation of blasts where 20% cut-off is sub-optimally defined to

represent the BP. However a fixed blast percentage to distinguish both diseases is still a

debate in clinical practice.

In order to formally define distinct disease entities and classify patients according to diverse

cytogenetic and routine parameters, international efforts to build consistent scoring systems

have been deployed. This is the case of The European LeukemiaNet [4, 5] risk stratification

in Acute Myeloid Leukemia (AML), IPSS-R [6] which is further improved by incorporating

molecular information IPSS-M [7] in MDS. These efforts have been made towards to re-

definition of the World Health Organization (WHO) classification. In these new and latest

models, machine learning (ML) based unsupervised approaches have been incorporated [3,

8–10]. However, the heterogeneous nature of MN can lead to variability across the studies

regarding the subtypes identified dependent on the characteristic of the cohort, number

of patients and available genomic information. Hence robust, unsupervised, integrative
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approaches are required to delineate disease progression.

Here, we first briefly describe MN classifications currently adopted to further elaborate the

disease heterogeneity and then describe the ML approaches to 1) group AML patients based

on molecular features in a model driven framework and 2) using unsupervised dimension-

reduction to group MDS patients in an unbiased fashion.

1.1.1 Myeloproliferative Neoplasms

Myeloproliferative neoplasms (MPN) result in an increased production of functional ter-

minal hematopoietic cells and can be broadly categorized under 2 distinct classes; The

BCR-ABL1+ fusion which characterizes CML and the BCR-ABL1− cases which can be

further stratified into seven distinct disease entities; polycythaemia vera (PV), essential

thrombocythaemia (ET), primary myelofibriosis (PMF), chronic neutrophilic Leukemia

(CNL), chronic eosinophilic leukemia (CEL), juvenile myelomonocytic leukemia (JMML)

and not otherwise specified (NOS).

As said above, CML is driven by the BCR-ABL1+ fusion gene encoding an oncogene with

kinase activity which through multiple mechanisms leads to the transcription of BCL2 and

BCL2L1, increasing anti-apoptotic mechanisms [11]. Consequently, Imatinib, a tyrosine

kinase inhibitor (TKI) has been shown to be highly effective with a median overall survival

of 11 years [12]. In contrast, BCR-ABL1− MPN stratification is largely characterized by

morphological criteria. For instance, major criteria for PV include hemoglobin ≥ 16.5𝑔/𝑑𝐿

in males and ≥ 16.0𝑔/𝑑𝐿 in females.

Similarly, ET requires bone marrow biopsy to differentiate from prePMF [13]. Nevertheless,

molecular studies have identified polymorphisms that improve stratification for patients with

variants; JAK2, CALR, MPL shared across PV, ET and PMF. Similarly, majority of CNL

patients carry CSF3R mutations for which the diagnosis is made based on white-blood cell

count (WBC) ≥ 25 × 109/𝐿.
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1.1.2 Myelodysplastic Neoplasms

In contrast to MPN, Myelodysplastic Neoplasms (MDS) are characterized by a decrease

in production of hematopoietic cell lineages and dysplasia. Current classification of MDS

stratifies into: 1) MDS with defining genetic abnormalities and 2) MDS, morphologically

defined. Genetic abnormalities include several mutations (among the most frequent: SF3B1

and TP53), cytogenetic abnormalities include 5q, 7q and 20q deletions, monosomy 7 and

complex karyotype.

In combination with morphological features, genomic alterations characterizing MDS cases

such as; MDS-SF3B1 which presents low blast counts and SF3B1 mutations (See [3] for a

full description of the updated classification). Further characterization of shared features be-

tween MDS and MPN have been defined as well. A major classification of MDS/MPN group

includes chronic myelomonocytic leukemia (CMML) which is characterized by consistently

high levels of monocytes in blood with or without cognate genetic abnormalities such as

splicing inefficiencies and epigenetic regulation. To further complicate the distinctions,

2 subtypes for CMML has been defined; myelodysplastic CMML and myeloproliferative

CMML based on decreased or increased levels of WBC respectively (with the threshold for

WBC 13 × 109/𝐿).

1.1.3 AML

AML, similar to MPN and MDS manifests a heterogeneous etiology, however the distinction

between MDS and AML is rather arbitrary. Previously defined as ≥ 20% blasts, current

understanding has shifted towards a more covariate inclusive criteria.

Due to advances in treatment options, for patients younger than 60 years, chemotherapeu-

tics are among the most effective options available. For patients unable to receive intensive

chemotherapy generally older patients treatment options are lacking. Furthermore, advance-

ments in molecular feature screening have prompted for revisions of AML classifications

previously focused on cytogenetics such as PML-RARA,CBF-MYH11 rearrangements by
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incorporating single-nucleotide variations in FLT3, NPM1, CEBPA, KIT genes which can

be observed in mutually-exclusive fashion with cytogenetic abnormalities. Broadly, AML

can be categorized, based on disease etiology into 4 distinct groups; de-novo/primary AML

associated with genetic abnormalities, secondary AML associated with a previous MDS

related condition, and therapy related AML due to a prior cytotoxic treatment and Not

Otherwise Specified (NOS/Defined by Differentiation) (See [5] for further details).

De-novo AML is characterized by, as given above, defined cytogenetic abnormalities such

as fusion-genes and mutations with or without additional morphological features such as

blast percentage. AML NOS or currently updated definition AML defined by differenti-

ation, is characterized by both morphological features such as low blasts and absence of

differentiation markers such as CD13, CD33 and CD117. Secondary AML on the other

hand is characterized by either the presence of cytogenetic abnormalities associated with

MDS and/or MPN or the preexistence of myeloid disorder. Similarly, therapy related AML

includes cases previously treated with cytotoxic agents and associated with high frequency

of TP53 mutations.

Efforts to guide therapy have also characterized patients in terms of risk profiles. For

instance, widely accepted ELN risk stratification includes three groups; Favorable, Inter-

mediate and Adverse based on the cytogenetic and mutation profiles [4]. However, further

efforts to update risk stratification in an unbiased and comprehensive manner suggested

changes to defined groups as well

In order to alleviate some of the issues present in stratification of MN patients into clinically

relevant subgroups, we utilized unsupervised ML approaches enabling us to combine the

heterogeneous molecular spectra modeling frequency of co-occurrence of mutations. We

first utilize Latent Class Analysis to extract patient clusters and show that the identified

clusters further elaborate the mixed disease defining entities where primary AML and

secondary AML cases can cluster together showing similar molecular profiles with distinct

7



pathophysiological progression. Secondly, we adopt a dimension-reduction approach to

embed MDS patients onto a low-dimensional manifold based on the similarity of mutation

profiles effectively capturing the covariance structure of the features in the patient cohort.

We identify 14 clusters that show distinct clinical characteristics. The identified 14 clusters

are further aggregated into 5 risk groups that show significant time-to-event profiles. We

provide these ML models as an open-source tool for the community and hope that the

approaches presented here, and further improvements, will pave the way for unbiased and

robust exploration of molecular features allowing for better treatment opportunities.
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1.2 Heterogeneity in Solid Tumors Elucidated through Single-Cell RNA Sequencing

Figure 1.2: Datasets and analysis steps used in solid tumors. We obtained multi-omics
datasets from public repositories (e.g. GDSC, TCGA) in addition to an in-house gener-
ated single-cell RNA-Seq (scRNA-Seq) dataset. First, using the scRNA-Seq datasets, we
evaluated multiple combinatorial workflows of dimension reduction, clustering and pseu-
dotime/trajectory mapping. Secondly, integrating the multi-omics data of gene-expression,
whole exome sequencing and drug sensitivity profiles, we identified collateral signatures in
a pan-cancer fashion.

Solid tumors present an increased dysregulation in homeostatic processes where cells utilize

both genetic and epigenetic mechanisms to proliferate, migrate and evolve in a stochastic

and Darwinian fashion. Stochasticity results in increased intra-tumoral heterogeneity (ITH)

in mechanism and spatial organisation, and this apparent ITH can be further stratified into
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genetic and non-genetic components including chromosomal aberrations and transcriptional

regulations respectively [14]. Furthermore, ITH has been previously associated with in-

creased propensity for both intrinsic and evolved resistance to treatment which is non-trivial

to study using bulk sequencing technologies [15, 16].

Relatively recently, single-cell sequencing technologies have been adapted to better study

ITH and probe transcriptional dynamics at single-cell resolution. Specifically, scRNA-Seq

analysis allowed for capturing distinct sub-populations via clustering or for ordering cells

on a latent transcriptional process termed pseudotime ordering or trajectory analysis.

Although scRNA-Seq is one of the first widely used method, alternative technologies for

epigenomic and proteomic quantification methods have also been developed [17–19]. Going

further, single-cell sequencing methods are being developed to profile multi-modal data as

well [20–22]. However, capture of individual cells and individual molecules is not without

challenges. Specifically, for scRNA-Seq, low transcriptional coverage due to dropouts, and

reduced total depth due to increased number of cells results in noisy and sparse datasets

which require subsequent imputation and robust normalization methods to account for

technical noise.

Multiple approaches have been developed to address technical challenges in scRNA-Seq

analysis including the explicit modeling of technical and biological noise [23], clustering

based on dropouts [24] and several imputation [25, 26] and robust normalization meth-

ods [27–29]. Dimension reduction techniques have been extensively adapted to scRNA-Seq

studies as well with the aim of capturing dominant transcriptional patterns hence effectively

reducing technical noise.

Both linear dimension reduction techniques such as Principal Component Analysis, Met-

ric Multi-Dimensional Scaling and non-linear dimension reduction methods such as t-

Stochastic Neighbor Embedding [30] and Uniform Manifold Approximation and Projec-

tion [31] are used. Dimension reduction is further coupled with unsupervised clustering

10



methods such as k-means and density based alternatives (DBSCAN) [32] in order to dis-

cover distinct cell populations based on transcriptional activity. Furthermore, the selection

of which method to adapt and couple with downstream analysis is seldom made with combi-

natorial nature of the data in consideration. This issue has been, in the context of trajectory

analysis, evaluated partially in relatively homogeneous models.

In order to further elaborate on the use of different workflows adapted in scRNA-Seq analysis

in a combinatorial fashion, specifically in the context of but not limited to the evolution of

drug resistance, we evaluated over 6k analysis combination in the context of unsupervised

dimension reduction followed by subsequent clustering and trajectory analysis. We showed

that it is non-trivial to develop repeatable workflows especially when the transcriptome

coverage and/or number of cells captured is relatively low. Furthermore, we showed that

regularization in the context of dimension reduction improves repeatability in identified

clusters. In the context of trajectory identification however, reduced overlap of identified

pseudo-ordering of cells on a latent process whether it is due to drug induced selection or

developmental process can be alleviated by methods that can take into account temporal

information. Overall, we hope that the results presented can guide researchers utilizing

scRNA-Seq datasets and ameliorate current reproducibility issues due to arbitrary selection

of parameters and tools.
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1.3 Integrative Modeling of Multi-omics Data to Characterize the Drug Sensitivity

Landscape

Figure 1.3: Example linear fitness land-

scape showing the association of reduced

dimensions with the phenotype of inter-

est. We generated 2d representation of binary

mutation profiles of E.coli supervised by the

growth-rate (fitness) measurements under Ce-

fazolin treatment using partial-least squares

simplifying the high-dimensional data into a

more tractable representation [33].

Cancer treatment is hindered by evolution

and the emergence of cell populations that

can proliferate under environmental stress.

The diversity of mechanisms individual

cells can ‘rewire’ in order to survive is ex-

carbated by the inherent stochasticity of cell

states which requires better treatment strate-

gies to overcome drug resistance. Adaptive

therapies, drug holidays, metronomic treat-

ment are such strategies aiming to account

for evolutionary dynamics prolonging over-

all survival and/or resistance evolution [34,

35].

Furthermore, efforts to understand the un-

derlying dynamics, led to the develop-

ment of collateral response models where

collateral-sensitivity is defined as the in-

creased sensitivity to a drug due to the in-

creased ‘cost’ of developing resistance to

another drug. Multitudes of studies have

generated networks of collaterally sensitive or resistant drug pairs both in bacteria and in

cancer showing the sparse and heterogeneous nature of such paired mechanisms [33, 36–

39].

In parallel, genotype-fitness maps which were first defined by Wright et al.[40] later general-

ized by Kauffman et al.[41] are utilized to study tumorigenesis. These maps/landscapes are
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static functions mapping from genotype space to fitness space where temporal information

can be integrated to capture the dynamic nature (e.g. drug concentration) termed fitness

seascapes [42].

The utility of these functions manifest through ‘simplification’ of high-dimensional geno-

type space and effectively representing the evolutionary process in low dimensional space

making it tractable (See Fig. 1.3). Consequently, genotype-fitness maps/landscapes can be

characterized via manifold-learning or low-dimensional embedding methods in a supervised

fashion. A straightforward example would be the eigendecomposition of the covariance

matrix of variables (e.g protein abundance) and fitness (e.g drug sensitivity) for instance.

Manifold-learning has been the de-facto approach for high-dimensional datasets and several

methods have been developed and in standard practice (e.g Principal Component Analysis

and t-SNE).

We hypothesize that the genotype-fitness maps/landscape framework can be effective in

characterizing the collateral mechanisms of drug sensitivity through low-dimensional em-

bedding in a supervised fashion. In this section, we investigate the utility of integrative

machine-learning approach based on autoencoders in determining the collateral sensitivity

potential of given pair of drugs based on coupled sensitivity signatures. We utilize multi-

omics datasets consisting of gene expression, mutation and drug sensitivies in a pan-cancer

fashion which can be formally defined as joint dimensionality reduction (jDR) [43]. We

use datasets from Genomics of Drug Sensitivity in Cancer (GDSC), Dependency Map

(DepMap) and The Cancer Genome Atlas (TCGA) [44, 45]. As a proof of concept, we

show the capability of such models in integrating multiple -omics datasets to uncover po-

tential convergent mechanisms of resistance/sensitivity in a pancancer fashion. We further

recapitulate the sparse nature of collaterally sensitive drug pairs. We aim to expand the

proposed model to scRNA-Seq data as well.
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PART I

Data Driven Approaches in Leukemia
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Molecular patterns identify distinct subclasses of myeloid neoplasia. [Manuscript
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C h a p t e r 2

MACHINE LEARNING INTEGRATES GENOMIC SIGNATURES FOR
SUBCLASSIFICATION BEYOND PRIMARY AND SECONDARY

ACUTE MYELOID LEUKEMIA

While genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), tra-

ditional classifications are largely based on morphology and prototypic genetic founder

lesions define only a small proportion of AML patients. The historical subdivision of

primary/de novo AML (pAML) and secondary AML (sAML) has shown to variably cor-

relate with genetic patterns. Perhaps, the combinatorial complexity and heterogeneity of

AML genomic architecture have precluded, so far, the genomic-based subclassification to

identify distinct molecularly-defined subtypes more reflective of shared pathogenesis. We

integrated cytogenetic and gene sequencing data from a multicenter cohort of 6,788 AML

patients that were analyzed using standard and machine learning methods to generate a novel

molecular subclassification of AML with biological correlates corresponding to underlying

pathogenesis. Standard supervised analyses resulted in modest cross-validation accuracy

when attempting to use molecular patterns to predict traditional pathomorphological AML

classifications. We performed unsupervised analysis by applying Bayesian Latent Class

method that identified 4 unique genomic clusters of distinct prognoses. Invariant genomic

features driving each cluster were extracted and resulted in 97% cross-validation accuracy

when used for genomic subclassification. Subclasses of AML defined by molecular sig-

natures overlapped current pathomorphological and clinically-defined AML subtypes. We

internally and externally validated our results and share an open-access molecular classifi-

cation scheme for AML patients. Hence, although the heterogeneity inherent in the genomic

changes across nearly 7,000 AML patients is too vast for traditional prediction methods,

however, machine learning methods allowed for the definition of new genomic AML sub-



classes indicating that traditional pathomorphological definitions may be less reflective of

overlapping pathogenesis.

2.1 Introduction

Genetic mutations (somatic or germline), cytogenetic abnormalities and their combinations

contribute to the heterogeneity of acute myeloid leukemia (AML) phenotypes [46–48].

Seminal studies have described the molecular landscape of AML and its exclusive frame-

work and have stratified patients into prognostic subgroups [10, 49, 50]. Moreover, serial

sequencing studies have delineated a stepwise acquisition of subclonal mutations accom-

panying AML evolution [51]. To date, prototypic founder lesions [e.g., t(8;21), inv(16),

t(15;17)] define only a fraction of AML subgroups with specific prognoses corresponding

to molecular pathogenesis [4, 13]. Indeed, in a larger proportion of AML patients, somatic

mutations or cytogenetic abnormalities potentially serve as driver lesions in combination

with numerous acquired secondary hits [47]. However, their combinatorial complexity

hampers the resolution of distinct genomic classifications and overlaps across classical

pathomorphological AML subtypes, including de novo/primary (pAML) and secondary

AML (sAML) evolving from an antecedent myeloid neoplasm (MN) [52, 53]. These AML

subtypes are themselves nonspecific due to variable understanding of their pathogenetic

links, especially in cases without overt dysplasia [54, 55]. Without dysplasia, reliance is

mainly on anamnestic clinical information that might be unavailable or cannot be correctly

assigned due to a short prodromal history of antecedent MN. Additionally, supervised

analytical strategies to reproduce current pathomorphological entities as “gold standard”

using molecular features have been modest. Here, we explored the potential use of distinct

genomic markers, uncovered by advanced machine learning methods, to sub-classify AML

objectively and provide personalized prognostication, irrespective of the clinicopathologi-

cal information, and thus propose to become a standard in AML assessment. We analyzed

integrated genomic data from pAML and sAML patients seen in our institution and multiple
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other centers over two decades using both standard supervised approaches and unsupervised

machine learning methods that better captured the complex interactions of high-dimensional

genomic features underlying AML subgroups. Machine learning was instrumental for the

identification of novel AML subgroups of invariant driver genomic features.

2.2 Methods

2.2.1 Patients and cell samples

.For the purpose of this study, we combined AML patient data from the Cleveland Clinic

(CC, n=855) and the Munich Leukemia Laboratory (MLL, n=4002) with publicly available

datasets (The Cancer Genome Atlas, The BEAT AML Master Trial and The German-

Austrian Study Group; n=1931, cases with unavailable cytogenetics were excluded)[10,

49, 56] to form a large, well-annotated cohort of 6788 patients (Table S A1). Targeted

next-generation sequencing (NGS) results, at time of AML diagnosis, were adjusted to

focus on the most recurrent somatic myeloid mutations (Table.S2). Patients’ follow-up was

up to September 2019 with a median duration of 12.4 months. Peripheral blood and/or

bone marrow samples were collected after receiving written informed consent according

to protocols approved by the Institutional Review Board at CC and other institutions in

accordance with the Declaration of Helsinki. Clinical parameters were obtained from

medical records after securing appropriate material transfer agreements and from resources

accessible online.

2.2.2 Genetic studies.

For the data collected at CC, whole-exome sequencing (WES) was performed on paired

tumor and germline DNAs (purified CD3+ lymphocytes). Whole-exome capture was ac-

complished according to SureSelect Human All Exon 50Mb or V4 kit (Agilent Technologies)

and captured targets were sequenced using a HiSeq 2000 (Illumina). Reads were aligned to

the human genome (hg19) by a Burrows-Wheeler aligner (http://bio-bwa.sourceforge.net/).

Data were validated using a TruSeq Custom Amplicon kit (Illumina) with a panel of 44
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genes (Table.S2). Variants were annotated using Annovar and filtered and a bio-analytic

pipeline developed in-house[57, 58] identified somatic mutations as specified in Supple-

mental Material. Variants in the patients from the MLL cohort were called as previously

reported [59–62]. The gene sequencing methods of publicly-shared AML patients were

previously described [10, 49, 56].

2.2.3 Statistical analyses.

Multivariate Cox Proportional-Hazards (Cox-PH) modeling was used to identify genomic

abnormalities associated with survival in various AML cohorts. Uni- and multivariate

logistic regression (ULR and MLR, respectively) analyses were performed to find distinct

genomic features of pAML and sAML. We performed unsupervised analysis to cluster AML

patients into genomic subgroups by latent variable modeling. More specifically, we used

Bayesian Latent Class Analysis (BLCA) coupled with resampling to generate a consensus-

matrix[63] that was then hierarchically clustered using Ward’s criteria to obtain final patient

cluster assignments. To validate the prognostic significance of identified clusters, we used

survival analysis. To determine if AML subtype distributions differed across identified

clusters, we normalized pAML and sAML samples to population proportions using boot-

strap method. To identify distinct genomic features and generate a subclassification model,

we used Random Forest (RF) classification and extracted the variables with the highest

global importance measured by mean decrease in accuracy. Additionally, we performed

internal and external validation of our model. Finally, the RF subclassification model and

cluster-specific survival estimates are available via a web-based open-access resource.

2.3 Results

2.3.1 Molecular architecture determines disease risk and distinguishes AML sub-

types

Using the World Health Organization (WHO) 2016 diagnostic criteria[13], we classified

6788 AML patients as core-binding factor AML (CBF-AML; n=422), acute promyelo-
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cytic leukemia (APL; n=312), KMT2A-rearranged AML (KMT2AR-AML; n=371), pAML

(n=4502), sAML (n=832) and therapy-related AML (tAML; n=349). The patients’ base-

line, clinical/ treatment response and cytogenetic information are presented in Table 2.1.

Mutational profiling identified 13,879 somatic mutations of variant allele frequency (VAF)

≥ 1% in the selected uniformed gene panel Table A2,A3. Using multivariate Cox modeling,

we identified specific genomic lesion associations with survival. This approach enabled

feature partitioning into “favorable vs. adverse” risks within diverse AML groups Ta-

ble A4. Because the role of recurrent balanced translocations in AML diagnostics and the

prognosis of tAML are already well-established, we focused our analyses on 5334 pAML +

sAML cases without these pathognomonic lesions, hence, we excluded CBF-AML, APL,

KMT2AR-AML, and tAML. Our objective was to determine if unique configurations of spe-

cific genetic lesions can produce distinguishable diagnostic patterns of pAML vs. sAML

or within AML subsets including normal karyotype (NK-AML; n=3176) and abnormal

karyotype AML (AK-AML; n=2158). This strategy was motivated by the observation of

significantly different pAML vs. sAML survival (Fig. 2.1 A-C). Indeed, the supervised

analyses yielded distinct clinical (Table A5) and genomic features that characterized each

subtype (Fig. 2.1 D). Patterns detected by ULR and MLR included mutations in CEBPA

(both monoallelic ‘CEBPA𝑀𝑜’ and biallelic ‘CEBPA𝐵𝑖’), DNMT3A, FLT3ITD, FLT3TKD,

GATA2, IDH1, IDH2𝑅140, NRAS, NPM1 and WT1 being enriched in pAML while mutations

in ASXL1, RUNX1, SF3B1, SRSF2, U2AF1, -5/del(5q), -7/del(7q), -17/del(17P), del(20q),

+8 and complex karyotype being prevalent in sAML (Fig. 2.1 D-F). Mutation burdens were

similar in both AML subtypes (median: 2 mutations/individual; Fig. A1). The analyses

of NK-pAML vs. NK-sAML (Fig. A2) and AK-pAML vs. AK-sAML (Fig. A3) revealed

significant genetic associations that characterized each subset. In addition, clonal hierarchy

analyses differentiated pAML vs. sAML based on founder and subclonal hits (Fig. 2.1 G).

Despite these significant findings, the genomic profiles of pAML vs. sAML identified by

MLR resulted in only 0.74 cross-validation accuracy of predictive performance when used
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to reproduce pathomorphologic AML subtypes (Fig. 2.1 H).

2.3.2 Unsupervised genomic analysis unveils novel molecular AML groups spanning

sAML/pAML dichotomy

As the accuracy of MLR prediction was modest, we explored other machine learning

approaches as an alternative analytical strategy. BLCA of AML cases with complete muta-

tional screens (Table. A2, n=2681) uncovered 4 novel genomic subgroups (Fig. 2.2A) based

on the highest silhouette value (Fig. A4,A5). The biologic relevance of these subgroups

was reflected in significantly different survivals [median (95% confidence interval)]: i)

Genomic cluster-1 (GC-1) ; 34.1 (25.2-50.5) months], ii) GC-2; 26.5 (22.9-31.0) months],

iii) GC-3; 15.8 (13.3-18.0), and GC-4; 9.2 (7.4-11.6) months (Fig. 2.2B,A6) and survival

probabilities (Table. A6). Of note, the implementation of survival analyses was considered

only to reflect on the biological and prognostic relevance of these clusters and not to replace

current prognostic schemes. Moreover, the robustness of the BLCA clustering with respect

to VAF was further validated when considering a higher cut-off of 15% which also resulted

in 4 genomic clusters with a silhouette value of 0.86 and adjusted Rand index of 0.84

(Fig. A7).

2.3.3 pAML and sAML composition within genomic clusters

The distribution of genomic clusters within pAML and sAML was variable (Fig. 2.2C). For

instance, pAML cases showed similar percentages of GC-1 (32%), GC-2 (33%) and GC-3

(25%) but fewer cases of GC-4 (10%). In contrast, sAML cases had higher percentages

of GC-4 (22%) but lower GC-1 (5%) than pAML (Fig. 2.2C). The few GC-1 sAML cases

may be suggestive of a possible subtype misclassification on presentation or an impact of

an important genetic alteration (Table. A7). Higher percentages of patients with molecular

good prognosis were found in pAML (GC-1/2; 65%) while sAML had more of higher risk

cases (GC-3/4; 66%). Results of reverse analysis of normalized frequencies of pAML and

sAML within cluster groups were consistent with the aforementioned results (Fig. 2.2D)
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Figure 2.1: Survival outcomes and mutational landscape of primary (pAML) ver-
sus secondary acute myeloid leukemia (sAML). (A-C) Kaplan-Meier survival curves of
(A) pAML vs. sAML, (B) normal karyotype pAML (NK-pAML) vs. normal karyotype
sAML (NK-sAML) and (C) abnormal karyotype pAML (AK-pAML) vs. abnormal kary-
otype sAML (AK-sAML). (D) A bar graph showing the frequency (in percent) of somatic
mutations in pAML vs. sAML. (E) and (F) are forest plots representing univariate and multi-
variate logistic regression analyses showing the odds ratio (in log-scale) of the association of
somatic mutations in pAML vs. sAML, respectively. (G) Forest plots representing univari-
ate analyses showing the odds ratio (in log-scale) of the association of dominant/ancestral
and secondary/subclonal somatic mutations in pAML vs. sAML, respectively. Levels
of statistical significance, indicated by green, orange, and black (P<0.0001, P<0.05, and
P>0.05, respectively), were obtained by Fisher’s exact test. (H) Histogram of predictive
performance (𝜇 0.74) of multivariate logistic regression using cross-validation area under
the curve (AUC), i.e. we correctly predicted pAML and sAML classification in 74% of
AML cases in our cohort using the distinct genomic characteristics of each subtype.

showing increased pAML proportion in GC-1 (89 vs. 11%) and sAML in GC-4 (67 vs.

33%). In addition, survival analyses within the same prognostic group showed no significant

difference between pAML and sAML cases except in GC-4 group (Fig. A8; see Fig. A9 for
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P-values of all pairwise comparisons of survivals of our 8-cluster x pAML/sAML groups).

Figure 2.2: Novel genomic clusters of acute myeloid leukemia (AML) identified by
unsupervised analyses. (A) Consensus matrix generated by applying latent class analysis
on 1000 subsamples representing the frequency of two observations being clustered in the
same group. (B) Kaplan-Meier analysis showing the overall survival (in months) of each
genomic cluster (1-4). (C) A pie chart showing the percentage of cases belonging each
genomic cluster (1-4) in primary (pAML, left pie) and secondary (sAML, right pie) AML.
(D) A bar graph showing the frequencies of pAML and sAML patients in the genomic
clusters after normalizing the samples by bootstrapping. (E) Hyperparameter selection plot
for random forest modeling; cross-validation accuracy (CVA) is shown on the y-axis. CVA
saturation in this plot indicates that 3 variables suffice to achieve the maximal accuracy of
0.97, i.e., this model correctly assigns 97% of AML cases prognosis in our cohort using
their corresponding genomic features.
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2.3.4 Invariant genomic features accurately predict molecular class assignments in

AML

To link each cluster to its pathogenetic features, we generated an RF model. The result-

ing multiclass classifier which yielded a cross-validation accuracy of 0.97 (Fig. 2.2E). The

model’s globally most important genomic features, quantified by mean decrease in accuracy,

included NPM1𝑀𝑇 , RUNX1𝑀𝑇 , ASXL1𝑀𝑇 , SRSF2𝑀𝑇 , TP53𝑀𝑇 , -5/del(5q), DNMT3A𝑀𝑇 ,

-17/del(17p), BCOR/L1𝑀𝑇 and others (Fig. A10). Comprehensive group-specific observa-

tions showed that GC-1 was characterized by the highest prevalence of NK-AML (88%) and

full presence of NPM1MT (100%; 86% with VAF>20%) that co-occurred with DNMT3A

(52%), FLT3𝐼𝑇𝐷 (27%; 91% with VAF <50%), IDH2𝑅140 (16%, while absent IDH2𝑅172𝐾)

mutation with depletion or absence of ASXL1, EZH2, RUNX1, TP53 mutations and complex

cytogenetics (Fig. 2.3A). GC-2 had a higher percentage of AK-AML cases than GC-1, the

highest frequency of CEBPABi (9%) and IDH2𝑅172𝐾 (4%), FLT3𝐼𝑇𝐷 (14%) and FLT3𝑇𝐾𝐷

(6%) mutations occurring without NPM1𝑀𝑇 , while absent ASXL1, RUNX1 and TP53 mu-

tations (Fig. 2.3B). GC-3 had the highest frequency of ASXL1 (39%), BCOR/L1 (16%) and

DNMT3A without NPM1 (19%) mutation, in addition to being highly enriched with EZH2

(9%),RUNX1 (52%), SF3B1 (7%), SRSF2 (38%) and U2AF1 (12%) mutations (Fig. 2.3]C).

Of note, GC-3 showed a higher degree of heterogeneity. In fact, 53 cases in GC-3 had a

silhouette value < 0 and of them, 15 cases were misclassified by the RF model. Further

investigation of these misclassified cases showed that they had a wild type RUNX1 mutation

status while RUNX1 mutation was prevalent in GC-3 (Fig. A11). Finally, GC-4 had the

highest prevalence of AK-AML [96%; mostly of complex karyotype (76%)] and TP53𝑀𝑇

(70%) that were associated with -5/del(5q) (68%), -7del(7q) (35%), -17del(17p) (31%)

(Fig. 2.3D). Signature patterns, their importance and pairwise co-occurrences with other

genomic markers, in addition to the clonal hierarchy of driver mutations in each cluster, are

described in Fig. 2.3B-E,A12 and Fig. A13A-D, respectively.

We also analyzed the percentages of novel groups among each genomic lesion population
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(Fig. A14,A15,A16). GC-1 represented 97% of NPM1, 50% of FLT3𝐼𝑇𝐷 , 54% of DNMT3A,

43% of IDH1, and 43% of IDH2𝑅140 mutations as well as 43% of NK-AML; GC-2 accounted

for 91% of CEBPA𝐵𝑖, 46% of GATA2, 50% of WT1 mutations; GC-3 had 90% of ASXL1,

82% of BCOR/BCORL1, 52% of CBL, 53% of ETV6, and 46% of IDH2𝑅172𝐾 mutations. It

also represented the majority of splicing factor mutations (48% of SF3B1, 86% of SRSF2,

70% of U2AF1, and 65% of ZRSR2 mutations), 98% of RUNX1 mutations and the highest

portion of del(20q) (65%) and trisomy 8 (49%); GC-4 represented 94% of TP53 mutations,

62% of complex cytogenetics, 92% of -5/del(5q), 100% of -6/del(6q), 88% of del(12p),

91% of del(16q), and 92% of -17/del(17p).

When the clinical and baseline characteristics of each group were studied (Table. A8),

GC-1/2 were found to contain a significantly younger age population compared to GC-3/4

(median age: 61 vs. 70 y, 𝑝 < 0.0001, Fig. A17). Moreover, lower numbers of white blood

cells correlated with higher risk disease (𝑝 < 0.0001, Fig. A18), possibly due to GC-3/4

harboring more dysplastic features than GC-1/2 groups, which had more proliferative AML

phenotype.

Finally, we revisited the previously excluded well-defined prognostic AML groups and

applied BLCA which demonstrated that APL, CBF-AML and t-AML constituted of a

single genomic cluster each while 2 genomic groups were uncovered in KMT2AR-AML

(Fig. A19A-B), including i) GC-A (median OS: 20.3 months) and ii) GC-B (median OS:

6.9 months) of distinct survival analysis (Fig. A19C). The most important genomic markers

extracted by the RF model included TP53 mutation followed by -5/del(5q), -7del(7q), -

17del(17p) (Fig. A19D). The GC-2 KMT2AR-AML was characterized by the enriched

presence of TP53 mutation (79%), -5/del(5q) (63%), -7del(7q) (38%), +8 (38%) and -

17del(17p) (31%) (Fig. A19E) while GC-1 KMT2AR-AML had absence/depletion of the

aforementioned genomic aberrations except for +8 (18%), in addition to frequent DNMT3A

(20%) and NRAS (16%) mutations (Fig. A19E).
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Figure 2.3: Invariant genomic features driving each genomic group. Bar plots represent-
ing the mutational profiles of (A) genomic cluster-1, (B) genomic cluster-2, (C) genomic
cluster-3 and (D) genomic cluster-4 and their importance. Red asterisks represent the most
important genomic features based on an arbitrary importance cutoff of ≥ 0.01 0.01 mean
decrease in accuracy. In addition, circos diagrams showing the pairwise co-occurrence
of mutations in each genomic cluster are illustrated to the right of the bar graphs. The
color code of circos diagrams correspond to the genomic clusters. The percentage of a
co-occurrence between the first and the second gene mutations is represented by the color
intensity of the ribbon connecting both genes.

2.3.5 Automated cluster predictor and confirmatory studies

We performed internal and external validation of our genomic clustering model. The

internal confirmatory cohorts consisted of randomly selected training (80%, n=2144) and

test (20%, n=537) sets. BLCA and RF were applied on the training set only and the

survival analysis of test set was separately done (Fig. A20). The test cohort did not show

significant survival differences per each genomic cluster as compared to the training set

when Kaplan-Meier analyses were performed Fig. A21A-D). We further evaluated how
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the number of the identified clusters varies across subsets of training cohort by randomly

sampling 75% of observations to prevent overfitting. Silhouette values across random

samples showed 4 as the optimal number of clusters (Fig. A22). External validation

was then conducted using an independent cohort of 203 AML patients from the MDACC

(pAML, n=143; sAML, n=60) with a median follow up of 12 months (0.1 - 35.3 months)

and fully annotated characteristics (Table. A9). Gene sequencing of the selected gene panel

identified a total of 723 somatic mutations in the MDACC cases (Table. A10). The Kaplan-

Meier survival analyses of the original data and MDACC cases showed similar survival

among each genomic cluster assigned by the RF model (Fig. 2.4A-D). Details of further

validation approaches for hyperparameter tuning and depth selection for random forest

model is provided in the supplementary section. Furthermore, our genomic subclassification

model is available as a web-based open-source resource that can be accessed widely by

clinicians and the public to forecast the subclassification and estimated survival of AML

patients without known pathognomonic lesions, balanced-translocations or tAML (https:

//drmz.shinyapps.io/local_app/) (Fig. 2.4E). A conceptual framework summarizing

our overall approach is illustrated in Fig. A23.

2.4 Discussion

Apart from certain well-defined AML subtypes (e.g. CBF-AML, APL, and KMT2AR-

AML), historically, AML patients have been subcategorized into subgroups defined by

pathomorphological features and broad anamnestic clinical criteria due to the inability to

precisely infer the presence of antecedent prodromal disease [52, 64]. Ubiquitous appli-

cation of genomic diagnostics has provided opportunities for objective sub-classification

of AML, which due to its mechanistic foundation can direct discovery and application of

molecularly targeted therapeutics and allows for tailored personalized risk-stratification [4].

Building on this potential and the power of modern genomic and bioanalytical approaches,

we investigated whether rational genomic tools would yield precise, simple, and diagnostic
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Figure 2.4: Model validation and uniform resource locator. (A-D) Kaplan-Meier survival
analyses (time in months) for the external validation of the model using external data from
the MD Anderson Cancer Center (MDACC) vs. the original data, is represented in each
cluster: (A) genomic cluster-1, (B) genomic cluster-2, (C) genomic cluster-3, and (D)
genomic cluster-4. (E) A screenshot of the website interface to our model.

AML subclasses that would reflect genomic pathogenesis and prognosis. This is best il-

lustrated by the ability of genomic clusters to redefine historical subclasses such as pAML

and sAML, which have been shown to only variably correlate with genetic patterns and

pathogenesis. By applying machine learning methods to an unprecedented large cohort
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of AML patients with detailed molecular annotations, we developed a new classification

model. Credence in this model is fortified by its accurate classification ( 97% correct) and

the plausibility of the distinctive genomic features that contributed to the overall assignment

accuracy. Utility of this model is supported by different cluster group survival outcomes.

Feature association with both pathobiology (molecular parameters) and survival suggest

that this model could overcome some limitations of previous pathomorphological based

classifications of pAML and sAML.

Our results reaffirm previous studies and extend them by integrating more molecular features

and expanding diagnostic and pathogenetic implications [10, 49, 52, 56]. In particular, we

focused on the inclusion of genomic signatures, despite their variable degree of global im-

portance to achieve the highest possible genomic classification accuracy. For instance, and

in line with previous reports,10,13,25-28 NPM1 and TP53 mutations contributed greatly

to creating the lower and higher risk phenotypes (corresponding to the clinical/survival

risk), respectively [4, 54, 65–68]. However, the highest cumulative accuracy was only

achieved by the incorporation of the status (+/-) of additional genomic lesions including

RUNX1, ASXL1, SRSF2, and DNMT3A mutations, -5/del(5q), -17/del(17p), and others.

Our molecular 4-tiered model is not meant to challenge or replace previously established

prognostic schemes. It mainly focuses on objectively subclassifying genomic-undefined

pathomorphological AML subtypes including pAML and sAML. However, as we compare

it to traditional prognostication tools that incorporate prognostic genomic features, like

the 2017 European LeukemiaNet (ELN-2017), we would like to point out certain advan-

tages that were concluded from our genomic cluster-based model. Our model expands

a larger pool of genomic signatures and quantifies their corresponding importance. The

latter is crucial when determining the probability of objective subclassification in complex

heterogeneous AML cases harboring combined ELN-2017 defined favorable and adverse

genomic lesions. Strikingly, the model describes distinct clustering of a variety of previ-

ously described genomic lesions that are known to influence AML outcome and emerged
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as AML cluster determinants. DNMT3A, IDH𝑅140, and TET2 mutations, only when oc-

curring without NPM1𝑀𝑇 , are important genomic determinants of GC-2. Splicing factor

mutations (SRSF2, U2AF1) contributed substantially to our model’s performance and were

noticeably enriched in the GC-3, indicating their predicted potential to be a distinct AML

subgroup [52, 62]. Moreover, RUNX1𝑀𝑇 had the second-highest global importance, and

crucially contributed to the identification of all novel groups. Specifically, RUNX1𝑀𝑇 was

highly prevalent in the GC-3. Consequently, our data confirm the substantial presence of

RUNX1-mutant AML in the most recent WHO classification as a provisional disease cate-

gory [13, 69]. Interestingly, BCOR/L1 mutations emerged as a potential genomic marker

of GC-3. Although CK-AML was abundant in the poorest survival group like defined in

ELN-2017, the concurrent presence of other important genomic markers identified by our

model [-5/del(5q), -17/del(17p) and TP53𝑀𝑇 ], seemed to delineate its classification. When

these aforementioned markers were absent, CK-AML was also seen in other groups (GC-3).

Hence, our model argues that genomic subclassification of CK-AML is strongly dependent

on the present/absent status of other decisive correlating genomic markers. Finally, the

model is dynamic and displays flexibility and personalization by accounting for accurate

probabilities of assignment to each cluster per the presence/absence of each genomic feature

and its interactions with other signatures, rather than predicting a single classification. It

also defines the estimated survival interval of each genomic group, which can be considered

when assessing prospective AML patients’ prognoses. Due to the mechanistic focus, the

deliberate exclusion of certain clinical data may appear as a limitation to our model. While

we believe that some of the phenotypic features are a result of the genomic makeup and

are likely codependent, we acknowledge that selected parameters may be later incorporated

similar to the genomic features to be discovered in the future. The latter may, for example,

include some of the germ-line alterations, clonal/subclonal burden, or configuration of hits

as demonstrated for CEBPA𝐵𝑖 mutations. Furthermore, some genomic clusters showed a

higher degree of heterogeneity as compared to other, which can be likely improved by future
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incorporation of more complex models such as neural network-based clustering or the use

of infinite priors in Bayesian setting where a larger cohort is available. Besides, as all of

the patients receive therapy, new effective drugs could affect prognosis and thus may have

a global subgroup-specific impact on survival and the predictive value of survival curves

within subgroups may have a limited shelf life. Although the predictive accuracy of our

genomic model was validated and our approach accounted for possible generalizability limi-

tation by including multicenter cohorts, eventually prospective external validations of longer

patients’ follow-up durations are still warranted. Additionally, we envision that molecularly

based risk assessment may have rational implication on the use of specific therapy choices

especially when targeted agents and their combinations will be more widely applied and

thus purely clinical classification schemes will become obsolete to provide generalizable

survival predictions. In conclusion, our study demonstrates that despite the tremendous

heterogeneity of AML genomics, non-random genomic relationships, captured by machine

learning methods, are capable to accurately assign objective molecular classification and

prognosis irrespective of the availability of clinicopathologic or anamnestic information.

It clearly indicates that classical distinction of sAML from pAML cannot be justified on

molecular levels and rather molecular signatures/patterns should provide a prevailing im-

petus for classification schemes. Our model provides a personalized genomic tool for AML

subclassification that is publicly shared.
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C h a p t e r 3

MOLECULAR PATTERNS IDENTIFY DISTINCT SUBCLASSES OF
MYELOID NEOPLASIA

Genomic mutations drive the pathogenesis of myelodysplastic syndromes (MDS) and acute

myeloid leukemia (AML). While morphological and clinical features, complemented by

cytogenetics, have dominated the classical criteria for diagnosis and classification, incorpo-

ration of molecular mutational data can illuminate functional pathobiology. We combined

cytogenetic and molecular features from a multicenter cohort of 3588 MDS and secondary

AML patients to generate a molecular-based scheme using machine learning methods and

then externally validated the model on 412 patients. Molecular signatures driving each

cluster were identified and used for genomic subclassification. Unsupervised analyses

identified 14 distinctive and clinically heterogenous molecular clusters (MCs) with unique

pathobiological associations, treatment responses, and prognosis. Normal karyotype (NK)

was enriched in MC2, MC4, MC6, MC9, MC10, and MC12 with different distributions of

TET2, SF3B1, ASXL1, DNMT3A, and RAS mutations. Complex karyotype and trisomy 8

were enriched in MC13 and MC1, respectively. We then identified five risk groups to reflect

the biological differences between clusters. Our clustering model was able to highlight the

significant survival differences among patients assigned to the similar IPSS-R risk group

but with heterogenous molecular configurations. Different response rates to hypomethylat-

ing agents (e.g., MC9 and MC13 [OR: 2.2 and 0.6, respectively]) reflected the biological

differences between the clusters. Interestingly, our clusters continued to show survival

differences regardless of the bone marrow blast percentage. Despite the complexity of

the molecular alterations in myeloid neoplasia, our model recognized functional objective

clusters, irrespective of anamnestic clinico-morphological features, that reflected disease

evolution and informed classification, prognostication, and molecular interactions.



3.1 Introduction

The myelodysplastic syndromes (MDS) are a collection of diseases encompassing a patho-

logically distinct, broad spectrum of myeloid disorders, some of which represent stages of

the natural history of leukemia[13, 70]. Until now, morphological features, later enhanced

by cytogenetic abnormalities, have dominated the pathology criteria for MDS diagnoses.

These can be limited by inter-observer variability, restricted resolution, and lack of func-

tional correspondence to molecular underpinnings[71, 72]. Widely-used MDS prognostic

classification schemes may be convergent, as they group cases with similar features yet

different molecular origins; or divergent, as they assign cases with similar molecular lesions

into different pathomorphological sub-entities[6]. Moreover, when considering molecular

features, morphology-based classifications overemphasize specific parameters (e.g., blasts),

which may represent essentially the stage of the disease, as opposed to molecular evolu-

tion. As a result, blast-defined MDS subtypes would contain a mixture of cases with

various molecular derivations[6, 73–76]. Classification schemes according to clinical fea-

tures are more practical, but apart from the weight of cytogenetics on prognosis, clinical

prognostication does not reflect the disease pathogenesis. The advent of next generation

sequencing (NGS) has led to the discovery of a multitude of mutations in various genes, and

recognition of the tremendous molecular diversity and clonal hierarchy within myeloid ma-

lignancies[57, 77, 78]. These factors, along with cytogenetics, constitute the underpinnings

of MDS pathogenesis. Given their complexity, attempts to consolidate mutational patterns

into broader disease sub-entities have been made, with conventional integrative approaches

of classical, clinical, and pathomorphological features used as a gold standard in supervised

analytic strategies. Consequently, the patterns of molecular features have been analyzed

to fit into morphologic groups, with limited success given the complexity of mutations

and their interactions, particularly with respect to disease progression[8, 9]. Therefore,

new strategies may be needed to deconvolute this molecular diversity and generate sub-

divisions of patients with MDS whose disease fits within molecular pattern similarities,
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better reflecting prognosis and which could then be targeted with specialized therapeutic

approaches. Machine learning (ML) analytic methods, as demonstrated in acute myeloid

leukemia (AML)[79], provide new opportunities to integrate the molecular pathogenesis

by identifying relevant patterns, which could serve as molecular sub-entities[8, 9, 80, 81].

Here, we took advantage of a large, well-annotated cohort of patients with MDS and sec-

ondary AML (sAML) to test the hypothesis that related molecular patterns can be analyzed

in an unbiased/unsupervised fashion to characterize molecularly-defined configurations of

MDS/sAML. We used a similarity-based ML approach to cluster patients into molecular

subgroups, further validated based on clinical features.

3.2 Methods

3.2.1 Patient Cohort

We assembled a large cohort of patients diagnosed with MDS and sAML to generate a

comprehensive genomic data set. Patient data from the Cleveland Clinic ([CC], n=1627),

The Munich Leukemia Laboratory ([MLL], n=1275), and publicly available data sets (The

BEAT AML master trial and The EuroMDS cohort Patients, n=686)[8, 56] were combined

to form a cohort of 3588 MDS and sAML patients (Supplementary Table 1). Targeted NGS

results at the time of diagnosis were collected and adjusted to analyze the most common

somatic myeloid mutations (Supplementary Table 2). Electronic medical records were

reviewed to collect clinical parameters at the time of diagnosis and from resources accessible

online from the publicly shared data sources (EuroMDS). Samples were collected after

obtaining written informed consent according to the protocols approved by the respective

institutional review boards (see Supplementary Materials).

3.2.2 Genetic Studies

For the data collected at CC, whole exome sequencing (WES) was performed as previously

described[59, 60, 62]. Paired tumor and germline DNAs were used for WES. Data were

validated using a TruSeq Custom Amplicon Kit (Illumina) (Supplementary Table 2). Vari-
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ants were annotated using Annovar and filtered using an in-house bioanalytic pipeline[57–

59, 62]. The gene sequencing methods of publicly shared MDS and sAML patients were

previously described[8, 56]. For validation, an independent cohort of MDS/sAML patients

(UT Southwestern medical center and Karmanos Cancer Institute was used; see Table B1

& Supplementary Methods).

3.2.3 Statistical Analyses

Our ML strategy was based on a consensus-clustering approach via autoencoders coupled

with gaussian-mixture modeling (GMM)[82]. The resultant model was validated internally

and externally on an independent cohort (detailed description in the Supplementary Materi-

als). Our genomic subclassification model is available via web-based open-access resource

as well (https://drmz.shinyapps.io/mds_latent).

3.3 Results

3.3.1 Unsupervised clustering of the molecular architecture of MDS and sAML re-

veals novel molecular subgroups regardless of histological or clinical features

Among the 3588 patients included in this cohort, 735 (20%) had sAML, 774 (22%) had

higher-risk MDS (HR-MDS), and 2079 (58%) had lower-risk MDS (LR-MDS). Abnormal

karyotype was found in 1548 cases (43%) (Table 1), and 2763 patients (77%) had at least

one somatic mutation, with 284 cases (8%) harboring > 4 mutations (Figure B1). Using

unsupervised ML analysis of the mutational panel in our cohort, we identified 14 molecular

clusters (MC1-MC14) according to distinct genomic features (Fig.3.1A,B). The number of

MCs was determined based on the highest silhouette value (Fig.3.1A). The MCs size varied;

for example, 26% of the cases were assigned to MC2 and only 2% to MC3 (Fig.3.1C). The

most distinctive clinical and molecular features defining the MCs were identified (Table 2,

Fig.B2). Overall, the most important genomic features used in the model were quantified

based on the mean decrease in accuracy (Fig.B3,B4). The resultant MC signatures are

illustrated in Fig.3.2.
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Figure 3.1: Genomic clusters of myelodysplastic syndrome and secondary acute
myeloid leukemia identified by unsupervised analysis. A) Unsupervised clustering of
binary mutation profiles performed through iteratively clustering sub-samples of original
data and keeping track of the frequency of pairwise co-occurrence of samples in the same
cluster. B) To visualize the clusters on a three-dimensional space, we have generated an
exemplary dimension reducing space using UMAP coupled with the autoencoder model.
A 16-dimensional linear embedding of binary mutation profiles was generated and re-
duced to 3d using UMAP in a nonlinear fashion. A specific figure legend color presents
each genomic cluster. C) Bar graph showing the frequency of each cluster in our cohort
(lower panel) and the relative frequency of low-risk myelodysplastic syndrome (LR-MDS),
high-risk myelodysplastic syndrome (HR-MDS), and secondary acute myeloid leukemia
(sAML), upper panel. The middle panel is showing the relative frequency of different Re-
vised International Prognostic Scoring System (IPSS-R) among different clusters. D) Bar
graph illustrating the frequency of each genomic cluster in the original and the validation
cohort. Significant differences are indicated by asterisks. Graphs from C1-C14 illustrate
the frequency of the most important molecular features in the original and the validation
cohorts.

Our ML model performance was then validated internally and externally. For the internal

validation, we randomly selected training (80%, n=2870) and test (20%, n=718) sets for

K-fold cross-validation to assess the fit of our model and divided the cohort into five
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folds. Based on the highest silhouette value in each fold, a total number of 14 clusters

was optimal in all five folds. Adjusted-Rand Index (ARI) comparisons between the folds

showed a minimum ARI of 0.85 (Fig.B5). The external validation was conducted using an

independent cohort of 412 MDS/sAML patients (Table.B3) with a different patient clinical

composition distinct from the original cohort. Based on the mean decrease in accuracy,

we selected and compared the most important characteristics between the original and the

validation cohorts. As expected, no significant differences in cytogenetics and molecular

features in most MCs were observed (Fig.3.1C).
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Figure 3.2: Genomic features drive each genomic group. Bar plots represent the mu-
tational profiles of all genomic clusters (clusters 1 to 14) and their importance. Asterisks
denote the most important genomic features based on an importance cutoff of a mean
decrease in accuracy ≥ 0.01. The circos diagrams above each cluster show the pairwise
co-occurrence of mutations in all clusters and are illustrated to the right of the bar graphs.
The colors of circos diagrams correspond to the clusters. The percentage of mutational
co-occurrence between first and second gene mutations is represented by the color intensity
of the ribbon connecting both genes.
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3.3.2 Molecular clusters composition

The composition of the MCs were distinct, reflecting differing morphological diagnoses

and bone marrow (BM) blast counts (Table 2). For instance, LR-MDS patients comprised

most of MC8 (78%), MC10 (78%), and MC5 (72%). In addition, more than 50% of the

cases within MC2, MC4, MC6, MC7, and MC14 were LR-MDS patients. Conversely,

HR-MDS and sAML cases comprised more than 30% of MC3, MC6, MC9, and MC12.

When we applied reverse analysis, the majority of the sAML cases populated MC2 (28%),

MC13 (18%), MC1 (11%), and MC14 (10%). HR-MDS cases were mainly classified in

MC2 (19%), MC6 (15%), MC13 (14%), and MC9 (11%). Finally, LR-MDS clustered

in MC2 (27%) and MC4 (13%; Supplementary Figure 6). Moreover, the distribution of

different revised international prognostic scoring system (IPSS-R) risk groups among our

MCs were distinct and heterogenous (Fig.3.1C, middle panel). Although most of the cases

included in MC11 and MC13 were very-high and high-risk groups according to IPSS-

R, both clusters continue to contain patients from other risk groups who share the same

molecular configuration. Blast percentages in MCs were consistent with the risk distribution

of cases, and the median blast percentage was consistent with the composition of each MC

(Table 2 and Fig.B7). For instance, while MC1 and MC13 had a median blast percentage of

> 10%, MC2 and MC4 had a median of < 5%, consistent with the enrichment of early-stage

(LR-MDS) cases within the latter MCs.

3.3.3 Machine learning-derived clusters reflect functional relationships

Broad cluster-specific analyses revealed that all MC4 cases had NK and SF3B1 mutations.

Similarly, all MC10 cases had NK and SF3B1 mutations in addition to TET2 mutations

(100%). DNMT3A mutations were present in 20% and 24% of MC4 and MC10, respectively.

MC2, MC6, and MC8 demonstrated distinct genomic signatures: MC2 included cases

with NK only (100%) and some DNMT3A (11%), JAK2 (11%), and RAS pathway (10%)

mutations; MC6 cases had similar features to MC2 but were also enriched in SRSF2 (49%)
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and RAS mutations (23%); MC8 was characterized by the presence of del5q/-5 (100%),

DNMT3A (17%), and TP53 (17%) mutations. MC3 included cases with TET2 (100%),

ZRSR2 (23%), and ASXL1 (21%) mutations with delY (54%). MC14 included cases with

delY (42%) but without TET2 mutations, distinct from MC3. In contrast, MC12 included

cases with TET2 (100%), ASXL1 (100%), SRSF2 (48%), RUNX1 mutations (40%), and NK

(100%) similar to MC9, which contained ASXL1 (100%) with SRSF2 (34%) and RUNX1

(31%), but lacked TET2 mutations. MC5 grouped cases with del20q/-20 (76%) and U2AF1

mutations (28%). MC7 was characterized by other cytogenetic abnormalities, not including

del5q/-5 compared to MC8. MC1 was characterized by trisomy 8 (100%), ASXL1 (35%),

TET2 (31%), and RUNX1 (24%) mutations. MC11 included cases with del7q/-7 (100%)

and RAS pathway mutations (28%). Finally, MC13 contained cases with complex karyotype

(100%) and TP53 (44%) mutations. To understand the frequency of each mutation within

the novel identified clusters, we also analyzed the distribution of each genomic mutation

and cytogenetic abnormalities across clusters (Fig.B8).

3.3.4 MDS molecular clusters have clinical correlates

We explored differences in overall survival (OS) across the identified MCs (Fig.3.3A,B).

As expected, the high degree of molecular heterogeneity translated to divergent survival in

each group (Fig.B9). By grouping MCs according to survival impact, we distinguished 5

risk categories (Fig.3.3C and Table.B4), which were recapitulated in the external validation

cohort (Fig.3.3D). In addition to survival, MCs also demonstrated distinct clinical differ-

ences. For instance, patients in MC1, MC11, and MC13 had significantly lower platelet

counts (87, 48, and 76, respectively, p-value <0.001) compared to other clusters. We also

detected discrete survival differences in patients (N=2863) treated with hypomethylating

agents (HMAs) and/or allogeneic hematopoietic stem cell transplant. Even after accounting

for the different treatments, the risk groups continued to show significant differences in OS

(Fig.B10). Interestingly, we noticed interaction effects between treatments response and our
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MCs. For instance, a higher response rate to HMAs (according to the International Working

Group criteria24) occurred in patients assigned to MC9, MC10, and MC12 (36%, 33%,

and 32%, respectively) compared to response rates in patients assigned to MC1, MC13,

MC3, and MC7 (13%, 13%, 14%, and 15%, respectively; Fig.3.3E,F). Logistic regression

analysis showed that MC9 (odd ratio [OR]: 2.2, 95%CI: 1.2-3.9) and MC13 (OR: 0.6,

95%CI: 0.4-0.9) were associated with different HMAs response rates.

The blast percentage within MCs did not appear to affect survival after 25 months. For

instance, although MC13 contained 38% and 33% of LR and HR-MDS patients, respec-

tively, the prognosis was homogenously worse when compared to other MCs. Using

Cox-Proportional Hazard model accounting for relevant clinical variables, the assigned risk

groups based on our clustering method showed significant survival differences (Fig.B10B).

Compared to the Low-Risk group (OS [95% CI]; 93 months [42-132]), patients classi-

fied as Very High-Risk (OS [95% CI]; 9 [4-24]) High-Risk (OS [95% CI]; 17 [5-53]),

Intermediate-High risk (OS [95% CI] 33 [12-92]), and Intermediate-Low risk (OS [95%

CI]; 62 [19-188]) had significantly worse OS. Our clustering model was able to highlight the

significant survival differences among patients assigned to the similar IPSS-R risk group but

to different MCs (Fig.B11). For instance, we observed significant differences in OS among

patients assigned to very low risk IPSS-R based on our MCs (HR:1.9, 95%CI: 1.5-2.8).

3.4 Discussion

While MDS classification schemes evolved as useful clinical diagnostic or prognostic tools,

diagnostic criteria according to genomic signatures reflective of molecular pathogenesis

have not been established[8, 13, 83]. Furthermore, previous attempts to incorporate muta-

tions into prognostic schemes to increase their predictive precision resulted in considering

only a handful of consequential mutations[79]. One of the reasons for the inability to

establish reproducible genotype/phenotype associations might be the application of pri-

marily supervised strategies using traditional statistics and clinical classifications (reliant
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on subjective nosology and time-dependent parameters) as a gold standard. Indeed, the

tremendous diversity and complexity of molecular lesions hamper the application of con-

ventional bioanalytic methods. To overcome the limitations of these traditional approaches,

our study applied modern ML strategies to objectively integrate molecular features able

to decipher patient sub-cohorts with known and/or previously cryptic associations. This

strategy was not meant to compete with or replace current well-established prognostication

tools[6], but rather illuminate the genetic sub-classification of MDS and related conditions

in an operator-independent fashion according to molecular correlations and mutual func-

tional proximity. Despite the exclusion of anamnestic clinical criteria, the resultant scheme

yielded a reproducible and validated system of genetically-related disease clusters reflective

of the genomic pathogenesis and prognosis, irrespective of established standards. Notably,

our molecular classification has enabled the recognition of cases with convergent molecular

mechanisms, e.g., for the rational selection of suitable therapies. Moreover, the personalized

risk stratification method is independent of disease duration and stage. It does not involve

blast count, whose predictive weight dominates most of the older disease schemes and

the recently proposed ML-based prognostication model[8, 13]. Our ML-based molecular

model defines unique clusters according to the previously described genomic features and

their combinations known to influence MDS and sAML outcomes[1, 8, 70, 84, 85]. More-

over, the analysis of the invariant cluster-defining molecular combinations points towards

previously unsuspected relationships or convergent pathways. Illustrative examples of such

molecular associations are presented in the supplementary materials (Supplementary Re-

sults). Unlike previous prognostication systems highly dependent on the blast count[6],

our MCs were heterogeneous in this regard. This observation raises many questions about

the implication of BM blast percentages on molecularly-based diagnoses. Indeed, our ML-

based scheme indicates that BM blast may correlate more with the stage of the disease rather

than the molecular architecture. For instance, although MC13 included patients with the

worst prognosis, almost 1/3 of the cases in this cluster had low blast counts while sharing
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a similar molecular makeup with sAML, reflecting different stages of the same disease.

Analogous observations were made in other clusters containing molecularly similar pa-

tients at various points of their clinical course. Significant survival associations with BM

blasts and MCs also suggest that these variables capture different information regarding the

disease pathogenesis. It is important to emphasize that the recent attempts to integrate cyto-

molecular features into MDS classification for personalized approaches were also based on

traditional clinical parameters, which always outweighed the variables derived from the ge-

nomic makeup. For instance, when analyzing the fraction of explained variation attributable

to different prognostic factors for OS, BM blast percentage, age, and sex alone accounted for

more than 50%. In comparison, molecular features only had limited power in the proposed

model (3̃0%)[8]. In our model, focusing on the objective molecular signature to charac-

terize the features of different clusters with the exclusion of morphological and clinical

data may seem a limitation. However, we believe that clinical and morphological features

constitute the results of genetic hits. We showed that our molecular clustering of MDS suc-

cessfully identified unique patterns of genomic associations and possibly uniform/similar

pathogenesis even if individual connections cannot be rationally discerned on this junction.

We acknowledge that additional parameters such as allelic configuration/burden, mutation

types, clonal/subclonal burden, and germline predisposition may add a significant value

if incorporated, perhaps helping to further sub-stratify some of the more heterogeneous

clusters. Another limitation of any analytic strategy (supervised/unsupervised) is that less

common mutations remain unappreciated because of the lack of statistical power. This

is also a flaw of our approach, which we attempted to mitigate by combining mutations

affecting the same functional pathways and identifying rare hits confined strictly to one

cluster to allow for inferences in terms of their functional associations. In conclusion,

despite the complexity and the diversity of molecular alterations in MDS and sAML, by

deploying artificial intelligence, we were able to recognize functional and pathologically

related, objective clusters irrespective of the anamnestic clinico-morphological features.
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Our model provides molecular correlation for a better understanding of the pathobiological

mechanisms of disease, progression to higher stages, and identification of future targets for

novel therapies.
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Figure 3.3: Survival outcomes and model validation. A) Pairwise survival comparison
between the identified genomic clusters. Asterisks indicate the significant -log (P-values).
B) Median overall survival in months with 95% confidence interval of all molecular clusters
and assigned risk groups. C) Kaplan-Meier survival curves of all risk groups in the original
cohort. D) Kaplan-Meier survival curves of all risk groups in the validation cohort. E)
Bar graph showing the frequency of various first-line treatments used in each cluster.
HMA: hypomethylating agents, HSCT: hematopoietic stem cell transplantation, G/MCSF:
granulocyte/monocyte colony-stimulating factor. F) Histogram bars represent the response
to hypomethylating agents treatment among different clusters (C) based on the international
working group criteria
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Part II

Data Driven Approaches in Solid Tumors

• Published as: Durmaz A., Scott JG. Stability of scRNA-Seq Analysis Workflows

is Susceptible to Preprocessing and is Mitigated by Regularized or Supervised Ap-

proaches. Evolutionary Bioinformatics. 2022;18. doi:10.1177/11769343221123050
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C h a p t e r 4

STABILITY OF SCRNA-SEQ ANALYSIS WORKFLOWS IS
SUSCEPTIBLE TO PREPROCESSING AND IS MITIGATED BY

REGULARIZED OR SUPERVISED APPROACHES

Statistical methods developed to address various questions in single-cell datasets show

increased variability to different parameter regimes. In order to delineate further the robust-

ness of commonly utilized methods for single-cell RNA-Seq, we aimed to comprehensively

review scRNA-Seq analysis workflows in the setting of dimension reduction, clustering, and

trajectory inference. We utilized datasets with temporal single-cell transcriptomics profiles

from public repositories. Combining multiple methods at each level of the workflow, we

have performed over 6000 analysis and evaluated the results of clustering and pseudotime

estimation using adjusted rand index and rank correlation metrics. We have further inte-

grated neural network methods to assess whether models with increased complexity can

show increased bias/variance trade-off. Combinatorial workflows showed that utilizing

non-linear dimension reduction techniques such as t-SNE and UMAP are sensitive to ini-

tial preprocessing steps hence clustering results on dimension reduced space of single-cell

datasets should be utilized carefully. Similarly, pseudotime estimation methods that depend

on previous non-linear dimension reduction steps can result in highly variable trajectories.

In contrast, methods that avoid non-linearity such as WOT can result in repeatable inferences

of temporal gene expression dynamics. Furthermore, imputation methods do not improve

clustering or trajectory inference results substantially in terms of repeatability. In contrast,

the selection of the normalization method shows an increased effect on downstream analysis

where ScTransform reduces variability overall.



4.1 Introduction

Intra-tumor heterogeneity has recently become a central focus of cancer research sec-

ondary to the limited response of patients to targeted therapies. These failures are driven

by Darwinian evolution, by heritable variation and selection through time. One source

for the subsequent intra-tumor heterogeneity is the variation driven by stochasticity in

transcriptional activity modulated by epigenetic processes[14, 86]. This change in over-

all composition is further modulated by the selective advantage of pre-existing resistant

cells or clonal expansion of drug-tolerant cells mediated by complex interactions between

cells and the microenvironment [87–90]. Although previous efforts have made signifi-

cant progress in understanding the complex cancer dynamics using bulk sequencing data,

single-cell sequencing methods have allowed for novel insights by probing this heterogeneity

directly – including during temporally varying processes. For instance, Lee et al. identified

transcriptional heterogeneity as one of the key factors for promoting the clonal expan-

sion of drug-tolerant sub-population leading to the evolution of resistance [91]. Similarly,

Kim et al. identified distinct sub-populations resistant to treatment in lung adenocarci-

noma patients using single-cell RNA-Seq, [92] Furthermore, relatively recently, single-cell

sequencing coupled with mathematical models allowed for investigation of Darwinian dy-

namics, specifically treatment-induced selection pressure and transcriptional stochasticity

at the single-cell level [93–95].

Investigating transcriptional regulation, single-cell sequencing also paved the way for pseu-

dotime/trajectory estimation (PTE) to delineate temporal dynamics during differentiation

and resistance evolution. Specifically, PTE aims to find low-dimensional proxy for the

underlying transcriptional activity accounting for the temporal information. However, due

to the stochasticity inherent in evolution, PTE poses additional challenges where replicate

experiments can show divergent dynamics leading to the evolution of distinct resistance

mechanisms [33, 96]. For instance, during multipotent progenitor trophoblast differentia-

tion, stages of organization (endpoints) are clearly defined based on morphological charac-

47



teristics hence we can reliably deduce functional mechanisms through time [97]. However,

as we show in detail below, using the same analysis methods with slight differences in

pre-processing parameters (number of genes expressed), can result in very different PTE

orderings of cells in the setting of the evolution of resistance leading to increased di-

versity of identified mechanisms. Analysis of single-cell data is further complicated by

the technical noise in library preparation strategies due to capture efficiencies at both cell

(empty/multi-cell droplets) and transcript level.

In order to alleviate some of the issues with single-cell analysis, various analysis methods

aim for robust imputation, outlier detection, and quantification of gene expression. For

instance, previous studies utilized imputation methods to reduce the effects of zero-counts

due to dropouts in RNA-Seq datasets [25, 26]. In addition to individual methods, multiple

packages integrate different analysis stages and tools in unified frameworks; Seurat [98–

101], SCANPY [102], BUStools [103, 104]. However, the increased number of available

tools, and continued proliferation of them also requires careful selection of methods and

associated parameters which can result in significant differences. This issue has been par-

tially addressed before. Specifically, two comprehensive combinatorial evaluation studies

have been conducted in order to evaluate different analysis workflows [105, 106]. Tian et

al. using cell-mixture experiments showed relatively good correlations between ground-

truth and estimated trajectories using Slingshot or DDRTree [106]. Similarly, Saelens et al.

showed improved performance for these methods using topological similarity metrics [105].

While illuminating, a major limitation of these studies is that the methods are applied on

non-cancer (embryonic differentiation) processes or cancer cells in relatively homogeneous

settings (without selection pressure). For instance, mixture experiments conducted by Tian

et al. are limited to linear trajectories. In contrast, evolution under selection pressure can

result in increased variability and non-linear patterns of transcriptional change [107–109].

As most tumors do not grow in these conditions, it is crucial to evaluate the available

methods under selection pressure with temporal information as well. For this purpose,
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Figure 4.1: Schematic of general analysis steps and methods used for combinatorial
workflows. Quality filtered raw read counts are processed through a step to reduce possible
zero-count inflation by one of 2 imputation methods; ScImpute, DrImpute (or no imputa-
tion). Preprocessed data is normalized by 3 methods; ScTransform, Deconvolution, and
DCA followed by dimension reduction using 5 methods; UMAP, UMAP+PAGA, t-SNE,
VAE, DM. Finally, one of 4 trajectory inference methods is used; Slingshot, DDRtree,
and WOT. Overall we have utilized 6144 analyses for PTE including the data subsets. (Note
that the icons representative of individual methods are used to ease the interpretability of
combinatorial workflows in downstream figures. Created with BioRender.com)

in this manuscript, we report a benchmarking study in which we evaluate the available

methods in a combinatorial fashion similar to Tian et al. and Saelens et al. focusing on the

repeatability of PTEs. We hope that by evaluating the scRNA-Seq methods rigorously for

settings applicable to the evolution of resistance in cancer, we will enable more robust and

reproducible application of single-cell sequencing technologies and experimental designs

for future studies.
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4.2 Methods

Single-cell RNA-Seq (scRNA-Seq) analysis follows similar strategies with bulk RNA-Seq

where pre-processing is followed by normalization for library size and downstream analysis

(see Fig. 5.1a for a schema of a typical workflow). Due to the large number of cells

being captured non-linear dimension reduction techniques have been extensively used for

clustering and trajectory identification such as t-SNE and UMAP [30, 31]. In addition to

dimension reduction methods, scRNA-Seq datasets can be zero-inflated due to increased

technical noise, hence various imputation approaches have been proposed. Furthermore,

a general trend in the scRNA-Seq analysis is to filter out genes that show relatively low

variation across the dataset and filter out cells that express a low number of genes. Although

this is a valid strategy similar to bulk RNA-Seq analysis, the cutoff for the number of top

varying genes to select and the number of genes expressed are generally arbitrary chosen,

hence we aim to evaluate the effects of filtering genes and cells based on different thresholds

as well. For this purpose, we combine various methods for different levels of analysis in a

combinatorial fashion and evaluate identified trajectories in terms of cell orderings (Also

note that combinatorial workflows are represented by small icons in downstream figures as

column and row labels). Furthermore, since the ground-truth trajectories do not necessarily

associate linearly with time in heterogeneous processes (e.g drug resistance), we have

profiled clustering performance as well [109]. (See Appendix for a detailed description of

methods and parameters)

We have utilized both publicly available datasets and a previously generated in-house dataset

with variable number of cells, depth, and complexity of the underlying process (Table.4.1).

TKI Treatment dataset was previously generated to investigate transcriptional dynamics

of resistance evolution to 3 Tyrosine kinase inhibitors (TKIs); Alectinib, Lorlatinib, and

Crizotinib in lung cancer. To generate scRNA-Seq data with temporal information, cells

were sampled at 4h (Alectinib only), 48h, 3w, and 20-24w and sequenced. As we have hy-

pothesized, this dataset represents a biologically heterogeneous example of an evolutionary
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process hence crucial to evaluate PTEs. The Pancreatic cell maturation dataset contains

transcriptional profiles of 𝛼 and 𝛽 cells during differentiation process at 7 time-points;

embryonic day 17.5 and postnatal days 0, 3, 9, 15, 18, and 60 representing a relatively more

homogeneous process with roughly linear sampling times. Neurodegeneration dataset

is generated to investigate the transcriptional dynamics of microglial cells isolated from

Hippocampus at weeks 0, 1, 2, and 6 in CK-p25 inducible mouse model. E2 Treatment

temporal scRNA-Seq is performed on 2 cell lines (MCF7,T47D) during 17𝛽-estradiol (E2)

treatment at 0h, 3h, 6h, and 12h to investigate temporal transcriptional dynamics of estrogen

associated pathways in breast cancer. This dataset, however, contains the least number of

captured cells sequenced at relatively higher depth.

Each dataset is preprocessed with different gene- and cell-level quality thresholds to generate

12 subsets and the overlap in estimated trajectories are quantified using rank correlation. We

have focused on the repeatability of identified PTEs, and aimed to use methods/strategies

widely adopted in the community. Additionally we utilize a neural network approach

for dimension reduction to evaluate whether more complex models show any advantage

when high-throughput single-cell datasets are used. Since neural networks have been

extensively utilized for wide variety of problems in the form of autoencoders [110] and

relatively recently stochastic alternatives have been used for -omics datasets as well [111–

114], neural networks naturally lend themselves to the analysis of single-cell datasets.

For comparison of the effect of imputation, we have used ScImpute, DrImpute which

showed improved performance in various datasets and Deep Count Autoencoder (DCA)

an autoencoder model aiming to combine de-noising and imputation in a single step [25,

26, 115]. We use 2 methods for normalization; Deconvolution and ScTransform [27,

29]. For DCA, since gene-wise dispersion and mean parameters are already estimated,

we only used library size normalization. As scRNA-Seq clustering is an important step

utilized in the analysis of various datasets, we wanted to evaluate how robust the clustering

results are when different workflows are used as well. For this purpose, we coupled
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the Leiden clustering with 5 dimension reduction techniques; UMAP, PAGA+UMAP,

t-SNE, VAE, and Diffusion Maps (DM) and evaluated the overlap of clusters using adjusted

rand index (ARI) [30, 31, 116–119]. We have additionally included TooManyCells for

clustering, however, due to hardware limitations we used only the Pancreatic Maturation,

Neurodegeneration datasets. Furthermore, E2 Treatment dataset resulted in a single cluster

across different workflows and subsets possibly due to the low number of cells hence results

are not shown [120]. For trajectory inference, we evaluated 4 methods commonly used

in scRNA-Seq; Slingshot, Palantir, DDRTree and WOT [121–124]. However, Slingshot

operates on dimension reduced space hence we combined different dimension reduction

methods with Slingshot as well. Palantir in contrast integrates dimension reduction step

via diffusion maps to quantify the pseudotime progression from an early cell defined in

advance. DDRTree, similarly, generates cell orderings by reducing the high-dimensional

data to low-dimensional principle-tree structure, hence we have coupled DDRTree with

preprocessing and normalization steps only. Furthermore, since Slingshot and DDRTree are

unsupervised approaches, we have utilized Waddington-OT (WOT), a supervised approach

that aims to find cell-cell transition probabilities at consecutive time-points via optimization

of unbalanced transcriptional mass transfer. Comparison is somewhat imperfect however,

as trajectories are defined slightly differently for each method. Since Slingshot estimates the

smooth principle curve in low dimensional space, mapping of individual cells on the curve

readily defines an ordering via the arc-length along the curve. In contrast, DDRTree embeds

high-dimensional transcriptomic profiles onto a principle tree structure where the ordering

is defined by the geodesic distances between individual cells. The supervised approach,

WOT, on the other hand, generates a probability distribution between an individual cell

at time 𝑡𝑖 and the cell population at time 𝑡𝑖+1, hence the trajectory of an individual cell

is defined as the vector of transition probabilities. In order to evaluate the results from

different methods in a comparable fashion, we opted to use Spearman’s 𝜌 which does not

take into account the distances between individual cells, but rather only the orderings, hence
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Dataset Subset Size (#cells/#genes) Platform

TKI Treatment [125]
Alectinib 5000/14000 10x
Lorlatinib 4000/14000 10x
Crizotinib 3700/14000 10x

Pancreatic Maturation [126] 𝛼 cells 250/21700 SmartSeq2
𝛽 cells 410/20500 SmartSeq2

E2 Treatment [127] MCF7 60/21395 Fluidigm C1
T47D 60/21570 Fluidigm C1

Neurodegeneration [128] – 800/15545 SmartSeq2

Table 4.1: Datasets utilized in the study where the number of cells and genes are given prior
to subset generation after quality control

different quantitative scales between methods can be compared.

4.3 Results

4.3.1 Dimension reduction & Clustering

In order to evaluate how dimension reduction methods perform when coupled with the

Leiden method for clustering we have compared the identified clusters using Adjusted Rand

Index (ARI) across different subsets of gene and cell level thresholded datasets. However,

note that since we do not have ground-truth observations of clusters, instead we have focused

on the overlap of identified clusters between different methods to assess repeatability.

Specifically, individual dimension reduction methods coupled with different preprocessing

steps (imputation and normalization) are used to generate clustering via the Leiden method.

Generated individual clusters are then compared using ARI and ARI values across different

subsets are aggregated by taking the median of ARI values. This approach allowed us to

investigate the stability of clusters for a given dimension reduction method when combined

with different pre-processing steps. Furthermore, a common practice in scRNA-Seq analysis

is preprocessing with Principal Component Analysis (PCA) to both reduce computational

load and reduce variation/noise which requires selection of number of top latent features to

keep where automated tools can be utilized [129]. However, dimension reduction via PCA

can be non-trivial and introduce unwanted bias specifically in the case of multiple datasets

hence we opted to not utilize PCA as an initial preprocessing step. As expected we observed
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Figure 4.2: Comparison of trajectories identified by Slingshot showing data dependent
performance of each workflow. Combinations of icons for columns/rows represent dis-
tinct workflows. Entropy (upper triangle) is used to aggregate over multiple trajectories
identified by Slingshot and data subsets corresponding to cell level and gene level filtering
thresholds. Variation (lower-triangle) over different data subsets is given to show the con-
fidence for aggregating Entropy measure (See Supplementary for details). Results suggest
data dependence where the use of imputation in 𝛽 cells dataset significantly reduces the
overlap of PTEs in contrast imputation step overall preserves the identified PTEs in 𝛼 cells.

a positive correlation of ARI across different workflows with the number of cells (Fig. C1).

However, ARI values showed reduced overlap between different methods across datasets

globally, even when the number of cells is high (𝐴𝑅𝐼 < 0.75). Investigating methods

individually showed t-SNE as relatively more robust to different preprocessing steps in the

TKI dataset where remaining datasets showed variable performance (Fig. C2a,C2b,C2c).

Interestingly, neural-network methods showed variable results where the use of DCA-

NB/DCA-ZINB as a preprocessing step in the TKI dataset led to improved overlap between

UMAP, UMAP+PAGA, and t-SNE. In contrast, the use of VAE as a dimension reduction

method showed poor performance resulting in variable cluster assignments (See Fig C3 for

example workflows). This suggests that as a dimension reduction method, neural-networks

might not be the optimal choice but as a preprocessing step neural networks can provide

advantages depending on the number of cells.

Datasets with relatively low number of cells showed variable results. For instance, in
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Pancreatic 𝛼 cell differentiation, UMAP and PAGA+UMAP showed improved overlap when

DrImpute is combined with Deconvolution but the overlap is reduced when ScTransform

is used for normalization (Fig. C2f). The use of t-SNE similar to the TKI dataset was

more robust to preprocessing steps. E2 Treatment dataset resulted in variable cluster

assignments overall where both MCF7 and T47D cell line datasets resulted in different

cluster assignments across workflows. The Neurodegeneration dataset on the other hand

benefited from DCA with or without zero-inflation model but overall showed decreased

overlap as well (Fig. C2h).

To further extend the analysis results, we have evaluated tooManyCells method as well

which is another scRNA-Seq method used for clustering nearest-neighbor graphs to par-

tition the cell population [120]. tooManyCells improved cluster overlap globally in the

Pancreatic Maturation and Neurodegeneration datasets (Fig. C4). However, similar to Lei-

den clustering, selection of preprocessing workflows showed data-specific performance.

For instance, the Pancreatic maturation 𝛼 cells dataset was more sensitive to the impu-

tation with DrImpute in contrasts with 𝛽 cells dataset where imputation with DrImpute

showed reduced overlap in cluster assignments when ScTransform is used for normalization

(Fig. C4a). Interestingly, in the Neurodegeneration dataset, a dichotomy between the use

of ScTransform and other workflows is observed where ScTransform showed poor overlap

with other workflows (Fig. C4b).

We have also investigated the overlap of identified clusters with temporal information.

Specifically, using homogeneity metric via R package clevr, we quantified the distribu-

tion of cells sampled from different time-points in a given cluster in order to delineate

whether given methods can distinguish cells from different time-points. We observed a

general improvement when TKI dataset is considered specifically when t-SNE, UMAP or

PAGA-UMAP is applied where interestingly E2 treatment dataset showed the lowest homo-

geneity(Fig. C19). Furthermore, when ScTransform is coupled with DrImpute, substantial

decrease in Pancreatic Maturation and Neurodegeneration datasets is observed which sug-
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gest that workflow selection should be done in a data specific fashion.

4.3.2 Trajectory Estimation

In order to evaluate PTEs mapping to a latent biological process we used Spearman rank

correlation and normalized entropy. As given previously, using rank correlation we aim to

do a comparison of cell orderings identified by different workflows and normalized entropy

is used to assess the distribution of rank correlations (bimodal around 0-1) in the case of

Slingshot since > 1 PTEs are identified (Fig. C5).

4.3.2.1 Slingshot

Evaluating the trajectories identified by Slingshot, we have observed large variation across

different workflows and across different subsets. For instance, in Pancreatic maturation

datasets, workflows that show relatively good overlap in 𝛼 cell trajectories failed to identify

overlapping trajectories in the 𝛽 cell dataset. Specifically, the use of DrImpute or ScImpute

resulted in decreased overlap of PTEs in 𝛽 cell dataset (Fig. 4.2). Furthermore, the number

of cells did not correlate positively with the repeatability of identified trajectories where the

majority of the workflows showed high entropy of rank correlations in the TKI treatment

dataset with minimum entropy being > 0.7 across 3 treatments (Fig. C6a,C6b,C6c). In

contrast, datasets with relatively low number of cells showed slightly improved overlap for

specific workflows. For instance in the E2 treatment dataset, use of DM improved overlap in

contrast with UMAP or UMAP+PAGA. The Neurodegeneration dataset on the other hand

showed a global decrease in PTEs (Fig. C6).

These results point out one of the major drawbacks of using Slingshot for PTEs; since

the estimation of trajectories is heavily dependent on the prior dimension reduction step,

heterogeneous datasets will necessarily show high variation to different parameter regimes.

More specifically, the Slingshot method using principle curves can fail to capture the tem-

poral dynamics on highly non-linear spaces hence need to be carefully selected/optimized
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for trajectory estimation. For instance when UMAP is used for dimension reduction prior to

PTE, the cell population structures remain overall similar as the number of cells increases

but relative positioning of subpopulations can change in a way that does not reflect the latent

temporal process (Fig. C7a,C7b,C7c,C7d). Furthermore the non-linearity can artificially

generate an increased number of trajectories resulting in diverge PTEs. For instance, use of

DM resulted in 1 trajectory to be identified in E2 treatment data subsets hence resulting in

‘simpler’ PTEs overall (Fig. C7g,C7h).

4.3.2.2 Palantir

We have also included an additional method widely used for pseudotime estimation[122].

Palantir utilizes nearest-neighbor graphs followed by diffusion maps as a dimension reduc-

tion/manifold learning step. Low dimensional representation is further used for pseudotime

quantification as a distance measure from a defined progenitor cell. In order to marginalize

out the selection of progenitor cell, we generate 10 pseudotime orderings using different

progenitor cells sampled from initial time-point and calculate the average Spearman rank

correlations. In the TKI dataset, Palantir showed relatively robust estimates of pseudotime

orderings across different preprocessing steps where the average correlation remained > 0.5

(Fig. C8). However, similar to Slingshot results, data-specific overlap quality was present.

For instance, the Alectinib treated dataset benefited from imputation by ScImpute across

different subsets but Crizotinib and Lorlatinib treated datasets showed reduced overlap of

PTEs. Furthermore, Crizotinib and Lorlatinib treated datasets showed distinct profiles

for DCA-NB/DCA-ZINB where Crizotinib dataset benefited across different subsets from

using DCA but Lorlatinib dataset showed subset dependent profile. In the Neurodegen-

eration and Pancreatic Maturation datasets, similar results were observed where ScTrans-

form normalization helped improve the PTE overlap in the Neurodegeneration dataset but

showed reduced overlap in the Pancreatic Maturation dataset specifically when coupled with

DrImpute. Conversly, using DCA-NB/DCA-ZINB, Palantir PTEs showed relatively robust
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correlation across different workflows in the Pancreatic Maturation dataset. (Fig. C9,C10).

4.3.2.3 DDRTree

Since DDRTree/Monocle2 method inherently utilizes dimension reduction to generate a

tree-like topology to define a latent trajectory, we have generated the combinatorial work-

flows for imputation and normalization steps only which is also reflected on the use of 2

icons instead of 3 where imputation is applied. However, also note that, in contrast with

previous workflows, we have opted to further reduce the number of features by selecting top

50 principal components due to computational constraints hence the limitation of results

to within method comparisons. We have aggregated rank correlations across 12 subsets

by median values to evaluate the overlap of different workflows. (Fig. C11). The TKI

treatment dataset overall showed good overlap (𝜌 > 0.75) across different imputation and

normalization methods. Interestingly however, Crizotinib treatment showed increased over-

lap of PTEs when DrImpute or ScImpute is utilized in comparison with when DCA is used

(Fig. 4.3a,4.3b,4.3c). Further investigating the individual trajectories showed that using

DCA resulted in increased number of branch points in contrast with DrImpute or ScImpute

(Fig. C12). This might be an implication for ‘overcorrection’ when DrImpute or ScImpute

is used subsequently reducing variation. Datasets with relatively low numbers of cells

however showed variable results with different analysis steps having distinct ‘importance’.

For instance, in the Neurodegeneration dataset, choice of normalization showed the highest

impact where the use of Deconvolution decreased the trajectory overlap globally, in contrast,

ScTransform was more robust to the imputation step (Fig. 4.3d). Furthermore as expected,

E2 treatment dataset showed high correlation between workflows using Deconvolution and

ScTransform normalization but not when DCA is used (Fig. 4.3h, 4.3g) since, with low

number of training dataset for the autoencoder model, parameters might not be estimated

robustly. In contrast, pooling information from similar cells and genes might better capture

biological signal. The Pancreatic differentiation dataset on the other hand showed increased
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(h) T47D E2 Treatment

Figure 4.3: Rank correlation of geodesic distances on DDRTree trajectories median
aggregated over subsets showing both data specific performance and overall increase
based on number of cells. (a-c) TKI treatment dataset shows improved overlap of cell
orderings. Altough the TKI dataset is relatively more heterogeneous, increased number of
cells allow DDRTree to capture robust cell-cell similarities. (d-h) Remaining datasets show
variable results with Pancreatic maturation 𝛽 performing comparable to TKI dataset and
Neurodegeneration dataset performing the poorest.

overlap across different methods. Further investigating subset specific overlap of trajecto-

ries showed no substantial effect of gene or cell level quality filtering where the quality of

overlap between different workflows remained similar across different subsets (Fig. C13).
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(b) PAGA-UMAP

Figure 4.4: Sample dimension reductions for Alectinib treated NSCLC lines showing
nonlinearity in temporal dynamics of gene expression. Since dimension reduction
utilizes transcriptional similarity of individual cells, low dimensional representations might
not necessarily correlate linearly with sampling time. In datasets where sampling time is not
linear and/or the underlying transcriptional dynamics are highly heterogeneous supervised
approaches might be more suitable where the change in transcriptional activity is ordered
by the temporal process by default.

4.3.2.4 WOT

Since both Slingshot and DDRTree aim to find a low dimensional ordering of individual

cells in an unsupervised fashion, temporal information is not readily utilized which can lead

to biased estimates where transcriptional dynamics are not ’linearly’ associated with time

(Fig. 4.4). Instead, supervised approaches can provide certain advantages for PTE by utiliz-

ing available temporal information. However, forcing individual cells in a supervised order

also poses challenges such that cells are not synchronized in terms of division and growth

rates. For this purpose the WOT framework also allows us to calculate optimal growth rates

for individual cells given the ’transcriptional mass’ transfer optimization problem. Fur-

thermore by removing the dimension reduction step, WOT inherently reduces the number

of possible sources of variation. In order to evaluate how WOT performs when different

methods for imputation and normalization are used, we have calculated pairwise rank corre-

lations of transition probabilities between individual cells at consecutive time-points 𝑡0, 𝑡1,

across different workflows. Simply, we have quantified how the transition probabilities of

an individual cell change if a different normalization or imputation step is used. The TKI
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treatment dataset showed the highest overlap of transition probabilities across all pairwise

workflow comparisons with median rank correlation > 0.75 (Fig. C14). Normalization

with ScTransform showed slightly better overlap however when different imputation steps

are compared in contrast with Deconvolution (Fig. C15). Interestingly however this differ-

ence was most striking in the Neurodegeneration dataset where the choice of imputation

showed a relatively high difference of rank correlation (𝜌 > 0.2) between Deconvolution

and ScTransform. Investigating imputation steps individually showed no substantial effect

of imputation step where the overlap of trajectories when Deconvolution and ScTransform

is used remained similar and relatively low (< 0.75) irrespective of which imputation step

is used (Fig. C16). Investigating the effect of using different gene and cell level thresh-

olds showed a substantial decrease in the Neurodegeneration dataset where the remaining

datasets showed similar PTE comparison profiles across 12 subsets hence suggesting rel-

atively robust PTEs across different threshold (Fig. C17). This suggests that WOT PTEs

consistently show repeatable results specifically for datasets with relatively high number of

cells captured (Fig. C18).

4.4 Discussion

With the advent of single-cell sequencing methods, identification of tumor subpopulations

and pseudotime estimation has been extensively used where analysis of scRNA-Seq data is

complicated by a multitude of factors. In order to evaluate methods developed for scRNA-

Seq analysis we have aimed at evaluating the available methods in a combinatorial fashion

to assess the repeatability of either identified subpopulations or estimated pseudotimes. We

have shown that selection of different methods at different levels of scRNA-Seq analysis

can lead to variable outcomes both for clustering and trajectory inference. This is especially

important considering the availability of additional methods not utilized in this study and the

continued proliferation of methods [130, 131]. Furthermore, we have observed substantial

variation in workflows for either clustering or PTE where non-linear dimension reduction
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methods are used. This emphasizes the importance of careful evaluation of which methods

to utilize since the results may not be generalizable to replicate datasets.

General trends in our analysis showed that the number of captured cells is crucial when

deciding on which downstream analysis methods to use since datasets with relatively high

number of cells can sample the evolutionary process on the underlying manifold more effec-

tively hence showed increased overlap across different workflows specifically for clustering

and PTE using WOT. Imputation approaches did not show improvement in downstream

analysis as well which have been previously reported as well [132]. Dimension reduc-

tion methods that are heavily utilized in scRNA-Seq analysis showed high sensitivity to

parameter selection hence clustering results using low dimensional representations were

variable. Similar results were also shown previously [133]. Although, t-SNE and UMAP

coupled with PAGA showed relatively robust cluster assignments there is no one best ap-

proach and methods showed data-specific performance. Clustering with tooManyCells on

the other hand alleviated some of the limitations where clustering is done via nearest-

neighbor graphs, however, data-specificity of workflows remained. This further stresses

the importance of repeatability in scRNA-Seq analysis where unsupervised clustering is of

major interest. In order to reduce some of the issues associated with clustering specifically

when coupled with non-linear dimension reduction, ‘consensus’ based approaches where

randomly sampling features/cells might be more suitable.

Trajectory inference methods, similarly showed variable results where non-linear dimension

reduction is used. Slingshot for instance failed to capture reproducible trajectories in the

TKI treatment dataset. As previously stated, Slingshot method based on principle curves is

more suitable to relatively linear trajectories with a small number of branch points. Similar

observations were also pointed out in previous studies as well. For instance, Saelens. et

al. showed decreased performance of Slingshot when the underlying trajectory consisted of

multiple branches and non-linearity, which as we have shown in this study, can be further

exacerbated when considering multitudes of different preprocessing steps. In order to
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alleviate some of the issues in coupling dimension reduction methods with Slingshot, one

may need to choose parameter regimes towards linearity, for instance increasing number of

nearest neighbors or minimum distance parameter in UMAP. However, also note that the

use of dataset from a single experimental setup is of limited applicability hence does not

necessarily dismiss alternative views in the case of the TKI treatment dataset. Palantir on

the other hand resulted in more robust PTEs across data subsets. This can be attributable

to the fact that Palantir readily optimizes the number of dimensions to use to quantify

PTEs hence reducing variation overall. Nevertheless, Palantir also suffered from data-

specificity. Using either supervised approaches WOT or regularized dimension reduction

using DDRTree resulted in increased correlations in trajectory estimates when different

preprocessing methods are combined. DDRTree specifically showed improved performance

over Slingshot especially when ScTransform is used for normalization but the quality of the

overlap was data specific where TKI dataset with relatively large number of cells showed a

global increase in correlation of identified trajectories. This is in contrast with Tian et al.

where Slinghost showed slightly improved performance over DDRTree. However, improved

performance of Slingshot can be partially attributed to the mixture datasets being relatively

less heterogeneous and the underlying structure being relatively linear.

Using supervised trajectory mapping via the WOT framework alleviated some of the issues

with unsupervised approaches as well. Although identified trajectories remained sensitive

to normalization method selection, data dependence is reduced where we have observed

ScTransform performing relatively well across all the datasets. Furthermore, since the tem-

poral information is utilized in WOT, we can readily assume the identified trajectories will

overlap with the biological process compared to unsupervised alternatives. For instance,

neither Slingshot nor DDRTree can differentiate subpopulations from different time-points

if the transcriptional profiles are similar even though the temporal dynamics are different.

However, it is also important to note that identified trajectories only regard the differences

between individual cells in terms of transcriptional profiles mapped to low dimensional
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space (in the case of Slingshot and DDRTree). This makes the problem of evaluating the

PTEs non-trivial due to absence of ground-truth observations Deviation from ground-truth

PTEs should be evaluated using approaches that allow individual cells to be tracked [134,

135]. Furthermore, individual methods presented here can be further optimized separately

resulting in improved PTEs. For instance, increasing the number of dimensions or us-

ing alternative metrics for quantifying transcriptional difference. Nevertheless, the WOT

framework combined with ScTransform provided certain advantages by utilizing temporal

information and reducing the variation.

In conclusion, analysis of scRNA-Seq datasets show high variation across different pa-

rameter regimes and methods in the context of clustering and trajectory mapping. It is

non-trivial to utilize the heterogeneous structure of tumor subpopulations in order to extract

biological insights hence analysis of scRNA-Seq requires careful selection of methods and

optimization of parameters but different methods provide certain advantages. We hope that

provided results can guide future studies for method selection and help with reproducibility

in scRNA-Seq analysis.
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C h a p t e r 5

PANCANCER MAPPING OF COLLATERAL SENSITIVITY USING
MULTI-OMICS ML APPROACH

Evolution of drug resistance is a major obstacle in cancer treatment where both targeted

and non-targeted agents often fail to deliver complete cure. Recent efforts to understand

the underlying dynamics based on mathematical modeling have allowed for better treatment

strategies prolonging progression-free and/or overall survival. Concurrently, collateral-

sensitivity has been defined and elaborated. However, improved mechanistic understanding

of individual drug effects to better understand collateral sensitivity/resistance remains to be

explored.

Here we investigate the utility of integrative machine-learning approach based on autoen-

coders in capturing functional mechanisms of drug sensitivity/resistance. We pose this

problem as finding a low-dimensional landscape/embedding capturing covarying features

across gene-expression and mutation profiles supervised by drug sensitivities. Furthermore,

we train the proposed model simultaneously on patient and cell-line datasets to extract clini-

cally relevant features. We use bulk RNA-Seq and whole-exome mutation data from TCGA

and GDSC in a pancancer fashion. We further utilize IC50 measurements for 120 drugs to

supervise the landscape. Filtering the features to focus on protein coding and driver genes

for expression and mutation profiles respectively, we generate an integrative map of 10k

gene expressions, 500 driver genes associated with 120 drugs across patient and cell-line

datasets. We show the capability of such models in integrating multiple -omics datasets

to uncover potential convergent mechanisms of resistance/sensitivity in a pancancer fash-

ion and evaluate both on survival predictions setting and single-cell RNA-Seq resistance

evolution setting.



5.1 Introduction

Resistance to targeted and cytotoxic agents and subsequent proliferation is inherent in can-

cer where evolutionary dynamics are at play. Through selection of preexisting clones,

de-novo emergence of resistance and/or ecological interactions with the tumor microenvi-

ronment, cancer cells can adapt/resist to environmental perturbations making it non-trivial

for complete remission specifically for advanced stage/metastasized cases. Owing to the

increasingly available -omics datasets including single-cell sequencing and development

of mathematical frameworks, better understanding of the evolutionary dynamics have re-

sulted in improved treatment strategies [35, 37]. Furthermore, with the aim of preventing

resistance evolution, large-scale drug combination studies have been conducted to delineate

synergism/antagonism of anti-cancer drugs for increased effectiveness and reduced toxi-

city [136, 137]. Coupled with off the shelf black-box models, drug combination studies

allowed for effective prediction of synergism/antagonism admittedly with poor translation

to clinic [138–140].

Relatively recently, evolutionary view of drug sensitivity through mathematical modeling,

linked collateral mechanisms of sensitivity/resistance with fitness landscapes in bacteria and

in cancer further elaborating on the stochastic nature of evolutionary mechanisms of drug

resistance [33, 36, 38]. A significant difference of collateral sensitivity over static drug-

combination view is that the identification of temporal information via collateral networks

can in theory allow for better control of drug resistance through time, in contrast the intrinsic

adaptability/plasticity of cancer cells to environment allows for evolution of resistance to

drug-combinations given in pairs. Collateral-networks however require mechanistic view

of individual drugs in order to be able to administer drugs temporally with non-orthogonal

mechanisms of resistance.

For this purpose, here, we aimed at mapping latent collateral sensitivities of anticancer

drugs via the use of neural-network based machine-learning models. Specifically, we pose

the problem as a supervised low-dimensional embedding and subsequent prediction of drug
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sensitivities simultaneously to multiple drugs. We generate an integrative model based on

autoencoder architecture to identify latent features associating multi-omics features with

drug sensitivities. Furthermore, we leverage patient data from TCGA as well, regularizing

the identified features to be generalizable to the clinical setting.

(a)

Figure 5.1: Integrative approach capturing covarying features of mutation and gene
expression associated with drug sensitivities through a bottleneck: Autoencoder archi-
tecture representing the supervised integrative embedding approach.

5.2 Results

5.2.1 Integrative approach can provide mechanistic view of collateral sensitivity

We have constructed an Autoencoder architecture in order to identify covarying features

across different -omics types and datasets where data is embedded on a unified space

effectively compressing relevant information (Fig.5.1a). The proposed model is further su-

pervised by drug sensitivities measured by IC50 to enable capturing information associating

expression and mutation patterns across multiple drugs (See methods for more details).

Using cross-validation to select the number of latent dimensions, we observed relatively

high overlap of predictions for test dataset both for patient and cell-line samples where

mutation predictions on average showed > 0.7 and > 0.9 AUC and expression predictions

on average showed > 0.65 and > 0.80 pearson correlation for cell-line and patient datasets
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respectively (Fig.D2). However, drug sensitivity predictions, although being relatively

high in the training set (𝜌 > 0.75), showed reduced overlap in the test set (𝜌 > 0.4)

(Fig. D3). Nevertheless, we have observed pathway and cancer specific improvement

in predictions. For instance, drugs targeting ERK/MAPK signaling, Mitosis and DNA

replication showed 𝜌 > 0.5. Similarly, Ewing’s Sarcoma, Hepatocellular Carcinoma and

Small Cell Lung Carcinoma showed 𝜌 > 0.5 in test-datasets. Cancer and pathway specificity

was also apparent when investigating the rank correlations in the training dataset where

majority of the cell-lines showed 𝜌 < 0.4 absolute correlation when considering all the

drugs in the dataset (Fig. D4). This observation underlines the sparse nature of drug

response mechanisms which can be alleviated by ‘borrowing’ power from drug-cancer type

combinations with relatively high mutual information.

5.2.2 Low dimensional latent space recapitulates feature associations

In order to investigate the linear associations between the features and drug sensitivities, we

generated samples from the latent space and quantified the linear associations. Identified

associations recapitulated previously known mechanisms or signatures (e.g. BRAF mutation

conferring sensitivity to Refametinib, KRAS mutation conferring resistance to Gefitinib and

Cisplatin sensitivity signature showing positive association with previously published gene

expression signatures [141] (Fig.D5)). Interestingly, gene-set enrichment analysis showed

a global association of chromatin organization, and histone-deacetylation through ZZZ3

(Fig.D9) where histone deacetylase inhibitors (HDACi) have been previously implicated

for increased synergistic effects in a class dependent fashion as well and is suggestive of a

possible convergent pathway in drug response [142–144].

However, overall, we have observed high frequency of positive correlations (reduced col-

lateral sensitivity) in drug-drug similarities (Fig. D6). Comparable results have been given

previously as well in the context of synergistic drug combinations and collateral sensitiv-

ity emphasizing the sparsity of such combinations [137]. In contrast, a handful of drugs
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targeting ERK/MEK, EGFR, heat-shock proteins and intrinsic apoptosis pathway including

Refametinib, Trametininb, Sapitinib, Sepantronium bromide, Navitoclax and Tanespimycin

(Fig. 5.2).
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Figure 5.2: Drug-Drug network showing drugs with negative association and 𝜌 > 0.4
test-set prediction correlations.

In order to investigate the possible mechanisms of negative associations, we used biased

random-walks coupled with high-confidence gene-gene interaction network aggregated

from StringDB, BioGrid and InBioMap. Using features with high ‘loadings’ on top 5

singular vectors of feature-drug correlation matrix as restart nodes/seeds, we identified sub-

networks of possible synergistic/collaterally sensitive drug mechanisms (See supplementary

for details). Identified subnetworks for top 5 components included; BRAF,BCOR,CDKN2A,S100A10,S100A6,

VIM,NOTCH1,NRAS,TET1,SYK component, TP53,DUSP6,PAX6,NGFR,BRAF component,

HLA-B, CPEB2 component and PTEN,CDKN2A,GAB1 (Fig. D7).

Further investigating the feature-drug associations for all the drugs with test-set predictions

𝜌 > 0.4, we observed possible collateral sensitivity/synergy between Navitoclax a BCL2

inhibitor and Gefitinib a EGFR inhibitor in a cancer specific fashion. Small Cell Lung Can-

cer, Neuroblastoma, Ewing’s Sarcoma cell lines were sensitive to Navitoclax and resistant

to Gefitinib whereas Cervical Carcinoma, Esophageal Squamous Cell Carcinoma, Head

69



and Neck Carcinoma and Oral Cavity Carcinoma were resistant to Navitoclax but sensitive

to Gefitinib (Fig. D8). Interestingly a HSP90AA1 inhibitor Tanespimycin which has been

previously implicated as a potential target for TKI resistant Non-Small Cell Lung Cancer

NSCLC [145, 146], showed (-) correlation with Navitoclax as well. In line with previous

publication showing HSP90AA1 inhibition promoting apoptosis by blocking pro-survival

signals through AKT [147], we hypothesized that Gefitinib and Tanespimycin resistance, is

dependent on upregulation of pro-survival signals leading to Navitoclax sensitivity.

Consequently, stimulating further the intrinsic apoptotic pathway by inhibition of additional

pro-survival mechanisms can improve both the efficiency of treatment and possibly restrict

the diversity of resistance mechanisms that can evolve. Improved efficiency has been pre-

viously shown in NSCLC treated in combination with EGFR inhibitors Erlotinib, Gefitinib

and BCL2 inhibitors [148, 149].

In order to investigate the dynamics of EGFR,HSP90AA1,BCL2 inhibition, we quantified

the sensitivity of Lung Cancer cell-line (PC-9) harboring deletion of exon 19 in EGFR

to Navitoclax and Tanespimycin. We tested the combination in both parental PC-9 cells

and Gefitinib resistant PC-9 cells evolved over 6 months with increasing dose of Gefitinib.

Interestingly we observed synergy in both parental and resistant cell-lines, however, parental

cell-line showed a dose dependent synergy with increasing Navitoclax concentration. In

contrast, Gefitinib resistant cell-lines showed synergy across all concentrations of Navitoclax

suggestive of BCL2 dependent resistance evolution to Gefitinib (Fig. D10).

5.2.3 Drug sensitivity predictions show significant association with progression-free

survival

Since drug sensitivity measurements are aimed at identifying tumor populations which a

specific drug will be most effective, IC50 can also be a proxy for how well a given patient

will respond to treatment. With the naive assumption of patients with low predicted IC50

values should respond better to that treatment, we investigated the utility of the trained
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model in predicting progression free survival. We curated TCGA clinical information and

extracted stage, radiation and drug treatment information and combined with a published

time-to-event dataset [150].

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CoxPH Model for IC50 Predictions (Fluorouracil)

Time (Months)

IC50

−3
−2
−1
0
1
2
3

p−val < 0.1

(a)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CoxPH Model for IC50 Predictions (Cisplatin+Paclitaxel)

Time (Months)

IC50

−3
−2
−1
0
1
2
3

p−val < 0.05

(b)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CoxPH Model for IC50 Predictions (Cisplatin+Gemcitabine)

Time (Months)

IC50

−3
−2
−1
0
1
2
3

p−val < 0.05

(c)

Figure 5.3: CoxPH survival analysis using progression free survival and predicted
IC50 values for the corresponding drugs or mean aggregated values for multiple
drugs. Shown survival curves represent the effect of IC50 predictions of a pseudo-samples
of age 45, low stage (where applicable) and radiation treated (where applicable).

Using the predicted IC50 values as covariates in CoxPH model, we identified 3 cancer

types (out of 6 applicable cancer type-drug combinations) and treatments with significant

association with IC50 predictions for BLCA, OV and STAD (Fig. D13). However, remaining

combinations including cancers CESC, HNSC, LIHC did not show significant association.

This might be due to IC50 predictions not-necessarily translating into survival phenotype
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or the heterogeneity of clinical data curation regarding surgery, dose of radiation etc..

Nevertheless, in a limited setting, we showed clinical utility of the trained model.

5.2.4 Drug specific application of the proposed Autoencoder model

Hypothesizing that pancancer analysis of the observed variation can mask tissue specific

sensitivity patterns of given drugs we investigated whether limiting the neural-network to

train on specific drugs could improve predictive power of the model hence we restricted our

analysis to 4 drugs including targeted agents Alectinib, Crizotinib, Osimertinib, Erlotinib

and evaluated on single-cell RNA-Seq data obtained from public repositories [125, 151].

scRNA-Seq datasets are generated to measure transcriptional activity during resistance

evolution. For that purpose, dataset (1) uses EML4-ALK+ isogenic cell lines treated

with Alectinib, Crizotinib and Lorlatinib over 6 months to develop resistance at clinically

applicable doses. Dataset (2) instead uses EGFR+ cell lines treated with Erlotinib over

2 weeks and sampled at relatively shorter intervals. Similarly dataset (3) uses PC-9 cell

lines treated with Osimertinib and sequenced at 2 time-points; parental and day 5 with

multiple evolutionary and technical replicates. However, since we only had gene expression

measurements, we retrained our model with expression dataset only and restricting the genes

to a common set of 6k genes expressed in TCGA, GDSC bulk RNA-Seq and scRNA-Seq

datasets.

Since the scRNA-Seq samples are proxy for resistance development, we reasoned that

increase in predicted IC50 values should correspond to later time-points where cells have

developed resistance. Indeed we observed a significant increase in predicted IC50 values

at later time-points for EML4-ALK+ dataset (Fig. D11a). Furthermore, the predictions

overlapped with observations of cells treated with Lorlatinib as well, where cells treated with

Lorlatinib showed higher resistance to Crizotinib compared to cells treated with Crizotinib.

However, for Crizotinib treated cells, the predictions did not overlap with later time-points

which might be partly explained by the low resistance evolution in those cells (See [125] for
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further details). Furthermore, predicted drug resistance was highest at earlier time-points;

at 48h and 3-week, after which decrease was observed.

Similarly, in Erlotinib treated cells we observed a significant increase for cells sampled at

day 1 but a slight decrease in later time-points (Fig. D11b). This is suggestive of the model

capturing a transient, convergent drug-tolerant state rather than the resistance mechanisms.

Indeed, quantifying the prediction overlap showed low reconstruction of gene expression

𝜌 < 0.25 suggesting that it is non-trivial to apply models trained on bulk data on single-

cell data. Furthermore, these observations did not hold for Osimertinib treated samples

(Fig. D11c) where IC50 predictions did not show any apparent pattern.

5.3 Discussion

Drug resistance is a non-trivial problem in cancer treatment. Multitudes of mechanisms

have been described focusing on either individual drugs or individual cancer types albeit

with little translational impact. This is partly due to the inherent complexity of biological

systems hence the sparsity of repeatable patterns of resistance mechanisms. This issue

is further exacerbated by the costly nature of drug discovery and combination studies.

Nevertheless, such efforts have led to large-scale datasets to be generated where it is not

feasible to capture relevant features with standard relatively low complexity models. For

this purpose in a similar spirit with other studies, we hypothesized that large-scale carefully

optimized models can delineate common mechanisms/pathways across different tissues and

drugs utilizing the relatively vast repository of drug sensitivity measurements. Furthermore,

we hypothesized that in order for the extracted features to be relevant in clinical setting,

drug sensitivity predictions should be supervised/guided/regularized by patient datasets.

We have generated an integrative model that is aimed at extracting covarying features across

patient data and cell-line datasets. Further, we allowed for combining mutation and gene-

expression data to aggregate and simplify the multi-layered nature of the cell architecture.

Using the trained model, we showed that the majority of the drug pairs had positive corre-
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lations in terms of resistance/sensitivity mechanisms underscoring the need for improved

models. Consequently, we further looked into the pairs of drugs that showed higher fre-

quency of possible synergistic and collateral sensitive mechanism and mined for possible

common interactors. We identified a BCL2,HSP90AA1,EGFR axis with possible synergistic

activity and validated in a limited in-vitro setting with HSP90AA1 and BCL2 inhibitors.

The utility of the presented model was validated at least in regards to drug Cisplatin

where gene-expression features overlapped with previous published signature [141] and

features overlapping with previous findings such as BRAF mutations sensitizing to ERK-

MEK inhibitors. Additionally, drug sensitivity predictions overlapped with progression-free

survival data in BLCA, STAD and OV cancers further validating clinical utility.

Furthermore, we investigated whether the trained model was applicable to scRNA-Seq

data in a resistance evolution setting. Interestingly, scRNA-Seq data overlapped with

the sensitivity predictions in 2 drugs; Alectinib and Erlotinib but failed to associate with

transcriptional patterns in Crizotinib treated cells. Furthermore, both Alectinib and Erlotinib

treated cells showed an early increase in drug resistance predictions suggesting the prediction

of transient resistant states possibly tolerant persister cells.

Nevertheless, the presented results recapitulate the difficulty of mapping the sparse land-

scape of drug mechanism hence limited utility of clinical translation. In order to better

characterize the landscape we plan to expand the current endeavour with high-throughput

drug screening efforts.
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C h a p t e r 6

DISCUSSION

Biological systems are intrinsically multifaceted and heterogeneous. This inherent hetero-

geneity arising due to stochasticity leads to intractable diversity governed by evolutionary

dynamics. Neoplastic processes are not exempt from these laws of nature resulting in

highly diverse unregulated cell populations and allow tumors to evade or develop resistance

mechanisms.

Fortunately, evolutionary dynamics enabling cell populations with diverse arsenal of re-

sponse mechanisms, also allows for convergent mechanisms that are targetable. For in-

stance, one common mechanism of tumorigenesis in non-small cell lung cancer occurs due

to an activating somatic mutation in EGFR gene where specific Tyrosine Kinase Inhibitors

(TKIs) such as Gefitinib and Erlotinib are effective agents for treatment. Unfortunately, can-

cer eventually recurs frequently due to a secondary hit in gatekeeper mutation T790M which

prevents the binding of the drug. Third generation of EGFR inhibitors such as Afatinib and

Osimertinib can be used in such cases albeit with reduced success rates [152]. This appar-

ent tug of war is common in cancer treatment where improved treatment design by better

control of evolutionary dynamics is a must to improve outcomes specifically in high-grade

tumors where surgery is not feasible and radiation treatment remains as a palliative option.

However, finding such mechanisms is not always feasible and requires accurate mapping of

covarying features across high-dimensional feature space where evolution operates which is

a non-trivial task considering the heterogeneity and sparsity of such associations. Towards

that goal, complex machine-learning (ML) models even though being ‘black-box’ have

been utilized effectively, specifically recently with the advent of multi-omics single-cell

sequencing methods [153, 154].



With a similar spirit, we aimed to mine -omics datasets of relatively large patient cohorts.

We showed that such approaches can delineate functional groups of patients both in Acute

Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS) in unsupervised fash-

ion (Chapter 2 and Chapter 3). Generated clusters provide a novel view of primary and

secondary AML disease prognosis, and clinical relevance of co-mutations in MDS. Fur-

thermore, we also indicate the limitations and strategies to improve data-mining workflows

in heterogeneous scRNA-Seq dataset in resistance evolution setting. Finally, we provide a

unifying view in terms of manifold learning via multi-omics integration in order to mine

for convergent features associated with drug mechanisms (Chapters 4 and 5).

6.1 Model-based clustering of Acute Myeloid Leukemia Patients

We aimed to cluster mutation profiles of AML patients in order to discern clinically relevant

co-mutation patterns in a cohort of 2681 patients with complete mutation information for

44 genes. Using Latent Class Analysis (LCA) in a consensus fashion, we clustered the

patients/observations in to genomic clusters. We employed the consensus clustering by

randomly subsampling the observations and features over 1000 runs. Each subsample is

then clustered using LCA and selecting the optimal number of clusters based on silhouette

score. Keeping track of co-clustering patterns of observations we generated a consensus

matrix which is further clustered using hierarchical clustering to assign the final clusters.

We identified 4 genomic-clusters showing distinct clinical profiles. Furthermore, we cat-

egorized previously defined primary AML and secondary AML into novel clusters with

varying frequency of co-clustering which were not discernible without taking molecular

information into account. However, one limitation of the study is that the mutations are

aggregated over genes which might prove to be suboptimal.

6.2 Distance-based clustering of Myelodsplastic Neoplasms

In a similar fashion to AML study, we aimed to develop novel genomic/molecular clusters

of MDS patients in an unbiased/unsupervised approach. However, we observed increased
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heterogeneity in MDS compared to AML which resulted in ‘underfitting’ when we used

model-based approach such as LCA hence we opted to use potentially more sensitive ap-

proach based on Autoencoders. Since Autoencoders are efficient frameworks for manifold-

learning, we used a single-layer network to dimension reduce the binary mutation profiles

of MDS patients. This is similar to binary Principal Component Analysis or Multiple

Correspondence Analysis for categorical data however allowing for non-linear associations

to be mapped as well. Using cross-validation to select for the number of dimensions to

embedd, we applied this strategy in a consensus fashion and identified 14 molecular clusters.

Identified clusters showed high clinical relevance in terms of overall survival and treatment

response consequently resulting in unbiased, molecularly defined subgroups. Exclusion of

clinical parameters however, although simplifying, is possibly suboptimal. Furthermore,

distance based models, given large enough observations, will potentially stratify all cases

into unique combinations of binary mutations hence future efforts to regularize the stratifi-

cation process via supervision with unbiased clinical parameters can potentially benefit the

current molecular clusters.

6.3 Benchmarking scRNA-Seq analysis workflows

Transitioning from leukemia to solid tumors, we focused on the utility of available tools for

scRNA-Seq analysis. Since it is not possible to fully capture the heterogeneous nature of

tumors via bulk sequencing, single-cell approaches have become the gold standard. How-

ever, it is non-trivial to use single-cell rna-sequencing due to sparsity and increased dropout

rates. In order to guide current research, we conducted a comprehensive benchmarking

analysis in relatively heterogeneous setting of resistance evolution. We showed how prone

the overall analysis in terms of clustering and trajectory mapping to parameter and method

selection. Specifically, non-linear dimension reduction methods lead to qualitative results

difficult to quantitative investigations where regularization in the form of priors can alleviate

such issues. We further evaluated the utility of supervision in identifying transcriptional
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dynamics which are of interest in order to capture regulatory mechanisms, specifically in

drug resistance settings. Our results can further be extended to multi-modal single-cell

datasets as well where simultaneous profiling of mRNA, gDNA, chromatin accessibility

can be performed.

6.4 Integrative Modeling of Drug Sensitivities

Finally as a proof of concept study, we investigated the utility of using neural-networks in

manifold-learning objective regularized by drug sensitivity measurements effectively mod-

eling the evolutionary landscape. We used publicly available cell-line and patient datasets

from GDSC, DepMap and TCGA repositories. Novelty of our approach is based on the

simultaneous optimization of patient data, cell-line data and drug sensitivities effectively

characterizing the fitness landscape associated with drug responses. Since predictive mod-

els, specifically highly complex models, are difficult to generalize to patient datasets, we

aimed to identify features predictive of drug sensitivity relevant to both cell-lines and patient

samples. Further applying the proposed method in a tissue specific manner, we were able

to draw associations between bulk RNA-Seq and scRNA-Seq under resistance evolution

setting. We aim to further extend this study and expand to in-vitro validation by large mono

and in combination screening.

6.5 Conclusion

As our understanding of the inherent complexity of biological systems specifically in the

temporal setting grows, we are driven towards heuristics to alleviate the curse of dimen-

sionality inherent in -omic datasets. However, clinical translation of cancer research and/or

better characterization of cancer progression and drug response requires models that can in-

tegrate multi-modal feature space. For this purpose machine-learning approaches, whether

in black-box nature or in the dimension reduction settings, can provide powerful frameworks

for extracting features relevant to the phenotype of interest. In order to investigate the utility

of such approaches in diverse settings, we developed models i) applicable in clinically rele-
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vant stratification of myeloid neoplasms, ii) that can integrate multi-omic features. Finally,

we have also studied the variation inherent in single-cell analysis workflows underscoring

the need for robust unbiased approaches for reproducibility in research. We hope that such

strategies will enable clinical translation of cancer research in an unbiased and reproducible

fashion.
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A p p e n d i x A

MACHINE LEARNING INTEGRATES GENOMIC SIGNATURES FOR
SUBCLASSIFICATION BEYOND PRIMARY AND SECONDARY

ACUTE MYELOID LEUKEMIA

A.0.1 Supplementary Tables

Table A1: Summary of all sources of Acute Myeloid Leukemia (AML) cases included
in our study

Cohorts Total (n=6991)
Our group (n=4857)
Munich Leukemia Laboratory (MLL) 4002
Cleveland Clinic (CC) 855
Publicly Available AML cohorts (n=1931)
The Cancer Genome Atlas (TCGA) 182
German-Austrian Study Group 1251
Beat AML Master Trial 498
External validation cohort
The University of Texas MDS Anderson Cancer Center (MDACC) 203

Table A2: List of 44 genes on the targeted sequencing panel
ASXL1 CEBPA ETV6 IDH2 KRAS RAS RUNX1 SRSF2 TP53
BCOR CSF1R EZH2 JAK2 LUC7L2 PHF6 SETBP1 STAG2 U2AF1

BCORL1 CUX1 FLT3 KDM6A MECOM PRPF8 SF3B1 STAT3 WT1
CALR DNMT3A GATA2 KIT NF1 PTPN11 SIMC1 SUZ12 ZRSR2
CBL EED IDH1 KMT2A NPM1 RAD21 SMC3 TET2



Table A3: Gene mutation frequencies in Acute Myeloid Leukemia by Subtype
Mutant
Gene

CBF-AML APL KMT2A-AML pAML sAML tAML
n (%) n (%) n (%) n (%) n (%) n (%)

ASXL1 24 (6) 8 (3.8) 36 (11.5) 461 (12.7) 152 (24.4) 18 (7.9)
BCOR/BCORL1 7 (1.8) 1 (0.7) 8 (3.5) 162 (6.2) 49 (9.0) 3 (2.1)

CBL 15 (3.8) 4 (1.8) 5 (1.8) 71 (2.6) 26 (4.5) 9 (5.0)
𝐶𝐸𝐵𝑃𝐴𝑀𝑜/𝐵𝑖 3 (0.9) 7 (4.2) 0 (0) 390 (12.0) 25 (4.2) 11 (5.2)

DNMT3A 15 (3.8) 3 (1.4) 54 (18.6) 1089 (31.5) 81 (14.0) 35 (18.2)
ETV6 11 (2.9) 7 (3.3) 3 (1.3) 59 (2.2) 20 (3.7) 2 (1.4)
EZH2 13 (3.4) 4 (2.0) 5 (2.2) 105 (4.2) 32 (5.8) 5 (3.4)

𝐹𝐿𝑇3𝐼𝑇𝐷/𝑇𝐾𝐷 67 (17.7) 138 (55.8) 63 (25.3) 1101 (36.4) 83 (14.4) 60 (33.3)
GATA2 4 (1.4) 5 (2.5) 6 (2.6) 115 (4.3) 14 (2.5) 2 (1.4)
IDH1 4 (1.1) 1 (0.5) 17 (6.2) 324 (12.1) 38 (6.9) 16 (8.6)
IDH2 7 (1.8) 1 (0.5) 39 (13.8) 482 (17.8) 54 (10.0) 17 (9.9)
KIT 90 (22.2) 2 (1) 3 (1.3) 46 (1.8) 10 (1.8) 1 (0.6)

KRAS 39 (10.1) 9 (4.1) 35 (12.0) 151 (4.8) 23 (4.0) 19 (9.6)
NPM1 6 (2.2) 0 (0) 8 (3.5) 958 (35.9) 32 (6.1) 23 (15.2)
NRAS 119 (33.9) 9 (4.1) 49 (17.9) 421 (15.6) 57 (10.5) 28 (15.4)

RUNX1 7 (1.8) 5 (2.3) 40 (12.0) 642 (16.9) 179 (26.0) 31 (11.6)
SF3B1 1 (0.3) 2 (1.0) 5 (2.0) 127 (4.5) 61 (10.5) 18 (4.4)
SRSF2 6 (1.6) 3 (1.5) 21 (9.3) 334 (13.1) 212 (22.1) 13 (8.8)
STAG2 2 (0.1) 0 (0) 19 (9.0) 110 (5.4) 55 (10.8) 9 (6.9)
TET2 44 (11.1) 4 (1.9) 24 (8.3) 639 (20.0) 114 (19.8) 25 (14.1)
TP53 5 (1.3) 3 (2.2) 57 (18.2) 288 (8.6) 71 (12.0) 46 (20.4)

U2AF1 3 (0.7) 0 (0) 11 (4.8) 102 (4.1) 47 (8.6) 4 (2.8)
WT1 21 (5.5) 38 (17.9) 12 (4.1) 262 (7.4) 23 (3.7) 8 (3.6)

ZRSR2 1 (0.3) 5 (2.5) 4 (1.8) 49 (2.0) 16 (2.9) 1 (0.7)
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Table A5: Comparison of baseline and clinical characteristics of primary versus sec-
ondary acute myeloid leukemia

Variables pAML.n.(%) sAML.n.(%) P-value
Age* (y), median (range) 66.9 (18-89) 70 (21-89) < 0.0001
≥ 60 y 2374 (65.5) 638 (81.3) < 0.0001
Gender
Male 2373 (52.7) 535 (64.4) < 0.0001
Female 2129 (47.3) 297 (35.6)
Hematological Parameters*
WBC (109/L), median (range) 20.2 (0.1-600) 5.3 (0.5-388) < 0.0001
< 3 x 109/L 874 (20.4) 279 (36.6) < 0.0001
Hemoglobin (g/dL), median (range) 9.2 (2.3-17.9) 9.3 (5-16.5) 0.3
< 10 g/dL 2479 (65.9) 484 (66.3) 0.5
Platelets (109/L), median (range) 73 (2-2366) 50 (5-869) <0.0001
< 100 x 109/L 2663 (60.6) 573 (76.5) <0.0001
Bone marrow
Blasts %, median (IQR) 61 (48) 30 (36) <0.0001

Table A6: Probability of survival per each genomic cluster
Survival Cluster-1 Cluster-2 Cluster-3 Cluster-4

Probability (% Confidence Interval)
1-year 0.69 (0.65-0.72) 0.71 (0.68-0.74) 0.59 (0.55-0.63) 0.41 (0.35-0.48)
2-year 0.55 (0.51-0.59) 0.52 (0.48-0.55) 0.35 (0.31-0.40) 0.23 (0.18-0.30)
3-year 0.50 (0.46-0.54) 0.44 (0.41-0.48) 0.27 (0.23-0.32) 0.17 (0.12-0.24)
5-year 0.43 (0.39-0.47) 0.37 (0.33-0.40) 0.19 (0.15-0.23) 0.13 (0.08-0.20)

Table A7: Characteristics of the secondary acute myeloid leukemia cases in genomic
cluster-1

AML subtype Antecedent diagnosis Age (y) Sex OS (months) Cytogenetics Somatic Mutations
sAML 48 F 78.50 del(9)(q13q22) NPM1, NRAS
sAML MDS 85 M 7.90 Normal NPM1
sAML MDS 62 F 5.30 t(3;12)(q26.2;p13) NPM1
sAML MDS 76 M 13.13 -Y FLT3TKD, IDH1, NPM1,

SRSF2
sAML MDS 65 M 9.60 Normal IDH2, NPM1, SRSF2
sAML MDS 63 F 10.63 Normal IDH2, NPM1
sAML MDS 81 M 4.17 Normal IDH2, NPM1, NRAS
sAML MDS 52 F 20.57 -X NPM1
sAML MDS 60 F 8.63 8 NPM1, NRAS
sAML M 55.17 Normal DNMT3A, NPM1, TET2,

WT1
sAML F 6.60 Normal NPM1, NRAS
sAML F 0.87 Normal CEBPAMo, NPM1
sAML F 2.43 Normal IDH2, NPM1, SRSF2
sAML F 10.77 Normal DNMT3A, FLT3ITD,

NPM1
sAML M 67.77 Normal FLT3ITD, NPM1
sAML F 10.93 Normal DNMT3A, NPM1
sAML F 60.73 Normal DNMT3A, NPM1
sAML MDS 74 M 8.63 del(7)(q22q36) NPM1
sAML MDS 87 M 6.40 Normal BCOR, NPM1, SF3B1,

TET2
sAML MDS 68 F 11.30 Complex ETV6, NRAS, NPM1
sAML MDS 62 M 45.50 t(3;11))(p21;q23) NPM1
sAML MDS 84 M 24.3 Complex NPM1
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Table A8: Baseline and clinical characteristics of patients in each genomic cluster
Variables Cluster-1 n (%) Cluster-2 n (%) Cluster-3 n (%) Cluster-4 n (%)
Age (y), median (95% CI) 62 (60 - 63.8) 60 (58.3 - 61.4) 70 (69 - 71.1) 70 (67.8 - 71.8)
Hematological Parameters
WBC (109/L), median (95% CI) 29.8 (25.2 - 34.8) 9.5 (8 - 11.9) 8.9 (7.1- 11.3) 4.4 (3.5 - 5.2)
< 3 x 109/L, freq (95% CI ) 0.1 (0.09 - 0.14) 0.28 (0.25 - 0.31) 0.28 (0.24 - 0.31) 0.36 (0.31 - 0.42)
Hgb (g/dL), median (95% CI) 9.1 (9 - 9.3) 9.3 (9.1 - 9.4) 9 (8.9 - 9.3) 9 (8.6 - 9.2)
< 10 g/dL, freq (95% CI) 0.66 (0.63 - 0.7) 0.62 (0.59 - 0.65) 0.67 (0.63 - 0.7) 0.75 (0.7 - 0.79)
Plt (109/L), median (95% CI) 60 (55-64) 56 (52-61) 59 (55-65) 51 (41-58)
< 100 x 109/L, freq (95% CI) 0.7 (0.67 - 0.73) 0.74 (0.71 - 0.77) 0.73 (0.69 - 0.76) 0.8 (0.74 - 0.84)
Bone Marrow
Blasts %, median (95% CI) 77 (73-80) 60 (54-64) 52 (50-56) 41 (36-48)

Table A9: Baseline and clinical characteristics of primary and secondary acute myeloid
leukemia cases from the MD Anderson Cancer Center cohort

Variables pAML (n=143) sAML (n=60)
Age, (y), median (range) 69 (24-86) 69 (28-83)
F/M 75/68 21/39
Hematological parameters
WBC (109/L), median (range) 3.6 (0.6-143.7) 3.4 (0.3-85.6)
Hgb (g/dL), median (range) 9.2 (3.9-11.6) 8.7 (6.4-10.7)
Plt (109/L), median (range) 40 (7-271) 38 (2-864)
Bone marrow
Blasts %, median (range) 14 (0-97) 11 (0-70)
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Table A10: Frequencies of cytogenetic abnormalities and gene mutations in primary
and secondary acute myeloid leukemia cases from the MD Anderson Cancer Center
cohort

Variable pAML (%) sAML (%) Total (%)
Cytogenetic abnormalities
inv(3)/t(3;3) 2.10 6.67 3.45
t(6;9) 2.10 0.00 1.48
-5/del(5q) 20.98 25.00 22.17
del6q/-6 6.29 5.00 5.91
-7/del(7q) 16.08 33.33 21.18
-9/del(6q) 4.20 3.33 3.94
del(12p) 0.00 0.00 0.00
del(13q) 0.00 0.00 0.00
del(16q) 0.00 0.00 0.00
-17/del(17p) 11.89 10.00 11.33
del(20q) 1.40 3.33 1.97
8 11.89 16.67 13.30
-X 4.90 3.33 4.43
-Y 1.40 3.33 1.97
Gene mutations
ASXL1 20.28 43.33 27.09
BCOR/L1 20.28 28.33 22.66
CBL 3.50 5.00 3.94
CEBPAMo 7.69 10.00 8.37
CEBPABi 0.70 0.00 0.49
DNMT3A 28.67 18.33 25.62
ETV6 0.70 10.00 3.45
EZH2 15.38 21.67 17.24
FLT3TKD 30.07 5.00 22.66
FLT3ITD 25.17 3.33 18.72
GATA2 6.29 10.00 7.39
IDH1 11.19 3.33 8.87
IDH2R140 11.19 3.33 8.87
IDH2R172 1.40 3.33 1.97
KIT 1.40 0.00 0.99
KRAS 6.99 8.33 7.39
NPM1 13.29 26.67 17.24
NRAS 27.27 0.00 19.21
RUNX1 19.58 25.00 21.18
SF3B1 3.50 8.33 4.93
SRSF2 16.08 20.00 17.24
TET2 42.66 41.67 42.36
TP53 27.97 31.67 29.06
U2AF1 4.20 21.67 9.36
WT1 4.90 1.67 3.94
ZRSR2 4.90 8.33 5.91
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A.0.2 Supplementary Figures

Figure A1: Comparison of the mutational burden in acute myeloid leukemia subtypes.
The plot represents number of somatic mutations per individuals in primary (pAML) vs.
secondary acute myeloid leukemia (sAML). Levels of statistical significance is indicated
using p-value.

87



Figure A2: Comparison of somatic mutations associated with abnormal normal karyotype
primary versus secondary acute myeloid leukemia. A bar graph showing the frequency (in
percent) of somatic mutations in normal karyotype primary (NK-pAML) vs. secondary
acute myeloid leukemia (NK-sAML). Forest plots representing univariate analyses showing
the odds ratio (OR) of the association of somatic mutations in NK-pAML vs. NK-sAML.
Levels of statistical significance are indicated in green, orange, and black colors (P<0.0001,
P<0.05, and P>0.05, respectively) using fisher’s exact test. The abbreviation ns denotes
non-significant.
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Figure A3: Comparison of somatic mutations and cytogenetic abnormalities associated
with abnormal karyotype primary versus secondary acute myeloid leukemia. A bar graph
showing the frequency (in percent) of somatic mutations and cytogenetic abnormalities
in abnormal karyotype primary (AK-pAML) vs. secondary acute myeloid leukemia (AK-
sAML). Forest plots representing univariate analyses showing the odds ratio (OR) of the
association of somatic mutations in AK-pAML vs. AK-sAML. Levels of statistical signif-
icance are indicated in green, orange, and black colors (P<0.0001, P<0.05, and P>0.05,
respectively) using fisher’s exact test. The abbreviation ns denotes non-significant.
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Figure A4: Silhouette value and selection of number of genomic clusters. The plot repre-
sents the silhouette value with respect to the number of clusters that can be identified by
Bayesian latent class analysis. As seen, a number of 4 clusters attributes to the highest
silhouette value of 0.79. Therefore, we selected 4 clusters based on the silhouette value.
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Figure A5: Silhouette value in each genomic cluster. The plot represents the silhouette
values in each of the identified clusters. Genomic cluster-1 in yellow, genomic cluster-2 in
green, genomic cluster-3 in orange and genomic cluster-4 in purple.
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Figure A6: Pairwise survival comparison between the identified genomic clusters. The
figure illustrates the pairwise survival tests implemented to assess for the level of significant
survival difference between each of the identified genomic clusters (GC).
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Figure A7: . Results of the Bayesian Latent Class clustering based on the silhouette value
when 15% variant allele frequency cut-off is considered. (A) Consensus matrix generated
by applying latent class analysis on 1000 subsamples representing the frequency of two
observations being clustered in the same group. (B) The plot represents the silhouette value
with respect to the number of clusters that can be identified by Bayesian latent class analysis.
As seen, a number of 4 clusters attributes to the highest silhouette value of 0.86. Therefore,
we selected 4 clusters based on the silhouette value.
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Figure A8: Results of the overall survival comparison of primary versus secondary acute
myeloid leukemia within each genomic cluster. (A-D) Kaplan-Meier analyses showing
overall survival (in months) of primary vs. secondary acute myeloid leukemia within each
cluster. Levels of statistical significance are indicated using p-values.
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Figure A9: Pairwise survival comparison between acute myeloid leukemia subtypes within
each genomic cluster. The figure illustrates the pairwise survival tests implemented to assess
for the level of significant survival difference between primary (pAML) and secondary
(sAML) acute myeloid leukemia in each of the identified clusters (C; example, C-1 means
Cluster-1, etc). Levels of statistical significance are indicated.

Figure A10: The global importance of genomic signatures in the model. A bar plot showing
the genomic features used in our model and their respective importance calculated by mean
decrease in accuracy. The y-axis shows the decrease in overall classification accuracy if the
given variable is removed from the model.
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Figure A11: Genomic features characterizing the misclassified cases in genomic cluster 3.
A heatmap showing the genomic features of the misclassified cases in genomic cluster 3.
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Figure A12: A summary of the invariant genomic features defining each genomic cluster.
A heatmap demonstrating the genomic features of each genomic cluster.
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Figure A13: The clonal hierarchy of gene mutations per genomic clusters. The bar graphs
represent the top 5 most frequent dominant/founder and secondary/subclonal gene mutations
per each genomic cluster (Panel A: genomic cluster-1, Panel B: genomic cluster-2, Panel C:
genomic cluster-3 and Panel D: genomic cluster-4) as represented in the figure.

Figure A14: . Genomic clusters’ percentages in common cytogenetic abnormalities in
acute myeloid leukemia. The pie charts illustrates the percentage of each genomic cluster
in several common cytogenetic abnormalities. The figure legends colors are assigned
specifically for each genomic cluster.
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Figure A15: . Genomic clusters’ percentages in selected gene mutations in acute myeloid
leukemia. The pie charts illustrates the percentage of each genomic cluster in several
common gene mutations. The figure legends colors are assigned specifically for each
genomic cluster.

Figure A16: Genomic clusters’ percentages in selected gene mutations in acute myeloid
leukemia. The pie charts illustrates the percentage each genomic cluster in several common
gene mutations. The figure legends colors are assigned specifically for each genomic cluster.
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Figure A17: Age distribution per genomic clusters. The plot represents the comparison of
age (in years) between Genomic cluster-1/2 (GC-1/2) vs. Genomic cluster-3/4 (GC-3/4).
Levels of statistical significance is indicated using p-value.
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Figure A18: White blood cell count per genomic clusters. The plot represents the compar-
ison of white blood cell count (WBC, in 109/L) between Genomic cluster-1/2 (GC-1/2) vs.
Genomic cluster-3/4 (GC-3/4). Levels of statistical significance is indicated using p-value.
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Figure A19: Novel genomic clusters of KMT2A-rearranged acute myeloid leukemia
(KMT2A𝑅-AML) identified by unsupervised analyses. (A) Consensus matrix generated
by applying latent class analysis on 1000 subsamples representing the frequency of two ob-
servations being clustered in the same group. (B) The plot represents the silhouette values
in each of the identified clusters. Genomic cluster-1 (GC-1) in blue and genomic cluster-2
(GC-1) in yellow. (C) Kaplan-Meier analysis showing the overall survival (in months) of
each cluster (1-2). (D) The bar plots representing the mutational profiles (described by the
% frequency of genomic features) of GC-1 and GC-2 KMT2A𝑅-AML. (E) A plot showing
the genomic features used in our model and their respective importance calculated by mean
decrease in accuracy. The y-axis shows the decrease in overall classification accuracy if the
given variable is removed from the model.
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Figure A20: Internal validation: survival results in the training and test datasets. The
training dataset contained 80% of the original cases (n=2144) that were randomly selected.
Bayesian latent class analysis followed by random forest classification were applied to
the training dataset. The test dataset contained 20% of the original cases (n=537) that
were randomly selected. Random forest classification was applied to the test dataset. (A-
B) Kaplan-Meier survival (using log-rank test) was used to plot survival curves of each
genomic cluster in the training (A) and test (B) datasets. Levels of statistical significance
are indicated using p-value.

Figure A21: Results of the survival comparison of training and test datasets in the internal
validation per each genomic cluster. Kaplan-Meier survival (using log-rank test) was used
to plot and compare survival curves of the training and test sets per each genomic cluster
(Panel A: genomic cluster-1, Panel B: genomic cluster-2, Panel C: genomic cluster-3 and
Panel D: genomic cluster-4) as represented in the figure. Levels of statistical significance
are indicated using p-values.
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Figure A22: Validation of the selected number of genomic clusters. The plot represents the
silhouette value with respect to the number of clusters that can be identified by Bayesian
latent class analysis in 75% of our cohort. The plot shows that even when the number of
patients was randomly reduced, BLCA did reproduce 4 clusters that attributed to the highest
silhouette value. Therefore, the selection of 4 clusters based on the silhouette value can be
further validated even in a smaller population of patients.

Figure A23: Conceptual figure. A schematic framework that illustrates our overall approach
in this study.
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A.0.3 Supplementary Methods

Genetic studies. For the data collected at CC, whole-exome sequencing (WES) was per-

formed and paired disease and germline DNA of purified CD3+ lymphocytes were used.

Whole-exome capture was accomplished by hybridizing sonicated genomic DNAs to a bait

cDNA library synthesized on magnetic beads (SureSelect Human All Exon 50Mb or V4

kit, Agilent Technologies). Captured targets were sequenced using a HiSeq 2000 (Illumina)

and standard protocols for 100-bp paired-end reads. Reads were aligned to the human

genome (hg19) by a Burrows-Wheeler aligner (http://bio-bwa.sourceforge.net/) using a

GATK pipeline that also extracted candidate variants/polymorphisms to reduce sequencing

errors. Data were validated using targeted sequencing. Targeted sequencing was performed

using a TruSeq Custom Amplicon kit (Illumina); a panel of 44 genes was interrogated (Ta-

ble.S2). Sequencing libraries were generated according to an Illumina paired-end library

protocol. The enriched targets were sequenced using a HiSeq 2000 or MiSeq (Illumina),

at 862x coverage. Variants were annotated using Annovar14 and filtered by removing: i)

synonymous single nucleotide variants; ii) variants only present in 140 unidirectional reads;

and iii) variants in repetitive genomic regions. Variants with minimum depth less than 20

or number of high-quality reads less than 5 were filtered out. A bio-analytic pipeline devel-

oped in-house1-3 identified somatic mutations using sequences derived from controls and

mutational databases such as dbSNP138, 1000 Genomes or ESP 6500 database, and Exome

Aggregation Consortium (ExAC). Variant allelic frequencies (VAFs) were adjusted accord-

ing to zygosity and copy number based on conventional metaphase karyotyping and/or

single nucleotide polymorphism array results. Patients from the MLL cohort were inves-

tigated by NGS using different methods and gene panels as previously described.4-8 The

gene sequencing methods of publicly-shared AML patients were previously described.9-11

Conventional cytogenetics. Metaphase cytogenetics was performed on BM aspirates. The

median number of metaphases analyzed was 20. Chromosomal preparation was performed

on G-banded metaphase cells using standard techniques, and karyotypes were described all
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the patients according to the International System for Human Cytogenetic Nomenclature.12

Clonal hierarchy. The clonal hierarchy was resolved using our in-house designed VAF-

based bioanalytic method and previously confirmed by the PyClone pipeline, which showed

a high level of concordance.1-3 We assigned the clonal hierarchy by using VAFs (adjusted

for copy number and zygosity) and then ranked the mutations. A mutation with the highest

VAF that is at least 5% more than the 2nd highest VAF in each sample was defined as an “an-

cestral/dominant” mutation; those with less than 5% difference from the highest VAF were

defined “ancestral/codominant” while those with VAFs of more than 5% difference from the

highest VAF were considered “subclonal/secondary mutations”. Statistics. Fisher’s exact

test and Chi-square test were used to compare categorical variables. Mann–Whitney U test/

Wilcoxon rank-sum test were used for continuous variables. All p- values were two-sided;

those less than 0.05 were considered statistically significant. Univariate and multivariate

Cox model analyses were also performed. All statistical computations were performed using

R 3.6.2 (www.r-project.org) and Prism (GraphPad). In order to assess prognostic differences

among the identified clusters, pairwise survival analysis using Kaplan-Meier estimator and

log-rank test was performed. Logistic regression. Univariate and Multivariate logistic

regression were applied in order to identify and compare prognostic genomic markers in

pAML and sAML patients. Variables and patients with more than 80% of missing values

were removed. Remaining missing values were imputed using R package missForest.13

Survival analysis. In order to assess prognostic differences among the identified clusters,

we have performed pairwise survival analysis using Kaplan-Meier estimator and log-rank

test. Bayesian Latent Class analysis for unsupervised clustering. We aimed to identify

clinically ‘functional’ clusters for the AML patients given the binary data of mutation status

for a panel of 44 previously determined genes and cytogenetic abnormalities by utilizing

Bayesian Latent Class Analysis (BLCA), a finite mixture modeling framework using R

package BayesLCA. The posterior distribution for the data, given the unobserved latent

variables, can be written as:
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𝑝 (𝑋, 𝑍) =
𝑁∏
𝑖=1

𝐺∏
𝑔=1

𝜏
𝑍ig+𝛿𝑔−1
𝑔

𝑀∏
𝑚=1

𝜃
𝑋𝑖𝑚𝑍ig+𝛼gm−1
gm

(
1 − 𝜃gm

) (1−𝑋𝑖𝑚)𝑍ig+𝛽gm−1

Where 𝜏 is the probability of belonging to a class 𝑔, 𝜃 is a GxM dimensional matrix

being the probability of a feature 𝑖 = 1 given the class membership. Given a predefined

number of latent variables, we estimated the parameters using EM framework. Since the

number of latent classes are predefined, we applied the model with different number of latent

classes and selected the best model using Bayesian Information Criterion (BIC). Estimated

parameters were then used to calculate the posterior probability of samples belonging

to clusters 𝑃 (𝑧𝑖 = 𝑘∨𝑥𝑖, 𝜃), hence the samples were partitioned into different clusters by

selecting the highest probability cluster. In order to account for outlier observations, we

applied this approach 1000 times to different subsamples of observations (%75 sampling)

to generate 1000 different clustering schemes. Thousand clustering schemes were then

aggregated into a consensus matrix by calculating the frequency of assignment into the

same cluster for all pairwise comparisons across 1000 iterations. Hyperparameter tuning

for interaction depth was done using 10-fold cross-validation where we set the parameter to

3.

Normalization of primary and secondary acute myeloid leukemia distributions. In

order to assess the distribution of pAML and sAML among the identified clusters with an

unbiased approach, we normalized pAML and sAML distributions with randomly sampling

equal number of pAML and sAML patients for 10000 times and evaluated the probability

of observing pAML in each cluster (Figure 2D).

Random Forest for extraction of genomic features. Secondary aim of unsupervised

clustering was to extract the relevant genomic features that facilitated molecular based

classification of patients and building a genomic classification model. For this purpose,

we proposed to use off-the-shelf machine learning method random forests as a multiclass

classification problem to classify the clusters initially identified via BLCA framework.
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Random forest is a model averaging technique with base models chosen as trees applied

successfully to wide variety of problems including cancer. The method combines output

from pre-selected number of trees applied to a subset of original data with both features and

observations being randomly selected. This procedure eliminates the pairwise correlation

of trees. To assess the importance of individual variables, mean decrease in accuracy was

used. However, since random forests employ sampling strategy, each model can produce

slightly different importance measure for each variable, hence we performed the procedure

100 times and plot the distributions. We also generated cluster-wise importance measures

by removing each variable from the model and calculating the mean decrease in accuracy

for the specific cluster (Figure 3A-E). The hyperparameter selection of the depth of trees

is done using 10-fold cross-validation with the total number of trees set to 1500.

Uniform resource locator. (URL: https://drmz.shinyapps.io/local_app/)
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A p p e n d i x B

MOLECULAR PATTERNS IDENTIFY DISTINCT SUBCLASSES OF
MYELOID NEOPLASIA

B.0.1 Supplementary Tables

Table B1: Summary of the sources of myelodysplastic syndrome and secondary acute
myeloid leukemia cases included in our study

Cohorts Total number of patients
Our cohorts 2902
Cleveland Clinic Foundation (CCF) 1627
Munich Leukemia Laboratory (MLL) 1275
Public cohorts 686
Beat AML master trial 45
Euro-MDS cohort2 641
External Validation Cohorts 419
Wayne State University Karmanos
Comprehensive cancer center

207

University of Texas Southwestern
Simmons Comprehensive Cancer
Center

212



Table B2: List of 40 genes in our targeted panel used for the molecular machine learning
model

ASXL1 BCOR BCORL1 CALR CUX1 CEBPA CBL CSF3R
DNMT3A DDX41 EZH2 ETV6 FLT3 GATA2 GNAS IDH1
IDH2 JAK2 KRAS KIT MPL NRAS NPM1 NF1
NOTCH1 PTPN11 PHF6 RAD21 RUNX1 SF3B1 SRSF2 SMC1A
SMC3 STAG2 SETBP1 TET2 TP53 U2AF1 WT1 ZRSR2

Table B3: Clinical, cytogenetic, and molecular characteristics of original and validation
cohorts

Variables Experimental Cohort n=3588 External Cohort n=.412 P-value
Age, median (IQR) 72 (64-77) 69 (62-75) 0.00
Gender 0.81
Male, n (%) 2143 (60) 248 (60)
Female, n (%) 1444 (40) 163 (40)
BM blast %, median (IQR) 4 (2-13) 7 (2-19) 0.00
Diagnosis 0.00
LR-MDS 2079 (58) 156 (38)
HR-MDS 774 (22) 134 (33)
s-AML 735 (20) 122 (30)
Cytogenetics 0.00
Normal 2023 (57) 252 (62)
Abnormal 1548 (43) 156 (38)
Number of MT 0.00
0 825 (23) 33 (8)
1-2 1666 (46) 204 (49)
3-4 813 (23) 114 (28)
>4 581 (16) 61 (15)
Molecular clusters
1 201 (6) 25 (6)
2 920 (26) 74 (18)
3 76 (2) 2 (1)
4 313 (9) 17 (4)
5 107 (3) 10 (2)
6 301 (8) 19 (5)
7 225 (6) 54 (13)
8 236 (7) 13 (4)
9 219 (6) 26 (6)
10 143 (4) 9 (2)
11 121 (3) 16 (4)
12 130 (4) 19 (5)
13 391 (11) 118 (29)
14 205 (6) 10 (2)
Status Death, n (%) 1559 (44) 190 (46) 0.32
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B.0.2 Supplementary Figures

Figure B1: Frequency of total mutations number as distributed among our myelodysplastic
syndrome (MDS) and secondary acute myeloid leukemia (sAML) cases.
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Figure B2: (A) Histogram bars represent the distribution of molecular hits and cytogenetics
abnormalities among LR-MDS, HR-MDS, and sAML patients illustrated by a specific
figure color legend. (B) Heatmap representation of the frequency of molecular mutations
and cytogenetic abnormalities per each genomic cluster.

Figure B3: Genetic features ordered by ‘global importance’ measured by mean decrease in
accuracy for the random forest classification model. A mean decrease in accuracy ≥ 0.01
was considered significant
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Figure B4: Cluster-specific importance of genetic features measured by mean decrease in
accuracy for the random forest classification model. A mean decrease in accuracy0.01 was
considered significant.
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Figure B5: K-fold cross-validation method for the proposed unsupervised clustering ap-
proach. A: The figure represents the silhouette values based on the number of the clusters.
Total cluster number of 14 was associated with highest silhouette values in all folds. B:
Overlap between the sub-groups (folds) based on the predicted assignments of random-
forest classification models generated from each fold separately. More specifically, row j
comparing column k shows the overlap of cases in fold j using Adjusted Rand Index (ARI)
classified by the model trained on fold j only.115



Figure B6: Molecular clusters (C) percentage in low-risk myelodysplastic syndrome (LR-
MDS), high-risk myelodysplastic syndrome (HR-MDS), and secondary acute myeloid
leukemia (sAML) patients. The pie charts demonstrate the percentage of each molecu-
lar clusters in different clinical diseases. Each molecular cluster is presented by a specific
figure legend color.
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Figure B7: Bone marrow blast percent (%) per molecular clusters. The plot represents the
distribution of bone marrow blast percent in each molecular cluster. Solid lines represent
median and dashed lines represent the 95% confidence intervals.
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Figure B8: Distribution of all the molecular mutations and cytogenetic abnormalities used
to build our scheme across molecular Clusters (C). The pie charts illustrate the abundance
of each molecular cluster (C) with regards to gene mutations and cytogenetic abnormalities.
Each molecular cluster is presented by a specific figure legend color.
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Figure B9: Kaplan-Meier analysis showing the overall survival (in months) of cases assigned
to different molecular clusters (cluster-1 to cluster-14). Statistically significant difference
of log-Rank test is indicated by the p-value.

119



Figure B10: (A) Non-parametric survival estimation using Random Survival-Forest for
different genomic risk groups adjusted for hypomethylating agents (HMAs) treatment,
allogeneic hematopoietic stem cell transplant (HSCT), no treatment, age and sex. Survival
curves are estimated for a pseudo-patient (male, aged 75 years) showing the effect of
molecular clusters adjusting for treatment and other clinical variables. Each risk group
is presented by a specific figure legend color. (B) Subgroup analysis of overall survival
according to age, gender, cluster risk groups, bone marrow blast percent before 25 months
and after 25 months (asterisk [*]), HMAs treatment, and allogeneic HSCT.
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Figure B11: Kaplan-Meier analysis showing the overall survival (in months) of cases
assigned to different molecular risk groups (Low, Int-low, Int-high, High, and Very-high)
among different Revised International Prognostic Scoring System (IPSS-R) risk groups.
Statistically significant difference of log-Rank test is indicated by the p-value.
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B.0.3 Supplementary Results

B.0.3.1 Examples of molecular associations in our MCs

1. SF3B1 mutations were enriched in MC4, MC10, and MC14 and associated with TET2

(100%) mutations in MC10, indicating functional relationships. Notably, this group

was distinct from MC14 in which SF3B1 mutations were grouped with delY and

SRSF2 mutations. The diverse pathobiological derivation of these groups was also

illustrated by their significant survival differences. Other splicing factor mutations

were instead functionally distinctive and were assigned to different genomic groups.

Indeed, SRSF2 mutations were enriched in MC9 and MC12 and associated with

ASXL1 mutations and normal karyotype, but MC12 cases had additional TET2

mutations. A similar principle seemed to apply to U2AF1 mutations, abundant in

MC5. These results argue that the genomic sub-classification of splicing factor

mutations is strongly dependent on the presence/absence of other unique correlating

cofounders affecting the functionality and biology of the distinct cluster.

2. Traditionally, epigenetic modulator mutations have been grouped together for classi-

fication purposes, often ignoring their distinct or even often opposite function[8, 85,

155]. In contrast, our ML-derived model highlights these functional differences, un-

derscoring intertwining relationships across different molecular pathways of leukemo-

genesis. For instance, we found that IDH1/IDH2 mutations were mainly abundant in

two MCs (MC2 and MC9), which had discrete survival differences and a significantly

higher percentage of STAG2 and IDH1/IDH2 mutations in MC9 vs. MC2, in which

they coincided with more frequent RAS and DNMT3A hits. Similarly, the functional

effect of DNMT3A/SF3B1 co-mutations was reflected by a better overall-survival of

MC4 and MC10 (Low-Risk group). This phenomenon can be functionally explained

by the relative mitigation effects of SF3B1 mutation on DNMT3A clones[156, 157].

Because DNMT3A and TET2 have different biological and possibly opposite func-
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tions, mutations in these epigenetic regulators belong to distinct functional pathways

and separate MCs. Both EZH2 and UTX possess opposite H3K27 methylation effects

and thus their mutations clustered separately and associated/substituted with/for dis-

tinct cluster-defining hits. Finally, RUNX1 mutations were abundant in MC9, MC12

and MC1 and were significantly associated with either ASXL1 and SRSF2 mutations

as previously reported[69].

3. While our results reaffirm previous studies regarding the poor survival outcome

associated with complex cytogenetics and TP53 mutations[8, 158–160], the impact

of TP53 allelic configuration on pathology and prognosis was also reflected in our

molecular clustering, e.g., TP53 mutations in MC8 were mostly monoallelic (70%),

explaining the better outcomes as compared to other MCs with TP53 in biallelic

configuration. In addition, mutually exclusive PPM1D mutations coincided with

TP53 clusters (MC13 and MC8), pointing towards to the known similar pathogenic

pathway[161–163].
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B.0.4 Supplementary Methods

B.0.4.1 Genetic studies

For the data collected at CC, whole-exome sequencing (WES) was performed and paired

disease and germline DNA of purified CD3+ lymphocytes were used. Whole-exome cap-

ture was accomplished by hybridizing sonicated genomic DNAs to a bait cDNA library

synthesized on magnetic beads (SureSelect Human All Exon 50Mb or V4 kit, Agilent Tech-

nologies). Captured targets were sequenced using a HiSeq 2000 (Illumina) and standard

protocols for 100-bp paired-end reads. Reads were aligned to the human genome (hg19)

by a Burrows-Wheeler aligner (http://bio-bwa.sourceforge.net/) using a GATK pipeline that

also extracted candidate variants/polymorphisms to reduce sequencing errors. Data were

validated using targeted sequencing. Targeted sequencing was performed using a TruSeq

Custom Amplicon kit (Illumina); a panel of 40 genes was interrogated (Table B2). Se-

quencing libraries were generated according to an Illumina paired-end library protocol.

The enriched targets were sequenced using a HiSeq 2000 or MiSeq (Illumina), at 862x

coverage. Variants were annotated using Annovar14 and filtered by removing: i) syn-

onymous single nucleotide variants; ii) variants only present in 140 unidirectional reads;

and iii) variants in repetitive genomic regions. Variants with minimum depth less than

20 or number of high-quality reads less than 5 were filtered out. A bio-analytic pipeline

developed in-house[59, 60, 77] deidentified somatic mutations using sequences derived

from controls and mutational databases such as dbSNP138, 1000 Genomes or ESP 6500

database, and Exome Aggregation Consortium (ExAC). Variant allelic frequencies (VAFs)

were adjusted according to zygosity and copy number based on conventional metaphase

karyotyping and/or single nucleotide polymorphism array results. Patients from the MLL

cohort were investigated by NGS using different methods and gene panels as previously

described[59, 60, 62]. The gene sequencing methods of publicly-shared patients were

previously described[8, 56, 80, 81].
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B.0.4.2 Conventional cytogenetics

Metaphase cytogenetics was performed on bone marrow (BM) aspirates. The median

number of metaphases analyzed was 20. Chromosomal preparation was performed on G-

banded metaphase cells using standard techniques, and karyotypes were described all the

patients according to the International System for Human Cytogenetic Nomenclature[164,

165].

B.0.4.3 Statistical Methods

Fisher’s exact test and Chi-square test were used to compare categorical variables. Mann–Whitney

U test/ Wilcoxon rank-sum test were used for continuous variables. All p- values were

two-sided; those less than 0.05 were considered statistically significant. All statistical com-

putations were performed using R 3.6.2 (www.r-project.org) and Prism (GraphPad). To

assess prognostic differences among the identified clusters, pairwise survival analysis using

Kaplan Meier estimator and log-rank test was performed.

B.0.4.4 Autoencoder

Autoencoders are neural-network architectures, which can be designed to generate efficient

compressed/low dimensional representations of given data. Here, we used a single layer

autoencoder with shared layer between encoder and decoder to generate low-dimensional

representations of binary mutation profiles of MDS samples. With a single shared layer,

autoencoders can learn to capture the principal component space without orthogonality

constraint, hence a proxy for binary-PCA analysis. We used TensorFlow framework to opti-

mize via Adam optimizer and learning rate and batch size set to 1𝐸 − 4 and 32 respectively.

l1 and l2 regularization parameters are set to 0.1 as well to prevent possible overfitting[166,

167].
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B.0.4.5 Gaussian Mixture Model

Gaussian-mixture models (GMM) are model-based clustering methods where observations

are separated into components/clusters representing gaussian distributions parameterized by

different 𝜇 and 𝜎. We used scikit-learn package to fit GMM with expectation-maximization

over increasing number of components and used Bayesian Information Criterion (BIC) to

select the number of clusters. Over 100 iterations with random sub-sampling of binary

observation vectors of mutation profiles, we first generated a low dimensional embedding

of the sub-sampled data and used GMM to cluster the observations, where the number

of GMM components was selected using Bayesian Information Criterion (BIC). Keeping

track of co-clustering of observations at each iteration, we generated a consensus-matrix

representing the frequency of clustering observations in the same cluster. The generated

consensus-matrix was further clustered using hierarchical-clustering with Ward’s criteria

to create the final cluster assignments[168].

B.0.4.6 Unsupervised Clustering

Coupling Autoencoders and Gaussian-Mixture Models, we generated unsupervised clusters

of MDS cases via Consensus approach. Over 100 iterations with random sub-sampling of

data, we embedded the observations using the single layer autoencoder and clustered using

the gaussian-mixture model. Keeping track of co-clustering of observations we generated a

consensus-matrix. Finally, the consensus-matrix is clustered using hierarchical clustering

with Ward’s criteria and Silhouette value to select the number of clusters to generate the

final cluster assignments for all cases.

B.0.4.7 Validation

The model was internally and externally validated. Internal validation was performed by

dividing the whole cohort into training (80%) and test (20%) sets. The model was developed

based on the training set only. Survival analysis by random forest (RF) was then performed
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on the remaining 20% test set separately for internal validation. External validation was

conducted on an independent cohort of MDS and sAML patients from the University of

Texas Southwestern and the Wayne State University (Table B1).
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A p p e n d i x C

STABILITY OF SCRNA-SEQ ANALYSIS WORKFLOWS IS
SUSCEPTIBLE TO PREPROCESSING AND IS MITIGATED BY

REGULARIZED OR SUPERVISED APPROACHES

C.0.1 Supplementary Methods

C.0.1.1 Imputation

ScImpute: ScImpute utilizes mixture modeling strategy to determine genes and cells that

require imputation simultaneously. Using a Gamma-Normal mixture model, ScImpute first

determines the dropout probability for each gene in each cell subpopulation identified by

prior clustering. Imputation is then conducted using non-negative least squares regression

using expression values from similar cells. We have used default parameters with dropout

threshold set to 0.5 and initial clustering is done using quickCluster function from scran

package in R with clustering method set to igraph and minimum size set to %10 number of

cells.

DrImpute: DrImpute generates imputed counts using clustering and expression averaging

where the cluster configurations are bootstrapped to result in robust estimates. All the

parameters are set to default values.

C.0.1.2 Normalization

ScTransform: ScTransform utilizes a modified negative binomial (NB) regression where

regularization using kernel-smoothing across mean expression levels for NB parameters is

used. Passing library size as a covariate to NB regression allows for efficient normalization

while accounting for mean-variance relationship. We have used sctransform package with

parameter number of genes set to use all the genes.

Deconvolution: Normalization with deconvolution strategy aims to utilize count informa-



tion from cells with similar transcriptional profiles. For this purpose, initially clustered cells

are normalized against the population as a single pool of cells. The normalization factor is

then deconvolved to generate cell-wise normalization factors using least squares methods.

Similar to ScImpute, initial pool of cells are generated by using quickCluster method from

scran package with clustering method set to igraph and minimum size set to %10

Deep Count Autoencoder: Deep Count Autoencoder (DCA) follows a slightly differ-

ent strategy in which autoencoder based neural network is used to estimate dropout and

dispersion parameters with likelihood based on negative-binomial (NB) or zero-inflated

negative-binomial (ZINB) models are used. DCA aims to identify the latent structure in

scRNA-Seq data leading to observed noise and dropouts by constraining the latent dimen-

sion to 𝑑 << 𝑝 where 𝑝 is it total feature/gene space and 𝑑 is the latent space. Since DCA

estimates the mean expression parameter 𝜇 for each gene for each cell, we have used library

size normalization on the 𝜇 parameters for both NB and ZINB models effectively generating

2 normalized datasets with imputed and non-imputed pre-processing.

C.0.1.3 Dimension Reduction

UMAP:Uniform Manifold Approximation and Projection (UMAP) is a nonlinear dimension

reduction technique heavily utilized in scRNA-Seq data analysis. For a detailed explanation

see the original article and python package documentation [31, 169]. Simply UMAP

aims to build a k-nearest neighbor graph defined by the parameter ‘number of neighbors’

and generates an ‘n’ dimensional representation where distances of k-nearest neighbors

are preserved across the dataset. Where possible, we have used default parameters 30 for

‘n_neighbors’ and 0.5 for ‘min_dist’. For datasets with low number of cells we have set

‘n_neighbors’ as 10.

t-SNE: Similar to UMAP, t-Distributed Stochastic Neighbor Embedding (t-SNE) aims to

find a low dimensional representation by minimizing KL-Divergence between pairwise dis-

tances in original space with low dimensional representation [30]. The perplexity parameter
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is set to 30 for datasets with high number of cells 10 otherwise. 𝜃 parameter is set to 0.01

as well.

UMAP+PAGA: partitioned-based Graph Abstraction (PAGA) generates a low dimensional

k-nearest neighbor graph embedding utilizing cell-cell similarities. Using PAGA embedded

coordinates, UMAP can then be initialized with the PAGA coordinates allowing to couple

PAGA with UMAP aiming to increase representative power of reduced dimensions [117].

DM: Diffusion Maps is a non-linear dimension reduction technique aiming to improve

Principle Component based methods by incorporating ‘diffusion’ through construction of

transition matrices. Transition matrices 𝑇𝑛𝑥𝑛 are scaled distances representing affinities

between pairwise cells converted to probability space by normalizing based on the sum of

affinities of an individual cell. More specifically 𝑇𝑖, 𝑗 represents the probability of reaching

cell 𝑗 starting from cell 𝑖. Top 𝑛 eigenvectors of the constructed transition matrix generates

the reduced subspace [119, 170, 171].

Variational Autoencoder: Variational Autoencoders (VAE) widely used as generative

models where the encoder model embedds the parameters of data prior and the decoder

model generates the data from points sampled from embedded distribution. More sim-

ply, the encoder network embedds the mean and dispersion parameters where the prior

distribution is assumed to be isotropic gaussian with mean 0 and standard-deviation 1 act-

ing as a regularization. The neural network is constructed to have 3 hidden layers with

1024, 512, 256 units for both the encoder and decoder network and a single stochastic latent

layer with 2 units. We have used RMSprop optimizer with a learning rate of 0.0001

C.0.1.4 Clustering

Leiden: is an unsupervised clustering algorithm commonly used for scRNA-Seq data

analysis. Modularity is used as the objective function to optimize and defined as the

difference between the actual number of edges and the expected number of edges in a given
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cluster. More specifically modularity is defined as 𝐻 = 1
2𝑚

∑
𝑐 (𝑒𝑐 − 𝛾

𝐾2
𝑐

2𝑚 ) where 𝛾 is a

resolution parameter positively associated with the number of clusters (threshold to define

a cluster) [116].

tooManyCells: is an unsupervised method for simultaneous clustering and visualization

of quantitative data. tooManyCells utilizes an efficient spectral clustering schema to recur-

sively bipartition the cell-cell similarity matrix by using Newman-Girvan modularity as a

stopping criteria [120].

C.0.1.5 Trajectory Mapping

Slingshot: utilizes principle curves to generate cell orderings given the minimum. Briefly,

Slingshot uses initial clustering of cells followed by minimum-spanning tree (MST) iden-

tification of the cell clusters. Identified MST structure generates a cluster lineage which is

followed by principle curve fitting simultaneously for each branch in the MST [121].

Palantir: utilizes nearest neighbor graphs extensively where diffusion maps are used to

generate a denoised low dimensional representation of preprocessed scRNA-Seq data from

an initial nearest-neighbor graph. Pseudotime estimates are then defined relative to an early

cell (user defined) as the shortest path from the early cell. Pseudotime estimates are weighted

based on waypoint cells iteratively sampled from the top 𝑛 diffusion components [122].

DDRTree: aims to find a regularized low dimensional projection (𝑑 << 𝐷) of original

high-dimensional dataset onto a space formed by orthogonal set of basis vectors with

minimum-spanning tree (MST) regularization term [172, 173]. Also note that due to

computational constraints, we have initially reduced the data to 50 principal components.

Default values are used for remaining set of parameters.

Waddington-OT: is a supervised trajectory mapping method where sequencing time-points

are used to construct transition probabilities between consecutive cell populations. Tran-

sition probabilities are estimated by optimizing an unbalanced optimal-transport problem
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where the aim is to find a mapping between cells minimizing the cost incurred by transcrip-

tional mass difference (euclidean distance of transcriptional profiles) [124].

C.0.1.6 Trajectory Comparison

We have extensively utilized Spearman’s 𝜌 for comparison of PTEs, and where there are

multiple trajectories for a dataset, entropy as a measure to quantify overlap of PTEs obtained

from different workflows. Specifically for Slingshot PTEs, we used entropy to quantify the

distribution of spearman’s 𝜌 (scaled to 0 − 1) between all pairwise PTEs from different

workflows. Low entropy would suggest a better overlap where the pairwise PTEs would

correspond to spearman’s 𝜌 −1, 1 Since Slingshot can generate > 1 trajectory, in order to

evaluate the distribution of rank correlations between pairwise trajectory comparison, we

calculated entropy to quantify whether Spearman correlations are bimodal around 0 − 1

corresponding to ‘high’ quality overlap between trajectories (Fig.C5). DDRTree/Monocle2

trajectory comparisons however, are solely based on the pairwise geodesic distances of

cells embedded on the trajectory tree identified by the method. This allowed us to both do

evaluation unbiased to root node selection and amenable to automation.
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Figure C1: Adjusted rand index distribution across different datasets ordered by
decreasing number of cells. Each point represents a pairwise comparison of clusters
identified using different combinatorial workflows. Linear regression of ARI using number
of cells as a covariate shows significant association with 𝛽 = 0.03 (p< 0.001).

133



(a) NSCLC cell line Alectinib
treatment

(b) NSCLC cell line Lorla-
tinib treatment

(c) NSCLC cell line Crizo-
tinib treatment

(d) MCF7 cell line E2 treat-
ment

(e) T47D cell line E2 treat-
ment

(f) Maturation of Pancreatic
islets 𝛼 cells

(g) Maturation of Pancreatic
islets 𝛽 cells

(h) Neurodegeneration mouse
model

Figure C2: Comparison of clusters identified using Leiden clustering. Adjusted rank in-
dex across different methods is used to evaluate cluster overlaps which is further summarized
by calculating the median across 12 subsets. Combinatorial workflows are also represented
with icons depicting different levels of analysis steps. (a-c) TKI Treatment dataset, (d,e) E2
treatment dataset, (f,g) Pancreatic islet cell maturation and (h) Neurodegeneration dataset

Overall t-SNE shows cluster identification which are relatively robust to different
preprocessing steps.
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Figure C3: Example cluster identification showing distinct results for both reduced
dimensional representation and identified clusters between UMAP+PAGA and VAE
dimension reduction methods stressing the importance of method selection for scRNA-
Seq clustering analysis.

Heatmaps show the row-normalized percentage of cells at specific sampling time-point
(rows) assigned to distinct clusters (columns) in 1 data subset out of 12.
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Figure C4: tooManyCells cluster overlap quantified by ARI showing relatively good
overlap in the Pancreatic Maturation dataset. However, data-specific performance of
different steps are present where 𝛼 cells and 𝛽 cells datasets show opposing trends in
combination of imputation and normalization.
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(a) NSCLC cell line Alectinib
treatment

(b) NSCLC cell line Lorla-
tinib treatment

(c) NSCLC cell line Crizo-
tinib treatment

(d) MCF7 cell line E2 treat-
ment

(e) T47D cell line E2 treat-
ment

(f) Maturation of Pancreatic
islets 𝛼 cells

(g) Maturation of Pancreatic
islets 𝛽 cells

(h) Neurodegeneration mouse
model

Figure C6: Comparison of trajectories identified by Slingshot. Quality of overlap is
summarized by quantifying the ‘randomness’ of scaled Spearman rank coefficients between
the trajectories. Treating scaled rank coefficients as pseudo-probabities and using entropy
allowed us to assess whether the pairwise trajectory comparisons are bimodal around 0 and
1 (suggesting good mapping/low entropy) or uniformly distributed (suggesting no optimal
mapping). 1-Entropy values are then averaged across 12 subsets. Upper triangle shows the
aggregated entropy values and lower triangle shows the variation in entropy values (Best
overlap would be represented by low entropy and low variation values).
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Figure C7: Example Slingshot trajectory estimates using (a-b) Deconvolution and Sc-
Transform coupled with PAGA+UMAP on non-imputed dataset (c-d) Deconvolution and
ScTransform coupled with PAGA+UMAP on imputed data with DrImpute. (e-f) shows
Slingshot applied on Pancreatic maturation 𝛼 and 𝛽 cells respectively processed using DCA
and dimension reduced with UMAP+PAGA showing relatively good overlap. (g-h) shows
DM applied in E2 treatment dataset for DrImputed and no-imputation respectively.
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(a) Alectinib
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(c) Crizotinib

Figure C8: Pseudotime comparison using Palantir in the TKI Treatment dataset.
Results for each TKI is shown separately for each of the 12 data subsets with increasing
gene and cell level thresholds. Median aggregated spearman’s 𝜌 over 10 replicates is given.
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Figure C9: Palantir pseudotime estimates in the Neurodegeneration dataset.
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Figure C10: Palantir pseudotime estimates in the Pancreatic Maturation dataset.

Figure C11: Comparison of pairwise trajectories for Lorlatinib treated NSCLC cell
line separately for 12 subsets. Individual rank correlations are then aggregated by taking
the median to summarize overall similarity of pairwise workflows.
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Figure C12: Trajectories identified by DDRTree using Crizotinib dataset showing
increased number of branch-points identified when DCA is utilized (a-b) shows DCA-
NB and DCA-ZINB respectively, (c-d) shows applying DrImpute and ScImpute followed
by ScTransform respectively

142



LevS1 LevS2 LevS3

M
A

D
S

1
M

A
D

S
2

M
A

D
S

3
M

A
D

S
4

raw_deconv

raw_sctransform

raw_dca_nb

raw_dca_zinb

scimpute_deconv

scimpute_sctransform

drimpute_deconv

drimpute_sctransform

raw_deconv

raw_sctransform

raw_dca_nb

raw_dca_zinb

scimpute_deconv

scimpute_sctransform

drimpute_deconv

drimpute_sctransform

raw_deconv

raw_sctransform

raw_dca_nb

raw_dca_zinb

scimpute_deconv

scimpute_sctransform

drimpute_deconv

drimpute_sctransform

raw_deconv

raw_sctransform

raw_dca_nb

raw_dca_zinb

scimpute_deconv

scimpute_sctransform

drimpute_deconv

drimpute_sctransform

ra
w

_d
ec

on
v

ra
w

_s
ct

ra
ns

fo
rm

ra
w

_d
ca

_n
b

ra
w

_d
ca

_z
in

b
sc

im
pu

te
_d

ec
on

v
sc

im
pu

te
_s

ct
ra

ns
fo

rm

dr
im

pu
te

_d
ec

on
v

dr
im

pu
te

_s
ct

ra
ns

fo
rm

ra
w

_d
ec

on
v

ra
w

_s
ct

ra
ns

fo
rm

ra
w

_d
ca

_n
b

ra
w

_d
ca

_z
in

b
sc

im
pu

te
_d

ec
on

v
sc

im
pu

te
_s

ct
ra

ns
fo

rm

dr
im

pu
te

_d
ec

on
v

dr
im

pu
te

_s
ct

ra
ns

fo
rm

ra
w

_d
ec

on
v

ra
w

_s
ct

ra
ns

fo
rm

ra
w

_d
ca

_n
b

ra
w

_d
ca

_z
in

b
sc

im
pu

te
_d

ec
on

v
sc

im
pu

te
_s

ct
ra

ns
fo

rm

dr
im

pu
te

_d
ec

on
v

dr
im

pu
te

_s
ct

ra
ns

fo
rm

S
pe

ar
m

an
 C

or
re

la
tio

n

0

0.2

0.4

0.6

0.8

1

(a) Alectinib treated NSCLC
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(b) Lorlatinib treated NSCLC
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(c) Crizotinib treated NSCLC
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(d) Neurodegeneration model

Figure C13: Overlap of DDRTree trajectories across different subsets stratified by cell
level (X-Axis), gene level (Y-Axis) thresholds and workflows quantified by the spearman
rank correlation of geodesic distances between individual cells. No substantial difference
exists in rank correlations across different thresholds for pairwise workflow comparisons.
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(e) Pancreatic differentiation 𝛼
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(f) Pancreatic differentiation 𝛽
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(g) E2 Treatment MCF7 cells
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(h) E2 Treatment T47D cells
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Figure C14: Waddington-OT PTEs comparisons showing median rank correlations
across 12 subsets (upper-triangle) and associated variation (lower-triangle)
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Figure C15: Waddington-OT rank correlation comparison for normalization methods
ScTransform and Deconvolution showing a global trend towards improved ScTrans-
form PTE overlaps. Individual points represent the rank correlation between different
imputation workflows when Deconvolution and ScTransform is used as normalization step.
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Figure C16: Comparison of Imputation methods showing no substantial effect of pre-
processing on WOT PTEs Using ScTransform and Deconvolution for normalization shows
no substantial dependence on imputation step hence resulting in similar rank correlations
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Figure C17: WOT PTEs comparisons when ScTransform is used for normalization
across 12 subsets separated by cell level and gene level filtering showing reduced effect.
Spearman rank correlations show no substantial difference when different thresholds are
used for filtering out low quality cells and genes. x-axis is ordered in increasing cell level
threshold and each facet is given in increasing order of gene level threshold (1%, 5%, 10%).
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Figure C18: Distribution of Waddington-OT rank correlations between different work-
flows.
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different time-points in a single identified cluster decreased homogeneity.
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A p p e n d i x D

INTEGRATIVE MODELING OF DRUG SENSITIVITIES USING
MACHINE-LEARNING

Supplementary Methods

Autoencoder

In order to accurately learn mapping from -omic features to drug sensitivity, and to couple

expression with mutation information, we have utilized an autoencoder neural-network

architecture with gene-set regularization. More specifically, input expression and mutation

profiles are first passed through a gene-set layer which is an 𝑝 feature layer weighted by

the mapping of genes to the given set (genes mapping to the given set are assigned a

weight 1.0 and 0.1 if not). Following the gene-set layer, expression and mutation outputs

are mean aggregated and further passed through a multiple bottleneck latent-feature layer

supervised by drug-sensitivities, tissue-types and data-types (whether the data is a cell-line

or patient sample) hence the network aims to learn to efficiently compress expression and

mutation profiles accounting for relevant features associated with drug sensitivity. However,

since the number of cell-lines is relatively low, we utilize TCGA dataset as well allowing

the network to leverage relatively large patient dataset where a single batch node is also

included at the final output layers to account for cell-line, patient sample batch effects.

For the gene-set regularization layer, we utilized GO-Biological-Process ontology database

keeping gene-sets with 10 < 𝑁𝑔𝑒𝑛𝑒𝑠 < 100.

Preprocessing

We have restricted our analysis to protein-coding genes and further filtered to include genes

with at least 20% of samples had > 12 reads mapped. Using variance stabilizing transfor-

mation in DESeq2 package, we generated log-transformed expression values. Mutations

aggregated into gene-level profiles are filtered to include only genes annotated as possible



drivers using the IntOGen database. Mutations are filtered to include 𝑉𝐴𝐹 > 0.05.
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Figure D1: Cross-validation across multiple latent dimensions in (a) TCGA patient dataset
and in (b) DepMap cell-line dataset. We have used mean-squared error summed over batch
for gene expression, drug sensitivity and log-loss summed over batch for binary mutation
profiles. Results shown are mean aggregate of 5 training runs.153
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Figure D2: Histogram of prediction performance in the test dataset measured by area under
the reciever operator curve (AUC) (a) and pearson correlation (b)
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Figure D3: Overlap of model predictions quantified by Spearman’s 𝜌 stratified by target
pathways and cancer types respectively for drugs and cell-lines showing relatively high
overlap in the training data but reduced overlap in the test dataset.
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(a) (b)

(c)

Figure D4: Similarities of drug sensitivities quantified by spearman correlation across cell-
lines (a) and drugs (b) showing reduced linear associations when considering all the drugs
and cancer types. Multidimensional scaling of cell-lines further demonstrating increased
dispersion suggesting ‘uniqueness’ of drug responses.
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Figure D5: Multi-omic feature associations quantified by sampling the latent space and
calculating Pearson correlation. Gene-expression associations showing top 10 signature
genes for each drug (a). Mutation associations showing top 3 signature genes for each drug
(b). Genes known to be positively associated with Cisplatin sensitivity overlapping with (-)
resistance coefficients
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Figure D7: Gene-gene interaction subnetworks identified through biased-random
walks for top features with high ‘loadings’ on singular vectors obtained by svd on
feture-drug correlation matrix for drugs with high-frequency of negative interactions
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Figure D10: Navitoclax-Tanespimycin combination profiles showing synergistic activity
using SynergyFinder in parental (a) and Gefitinib resistant cell-lines (b).
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Figure D11: scRNA-Seq temporal dataset quantifying transcriptional dynamics during
resistance evolution. (a) Alectinib, Crizotinib and Lorlatinib treatment over 6 months of
EML4-ALK+ cell-lines showing overlap of Alectinib treatment and opposite predictions in
Crizotinib treatet data. (b) Erlotinib treatment in EGFR+ cell-lines which overlaps with
increasing resistance predictions. (c) Osimertinib treatment in EGFR+ cell-lines showing
no association of drug sensitivity with sampling time
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Figure D12: Expression correlations across scRNA-Seq datasets. Prediction compar-
isons showing reduced capacity of scRNA-Seq encoding.
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Figure D13: Heatmap showing the cancer type-drug combination clinical data available
for time-to-event modeling. We have filtered out cancer type-drug combinations with < 5
events defined as progression. Colorbar represents the total number of patient observations.
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