
CONNECTED CARS: GPS/OBD SENSOR
FUSION WITH RADIO COMMUNICATION

STEVEN CHEN HAO NYEO

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Thesis Advisor: Dr. Christos A. Papachristou

Department of Electrical, Computer, and Systems Engineering

CASE WESTERN RESERVE UNIVERSITY

January, 2023

CONNECTED CARS: GPS/OBD SENSOR FUSION WITH
RADIO COMMUNICATION

Case Western Reserve University
Case School of Graduate Studies

We hereby approve the thesis1 of

STEVEN CHEN HAO NYEO

for the degree of

Master of Science

Christos A. Papachristou

Committee Chair, Advisor 12/12/2022
Department of Electrical, Computer, and Systems Engineering

Daniel G. Saab

Committee Member 12/12/2022
Department of Electrical, Computer, and Systems Engineering

Evren Gurkan-Cavusoglu

Committee Member 12/12/2022
Department of Electrical, Computer, and Systems Engineering

1Wecertify thatwritten approval has been obtained for any proprietarymaterial contained therein.

Dedicated to Progress in
Computer Engineering

Table of Contents

List of Figures vi

Acknowledgements viii

ABSTRACT 1

Chapter 1. Introduction 2
Motivation 3
Thesis Outline 4

Chapter 2. Background 5
Autonomous Vehicles 5
Connected Vehicles 7
Sensor Fusion 9

Chapter 3. System Approach 11
Problem Statement 11
Prediction Algorithm 11

Chapter 4. Simulation 19
Generating Cases 19
Results 20

Chapter 5. Hardware Architecture 22
Peripheral Communication 23
Raspberry Pi 24
GPSModule 25
OBD Sensor 26
Radio Communication 27

Chapter 6. System Prototype 29
Data Sources 29
Vehicle Communication 30
Kalman Filtering 36

iv

Chapter 7. Test Cases and Results 41
GPS Test Case 41
OBD Test Case 45

Chapter 8. Conclusions 48

Chapter 9. Suggested Future Research 49
Adding Angle 49
CSMA/CA 50
Stacked Lane Infrastructures 51
Wireless Security 51

Appendix A. run.py 52

Appendix B. velocity_generate.py 60

References 62

v

List of Figures

3.1 System Block Diagram 12

3.2 Back End Collision 13

3.3 Back End Collision Data 14

3.4 Back End Collision when aB = 0 14

3.5 Back End Collision when aB 6= 0 15

3.6 Sideway Collision 16

3.7 Sideway Collision in Action 16

3.8 Corner Collision 17

3.9 Corner Collision in Action 18

4.1 Predictions of cars 1 and 2 at t = 0 20

4.2 Predictions of cars 1 and 2 at t = 2 21

5.1 Hardware Architecture of Model Implementation 23

6.1 Concept of using Timeout for Signal Collision Avoidance 34

6.2 Coordination between two nodes when signal clashes 35

6.3 Coordination when radio packets fail to reach destination 36

6.4 Noise at speed = 0 39

7.1 Real data and prediction bounds derived from data 42

7.2 Predictions 0.5 second ahead 43

7.3 Predictions 2 seconds ahead 44

7.4 Predictions made for different time periods in advance at
20:14:22.1 UTC 45

7.5 Filtering results of Distance (m) 46

7.6 Filtering results of Speed (m/s) 47

vi

9.1 Addition of Yaw Rate to theModel 50

vii

Acknowledgements

First, I would like to thankmy advisor, Dr. Christos Papachristou for his guid-
ance on doing research and technical writing. I can never show enough apprecia-
tion for his tireless support throughout my academic journey at Case.

I would also like to acknowledge the enormous help from my friends Jason
Paximadas, Shawn Anastasio, Dwarakanath Kottha, and Sonia Joy for providing
me insights on implementing the car communication channel through radio and
Kalman filtering for sensor fusion.

Last but not least, I would like to thank my parents for their consistent emo-
tional support through college and graduate school.

viii

ABSTRACT

Connected Cars: GPS/OBD Sensor Fusion with Radio
Communication

STEVEN CHENHAONYEO

Connected vehicle technology (CV) leverages wireless communication and en-
ables cars to navigate traffic in real time. In recent years, the self-driving industry
has seen significant technological advancements in connected and autonomous
vehicles (CAV), a combination of autonomous vehicle technology (AV) and wire-
less CV technology. Between these two technologies, there has been a great focus
on developing AV technologies that heavily rely on the accuracy of sensors such
as cameras, LiDARs, and radar modules. While these sensor technologies are in
the process of vehicle integration, our research specifically looks into solutions in
currentCV technologies that canaidnavigation andcollision avoidance to comple-
ment existing AV sensor technology. This thesis proposes a decentralized wireless
framework that can enable twoormore connectedvehicles to transmit and receive
GPS/OBD data such as position, velocity, and acceleration to other vehicles in the
vicinity.

1

1 Introduction

Autonomous vehicle technologies (AV) are the state-of-the-art implementa-
tions for self-driving cars and vehicle collision avoidance. AV technology depends
directly on peripheral sensors such as but not limited to radar, LiDAR, GPS, and
cameravision. These technologiesareable topickupsurroundingobstaclesquickly
in real time but are not immune to all kinds of surroundings. A few examples in-
clude radar signals experiencing weak reflections on materials such as concrete,
and lane departure systems not being able to pick up lanemarkings due to the lack
of light or color contrast during bad weather conditions.

In themeantime, connected vehicle technologies (CV)14 emerge to be yet an-
other solution for self-driving cars. Vehicle-to-everything (V2X) communication
hypothetically guarantees that all objects in the vicinity of a certain vehicle release
wireless signals with moving information. The most prominent technology for
creating wireless connections between vehicles is the dedicated short-range com-
munication (DSRC) technology on the IEEE 802.11p wireless channel1. Current
implementations of DSRC technology are, however, not very cost-effective since
they require substantial infrastructure as a prerequisite19.

Our proposed solution for vehicle collision avoidance is inspired by a combi-
nation of both CV and AV. Our systemmodel realizes the potential of vehicle com-
munication by combining GPS data and OBD data along with radio channels as
a means of data transmission. Our solution will provide relative object positions
that can aid the collision avoidance system should the AV sensors fail to respond
to potential collisions.

2

Introduction 3

Our solution also provides a prediction algorithm for triggering alerts when
our systemmodel detects the potential of collision by finding the upper and lower
boundsof the carposition in thenext instant from the car’s acceleration. Since cars
cannot physically accelerate faster than their maximum acceleration and break
sooner than theirmaximumdeceleration, the futurecarposition in thenextcertain
unit amount of time is bounded between positions derived from the maximum
acceleration when flooring the gas pedal andmaximum deceleration when fully
applying the brakes.

1.1 Motivation

Themotivation for the thesis research is to identify new approaches that can com-
plement existing CV and AV technologies in the self-driving industry, including
but not limited to camera vision, LiDAR, radar, and cellular-V2X. However, strong
cellular signals are not available in all locations around the world, such as subur-
ban and rural areas. In places with no cellular infrastructure, vehicle data cannot
be transmitted through a centralizedwireless communicationmedium. AV sensor
technology and imaging processing techniques, on the other hand, can be rela-
tively more reliable than cellular data but are not bulletproof to image processing
errors. This thesis builds on top of the decentralized CV networks concept to en-
sure that the corner cases of existing CV and AV technologies for self-driving cars
are addressed.

In terms of implementation costs, high-resolution AV sensors such as LiDARs
are extremely costly to integrate with cars. Cellular technology also requires sig-
nificant starting costs for building large amounts of infrastructure up-front. More-
over, both AV sensors and cellular technology require themodules to be on at all
times. AV sensors have to constantly scan for surrounding objects, while cellular
networks have tomaintain a stable and consistent connectionwith the cell towers
while the vehicle is in operation. Compared to AV sensors and cellular technology,
our decentralized framework has the potential to be a muchmore cost-effective
and power-efficient solution.

Introduction 4

1.2 Thesis Outline

Chapter 2 of the thesis explains in depth the state-of-the-art implementations of
self-driving cars, includingAVsensorandwirelessCV technologies,and introduces
the basics and backgrounds of sensor fusion techniques. Chapter 3 describes the
underlying algorithm that calculates the upper and lower bounds of the car posi-
tion and the different scenarios of how collisions can occur. The simulation results
of the chapter 3 algorithm are demonstrated in Chapter 4. Chapter 5 explains the
hardware specifications of the systemmodel. Chapter 6 further addresses how the
data is collected and processed through the software pipeline, and the test results
are analyzed in Chapter 7.

2 Background

2.1 Autonomous Vehicles

In the recent decade, the self-driving automotive industry has been pushing the
technological frontiers of creating cars that can effectively navigate through traffic
and avoid collisions on the road. Many of these objectives focus on developing
more accurate andefficient sensorhardware and software algorithms that aidwith
a vehicle’s ability to detect, identify and learn its surroundings in real time. There
are a few common technologies the industry has adopted to achieve this purpose,
includingbutnot limited todigital cameras,LiDARsensors, andautomotive radars.

2.1.1 Camera Vision

With digital cameraswidely available at low costs nowadays, computer vision tech-
nology has been a prominent candidate for deploying autonomous vehicle naviga-
tion and collision avoidance. Autonomous vehicle technologies that utilize com-
puter vision systems are capable of processing images in real-time to extract traffic
information. Someof the commoncomputervisionalgorithmsand functionalities
used for calculating the desired vehicle trajectory fall into the categories of image
filter and enhancement, edge detection for identifying curbs, contour extraction
for eliminating unnecessary data points,morphology processing for filling in lossy
edge data, andmodel fitting for classifying identified landscapes with existing ge-
ographical templates29.

5

Background 6

However, computer vision heavily relies on the quality of the received imaging.
A few scenarios when computer vision has yet to improve include blocked obsta-
cles29, driving in the dark10, and inclementweather conditions21,29. Camera vision
alone is also poor in distance estimation18 and will require other techniques to
identify distinct object clusters andmap the objects’ distances within the field of
view.

2.1.2 LiDAR

LiDARs operate by emitting laser beams and detecting their reflections to capture
surrounding object data18. These laser beams typically operate at the wavelength
of 905 nm, which is within the infrared spectrum. There are two types of LiDARs
in the current market: solid-state LiDARs emits a single laser beam to light up the
surrounding while scanning LiDARs mechanically rotate the laser beam to scan
the environment24. LiDARs have the advantage of having high precision and reso-
lution, and the range of LiDARs can extend to hundreds of meters in the distance.
In addition, LiDARs can collect data at a very fast rate, giving it the advantage of
providing real-time applications in autonomous vehicles24.

However, the infrared 905 nm wavelength that LiDARs use can damage the
human retina under long exposures. Current regulations limit the strengthof these
infrared waves emitted by the LiDAR modules for human safety defined by the
safety standard IEC 60825? , thus hindering the LiDARs from performing at their
maximum capacity7,18. The infrared band is also fairly close to the visible light,
whichmakes LiDARs harder to navigate through bad weather compared to other
lower-frequency bands7,18.

Moreover, the LiDAR technology needs to overcome its bulky data size while
streaming collected data24 and significantly higher cost for deployment and inte-
gration7,18,24, and they have yet to meet the reliability standards such as the ISO
262622 and IEC 6150818. In short, the LiDAR technology is still relatively new com-
pared to other existing technologies and still has someways to go before the indus-
try sees the scalable deployment of the LiDAR technology on autonomous vehicles.

Background 7

2.1.3 Radar

Radarmodulesareable tomeasure thedistancebetweennearbyobjects in thefield
of view by calculating the time difference between the transmitted and received
radar signal. Compared to LiDARs which started in the 1970s, radars are a much
moremature technology that has existed for over 100 years7. In the autonomous
driving industry, frequency-modulated continuous wave (FMCW) radars are one
of thecommonradarmodulesusedforadaptivedriver-assistancesystems (ADAS)32.
By emitting a continuous frequency ramp known as a "chirp"3, the FMCW radars
can compare the difference between the transmitted and received frequencies
from computing range information, as well as decipher velocity information from
Doppler phase shifts.

Radarmodules cost significantly less to obtain anddeploy than LiDAR counter-
parts and require less computational power during operation7. In addition, radars
are immune to changes in lighting and environmental conditions compared to
pure camera vision or LiDARs7,32. In recent years, radars have seen a drastic im-
provement in resolution, and thus emerging to become a promising candidate for
autonomous driving implementations and sensor fusion with camera vision20.

2.2 Connected Vehicles

Aside from having sensors to aid autonomous driving, research efforts also focus
on the communication between vehicleswithout relying on sensor data. There are
two state-of-the-artparadigms formoving vehicles to interactwitheachother: cen-
tralized vs decentralized communication. The centralized communication frame-
work relies on existing networking infrastructure such as network providers and
cell towers to manage communication, while the decentralized communication
framework has all participating nodes operate on their own on a needed basis.

Background 8

2.2.1 DSRC

Dedicated short-range communication (DSRC) was introduced to support road
safety by sending basic safety messages (BSMs) to the surrounding for other con-
nected cars in the vicinity to detect and process8. DSRC utilizes the IEEE 802.11p
wireless standard as the basis for network routing and operates on the 5.9 GHz
band allocated by the U.S. Federal Communications Commission (FCC)8,16. The
protocol also heavily depends on vehicles (V2V communication) and roadside
units (V2x communication) to frequently exchange data with each other to avoid
traffic collisions16.

The DSRC protocol is a decentralized approach to vehicular detection in that
DSRC uses ad-hoc communication for cars to detect and identify other vehicles
in the vicinity4. The protocol will be able to serve its purpose as long as a nearby
vehicle orobjecthas the ability to receive complete andnon-garbleddata fromone
to another without relying on the local infrastructure to establish communication.
However, DSRC lacks the ability to control and synchronize wireless communica-
tion when cars are densely populated in a certain area4. Congestion can happen
in crowded environments where many nodes attempt to transmit into the same
communication channel simultaneously.

2.2.2 3GPP

The 3rd Generation Partnership Project (3GPP) is an organization that standard-
izes the cellular protocols for mobile telecommunications. 3GPP works on the
development of the 4G and 5G technology standards, as well as related standards
such as LTE17. These protocols rely on the communication channels established
between the mobile device and the service provider’s cell towers. As opposed to
DSRC’sdecentralizedcommunication framework,cellularcommunication requires
cell towers to act as a centralized node to process data transfer procedures such
as packet routing. Therefore, the quality of cellular communication is heavily im-
pacted by the existing infrastructure in the designated area.

Background 9

In general, LTE latency and packet delivery ratio outperformDSRC especially
when there is dense traffic in an area. From the simulations and experiments pro-
vided by Bey et al.6, DSRC shows similar performances compared to LTE when
the latency is around 100ms, but when the latency decreases, the packet delivery
success rate decreases dramatically, especially at 10ms6.

5G New Radio (NR) is another new technology that could be used for central-
ized vehicular communications17. As cellular communication begins to evolve
towards the 5G standard, the implementation of real-time traffic control and col-
lision avoidance will start to benefit from the performance of centralized cellular
communication with low latencies. However, themost significant issue with 5G is
the backward compatibility of the current infrastructure. 5G technology requires
denser deployments of cell towers and sufficient bandwidth to handle the process-
ing of connected autonomous vehicle information.

2.3 Sensor Fusion

Sensor fusion is used to combine various sources of data from sensors with differ-
ent error rates. Each sensor has its advantages and disadvantages under different
operating conditions and these conditions affect the accuracy of the sensor data.
To consolidate all sensor information and account for the different measurement
errors from each sensor, sensor fusion attempts to produce a result that ideally
represents the most accurate sensor value based on the collected data from the
different sources. Some common sensor fusion techniques include Gaussian pro-
cesses, the central limit theorem (CLT), and Kalman filters.

2.3.1 Kalman Filter

Kalman filters15 are optimal estimation algorithms for scenarios of the system
states that cannot bemeasured directly. The Kalman filtering technique was pro-
posedbyRudolf E. Kálmán in 1960 andhas beenwidely used in comparing theoret-
icalmodels andmeasurement data. The simplest Kalman filters are linear Kalman
filters, also knownas linearquadratic estimation, inwhichmeasurementerrors are

Background 10

dynamically adjusted throughmatrix operations with fixed parameters. There are
other variations of Kalman filters such as ExtendedKalman filters that tweak these
parameters to account for different scenarios with non-linear configurations15.

Kalman filtering is a common technique for fusing data sets that differ from
each other. As it is impossible to keep track of all environmental parameters that
may influence themeasured output, we can use a Kalman filter approximate the
expected output by feeding the input into both the theoretical model and the real
model to produce two outputs. The Kalman filter then takes in the two outputs
from both models and dynamically adjusts its own parameters according to the
sample data until they level off and converge to steady values.

3 System Approach

3.1 Problem Statement

To create a framework independent of local infrastructure and sensor inputs, our
solution proposed in this thesis adopts the decentralized wireless framework to
create a wireless ad-hoc connection without the need for pre-existing infrastruc-
ture. This assumes that as long as two cars have a wireless transceiver, they can
establish a wireless connection when they are close to each other. In addition, the
data transmitted on this decentralized framework will serve to broadcast location,
speed, and acceleration information to nearby vehicles, which helps with calcu-
lating the probability of a collision that may occur with the aid of connected car
technology.

Our system model, shown in Figure 3.1 requires a hardware environment to
test the algorithm’s feasibility that calculates the positions of nearby vehicles. The
following two chapters will elaborate on both the derivations of the algorithm and
the design decisions behind the hardware architecture.

3.2 Prediction Algorithm

In order to predict the short-term trajectory of a car, our solution brings in a car’s
maximum acceleration and deceleration to predict its position in the upcoming
seconds. Assuming that no skidding occurs during the car’s movement, the posi-
tion of the car will be bounded by the area between its maximum andminimum

11

System Approach 12

Figure 3.1. System Block Diagram

deceleration. This area guarantees that other cars or surrounding objects can pre-
vent a collision by avoiding the area in the next unit amount of time.

3.2.1 Summary of Cases

This chapter generalizes the collision scenarios into 3 cases: back-end collisions
(including head-on collisions), side-way collisions, and corner collisions. These 3
casescovercollisions fromalldirectionsbetween0◦ and180◦ andarea1-dimensional
simplification of various yaw rates.

• Case 1: Back End Collision
Figure 3.2 and Figure 3.3 shows the xy-graph for Case 1, where the 2-

D surface represents the x and y coordinates of cars A and B. The labels
above the position points of A and B represent the time relative to t = 0 at
the point.

Case 1 discusses the scenario where the angle between the direction
of A and B (θ) = 0◦. Since ∆y = yb − ya = 0, we can calculate the distance

System Approach 13

Figure 3.2. Back End Collision

between a and b by:

Sba = ∆x = xb − xa

Note that collision happens when x ≤ 0. These collision cases usually
happen on highways or straight roads when drivers attempt to pass each
other. Case 1 is separated from the other cases since the theoretical trajec-
tories of these collisions are 1-dimensional, whichmakes it much simpler
and straightforward to estimate the time before the collision.

By providing themaximum gas acceleration (a+) andmaximum break
deceleration (a−), we are able to estimate the range of location that the car
is going to land in the next certain unit of time, assuming that skidding
does not happen.

Figure 3.2 shows the scenario of a back end collision. In this scenario
of two cars A and B with specifications of lengths (lA, lB), maximum accel-
erations (aA+, aB+), and decelerations (aA−, aB−), we are given the initial
positions (xA,xB), velocities (vA,vB) andacceleration (aA,aB) of eachcarat
time t = 0. For a potential collision to happen, the initial condition should
satisfy xA < xB and vA > vB. In the casewhere aA = 0 and aB = 0, the time

System Approach 14

Figure 3.3. Back End Collision Data

Figure 3.4. Back End Collision when aB = 0

before collision is:

t0 =
S0

|vB − vA|
=

S0

vA − vB
where S0 is the distance from the back of car B to the front of car A

denoted by S0 = (xB − xA) − lA+lB
2

, and |vB − vA| is the relative speed of
car B with respect to A. Figure 3.4 describes the process of collision when
both aA = 0 and aB = 0.

System Approach 15

Figure 3.5. Back End Collision when aB 6= 0

In the case where aB 6= 0, we are able to use the kinematic equation
(S = v0t+ 1

2
at2) to model the change in distance before collision:

S0 = SB − SA

= vBt+
1

2
aBt

2 − vAt

By solving the quadratic equation (1
2
aB)t2 + (vB − vA)t − S0 = 0 for t,

we obtain:

t =
(vA − vB)±

√
(vB − vA)2 + 2aBS0

aB
, aB 6= 0

By using these roots, we can find themaximum andminimum times
before collision (tmax, tmin):tmax =

(vA−vB)±
√

(vB−vA)2+2S0aB,min
+

aB,min
+

tmin =
(vA−vB)±

√
(vB−vA)2+2S0aB−

aB−

Figure 3.5 shows the collision scenario when car B is either accelerat-
ing or decelerating.

System Approach 16

Figure 3.6. Sideway Collision

Figure 3.7. Sideway Collision in Action

• Case 2: Sideway Collision
Figure 3.6 and 3.7 depicts Case 2, the scenariowhen θ > 0◦. In this case,

θ = 45◦. The distance between cars A and B at time t is, therefore:

Sba =
√

(∆x)2 + (∆y)2 =
√

(xb − xa)2 + (yb − ya)2

System Approach 17

Figure 3.8. Corner Collision

Note that since Sba will always be greater than zero, the only point of
collision iswhenSba = 0. These cases of collision canhappenduringmerg-
ing or switching lanes.

• Case 3: Corner Collision
Figure 3.8 and3.9depictsCase 3,which is a special caseofCase 2where

θ = 90◦. The distance between car A and B at time t is, therefore:

Sba =
√

(∆x)2 + (∆y)2 =
√

(xa)2 + (yb)2

These collision cases usually happen at intersections between vertical
and horizontal traffic.

System Approach 18

Figure 3.9. Corner Collision in Action

3.2.2 Generalized Formula

From the above section, we can obtain the point of collision when SAB = 0 using
our generalized formula below with cars A and B respectively at positions (xA, yA)

and (xB, yB):

SAB =
√

(∆x)2 + (∆y)2 =
√

(xA − xB)2 + (yA − yB)2

Wecan then apply this formula to predict theminimumdistances between two
cars, enabling us to detect potential collisions.

To calculate the position prediction of a car, we need the car’s maximum accel-
eration (a+) and deceleration (a−), as well as tp, the amount of time to predict in
advance. By knowing the car’s current position (x0, y0), speed v0 anddirectionmea-
sured in θ, we can derive the following formulas below to calculate the probable
locations of the car in between the points (xA

+, yA
+) and (xB

−, yB
−).

xA
+ = x0 + v0tp cos θ + 1

2
a+tp

2 cos θ

yA
+ = y0 + v0tp sin θ + 1

2
a+tp

2 sin θ

xB
− = x0 + v0tp cos θ + 1

2
a−tp

2 cos θ

yB
− = y0 + v0tp sin θ + 1

2
a−tp

2 sin θ

4 Simulation

4.1 Generating Cases

The test cases are generatedby thePython scriptvelocity_generate.py into aCSV
file and the visualization of the setup is shown in Figure 4.1. This specific script
generates the velocity data for two cars near a highway ramp,with car 1 (in orange)
already on the highway and car 2 (in blue)merging onto the highway. In 2 seconds,
car 1 slows down from 65mph to 55mphwhen car 2 pulls in front of car 1 from the
ramp, accelerating from 60 to 70mph. The functions below describe the velocities
of the two cars between t = 0s to t = 2swith a sampling resolution of 0.02 seconds:

v1 =

65− 10t, 0 ≤ t < 1

55, 1 ≤ t ≤ 2

θ1 = 0, 0 ≤ t ≤ 2

v2 = 60 + 5t, 0 ≤ t ≤ 2

19

Simulation 20

Figure 4.1. Predictions of cars 1 and 2 at t = 0

θ2 =



0.5, 0 ≤ t < 0.4

0.3, 0.4 ≤ t < 0.6

0.1, 0.6 ≤ t < 1

0, 1 ≤ t ≤ 2

4.2 Results

By running the Python script run.py on the CSV generated according to the above
functions, we obtain an animation of two cars’ trajectories presented in Figure 4.1.

After simulating all cases in 2 seconds with a time resolution of 0.02 seconds,
the cars havemoved to their new positions shown in Figure 4.2. In the figure, the
predictions of the cars at t = 0s are overlapped as a lighter shadewith the positions

Simulation 21

Figure 4.2. Predictions of cars 1 and 2 at t = 2

of the cars at t = 2s, showing that the actual positionof car 2 at time t = 2s is indeed
in the range of the prediction at t = 0s on a straight line.

5 Hardware Architecture

The software implementation plan in the previous shows the programming
between the different components involved in obtaining vehicle movement data,
calculating predictions, and communicating through the radio channel. This sec-
tion further describes the system implementation decisions leading to a prototype
for testing the performance of the program. Figure 5.1 shows the hardware archi-
tecture of the communicationmodule for each testing vehicle.

22

Hardware Architecture 23

Figure 5.1. Hardware Architecture of Model Implementation

5.1 Peripheral Communication

• Serial UART
The serial universal asynchronous receiver-transmitter (UART)27 is a

communicating method between the computer and peripheral devices
through the serial interface. The twodevices communicate by configuring
the same fixed baud rate for data transmission through the Tx andRx pins.
In this project, the Raspberry Pi communicates with the GPSmodule and
the ELM327 through two serial UART lines with baud rates of respectively
115200 baud and 38400 baud.

Hardware Architecture 24

• SPI
The serial peripheral interface (SPI)22 is a serial interface with a syn-

chronous clocksignal to conduct thedata transferbetween themasterand
slave devices on the interface. The master and slave coordinate through
the Master In Slave Out (MISO) and Master Out Slave In (MOSI) lines to
form a ring buffer between the two devices. During each clock cycle, the
master shifts one bit to the slavewhile the slave shifts one bit to themaster.
This process guarantees a bi-directional data transfer on the SPI interface.

In this project, the SPI interfaceGPIOs are connected to the LoRa radio
module. Our radiomodule also uses theDIOpin,which is programmed to
receive interrupts from the LoRamodule during the LoRa radio transceiv-
ing process.
• CAN

The Controller Area Network (CAN) bus is the interface that commu-
nicates with the OBD2 port on the car. In this project, the CAN interface is
consolidated into the ELM327 board9 that redirects the CAN bus traffic to
serial UART for the Raspberry Pi to access throughUSB. The CAN-specific
commands are shielded behind the ELM327 implementation, and there-
fore require the python-OBD library to extract the data from the ELM327
through the serial bus.

5.2 Raspberry Pi

The Raspberry Pi 2 comes with the ARMCortex-A53 processor, which has the ad-
equate computing power to perform straightforward arithmetic operations such
as trigonometric functions and square roots in Python11. As for peripheral com-
munication, the Raspberry Pi supports multiple GPIO pins and interfaces such as
SPI, serial UART, and USB. Our choice to adopt the Raspberry Pi in our hardware
design was for its simplistic setup for communication between different hardware
interfaces and the software compatibility with Python, therefore gaining access
and support to a wide selection of Python libraries.

Hardware Architecture 25

5.3 GPS Module

This project adopted theMTK3339 GPSmodule31 as the source for GPS data. The
chiphas anupdate rate of 5Hzand requires aGPSfix in order to outputGPSdata to
the Raspberry Pi. TheMTK3339 GPS chip can find a stable GPS fix either through
the chip’s own internal GPS antenna or through an external GPS antenna con-
nected to the U.FL socket. During our tests, the GPS module frequently fails to
receive a GPS fix with either antenna and hindering the data collection process.

5.3.1 Drawbacks of GPS Data

The GPSmodule is a convenient approach to obtaining position and velocity in-
formation for each node without widely deploying infrastructure that provides
position coordinates. However, the provided GPS position data proved to be unre-
liable because of reasons including but not limited to the following listed:

(1) GPS modules are not precise enough to detect all movements. GPS data
usually comeswith significant position inaccuracy especially with station-
ary and low-speed targets, with errors up to around ± 15 meters and 2
km/h.

(2) TheGPSmodule requiresaGPSfix inorder toprovidepositiondata.Weather
and environmental conditions have a huge impact on the ability of the
module to receive data.

(3) GPS information does not get updated as frequently as desired. The sam-
pling rate for commercial GPSmodules is usually 5 Hz and caps at 10 Hz
at best.

Sampling Rate.

The sampling rate of the GPS in this project is 5 Hz. The best-case scenario of
the model hardware operating at this speed is when the following steps are exe-
cuted in less than 0.2 seconds before UART updates the current GPS data:

(1) Format and broadcast the current GPS data as a radio packet.
(2) Receive the incoming radio packet from another node.

Hardware Architecture 26

(3) Calculate the distance between the two nodes and the location bounds of
the nodes in the next certain unit of time.

Assuming that timeout does not occur between the two radiomodules, these
steps can be executed almost instantly. Therefore, the GPS sampling rate essen-
tially bottlenecks each update interval at 0.2 seconds. Since velocity is the first
derivative of position with respect to time, and acceleration is the first derivative
of velocity with respect to time, accurate velocity information will now require at
least 0.2 seconds to be calculated, while acceleration will require a whopping 0.4
seconds to be calculated.

In this specific test case when radio timeouts occur, the average time between
position points are around 0.37 second. Obtaining velocity information will now
require 0.37 seconds and acceleration will require a whopping 0.74 seconds. By in-
tertwiningmultiple 0.2-secondGPS sampling times and radio timeouts, it is highly
probable to have missed a few seconds of prediction at a time before the packet
conflict is resolved.

Radio Drop-out.

Our test case (available in the Test Cases section as Figure 7.1) shows the ex-
tent of the radio signal ending at around 50meters. The radio signal range could
be extended by tuning up the spreading factor so that each node obtains wider
and more accurate radio bit signals during transmission. This will theoretically
decrease the number of bits able to be transmitted in one second, but so far the
radio data packets are short enough for this effect to be negligible in practice.

5.4 OBD Sensor

On-board diagnostics (OBD)26 is a CAN interface for external devices to inter-
act with the computer system in the car. The onboard data is usually accessible
through theOBD2port of the car. This project chooses the ELM327 chip for retriev-
ing OBD2 data from the vehicle. The ELM3279 is an OBD to RS232 interpreter that
delivers OBD2 signals through the serial UART channel. The ELM327 enables the

Hardware Architecture 27

Raspberry Pi to fetch real-time speed data from the vehicle directly. With the help
of the Python OBD module, the Raspberry Pi could interpret the received serial
data and begin collecting speed information on the fly.

5.4.1 Alternative to GPS Data

An alternative we are looking at is using the OBD sensor information provided by
the car’s OBD2 port. This port runs on the CAN protocol and enables car users
to retrieve basic information about the vehicle while the engine is running and
identify potential problems with the various problems with the car.

OBD2 is a decent alternative to GPS signals since the OBD2 data will be readily
available as long as the car is upand running and therefore eliminating the stability
issue with our former GPS implementation.

5.4.2 Drawbacks of OBD Data

Although OBD2 conveniently provides information about the car position and
speed, there are a few limitations of using the OBD2 data:

• OBD2 provides vehicle speed to the nearest 1 km h−1 and the odometer to
the nearest 0.5 km. Speed accuracy still needs to be tested for usability as
the OBD2 data rate ranges from 10.4 to 41.6 kbps and the OBD2 update
rate limit is around 20 queries per second. However, the odometer will be
less used for measuring vehicle displacement since changes within 500
meters do not reflect on the odometer.
• The OBD2 bus does not provide yaw sensors. This data needs to be pro-
vided from elsewhere.

5.5 Radio Communication

This project chooses the LoRa module, a low-power radio module operating on
the 900 MHz frequency band, for transmitting position and speed data between
vehicles. The LoRamodule is powered by the SX1276 LoRa board28 that contains

Hardware Architecture 28

the HopeRF RFM95W chip13 and is proven to be stable and reliable for data trans-
mission through radio. The LoRa module connects to the Raspberry Pi through
the SPI interface.

FCC allocates the 900MHz radio band to amateur radio and industrial, scien-
tific, andmedical (ISM) equipment. The range of the band is from 902MHz to 928
MHz and permits unlicensed low-powered devices to access the band. (Adapted
fromWikipedia) The LoRa radiomodule operates on the 900MHz radio band. For
this project, themodule frequency is set to 920MHz to avoidpackets on thedefault
915MHz30.

6 System Prototype

6.1 Data Sources

6.1.1 GPS Data

The GPS module provides geolocation information for GPS receivers to identify
its latitude and longitude information. After obtaining a signal fix from the GPS
satellites in view, the GPS receiver is then able to generate GPS data strings and
output the strings in NMEA data format through the serial UART interface. Each
line of GPS data begins with the “$” character followed by the NMEA sentences
that indicate the data type the line provides.

In order to conveniently sort out the current data, the project adopted a self-
developed multi-threaded Python driver to parse the NMEA data streams out-
putted from the GPS chip for this project. To get the position and velocity informa-
tion from the GPS module, our driver looks for NMEA strings with the sentence
prefixes “$GPGGA” (or “$GNGGA”) and “$GPVTG” (or “$GNVTG”) and extract rele-
vant data from the comma-separated values proceeding theNMEA sentences5. To
asynchronously update the GPS data in the background, the prototype software
runs a separate thread after initialization that constantly replaces the current GPS
dataobjectwith the latestdata received from theGPSmodule. Thismulti-threaded
implementation guarantees that the driver can instantly provide a responsewhen-
ever themain Python program calls for themost recent GPS data without having
to undertake the polling and string parsing process in the foreground.

29

System Prototype 30

6.1.2 OBD Data

To access the data coming from the OBD2 port CAN bus, the following OBD PIDs
(parameter IDs) relevant to our algorithm input are identified and listed below:

• 0x0D - Vehicle speed ranging from0 - 255 km h−1withprecision to 1 km h−1.
• 0xA6 -Odometerranging from0-429,496,729.5kmwithprecision to0.5km.
The odometer gives information of the car mileage since manufactured,
which is measured by counting the number of rotations andmultiplying
it by π times the tire’s diameter.

In our project, the ELM327 board and the python-OBD library12 simplify this
data-extracting process from the CAN bus.

6.2 Vehicle Communication

6.2.1 pyLoRa

This project initially used the readily available Python library for the LoRa - py-
LoRa23 (originally named pySX127x) - to attempt communication with the LoRa
radiomodule. However, the library was not able to register the LoRamodule con-
sistently. Therefore, this project implements a bare-bone LoRa library that directly
reads and writes to the LoRa registers andmanually flips the IRQ flag with Python.

Our Python implementation of SPI communication to the LoRa module on
the Raspberry Pi is able to send (Tx) and receive (Rx) GPS data in raw byte format.
When the LoRa switches to Tx mode, the LoRa hardware sends out the GPS data
written into the FIFO pipeline, and the process exits by detecting an IRQ. In Rx
mode,theLoRamodule listens foran IRQandreturns thebytes in theFIFOpipeline
to themain Python function. In the case when Tx and Rxmodes fail to see an IRQ,
the implementation also includes timeout values to terminate the current mode
and retry. The section Radio Signal Collision Avoidance further talks about how
timeouts benefit the establishment of a reliable transmission channel between
nodes.

System Prototype 31

ThePython implementation also includes the two-wayencoding anddecoding
of ASCII strings into byte strings for packing outbound local GPS data to the LoRa
module and extracting inbound GPS data from the other vehicle.

6.2.2 Main Program

In the main Python function of our software implementation, the program first
calls the GPS driver to initialize the serial UART channel with the GPS module
and then initializes the LoRa transceiver through SPI. The program then enters an
infinite while loop that breaks only when there is a keyboard interrupt. Within the
while loop, the program broadcasts out the most current data inquired from the
GPS driver through the LoRa module and waits for an incoming string from the
LoRamodule. If the incoming data is not garbled, then the program continues to
testwhether the timestringsbetween the twosignals arewithin the set threshold to
ensure that the data from the other car is also processed and sent out in real-time.

Below is a code snippet from themain Python program.

def main():
Initialize the GPS driver
mtk33x9 = MTK33X9()
mtk33x9.ser_init(config.dev_path)

Initialize LoRa module
lora = LoRa()

Initialize data buffer for incoming GPS data from other vehicle
rx_data = MTK33X9_data()

try:
while (True):
Get current data from the GPS driver and immediately send it out

current_data = mtk33x9.get_current_data()
if (current_data.is_complete()):

lora_send_data(lora, current_data)

time.sleep(0.1)

Attempt to detect incoming data from the other vehicle
try:

incoming_data = lora_receive_data(lora)

System Prototype 32

if (incoming_data.is_complete()):
rx_data = incoming_data
print(’Received GPS information: ’)
print_gps_info(rx_data)

except TimeoutError:
print(’Timeout reached!’)

except IndexError:
print(’Current data received not valid!’)

time.sleep(0.1)

Test whether time difference of both sets of data is less than
the threshold

If less than threshold, mark as real-time
if (current_data.is_complete() and rx_data.is_complete()):

current_prediction = Prediction(current_data, rx_data)
if (current_prediction.is_realtime):

print(’Distance: ’ + str(current_prediction.distance) + ’
m’)

except KeyboardInterrupt:
mtk33x9.ser_stop()
GPIO.cleanup()

if __name__ == "__main__":
main()

By continuously running this while loop, this program will be able to output
the distance between the two LoRa nodes as long as the two nodes are actively
transmitting real-time data.

6.2.3 Radio Signal Collision

Our program implementation is a primitive attempt to transmit data across ve-
hicles and does not have a built-in signal collision avoidance system such as ex-
ponential backoff tomitigate multi-node transmission. The LoRamodule will at-
tempt to immediately send out the first available GPS datawhenever themain pro-
gram is launched and the drivers initialized. Therefore, the program sometimes
experiences the clashing of radio signals when the two vehicles launch themain
program too closely to each other.

System Prototype 33

In order to prevent radio signals from clashing again in the same channel, our
collision avoidance algorithmwill need to absolutely guarantee that one node is
in Txmode while the other one is in Rxmode. A collision occurs when two radio
signals clash at the same time. Each node can then use this information to learn
about each other’s timing. In fact, this information implies that the two radiomod-
ules have coincidentally synced up an absolute timing at the moment the clash
occurs. To avoid another clash of radio signals, both nodes cannot use the same
timeout until attempting to re-transmit their GPS data.

The above tells us that by assigning a different timeout value for each node, we
can now ensure that one of the nodes will switch to Txmode during the timeout
difference earlier than the other node, which is still in Rxmode. With this timeout
difference, the two vehicles are able to communicate over the radio with a consid-
erably reliable TDMA-like timingmechanism.

In addition, the ratio between the two nodes’ timeout is also important in the
probability of future collisions. In the case of transmitting through an unstable
radio channel, a timeout ratio of 0.2 : 0.1 is likely to clash more since the long-
timeout node will likely clash on its first attempt with the node with the short-
timeout node on its second attempt.

Figure 6.1depicts twonodeswith timeoutvaluesof0.4 secondsand0.7 seconds.
The timeout ratio between the twonodes is 4 : 7,with one being amultiple of 2 and
the other one an odd prime number. This ratio gives the two nodes an adequate 9
tries within 2.8 seconds (the least common factor of 0.4 seconds and 0.7 seconds)
to resolve the signal collision. Therefore, these are the timeout values that are hard-
coded in all test cases presented in this project.

System Prototype 34

Figure 6.1. Concept of using Timeout for Signal Collision Avoidance

Figure 6.2 depicts the process of the radio signal resolving the clash and start-
ing the continuous communication processwithin the radio channel. After a radio
signal collision occurs at t = 0s, both nodes switch to Rx mode and start a timer
with varying lengths. Node 1 first switches to Tx mode and transmits at t = 0.4s

while node 2 is still in Rxmode. Node 2 can then stop the 0.7-second timer, calcu-
late the prediction, complete the current while loop iteration, and finally transmit
its updated GPS data for node 1 to receive. Since each node switches right back to
Rxmode immediately after completing transmitting its current data, node 1 will
be in Rx mode and ready to receive the data from node 2. As long as clashes and
lost packets do not occur, this communicationmechanism can go back and forth
without interruption.

System Prototype 35

Figure 6.2. Coordination between two nodes when signal clashes

To address the case when data gets lost during radio transmission, Figure 6.3
depicts the casewhennode 1 fails to deliver thefirstGPSdata that resolve the clash.
Node 1 switches back to Rxmode and starts its second iteration of the 0.4-second
timer while node 2 stays in Rx mode as well for another 0.3 seconds until reach-
ing its timeout value of 0.7 seconds. At t = 0.7s, node 2 switches to Tx mode and
transmits its GPS data to node 1, which is 0.3 seconds into its second Rx iteration.
Node 1 successfully picks up the data and promptly follows up with its data, and
the continuous radio communication channel is set up as well, hencemaking the
packet loss a small upfront cost to establishing a stable data source.

System Prototype 36

Figure 6.3. Coordination when radio packets fail to reach destination

In short, this timeout collision avoidance technique shows that the transmit-
ted data itself, in the form of short radio packets, could directly be used to coor-
dinate data transceiving schedules. Each node only needs to focus on broadcast-
ing its presence to the surrounding without having to consider resolving clashes
since there is no need for acknowledgments to be sent back to each node. This
is only a simplemethod to address the communication between two vehicles. In
more complicated systems, the ability for each vehicle to generate its own unique
timeout becomes necessary tomaintain collision-immune timeout ratios such as
0.29 : 0.47 : 0.53.

6.3 Kalman Filtering

Our project involves two data sources - the GPS and the OBD, to track the position
and speed of the vehicle, each having its ownmeasurement error. This combina-
tion ofmotion sensors creates differences inmeasuring the location of the vehicle
between the data provided by the GPS and the OBD sensors. In this case, the ve-
hicle cannot determine its own precise location by having two sets of data with

System Prototype 37

different location values. By using sensor fusion, however, the vehicle could find
an approximate consensus of location between the two sensors by deciding the
weight of data from each sensor in different scenarios.

6.3.1 Filter Setup

The data sources in the project include the GPSmodule and the OBD port directly
linked to the car. Each data source has different accuracy and precision character-
istics that work better in different scenarios. The lists below show the advantages
and drawbacks while using these two sensors:

• GPS
– The GPS module has a Slower update rate of 5 Hz and cannot accu-
ratelymeasure short-term distance and speedwithin 0.2 seconds. All
speeds within the update time framemust be approximated by using
the 0.2-second time frame.

– The GPSmodule yields better results whenmeasuring the absolute
position onmuch longer distances of 50+meters.

– GPS fix accuracy works better with higher speeds. GPS data is noisy
when vehicles are parked ormoving at low speeds, as shown in Figure
6.4.

– The GPSmodule is prone to lose the GPS signal/fix from time to time.
Another sensor is necessary to fill in the gaps in places withweakGPS
signals.

• OBD
– The OBD sensor has a much faster update rate of around 30-50 Hz
compared to the GPS module. All speeds are output from the vehi-
cle in real-time, making the calculation of short-term position and
accelerationmuchmore accurate.

– The OBD sensor yields worse results when measuring the absolute
position on longer distances. The OBD data is prone to drifting as
integrating the speedwith respect to time induces error in calculating
the vehicle’s position.

System Prototype 38

– The OBD sensor works better with lower speeds. OBD data is clean at
0km/h when vehicles are parked, as shown in Figure 6.4. As vehicle
speed increases, tire pressure and size can skew the measurement
speed from the real speed.

– The OBD sensor can produce a continuous stream of OBD data read-
ily available for parsing at very high rates as long as the OBD connec-
tion is intact.

The above infers that the combination of the GPSmodule and OBD sensor has
complementing advantages to produce amore accuratemeasurement of the posi-
tion. TheOBDsensor can temporarily calibrate thepositionof the speedwhenever
the GPS signal is lost or noisy, and the GPS can constantly re-position the location
of the vehicle whenever errors in the OBD data start to drift to the assumed OBD
position.

Kalman filtering is especially useful in our case since our model also produces
two data sets respectively from the GPS output and the OBD output. It is difficult
to determine which sensor yields themore accurate results in different scenarios,
yet the goal of our project is to find themost accurate and consistent value of the
position and speed of the vehicle.

6.3.2 Project Model

The Kalman filter implemented for this project is based on changing the weights
of the OBD data and the GPS data. The Kalman filter requires samples to initialize
the filter so that the filter can capture the errors in either sensor as the difference.
The filter then uses the sample data providedbyprevious iterations of the program
to continuously update the filter until the filter converges to a constant matrix.

In this project, our Kalman filter chooses to fuse the distance first and then the
speed since differentiating the distance is less prone to drift compared to integrat-
ing the speed.

In order to get amore accuratemeasurement of distance, the OBD data is com-
putedbeforehand so that the first Kalmanfilter can fuse the distance data between
theGPSdistance and theOBDdistance first. The secondKalmanfilterwill attempt

System Prototype 39

Figure 6.4. Noise at speed = 0

to fuse the difference between the speed output of the first Kalman filter (which
includes OBD data and GPS data) with the OBD speed, as the OBD sensor is able
to provide amore accurate instantaneous speed compared to the GPSmodule.

6.3.3 Kalman Equations

Thereare twosteps inWhendefining theKalmanfilteringalgorithm forourproject,
there are two steps involved in each iteration - updating the next base value for
predictionwith the incoming data andpredicting the next iteration to produce the
next base value. In our code, the prediction function is written below, with F as an
arbitrary and adjustable constant:

function [r, P] = predict(r, dt, P, Q)

System Prototype 40

F = [1];
r = F*r;
P = F*P*F’ + Q;

end

The update function calculates the Kalman gain for each iteration. Each itera-
tionwill update the Kalman gain according to the incoming data until it converges
to a certain value, making subsequent data less significant in influencing the pre-
diction values. The update function is written below:

function [r, P] = update(r, z, P, R)
K = P/(P + R); %Kalman gain

r = r + K*(z - r);
P = (eye(1) - K)*P*(eye(1) - K)’ + K*R*K’;%P - K*P;

end

A fewparameters to flushout in the followingprogress notes. In theparameters
listed below, Q is the prediction noise, R is themeasurement noise covariance for
each sensor, and P is the prediction uncertainty:

Q = 0.1 System noise

R1 = 2000 R for OBD sensor

R2 = 100 R for GPSmodule

P = 1 Prediction uncertainty

Our first design of the Kalman filter is to find consensus by using the time du-
ration of the vehicle. The farther the vehicle is from the starting point, the more
important GPS data becomes.

7 Test Cases and Results

7.1 GPS Test Case

Ourfirst test case involves twonodes, one installed on the side of the street and the
other one installed inside a Toyota Corolla LE with a 0-60 time of approximately
8.6 s (3.119m/s2) and 60-0 braking distance of 135 ft. (-8.742m/s2). The car drives
away from the stationary node and the node in the car collects the data presented
below. Figure 7.1 depicts the recorded results of the distance between the two
nodes and the implied position bound in the following second. This bound is cal-
culated from the maximum acceleration when flooring the gas (3.119m/s2) and
maximumdecelerationwhen brakes are fully applied (-8.742m/s2), both of which
areestimated fromthegiven0-60and60-0values.Note that in thefigureat20:14:24
UTC, the radio lost connection for approximately 1 second.

41

Test Cases and Results 42

Figure 7.1. Real data and prediction bounds derived from data

Test Cases and Results 43

7.1.1 Prediction

So far, our program is able to predict the upper and lower bounds of the car’s loca-
tion one second ahead, as shown in Figure 7.1. This one-second prediction bound
could be changed in order to account for different time frame requirements, as
shown in Figures 7.2 and 7.3 below.

Figure 7.2. Predictions 0.5 second ahead

As this prediction time frame decreases to around 0.5 seconds, the prediction
becomes less valuable since the driver will have less time to react to the upcom-
ing scenario. Moreover, prediction accuracy will decrease as the time frame ap-
proaches the GPS sampling rate.

Test Cases and Results 44

Figure 7.3. Predictions 2 seconds ahead

However, as this prediction time frame increases to 2 seconds, the upper and
lowerboundsbecomemuch farther apart. The informationprovidedby thepredic-
tion then becomes too obvious, which can also void the usefulness of the predic-
tion. To conclude, we can infer that there is a trade-off between location accuracy
and reaction time to the prediction.

Figure 7.4 shows the prediction bounds for various prediction time frames at
20:14:22.1 UTC.

Test Cases and Results 45

Figure 7.4. Predictions made for different time periods in advance
at 20:14:22.1 UTC

7.2 OBD Test Case

In Figure 7.5, the Kalman filter first weighs towards theOBDdata (shown as Sensor
input 1) to capture distance in the first 20 seconds. After around 30 seconds, the
Kalmanfilter starts to factor in theGPSdata (shownas sensor input 2)moreheavily
over time.

Test Cases and Results 46

Figure 7.5. Filtering results of Distance (m)

Test Cases and Results 47

Figure 7.6. Filtering results of Speed (m/s)

8 Conclusions

This paper proposed the concept andmethodology of transmitting real-time
data through radio for car communication, as well as fusing sensor data between
GPS and OBD to provide accurate data for the connected car architecture. A pro-
totype of the software algorithm and hardware design is implemented and tested,
and results show accurate calculations of car position range in the following sec-
ond.

The successful results of the research prove to ensure greater safety when au-
tonomous sensors cannot detect potential hazards by providing wireless beacons
with GPS data as a fall-backmethod to avoid traffic collisions.

In addition, by fusing OBD information with the GPS data, real-time accuracy
improves as the OBDport provides fast updates on car velocity, which can smooth
out themeasurement errors of GPS data on the fly.

Ultimately, the software ideas and hardware architectures presented in this pa-
per could serve as a lightweight platform and test bench for developing new soft-
ware algorithms that can benefit safety by leveraging existing connected vehicle
technology.

48

9 Suggested Future Research

9.1 Adding Angle

To analyze themodel in 2-D space, we can add in the control of the steering wheel.
This can be done by measuring the yaw rates of the car. Typically a value of 20
deg/s is already considered aggressive at high driving speeds. We can then set a
certain amount of yaw rate as the bounds for turning the steering wheel and draw
out a circular sector-shaped range for the direction perpendicular to themoving
direction. Figure 9.1 shows the addition of analyzing yaw rates to themodel.

49

Suggested Future Research 50

Figure 9.1. Addition of Yaw Rate to theModel

9.2 CSMA/CA

Carrier-sensemultiple access25 with collision avoidance (CSMA/CA) is a protocol
at themedia access control (MAC) layer formitigating congestednetwork trafficon
a certain wireless communication channel. The protocol specifically uses the ex-
ponential randombackoffalgorithm that retries transmission at a randomdelayed
time framewhenever collision in the channel is detected until one of the transmis-
sion nodes can get an acknowledgment of successful transmission. This project
implements collision avoidance between the LoRa nodeswith timeout differences
so that one node can always transmit before the other whenever a collision occurs.

Suggested Future Research 51

Amore sophisticated collision avoidancemechanism such as CSMA/CA could be
implemented in place of fixed timeouts.

9.3 Stacked Lane Infrastructures

Another factor toconsider is thatnotall roadsare2-dimensionalonly. Somebridges,
airports,and interchangeshave lanes stackedon topofeachother. Those scenarios
will require more sources of information to identify which layer the car is located
in.

9.4 Wireless Security

One of themost important challenges to overcome for the proposed decentralized
framework is the security of the wireless channel the vehicles communicate in.
Malicious users can block the wireless channel from being usable with frequency
jamming. In addition, the framework also needs to filter out fake or illegitimate
wireless beacons from interfering with the communication channel.

Appendix 52

Appendix A

run.py

Below is the Python source code for run.py. The Python script calculates the
predicted trajectories for the cars in the upcoming unit of time. The script inputs
position and speed data from a CSV file speed.csv and outputs the calculated pre-
dictions into results.txt. Simultaneously, the script can also re-read the data
from results.txt and draw a plot with the car dimensions and the predicted tra-
jectories for visualization purposes.

#!/usr/bin/python3

import csv
import math
import os
import time
import threading

from termcolor import colored

import matplotlib.pyplot as plt
import matplotlib.animation as animation

time frame of each entry in seconds
unit = 0.02

prediction ahead of time in seconds
predict_time = 2

maximum acceleration and deceleration of car 1 and 2 in ms^-2
car 1 - 2020 Toyota Corolla XSE
car1_max_acc = 3.3
car1_max_dec = -9.9

car 2 - 2020 Mercedes-Benz AMG GT
car2_max_acc = 6.9
car2_max_dec = -10.2

initial position of the cars (at t = 0)

Appendix 53

car1_init_pos_x = 0
car1_init_pos_y = 0

car2_init_pos_x = 10
car2_init_pos_y = -5

the dimensions of car 1 and 2 in meters
Toyota Corolla
car1_l = 4.6
car1_w = 1.8

Mercedes-Benz AMG GT
car2_l = 4.5
car2_w = 1.9

set up graph plotting
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)

a helper function that converts miles per hour to meters per second
def mph_to_mps(speed_mph):

return float(speed_mph) * 0.44704

a helper function that calculates current position from previous position
and speed

def current_position(prev_pos, speed):
return prev_pos + speed * unit

helper function that calculates the distance between
def dist_xy(x1, y1, x2, y2):

return math.sqrt(math.pow((x2 - x1), 2) + math.pow((y2 - y1), 2))

a helper function that writes the calculated results to file
def write_data_to_file(speed1_list, angle1_list, speed2_list, angle2_list):

assume car 1 and car 2 has the same number of data entries
speed_list_len = len(speed1_list)

current position of car 1 in vector form initialized with x and y at t
= 0

x1 = car1_init_pos_x
y1 = car1_init_pos_y

Appendix 54

current position of car 2 in vector form initialized with x abd y at t
= 0

x2 = car2_init_pos_x
y2 = car2_init_pos_y

for i in range(speed_list_len):

slow down animation by a little
time.sleep(unit)

open file to write line
txt_fd = open(’results.txt’, "a")

current speeds of car 1 and car 2
v1 = mph_to_mps(speed1_list[i])
v2 = mph_to_mps(speed2_list[i])

angle1 = float(angle1_list[i])
angle2 = float(angle2_list[i])

update car 1 position according to v1
x1 = current_position(x1, v1 * math.cos(angle1))
y1 = current_position(y1, v1 * math.sin(angle1))

update car 2 position according to v2
x2 = current_position(x2, v2 * math.cos(angle2))
y2 = current_position(y2, v2 * math.sin(angle2))

print("t={:.3f}".format(i * unit) + "s, "

v1 in mph
+ colored("v1=" + str(speed1_list[i]) + " mph, ", ’green’)

v1 in m/s vector form
+ colored("v1_x=" + "{:.3f}".format(v1 * math.cos(angle1)) +

" m/s, ", ’green’)
+ colored("v1_y=" + "{:.3f}".format(v1 * math.sin(angle1)) +

" m/s, ", ’green’)

position of car 1 in vector form
+ colored("x1=" + "{:.3f}".format(x1) + " m/s, ", ’green’)
+ colored("y1=" + "{:.3f}".format(y1) + " m/s, ", ’green’)

v2 in mph
+ colored("v2=" + str(speed2_list[i]) + " mph, ", ’yellow’)

Appendix 55

v2 in m/s vector form
+ colored("v2_x=" + "{:.3f}".format(v2 * math.cos(angle2)) +

" m/s, ", ’yellow’)
+ colored("v2_y=" + "{:.3f}".format(v2 * math.sin(angle2)) +

" m/s, ", ’yellow’)

position of car 2 in vector form
+ colored("x2=" + "{:.3f}".format(x2) + " m/s, ", ’yellow’)
+ colored("y2=" + "{:.3f}".format(y2) + " m/s, ", ’yellow’)

distance between car 1 and car 2
+ "d={:.3f}".format(dist_xy(x1, y1, x2, y2)) + " m"

)

txt_fd.write("{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}\n".format(x1,
y1, angle1, v1, x2, y2, angle2, v2))

txt_fd.close()

def draw_car_dimension(car_l, car_w, car_pos_x, car_pos_y, car_angle,
line_color):

locate the four edges of the car
edge_ax = car_pos_x - car_l / 2 * math.cos(car_angle) - car_w / 2 *

math.sin(car_angle)
edge_ay = car_pos_y - car_l / 2 * math.sin(car_angle) + car_w / 2 *

math.cos(car_angle)
edge_bx = car_pos_x + car_l / 2 * math.cos(car_angle) - car_w / 2 *

math.sin(car_angle)
edge_by = car_pos_y + car_l / 2 * math.sin(car_angle) + car_w / 2 *

math.cos(car_angle)
edge_cx = car_pos_x + car_l / 2 * math.cos(car_angle) + car_w / 2 *

math.sin(car_angle)
edge_cy = car_pos_y + car_l / 2 * math.sin(car_angle) - car_w / 2 *

math.cos(car_angle)
edge_dx = car_pos_x - car_l / 2 * math.cos(car_angle) + car_w / 2 *

math.sin(car_angle)
edge_dy = car_pos_y - car_l / 2 * math.sin(car_angle) - car_w / 2 *

math.cos(car_angle)

print("a = ("
+ str(edge_ax) + ", "
+ str(edge_ay) + ") b = ("
+ str(edge_bx) + ", "

Appendix 56

+ str(edge_by) + ") c = ("
+ str(edge_cx) + ", "
+ str(edge_cy) + ") d = ("
+ str(edge_dx) + ", "
+ str(edge_dy) + ")"
)

Add lines to list
lines_list = []
lines_list.append(

plt.Line2D((edge_ax, edge_bx), (edge_ay, edge_by),
color=line_color)

)
lines_list.append(

plt.Line2D((edge_bx, edge_cx), (edge_by, edge_cy),
color=line_color)

)
lines_list.append(

plt.Line2D((edge_cx, edge_dx), (edge_cy, edge_dy),
color=line_color)

)
lines_list.append(

plt.Line2D((edge_dx, edge_ax), (edge_dy, edge_ay),
color=line_color)

)

add lines to the plot
for line in lines_list:

plt.gca().add_line(line)

#return lines_list

def draw_prediction(car_pos_x, car_pos_y, car_speed, car_angle,
car_max_acc, car_max_dec, line_color):
x = x0 + vt + at^2 / 2
car_x1 = car_pos_x + car_speed * math.cos(car_angle) * predict_time +

car_max_acc * math.cos(car_angle) * math.pow(predict_time, 2) / 2
car_y1 = car_pos_y + car_speed * math.sin(car_angle) * predict_time +

car_max_acc * math.sin(car_angle) * math.pow(predict_time, 2) / 2

car_x2 = car_pos_x + car_speed * math.cos(car_angle) * predict_time +
car_max_dec * math.cos(car_angle) * math.pow(predict_time, 2) / 2

car_y2 = car_pos_y + car_speed * math.sin(car_angle) * predict_time +
car_max_dec * math.sin(car_angle) * math.pow(predict_time, 2) / 2

Appendix 57

#print("(" + car_x1 + ", " + car_y1 + "), (" + car_x2 + ", " + car_y2 +
")")

line = plt.Line2D((car_x1, car_x2), (car_y1, car_y2), color=line_color)
#

plt.gca().add_line(line)

def animate(i):

set plot axes range
plt.gca().clear()
axes.clear()
#axes.set_xlim([0, 80])
#axes.set_ylim([-30, 30])
axes.set_xlim([0, 80])
axes.set_ylim([-30, 30])

initialize array for plotting graph
x1_arr = []
x2_arr = []
y1_arr = []
y2_arr = []

while (not os.path.exists("results.txt")):
pass

reopen file for plotting graph
txt_fd = open(’results.txt’, "r")
dataArr = txt_fd.read().split(’\n’)

record the current coordinate information
x1 = car1_init_pos_x
y1 = car1_init_pos_y
x2 = car2_init_pos_x
y2 = car2_init_pos_y

v1 = v2 = None
angle1 = angle2 = None

for line in dataArr:
if len(line) > 1:

x1, y1, angle1, v1, x2, y2, angle2, v2 = line.split(’,’)
x1_arr.append(float(x1))
y1_arr.append(float(y1))
x2_arr.append(float(x2))

Appendix 58

y2_arr.append(float(y2))

if angle1 is not None:
draw_car_dimension(car1_l, car1_w, float(x1), float(y1),

float(angle1), "blue")
draw_prediction(float(x1), float(y1), float(v1), float(angle1),

car1_max_acc, car1_max_dec, "blue")

if angle2 is not None:
draw_car_dimension(car2_l, car2_w, float(x2), float(y2),

float(angle2), "orange")
draw_prediction(float(x2), float(y2), float(v2), float(angle2),

car2_max_acc, car2_max_dec, "orange")

add plot of car 1 and 2 positions
axes.plot(x1_arr, y1_arr)
axes.plot(x2_arr, y2_arr)

txt_fd.close()

self-defined thread class for writing data to file
class write_data_thread(threading.Thread):

def __init__(self, speed1_list, angle1_list, speed2_list, angle2_list):
threading.Thread.__init__(self)
self.speed1_list = speed1_list
self.angle1_list = angle1_list
self.speed2_list = speed2_list
self.angle2_list = angle2_list

def run(self):
write_data_to_file(self.speed1_list, self.angle1_list,

self.speed2_list, self.angle2_list)

def main():

clear data from last execution if exist
if os.path.exists("results.txt"):

os.remove("results.txt")

open speed.csv file that contains speed for car1 and car 2
speed_fd = open(’speed.csv’)
speed1_list = []
angle1_list = []

Appendix 59

speed2_list = []
angle2_list = []

store the speed values in list
reader = csv.reader(speed_fd, delimiter=’,’, quotechar=’|’)
for row in reader:

speed1_list.append(row[0])
angle1_list.append(row[1])
speed2_list.append(row[2])
angle2_list.append(row[3])

initialize and start thread for writing data
thread = write_data_thread(speed1_list, angle1_list, speed2_list,

angle2_list)
thread.start()

show plot
ani = animation.FuncAnimation(fig, animate, interval=100)
plt.show()

close all files
thread.join()
speed_fd.close()

if __name__ == "__main__":
main()

Appendix 60

Appendix B

velocity_generate.py

Below is the Python source code for velocity_generate.py, the Python script
that generates theparticular simulated test case for theprototypealgorithmshown
in Chapter 4. This file is created only to generate the CSV file for run.py to run a
simulation.

#!/usr/bin/python3

import csv

speed_fd = open(’speed.csv’, "w")

unit_sec = 0.02
count = 100

speed1_list = []
angle1_list = []
speed2_list = []
angle2_list = []

car 1 sees car 2 and slows down from 65 to 55 mph in 1 second
for i in range(count + 1):

if i < 0.5 * count:
speed1_list.append("{:.3f}".format(65 - i * 10 / count / 0.5))

else:
speed1_list.append("55.000")

angle1_list.append("0.000")

car 2 accelerates from 60 to 70 mph from the ramp and merges into an
inner lane

for i in range(count + 1):
speed2_list.append("{:.3f}".format(60 + i * 10 / count))
if i < 0.2 * count:

angle2_list.append("0.500")
elif i < 0.3 * count:

angle2_list.append("0.300")
elif i < 0.5 * count:

angle2_list.append("0.100")
else:

angle2_list.append("0.000")

Appendix 61

for i in range(count + 1):
speed_fd.write(str(speed1_list[i]) + "," + str(angle1_list[i]) + "," +

str(speed2_list[i]) + "," +str(angle2_list[i]) + "\n")

speed_fd.close()

References

[1] Ieee standard for information technology—telecommunications and in-
formation exchange between systems local and metropolitan area net-
works—specific requirements - part 11: Wireless lanmedium access control
(mac) and physical layer (phy) specifications. IEEE Std 802.11-2016 (Revi-
sion of IEEEStd802.11-2012), pages 1–3534, 2016. doi: 10.1109/IEEESTD.2016.
7786995.

[2] Iso 26262-1:2011, Dec 2018. URL http://www.iso.org/iso/
cataloguedetail?csnumber=43464.

[3] Feb 2020. URL https://www.ti.com/lit/an/swra553a/swra553a.pdf.

[4] Khadige Abboud,HassanAboubakrOmar, andWeihuaZhuang. Interworking
of dsrc and cellular network technologies for v2x communications: A survey.
IEEE Transactions on Vehicular Technology, 65(12):9457–9470, 2016. doi: 10.
1109/TVT.2016.2591558.

[5] Glenn Baddeley. Gps - nmea sentence information, Jun 2001. URL http://
aprs.gids.nl/nmea/.

[6] Taajwar Bey and Girma Tewolde. Evaluation of dsrc and lte for v2x. In 2019
IEEE 9th Annual Computing and CommunicationWorkshop and Conference
(CCWC), pages 1032–1035, 2019. doi: 10.1109/CCWC.2019.8666563.

[7] IgalBilik. Comparative analysis of radarand lidar technologies forautomotive
applications. IEEE Intelligent Transportation SystemsMagazine, pages 2–27,
2022. doi: 10.1109/MITS.2022.3162886.

[8] Ahmed Elbery, Sameh Sorour, Hossam Hassanein, Akram Bin Sediq, and
Hatem Abou-zeid. To dsrc or 5g? a safety analysis for connected and
autonomous vehicles. In 2021 IEEE Global Communications Conference
(GLOBECOM), pages 1–6, 2021. doi: 10.1109/GLOBECOM46510.2021.
9685065.

[9] Elm Electronics. Elm327 obd to rs232 interpreter - elm electronics, Jul
2016. URL https://www.elmelectronics.com/wp-content/uploads/2016/
07/ELM327DS.pdf.

[10] Lukas Ewecker, Ebubekir Asan, and Stefan Roos. Detecting vehicles in the
dark in urban environments - a human benchmark. In 2022 IEEE Intelligent

62

http://www.iso.org/iso/cataloguedetail?csnumber=43464
http://www.iso.org/iso/cataloguedetail?csnumber=43464
https://www.ti.com/lit/an/swra553a/swra553a.pdf
http://aprs.gids.nl/nmea/
http://aprs.gids.nl/nmea/
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327DS.pdf

References 63

Vehicles Symposium (IV), pages 1145–1151, 2022. doi: 10.1109/IV51971.2022.
9827013.

[11] The Raspberry Pi Foundation. Raspberry pi documentation. URL https://
www.raspberrypi.com/documentation/.

[12] GitHub. Getting started - python-obd, May 2019. URL https://python-obd.
readthedocs.io/en/latest/.

[13] HopeRF. Low power long range transceiver module, Jul 2019. URL https://
www.hoperf.com/data/upload/portal/20190801/RFM95W-V2.0.pdf.

[14] Jiong Jin, Jayavardhana Gubbi, SlavenMarusic, andMarimuthu Palaniswami.
An information framework for creating a smart city through internet of things.
IEEE Internet of Things Journal, 1(2):112–121, 2014. doi: 10.1109/JIOT.2013.
2296516.

[15] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.
1115/1.3662552. URL https://doi.org/10.1115/1.3662552.

[16] John B. Kenney. Dedicated short-range communications (dsrc) standards in
theunited states.Proceedings of the IEEE, 99(7):1162–1182,2011. doi: 10.1109/
JPROC.2011.2132790.

[17] Zadid Khan, Sakib Mahmud Khan, Mashrur Chowdhury, Mizanur Rahman,
andMhafuzul Islam. Performanceevaluationof5gmillimeter-wave-basedve-
hicular communication for connected vehicles. IEEE Access, 10:31031–31042,
2022. doi: 10.1109/ACCESS.2022.3158669.

[18] You Li and Javier Ibanez-Guzman. Lidar for autonomous driving: The prin-
ciples, challenges, and trends for automotive lidar and perception systems.
IEEE Signal Processing Magazine, 37(4):50–61, 2020. doi: 10.1109/MSP.2020.
2973615.

[19] Alexandre K. Ligo and Jon M. Peha. Cost-effectiveness of sharing roadside
infrastructure for internet of vehicles. IEEE Transactions on Intelligent Trans-
portation Systems, 19(7):2362–2372, 2018. doi: 10.1109/TITS.2018.2810708.

[20] Yangyang Liu, Shuo Chang, ZhiqingWei, Kezhong Zhang, and Zhiyong Feng.
Fusing mmwave radar with camera for 3d detection in autonomous driv-
ing. IEEE Internet of Things Journal, pages 1–1, 2022. doi: 10.1109/JIOT.2022.
3175375.

https://www.raspberrypi.com/documentation/
https://www.raspberrypi.com/documentation/
https://python-obd.readthedocs.io/en/latest/
https://python-obd.readthedocs.io/en/latest/
https://www.hoperf.com/data/upload/portal/20190801/RFM95W-V2.0.pdf
https://www.hoperf.com/data/upload/portal/20190801/RFM95W-V2.0.pdf
https://doi.org/10.1115/1.3662552

References 64

[21] AryanMehra,Murari Mandal, Pratik Narang, and Vinay Chamola. Reviewnet:
A fast and resource optimized network for enabling safe autonomous driving
in hazy weather conditions. IEEE Transactions on Intelligent Transportation
Systems, 22(7):4256–4266, 2021. doi: 10.1109/TITS.2020.3013099.

[22] Inc. Motorola. Spi block guide v4 - nxp, Jan 2000. URL https://www.nxp.com/
files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf.

[23] PyPI. pylora | pypi, Apr 2019. URL https://pypi.org/project/pyLoRa/.

[24] Adam Rodnitzky. Sensing 201: Solid state amp; scanning
lidar for mobile robots, drones, amp; autonomous vehi-
cles, Jul 2021. URL https://www.tangramvision.com/blog/
sensors-201-scanning-and-solid-state-lidar.

[25] Santhameena. S, Aninika S Adappa, K. Dhiraj Kumar, and Ananya Boyapati.
Implementation of unslotted and slotted csma/ca for 802.11 and 802.15.4
protocol. In 2019 Global Conference for Advancement in Technology (GCAT),
pages 1–7, 2019. doi: 10.1109/GCAT47503.2019.8978395.

[26] Pooja Rajendra Sawant and Yashwant B Mane. Design and development of
on-board diagnostic (obd) device for cars. In 2018 Fourth International Con-
ference on Computing Communication Control and Automation (ICCUBEA),
pages 1–4, 2018. doi: 10.1109/ICCUBEA.2018.8697833.

[27] NXP Semiconductors. Scc2691 3 universal asynchronous receiver/transmit-
ter (uart) - nxp, Aug 2006. URL https://www.nxp.com/docs/en/data-sheet/
SCC2691.pdf.

[28] Semtech. Sx1276 | 137mhz to 1020mhz long range low power
transceiver | semtech, May 2020. URL https://semtech.my.salesforce.
com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_
Fkpgp5kzjiNyiAbqcpqh9qSjE.

[29] Haoran Song. The application of computer vision in responding to the emer-
gencies of autonomous driving. In 2020 International Conference on Com-
puterVision, Image andDeepLearning (CVIDL), pages 1–5,2020. doi: 10.1109/
CVIDL51233.2020.00008.

[30] John Sonnenberg. Fcc part 15 ism regulations - raveon.com,May 2019. URL
https://www.raveon.com/wp-content/uploads/2019/05/AN203FCC-ISM.
pdf.

https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://pypi.org/project/pyLoRa/
https://www.tangramvision.com/blog/sensors-201-scanning-and-solid-state-lidar
https://www.tangramvision.com/blog/sensors-201-scanning-and-solid-state-lidar
https://www.nxp.com/docs/en/data-sheet/SCC2691.pdf
https://www.nxp.com/docs/en/data-sheet/SCC2691.pdf
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://www.raveon.com/wp-content/uploads/2019/05/AN203FCC-ISM.pdf
https://www.raveon.com/wp-content/uploads/2019/05/AN203FCC-ISM.pdf

References 65

[31] Adafruit Learning System. Datasheet, Feb 2018. URL https://www.
manualshelf.com/manual/adafruit/746/datasheet-english/page-1.html.

[32] OnurToker andSuleimanAlsweiss.mmwave radar based approach for pedes-
trian identification in autonomous vehicles. In 2020 SoutheastCon, pages 1–2,
2020. doi: 10.1109/SoutheastCon44009.2020.9249704.

https://www.manualshelf.com/manual/adafruit/746/datasheet-english/page-1.html
https://www.manualshelf.com/manual/adafruit/746/datasheet-english/page-1.html

	List of Figures
	Acknowledgements
	ABSTRACT
	Chapter 1. Introduction
	Motivation
	Thesis Outline

	Chapter 2. Background
	Autonomous Vehicles
	Connected Vehicles
	Sensor Fusion

	Chapter 3. System Approach
	Problem Statement
	Prediction Algorithm

	Chapter 4. Simulation
	Generating Cases
	Results

	Chapter 5. Hardware Architecture
	Peripheral Communication
	Raspberry Pi
	GPS Module
	OBD Sensor
	Radio Communication

	Chapter 6. System Prototype
	Data Sources
	Vehicle Communication
	Kalman Filtering

	Chapter 7. Test Cases and Results
	GPS Test Case
	OBD Test Case

	Chapter 8. Conclusions
	Chapter 9. Suggested Future Research
	Adding Angle
	CSMA/CA
	Stacked Lane Infrastructures
	Wireless Security

	Appendix A. run.py
	Appendix B. velocity_generate.py
	References

