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Abstract

Multimodal Image Classifiers for Prognosis and Treatment Response

Prediction for Lung Pathologies

by

Pranjal Vaidya

Non-small cell lung cancer tumors follow an orderly progression from adenocarcinoma

in situ (AIS) to minimally invasive carcinoma (MIA) and invasive adenocarcinoma (INV).

Currently, there is no definite biomarker to access the level of invasion and detect invasive

disease in these early lepidic lesions using radiographic scans, which would ideally help in

surgery planning for these patients. Within the early-stage NSCLC cohort, while all the

patients will receive the surgery, a significant portion of patients (up to 50%) will develop

recurrence. Although most of these patients are eligible to receive adjuvant chemotherapy

(chemo), not all patients will receive the added benefits. In the more advanced NSCLC

setting, immunotherapy (IO) has shown promising survival improvement, but only a fraction

(20%) of patients will respond to IO, and a fraction of patients (8%) would, in fact, receive

adverse effects of it, and cancer would spread rapidly (hyperprogression). Most of the current

AI methods developed in this field are based on a single modality. However, information

across different modalities and scales may hold complementary information, and integrating
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them together may enhance the performance of AI models. In addition, most of the developed

AI models lack interpretability, an essential element for successfully transitioning these AI

methods into clinical practices.

In this dissertation, we introduced new interpretable AI biomarkers that use textural

patterns on radiographic scans, known as Radiomics, and combine these biomarkers across

multiple modalities and scales for NSCLC and COVID-19 patients. The Radiomic features

were analyzed from inside the tumor region as well as from the area immediately surrounding

the nodule. Furthermore, we integrated the clinical features into Radiomics Model by using

novel techniques. We also created a human-machine integrated model using Radiologists’

scores combined with Radiomic Analysis. Lastly, we used pathology data to create radiology-

pathology fusion models and pathology information, along with the Radiogenomic analysis

to understand the biological interpretability of the Radiomic Features.

In this dissertation, we have looked at 4 specific use cases (1) predicting the level of

invasion in low-risk nodules, (2) predicting the risk of post-surgical recurrence, and subse-

quently added benefit of adjuvant chemo for early-stage patients, and (3) predicting patients’

response to IO. In addition, we developed tools for predicting the COVID-19 patients at se-

vere risk who would end up using mechanical ventilation. The development and validation of

these approaches were performed on data from about 2500 patients across 9 different sites.
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Chapter 1

Introduction and Previous Work

1.1 Overview

With the advances in technology, it has become easier to gather multi-modal information

for each patient, including both multi-scale imaging and non-imaging modalities. One of

the major challenges to overcome during the integration of heterogeneous data types (which

is difficult to directly combine) lies in the fact that there exist significant differences in

scale and dimensionality between modalities. Artificial intelligence (AI) approaches are

increasingly being used for diagnosis, prognosis, and treatment decisions of various diseases.

While most of the current AI methods are developed in a single modality of data, fusion

approaches integrating data from multiple sources, modalities, and scales can provide further

complementary information and help in enhancing the performance of these approaches.

Radiomics refers to looking at the textural patterns on Radiographic Scans, which look

at pixel-level patterns that are not very evident to the human eye. Radiomics has shown di-

agnostic, prognostic, and predictive applications in various lung cancer space problems. The

tumor region and the region surrounding the nodule have shown promising results. Although

there has been significant progress within the overall Radiomics Space, the interpretability of

these radiomic features hasn’t been explored extensively, which is an essential parameter for
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successfully transitioning these features into routine clinical practices. In addition, there has

been comparatively limited work on identifying the integration of these Radiomic Features

with clinical parameters.

With the digitization of tissue scans, it has become easier to look at computerized pat-

terns of tissue scans. These patterns show cell-level interactions, and pathomics refers to

looking at computerized patterns of these tissue scans. Pathomics has shown diagnostic,

prognostic, and predictive performance in lung cancer. Even though these imaging modali-

ties (radiography and histology) have individually shown promising results, the combination

approaches for these techniques have been limited. The previous work by Feng. Et. Al.

and Yang et al. show that different modalities of images at different scales may provide

complementary information within the rectal cancer space. But these approaches haven’t

been explored within the lung cancer space even though almost all lung cancer patients

have access to these multi-imaging modality datasets. These multi-imaging modalities also

provide a unique opportunity to correlate these images with each other for interpretable AI

analysis. In addition, a fusion of clinical variables into these AI models has further proven to

improve the model accuracies since these are the routine clinical variables used by clinicians

on a regular basis to make decisions regarding diseases. Unfortunately, there’s a lack of val-

idated imaging-based biomarkers taking advantage of multimodality information and at the

same time providing interpretable AI. In this dissertation, we have developed imaging-based

biomarkers for various lung cancer domain problems that take multi-modal information and

also provide the biological interpretability of the AI models.

1.2 Background

1.2.1 Non-Small Cell Lung Cancer Space

Lung cancer is the leading cause of cancer mortality in the United States, accounting for

more than a quarter of all cancer deaths for both men and women1. Non-small cell lung
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cancer accounts for 85% of total lung cancer cases. Depending on the stages of the tumor,

non-small cell lung cancer (NSCLC), patients will have different treatment regimens. These

tumors follow an orderly progression from the adenocarcinoma in situ (AIS) to minimally

invasive (MIA) and finally invasive adenocarcinoma (INV). The timing and nature of sur-

gical intervention for semisolid abnormalities are dependent upon distinguishing between

adenocarcinoma-in-situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive ade-

nocarcinoma (INV). Currently, there is no definite biomarker to access the level of invasion

and detect invasive disease in these early lepidic lesions using radiographic scans, which

will potentially help in their surgery planning. When the tumor progresses to a relatively

early stage, they form a subset of NSCLC known as early-stage (stage 1A to 2B cases).

While all early-stage NSCLC will receive the surgery, a significant portion of patients (up to

50%) will develop recurrence. Although most of these patients are eligible to receive adju-

vant chemotherapy (chemo), not all patients will receive its added benefit of it. Separately,

in the more advanced NSCLC setting, immunotherapy (IO) has shown promising survival

improvement, but only a fraction (20%) of patients will respond to IO, and a fraction of

patients (8%) would in fact receive an adverse effect of it, and cancer would spread rapidly

(hyperprogression). There is a paucity of validated prognostic, predictive biomarkers, and

companion diagnostic tools to predict the (1) level of invasion in low-risk nodules, (2) risk

of post-surgical recurrence, and subsequently added benefit of adjuvant chemo, and (3) re-

sponse to IO.

1.2.2 The Coronavirus Disease of 2019

The novel SARS-Cov2 virus or Coronavirus 19 (COVID-19) pandemic has led to widespread

deaths due to respiratory complications. While the confirmatory test currently implemented

is RT-PCR-based assays, early evidence suggests that the sensitivity of the test might be

wanting, especially for early detection of the disease when the patient is mainly asymp-

tomatic. While the FDA has approved both molecular and serological tests to diagnose the
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virus, several challenges still exist in using these tests as the gold standard for diagnosing the

virus. With multiple tests being approved by the FDA, there is a relative lack of standard-

ization amongst the tests. Moreover, with point-of-care testing, the validity and accuracy of

the tests are also dependent on extraneous factors such as specimen handling, how the swab

was taken, and the expertise of the test administrator, among others.

While there is evidence that COVID-19 is a multisystem disorder, the disease has pri-

marily been shown to affect the lungs and cause respiratory symptoms leading to Acute

Respiratory distress syndrome (ARDS) in the severe phenotype. Chest radiographs and

chest CT scans which allow for efficient visualization of the lungs have been shown to be

an effective screening tool for suspected COVID-19 patients even those in the early asymp-

tomatic stage. Previous data have shown the presence of lung changes in CT scans in some

COVID-19 + patients who initially tested negative for the virus on RT-PCR. CT findings

in patients with mild COVID-19 have reportedly resembled ground glass-like opacities in

bilateral lungs usually distributed peripherally, while a more consolidative pattern akin to

community-acquired pneumonia (CAP) was seen in critical patients in the ICU. While these

visual findings might suggest the presence of COVID-19, the relative lack of specificity of

these findings means that it is currently difficult to differentiate it from other pneumonia

from imaging alone (12). This has led to guidelines not recommending routine use of CT

scans as a screening tool but recommending its application in COVID-19 positive patients

for treatment assessment and monitoring.

1.3 Novel Contribution

The work presented here is based on radiomics implementation within various applications.

We have used radiomic features from various regions of interest to go beyond the traditional

radiomic analysis. We have used different multi-scale datasets and integration techniques to

create combined models. We have used survival analysis and various supervised and unsu-
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pervised techniques based on the application that we are targeting to understand the desired

population more accurately. And finally, we have attempted to understand the biological

meaning of the CT-based features by correlating them with pathology and radiogenomic

data with it.

1.3.1 Radiomics AI approaches: challenges and novel contribution

The majority of AI tools within the lung pathologies domain have been focused on using

deep learning-based techniques for disease diagnosis, prognosis, and predicting treatment re-

sponses. But these techniques work on the black-box-based approaches where the underlying

interpretability of the model remains limited. Radiomics is known as one of the interpretable

AI approaches. Radiomic texture features are defined as computing higher-order statistical

patterns of image voxels within a local region or measuring response to a filter designed

to capture patterns of interest. Generally, there are two types of features extracted in ra-

diomics: ”semantic” and ”agnostic” features. Semantic features are used to describe regions

of interest, while agnostic features are used to capture lesion heterogeneity through quan-

titative descriptors. For example, heterogeneity that is a symptom of malignant nodules

reflects the areas of high cell density, necrosis, and myxoid change and can be captured by

radiomic texture features. Various Radiomic-Based textural features have shown diagnostic,

prognostic, and predictive ability within the non-small cell lung cancer space. These include

features from Gabor feature family, Laws, Laplace, Haralick and CoLlAGe Feature families.

Most of the previous work within the radiomic within NSCLC space has been focused

on looking at the tumoral region on the CT scans. Recently, there has been an interest in

looking beyond the tumor region and at the region immediately surrounding the nodule.

In this work, Radiomics was analyzed from the tumor region and from the region outside

the nodule in a novel annular peritumoral ring-shaped fashion. Each ring of 3mm distance,

leading up to 15 mm radially outside the nodule, was analyzed.

One of the major challenges while analyzing radiomics on CT scans is that these radiomics
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hand-crafted features get affected by the variations within the raw parameters of CT scans.

Acquisition parameters not only vary across different sites but also within the same site,

as protocol standardization is clinically challenging. Differences in slice thickness and re-

construction algorithm can affect the produced image quality. Additionally, the amount of

radiation dose has an effect on CT appearance. Noise within the image increases with the

reduction of dose, which further affects the performance of disease detection. Furthermore,

parameters such as automated tube current and operator present noise index can affect the

final appearance of CT images. While developing the models, we made sure to standardize

these parameters as much as possible to produce reproductive results.

1.3.2 Multi Scale Integration: challenges and novel contribution

In this dissertation, another major contribution revolves around the multi-scale integra-

tion approaches. We have integrated information from radiographic scans, histopathological

scans, and clinical information to improve the model performances and subsequently make

it easier to transition into routine clinical practices.

In this dissertation, we have explored multiple data integration methods. We have de-

veloped a novel nomogram approach that visually shows the relationship between various

features (imaging and non-imaging) integrated within the model. We have analyzed the

datasets within supervised and non-supervised approaches to see the effects of various pa-

rameters on each other. A few unsupervised techniques used across multiple projects include

– K-means clustering, hierarchical clustering, and consensus clustering. These parameters

were also correlated with each other to find the association between them.

The major challenge in multi-scale data integration lies in the difference between scales

and dimensionality between these modalities. While developing and implementing the multi-

modal fusion models, we require access to matched pathology, radiology, and clinical datasets.

Sometimes when the patients have multiple nodules, correlating this information with each

other gets difficult. There are multiple ways in which this multi-modal information could be
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fused together. Some examples of fusion strategies include the fusion of classifier probabili-

ties, the fusion of features extracted from multiple modalities, etc. Choosing an appropriate

fusion strategy that would be generalizable across multiple datasets is an essential step in

this analysis. Another challenge lies in ensuring that we are selecting complementary infor-

mation for the analysis and removing the redundant information without losing the critical

information from these datasets. Within the pathomic analysis, the quality of histopathology

scans affects the feature analysis. Most existing slide scanners have a maximum capability to

scan at ×40. Higher resolution images (¿×20) can be scaled down to be used by an algorithm

trained at a resolution of ×20, but the use of an AI approach developed at ×40 when the

maximum scanning resolution available is ×20 would likely result in a loss of data fidelity. In

addition, the creation of accurate, manually annotated reference datasets by expert pathol-

ogists is an essential step in order to standardizing the evaluation of the performance of AI

algorithms. For clinical features, the major challenge lies in analyzing the missing values

and categorical variables. Multiple data imputation methods could be implemented for an-

alyzing the missing values, and choosing an appropriate method becomes a challenge. Prior

to clinical adoption, AI-based and ML-based tools need to be sufficiently validated using

multi-institutional data in order to ensure the generalizability of the approaches. One of the

critical reasons for attempting to validate AI approaches using separate test sets indepen-

dently is to ensure that these approaches are resilient to pre-analytical sources of variation.

In our analysis, all models were independently validated on external validation sets to ensure

the generalizability of the models.

1.3.3 Survival Analysis: challenges and novel contribution

We have extensively explored survival analysis techniques in this dissertation. Some of the

clinical problems that we were targeting in this dissertation were handled using continuous

survival data rather than binary analysis. The feature selection and model construction were

performed using the disease-free survival information and the censoring information to better
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represent the patient population. Specifically, within the early-stage NSCLC cohort, we

constructed a model using disease-free survival and were able to identify the population that

specifically would benefit from adjuvant chemotherapy. To the best of our knowledge, one

of the first attempts was to create a predictive model for early-stage cases. We implemented

hazard ratios, Kaplan-Meier curves, and cox-proportional hazard models in the analysis.

One of the major challenges in the survival analysis lies in getting the correct survival

information and understanding the censored population. In addition, selecting an appropri-

ate threshold to differentiate the high-risk population from the low-risk population remains

challenging. There are several methods through which you can select an appropriate thresh-

old, but selecting the method that would be reproducible and generalizable is important.

We have developed a technique to select appropriate thresholds based on the hazard ratios

in this work.

1.4 Major Goals of dissertation

This dissertation includes several inter-and intra- modal fusion strategies within the lung

space. Within the non-small cell lung cancer (NSCLC) space, we looked at minimally in-

vasive adenocarcinoma, early-stage NSCLC cases as well as late-stage NSCLC cases. In

addition to cancer, we also looked at the Coronavirus Disease of 2019 (COVID-19) prog-

nosis. The developed experiments demonstrate the utility of different fusion strategies as

well as to creates interpretable AI models: a) combining radiomics with the radiologists’

scores for predicting minimally invasive adenocarcinoma from invasive adenocarcinoma, b)

Creating a CT-based signature for predicting response to adjuvant-chemotherapy for early-

stage NSLCLC and understanding biological underpinning of these radiomic features using

histopathology scans, c) Using Radiomics on CT scans for predicting hyperperprogressive

disease for late-stage NSCLC, d) Combining imaging features and non-imaging features for

predicting COVID-19 disease prognosis e) Combining Radiomic and Pathomic Features for
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predicting recurrence in Early-Stage NSCLC and predicting immunotherapy response in late-

stage NSCLC

1.4.1 Combining radiomics with the radiologists’ scores for pre-

dicting minimally invasive adenocarcinoma from invasive ade-

nocarcinoma

There have been previous attempts at identifying the level of invasion using radiomic features,

but most of them focus on radiomic textural analysis solely within the tumor (20, 21). The

peritumoral microenvironment has emerged as a promising candidate location for identifying

the level of invasion, although it has been relatively unexplored (22). In addition to using

the novel Radiomic Features, to the best of our knowledge, no previous work has created

a human-machine integrated AI-based model for predicting the level of invasion. In this

experiment, we took input from two radiologists in a blinded fashion and integrated their

scores into our radiomics-based model. Additionally, we also divided patients into different

subgroups based on the diameter of the nodule and evaluated classifier performance within

nodules with different sizes.

1.4.2 Creating a CT-based signature for predicting response to

adjuvant-chemotherapy for early-stage NSLCLC and under-

standing the biological underpinning of these radiomic fea-

tures using histopathology scans

Within the Early-Stage domain, the current developed AI models have been focused on

predicting recurrence for these patients. To the best of our knowledge, none of the models

have specifically looked at predicting the added benefit of adjuvant chemotherapy for these

patients. Additionally, very few radiomic-based models have looked at the interpretability
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of the radiomic features. In this study, we looked at the unique aspect of not only pre-

dicting recurrent but also finding the subset of patients directly benefitting from adjuvant

chemotherapy. We also used histopathology features and radiogenomic analysis to under-

stand the biological interpretability of these top radiomic features observed on the CT scans.

1.4.3 Using Radiomics on CT scans for predicting hyperperpro-

gressive disease for late-stage NSCLC

Radiomic approaches have shown utility for predicting response to immune checkpoint in-

hibitors in advanced-stage NSCLC. To the best of our knowledge, there hasn’t been enough

work within this newly defined category of immune checkpoint inhibitors, known as hy-

perprogressors, which has a paradoxical acceleration of tumor growth after initiation of

immunotherapy. To develop an AI model for predicting these Hyperprogressor patients, we

extracted features from inside the nodule and outside the tumor region and also looked at

quantitative vessel tortuosity features (QVT) on CT scans representing the curvedness of

blood vessels feeding the tumor. The analysis was performed both within supervised and

unsupervised approaches, and we looked at survival information to analyze and compare the

models.

1.4.4 Combining Radiomic and Pathomic Features for predict-

ing recurrence in Early-Stage NSCLC and predicting im-

munotherapy response in late-stage NSCLC

Previous studies show the utility of whole-slide tissue-based features for diagnostic, prognos-

tic, and predictive applications within the non-small cell lung cancer domain applications.

Especially, within the Early-Stage domain, the spatial architecture of tumor-infiltrating lym-

phocytes (SPATIL) features have shown superior performance for predicting recurrence, and

PhenoTIL features with late-stage NSCLC have shown Good performance. Similarly, on

24



the radiography front, as explained above, the radiomic features have shown the ability of

lung CTs to predict recurrence in Early-Stage NSCLC and predicting response in late-stage

NSCLC. However, to the best of our knowledge, no previous studies have combined biomark-

ers from different scales such as radiology (lung CT) and pathology (HE slides) for early-stage

NSCLC recurrence prediction and response to immunotherapy in late-stage NSCLC. There-

fore, as part of this objective, we combine biomarkers from both CT and digitized HE slides,

and train in ML classifiers to predict recurrence in Early-stage cases and predict response to

immunotherapy in late-stage NSCLC.

1.4.5 Combining imaging features and non-imaging features for

predicting COVID-19 disease prognosis

Most of the AI analysis within the COVID-19 space has focused on chest x-rays (CXRs) (1,

2), though more recently, more and more works on AI for CT scans have also been published.

However, many of the proposed models are poorly reported and are at high risk of bias, and at

present, it is not recommended to use any of the reported prediction models for use in clinical

practice. To the best of our knowledge, none of the Radiomics-based COVID-19 studies have

focused analysis on 1k patients, integrated with clinical parameters, and validated on an

independent cohort. Therefore, in this work, we present a novel AI approach combining

Radiomic Features with clinical parameters, in the fashion of nomogram for predicting RT-

PCR COVID positive patients would have a severe disease phenotype and end up needing

invasive mechanical ventilation.
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Chapter 2

Combining Radiomics with the

Radiologists’ Scores for Predicting

Minimally Invasive Adenocarcinoma

from Invasive Adenocarcinoma

2.1 Overview

Lung cancer is the leading cause of cancer related deaths in the world. Adenocarcinoma

is the most common lung cancer histologic type.1 With the increase in diagnostic imaging

methods such as low-dose chest CT screening, there has been an increase in the detection

of lung cancers at earlier stages often presenting as small solid/semisolid nodules or ground-

glass opacities (GGOs)2 [3]. The new IASLC guidelines [5 and the AJCC-defined 8th edition

staging guidelines,3 along with the WHO classification of adenocarcinomas,4 have divided

the adenocarcinoma into three broad categories: preinvasive adenocarcinoma [including ade-

nocarcinoma in situ (AIS)], minimally invasive adenocarcinomas (MIA) and invasive adeno-

carcinoma (INV).5 Histopathologically, lepidic growth (defined as growth along the alveolar
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walls) is a hallmark of non-invasive lesions.5 An invasive component in the new classifica-

tion system is defined as either any cellular histologic subtype other than lepidic or invasion

of malignant cells into myofibroblastic stroma.6 Lepidic cancers are observed to follow an

orderly progression from the AIS to MIA before becoming INV.7

Outcomes of adenocarcinomas following surgical resection are dependent on the initial

stage. Resected stage IA non-small cell lung cancer (NSCLC) has a five-year overall survival

rate of about 75%.8 In comparison, the five-year disease-specific survival rate for resected

MIA is nearly 100%.9 The surgical approach and extent of lung resection for these lung

nodules can be dictated by the adenocarcinoma histologic subtype.10 Sublobar resection can

produce equivalent results to lobectomy in patients with non- or minimally invasive adeno-

carcinomas, with the benefit of preservation of lung parenchyma and potential eligibility for

repeat resection in the case of subsequent primary tumor.

At present, there are no definite radiographic biomarkers to identify the extent of inva-

sion prior to surgical resection. Although the invasive portion of the cancer is typically solid

and non-invasive (lepidic portion) is ground glass in appearance on the CT scan, there is

substantial overlap in the imaging findings between different subcategories. Furthermore,

traditional CT scan evaluation can be subjective, and interpretations tend to vary widely

depending on the experience of the reading radiologist.11 This coupled with other variables

such as scan parameters, slice thickness, etc. limits reliable differentiation on routine radio-

logic assessment. Fine needle aspiration and imaging is inaccurate in determining the degree

of invasion.12 Hence, there is a critical need to create an accurate model to non-invasively

assess the level of invasion on imaging in these early-stage adenocarcinomas prior to surgical

resection.

Radiomic textural features represent high-throughput quantitative imaging data ex-

tracted from radiographic scans to investigate subtle patterns within a region of interest

(ROI).13 These textural patterns extracted from inside and outside the nodule have been

shown to have diagnostic, prognostic, and predictive utility in the lung cancer domain.14
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These features are known to capture the underlying tumor biology and morphology of the

tissue15.16 There have been previous attempts at identifying the level of invasion using

radiomic features, but most of them focus on radiomic textural analysis solely within the tu-

mor17.18 The peritumoral microenvironment has emerged as a promising candidate location

for identifying the level of invasion, although it has been relatively unexplored [22].

In this study, we constructed a non-invasive radiographic biomarker based on baseline

chest CT scan-guided radiomics to distinguish MIA from INV for stage I NSCLC patients

with tumor diameter less than 3 cm. We evaluated these radiomics features via supervised

and unsupervised approaches to identify specific patterns associated with INV and MIA

nodules. We also divided patients into different subgroups based on the diameter of the

nodule and evaluated classifier performance within nodules with different sizes. Finally, we

compared our model with the performance of two radiologists and integrated the radiologists’

score with the corresponding machine classifier performance to assess combined human and

machine classification performance.

2.2 Methods

2.2.1 Study Population

We performed a retrospective, multi-cohort study of patients with resected MIA and stage

1A INV cases. A total of 268 patients from four different institutions were included in the

study, all of whom had baseline (pre-treatment) CT scans. Based on our inclusion criteria,

we selected a cohort of patients who had tumor size less than or equal to 3 cm with a special

focus on a subset of 1 to 2 cm nodules.

The patients were randomly divided into training (DTrain=40%) and validation (DTest=60%)

cohorts. The DTrain was selected to keep the same number of invasive and non-invasive le-

sions for training the model.
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2.2.2 Procedure

CT Segmentation and Radiomic Textural Feature Extraction

The index pulmonary lesions on these baseline CT scans were annotated using a freehand

tool on 3D slicer software by an expert radiologist.

After the tumor was annotated, the area of the nodule was calculated using MATLAB

2015. The tumor area was calculated upon identification of the CT slice with the largest

tumor region and was used for subgroup analysis and for creating a combined radiomics

area-based model.

These annotated nodules were used to extract the intra- and peri-tumoral texture fea-

tures. The peri-tumoral compartment around the nodule was defined via quantitative mor-

phological operations (dilation) as a region extending radially from the nodule boundary up

to roughly 15 mm, since a resection margin larger than 15 mm for lung nodules is consid-

ered not to confer additional benefit in terms of invasive lesions. The program was modified

to eliminate skin, air, or fat when the mask was extended. Radiomic peritumoral features

were extracted in an annular ring-shaped fashion. Five annular rings peritumorally were

analyzed, each with 3-mm increments leading up to a maximum radius of 15 mm from the

nodule periphery.

Features from Gabor, Laws, Laplace, Haralick and Collage were extracted for the analysis.

Haralick and Collage features are based on constructing a gray-level co-occurrence matrix

and are known to capture the general disorganized and chaotic microarchitecture of the

annotated region of interest19.20 The Laws and Laplace features focus on the high-frequency

content of the image, focusing on the boundary of the ROI.21 Gabor features are wavelet-

based features.22
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Classifier Construction

All patients included in the study were divided into two groups: pre-invasive/minimally inva-

sive lesion group (AIS, MIA) and frank invasive group (invasive pulmonary adenocarcinoma

[IPA]). These two groups were used as a clinical endpoint for the classification problem.

First, all the radiomic features were analyzed using an unsupervised clustering approach

to evaluate the ability of the radiomic features to differentiate the two different diagnostic

categories blinded to prior pathology results or clinical outcome. First, the PCA was used

on an entire feature pool and the top three principal components were used within K-Means

clustering analysis. In addition, the hierarchical clustering was performed on an entire cohort.

Next, a supervised machine learning based logistic regression classifier, MR, was con-

structed using the top selected features from the training cohort, DTrain, and then was vali-

dated on an independent and blinded validation set DTest. Further, DTest was divided into

3 different subsets based on the nodule size (less than 1 mm, 1 mm-2 mm, 2 mm-3 mm) and

the performance of the model was observed on these various subgroups defined using nodule

sizes.

Next, another supervised machine classifier model was constructed using the tumor areas,

MA, and further integrated with radiomic features to construct the combined tumor area-

radiomics based model (MR+A).

Human Reader Experiment

The patients from DTest were individually assessed by two radiologists with 12 and 21 years

of experience, respectively, being blinded to the ground truth pathologic diagnosis of the

nodules. The two readers scored each tumor from 1 to 3; 1 suggesting the nodule was MIA,

2 being indeterminate, and 3 being INV. We calculated the accuracy of the radiologists’

scores and further compared our radiomics model, MR, with the results from the radiologists

(MHR). Finally, we integrated the probability obtained from the radiomics model, MR,

with the radiologists scoring (1 to 3) to obtain the combined human and machine-based
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Figure 2.1: Overall workflow diagram. The nodules were segmented on the CT scans, and intratumoral
and peritumoral features were extracted using MATLAB 2015. The top features were selected using the
mRMR feature selection method. The validation of the radiomics model was performed using unsupervised
clustering and supervised classification-based approaches.

interpretations (MR+HR).

2.2.3 Statistical Analysis

Statistical analysis was performed using MATLAB 2015 and R. version 3.5.3. A two-sided

p-value (¡0.05) was considered significant for all the statistical analyses.

Looking at the radiomic feature pool, radiomic feature stability and reproducibility were

evaluated using the RIDER test-retest dataset.23 This dataset contains 31 lung cancer

patients - scanned two times, 15 min apart. These scans were used for calculating the

intraclass correlation coefficient (ICC) for each feature vector, which measures the similarity

between two feature vectors. Considering the threshold of 0.85, all feature vectors having a

value less than this threshold were removed from the analysis.

Within an unsupervised clustering analysis, hierarchical clustering and principal com-

ponent analysis (PCA) combined with K-means clustering was performed on DTrain. The

clustering results were compared against ground truth for calculating the clustering accu-
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racy.

For feature selection and building a classifier, 300 iterations of threefold cross-validation

were performed within the training dataset, DTrain. The minimum redundancy maximum

relevance (mRMR) feature selection algorithm24 was implemented within the cross-validation

setting to select the top-performing radiomic features that discriminate INV from MIA/AIS.

MRMR identifies a set of features that maximally distinguished two classes while minimizing

intra-feature correlation. A maximum of five features was selected to prevent overfitting

due to the curse of dimensionality arising from an overabundance of features relative to

the sample size. mRMR was performed using MATLAB software with a feature selection

toolbox for C. The top radiomic feature set was further analyzed using box-and-whisker plots

and qualitative feature maps comparing feature expressions between MIA/AIS and invasive

adenocarcinomas.

To evaluate classifier performance, the area under the receiver operating curve (AUC),

accuracy, sensitivity, and specificity were calculated for training and validation datasets.

The significance of the addition of a nodule area to the radiomic model was calculated using

DeLong’s test and the corresponding p-value.25 Figure 2.1 shows the overall pipeline of the

procedure.

2.3 Results

2.3.1 Baseline Characteristics

Of the 268 nodules, 103 nodules were pathologically confirmed as pre-invasive lesions (AIS, n

= 2) and minimally invasive lesions (MIA, n = 101), whereas 165 were confirmed as invasive

lesions (INV = 165). Figure 2.2 shows the datasets and patient inclusion criteria along with

training and testing set distributions.

Figure 2.3 shows an example of CT scans with INV and MIA lesions.
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Figure 2.2: Data source and CONSORT diagram for patient selection.
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Figure 2.3: Pathologically proven INV (left image) and MIA (right image) cases presenting as predomi-
nantly ground-glass nodular densities which are indistinguishable on CT imaging.

2.3.2 Experiment 1 – Differentiating Minimally Invasive Adeno-

carcinoma From Invasive Adenocarcinoma

Unsupervised Clustering

The extracted radiomic feature pool, that is, the combination of intratumoral textural and

peritumoral textural radiomics features, was used within the principal component analysis

(PCA) and k-means clustering to perform unsupervised clustering analysis. The optimal

number of clusters was two using the first three principal components on DTrain. The

constructed clusters had an accuracy of 73.1%. The compactness within the clusters, that

is, how similar the members within the same group are, was 62.8%. The validation of the

constructed cluster was performed using the silhouette coefficient (silhouette width). The

silhouette plot26 suggests that the clustering using the two groups was optimal with no

negative silhouette width and most cluster values > 0.5.

Using the entire extracted radiomic feature pool, within the hierarchical clustering anal-

ysis, we observed the 4 obvious clusters of patients. Cluster 1 and Cluster 3 were associated

with INV cases (cluster 1 = 100%, cluster 3 = 62.5% INV cases), whereas clusters 2 and

4 were associated with MIA cases (cluster 2 = 71.4%, cluster 4 = 75% MIA cases). The

results of unsupervised clustering analysis are shown in Figure 2.4.
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Figure 2.4: Unsupervised clustering analysis using radiomic features. (left image) K-means clustering with
4 clusters. The red dots show the centroids of the three clusters obtained via K-means clustering. The violet
points represent INV patients, and the yellow points depict MIA patients. The two distinct clusters had
an accuracy of 73.13% to distinguish MIA from INV cases. (right image) Hierarchical clustering using all
features. On the x-axis, black color stands for the INV cases, and aquamarine color stands for the MIA
cases.

Table 2.1: Model notations.

Model Notations
Radiomics Model MR

Clinical Model MA

Radiomics-Clinical Model MR+A

Human Reader Model MHR

Integrated Human Reader and Radiomics Model MHR+R

The unsupervised clustering analysis suggests that the majority of INV adenocarcinoma

cases were clustered together, and MIA/AIS patients were clustered together. Collectively,

these results suggest that these specific patient groups have distinct radiomic signatures.

Supervised Analysis and Selecting the Top Differentiating Features

During feature discovery for the model MR within DTrain, the top 5 features identified included

a peritumoral (CoLlAGe feature family) and 4 intratumoral features (Laws, Laplace, and

Haralick feature family). INV cases were observed to have a higher expression of intratumoral

features compared to MIA cases. Figure 5 shows the feature expression maps for the INV and

MIA cases. The notations of various models constructed using these features are explained
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Figure 2.5: Feature maps. The first row depicts INV patient, and the bottom row depicts an MIA patient
with an axial CT image as well as corresponding peritumoral and intratumoral feature maps. For the INV
case, the feature maps had a higher feature expression compared to the MIA cases suggesting association
between chaotic/disturbed microarchitecture and tumor invasiveness.

in Table 2.1.

On the training cohort (DTrain, N=106), the logistic regression AUC for MR was 0.917

[0.87-0.97]. The same classifier, within an independent blinded test set (DTest, N=162), MR

yielded an AUC of 0.88 Table 2.2.

Next, within the subgroup analysis, we noticed the radiomic model, MR, was consistent

in distinguishing INV from MIA. Further, MR is largely unaffected by the size of the nodule

(Figure 2.6).

Table 2.2: Model notations.

No. of
Cases

Area
MA

Radiomics
MR

Rad+Area of
MR+A

P
wrt Area

Training 0.73[0.64-0.83] 0.917[0.87-0.97] 0.95[0.916-0.987] 3.013e(-6)
Testing All 0.665 0.862 0.869 1.362e(-5)

0-1cm 22 0.79 0.759 0.713 0.492
1-2cm 87 0.61 0.919 0.926 1.057e(-5)
2-3cm 45 0.57 0.954 0.836 2.136e(-5)
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Figure 2.6: AUC comparison for logistic regression model trained with radiologists’ interpretations, MHR.,
radiomic features, MR, and combined radiomic and area-based models, MR+HR on the test set. P-value is
calculated to observe the added benefit of MHR in the radiomics model, MR.

Further, when the area of the nodule was integrated within the logistic regression classifier

along with the radiomic features, MR+A, there was no statistically significant improvement

in AUC on the validation set as compared to MR standalone.

2.3.3 Experiment 2 – Comparing the Radiomics Analysis With

Readers

We performed the analysis with individual radiologists (MHR) along with the combined

performance with the classifier (MR+HR). Reader 1 had an AUC of 0.815 and an accuracy

of 0.748 for predicting MIA cases from INV cases, whereas Reader 2 had AUC and accuracy

of 0.796 and 0.742, respectively (Figure 2.6).

Within nodules <1 cm size, the classifier demonstrated an improvement over the radiol-

ogists’ interpretations.

Finally, we combined the classifier predictions with the radiologists’ scores and con-

structed the combined model MR+HR. MR+HR achieved an average AUC of 0.909 on DTest,

corresponding to the highest AUC among all models (MR= 0.861, p=0.041; MHR1 = 0.815,

p<0.001; MHR2 = 0.796, p<0.001).
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2.4 Discussion

Current CT technologies have improved and expedited early lung nodule diagnosis. Patients

diagnosed as MIA survive well, postoperative recurrence and lymph node metastasis are

rare, and 5-year survival rate is close to 100%. In contrast, patients with INV have reduced

five-year survival2728.29 Lobectomy is considered the standard surgical treatment for INV

patients.10 Prior studies using CT scans features of air bronchograms and borders have

not been able to accurately distinguish invasive lesions.28 An accurate way to determine the

lesion’s invasiveness pre-operatively on routine chest CT scans would be beneficial in guiding

the need for the timing of resection and potentially amount of resection.10

In our work, we developed a computerized model using textural patterns known as ra-

diomics to accurately differentiate MIA from INV cases from pre-treatment baseline CT

scans from four different institutions. We observed that radiomic features extracted from

intra- and peritumoral regions of these lung nodules harbor information related to nuances

of the tissue properties not apparent to the naked eye. Additionally, in our analysis, two

radiologists examined these scans in a blinded fashion. They scored them visually, and the

integration of radiologists’ interpretation with the classifier performance yielded the highest

diagnostic accuracy on the test set (AUC = 0.909).

Although there have been previous successful attempts to examine GGOs via radiomics

analysis171830,31 most studies focus on textural patterns extracted from within the lung

lesions to differentiate MIA from INV lesions. Specifically, most of them employed features

focused on the gray level co-occurrence-based matrix and wavelet-based feature families for

identifying INV cases17.32 A few studies have further integrated clinical and morphological

features into the radiomics model to improve model accuracy17.33

Two of the top five features identified by our radiomics based supervised approach corre-

sponded to the gray-level co-occurrence-based feature (GLCM) families which is in line with

previously published results (20). In addition, we also noticed Laws and Laplace features

extracted from within the nodule to be among the top set of discriminating features. These
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two feature families (Laws and Laplace) examine higher-order frequency content of the given

region of interest.21 We noticed a higher expression of all intratumoral features for INV when

compared to MIA nodules. The elevated expressions of these radiomic features could reflect

more chaotic and haphazard microarchitecture within the comparatively high-risk invasive

tumors (Figure 2.5).

In our work, we also interrogated the tumor environment (TME) surrounding the nodule

(i.e., peritumoral region) to evaluate its utility in providing complementary information with

respect to disease diagnosis. We defined the radiomic profile of these GGO nodules during

the feature discovery portion using a combination of intra- and peritumoral regions. Within

our analysis, we noticed one of the top five features was from the peritumoral region. The

feature was observed from within the 3 to 6 mm region outside the nodule. Recent studies

have shed new light on this complex interaction between tumor and host immune cells and

immune responses. In work by Altorki et al. (22), the authors demonstrated the role of

TME for progression for pre-invasive to invasive adenocarcinoma lesions. They observed a

dominant regulatory T cell-mediated immune suppression initiated at the precursor level

sustained with rising intensity throughout malignant progression. Few studies also show

that these perinodular radiomic features may reflect tumor microarchitecture changes or be

capturing the presence of tumor-infiltrating lymphocytes (TILs).15 We noticed an increased

peritumoral CoLlAGe feature20 expression for MIA cases.

Specifically with respect to the perinodular region, in work by Wu G. et al.,32 the authors

did not observe an improvement in AUC with the addition of radiomic features from the

perinodular region to differentiate INV cases from MIA and AIS (p = 0.11). They observed

the most predictive features to emanate from the ground-glass and solid regions of the nodule.

Whereas in the work by Wu L. et. al.,34 the authors show the utility of perinodular features

for the same clinical problem. However, in our analysis, we noticed CoLlAGe peritumoral

radiomic features to be statistically significant between the training and testing cohorts (p

<0.01). CoLIAGe captures higher-order co-occurrence patterns of local gradient tensors at
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a voxel level and has been shown to be diagnostic and prognostic for a variety of disease

indications1415.20 Additionally, in our analysis, we included the complete GGOs in addition

to semisolid nodules unlike in the study by Wu et al.32

We further evaluated and compared our radiomic model with the tumor diameter. Stud-

ies show the two-dimensional diameter of the nodule to be one of the strongest predictors

for pulmonary nodule risk classification in the quantitative CT image analysis. In work

by Xu et al.,30 the authors noticed the diameter of GGOs to be significantly different in

MIA and INV nodules, and a conventional model constructed using clinical and quantita-

tive features (such as age, diameter, and density) yielded the best AUC (0.848; 95% CI =

0.750-0.946). The authors observed that the addition of radiomic features to the clinical and

quantitative models did not improve the performance of the combined model.30 In contrast,

multiple studies have reported the added benefit of radiomics to clinical and quantitative

models33.17 In a study by Weng et al.,17 the authors constructed a nomogram using le-

sion shape, solid component, and radiomics features from the nodule to obtain an AUC of

0.88. Similarly, Luo et al.33 used three CT features (pleural indentation, solid component

size, and solid component proportion) and one radiomic feature to help differentiate invasive

pulmonary adenocarcinoma (IPA) from non-IPA to achieve a final AUC of 0.903. Interest-

ingly, in our analysis, the radiomic model was superior to the model constructed with the

nodule area in both training and testing sets. The addition of the nodule diameter to the

radiomics model did not improve the performance especially in the independent validation

set (DTrain:0.95 [0.92-0.98] from 0.92 [0.87-0.97], p=0.03; DTest:0.869 [0.80-0.93] from 0.862

[0.79-0.93], p=0.86) even though individual tumor diameter was statistically significant in

differentiating MIA and INV nodules (DTrain¡ 0.05; DTest¡ 0.05). We further created a subset

of nodules with a diameter of less than 10 mm. We noticed that our radiomics classifier

was prognostic even within the smaller nodules, giving an AUC of 0.76 [0.53-0.98] on these

smaller lesions.

Another unique aspect of our study included integrated classifier performance with expert
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radiologists’ visual assessment of the tumors. We noticed that the classifier had an overall

improvement of 4.5% compared to the radiologists’ interpretations. We noticed that the

radiologists had high sensitivity, but poor specificity. After combining the probabilities of

the machine learning classifier with the radiologists’ score, the model AUC improved to 0.909

from 0.867 of the classifier model (p<0.05) and 0.816 of the radiologists’ model (p<0.05).

Overall, our study has three main novel contributions including the multi-institutional

nature, the addition of novel radiomics descriptor in the analysis, and human-machine com-

parison and integration to create consensus and accurate models.

Despite the progress made in this study, our work has some limitations. First, the

developed model is completely retrospective in nature. For a successful transition into the

clinically deployable model, a prospective evaluation will be required. Second, even though

the analysis had multiple institutions, we did not truly validate the model independently

since all the cases from individual sites were collapsed and subsequently randomly divided

into training and testing sets. Future work will entail prospective data as well as validation

on data from sites independent from those employed for developing the model.
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Chapter 3

Radiomics for Predicting the Added

Benefit of Adjuvant Chemotherapy

for Early-Stage NSCLC

3.1 Overview

The pathological staging system proposed by the International Association for the Study of

Lung Cancer is considered the gold standard in treatment planning in non-small cell lung

cancers (NSCLC).35 Stages I and II NSCLC are considered early stage, and surgical resection

is the standard of care for patients with these cancers.36 In addition, adjuvant cisplatin-based

chemotherapy is currently recommended for patients with stage II NSCLC, whereas patients

with stage I NSCLC continue to be treated with surgery alone363738.39 These recommen-

dations are based on large clinical trials showing a 5-year overall-survival benefit in the

adjuvant chemotherapy group compared with the surgery alone group of 4% (hazard ratio

[HR] 0·86, 95% CI 0·76–0·98; International Adjuvant Lung Cancer Trial [IALT], n=1867)38

and 15% (0·69, 0·52–0·91; JBR.10 trial, n=482).39 The Lung Adjuvant Cisplatin Evalua-

tion40—a pooled meta-analysis that included 4584 patients across five clinical trials—found
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a HR for surgery with versus without adjuvant chemotherapy of 0·89 (0·82–0·95; p=0·005),

corresponding to a 5-year survival absolute benefit of 5·4% from adjuvant chemotherapy.

However, other clinical trials, including the Big Lung Trial (n=381)41 and the Adjuvant

Lung Cancer Project Italy (n=1088) 8, found no significant benefit for either 5-year overall

survival or disease-free survival. The inconsistency between the results from different trials

might suggest the need for a biomarker that could identify patients who would benefit from

adjuvant chemotherapy.

Stratified subgroup analysis of these trials based on the eighth edition of the tumour,

node, metastasis (TNM) staging system found that adjuvant chemotherapy does not signifi-

cantly improve overall survival in patients with stage IB (T2aN0M0) NSCLC (HR 0·93, 95%

CI 0·78–1·10)3839.40 The CALGB9633 trial42 (n=344), which included only patients with

stage IB NSCLC showed no survival benefit with adjuvant chemotherapy (0·83, 0·64–1·08,

p=0·12) with a median follow-up of 74 months. Since adjuvant chemotherapy has been

shown not to lead to a significant survival benefit in stage I NSCLC (and sometimes to have

detrimental effects on survival in stage IA NSCLC [ie, HR¿1]), it is currently not recom-

mended. For stage IB patients, the American Society of Clinical Oncology guidelines do

not recommend adjuvant chemotherapy following surgery in routine practice. However, Na-

tional Comprehensive Cancer Network guidelines suggest that adjuvant chemotherapy is an

appropriate option when considering high-risk factors such as poorly differentiated tumours,

vascular invasion, wedge resection, tumour size greater than 4 cm, and pleural vascular in-

vasion.

Even after curative resection, about 30–40% of patients with stage I NSCLC recur with

post-operation observation alone, suggesting that these are high-risk patients who are at an

increased risk of disease recurrence and, therefore, might benefit from adjuvant chemother-

apy. Single gene-based and multigene-based expression assays, as well as traditional clinico-

pathological factors, have shown prognostic value in early-stage NSCLC, but only a select

few have been useful for the identification of patients who might derive added benefit from
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adjuvant chemotherapy43.44

In the past 5 years, the use of CT-based radiomics13 (computer-extracted quantitative

imaging features derived from radiographic images) in lung cancer for disease diagnosis and

prognosis has received increasing attention13144546.47 A few research groups have shown

that imaging-based prognostic biomarkers can be used to predict disease recurrence and

survival in the context of NSCLC, but most of them have little clinical utility because

they are black-box approaches, and thus lack an underlying biological rationale—especially

deep learning-based models. Although radiomics itself can be considered as a black-box

approach, it offers the opportunity to study the association between specific image features

with underlying morphological and molecular attributes of the disease, thereby providing a

stronger correlative link with the underlying tumour biology. However, radiomics approaches

have not been evaluated in their ability to predict the added benefit of adjuvant chemotherapy

in early-stage NSCLC.

In this study, we aimed to construct a quantitative radiomic risk score (QuRiS) that

employs quantitative texture features from within and outside the primary lung nodule

derived from routine CT scans to predict disease-free survival and response to adjuvant

chemotherapy for patients with stage I and II NSCLC. Furthermore, as some studies have

suggested that signatures derived from a combination of biomarkers might have improved

prognostic and predictive capabilities compared with individual analytical approaches and

might therefore be better suited for informing clinical decision making4849 we also aimed

to construct a nomogram (QuRNom) integrating QuRiS with tumour and node descriptors

and lymphovascular invasion status for the estimation of disease-free survival. We also

aimed to explore the biological underpinning of prognostic radiomic features by exploring

the association of QuRiS with genomic and pathomic data.
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3.2 Methodology

3.2.1 Study design and participants

We did a retrospective multicohort study of patients with stage I and II NSCLC admitted to

three independent sites, treated either with surgery plus adjuvant chemotherapy or surgery

alone. We included all patients with available pretreatment diagnostic CT scans and corre-

sponding survival and recurrence information. We excluded patients who died, recurred, or

left the study within 3 months after surgery.

We reviewed the charts of patients with NSCLC admitted to the Cleveland Clinic Foun-

dation (Cleveland, OH, USA) between April 14, 2004, and April 24, 2015. Eligible patients

with resected stage I and II (early-stage) NSCLC with available diagnostic CT scans were

included in cohort D1 after pathological confirmation of the disease and its stage.

The second cohort, cohort D2, included eligible patients identified from a retrospective

chart review of patients with NSCLC continuously admitted at the University of Pennsyl-

vania (Philadelphia, PA, USA) from Nov 10, 2004, to Feb 7, 2017. The third cohort, cohort

D3, included eligible patients for whom CT scans were available on The Cancer Imaging

Archive (TCIA).

The study conformed to Health Insurance Portability and Accountability Act guidelines

and was approved by the Institutional Review Board at University Hospitals Cleveland

Medical Center (Cleveland, OH, USA), number 02–13–42C. Informed consent requirement

was waived as the study used archival tissue.

3.2.2 Procedures

Radiomic features were extracted using software developed at the Center of Computational

Imaging and Personalized Diagnostics, Case Western Reserve University (Cleveland, OH,

USA), implemented on a MATLAB release 2016a platform, to capture textural heterogeneity

from within and outside the nodules from the chest CT scans for all patients with early-stage
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lung cancer. An experienced cardiothoracic radiologist (PR) identified the target nodule on

CT scans in cohorts D1 and D2. A second cardiothoracic radiologist (RG) identified the

nodules on the scans in cohort D3. Each nodule was further manually segmented across all

the sections where it was visible in the axial view using a manual annotation tool in (3D

Slicer, version 4.6). These annotations were considered for intranodular and perinodular

radiomic analysis (figure 6.3).

Following annotations, the peritumoral mask was selected using morphological dilation

and erosion operations. An annular 3-mm wide area at a radial distance of 15 mm outside

the nodule was selected for extracting peritumoral features.

Radiomic features from Gabor, Haralick, Laws, Laplace, and Collage feature families

were extracted from each annotated region. To ensure the stability and reproducibility of

radiomic features, we used the test-retest Reference Image Database to Evaluate Response

lung CT dataset.19

The most useful predictive features from the patients who underwent surgery alone in

the discovery cohort D1 were used to construct QuRiS, and QuRNom was then constructed

using QuRiS combined with prognostic clinical variables identified using the training (D1)

cohort. QuRNom was used to show an incremental value of QuRiS compared with traditional

clinicopathological factors for personalising disease-free survival prediction.

Haematoxylin-and-eosin stained whole-slide tissue scans obtained from surgical resec-

tions were available for a subset of patients in cohort D1. These scans were used to explore

the biological underpinnings of the prognostic radiomic features used for developing QuRiS.

Tumour infiltrating lymphocytes are known to carry prognostic ability in early-stage lung

cancer domain. In this analysis, we explored associations between tumour infiltrating lym-

phocytes and prognostic radiomic features to assess whether these radiomic features were

potentially capturing information regarding tumour infiltrating lymphocytes on CT scans.

We used sequencing data from frozen-mRNA samples from cohort D3 from the TCIA Pan-

Cancer project to find associations between prognostic radiomic features and gene expression
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Figure 3.1: Overall workflow and pipeline of the project. The first step involved identifying and anno-
tating the primary nodule on the CT scan. Intratumoral and peritumoral textural features were extracted
using Matlab 2016a. For the peritumoral region, features were extracted from 0–15 mm region outside
the tumour and divided into five 3-mm peritumoral rings. Feature statistics included mean, median, SD,
skewness, kurtosis, and range and were calculated for each of the individual annular rings. Top features
were selected using the LASSO feature selection method and used for constructing QuRiS. QuRNom was
constructed using prognostic clinical features and QuRiS. QuRiS and QuRNom were validated for prognostic
performance and predicting added benefit of adjuvant-chemotherapy. Associations between QuRiS features
and spatial patterns of tumor-infiltrating lymphocytes on whole-slide tissue scans were also evaluated, as
were associations with mRNA data and underlying immune specific biological pathways. DFS=disease-free
survival. LASSO=least absolute shrinkage and selection operator. QuRiS=quantitative radiomic risk score.
QuRNom=quantitative radiomic nomogram.

data.

3.2.3 Outcomes

The primary endpoint of the study was the predictive and prognostic performance of QuRiS

and QuRNom in regard to disease-free survival, which was measured from the date of surgery

to the time of disease relapse (tumour recurrence within or immediately adjacent to the

treated field, mediastinal relapse, or distant relapse) or the time of death, whichever occurred

earlier; patients who were alive and did not relapse were censored at the date of last follow-
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up.50 We focused our analysis on disease-free survival instead of overall survival because,

in patients with stage I and II NSCLC, overall survival is longer than in patients with later

stages of disease and we aimed to find a correlation with disease-specific survival in the

developed model.

Other objectives of our study were to assess whether QuRiS and QuRNom could be used

to identify patient cohorts with early-stage disease that would receive added benefit from

adjuvant chemotherapy after surgery and whether QuRiS features were associated with the

spatial architecture and arrangement of cancer nuclei and tumour-infiltrating lymphocytes

derived from haematoxylin-and-eosin stained tissue images of corresponding surgical speci-

mens (radiopathomic analysis) and with underlying biological pathways in cancer progression

by using mRNA sequencing data (radiogenomic analysis).

3.2.4 Statistical analysis

The least absolute shrinkage and selection operator (LASSO) method, which is suitable

for high-dimensional data,21 was used to select the most useful predictive features from the

patients who underwent surgery alone in the discovery cohort D1. After selecting the top fea-

tures, the corresponding LASSO coefficients were used for QuRiS construction. QuRiS was

calculated for each patient via a linear combination of selected features that were weighted

by their respective coefficients. The value of the tuning parameter in the LASSO-Cox model

(λ) was averaged out by 10 cross-validations to minimise error.

QuRNom, was constructed using the discovery cohort D1 and comprised the radiomics

model as well as significant clinical-pathological risk factors found on multivariate Cox re-

gression analysis.51

For prognostic stratification, QuRiS values were used to divide cohort D1 into two groups

for which disease-free survival and HRs were calculated. The prognostic performance of

QuRiS was validated using Kaplan-Meier survival analysis, log-rank test, HR (95% CI),

and Harrell’s concordance index (C index [95% CI]). Univariate analysis of QuRiS and the
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clinical–pathological variables was done. Multivariable Cox-regression analysis was used to

investigate the relationships between the various covariates and 3-year disease-free survival.

Further subset analyses involved determining survival differences in different stages. To

measure nomogram performance, C indices were calculated from the nomogram for QuRiS,

clinical factors alone, and QuRiS plus clinical factors. The calibration plot for the nomogram

was plotted by reviewing the plots of nomogram-predicted survival probabilities with Kaplan-

Meier estimated probabilities along with the Hosmer-Lemeshow test. Bootstraps with 1000

resamples were used to quantify model overfitting and calculate Kaplan-Meier estimates.

For predictive validation, QuRis was used to divide our patient dataset into three risk

groups (high, intermediate, and low risk). These groups were selected using thresholds

determined by calculating and comparing the HRs predicting 3-year disease-free survival in

patients in cohort D1 who received adjuvant chemotherapy versus those who received surgery

alone. Forest plots were constructed to show the HRs comparing disease-free survival between

the patients receiving adjuvant chemotherapy and those undergoing surgery alone in all the

cohorts amongst the QuRiS risk groups. For predictive validation of combined QuRNom,

nomogram-based estimates of survival probability were used for comparing HRs between

adjuvant chemotherapy and surgery alone groups.

For finding the histomorphometric correlation of QuRiS, after extracting the spatial ar-

chitecture of tumour infiltrating lymphocyte features from surgically resected whole-slide

tissue scans, we calculated Pearson correlation coefficient (r) between prognostic radiomic

features used for constructing QuRiS and the spatial architecture of tumour infiltrating lym-

phocyte features for the radiopathomic analysis.52

Radiogenomic analysis was done using mRNA sequencing data obtained with Illumina

Genome Analyzer Sequencing version 2 (Illumina, San Diego, CA, USA).24 Top genes were

selected by correlating mRNA sequencing data with QuRiS. These genes were used in gene

ontology analysis to identify molecular pathways indicating biological processes associated

with the QuRiS.
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Figure 3.2: Study profile (NSCLC= non-small cell lung cancers)

All statistical analyses was done with R version 3.5.3.

3.3 Results

After reviewing 700 charts of patients with NSCLC admitted to the Cleveland Clinic Foun-

dation between April 14, 2004, and April 24, 2015, we included 329 eligible patients in

cohort D1 (figure 6.1). 73 (22%) of these patients received adjuvant chemotherapy and 256

(78%) underwent surgery alone. We included 114 eligible patients in cohort D2 identified

from a retrospective chart review of 128 patients with NSCLC continuously admitted at the

University of Pennsylvania from Nov 10, 2004, to Feb 7, 2015. 33 (29%) of 114 patients

in the D2 cohort received adjuvant chemotherapy and 81 (71%) patients underwent surgery

alone. The third cohort, cohort D3, included 82 eligible patients from TCIA. 58 (71%) of 82

patients in cohort D3 underwent surgery alone, whereas 24 (29%) patients received adjuvant

chemotherapy. Baseline characteristics of patients in each cohort are shown in the table.

Cohort D1 (n=329) was used as the discovery cohort to train QuRiS and to construct

QuRNom. For external validation of QuRiS and QuRNom as prognostic and predictive

biomarkers, D2 and D3 were used.

The 13 most discriminative features from the radiomic feature pool were selected to

calculate the QuRiS using LASSO analysis. The top 13 features included three from the

50



Table 3.1: Baseline characteristics

Cohort D1

(n=329)
Cohort D2

(n=114)
Cohort D3

(n=82)
p value

Treatment
Surgery Alone 256 (78%) 81 (71%) 58 (71%) 0.21

Adjuvant Chemotherapy 73 (22%) 33 (29%) 24 (29%) ..

Age at admission, years
≤ 65 86 (26%) 46 (40%) 34 (41%) 0.79
> 65 142 (43%) 68 (60%) 48 (58%) ..

unknown 101 (31%) 0 0 ..

Gender
Women 113 (34%) 76 (67%) 26 (32%) < 0.0001
Men 115 (35%) 38 (33%) 56 (68%) ..

unknown 101 (31%) 0 0 ..

Smoking status
Current 85 (26%) 6 (5%) 17 (21%) < 0.0001

Previous use 209 (64%) 82 (72%) 47 (57%) ..
Never used 32 (10%) 26 (26%) 18 (22%) ..
Unknown 3 (1%) 0 0 ..

Tumor Stage
Stage I 276 (84%) 89 (78%) 57 (70%) < 0.0001
Stage II 53 (16%) 33 (28%) 25 (30%) ..

Lymphovascular invasion status
Present 90 (30%) Unknown 5 (6%) 0.011
Absent 214 (65%) Unknown 74 (90%) ..

Unknown 28 (9%) Unknown 0 ..

Node descriptor
0 255 (78%) Unknown 69 (84%) 0.89
1 46 (14%) Unknown 13 (16%) ..

Unknown 28 (9%) Unknown 0 ..

Tumor descriptor
1 158 (48%) Unknown 38 (46%) 0.026
2 88 (27%) Unknown 31 (38%) ..
3 8 (2%) Unknown 13 (16%) ..

Unknown 75 (23%) Unknown 0 ..

Margin status
Negative 323 (98%) 144 (100%) Unknown 0.22
Positive 214 (65%) Unknown 74 (90%) ..
Unknown 28 (9%) Unknown 0 ..
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Table 3.2: Baseline characteristics

Cohort D1

(n=329)
Cohort D2

(n=114)
Cohort D3

(n=82)
p value

Tumor location
Right upper lobe 128 (39%) 35 (31%) 26 (32%) 0.32
Right lower lobe 45 (14%) 22 (19%) 11 (13%) ..
Right middle lobe 15 (5%) 4 (4%) 8 (10%) ..
Left upper lobe 94 (29%) 32 (28%) 23 (28%) ..
Left lower lobe 47 (14%) 21 (18%) 14 (17%) ..

Type of surgery
Lobectomy 64 (19%) 55 (48%) Unknown < 0.0001
Sublobar 234 (71%) 49 (43%) Unknown ..

Pneumonectomy 15 (5%) 1 (1%) Unknown ..
Segmentectomy 16 (5%) 0 Unknown ..

EGFR mutation
Mutant 25 (8%) 36 (32%) 17 (21%) 0.16
Wildtype 95 (29%) 78 (68%) 54 (66%) ..
Unknown 209 (64%) 0 11 (13%) ..

KRAS mutation
Mutant 2 (1%) 32 (28%) 17 (21%) 0.66
Wildtype 3 (1%) 82 (72%) 54 (66%) ..
Unknown 324 (98%) 0 11 (13%) ..

Histology
Adenocarcinoma 211 (64%) 114 (100%) 82 (100%) < 0.0001

Squamous Cell Carcinoma 93 (28%) 0 0 ..
Other 21 (6%) 0 0 ..

Unknown 4 (1%) 0 0 ..
Left lower lobe 47 (14%) 21 (18%) 14 (17%) ..

Recurrence
Yes 71 (22%) 25 (22%) 26 (32%) 0.14
No 158 (78%) 89 (78%) 56 (68%) ..
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intratumoral and ten from the peritumoral region. All the top features were observed from

Haralick or Collage feature families representing the grey-level co-occurence matrix. QuRiS

could predict disease-free survival in cohorts D1 (HR 1·56, 95% CI 1·08–2·23, p=0·016), D2

(2·66, 1·24–5·68, p=0·011), and D3 (2·67, 1·39–5·11, p=0·0029). Among patients who re-

ceived surgery alone, we noticed two definite groups with high and low risk of recurrence

(figure 3b). These groups were defined using a QuRiS threshold of 0·606, below which pa-

tients were observed to have low risk of recurrence (and hence increased disease-free survival)

and above which patients were observed to have high risk of recurrence (hence decreased

disease-free survival). By contrast, no significant difference was observed between high-risk

and low-risk patients who received the adjuvant chemotherapy, potentially suggesting that a

subset of patients in this cohort benefited from chemotherapy and had improved disease-free

survival (figure 3C). In the subgroup analysis, within stage I cases, we could still observe

two distinct predicted high-risk and low-risk groups according to QuRiS (HR 1·89, 95% CI

1·17–3·05, p=0·008 for cohort D1; 3·87, 1·53–9·81, p=0·002 for cohort D2; and 2·42, 1·01–5·79,

p=0·047 for cohort D3; ).

Univariate analysis on cohort D1 revealed that—among all clinicopathologic factors con-

sidered—tumour and node descriptors (as per the TNM staging system), lymphovascular

invasion status, pathological stage, and margin status are prognostic factors. We included

tumour and node descriptors, lymphovascular invasion status, and QuRiS to construct

QuRNom for predicting 3-year disease-free survival . We could not include margin sta-

tus as another independent parameter in the nomogram as almost all the patients had a

negative margin. The stage was mainly a representation of tumour and node descriptors and

hence was excluded from the final model.

The calibration curve for QuRNom for predicting 3-year disease-free survival showed

agreement between predicted survival and actual survival. The Hosmer-Lemeshow test

yielded a p value of 0·68, suggesting that predicted and observed disease-free survival were

similar. The C index for QuRNom was 0·74 (95% CI, 0·72–0·76), which was confirmed via
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Figure 3.3: Kaplan-Meier plot for disease-free survival according to QuRiS-based risk groups. Disease-free
survival for the entire (A) D1, (B) D2, and (C) D3 cohorts, patients who received surgery alone in cohorts
(D) D1, (E) D2, and (F) D3, and patients who had surgery plus adjuvant chemotherapy in cohorts (G) D1,
(H) D2, and (I) D3. The QuRiS threshold of 0·0646 was developed using training cohort D1 and validated
in cohorts D2 and D3. HR=hazard ratio. QuRiS=quantitative radiomic risk score.
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bootstrap validation.

For predictive validation, QuRiS values were used to classify patients into three risk

groups (high, intermediate, and low risk) on the basis of HRs from the D1 cohort. Patients

with QuRiS score below 0·093 were considered low risk and above 0·099 were considered as

high-risk patients. All the patients with a QuRiS score of 0·093 to 0·099 were considered at

intermediate risk.

Patients in the high-risk group showed significantly prolonged survival when patients

received adjuvant chemotherapy (HR 0·27, 95% CI 0·078–0·95, p=0·042 for cohort D1 and

0·076, 0·013–0·42, p=0·0029 for cohorts D2 and D3 combined), whereas there was no added

benefit for patients in the low-risk group and, in fact, the HR point estimate indicates nega-

tive effects of adjuvant chemotherapy in both training and validation cohorts (2·15, 1·13–4·08,

p=0·019 for cohort D1 and 2·25, 0·95–5·03, p=0·064 for cohorts D2 and D3 combined; fig-

ure 4A, 4B). Stratified subgroup analysis within stage IB showed a similar difference in

treatment-related effects between different QuRiS groups.

Furthermore, QuRNom was used for predicting the added benefit of adjuvant chemother-

apy. The QuRNom-estimated survival benefit was used for differentiating patients into dif-

ferent subgroups (patients with survival benefit 20%, patients with survival benefit ¿20% to

40%, patients with survival benefit ¿40% to 70%, and patients with survival benefit ¿70%).

Patients with survival benefit less than 20% showed an improved median disease-free sur-

vival of about 17 months in cohort D1 (HR 0·27, 95% CI 0·11–0·54, p¡0·0003) and 27 months

in cohort D3 (0·13, ¡0·01–0·99; p=0.0019). As clinical information regarding lymphovascu-

lar invasion status and tumour and node descriptors were not available for cohort D2, a

nomogram could not be constructed. In patients with survival benefit 40–70% or greater

than 70%, the patients who received adjuvant chemotherapy showed poorer survival than

those who underwent surgery alone (2·6, 0·34–19·24, p=0·36 for cohort D1 and 1·5, 0·33–6·5,

p=0·62 for cohort D3; figure 4C, 4D).

Histomorphometric analysis revealed QuRiS to be significantly correlated with the clus-
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Figure 3.4: Forest plots of disease-free survival. Hazard ratios based on QuRiS comparing disease-free
survival in patients who received surgery plus adjuvant chemotherapy and those receiving surgery alone in
(A) cohort D1 and (B) cohorts D2 and D3. Hazard ratios by nomogram-estimated survival benefit from
adjuvant chemotherapy in (C) cohort D1 and (D) cohort D3. The survival benefit of adjuvant chemother-
apy was calculated as the difference between nomogram-estimated 3-year disease-free survival for patients
who received surgery plus adjuvant chemotherapy and those who had surgery alone. QuRiS=quantitative
radiomic risk score.
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tering patterns of the cancerous cells observed on haematoxylin-and-eosin-stained whole-slide

scans of 70 patients in cohort D1 (Pearson correlation coefficient r=0·23; p=0·036).

Individual radiomic feature analysis with the spatial tissue-infiltrating lymphocytes fea-

tures revealed the intratumoral Haralick energy feature to be associated with various features

explaining the tumour-infiltrating lymphocyte–nuclei interplay (such as the ratio of cancer-

ous clusters to lymphocyte clusters or the density of cancerous clusters). QuRiS predicted

that high-risk patients would have a more chaotic and disturbed microarchitecture on CT

scans. For these patients, the corresponding whole slide tissue images revealed very dense,

tightly bound cancer nuclear clusters (figure 5A–H).

In the radiogenomic analysis of 82 patients in cohort D3, QuRiS was observed to be

associated with biological pathways implicated in angiogenesis, proliferation, cellular dif-

ferentiation, T-cell and lymphocyte activation, and chemotaxis . Although these relevant

pathways included less than 100 genes, their fold enrichment (ie, how much more these path-

ways were correlated with the radomic risk score than they would be by random chance)

was always greater than two.

Specifically, the intratumoral Haralick energy feature was observed to be inversely corre-

lated with macrophage chemotaxis.

3.4 Discussion

In this Article, we present the first-of-its-kind CT radiomics-based score (QuRiS) that is

predictive of benefit of adjuvant chemotherapy and associated with survival in early-stage

NSCLC. Current treatment guidelines (released by the International Association for the

Study of Lung Cancer, the American Society of Clinical Oncology, and National Compre-

hensive Cancer Network) do not recommend the addition of adjuvant chemotherapy following

curative resection in stage IA NSCLC, whereas the potential use of adjuvant chemotherapy

in stage IB NSCLC is fraught with controversy, mainly due to ambiguous results from large-
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Figure 3.5: Association between radiomic, pathomic, and genomic data. (A) CT scan of patients with
lung cancer. (B) Intratumoral and (C) peritumoral radiomic Haralick textural feature for low-risk nodule.
(D) Intratumoral and (E) peritumoral Haralick feature for high-risk nodule. Panels (B–E) are shown at a
magification of 103 (zoomed in from panel A). (F) Whole-slide tissue scan corresponding to the CT scan
in (A); green colouring of cells indicates the first segmentation of all nuclei on the whole-slide scans; yellow
cells are non-lymphocyte cells and blue are lymphocytes. Spatial tissue infiltrating lymphocytes feature on
whole-slide scan corresponding to (G) low-risk tumours identified in panels (B) and (C), and (H) high-risk
tumours identified in panels (D) and (E). In (G) and (H), red stars represent cancer cells and red triangles
represent cancerous clusters; green stars represent individual tumour infiltrating lymphocytes and green
triangles represent tumour infiltrating lymphocyte clusters. Panels (G, H) are shown at a magification of
107. (I) Radiogenomic analysis. (J) Chemotaxis gene set enrichment analysis. QuRiS=quantitative radiomic
risk score.
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scale clinical trials investigating the added benefit of adjuvant chemotherapy in patients

treated with curative resection. By contrast, in stage II NSCLC, adjuvant chemotherapy is

currently recommended universally without any possibility of risk stratification. These di-

verse recommendations highlight the need for a predictive biomarker that could potentially

identify patients who are at increased risk of recurrence, even with cancers clinicopatholog-

ically defined as low stage (stage I). These patients would be ideal candidates for adjuvant

chemotherapy following resection. Conversely, the identification of patients who are at low

risk of recurrence, even among those who have higher-stage NSCLC, might prevent them

from having the toxic effects of adjuvant chemotherapy without gaining any additional ben-

efit over resection.

Currently available biomarkers in NSCLC include largely prognostic signatures reliant on

clinical factors such as circulating tumour DNA, tumour macrophages, single-gene and multi-

gene expression profiles, and next-generation sequencing. For example, a 14-gene expression

signature was developed in one study with quantitative PCR analysis of DNA from 361 pa-

tients with non-squamous NSCLC.53 The assay was independently validated on two cohorts

of 433 patients (5-year overall survival was 71·4% in low-risk patients and 49·2% in high-risk

patients; p=0·0003) and 1006 patients (5-year overall survival was 74·1% in low-risk patients

and 44·6% in high-risk patients) with stage I–III non-squamous NSCLC. However, to offer

support in patient management and achieve maximum clinical benefit, signatures need to

be not only prognostic but also predictive of benefit of administering adjuvant chemother-

apy. The few existing predictive signatures are based on gene-expression assays, which are

expensive and time-consuming and disrupt clinical workflow as tissues need to be shipped to

a central laboratory. In another study, a 15-gene predictive signature was developed using

tissue microarray samples from 133 patients (62 who underwent surgery alone and 71 who

also received adjuvant chemotherapy).43 The signature was developed from patients who

received surgery alone and was then applied to the cohort of patients who also received ad-

juvant chemotherapy; the high-risk patients showed improved overall survival (HR 0·33, 95%
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CI 0·17–0·63; p=0·0005), whereas overall survival of low-risk patients was worsened (3·67,

1·22–11·06; p=0.013).

The model we developed, QuRiS, comprises 13 radiomic textural features, three features

from the intranodular region, and 10 from the perinodular region characterising the tissue

microenvironment. The tissue microenvironment is the immediate cellular area outside the

tumour and typically includes a plethora of cells, such as fibroblasts, dendritic cells, and

inflammatory markers. Research from the past 5 years has suggested that this area con-

tains information that relates to drug resistance and the effectiveness of chemotherapy and

immunotherapy545556.57 The resection status of tumours can have a role in the solicitation

of the immune response as resection must be complete, with no residual tumour cells, for

the immune system to work. Previous investigations of radiomic features from the tissue

microenvironment have shown their utility in diagnostic and prognostic lung cancer domain.

The most discriminative features from the tissue microenvironment included Haralick and

Collage features from 15 mm outside the tumour, which capture textural heterogeneity and

were found to be high in poor responders (high-risk patients). This finding could potentially

reflect the increased heterogeneity in rapidly dividing tumours, which are more aggressive

tumour variants with more chaotic and disordered growth.

QuRiS was also developed to predict benefit to adjuvant chemotherapy in early-stage

NSCLC patients. The QuRiS high-risk group showed a significant disease-free survival ben-

efit in internal and external validation sets, with an estimated 70% survival benefit with an

improved median disease-free survival of about 17 months in cohort D1, 24 months in cohort

D2, and 27 months in cohort D3 for patients who received adjuvant chemotherapy versus

those who received surgery alone. In the QuRiS low-risk groups, however, all three cohorts

showed an increase in the HR point estimate, although the results were not significant, for

patients who received adjuvant chemotherapy. This finding suggests that at least in the

QuRiS low-risk groups, there is no added benefit of instituting potentially toxic adjuvant

chemotherapy.
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Subanalysis of individual cancer stages revealed that QuRiS was prognostic even within

stage I. The IALT and JBR.43 trials were among the first large randomised clinical trials to

show that adjuvant chemotherapy, after complete surgical resection, improved 5-year overall

survival compared with observation alone. But even in these trials, there were no significant

differences in survival of patients with stage I cancer treated with adjuvant chemother-

apy versus surgery alone (HR¿1 for patients with stage IA cancer, meaning that adjuvant

chemotherapy had a detrimental effect on survival, possibly because of toxicity). The results

of our QuRiS-based analysis could explain the clinical trial results, as there seem to be two

distinct risk groups within each clinically defined risk group (ie, low-risk [stage I] early-stage

disease and high-risk [stage II] early-stage disease).

To include QuRiS within a clinical model, we constructed QuRNom, which was a combi-

nation of QuRiS with tumour and node descriptors and and lymphovascular invasion status.

QuRNom showed significantly superior performance for predicting disease-free survival in

early-stage NSCLC compared with the eighth edition of the TNM classification (C index 0·65,

0·64–0·66) and with a combined clinical–pathological model (C index 0·71, 0·69–0·72). Addi-

tionally, QuRNom was also validated for predicting added benefit of adjuvant chemotherapy.

To the best of our knowledge, QuRiS is the first radiomics-based risk model that is both

prognostic and predictive of adjuvant chemotherapy benefit in early-stage NSCLC patients

treated primarily with curative resection. One study defined a radiomic signature using

a LASSO-Cox regression model constructed using 132 radiomic texture features from the

histogram and grey-level co-occurrence matrix families, from within the node of 282 patients

with early-stage NSCLC.46 The study showed that incorporating the radiomic signature into

a radiomics-based nomogram (radiomics and significant clinicopathologic factors) resulted

in a better performance for the estimation of disease-free survival (C index 0·72, 95% CI

0·71–0·73) than with the clinical-pathological nomogram alone (0·691, 0·68–0·70; p¡0·0001).

Another study showed that in 186 patients with NSCLC, a random forest-based classifier

using intranodular radiomic features could predict patients who died versus those who were
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alive with an area under the curve of 0·93.58 Our study differs from these works in that it used

perinodular radiomic features up to 15 mm outside the tumour in addition to intranodular

features, it used independent validation sets for testing the developed radiomic signature,

and it confirmed the ability of the signature and constructed nomogram to predict benefit

of adjuvant chemotherapy.

Our study also differed from previous works in that it investigated the underlying biologi-

cal, including genomic, characteristics behind the QuRiS score and the associated prognostic

radiomic features. Using quantitative histomorphometric features related to the spatial inter-

play and arrangement of cancer nuclei and tumour-infiltrating lymphocyte clusters, we found

that QuRiS was correlated with a spatial feature that represented the clustering pattern of

cancerous cells, with more chaotic and closer arrangement of clusters in the QuRiS high-risk

group than in the low-risk group. Furthermore, an analysis of differentially expressed genes

in QuRiS risk groups revealed that QuRiS was significantly correlated with biological path-

ways related to cellular differentiation and angiogenesis, among others. Potential markers

of angiogenesis, including microvessel density found on histological analysis, have shown to

be prognostic across multiple cancer types. QuRiS association with angiogenesis pathways

suggests that the perinodular texture features might also be defined by more disordered

and heterogeneous blood vessel formation in high-risk patients, as compared with the bet-

ter formed and more ordered blood vessel arrangements in low-risk patients. Similarly, the

higher intranodular texture feature in high-risk patients is possibly due to the presence of

cellular invasion and poor differentiation in the more aggressive tumour variant, regulated

by the biological pathway of cellular differentiation.

Our study has some limitations. First, QuRiS was not implicitly tested for preanalytical

sources of variation, such as scanner manufacture, reconstruction kernels, and slice thick-

nesses. However, since our study involved cohorts from multiple institutions, it relied on

images from multiple scanners and with different kernels and slice thicknesses. Second, the

developed nomogram, QuRNom, showed prognostic and predictive performance but was not
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explicitly shown to rely on a causal association. Third, there was no way of controlling for

the time between image collection and treatment delivery. Although not explicitly evaluated

in this study, these temporal differences could affect the performance of QuRiS. Finally,

the treatment cohorts (surgery alone and surgery plus adjuvant chemotherapy) were not

homogeneously determined since they were not obtained from a controlled clinical trial. To

ensure the validity of QuRiS for clinical use, patients would need to be prospectively and

randomly assigned to either surgery plus adjuvant chemotherapy or surgery alone on the

basis of QuRiS scores, and survival of these patients should then be analysed to confirm the

efficacy of QuRiS in identifying the most appropriate treatment for patients with early-stage

NSCLC.

In summary, we developed a quantitative radiomic risk score (QuRiS), based on 13 fea-

tures, which was prognostic and predictive of benefit of adjuvant chemotherapy following

curative resection in early-stage NSCLC. Further multisite validation including retrospec-

tive validation of archived samples from completed clinical trials followed by large prospective

clinical trial evaluation, is necessary to validate QuRiS as a non-invasive biomarker to risk-

stratify patients and a prognostic and predictive complementary test for early-stage NSCLC,

especially given its low cost, which could represent a non-disruptive option within the clinical

workflow.
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Chapter 4

Predicting Hyperprogressors using

Radiomic Features

4.1 Overview

The addition of immune checkpoint inhibitors (ICIs) to the armamentarium of cancer ther-

apies has resulted in unprecedented improvement in survival outcomes for a wide range of

malignancies, including non-small cell lung cancer (NSCLC). With the approval of ICIs

for clinical use in these malignancies, a phenomenon of paradoxical acceleration of dis-

ease progression after initiation of immunotherapy has been recently described by a few

groups596061.62 This phenomenon was labeled ‘hyperprogressive disease’ with the reported

incidence varying from 8.0% to 25.7%, depending on tumor histology and criteria used to

identify hyperprogressors (HPs)606263.64

The biological and clinical factors that contribute to the development of hyperprogressive

disease with ICIs are yet to be understood. Evidence from studies published to date have

shown associations between hyperprogression and advanced age64,65 a higher number of

metastatic sites at baseline4 and specific genetic alterations, such as murine double minute-2

(MDM2) amplification or epidermal growth factor receptor (EGFR) mutations.60 However,
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these observations have not been consistently noted in all the studies, and some of them

have reported unexpected rapid disease progressions.66 There is, therefore, a pressing need

to identify biomarkers that could identify and help stratify this unique group of patients in

whom ICI therapy not only may lack efficacy but also could lead to rapid disease progression

and worse clinical outcomes.

CT images of tumors contain a vast amount of valuable information in the form of sub-

tle variations in shape, intensity, gradient, and texture beyond the semantic features that

are routinely used by radiologists to describe radiographical appearances of tumors.14 10

Radiomics13 involves the use of computer vision and machine learning methods to quanti-

tatively interrogate the subtle subvisual characteristics of radiographical images in a high-

throughput manner in order to answer relevant clinical questions. Radiomic features have

shown prognostic and predicting response to multiple different treatments across a wide

variety of cancers, including lung6768697054,15 breast71,7218–21 brain737475,76 prostate7778 and

colorectal46 cancers. Specifically, in lung cancer,79 radiomics approaches have been used to

predict the benefit of adjuvant chemotherapy, prognosticate disease risk in early-stage lung

cancer,15 predict treatment response to concurrent chemoradiation in locally advanced dis-

ease7015 and to predict response to immune checkpoint inhibition in advanced NSCLC5480.81

These features are sought to capture the extent of heterogeneity and other biologically

relevant features, such as interaction with stromal or vascular components within the given

region of interest. Our group and several others have examined the region beyond the tumor

boundaries for this approach and interrogated the peritumoral or space immediately adjacent

to the tumor. In our recently published work, we have shown that these peritumoral radiomic

textural patterns can determine the response to ICI in patients with late-stage NSCLC.54

Another important hallmark of more aggressive cancers is the extent of neovascularization

and angiogenesis present in the tumor microenvironment (TME). Our groups have looked

at quantifying this vessel tortuosity as a radiomic feature—quantitative vessel tortuosity

(QVT) on the CT scan as a way of representing the curvedness of the blood vessels feeding
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the tumor. We have previously shown that QVT features could be used to distinguish

malignant adenocarcinomas with more tortuous vasculature versus benign granulomas from

non-contrast chest CT scans.82 Amarked decrease in QVT in patients with advanced NSCLC

treated with ICI has been associated with response to therapy.83

In this study, we sought to evaluate the ability of radiomic features pertaining to intra-

tumoral and peritumoral textural patterns and tortuosity of tumor-associated vasculature

to further characterize the response patterns seen in patients with NSCLC treated with ICI.

In this work, we hypothesize that hyperprogressive disease would have a unique radiomics

pattern associated with it when compared with other response patterns, such as responders

(stable disease (SD), partial response (PR), complete response (CR)) and non-responders

(progressive disease (PD)) as determined by RECIST V.1.1.83 We studied the performance

of each feature family (intratumoral, peritumoral texture, and vessel tortuosity) within un-

supervised as well as within the unified supervised classification model in predicting HPs

from other response patterns. We developed our radiomic model on a training set and vali-

dated our findings on a validation set in a blinded manner. Additionally, we also performed

a survival analysis based on our radiomic model using the log-rank test to stratify predicted

HP patients based on overall survival (OS).

4.2 Methods

4.2.1 Study design and subjects

In this study, we retrospectively reviewed electronic medical records of 524 consecutive pa-

tients with NSCLC who received monotherapy with either a PD1 or PD-L1 inhibitor between

January 1, 2015, to April 30, 2018, at Cleveland Clinic. Data pertaining to demographics,

smoking history, histology, and molecular testing, number of prior lines of therapy, perfor-

mance status per the Eastern Cooperative Oncology Group (ECOG) scale, response to ICI

on first radiographical assessment, follow-up, and vital status were extracted from electronic
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medical records. We identified patients who received ≤ 3 cycles of therapy and also noted

the reason for discontinuation of treatment.

4.2.2 Identifying HPs, responders and non-responders

All CT scans were independently reviewed by two clinicians (PDP and PJ) and a senior

radiologist (AG). To be eligible, patients had to have CT images available at a minimum of

three time points at least 2 weeks apart—a baseline CT scan immediately before starting

immunotherapy, a prebaseline CT scan at diagnosis, and the first post-treatment scan after

initiating the ICI. Patients without measurable disease per RECIST V.1.1 or lung lesions

on baseline pretherapy scans were excluded from the analysis. RECIST V.1.1 criteria were

used to calculate the sum of the largest diameters of the target lesions on each of the CT

scans. New lesions on treatment were excluded from calculations.

Response assessment on all patients was performed as per RECIST V.1.1 criteria. Specifi-

cally, two target lesions per organ to a maximum of five lesions were identified and measured

by a thoracic radiologist (10 years of experience), on prebaseline, baseline, and post-ICI

therapy scans for every patient. The four RECIST categories were defined using the target

lesions observed on three consecutive CT scans. The sum of diameters of the target lesions

(longest for non-nodal lesions and the short axis for the nodal region) were compared for

prebaseline, baseline, and post-ICI therapy scans. The four categories were defined as CR,

that is, the disappearance of all the lesions, PR, that is, ≥ 30% decrease in the sum of the

longest diameters of target lesions compared with baseline; PD, that is, ≥ 20% increase in

the sum of the longest diameter of target lesions; and SD, that is, neither PR or PD.84 For

the present study, the responders to ICI therapy were identified as those patients with CR,

PR, and SD, and non-responders were patients with PD. To determine hyperprogressive

disease, tumor-growth kinetics, which measures the change in tumor size per unit time, were

calculated for all the PD lesions using the previously defined methodology.84 The details

regarding the calculations of tumor growth kinetics are described in online supplemental
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appendix 1. TGKpre was defined as the change in tumor size per unit of time (months)

between the baseline and prebaseline scans.

Meanwhile, TGKpost was defined as the change in tumor size per unit time (months)

between the baseline and post-ICI therapy scans. HPs were defined when TGKpost was

twice of TGKpre. The details about three class selections are described in the flowchart and

online supplemental appendix 1 (pp3).

4.2.3 Radiomic feature extractions

Radiomic features were extracted using software developed at the Center of Computational

Imaging and Personalized Diagnostics, Case Western Reserve University (Cleveland, Ohio,

USA), implemented on a MATLAB release V.2015 platform.

Textural radiomic features from Gabor, Haralick, Laws, Laplace, and Collage feature

families were extracted from each annotated intratumoral and peritumoral region. To ensure

the stability and reproducibility of radiomic features, we used the test–retest Reference Image

Database to Evaluate Response lung CT dataset (online supplemental appendix 1, pp2).

A set of 74 QVT features were extracted from the segmented vasculature surrounding

the nodule. These features pertain to the tortuosity, curvature, and branching statistics as

well as the volume of the vasculature. In addition, we measured the angles of each three

consecutive points of the vasculature and computed the distribution of these angles33 (online

supplemental appendix 1, pp1).

4.2.4 Feature evaluation and classifier construction

First, to evaluate and analyze the structure of an entire dataset, unsupervised clustering

was performed on the radiomics feature pool using heatmaps and K-mean clustering. Exter-

nal validation of the clustering analysis was performed by comparing the clustering results

against ground truth to identify high-risk patient cohort within the dataset without prior

knowledge of biology or outcome.
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Second, the supervised experiment was performed by considering the primary endpoint

of the study to differentiate HPs from the other response patterns. A radiomics model was

developed using the training cohort. For the purposes of feature and classifier selection, 300

iterations of threefold cross-validation were used within the training dataset. The minimum

redundancy maximum relevance feature selection algorithm was implemented within the

cross-validation setting to select the top-performing radiomic features. Top features were

analyzed with box and whisker plots, Wilcoxon rank-sum tests, p values, as well as feature

maps.

The five machine learning classifiers implemented within the training set included Ran-

dom Forest (RF), linear discriminant analysis, diagonal linear discriminant analysis, quadratic

discriminant analysis, and support vector machine. The best performing classifier modeled

on the training set was then validated on an independent and blinded validation set.

4.2.5 Statistical analysis

The statistical analysis was performed using MATLAB V.2015 and R V.3.5.3. A two-sided

p value of <0.05 was considered significant for all the statistical analyses. Differences in

distributions between the patient dataset and variables were assessed with the unpaired,

two-tailed 2 test, or the Fisher exact test as appropriate.

The selected top features were analyzed using box and whiskers plots, along with the

Wilcoxon rank-sum tests. Next, the feature maps of the top features were compared against

three classes. To validate the classifier performance, the area under the receiver operating

curve (AUC), accuracy, sensitivity (true positive rate; ie, predicting HPs accurately from

the rest), and specificity (true negative rate; ie, predicting other classes accurately) were

calculated for training as well as validation datasets.

Further, the patients were stratified into two groups based on the labels/output predicted

by the locked-down machine learning classifier. The OS was compared against the two

predicted groups. The OS was defined as the time between the initiation of ICI to the death
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Figure 4.1: Overall workflow and pipeline of the project. The first step involves identifying and annotating
lung nodules on prebaseline, baseline, and post-ICI therapy scans. The next step involves calculating TGKs
and defining responders, non-responders, and hyperprogressors. After defining the three groups, intratu-
moral and peritumoral textural features are extracted using MATLAB V.2015a. For the peritumoral region,
features were extracted from 0 to 15 mm region outside the tumor and divided into three 5 mm peritumoral
rings. Feature statistics included mean, median, SD, skewness, kurtosis, and range and were calculated for
each of the individual annular rings. The whole dataset was divided into training and validation sets. Top
features were selected using the minimum redundancy maximum relevance feature selection algorithm using
the training dataset. A classifier was trained using the training cohort, and the performance was validated
using the validation set using clustering, classifiers, and KM plots. ICI, immune checkpoint inhibitor; KM,
Kaplan-Meier; TGK, tumor growth kinetic; TGKpre, change in tumor size per unit time (months) between
the baseline and pre-baseline scans; TGKpost, change in tumor size per unit time (months) between the
baseline and post-ICI therapy scans.
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of the patient. The patients were censored if the date of death was unknown. The Kaplan-

Meier (KM) survival curves were plotted for two groups using OS. The survival analysis was

performed using log-rank tests and HRs with corresponding CIs.

The survival analysis and classification were further performed within individual groups

of response patterns (responders, non-responders, and HPs). The classifier performance

was compared for differentiating HPs from responders, HPs from other non-responders and

responders from non-responders. The three models were compared with classifier AUC as

well as HRs and KM curves.

The overall work pipeline is explained in figure 4.1.

4.3 Results

4.3.1 Patient cohort

A total of 524 patients with advanced NSCLC who received ICIs were analyzed in the study,

out of which 315 received ≤ 3 cycles of an ICI. The patients who either did not have CT

images available for analysis, or no available OS or had an unmeasurable disease or had no

target lung lesions on baseline scans or poor image quality as determined by a radiologist were

excluded from the analysis. The study included the remaining 109 patients after excluding

these cases. After implementing RESIST V.1.1 criteria and tumor growth kinetics, a total

of 19 HPs were identified. For the cohort with other response patterns (CR, PR, SD, and

PD), we identified n=90 based on their first imaging assessment (usually post two cycles)

after immune checkpoint blockade (figure 4.2).

The clinical characteristics are listed in table 1. The distribution of patients in the

training and testing sets is listed in online supplemental appendix 1 (pp1).
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Figure 4.2: CT scans: (A) responders, (B) non-responders and (C) hyperprogressors. The first row
shows baseline CT scans and the second row represents CT scans for the same patient after two cycles of
immunotherapy.

4.3.2 Experiment 1: analyzing radiomic features

Unsupervised clustering analysis on the feature set

First, the patterns of radiomic features were analyzed using clustering-based heatmap analy-

sis. The approach involves plotting out the individual feature values for each patient within

a matrix and performing unsupervised clustering. Heatmap analysis on intratumoral and

peritumoral textural patterns resulted in 78.9% of HPs being colocated within cluster 1.

Similarly, heatmap analysis with QVT features revealed the HPs aggregating together (fig-

ure 4.3).

Next, the entire feature pool, that is, the combination of intratumoral textural, per-

itumoral textural, and QVT radiomics were used with principal component analysis and

k-means clustering to identify four clusters. The compactness within the clusters, that is,

how similar are the members within the same group, was observed to be 78.1%. The val-

idation of the constructed cluster was performed using heatmaps and silhouette coefficient

(silhouette width). The silhouette plot36 suggests that the clustering using the four groups

was optimal with no negative silhouette width and most cluster values of >0.5 (online sup-
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Figure 4.3: Unsupervised clustering analysis: (A) heatmaps for (i) radiomics intratumoral and peritumoral
features where 78.9% HPs clustered together in cluster 1, (ii) quantitative vessel tortuosity features. (B)
K-mean clustering analysis: (i) elbow curve representing an optimum number of clusters formed using the
top three principal components after performing principal component analysis on the entire feature cohort.
The optimum number of clusters were observed to be four. (ii) clusters after performing clustering using
k=4. These clusters had 78.1% compactness within the clusters. Almost all the HP (80%) were clustered in
clusters 3 and 4. Responders and non-responders formed clusters 2 and 1. HP, hyperprogressor.
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plemental appendix 1, pp4).

Within the constructed clusters, 80% of combined cluster 3 and cluster 4 comprised 80%

of HPs. The remaining 20% HPs were part of cluster 1, making up 15.38% of cluster 1.

Twenty percent of responders were clustered together with HPs in cluster 4. The remaining

two clusters (clusters 1 and 2) comprised primarily of the responders and non-responders

(figure 4.3). Specifically, cluster 2 did not have a single HP within it. The detailed results

showed that 53.85% cluster 1 and 42.85% cluster 2 contained non-responders, whereas 30.76%

cluster 1 and 57.14% cluster 2 had responders. The unsupervised clustering analysis suggests

that high-risk HPs were all clustered together, potentially suggesting that these specific

patient groups had a distinct radiomic signature when compared against responders and

non-responders.

4.3.3 Experiment 2: supervised classifier for distinguishing HPs

from other response patterns

Supervised analysis for selecting the top features The top three features during feature dis-

covery within the training cohort included one peritumoral texture and two QVT features.

The peritumoral feature observed was from the Gabor feature family from a 5–10 mm peritu-

moral region. The other two features were observed from the QVT feature family explaining

local curvature and tortuosity of the vessels surrounding the nodule. Hyperprogressive pa-

tients were observed to have high feature expressions as compared with responders and

non-responders (figure 4.4).

The selected top features were further compared against clinical variables and tumor

volume using Pearson’s correlation coefficients. The maximum correlation was observed

within the Radiomics Gabor feature and tumor volume (rho=0.588).
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Table 4.1: Cross validation and hold-out test set performance metrics (AUC, accuracy, sensitivity, speci-
ficity) of networks CA (trained on Atrain) and CB (trained on Btrain) in detecting clinically significant
prostate cancer slices, evaluated on three different b-value settings a) B4b900: (0, 300, 500, 900 s/mm2) b)
B4b2000: (0,900,1100,2000 s/mm2 and c) B2b1300: (0, 1300 s/mm2). N=112 patients scheduled for prosta-
tectomy underwent two prostate MR examinations (SA and SB) performed on the same day approximately
15 minutes apart. The scans, SA and SB , were divided into training set (Atrain and Btrain), N=78, and test
set (Atest and Btest) N = 34.

b value setting Cross-validation
AUC
(95% CI)

Accuracy Sensitivity Specificity p value (AUC)

CA
0.81

(0.79–0.83)
74% 86% 69%

B4b900 CB
0.82

(0.79–0.84)
76% 70% 79%

p = 0.64

CA
0.82

(0.79–0.84)
78% 69% 82%

B4b2000 CB
0.80

(0.78–0.83)
71% 77% 69%

p = 0.18

CA
0.85

(0.83–0.87)
78% 79% 77%

B2b1300 CB
0.84

(0.80–0.86)
76% 76% 76%

p = 0.39

b value setting
Hold-out

test set (Stest)
AUC

(95% CI)
Accuracy Sensitivity Specificity p value (AUC)

CA
0.78

(0.75–0.81)
70% 88% 69%

B4b900 CB
0.79

(0.76–0.82)
76% 75% 76%

p = 0.58

CA
0.80

(0.77–0.84)
76% 81% 74%

B4b2000 CB
0.78

(0.75–0.82)
74% 74% 73%

p = 0.11

CA
0.84

(0.81–0.87)
79% 72% 82%

B2b1300 CB
0.85

(0.83–0.88)
80% 77% 81%

p = 0.58

Table 4.2: Top Features

Feature Family Descriptor Location Statistics

QVT7
Mean Curvature of

branches surrounding the tumor
Mean Surrounding the tumor Mean

QVT44
Curvature values associated

with vasculature
Entropy Surrounding the tumor Mean

Radiomics Gabor Freq-pi/2 theta-90 5-10mm Median
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Figure 4.4: Top feature analysis: (A) The box plots for the top three selected features for (i) training cohort
and (ii) validation cohort. HPs had statistically significant high-feature values when compared against both
responders and non-responders in both pieces of training as well as validation sets. (B) Top feature expres-
sion maps with corresponding CT scans for (i) responders, (ii) non-responders and (iii) HPs.Corresponding
peritumoral Gabor feature maps are represented in (iv) responders, (v) non-responders and (vi) HPs. sim-
ilarly, corresponding vessel tortuosity expressions and expressed for (vii) responders, (viii) non-responders
and (ix) HPs. HPs were observed to have more convoluted vessel maps. Similarly, radiomic Haralick texture
maps represented chaotic peritumoral microarchitecture of HPs. HP, hyperprogressor; (ns, not significant *
= p<0.05, ** = p<0.005, *** = p<0.0005).
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Supervised classifier performance

Optimal classifier performance with the highest specificity within the training set D1 was

achieved using the RF classifier with 50 trees. On the training cohort (D1, n=30), 300

iterations of threefold cross-validation yielded an average AUC of 0.85±0.06 and an accuracy

of 0.86±0.06 for predicting HPs from the other response patterns. The sensitivity, that

is, identifying HPs, was observed to be 0.78±0.11, whereas specificity was observed to be

0.91±0.10. The performance of all the five classifiers, along with the feature selection method,

is listed in online supplemental appendix 1 pp4. The same classifier was further used for the

independent validation set. Within an independent blinded test set, (D2, n=79), the same

RF classifier yielded an AUC of 0.96. The accuracy of the classifier was 0.83, whereas the

sensitivity and specificity were 1.0 and 0.81, respectively. The F1 score was observed to be

0.58. In the testing set, all the HPs were identified correctly. Among the remaining cases,

eight responders and six non-responders were mistakenly classified as HPs. The confusion

matrix is reported in online supplemental appendix 1, pp4.

Within D2, a subset analysis for differentiating responders against HPs, AUC was ob-

served to be 0.96, and sensitivity and specificity were 1 and 0.91, respectively. The accuracy

was observed to be 0.86. For differentiating non-responders against HPs, AUC, accuracy,

sensitivity, and specificity were 0.97, 1, 0.86 and 0.89, respectively.

The specific selected top feature set, along with the RF classifier, could not differentiate

responders and non-responders within the validation set D2 (AUC 0.43).

4.3.4 Experiment 3: predicted radiomic response groups can also

stratify patients with NSCLC treated with ICI based on OS

On D2, the two predicted groups by the radiomic model, RF classifier, had a statistically

significant difference for predicting OS (HR=2.66, 95% CI 1.27 to 5.55, p=0.009). The

predicted HPs had significantly lower OS compared with those patients identified as non-
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Figure 4.5: Kaplan-Meier survival curves for OS according to predicted labels by random forest classifiers:
OS for the test set D2 consisting of patients who were (A) combined responders, non-responders, and HPs.
Within predicted two groups, predicted HPs had significantly shorter OS compared with predicted non-
HP (B) subset of D2 consisting only HPs and non-responders and (C) subset of D2 consisting HPs and
responders. HP, hyperprogressor; OS, overall survival.

HPs by the RF classifier. The mean survival time for predicted HPs was 20 months, whereas

the predicted survival meantime for non-HPs was 38 months.

Within the subset analysis of D2, radiomic analysis on predicted HPs had an HR for OS

of 3.86 (95% CI 1.52 to 9.86, p=0.0046) when compared with responders alone, whereas pre-

dicted HPs had an HR of 5.93 (95% CI 2.25 to 15.64, p¡0.0001) with respect to non-responders

(figure 4.5). These results suggest that predicted hyperprogressors had statistically signifi-

cant worse OS when compared against either responders or even non-responders.

Meanwhile, a comparison between predicted responders and non-responders based on

selected top three radiomic features did result in a statistically significant difference between

the two groups (HR=1.29, 95% CI 0.49 to 3.35, p=0.59)

4.4 Discussion

The introduction of ICIs has led to a paradigm shift in the management of a vast range of

malignancies, including NSCLC. However, ICIs have been associated with atypical response

patterns such as hyperprogression, a novel pattern of disease acceleration after the use of
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PD1/PD-L1 inhibitors,1 2 which has been reported across different tumor types such as

melanoma, head, and neck squamous cell cancer, NSCLC, and urothelial carcinoma, to

name a few. It has been postulated that this paradoxical acceleration of disease with ICI

may, in fact, be responsible for the higher progression rates and mortality noted early on

in patients undergoing immunotherapy in comparison to the chemotherapy, as shown in the

phase III trials such as CheckMate 057 that led to the approval of these agents.85 Due to

the lack of a standard definition and different criteria used to define hyperprogression, the

reported incidence varies significantly among these studies. For patients with NSCLC, the

previously reported incidence ranges between 8% and as high as 25.7%.2 4

In our study of patients with advanced NSCLC treated with a PD1 or PD-L1 inhibitor,

we observed hyperprogression in 19 patients. Since most patients receiving ICIs at our

institution have a response assessment with imaging performed within 9 weeks or three

cycles of therapy, we used this time point as a cut-off for our definition of hyperprogression.

Although this varies slightly from previous studies that have used a 2-month or 8-week

cut-off, we believe that using the 9-week limit allowed us to capture the true incidence of

hyperprogression in our cohort.

The biology of hyperprogressive disease is yet to be understood. In a previous study

by Kato et. al.,60 the authors noted an association with certain genetic alterations such as

EGFR mutations and MDM2 amplification.60 In our study, a majority of the patients did

not have any genetic alterations detected on our in-house lung hotspot panel of actionable

mutations in NSCLC. Although nine patients did have EGFR sensitizing mutations, we did

not observe any significant correlation with hyperprogression. The association of certain

clinical variables with hyperprogression such as age,59 the number of distant metastatic

sites86 has not been consistently confirmed across different studies. There is, therefore, an

unmet need for biomarkers that could potentially identify patients at risk of worse clinical

outcomes with therapy.

Imaging-based response assessment in patients receiving immunotherapy is fraught with
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challenges due to the inability of traditional criteria (RECIST) to account for atypical re-

sponses observed with these agents. In some of our previously published work,31 we have

identified novel imaging-based radiomic biomarkers to assess responses to ICIs in patients

with advanced NSCLC. The foundation of radiomics is that CT images contain a vast amount

of information in the form of subtle variations in shape, intensity, gradient, and texture be-

yond the semantic features that are routinely used by radiologists to describe radiographic

appearances of tumors. In the aforementioned studies, we are also tried to understand the

morphological/pathological correlates of the predictive radiomic features that correspond to

responses to immunotherapy. In doing so, we have identified certain radiomic features that

correlate with tumor-infiltrating lymphocyte density on digitalized histopathology specimens

from patients treated with ICIs5962.65

While the biological underpinnings of hyperprogression are yet to be uncovered, many of

the current theories postulate that dysregulation of various immunoregulatory cells in the

tumor microenvironment may be responsible for this phenomenon. One hypothesis that has

been put forth is that of ‘contrasuppression’ or activation and proliferation of regulatory T

cells in the presence of ICIs.86 Other theories suggest that an imbalance in the cytokine milieu

and resultant immunosuppression may play a role in paradoxical disease progression with

ICIs70.87 Lo Russo et al64 demonstrated the role of tumor-associated macrophage enrichment

in immunodeficient mice injected with patient-derived xenografts belonging to patients with

NSCLC with hyperprogression after PD1/PD-L1 blockade.

In this study, we evaluated the performance of a new radiomic model using the inte-

gration of intratumoral and novel peritumoral texture and vessel tortuosity metrics (QVT)

in predicting hyperprogressive disease using only pretreatment CT scans. Our approach

is novel being the first Radiomics study that included intratumoral, peritumoral textural

patterns along with vessel tortuosity features to predict specific patterns associated with hy-

perprogressive disease.88 Our results suggest that these peritumoral texture and vasculature

patterns are significantly different in HPs when compared with either responders or other
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non-responders.

The peritumoral area is an integral part of the TME. Recent work has suggested that

TME embeds information that relates to drug resistance, and the effectiveness of chemother-

apy and immunotherapy695471.89 Previous investigations of radiomic features from the TME

have shown their utility in differentiating lung adenocarcinomas from granulomas, predicting

response to neoadjuvant chemoradiation and surgery, pemetrexed chemotherapy in locally

advanced NSCLC.14 17 18 Sun et al40 have used a radiomic approach on tumor region and

the area surrounding it to detect CD8 cells and used that signature to predict ICI response

in multiple retrospective cohorts. For predicting hyperprogressive disease, our results are

in line with the recent study by Tunali et al,88 where top radiomic features reported in the

study were also observed from the tumor boundary.86 Our top radiomic features were also

observed from peritumoral regions and represent peritumoral heterogeneity within the tex-

tural patterns. These features had higher expression in the baseline CT scans of HPs when

compared with responders or non-responders. One of the unique strengths of our study was

that in addition to textural feature analysis, we also used a novel approach to quantify the

blood vessel morphology (QVT) in the peritumoral area. These QVT features were two of

the top three distinguishing radiomic features, emphasizing the importance of peritumoral

vasculature in the phenomenon of hyperprogression. QVT features showed more tortuous

and disordered vessel architecture for HPs compared with responders or non-responders. We

also evaluated the prognostic ability of the radiomic features by performing a survival and

classification analysis within the three response categories: responders, non-responders, and

HPs. The radiomics classifier correctly predicted that the HP patients would have worse OS

when compared with responders and non-responders.

We acknowledge the limitations of our study, many of which are a consequence of the ret-

rospective nature of this study and a limited number of HPs cases. Since the HP phenomenon

is quite rare and observed within less than 8% cases, we were limited in the total number of

HP cases in the analysis. Further, ours is a single-institution study, but further validation
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in independent cohorts of patients is warranted. Since the hyperprogression phenomenon is

very rare and observed within less than 8% cases, we were limited in the HP cases. Fur-

ther, the exclusion of patients without adequate scans for analysis could have affected the

incidence of hyperprogression and the performance of our discriminative radiomic signature.

While there is no standardized definition of hyperprogression, some previous studies626386

have used volumetric changes to identify hyperprogressive disease. We acknowledge the lim-

itations of using non-volumetric tumor growth kinetics for identifying hyperprogression, but

believe that this would be a methodology that clinicians could easily replicate in practice

to identify this subset of patients. PD-L1 expression data were unavailable for a majority

of patients in our cohort. The correlation between PD-L1 expression, which is a clinically

validated biomarker of benefit from PD1/PD-L1 blockade and hyperprogression, poses an

interesting question which could not be addressed in our study.

4.5 Conclusions

Our findings suggest that radiomic analysis of pretherapy CT scans of patients with NSCLC

who are being considered for immune checkpoint blockade could be used to identify patients

who are at a higher risk of hyperprogression with this treatment. Added benefits of using

radiomic analyses include the ability to analyze readily available routine CT scan images

and the non-invasive nature of the risk assessment without the need for additional biopsy

specimens.

Further rigorous validation in independent cohorts of patients and radiomic–histopathological

correlative analyses would further strengthen the argument for using radiomic analyses in

routine clinical practice.
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Chapter 5

Combining Radiomic and Pathomic

Features for Predicting Recurrence

and Treatment Response in

Non-Small Cell Lung Cancer

5.1 Overview

In non-small cell lung cancer space (NSCLC), current treatment guidelines for early-stage

patients suggests complete surgical resection, followed by chemotherapy for the subset of

patients, even though there’s no definite guideline on which patients would benefit from it.

There have been controversies within a few clinical trials, and the recurrence rate for these

patients still remains around 55%.15 In the late-stage NSCLC setting, immunotherapy

has changed the treatment regime. Even though it has significantly improved the overall

survival rate of these patients, not every late-stage NSCLC patient responds to it. In this

work, we have specifically focused on these two clinical cases and combined the corresponding

radiology and pathology information to build a novel multiscale AI model.54
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Within the Radiology space, the Radiomic Features are known to capture the subvisual

imaging attributes by looking at the voxel level information of the radiographic scans.13 The

radiomic information extracted from the annotated tumor region as well as from the area

surrounding the nodule on the CT scans has shown diagnostic, prognostic, and predictive

performance within the NSCLC space1590.46 The various radiomic features contributing

to the disease stratifications include textural patterns extracted using various filters (e.g.,

wavelet, Laws, etc.) as well as various patterns extracted using co-occurrence matrix-based

feature patterns9192.93

With the advancements in high-speed, high-resolution whole slide image scanning hard-

ware, the histological tissue slides can be digitized and analyzed efficiently. Pathomics or

quantitative histomorphometric analysis refers to the process of extraction and mining of

computer-derived measurements from digitized histopathology images. While the visual

reading of routine histopathology slides of tumors by pathologists can help predict cancer

behavior to a certain degree, sophisticated pathomics has the potential to ”unlock” more

revealing sub-visual attributes about tumors.94 The research community has developed ap-

proaches quantifying nuclear arrangement, texture, and orientation for disease presence, risk,

aggressiveness, progression, and survival, thus potentially providing a comprehensive por-

trait of the tumor’s morphologic heterogeneity9596.52

Even though there have been significant efforts within Radiomics and Pathomics within

the NSCLC, there have been relatively few attempts to combine radiology and pathology95.97

Several recent studies show that the multimodal datasets carry complementary information

and could improve the disease-specific AI models95.97 Specifically, within the lung cancer

domain, for each individual patient, the radiology and pathology data are usually readily

available. It stands to reason that one could potentially combine these two modalities and

create an integrated, accurate model.

For early-stage cases, surgical specimens are available for each patient, as well as they

have the preoperative CT scans, which are usually used for the initial diagnosis. These two
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modalities, presenting information on the different scales, could be potentially combined to

predict the recurrence of these patients and, subsequently, the added benefit of adjuvant

chemotherapy.15 Similarly, for late-stage lung cancer cases, the availability of both histology

and radiology scans could improve the prediction of patient responses to the immune check-

point blockade.54

In this study, we have combined Radiomic from CT scans, and Pathomics from whole-slide

tissue scans to predict the added benefit of adjuvant-chemotherapy for early-stage NSCLC

patients and predict response to immune checkpoint inhibitors for late-stage NSCLC pa-

tients, both clinically relevant question with respect to lung cancer. The radiomic features

were extracted from the tumor region and from the region immediately surrounding the nod-

ule. The pathomic features included features explaining the shape, texture, and orientation

of nuclei, as well as features explaining the interplay between cancerous and non-cancerous

clusters on the whole-slide tissue scans. We specifically focused our analysis on interpretable

features. The combined radio-pathomic model was constructed by combining the best ra-

diomic and pathomic feature sets. This is one of the largest radio-pathomic studies in the

field of lung cancer, spanning 250 patients across multiple NSCLC stages. Our results show

that the combination of radiomic and pathomic provides us with an opportunity to look at

the complementary information across multiscale and provides better risk stratification and

response prediction, and improves treatment predictions. To compare our fusion approach,

we implemented individual Radiomic and Pathomic-based models for these two applications

and compared the AUC, accuracies, sensitivities, and specificities. Finally, we have also

calculated Hazard Ratios for all models and compared them against each other.

85



Figure 5.1: Dataset distribution for the lung cancer cohorts. All the above cases had CT scans and
corresponding histopathological scans. The cases were used within two problem statements- predicting
recurrence and predicting response to immunotherapy.

5.2 Methods

5.2.1 Dataset

This study included CT scans and HE-stained whole slide images for a total of N=228

patients. Figure 1 explains the patient distribution diagram. Of these patients, 193 were

from stage I and stage II, whereas 35 were from stage III and IV. All these patients had CT

scans, and corresponding HE-stained whole slide tissue scans along with the required clinical

information. The cases from stage I and stage II were used for predicting recurrence and

the added benefit of adjuvant chemotherapy. The cases from stages III and IV, a total of 35

patients, were used to predict patients’ responses to immunotherapy.
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Figure 5.2: The pipeline for the Raptomic Models. For CT scans, Radiomic features were extracted from
intra and peritumoral regions for building models to predict recurrence in early-stage NSCLC (prognostic
model) and predict response to immunotherapy (predictive model) in late-stage NSCLC. HE stained scans
were used for pathomic analysis for extracting pathomic features and constructing prognostic and predictive
models. For RaPtomic analysis, top radiomic and pathomic features were combined together, and the best
combination was selected for prognostic and predictive models.

5.2.2 Radio-Pathomic Analysis

The study’s primary goal was to validate whether radiomic and pathomic feature fusion

improve lung cancer clinical decision-making outcomes. We used two test cases to validate

the hypothesis. First, we used the combined radio-pathomic feature set to predict response

to adjuvant chemotherapy for early-stage NSCLC, and second, the combined feature set was

used for predicting response to immunotherapy response for late-stage NSCLC. The following

diagram (figure-2) explains the overall workflow of the analysis. The Radiomic features were

extracted from the CT scans, and simultaneously, pathomic features were extracted from

the corresponding whole-slide tissue scans. The top features from radiomic and pathomic

were combined for combined radio-pathomic analysis in the machine learning classifier. The

performance was compared against individual radiomic and pathomic models.
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5.2.3 Individual Radiomic Analysis

CT acquisition and segmentation

The lung nodules from CT scans were segmented using an expert radiologist using 3D slicer

software, where a freehand tool was used to segment the lesion on each 2D section manu-

ally. Further, the area around the tumor region was segmented using MATLAB software15

via morphological erosion and dilation operations. Five annular rings peritumorally were

analyzed, each with a 3 mm increment leading up to a maximum radius of 15 mm from the

nodule boundary. Radiomic features were extracted from the tumor and peritumoral regions

from the 3 slices with the largest tumor areas.

Extracted Radiomic Features

Quantitative features were extracted from within and outside the annotated lung tumor

regions. The extracted features included features from Gabor, Haralick, laws, and collage

feature families. The first-order statistics (mean, median, SD, skewness, kurtosis, and vari-

ance) of each of the features were computed.

Reproducibility of Radiomic Features

Radiomic feature reproducibility and correlations were considered before selecting the subset

of Radiomic Features to work on. First, the most correlated features (correlation ¿0.9) were

removed from the analysis. Next, the reproducibility of radiomic features was selected using

the RIDER test re-test dataset17. This dataset contains two CT scans of the same patient

taken 20 mins difference apart. The intra-class correlation coefficient (ICC) was calculated

for each feature and features having an ICC greater than 0.8 were retained for the analysis.

The final uncorrelated, reproducible feature set was used for analysis.
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5.2.4 Individual Pathomic Analysis

WSI, Tile Construction and Segmentations

Whole slide tissue images of patients were used for pathomic analysis. The analysis was

done on surgical specimens that had been digitally scanned at 20x magnification. Pathomic

features were extracted patches of 1000 pixel×1000 pixels within tumor annotated regions

on the whole slide images. A U-Net-based deep learning-based model convolutional neural

network (CNN) approach was used to identify tumor regions on the whole-slide tissue scans.

Next, another deep learning CNN-based automated nuclei segmentation approach was used

to accurately segment nuclei on each whole slide image. The approach ultimately resulted in

identifying each nucleus, along with its corresponding boundary. The detail regarding each

model is explained in appendix 1. Next, each nuclei on the scans were divided into cancerous

and non-cancerous nuclei using a machine learning-based model. These annotations and sets

were used for pathomic analysis.

Extracted Pathomic Features

Various pathomic features related to nuclei shape, orientation, and texture were extracted

for pathomic analysis. The segmented nuclei were also used for extracting various local and

global graph-based features. The cancerous and non-cancerous nuclei clusters were used for

extracting features explaining spatial arrangements between these two groups.

5.2.5 Statistical Analysis

For individual Radiomic, Pathomic models, the total radiomic feature set and a total of

pathomic feature sets were used respectively.

The early-stage cohort was divided into training and validation sets, where the training

cohort was used for selecting the top features and training the model, and the performance

was validated on an independent validation cohort. The feature selection pipeline followed
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the integrated mRMR feature selection method followed by LASSO analysis18.

The best features, along with their LASSO coefficients, were used to build a Radiomic

Risk Score (RRS) and Pathomic Risk Scores (PRS) for each patient. Finally, RRS and PRS

were combined and used for the combined Radio-Pathomic analysis. The improved model

performance was validated using hazard ratios (HRs), and C-indexes were used to compare

the improved model’s performance.

For the late-stage NSCLC cohort, all patients had received immunotherapy, and the

patients who had a complete response (CR) or partial response (PR) were considered im-

munotherapy responders, and patients with stable disease (SD) or (PD) were considered

non-responders19. For individual radiomic and pathomic analysis, the features were selected

using the mRMR feature selection algorithm followed by linear discriminant analysis (LDA)

classifier construction and simultaneously validated on an independent fold. The process

was repeated 100 times to get the more accurate estimations, and the results were calculated

with mean +/- standard deviation.

For the combined radio-pathomic analysis, the best Radiomic and Pathomic features were

combined and used within a 10-fold cross-validation setting to select the best radio-pathomic

feature set, and the performance was validated with an LDA classifier.

5.3 Results

5.3.1 Study Population and Characteristics

Table 1 below shows the details regarding the patient characteristics for the prognostic

early-stage cohort and predictive late-stage cohort. Within the early-stage cohort, 39.7%

of patients had a recurrence, whereas 60.3% of patients did not recur. Within the late-

stage lung cancer cases, 38.2% had stable disease, and 61.8% did not. Within the late-stage

NSCLC cohort, 38.2 responded to immunotherapy, and 61.8% did not.

90



5.3.2 Experiment-1- Predicting recurrence and added benefit of

adjuvant chemotherapy in Early-Stage Non-Small Cell Lung

Cancer

Within the radiomics model, the top selected features included haralick and collage features

from inside the nodule and 0-3mm surrounding the tumor region. The details of the top

features, along with their LASSO coefficients, are reported in appendix 1. The Radiomic Risk

Score (RRS) was constructed by using the weighted combination of the Radiomic feature

value with their corresponding coefficient. The constructed RRS had a c-index of 0.625

(se 0.062; p = 0.006) on an independent validation cohort of D1V1, which included patients

who only received surgery and no additional treatment. The threshold of 0.0401 was selected

using the training cohort D1T, and on the validation cohort D1V1, the same threshold gave

HR of 3.48 and a statistically significant difference between the two groups (p=0.005). For

the validation cohort D1V2 there was no difference between high-risk and low-risk groups and

the c-index was 0.45 (p=0.56), potentially suggesting that this groups which had patients

who received adjuvant-chemotherapy following surgery potentially had a subset of patients

who benefitted from the treatment and better survival.

Within the pathomics models, the top features included features were from the SPATIL

feature family. The constructed pathomic risk score (PRS), constructed using weighted

combinations of LASSO coefficients, had a C-index of 0.657 (p=0.03) on an independent

validation set D1V1. The threshold of 0.0142 was selected using the training cohort D1T,

and on the validation cohort D1V1, the same threshold gave HR of 4.39 and a statistically

significant difference between the two groups (p=0.0089). On D1V2 we observed the same

performance as that of Radiomics Model. There was no statistically significant difference

between Kaplen-Meier curves and the c-index was 0.55 (p=0.345).

Finally, these two signatures were combined. Individually, these two signatures have

no correlation between them, and while combining, the Radiomics signature contributed

91



Figure 5.3: RaPtomic Feature maps for early-stage NSCLC patients. The best features from Pathomics
included features from SPATIL feature families, and from Radiomics, the best features included features from
Haralick Feature Families. The best features seem to have higher expressions in recurrent cases compared
to non-recurrent ones

40%, whereas the Pathomic signature contributed 60% into the final RaPtomics model. The

C-index on an independent validation cohort improved to 0.715 on D1V1 showing a total

improvement of 3% compared to radiomics and 7% compared to pathomics based models.

The hazard ratio was 4.8 for the combined RaPtomics model (p=0.0016).

Figure-3 shows the feature maps for radiomics an pathomics for low and high-risk pa-

tients. Figure-3 shows the Kaplan-Meier survival curves for Radiomics, Pathomics, and

RaPtomics-based models for D1V1 and D1V2.

5.3.3 Experiment-2- Predicting Immunotherapy response in late-

stage non-small cell lung cancer

For Radiomics Model, the top selected features included features from Gabor and Laws

feature families. The top features are reported in appendix 1. The AUC of the model was

0.73, and accuracy, sensitivity, and specificity were 0.82, 0.87, and 0.73, respectively.

Within the Pathomics model, the top selected features included features from the shape-

based feature families and SPATIL feature families and had an AUC of 0.69 within the
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Figure 5.4: Kaplan-Meier survival curves for the independent validation cohorts D1V1 and D1V2 , The
constructed signature showed good separation for surgery alone cohort, but within patients who received
adjuvant-chemotherapy following the surgery, there was no difference between the two groups, potentially
suggesting that this group probably had a subset of patients who benefitted from chemotherapy and had a
better survival.

Table 5.1: Classifier comparison between Radiomic, Pathomic, and RaPtomics models for predicting re-
currence in early-stage NSCLC and predicting response to immunotherapy in late-stage NSCLC.

AUC ACCURACY Sensitivity (%) SPECIFICITY
DPathomic 0.69 0.73 0.98 0.33
DRadiomic 0.73 0.82 0.87 0.73

DCombined Radiomic-Pathomic 0.77 0.85 0.90 0.76

10-fold cross-validation setting. The accuracy, sensitivity, and specificity of the model were

0.73, 0.98, and 0.33, respectively.

For radio-pathomic analysis, top radiomic and top pathomic features were combined

together to be used as a RaPtomics feature set. Within this combined feature set, af-

ter performing 10-fold cross-validation, top features included both combined Radiomic and

pathomic Features, and the overall performance of the model improved to 0.77, which was

4% higher than Radiomics and 8% higher than individual pathomics based models.
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5.4 Discussion

In this work, we showed that combining Radiomics and Pathomics features improve the

prediction accuracy for lung cancer patients over models that uses monomodal data alone.

We showed two test cases within the non-small cell lung cancer (NSCLC) – first, within

the early-stage domain, we showed that combining radiomics and pathomics improves the

recurrence predictions, and within the late-stage domain, we showed that combining radiomic

and pathomic improves the prediction of which patients would benefit from immunotherapy.

Within the radiology and pathology fusion analysis, few deep-learning-based models have

been proposed within the lung space 20, but the interpretability of these models remains

limited due to the black-box approach used within the deep learning-based analysis. Com-

pared to deep learning approaches, the hand-crafted features extracted from histology images

and radiology images provide better explainability since the features were pre-defined, either

in a domain agnostic9899 or domain inspired100 way. Radiomics refers to quantitative mea-

surements of texture and shape attributes extracted using advanced image processing and

computer vision techniques from imaging modalities.101 Whereas Pathomics or quantitative

histomorphometric analysis refers to the process of extraction and mining of computer-

derived measurements from digitized histopathology images. Within the hand-crafted fea-

ture fusion approach, Feng et al.102 and wan et al.103 have shown the ability to combine

radiographic features from MRI scans and pathology-based features from HE-stained biop-

sies for advanced rectal cancer for predicting complete pathological response and response

to neoadjuvant chemoradiotherapy. They noticed an improved performance within AUC

at each grade of pathological response with integration when compared against individual

models. To the best of our knowledge, within the lung space, even though there is the easy

accessibility of radiographic and histology scans for each patient, none of the previous studies

has explored its combined effect.

In the first experiment, we have combined Radiomics and Pathomics for early-stage

NSCLC patients for whom the surgical resection is currently the standard of care.36 Adjuvant
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cisplatin-based chemotherapy is currently recommended for patients with stage II NSCLC

cases, whereas patients with stage I NSCLC continue to be treated with surgery alone3837

even though about 30–40% of patients with stage I NSCLC recur with post-operation ob-

servation alone. The inconsistencies between various clinical trials suggest the need for a

biomarker that could identify early-stage patients who would potentially recur and benefit

from the added benefit of adjuvant chemotherapy42?41.40 In our work, we show that in-

dividually Radiomics and Pathomics models are able to predict high-risk populations who

would benefit from adjuvant chemotherapy (Pathomic: C-index 0.647 (se=0.083); Radiomic:

C-index 0.622 (se=0.084)). After combining these two signatures together, the model per-

formance improved to 0.69 (se 0.07) within the independent validation cohort DV1. For

the population cohort from DV2 where patients received adjuvant chemotherapy following

surgery, we did not notice a significant difference between low and high-risk groups, poten-

tially suggesting that this population had patients who benefitted from chemotherapy and

had better survival as observed in the previous studies (Pathomic 0.546 (se 0.095) Radiomic

0.587 (se 0.07) RaPtomic 0.483 (se 0.084)).

The top radiomic features for early-stage NSCLC analysis included features from Haralick

and CoLIAGe feature families from the tumor region and the region immediately surround-

ing the nodule. Our results align with those previously published within the Radiomics and

early-stage domain, where authors noticed the top features observed from co-occurrence-

based feature families. Within the pathomic analysis, the top features were noticed from

SPATIL feature family, where the features characterizing the spatial arrangement33,34 of tu-

mor infiltrated lymphocytes (TILs) and interplays between lymphocytes and cancer cells96.104

The recent works suggest the utility of these SPATIL features not only within the lung but

also within various other cancers as well.105

Stage III and stage IV accounts for late-stage NSCLC cases. The addition of immune

checkpoint inhibitors (ICIs) to the armamentarium of cancer therapies has resulted in un-

precedented improvement in survival outcomes for late-stage patients37. However, the re-
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sponse rates to these drugs remain modest ( 27% in PD-L1 NSCLC in the first-line setting38

and 45% in the PD-L1high subgroup39, and 19% in the second-line setting) . In addition,

optimal patient selection for therapy remains a challenge because most available biomarkers,

such as PD-L1 expression, are insufficient to classify patients accurately, generating the need

for a consensus biomarker to identify patients who would benefit from these therapies. In our

analysis, we noticed that Radiomics and Pathomics individually were able to predict a subset

of the population who would benefit from ICIs. After combining both the feature sets to-

gether, the performance of the model improved to 8% over pathomic and 4% over radiomics.

The combined model had 2 features from Radiomics and 2 from Pathomics.The Radiomic

featrues were notices from the Gabor and Haralick Family from the peritumoral region and

from the Pathomic feature set, the top features were noticed from the nuclei-shape based

features. The chaotic and disturbed microarchitecture for immunotherapy non-responders

were noticed both on radiomic and pathomic feature sets.

Our analysis has some limitations. First, we had limited datasets. In the future, we

plan to validate the models on extensive on multiple external validation cohorts along with

validating radiomic features on multiple different scanners, slice thicknesses and reader seg-

mentations. Second, there are multiple ways in which Radiomics and Pathomics could be

fused together. We adapted a single fusion method, but we did not compare our fusion

strategy with other methods. In the future, we plan to check multiple fusion strategies

to combine radiology and pathology datasets. Future directions for this work also include

linking radiomic features from corresponding digital pathology surgical tissue sections and

genomic measurements to more comprehensively characterize the tumor.

Even after the limitations, we believe our analysis shows promising results for combining

radiology and pathology to improve the prediction accuracies within the non-small cell lung

cancer domain problems.
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Chapter 6

Integrated Nomogram for COVID-19

Prognosis

6.1 Overview

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 2

(SARS-CoV-2), is an ongoing global pandemic with over 3.93 million deaths and 181 million

total diagnosed cases worldwide so far106.107 The new COVID-19 delta variant, recently

diagnosed and spreading across the world, has the ability to cause very dense outbreaks108.109

The majority of COVID-19 patients present with mild disease to an outpatient clinic or

via telehealth with minor clinical symptoms. A lesser proportion of the patients develop

moderate to severe disease with significant pulmonary dysfunction or damage as evidenced

by signs of hypoxemia and moderate to severe dyspnea.107 According to one study, 20% of

diagnosed COVID-19 cases have severe or critical diseases, and about 8% of them require

intensive care management with or without mechanical ventilation.110 If we can diagnose

this high-risk population at the earliest stages, it will likely allow for optimal resource man-

agement and individualized treatment planning111.112

Imaging plays an essential role in the management of COVID-19 patients, with chest CT
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being the preferred modality for these patients.113 However, despite the high sensitivity of

chest CT, the reported specificity is quite low at about 25–33%, which is due to considerable

overlap in CT imaging features of COVID-19 and other viral types of pneumonia.114 This,

coupled with other challenges, such as transmission risk to uninfected health care workers

and other patients, consumption of PPE, and need for cleaning and downtime of radiology

equipment in resource-constrained environments, has led to the recommendation by multiple

professional societies against usage of CT as a routine screening test for COVID-19 but

reserved for only selected clinical scenarios.

Furthermore, a variety of prediction models have been reported for diagnosing and prog-

nosticating COVID-19, including a combination of clinical and lab data as well as imaging

features115116117118.119 According to a systematic review, flu-like symptoms and neutrophil

count are more predictive in diagnostic models, while comorbidities, sex, C reactive protein,

and serum creatinine levels are the frequently reported prognostic factors.120 Most of the

AI analysis has focused on chest x-rays (CXRs)106,107 though more recently, more and more

works on AI for CT scans have also been published. In this work, our focus has been solely

on CT scans, and especially machine learning-based models. However, many of the proposed

models are poorly reported and are at high risk of bias, and at present, it is not recommended

to use any of the reported prediction models for use in clinical practice.120

Therefore, there is an unmet need to develop non-invasive tools, preferably based on

existing imaging techniques and available clinical parameters, that can help prospectively

identify patients at higher risk for developing severe disease phenotype. The ability to

identify these patients who will probably need mechanical ventilation and develop severe

symptoms will allow us for optimal use of existing precious resources.

In the past few years, high-throughput computer extracted features from the radiographic

images (radiomics) has been useful for a variety of diagnostic, prognostic, and predictive

applications across several cancers as well as other diseases13121.14 These features are known

to capture the underlying tissue morphology and characteristics, which are not visually
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apparent to the naked eyes15.16 Within the COVID-19 space, radiomics has been used for

various applications. Radiomics has been successful in differentiating COVID-19 patients

from other pneumonia cases (diagnostic), as well as has shown application for predicting the

severity of COVID-19 patients (prognostic).

In this work, we aim to combine the clinical and laboratory parameters with imaging

data to build an accurate and easy-to-use nomogram to predict the need for mechanical

ventilation for COVID-19 patients. The imaging data includes radiomic features extracted

from the regions corresponding to COVID consolidation on CT scans; these regions of con-

solidation were automatically segmented using the U-Net-based model, making the whole

end-to-end pipeline completely automated. Our model has been validated on roughly 1,000

patients from two different institutions making this one of the largest radiomic-based prog-

nosis predictions for COVID-19 studies to date.

6.2 Methods

6.2.1 Study Population

The Institutional Review Board Committee approved the retrospective chart review study of

record at the University Hospitals, Cleveland (STUDY20200463), and the Renmin Hospital

of Wuhan University (ethics number: V1.0; IRB number 2020KS02010). The need for written

consent was waived. Following the inclusion and exclusion criteria, the study included D1

(N = 787) patients from the hospital of Wuhan University, Hubei General Hospital, and

D2 (N = 110) patients from University Hospitals, Cleveland. The details regarding the

inclusion–exclusion criteria and patient flowchart are mentioned in Figure 1.

Stratified random sampling was performed to split the data from institution-1 into 60%

training DT
1 (N = 473) and 40% testing DV

1 (N = 314). While randomly dividing the

data, the COVID patients being on the ventilator were kept approximately similar within

training and testing cohorts (The training cohort had 64% of the COVID patients being
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on ventilator, whereas 55% of the COVID patients did not use the ventilator. Similarly,

the testing set had 36% of the COVID patients who used the ventilator, and 45% of the

COVID patients did not use the ventilator).

The patients from institution-2 were used for independent external validation DV
2 (N =

110). The patients were acquired by following the chart review for patients who were seen

between January and September 2020.

6.2.2 Radiomic Feature Analysis

Detection and Segmentation of Lung Lesions

An expert radiologist with 14 years of experience delineated ground-glass (GGO) and con-

solidation regions on a subset of DT
1 [DT

UNET N = 88 (training cohort) and DV
UNET N

= 96 (validation cohort)]. The UNET-based model to segment the COVID consolidations

on CT scans was trained within a threefold cross-validation setting using DTUNET, and

the performance was validated on DV
UNET . A CNN with U-Net architecture was employed

to segment out ground-glass opacities (GGOs) and consolidations in the lung region on the

baseline chest CT scans (29). An automatic lung segmentation method utilizing a watershed

transform was used to segment out and crop the CT volume around the regions of the lung

(30). Each 2D slice of the cropped volume was resized to a size of 256 by 320. Furthermore,

the 2D slice was vertically divided into two parts dividing the right and left lung regions

(input size: 256 by160), and parts of the lung region (right, left) were given as separate

inputs (input size: 256 by160). The two vertical slices from each 2D input were used as

inputs to the UNET model to segment COVID consolidations.

Following figure 6.2 explains the architectural diagram of the 2D U-Net used for segmen-

tation of GGOs and consolidations.
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Figure 6.1: Patient selection criteria and dataset distribution..
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Figure 6.2: Architectural diagram of a 2D U-Net used for segmentation of ground-glass opacities and
consolidations. U-Net consists of an encoder block and a decoder block. Both encoder and decoder have 5
convolutional blocks with two convolutional layers in each block

Radiomic Feature Extraction

After automatic segmentation of lung volume, all the scans were resampled to 0.75 mm

in the x- and y-directions and simultaneously added a uniform slice thickness of 5 mm to

reduce the impact of different equipment and scanning parameters. The total infection size

was calculated by calculating the volume of the COVID consolidations annotated using the

U-Net model. These consolidations were termed as COVID regions. Next, a total of 187

radiomic features were extracted from annotated CT scans. These features included 37 first-

order features and 150 higher-order textural features. The textural features included the

gray-level co-occurrence matrix (GLCM), gray-level size zone matrix (GLSZM), gray-level

run length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), and gray

level dependence matrix (GLDM).

These radiomic features capture textural patterns of COVID consolidations that are not

apparent with the naked eye and could potentially help describe the heterogeneity of these
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regions.

The top predictive radiomic features from the training cohort DT
1 were selected using

the least absolute shrinkage and selection operator (LASSO) feature selection algorithm.122

These features were further used for constructing a continuous radiomic risk score using the

weighted sum of their LASSO coefficients. The radiomics model (MRM) was constructed

using this developed radiomic risk score.

6.2.3 Clinical Feature Analysis

A total of 20 clinical variables and laboratory parameters were included in the analysis,

as explained in table-2. Specifically, these features included patients’ age and laboratory

parameters, such as albumin (ALB), lymphocytes, WBCs, etc. Previous studies show a high

correlation of these clinical variables with the patient being on the ventilator when admitted

to a hospital123.124

A total of 545 cases out of 897 had all the clinical variables available. The total missing

rate of the clinical variables was 39.34%. To make use of all the available data, the missing

clinical values were imputed by the mean values of available clinical entities from DT
1. For

an external validation set, the missing values were replaced by the mean obtained from the

complete cases of the same cohort.

Similar to radiomics analysis, the most prognostic clinical variables were selected from

the training cohort DT1 using LASSO analysis122 and used within the logistic regression

model for predicting the need for ventilators in COVID-19 patients (clinical model: MCM).

6.2.4 Statistical Analysis

The primary endpoint of the study was predicting the severity of the COVID-19 disease,

specifically, predicting patients who would require an invasive mechanical ventilator vs. those

who would not. Figure 2 explains the entire experimental design pipeline.

First, to validate the automatic CNN-based segmentation model’s performance, the Dice
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similarity coefficient (DSC) was used. The DSC was evaluated on the voxel-wise segmenta-

tion performance and compared against an expert radiologist reader.

For building the prediction models, the top features were selected from the entire feature

pool using the LASSO algorithm on DT
1 to constrict MRM and MCM. LASSO provides a

principled way to reduce the number of features in a model. LASSO penalizes the L1 norm

of the weights, which induces sparsity in the solution (many weights are forced to zero). This

performs variable selection (the “relevant” variables are allowed to have non-zero weights).

The degree of sparsity is controlled by the penality term, which was selected within a 10-fold

cross-validation setting. The MRM model had top Radiomic features in the form of “radiomic

score” constructed using the weighted sum of these features with their corresponding LASSO

coefficients. The MCM model consisted of top clinical features, and the final model, MRCM,

was constructed using the top clinical features integrated with “radiomic score” in the form

of nomogram analysis.

All three models were constructed with logistic regression (LR) classifiers. The receiver

operating characteristic (ROC) and precision-recall (PR) analysis, along with sensitivity,

specificity, and area under the curve (AUC), were used as performance metrics to evaluate

the accuracy of the MRM, MCM, and MRCM. DeLong test was used to compare the statistical

significance of differences between the models (34). Odds ratio (OR) and 95% confidence

intervals (CI) were calculated to estimate the effect size of important clinical factors and im-

age features. For DT
1, cross-validation results were reported as mean ± standard deviation.

The final MRCM model was represented as a clinico-radiomic nomogram.51 The patients

were divided into high-risk (ventilator) groups and low-risk (non-ventilator) groups using

the optimal cutoff point obtained from the LR model. The decision curve was plotted and

evaluated to see the added improvement of the nomogram over the individual models. The

net benefit was calculated by summing the benefits (true-positive results) and subtracting

the harms (false-positive results), weighting the latter by a factor related to the relative harm

of undetected disease severity with the harm of unnecessary ventilator treatment.125 In this
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Figure 6.3: Workflow of the experiment. The first step involves segmentation of coronavirus disease
(COVID) consolidations, which were further used for radiomic feature extractions. Next, the top clinical
and radiomic features were selected using (LASSO) analysis and further used for constructing radiomic model
(MRM), clinical model (MCM), and combined combined clinical–radiomic (MRCM) nomogram.

analysis, the added improvement of the MRCM model was shown over MCM and MRM.

6.3 Results

6.3.1 Study Population Characteristics

Table 1 lists the study population characteristics for the two institutions D1 and D2. The

median age of the patients was 59 in D1 and 60 in D2. In D1 and D2, 41.9, 55.3% had a

mild disease, whereas 58.1, 44.7% had a severe disease having ended up requiring invasive

mechanical ventilation.

105



Figure 6.4: Patient Characteristics
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Table 6.1: Patient characteristics.

Variables D1 − Train
D2

Age
Median (IQR)

59 (49 - 69) 60 (51.25 – 68.75)

Sex
Male (%) 385 (46.8%) 24 (51%)

Female (%) 437 (53.2%) 23 (49%)
Ventilator

Yes (%) 478 (58.1%) 21 (44.7%)
No (%) 344 (41.9%) 26 (55.3%)

Laboratory findings
Median (IQR)

Lactate Dehydrogenase (units/liter)
230

(187 - 310.75)
250

(230 – 368.5)
Prothrombin Time

(seconds)
11.6

(11 – 12.2)
12.7

(11.3 – 14.1)

Lymphocytes %
23.45

(14.6 – 31.8)
16.6

(12.35 – 23.55)
Albumin

(grams/liter)
38.1

(34.6 – 41.37)
37

(33 - 39)
Aspartate Aminotransferase

(units/liter)
25

(19-37)
27

(22-46)

6.3.2 Segmentation Model

The U-Net network detected 1,017 of 1,260 COVID regions (3D connected components) an-

notated by the radiologist with 449 false positives on DT
UNET . The corresponding sensitivity

and positive predictive value (PPV) were found to be 80.71 and 69.3%, respectively. The

output segmentation by the network had an overlap of DSC = 0.60 ± 0.02 with ground-truth

delineations for the detected regions. On the validation set of N = 96 (DV
UNET ), 1,071 of

1,353 annotated regions were detected with 470 false positives, which resulted in a sensitivity

of 79.15% and PPV of 69.5%. The corresponding DSC of the segmentation on DV
UNET was

0.59. The corresponding DSC of the segmentation on DV
UNET was 0.59 (Table 6.2).
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Table 6.2: U-Net-based model analysis.

Detected False Positives Sensitivity (%) PPV(%) DSC
DT

UNET 1017/1260 449 80.71% 69.3% 0.60 +/- 0.02
DV

UNET 1071/1353 470 79.15% 69.5% 0.59

Table 6.3: Selected top features.

Feature Family Feature Name LASSO Coefficient

Texture Feature
GLCM
GLRLM
GLSZM

Inverse Variance
High Gray Level Run Emphasis

Small Area Low Gray Level Emphases

1.65 e(0)
1.96e(-2)
8.95 e(-5)

First Order
90th percentile
pixel value

-3.48 e(-2)

Absolute Infection Size 2.38 e(-6)

6.3.3 Individual Radiomic- and Clinical-Based Machine Learning

Models for Predicting Patients Being on the Ventilator for

COVID-19 Patients

The top five features selected within the radiomic model using the LASSO analysis are

listed in Table 3. Figure 4 shows the difference between feature maps for ventilator and

non-ventilator cases. These features were statistically significant between the ventilator and

non-ventilator groups, with higher feature values potentially representing patients at higher

risk of disease. The violin plots of the top features are represented in figure 3.

The constructed logistic regression model with radiomic score (MRM) had an AUC of

0.754, 95% CI (0.709–0.799) on DT
1. The same model gave an AUC of 0.836, 0.758, and

0.719 on DV
1, DV

2, and combined test set (DV
1 + DV

2). For the clinical model, MCM, the

LASSO method selected albumin (ALB), lactate dehydrogenase (LDH), and age as the most

predictive parameters. Using the most discriminating clinical factors, the model trained

yielded an AUC of 0.784, 95% CI: (0.743–0.825) on DT
1 and 0.813, 0.688, and 0.703 on DV

1,

DV
2, and combined test set (DV

1 + DV
2), respectively.
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Figure 6.5: Feature maps of top selected features for ventilated (lower row) and non-ventilated (upper row)
cases.

6.3.4 An Integrated Clinical and Imaging Nomogram to Predict

the Need for Mechanical Ventilation in COVID-19 Patients

The integrated radiomic–clinical nomogram, MRCM, included the radiomic score and three

clinical parameters—age, albumin, and lactate dehydrogenase. Table 4 shows the effect size

and odds ratio for these variables.

The MRCM model outperformed both MCM and MRM, resulting in an AUC of 0.847 and

0.771, and 0.735 on DV
1 , DV

2, and combined DV
1 + DV

2 test set, respectively.

The multivariate logistic regression analysis of the MRCM nomogram showed that the

radiomic score was found to add independent prognostic value to the MRCM model. The

predicted score of 0.54 or greater [an optimal cutoff point on the receiver operating char-

acteristic (ROC) curve] suggested the need for mechanical ventilation, while scores ≤ 0.54

could be managed conservatively (Figure 5). Additionally, the AUC comparison within the

three models showed that the increase in AUC in MRCM was statistically significant when
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Figure 6.6: Constructed nomogram, MRCM, which included radiomic score, age, albumin (ALB), and
lactate dehydrogenase (LDH). The nomogram calculates the probability of the patient being on the ventilator.

compared against the clinical model MCM.

The decision curve analysis indicated an added net benefit using the integrated model

MRCM over MCM and MRM (Figure 6). The combined MRCM model had the highest net

benefit compared with MCM, MRM, and simple strategies, such as treating all patients (light

vertical curve line) or treating no patients (horizontal black line) across the full range of

threshold probabilities.

6.4 Discussion

In this study, we presented an integrated radiomic and clinical nomogram (MRCM) to predict

at baseline patients with a severe phenotype of COVID-19 and who would end up needing

mechanical ventilation and intubation. We explicitly used patients with baseline CT scans

and laboratory parameters observed within the milder stage of the disease to reduce the bias.

MRCM comprised a radiomic score constructed using the annotated GGO and consolidation

regions on lung CT scans along with age, albumin (ALB), and lactate dehydrogenase (LDH).

Meanwhile, the radiomic model (MRM) incorporated the radiomic score constructed using
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Figure 6.7: Decision curve analysis of MRCM (clinical and imaging integrated nomogram) constructed using
developed radiomic score, age, and three laboratory parameters (LDH and ALB). The other (bottom) were
clinical (MCM) and radiomic model (MRM).
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five radiomic features. The clinical model (MCM) was built using age, albumin, and lactate

dehydrogenase out of routine clinical laboratory parameters. We constructed a U-NET-

based segmentation algorithm to segment COVID-19 regions from the baseline CT scans to

completely automate the whole process. The three models were trained and independently

validated on a large multi-institutional dataset making this the most extensive study to date

involving AI and radiomics for the prognosis of COVID-19 patients.

Our radiomic model, MRM, incorporated radiomic score constructed using top features

observed from within the gray-level matrix-based feature families explaining textural patterns

of COVID regions. These features had higher expression in potentially high-risk cases,

suggesting a more chaotic and disturbed microarchitecture in patients at a higher risk of

disease (Figure 6.5). Our results are in line with results presented by Wu et al.,117 where four

features out of five were observed from gray-level matrix-based feature family. The higher

textural value from the gray-level co-occurrence matrix indicates the more abnormal lung

tissues, which further seemed to be associated with the worse outcome. This is consistent

with previous findings that show that peripheral, diffuse distributions and paving patterns

are associated with poor survival in COVID-19 cases.126 Compared with the usual imaging

CT model features, radiomics offer superior performance in the COVID-19 space. Simply

looking at radiomic models for predicting the severity of COVID-19 patients, the signatures

constructed using SVM by Fu et al.127 achieved an AUC of 0.83 on N = 64, and Wei (25)

achieved an AUC of 0.93 on N = 81. Our results show a better performance considering that

we had larger datasets with completely independent multi-institutional validation sets.

The most prognostic clinical variables observed within the clinical model were age, ALB,

and LDH selected using the LASSO. A low level of ALB was associated with poorer outcomes,

i.e., the patient being on the ventilator.124 In contrast, low levels of LDH were associated

with better outcomes124.123 The boxplots of these features are depicted in Appendix 1. ALB

and LDH are considered biomarkers for predicting the COVID-19 severity in the previously

published findings.124 We observed the third important clinical feature to be the patient’s
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age, where an advanced age was associated with a worse outcome for COVID19 patients.128

The integrated MRCM model outperformed MRM and MCM models in predicting which

COVID-19 patients would ultimately need invasive mechanical ventilation on both internal

and external validation sets DV
1 and DV

2. MRCM improved performance by over 2.5% over

MRM and 3.77% over MCM in terms of AUC, with the performance increase statistically

significant by DeLong’s test. The MRCM model was used to individualize risk assessments.

The predicted score of 0.54 or greater [an optimal cutoff point on the receiver operating

characteristic (ROC) curve that had an optimal balance between sensitivity and specificity]

suggested the need for mechanical ventilation, while scores ≤ 0.54 could be managed con-

servatively. We only noticed one nomogram approach developed by Yu et al.,129 which used

age, density, perfusion signs, and severity score of lungs constructed by assessing each lobe

of the lung for predicting the severity of COVID-19. The nomogram achieved an AUC of

0.929 (95% CI, 0.889–0.969) on training (N = 152) and 0.936 (95% CI, 0.867–1.000) on the

validation set (N = 65), but their analysis did not involve radiomics. Our developed nomo-

gram was completely automated, had minimal involvement of a radiologist, and achieved

almost comparable results within larger datasets.

The previous work on combining radiomics with clinical variables shows promising results

for predicting disease severity. For the combined clinical and radiomic model, in the work

by Chao et al.,116 the authors integrated the L/W ratio, lymphocyte count, WBC, and age

into whole lung radiomics to achieve the highest AUC of 0.88 in predicting the need for ICU

admission. The advantage in our approach compared with previous ones includes a higher

number of cases and a nomogram representation.

In the recent study by Roberts et al.,130 the authors point out that many recent AI/machine

learning studies on diagnosis and prognosis of COVID-19 from radiographic scans are not

reproducible and would not be clinically deployable. Furthermore, they point out that many

studies within this space have not been stress tested or validated on independent external

test sets. Many of these models have not assessed model sensitivity or robustness and have
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methodological flaws and/or underlying biases. In our work, we have attempted to delib-

erately and purposefully develop, validate, and analyze our approach in a more rigorous

manner, including validating this model on one of the largest external test sets reported to

date.

Despite the favorable prognostic efficacy of the clinico-radiomic nomogram, we acknowl-

edge that our approach does have its limitations. First, our study was retrospective, and

the two cohorts were not homogeneously defined. To ensure the clinical usefulness of MRCM,

we need to validate the tool in a prospective setting by following up with patients until

discharge. Second, the study’s retrospective nature also precluded us from standardizing

the time between RT-PCR and CT scans across the cohort. Finally, we did not explicitly

compare segmentation and prediction performances between the AI model and expert radi-

ologist interpretations. We will attempt to address these limitations in future work.

6.5 Conclusions

We presented an integrated radiomic and clinical parameter-based prognostic model using

routinely available blood parameters and standard-of-care CT scans at baseline in SARS-

CoV2-positive patients at the milder stage of the disease. We showed in a multi-institutional

cohort that our integrated model had a good performance in identifying which of these pa-

tients would decline in severe respiratory distress with need for intubation and mechanical

ventilation. Further multisite prospective validation would allow for the clinical deployment

of MRCM, especially to triage patients for ventilator usage, in the face of worldwide short-

ages in the availability of mechanical ventilators. The developed tool, once prospectively

validated, could provide an objective way to risk stratifying patients immediately following

diagnosis with COVID-19.
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Chapter 7

Concluding remarks and future work

7.1 Concluding remarks

In this dissertation, we explored lung cancer related novel prognostic and treatment predic-

tion strategies using imaging scans. First, we used novel Radiomic-Based approached and

extracted hand-crafted features from tumor region and form the region outside the nod-

ule and constructed AI models for targeting four specific clinical problems- a) predicting

recurrence and subsequently added benefit of adjuvant chemotherapy for early-stage non-

small cell lung cancer b) predicting the minimally invasive lung cancer from invasive lung

cancer cases using c) predicting immunotherapy response for late-stage lung cancer cases

d) predicting severe COVID-19 cases looking at the CT scans alone. We further explored

various, unique fusion strategies for each of these clinical problem statements, spanning from

combining multimodal data as well as non-imaging data with the imaging models. These

strategies include - a) including clinical variables within the nomogram fashion b) integrat-

ing radiology and pathology features for creating multimodal analyses, c) integrating input

from the radiologist for creating human-machine integrated models. Lastly, to understand

the biological interpretability of the hand-crafted CT-scan based features, we performed a)

radiology-pathology correlation, b) radiogenomic analysis on a small subset of patients as a
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preliminary step towards an interpretable AI.

• We developed a CT-based Radiomics model for Early-Stage non-small cell lung cancer

cases to predict recurrence and specifically, the added benefit of adjuvant-chemotherapy

for these patients. For Early-Stage cases, currently there’s no consensus on which pa-

tients should receive adjuvant-chemotherapy, especially stage I to IIB. Various clinical

trials have an opposite results on which patients should be receiving it. Our devel-

oped imaging model was able to identify specific population who would benefit from

adjuvant-chemotherapy following surgery. Further, this model was integrated with

clinical variables and we showed that overall performance of the model increases. The

whole analysis was performed on 500 cases from three institutions and the overall

model was validated on independent validation cohorts to ensure the accuracies.

• We developed a CT-based Radiomics model to predict the invasive adenocarcinoma

nodules from the minimally invasive ones. Currently, the gold standard for predicting

the level of invasion of lung nodules depends on the surgically resected tissue scans.

Predicting minimally invasive nodules using CT scans would help in the surgical plan-

ning and treatment of these patients. We fused the developed imaging based model

with the radiologists interpretation and created a human-machine integrated model

which not only improved our performance, but also showed a way ho wto actually

implement these models into clinical settings.

• We constructed a model to predict the response to immunotherapy for late-stage

NSCLC cases. Specifically, within this late-stage cohort, there’s a subset of popu-

lation, known as hyperprogressors, who if received an immunotherapy, would have

complete adverse effect of it and would reduce their life-span. We used CT scans and

Radiomics analysis to specifically find out this population from the baseline scans that

could help avoiding immunothreay for these patients.

• Our work within the COVID-19 space shows that Radiomics features observed on the
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CT scans can be useful even within other diseases. We could stratify severe patients

within the COVID-19 space using the CT scans alone. Further, we integrated these

radiomic features with various labpratory tests currently used in a practice in a novel

nomogram fashion and showed an overall improved performance of the model.

• We created a model using multi-scale imaging information. We specially looked at

radiology-based and pathology-based features and demonstrated that these two modal-

ities present complementary information which could be fused together to improve the

model prediction, specifically within the lung cancer space. We looked at two specific

use cases- for predicting added benefit of adjuvant-chemotherapy for early-stage cases

as well as combined these features for predicting immunotherapy response for late-stage

NSCLC cases.

• We showed that Radiomics features observed on CT scans could potentially repre-

senting underlying biology by exploring pathology whole-slide tissue scans as well as

radiogenomic analysis.

Together, the work described here helps in advancing the translation of clinically useful

artificial intelligence tools that can help in improving patient quality of life. The integration

methods used here may provide a useful insight of novel techniques for combining imaging ,

non-imaging, multiscale biomarkers within the non-small cell lung cancer domain.

7.2 Future work

While we have successfully shown the application of radiomics, and integrated Radiomics-

Pathomics Models for lung cancer cases and COVID-19 disease, we do acknowledge that

there are several limitations which we hope to conduct as part of the future study.

Firstly, successfully transitioning these technologies into clinical practices would require

extensive external validation from multiple institutions and larger cohorts. First, we plan
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to start validating these models on clinical trial datasets, and in the future plan to validate

them on prospective datasets.

In addition, we also plan to include an extensive analysis of the raw parameters before

building the models. As we have noticed so far, radiomic features get affected by the raw

parameters of the CT scans (including kernel size, tube voltage, slice thickness etc.). In the

future, we plan to develop the standardization procedure to help increase the reproducibility

of the Radiomics Models. We also plan to include an automated tumor and peritumoral area

segmentation pipeline in the model, which would reduce the burden on the radiologists, and

they could focus on the big picture, i.e., on identifying the patient population at risk.

Similarly, with Pathomics, we plan to have a robust pipeline that would be generalized

across multiple institutions.

Another important step would be to understand the biological interpretability of these

hand-crafted radiology and pathology features for the successful transition of these methods

into clinical practices. Even though we have performed an elementary experiment to un-

derstand the biological meaning of radiomic features, we plan to do that extensively in the

future. Additionally, the work presented in this dissertation is primarily focused on applica-

tions related to the lung. However, exploring whether these approaches can be translated to

risk-stratification and characterization of other diseases are considered part of future work.
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