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ABSTRACT

The Use of Negative Sampling in the Evaluation of Link Prediction
Algorithms

JULIAN ROBINSON

Linkprediction is a constantly growingfield,but the evaluationofnewlydeveloped
algorithms requires a lot of computational resources that can be prohibitively ex-
pensive to perform on large networks. To resolve this issue, a possible approach is
to reduce the computational complexity by randomly sampling the negative edges.
Here, we investigate the effect of negative sampling on the evaluation of link pre-
diction algorithms, proposemodels to estimate the sampling error based on the
number of negative edges sampled, and suggest minimum values bounding the
error to a desired amount. Across a wide-array of real networks, we show that the
suggested values can appropriately bound the error and can speed up the evalua-
tion process 1000x times for large networks having 106 nodes withminimal error.
Weanticipate that these results andourestimatedmodelcanhelp researchers keep
the evaluation of link predictionmethods accessible on large, real-world networks.
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1 Introduction

Link prediction on a network is an integral part to understanding its properties,

uses, andhas awide variety of applications in areas of Computer andData Science,

Biology, andmore. In general, it is the task of determining whether a relationship

exists between two or more entities within a network. Link prediction, therefore,

has become a very useful tool in the areas of biological networks, social networks,

and other applications.

1.1 Problem Statement

Link prediction is a classification task used to determine whether a relationship

exists between two vertices in a graph. Given a network G = (V, E), where V is the

set of all vertices in G and E is the set of all true edges between vertices within G.

These edges, E, will henceforth be referenced as observed links. The objective of

link prediction is to identify unobserved links within G. A link predictionmethod

is applied over the graph resulting in a trained model. Using this model on all

the negative edges of the graph, edges are predicted and said to be the predicted

edges. This number of total possible edges is calculated similarly to the famous

"handshake problem"30 (Equation 1.1).

|MaxE| = |V |(|V | − 1)

2
(1.1)

2
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1.2 Applications of Link Prediction

In the context of biological networks, linkprediction canbeusedonhomogeneous

networks such as human protein-protein interaction networks to determine if

two proteins may have a previously unknown interaction. After link prediction is

performed, these interactionsmaybe confirmed in a clinical setting. In the context

of social networks, link prediction can be used to determinewhether a connection

between two users should be present based off their own and others’ interactions.

Both biological and social networks can be very large in both the number of

nodes and number of edges in the network. Due to the size of the network, link

prediction can be very computationally inefficient.

Our work builds offmany preexisting link predictionmethods. In this section,

we introduce some of thesemethods andmetrics, their uses, and drawbacks.

1.3 Link Prediction Methods

1.3.1 Topology Based

One of the simplest genres of link predictionmethods is topology-based. The gen-

eral idea of topology-based link predictionmethods is that similar nodes aremore

likely to form a link29. Thesemethods determine an index that indicates the sim-

ilarity between two nodes. Topology-based methods can be divided into three

different categories: neighbor-based, path-based, and randomwalk-based.29. In

our work, we use neighbor-based topologymethods. Neighbor-basedmethods, in

the context of a social network, say that two users who are "close" in the network
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will have colleagues in common and will travel in similar circles. This thenmeans

that they are more likely to interact in the future13. Examples of neighbor-based

methods are Common Neighbors, Jaccard Similarity Coefficient, Preferential At-

tachment, and Adamic Adar. CommonNeighbors gives the number of nodes that

both nodes share an edge with. Jaccard Similarity Coefficient builds off the Com-

monNeighborsmethod. JaccardSimilaritynormalizes thenumberof sharedneigh-

bors by total number of neighbors. Preferential Attachment revolves around the

idea that a new link is more likely to form between nodes of high degree3. Adamic

Adar is based on the idea that in a social network, users that interact with highly

connected users are more likely to form a link1.

1.3.2 Embedding Based

Another general category of link prediction is embedding based. An embedding

is a low-dimensional representation of a higher-dimensional object. Networks

are high-dimensional objects, so it is difficult to apply mathematical evaluations

on them. So, an embedding representation of the network can be constructed

in order to apply these methods. There are two main ways to embed features of

a network: Edge Embedding and Node Embedding. An edge embedding gives a

vector representation for each edge in the network. A node embedding gives a vec-

tor representation for each node in the network. In the context of link prediction,

node embedding is more commonly used as it allows for the characterization and

visualization of edges that do not yet exist in the network. In otherwords, node em-

beddings can be combined to form node-pair embeddings for nodes that do and
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do not already exist in the network. Evaluation can then be performed on these

node-pair embeddings.

Node embeddings of networks are calculated in a variety of ways. Some node

embeddingmethods like DeepWalk18 and Node2Vec7 use short randomwalks to

learn a vector representation of the network. LINE26 uses the first-order proxim-

ity (local pairwise proximity between vertices) and second-order proximity (as-

sumption that nodes with shared neighbors are likely to be similar) to calculate

an embedding. CNE10 uses derived (generally topological) information about the

network to construct a distribution over edges that is thenused to construct an em-

bedding. Generally, after the node embeddings are created, eachnode pair embed-

ding is constructed by using a binary operator on each pair of node embeddings7.

After the node pair embeddings are constructed, a predictionmodel is trained (of-

ten logistic regression) using the embeddings of the positive edges in the graph

and a subset of the negative edges. The now trainedmodel is then used to predict

links.

1.4 Evaluating Link Prediction Algorithms

1.4.1 What is the Ground Truth?

In order to evaluate link predictionmethods, they need to be tested and evaluated

on labeled data. In the absence of a gold standard set of labels, these training and

testing sets are typically obtained by sampling the edges uniformly at random. So,

in a supervised learning setting, link prediction is performed by first removing k

edges from E at random creating a new network G’=(V, E’). This is a training graph
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and the removed k edges form the testing graph. Note that |E’| + k = |E|. Figure 1.1

shows an example of a train-test split.

Figure 1.1. Train-TestSplitDiagram.Edges (80%) in initial graphare
randomlyselectedtobe in the traininggraph. Remainingedges (20%)
are selected to be in the testing graph. Note: In an ideal situation, few
or no nodes are left unconnected in the training graph.

After the model has been trained, the k removed edges along with the set of

negatives are predicted by the model. Therefore, the number of edges predicted

in this evaluation phase can be found in Equation 1.2.

|E”| = |V |(|V | − 1)

2
− |E ′| (1.2)
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This process of link prediction is illustrated in Figure 1.2.

Figure 1.2. Workflowof Evaluation of Link Prediction.Green edges
are True Positive. Solid red edges are False Positive. Dashed red edges
are False Negative

1.4.2 Evaluation Metrics

The effectiveness of a given link prediction method can be calculated in a multi-

tudeofdifferentways, someofwhicharementioned later in this section. In general,

the predicted edges are compared to the observed edges to determine how effec-

tive the givenmetric was on predicting edges in the given graph.

In Figure 1.3, the predicted edge status (positive or negative) is mapped vs the

actual edge status. Edges that are predicted positive and are actually positive are

defined as True Positives (TP). Edges that are predicted positive and are actually

negative are defined as False Positives (FP). Edges that are predicted negative and

are actually positive are defined as False Negatives (FN). Edges that are predicted

negative and are actually negative are defined as True Negatives (TN).

Accuracy. One may at first assume that accuracy (Equation 1.3), the ratio of cor-

rectly predicted edges to total edges, would be the best metric to determine the

effectiveness of a method, but for link prediction, the number of positive and neg-

ative samplesmust be taken into account. In a network setting, there are generally
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Figure 1.3. ConfusionMatrix.

far more negative samples than positive samples. Consider a classifier that pre-

dicts all node pairs as negative. As the number of nodes in a graph increases, the

accuracy approaches 1. The classifier would have scored well, but it is clear that

its predictions are useless.

Accuracy =
TP + TN

TP + FP + FN + TN (1.3)

AUROC. Area under receiver operating characteristic curve, AUROC, is in general

a better indicator of the performance of a metric. The ROC curve is defined as the

plot of the true-positive rate versus the false-positive rate. The calculations for true

positive rate (TPR) and false-positive rate (FPR) are seen in Equations 1.4 and 1.5

TPR =
TP

TP+ FN (1.4)

FPR =
FP

FP+ TN (1.5)
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where TP, TN, FP, and FN are the number of true positives, true negatives, false

positives, and falsenegatives respectively. An example of anROCcurve canbe seen

in Figure 1.4.

Figure 1.4. Sample ROC Curve. True Positive Rate (TPR) vs False
Positive Rate (FPR)

The AUROC is therefore the area underneath this curve. A high AUROCmeans

the index performed well. Themaximum value of 1 would therefore be achieved

if the entire area under the curve filled the 1 by 1 grid. For classification models

that output a score rather than a prediction, the TPR and FPR are calculated for

different decision thresholds between 0 and 1.

Precision. Precision is another metric commonly used in link prediction, and is

defined as the number of true positives over the total predicted positive. This cal-

culation can be seen in 1.6.

Precision =
TP

TP+ FP (1.6)
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whereTP is thenumberof truepositives, andFP is thenumberof false positives.

Precision is very similar to Recall, its sibling metric. Recall, while not directly used

in this research, is calculated as the number of true positives divided by the total

of actual positives.

Odds Ratio. Odds ratio is a statistic that isusedtomeasure theassociationbetween

two events. The odds ratio is defined as the odds that an outcome will occur given

a particular event, compared to the odds of the outcome occurring without the

particular event25. While commonly used inmedical applications, the odds ratio is

useful in link prediction contexts as ametric that tells the odds that a pair of nodes

is linked given the result of a specific link prediction algorithm35

The odds ratio calculation can be seen in 1.7.

Odds Ratio =
TP/FN
FP/TN =

TP · TN
FP · FN (1.7)

F1 Score. F1-Score is a another statistic commonly used in link prediction4 17 23.

It combines both the precision and recall metrics by taking their harmonicmean.

The calculation of this can be seen in Equation 1.8.

F1 =
2

Recall−1 + Precision−1
= 2 · Precision · RecallPrecision+ Recall =

2 · TP
2 · TP+ FP+ FN (1.8)

The highest F1 Score possible is 1 indicating both a perfect precision and recall

score.
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1.5 Use of Negative Sampling for Evaluation

Link prediction on large networks can be prohibitively computationally expen-

sive36. The computational complexity of a link prediction problem is largely de-

pendent on the number of vertices in the network, as the prediction indexmust be

calculated |MaxE| times. In order to combat this issue, negative sampling can be

performed14 22 28. Negative Sampling, also referred to as ’test set sampling’, is the

process of omitting some of the observed negative edges in order to reduce the

number of computations that must be performed.

Removal of negative edges can, of course, reduce the information about a net-

work that we have resulting in a trade-off between computational time and effec-

tiveness of themethod. One paper varies the negative sampling percentage, p, to

see its effect on the variance in the AUROC of various link predictionmethods on

their networks33. This research concluded that an amount lower than 1 percent

of the initial negative edges results in a variance too large to consider the results

viable. This research looked at networks of very similar node amounts. They used

four networks of node size 1829, 3215, 13873, and 16922. These node sizes are rela-

tively small. Their results do not extend to networks of larger node sizes. Therefore,

the results brought forth in their research are not generalizable to all contexts.

In the research presented in this paper, we look to repeat their approach on

larger networks. The general focus of the aforementioned paper was on the ratio

of negative sampling. We also look to vary the number of negative sampled edges

irrespective of the total number of possible edges. In addition to repeating their

approach on larger networks, we look to characterize the error due to sampling

based on the variance when different samplings are used. Doing so will allow us
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to determine how many negative edges are needed to be sampled to bound the

sampling error. Lastly we look to characterize the sampling error relative to the

train-test error. Doing so will allow us to determine howmany edges are needed

to be sampled to bound the relative error.

1.5.1 Metrics and Negative Sampling

Not all evaluationmetrics are safe to be usedwith negative sampling. For instance,

when negative sampling is performed, the precision metric becomes biased to-

wards positive samples (see Figure 1.5 for an illustration of the sampled and un-

sampled runs). We expect that if ametric is unaffected by negative sampling, both

lines would overlap. Since in the case of precision these lines do not overlap, it is

clear that the precision is biased and, without an adjustment to correct this bias,

cannot be used as a reliablemetric for link predictionwith negative sampling. Sim-

ilarly, odds ratio and F1-Score, which depend on the number of predictions, can-

not safely be used for evaluation of link predictionwith negative samplingwithout

making an adjustment to correct the bias.

AUROC, however, is row normalized when constructing the TPR and FPR. This

means that it both TPR and FPR are ratios that are dependent on the number of

samplededgesnot trueedges. So,AUROC isunaffectedbynegative sampling. Thus,

in this work, we will consider AUROC, and leave the other metrics as future work.
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2 Methods

The link prediction evaluation framework used in this research is in Figure 2.1.

The input is a network represented as an edgelist where each entry is a tuple of

nodes. The network is split 80/20 into a train and test set. The training set is used

to train themodel that will be used during testing. The positives of the test set are

used directly in testing. Negative sampling is performed on the original network

to obtain the negative samples that will be used in the testing phase. Starting with

the entire network, the entire negative set is taken as all node pairs not in the edge

list. Using the sampling ratio or the number of negatives to be sampled, this set is

randomly sampled in order to determine the negative samples to be used in the

testingphase. Lastly, theperformanceof themodel is determined in the evaluation

phase.

2.1 Datasets

The results of this work are reported using 18 different networks of varying node-

size, edgesize and general topology. The networks used in this research can be

found in Table 2.1. The networks chosen have node sizes on the order of between

103 and 106. Data preprocessing took the form of relabeling nodes to integers and

constructing the network as an undirected edgelist.

14
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Figure 2.1. Link Prediction Evaluation Framework. Input is a net-
work. Random sampling occurs during Train-Test Split andNegative
Sampling steps.

2.1.1 Network Details

DrugBank DDI: []. Facebook denotes users on Facebook as nodes and edges be-

tween nodes denote users that are friends. LastFM Asia denotes users from Asian

countries as nodes and edges are mutual follower relationships between them.

PhosphoSite Plus 2019 and PhosphoSite Plus 2021 []. Biogrid Drosophila 2020,

Biogrid Human 2010 and 2020 [] for Drosophila and Human genes respectively.

Wormnet denotes genes in Caenorhabditis Elegans as nodes and []. HIPPIE []. En-

ron Email and EU Email denote users and emails between users as edges. Deezer-

Romania, Hungary, and Croatia denote users on the streaming platform as nodes

and mutual friendships as edges. Twitch Gamers denotes users on Twitch.com
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as nodes andmutual follower relationships as edges. PTMcode denotes proteins

as nodes and functional associations of post-translational modifications within

and between proteins as edges. Amazon denotes products as nodes and common

function or purposes between products as edges.

Network Name Nodes Edges Max Edges Type
DrugBank DDI31 1514 48514 1.15E+06 Biological
Facebook27 6540 12329 2.14E+07 Social
LastFM Asia19 7624 27806 2.91E+07 Social
PhosphoSite Plus 20198 7807 10431 3.05E+07 Biological
PhosphoSite Plus 20218 9354 12676 4.37E+07 Biological
Biogrid Drosophila 202024 9536 62640 4.55E+07 Biological
Biogrid Human 201024 9715 32347 4.72E+07 Biological
Wormnet5 16347 762822 1.34E+08 Biological
HIPPIE2 19484 773806 1.90E+08 Biological
Biogrid Human 202024 25776 464003 3.32E+08 Biological
Enron Email12 36692 183831 6.73E+08 Social
Deezer-Romania21 41773 125826 8.72E+08 Social
Deezer-Hungary21 47538 222887 1.13E+09 Social
Deezer-Croatia21 54573 498202 1.49E+09 Social
Twitch Gamers20 168114 6797557 1.41E+10 Social
PTMcode16 191104 835061 1.83E+10 Biological
EU Email11 265009 364481 3.51E+10 Social
Amazon32 334863 925872 5.61E+10 Information

Table 2.1. Network Information.Networks used along with their re-
spective node size, edge number,maximumedges possible given the
node size and the type of network.
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2.2 Link Prediction Methods

2.2.1 Topology-Based

In topology based link prediction, themethod is applied to each positive edge re-

maining in the training graph and every negative edge (or every sampled negative

edge). The result is that every node-pair is assigned a score and then all pairs are

sorted by their scores in descending order. Thus, for making k predictions, the top

k node-pairs with the highest scores are predicted as "positives" and the rest are

predicted as "negatives".

Preferential Attachment. Degree is the number of edges a particular node has. In

a link prediction context, the preferential attachment index is computed as the

product of the degree of the two nodes. Node pairs of high degree are more likely

to share an edge. The calculation can be seen in Equation 2.1.

Cdeg(x, y) = |N(x))| ∗ |N(y))| (2.1)

where N(x) is the set of vertices that share an edge with x.

Adamic Adar. Adamic Adar is an index used to predict links based on their shared

neighbors1. The index is calculatedas the inverse sumof thedegreeof thecommon

neighbors. Nodepairswithmore sharedneighbors aremore likely to share an edge.

The calculation for Adamic Adar can be seen in Equation 2.2.

A(x, y) =
∑

u∈N(x)
⋂

N(y)

1

log|N(u)|
(2.2)

where N(x) is the set of vertices that share an edge with x.

Jaccard Similarity Coefficient. The Jaccard Similarity Coefficient is calculated as

the number of common neighbors between two nodes normalized by the total
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numberofneighborsbetweenbothnodes.Nodeswithmoreneighbors in common

aremore likely to share an edge. Also, nodes with high degree that also sharemany

neighbors are deemed as less important than nodes with a higher proportion of

shared neighbors to total neighbors. The calculation of the Jaccard Coefficient can

be seen in equation 2.3.

Jaccard(x, y) =
|N(x)| ∩ |N(y)|
|N(x)| ∪ |N(y)|

(2.3)

where N(x) is the set of vertices that share an edge with x.

2.2.2 Embedding-Based

Node2Vec. Thispredictionmethodcombinesusinganembeddingmethodto learn

a mapping of nodes to a low-dimensional matrix with a binary classification al-

gorithm. Node2Vec makes use of random walk to generate the embedding. The

Node2Vec embedding process has three main steps. The first step is to calculate

the edge transition probabilities. This is the probability that given a current node

u at time t0, the probability that at time t0 + 1 the current node will be v. The ho-

mophily hypothesis states that nodes with common traits and features aremore

likely to interact with each other34. This means that nodes that are highly inter-

connected should be embedded closely together. In addition, by the structural

equivalence hypothesis, nodes that perform similar roles in a network (e.g. acting

as a junction point) should likewise be embedded closely together15.

For the actual implementation of this link predictionmethod, the graph is first

split into a train and test set. For the second step of Node2Vec, each node of the

training graph is then embedded using 200 walks each of length 10 into a vector
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of length 64. All of the positives from the training graph and an equal number of

negatives are thenmapped to features6 9. Each node has its own embedding, so to

combine them, the Hadamard product is calculated for each pair of nodes6. The

Hadamard product is illustrated in Equation 2.4.

Hadamard(u, v) = f(u) ◦ f(v) (2.4)

where f(u) is the embedding for node u, and ◦ is the element-wise multiplication

operator. These node-pairs’ Hadamard products are used as the feature set along

with their label as True or False in a logistic regression classifier for the third and

final step. This classifier, once fit, is themodel that predicts the test set as positive

or negative.



3 Results and Discussion

3.1 Effect of Negative Sampling on AUC

We first compare our results to those found in previous work33. Figures 3.1a and

3.1b show recreations of thefigures in thepaperbutwithdatasets of node size 1514

and 36692. As expected, we see that the error increases as the negative sampling

percentage decreases. However, the extent to which this occurs is not consistent

with that in the paper. "Condmat is stable down to 1% sampling of negative class

instances while DBLP, Enron and Facebook are stable only down to 10% sampling

of negative class instances."33 Where Condmat, DBLP, Enron, and Facebook are

networks of node sizes 13873, 3215, 16922, and 1829 respectively. In Figure 3.1b

we see very little error even past the threshold of 1 percent which was declared in

the paper.

In Figure 3.1c, we see that for a constant ratio of negative edges, the error de-

creases as the number of nodes in the network increases. When there is a constant

number of negative edges, as the number of nodes increases, the sampling ratio is

of course decreasing. So, one would expect based off previous work that the error

would increase as the number of nodes increases. In Figure 3.1d, we do not see

that. Instead, for a constant number of negative edges sampled, the error remains

constant as the number of nodes in the network increases. This implies that the

20
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error is dependent only on the the amount of edges sampled irrespective of the

number of nodes in the network.
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Figure 3.1. Effect of Negative Sampling on AUC for Preferential At-
tachment as the Link Prediction Method. (3.1a and 3.1b) AUC vs
Sampling Ratio for DrugBankDDI and Enron Email respectively. Red
points depict each iteration. Bars denote two standard deviations.
(3.1c) Error vs. number of nodes for all networks with a fixed nega-
tive sampling ratio (10−3). (3.1d) Error vs. number of nodes for all net-
workswithafixednumberofnegative samples (673133). Thisnumber
of negatives is equivalent to the number of negatives for Enron Email
with 10−3 sampling ratio. Vertical line in 3.1a and 3.1b at 673133.
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Figure 3.2. Effect ofNegative Sampling onAUC forNode2Vec as the
Link PredictionMethod. Same figure as Figure 3.1 using Node2Vec
as the link predictionmethod.

3.2 Additional Methods

The findings so far have been shown using preferential attachment as themethod

of link prediction. These findings, however, are generalizable to other methods

as well. In an effort to display the robustness of these results, Figure 3.2 follows

the form of 3.1 and shows the same conclusions, but with Node2Vec as the link

predictionmethod. Node2Vec is considered bymany to bemore ’state of the art’
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than the topology-based link predictionmethods, so it is important to show that

sampling is effective for this method.

Figure 3.3 shows the error in AUROC vs the number of nodes in the network

for the networks shown in Table 2.1 for a set number of negative edges sampled.

This was performed for the remaining of the four link predictionmethods: Adamic

Adar and Jaccard Index.

According to previous work33, the error increases as the ratio of negative edges

sampled decreases. Because the number of negative edges sampled is set, as the

number of nodes in a network increases, the ratio decreases. Therefore, from their

conclusions, we would expect the error to increase, but instead it stays relatively

constant below 10−3 or decreases. So, the conclusions from Figure 3.1 extend to

other link predictionmethods.
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Figure 3.3. Effect of Negative Sampling on AUC for Adamic Adar
and Jaccard Similarity Coefficient as the Link PredictionMethods.
Error vs number of nodes for all networks with a fixed number of
negative samples (673133).



Results and Discussion 24

3.3 Extent of the Error

In order to show that the error incurredduring sampling is not significant, the error

due to sampling, baseline error when varying the train-test splits, and error when

performing sampling and varying the train-test splits (Combined Error) must be

compared. Pseudocode for all threemethods is in Algorithms 1, 2, and 3.

Algorithm 1 shows the steps taken to calculate the sampling error associated

with the given method on the given network with a given sampling ratio. To iso-

late the sampling error itself different negative samples were used on the same

train-test split (internal repeats) 10 times. This gave the error associated with just

sampling. However, some train-test splits can affect the network topologymuch

more thanothers, so these stepswere repeatedovermany train-test splits (external

repeats) 10 times. The average of the error for each external repeat was reported

as the true sampling error.

Algorithm 1 Sampling Error
1: for nExt External Repeats do
2: Graph_Train, Graph_Test← Train-Test_Split(Graph)
3: Trained_Model← LP_Method(Graph_Train)
4: for nInt Internal Repeats do
5: Sampled_Edges← Negative_Sample(Graph, kNegatives)
6: Predictions← Trained_Model(Graph_Test, Sampled_Edges)
7: Scores[nInt]← Evaluate(Graph_Test, Predictions)
8: end for
9: Errors[nExt]← std(Scores)
10: end for
11: Error← mean(Errors)

Algorithms 2 and 3 show the steps taken to calculate the train-test and com-

bined error respectively. They also employ a series of external and internal repeats.

The difference between these two and the sampling error algorithm is that the
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train-test split varies for every iteration, so no iteration has the same train-test

split. The difference between the train-test and combined error algorithms is the

negative sampling that takes place in the combined error algorithm, but not the

train-test error.

Algorithm 2 Train-Test Error
1: for nExt External Repeats do
2: for nInt Internal Repeats do
3: Graph_Train, Graph_Test← Train-Test_Split(Graph)
4: Trained_Model← LP_Method(Graph_Train)
5: Predictions← Trained_Model(Graph_Test)
6: Scores[nInt]← Evaluate(Graph_Test, Predictions)
7: end for
8: Errors[nExt]← std(Scores)
9: end for
10: Error← mean(Errors)

Algorithm 3 Combined Error
1: for nExt External Repeats do
2: for nInt Internal Repeats do
3: Graph_Train, Graph_Test← Train-Test_Split(Graph)
4: Trained_Model← LP_Method(Graph_Train)
5: Sampled_Edges← Negative_Sample(Graph, kNegatives)
6: Predictions← Trained_Model(Graph_Test, Sampled_Edges)
7: Scores[nInt]← Evaluate(Graph_Test, Predictions)
8: end for
9: Errors[nExt]← std(Scores)
10: end for
11: Error← mean(Errors)

Figure 3.4 contains four bar graphs that show error with sampling, error with-

out sampling, and the error with both sampling and train-test splitting performed

in tandem for two different networks. These charts show that the combined er-

ror is not much larger than the error without sampling. Combined with the above

mentioned fact that the mean AUROC is not affected by sampling, we conclude
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Figure 3.4. Sampling, Train-Test, and Combined Errors for given
networks and sampling strategy. (3.4a) DrugBank DDI with sam-
pling ratio 10−3. (3.4b) Enron Email with sampling ratio 10−3. (3.4c)
DrugBank DDI with 106 negative samples. (3.4d) Enron Email with
106 negative samples.

that sampling is an effective way to reduce computational complexity while main-

taining the effectiveness of the link prediction task.

The bar graphs above showed the error for two selected networks. The conclu-

sions brought forth are, of course, extendable to all of the networks referenced thus
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far. Asmentionedbefore, the error due to samplingwas calculated separately from

the train-test and combined errors. In order to determine exactly howmuch the er-

ror will increase as negative sampling occurs, the ratio between the combined and

train-test errors should be examined. Asmany of the networks used are quite large,

the train-test error cannot be determined due to runtime and space constraints.

Because the combined error procedure calculates the error due to sampling and

train-test splitting, the sumof the sampling error and train-test error gives a rough

estimate of the combined error (Equation 3.1).

ErrorSampling + ErrorTrain-Test ≈ ErrorCombined (3.1)

So, the difference of the combined and sampling error also gives estimate of the

train-test error (Equation 3.2).

ErrorTrain-Test ≈ ErrorCombined − ErrorSampling (3.2)

We then say the ratio of combined error to the difference of combined and sam-

pling error (Equation 3.3) provides a good estimate of the increase in error due to

sampling.

δError ≈
ErrorCombined

ErrorCombined − ErrorSampling
(3.3)
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3.4 Finding Suggested Number of Sampling Edges

In order to understand howmuch sampling can be done without a large increase

in error, a mathematical estimation of needed negative samples is useful.

Figure 3.5 shows a series of figures used to determine theminimumnumber of

negative edges needed to ensure the error stays below a certain threshold. As has

been stated,without performing negative sampling on some of the large networks,

it is infeasible to perform link prediction.

Because some of the networks are so large, it is not realistic to performbaseline

train-test iterations. The difference between the combined and sampled error pro-

vides a rough estimate of the baseline train-test error. In Figure 3.5a, the baseline

train-test error is graphed vs the estimated train-test error for small networks. The

points lie along the line y = x, meaning that the estimate given in Equation 3.2

is an accurate substitution for the true baseline error for this number of negative

edges sampled. Therefore, this estimate can be used on larger networks as well. In

Figure 3.5b, the estimated train-test error and sampling error are graphed for all

networks for a fixed number of negatives. The estimated train-test error decreases

while the sampling error increases. So, for the In Figure 3.5c as the number of neg-

ative edges sampled increases, the sampling error predictably decreases linearly

(in log-log scale).
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Figure 3.5. Estimating the Absolute and Relative Error Associated
with Negative Sampling (3.5a) Baseline Train-Test Error vs. the Es-
timated Train-Test Error for a subset of networks (with node sizes
less than or equal to that of Enron Email, see Table 2.1 for details).
The red line indicates y = x (estimated train/test error equal to the
measured one). (3.5b) depicts the estimated baseline error and the
sampling error with their corresponding best fit lines (indicated by
blue or red colors) for all networks. 107 negative edges were used for
link prediction. (3.5c) shows the sampling error and the correspond-
ing best fit line with respect to the number of edges sampled for all
networks. (3.5d) shows the relative error vs.. the number of nodes for
all networks (for 107 sampled negative edges). The black horizontal
line indicates the 10% error level.
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3.4.1 Bounded Absolute Sampling Error

The best-fit line for sampling error seen in 3.5b is of the form

log10(errorabs(n)) = β + αlog10(n) (3.4)

Where n is the number of nodes and α and β are parameters of the fit line. Given

that the number of negatives was fixed at 107, we can say that:

errorabs(n, t : 107) = βabsn
αabs (3.5)

where t is the number of negatives sampled, βabs = 10β and αabs = α. From Figure

3.5c, we can see that as the number of edges sampled increases by a factor of 100,

the sampling error approximately decreases by a factor of 10. So, we have:

log10(errorabs(t)) ∝
log10(t)

2
(3.6)

In other terms,

errorabs(t) ∝
1√
t

(3.7)

The general case for the absolute error is therefore,

errorabs(n, t) = βabsn
αabs

√
t0√
t

(3.8)

where t0 is equal to 107 and satisfies Equation 3.4.

Inorder todetermine thenumberofnegativeedgesneededtosample toachieve

the desired error, we define the desired error as γ. Thus, solving γ = errorabs for

the desired t, we get the following equation:
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tdesired(n, γ) =

(
βabsn

αabs

√
t0
γ

)2

(3.9)

Where γ is the desired absolute error. This equation selects t that would result

the absolute sampling error to be equal to γ on average. Substituting in our em-

pirically determined values for αabs ≈ 0.066, βabs ≈ 4.42 × 10−5 and t0 = 107, we

get:

tdesired(n, γ) =

(
4.42× 10−5n0.06610

3.5

γ

)2

=

(
0.14n0.066

γ

)2

≈ 0.02n0.13

γ2

(3.10)

In order to ensure that all error is below γ, we introduce a buffer, multiplying

the number of negatives by a factor of 3 (chosen based off themean absolute error

from fitted line).

tdesired(n, γ) =
0.06n0.13

γ2
(3.11)

Thus, for the results in this paper, the suggested values for negative edges were

given according to the above equation (with a buffer of 3x) to ensure the values are

truly within the range desired. Figure 3.6 shows the suggested number of sampled

edges vs. the number of nodes in the network for γ values of 10−4, 10−3, and 10−2.
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Figure 3.6. Suggested Negative Edges Given Expected Absolute Er-
ror.Number of Negative Edges to be Sampled vs Number of Nodes
in the Network. Green line signifies themaximum number of edges
in a network given the number of nodes (Equation 1.1). Other lines
signify the suggested number of negative edges to sample in order to
limit the absolute error to the specified value.

Figure 3.7 shows the absolute sampling error vs. number of nodes for the three

different values of gamma. For networks where the maximum number of edges

surpasses the suggested number of edges, themaximum number of edges is used.

For each value, the corresponding values are close to, yet below the line indicating

themaximum error allowed.
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Figure 3.7. Absolute Error using Suggested Number of Negative
Edges. Absolute error vs number of nodes for Preferential Attach-
ment as the link prediction method for γ values of 10−4, 10−3, and
10−2.

3.4.2 Bounded Relative Error

The best-fit line for sampling error seen in 3.5d is also of the form

log10(errorrel(n)) = βrel + αrellog10(n) (3.12)

Using a similar procedure to find the optimal number of negative edges to sample,

we arrive at an equation of the same form as Equation 3.9 (Equation 3.13).

tdesired(n, δ) =

(
βreln

αrel
103.5

δ

)2

(3.13)

The number of negatives to be sampled vs the number of nodes in the network

is seen in Figure 3.8.
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Figure 3.8. Suggested Negative Edges Given Expected Relative Er-
ror. Number of edges to be sampled vs number of nodes. Red line
shows themaximumnumber of negative edges in the network given
the number of nodes. Blue line shows the suggested number of neg-
ative edges to sample given the number of nodes.

Using this model to perform link prediction, and setting δ at 10−1 we arrive

at Figure 3.9a. Clearly, the relative error has not been bounded at 10−1 as many

points are above the threshold line. The points that are above the threshold line,

in general, have high average degree. So, plotting relative error vs average degree,

we see a clear upward trend.

We can then represent the relative error as a function of average degree. We say

errorrel(d, n : n0, t : t0) = β0
reld (3.14)

where d is the average degree of the network. So, the relative error is proportional

to the average degree.

errorrel ∝ d (3.15)
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Figure 3.9. Relation of Error to AverageDegree. (3.9a) Relative error
vs. nodes. (3.9b) Relative error vs. average degree. Y values are the
same.

The original relative error equation then needs an adjustment factor relative to

average degree (Equation 3.16 and Figure 3.10):

factoradj(d) = β′
reld =

errorrel(d, n : n0, t : t0)

errorrel(n : n0, t : t0)
(3.16)
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Figure 3.10. Adjustment Factor given Average Degree.
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Thus, substituting gives the following β′
rel:

β′
rel =

β0
rel

βrel

(3.17)

In all, we say
errorrel(d, n, t) = errorrel(n, t) ∗ factoradj(d)

=

(
βreln

αrel

√
t0√
t

)(
β0
rel

βrel
d

)
=

√
t0√
t
β0
reln

αreld

(3.18)

Next, we combined the constant factors into a single variable β0′

rel:

β0′

rel =
√
t0β

0
rel

errorrel(d, n, t) =
β0′

reln
αreld√
t

(3.19)

Solving the above equation for t that gives a relative error equal to δ, we get the

following:

desiredtrel(n, d, δ) =

(
β0′

reln
αreld

δ

)2

(3.20)

Substituting in our empirically determined values for αrel ≈ 0.667 and β0′

rel ≈

0.027, we get:

desiredtrel(n, d, δ) =

(
0.027n0.667d

δ

)2

(3.21)

Similarly to absolute error, in order to ensure the error is below δ, we introduce

a buffer factor andmultiply the desired trel by 3 (chosen based on themean abso-

lute error of the points to the fitted line). We finally arrive at Equation 3.22 which



Results and Discussion 37

specifiedour suggestedamountofnegative edges trel that bounds the relative error

by δ:

desiredtrel(n, d, δ) = 3

(
0.027n0.667d

δ

)2

(3.22)

Using this new equation for the suggested number of edges setting δ to 10−1,

we get Figure 3.11. For networks where themaximum number of edges surpasses

the suggested number of edges, the maximum number of edges is used. We can

see that the error is bounded by the 10% error threshold provided.
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Figure 3.11. Relative Error using Suggested Number of Negative
Edges.Relative error vs number of nodes for Preferential Attachment
as the link predictionmethod for δ value of 10−1.

Table 3.1 shows the suggested amount of edges needed to stay below the abso-

lute or relative error bound. Clearly, sampling can be performed on large networks

to a great extent without sacrificing performance of the model as the number of

edges required are generally below themaximum number of edges.
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Network Name Max Edges Absolute Error (≤ 10−4) Relative Error (≤ 10−1)
DrugBank DDI 1.10 · 106 1.10 · 106 1.10 · 106
Facebook 2.14 · 107 1.88 · 107 (≈1.1x) 9.51 · 104 (≈220x)
LastFM Asia 2.90 · 107 1.92 · 107 (≈1.5x) 4.37 · 105 (≈67x)
PhosphoSite Plus 2019 3.05 · 107 1.92 · 107 (≈1.6x) 6.05 · 104 (≈500x)
PhosphoSite Plus 2021 4.37 · 107 1.97 · 107 (≈2.2x) 7.92 · 104 (≈550x)
Biogrid Drosophila 2020 4.54 · 107 1.98 · 107 (≈2.3x) 1.91 · 106 (≈24x)
Biogrid Human 2010 4.72 · 107 1.98 · 107 (≈2.4x) 5.03 · 105 (≈94x)
Wormnet 1.33 · 108 2.12 · 107 (≈6.3x) 1.33 · 108
HIPPIE 1.89 · 108 2.17 · 107 (≈8.7x) 1.81 · 108
Biogrid Human 2020 3.32 · 108 2.25 · 107 (≈15x) 5.40 · 107 (≈6.1x)
Enron Email 6.73 · 108 2.36 · 107 (≈28x) 6.69 · 106 (≈100x)
Deezer-Romania 8.72 · 108 2.40 · 107 (≈36x) 2.88 · 106 (≈300x)
Deezer-Hungary 1.13 · 109 2.44 · 107 (≈46x) 8.28 · 106 (≈140x)
Deezer-Croatia 1.49 · 109 2.49 · 107 (≈60x) 3.77 · 107 (≈39x)
Twitch Gamers 1.41 · 1010 2.89 · 107 (≈490x) 3.32 · 109 (≈4.3x)
PTMcode 1.83 · 1010 2.94 · 107 (≈620x) 4.60 · 107 (≈400x)
EU Email 3.52 · 1010 3.07 · 107 (≈1100x) 7.04 · 106 (≈5000x)
Amazon 5.61 · 1010 3.17 · 107 (≈1800x) 3.89 · 107 (≈1400x)

Table 3.1. Suggested Negative Edges. Maximum edges in the net-
work, suggested number of negative edges for γ = 10−4, and sug-
gested number of negative edges for δ = 10−1. The numbers inside
the parenthesis indicate the reduction rate in the computational re-
sources required (i.e. the max number of edges divided by the sug-
gested number of edges for bounded absolute or relative errors).

3.4.3 Investigating the Suggested Values on Additional Link Prediction Meth-

ods

Figure 3.12 shows the absolute and relative errors associated with using Adamic

Adar as the linkpredictionmethod. Compared to the results for preferential attach-

ment, the error values are significantly lower than their expected γ and δ values.

This corroborateswhat is seen in Figure 3.3a. The error there is lower than the error

seen in Figure 3.1d. Because of this, we say that the error estimates are accurate
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only with respect to the specific method being used. So, for each method of link

prediction, different α and β values must be used.
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Figure 3.12. Adamic Adar Absolute and Relative Error Predictions
(3.12a) Absolute error vs numberof nodes forAdamicAdar as the link
prediction method for γ values of 10−4, 10−3, and 10−2. (3.12b) Rela-
tive error vs number of nodes for Adamic Adar as the link prediction
method for δ value of 10−1



4 Limitations and Future Work

4.1 Mathematical Proof

This set of experiments shows that negative sampling during link prediction can

be performed without greatly increasing the error associated with the prediction

method. This empirical demonstration is sufficient for this small set of networks,

methods, andmetric, but it would be very useful tomathematically prove that the

error is bound by the number of negatives sampled and not the ratio.

4.2 Refining the Error Prediction Equations

The error prediction proved to be quite accurate in bounding the relative and abso-

lute errors. The derivation of these equationswas done using the results of the link

prediction experiments run on the networks in Table 2.1. Because of this, they are

relatively crude and not proven to work in the general case. So, it is very important

that a refined equation is derived. It was also shown that the error prediction was

only specific to the link prediction method which the regression was performed

on. So, it would be useful to determine how the prediction equations differ from

method tomethod. Understanding this may give insight into a general equation

that canbeused regardless of themethodbeingused,potentiallyusing themethod

as a parameter.

40
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4.3 Additional Methods

It has been proven that negative sampling during link prediction does not drasti-

cally increase the error, but does decrease the run-time and space required for five

methods of link prediction. While these results are promising, there are still many

areas of link prediction that could be visited. There aremanymore topology-based

methodswhose results drastically dependon the structure of the network. Asmen-

tionedbefore, in this research,we only usedneighbor-based topologymethods. As

there are also path-based and randomwalk-based, we would like to explore how

error is affected by different types of predictionmethods. In addition to looking at

topology-basedmethods,Node similaritymethods should be visited aswell. Node

similarity methods construct feature sets based off the likeness of each node’s at-

tributes. Examples of similarity methods are Euclidean distance which uses the

shortest path lengthbetween twonodes,Pearson coefficientwhichuses the covari-

ance of the common neighbors between two nodes, and Cosine similarity which

computes the cosine between two feature vectors to predict edges. There are also

manymore embedding, probabilistic, and Neural Network based link prediction

methods that should be visited.

4.4 Evaluation Metrics

Asmentioned before, AUROCwas the only metric used during these experiments.

This was chosen because negative sampling results in a bias in somemetrics that

cannotbe easily quantifiedandaccounted forwhenmaking comparisonsbetween

sampling and train-test error.
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In order to more comprehensibly understand how negative sampling affects

link prediction, it will be important to determine how to unbias thesemetrics.



5 Conclusions

From this work, we conclude that negative sampling can be performed in or-

der to reduce the runtime and space needed to perform link prediction without

sacrificing the performance of the link predictionmethod. In essence, we say the

combinederror associatedwith sampling and train-test splits is similar to the error

associatedwith just train-test splits. These results were performed on 18 networks

and generated using Preferential Attachment, Adamic Adar, Jaccard Similarity Co-

efficient, and Node2Vec as link prediction methods. These results apply to AUC

as ametric, but we expect them to extend to other metrics that are also unbiased

after negative sampling is performed as well.

We also proposed amodel that suggests the number of negative edges needed

to be sampled in order to limit the absolute or relative error. This model applies to

preferential attachment, but we expect that a similar model could be constructed

for other link predictionmethods.
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