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Abstract

Degradation of Bifacial & Monofacial, Double Glass & Glass-backsheet,

Photovoltaic Modules with Multiple Packaging Combinations

Abstract

by

JIQI LIU

The annual installed capacity of solar energy has grown rapidly in recent years and

reached 773.3 GW at the end of 2020, providing 3.1% of global electricity demand. The

levelized cost of electricity (LCOE) of solar energy has been continuously decreasing

since 2009 and reached $0.037/kWh in 2020. Improving the reliability of photovoltaic

(PV) modules and reducing their degradation rates are critical for further decreasing

the LCOE and maintaining market competitiveness. The degradation of PV modules

depends on their interaction with exposure conditions and is strongly influenced by

their packaging materials and combinations. In recent years, modules using polyolefin

elastomer (POE), double glass (DG) module architecture, or transparent backsheet have

been gaining market share and have become strong competitors to conventional mono-

facial ethylene-vinyl acetate (EVA) glass-backsheet (GB) modules. However, the reliabil-

ity performance data of these emerging packaging strategies were lacking. This work

used statistical analysis to compare the degradation behaviors of sixteen module vari-

ants under two indoor accelerated exposures and 1.6 years of outdoor exposure. The
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two indoor accelerated exposures included modified damp heat (80 ◦C, 85% relative hu-

midity) and modified damp heat with full-spectrum light, for up to 2,520 hours. The

EVA+GB modules with opaque rear encapsulant exhibited a significantly greater power

loss, and the dominant degradation mechanism was identified as interconnection cor-

rosion. The outdoor exposure location was in the Dfa climate zone (continental, no dry

season, hot summer). Significant differences in the average power loss were identified

between three module variants and the other two. The dominant power loss factor for

most module variants was uniform current power loss, followed by power loss due to

increased series resistance. This work developed a cross-correlation algorithm to quan-

tify the similarity of degradation behaviors under different exposures, considering the

power loss rates and the similarity in trends for various electrical features over time. En-

abled by extensive characterization data collected, various neural network models were

explored to predict the change in electrical features based on images. Recurrent neu-

ral network (RNN) models outperformed convolution neural network (CNN) models,

emphasizing the importance of utilizing measurements for the same sample taken at

different exposure times to improve prediction accuracy.
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1

1 Introduction

The annual installed capacity of solar energy has grown rapidly in recent years. The

accumulated capacity has reached 773.2 GW at the end of 2020, providing 3.1% of global

electricity demand and accounting for 10.7% of the total energy from renewable sources.

The levelized cost of electricity (LCOE) of solar energy has been continuously decreasing

since 2009 and reached $0.037/kWh in 2020, which is lower than that of wind, combined

cycle gas turbine (CCGT), coal, and nuclear[1]. Improving the reliability and decreasing

the degradation rate of solar energy are critical for further reducing its LCOE and main-

taining its competitiveness.

The degradation of photovoltaic (PV) modules depends on their interaction with ex-

posure conditions. Commercial PV modules contain several layers to protect internal

solar cells. Most PV modules in the market are monofacial and use ethylene-vinyl ac-

etate (EVA) encapsulant and a polymer backsheet for nearly 40 years[2]. However, mod-

ules using polyolefin elastomer (POE) encapsulant, glass[3] or transparent backsheet[4]

for the rear cover have been gaining market share and have become strong competi-

tors of conventional PV modules, due to the rise of bifacial modules[3] and the higher

requirement for resistance to potential induced degradation (PID)[5]. Therefore, the
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packaging strategies in the current PV market exhibit more diversity. However, the relia-

bility performance data of modules with these emerging packaging materials and com-

binations are lacking. Moreover, studies examining samples under indoor accelerated

exposures often fail to report the statistical significance of results or to use identical ma-

terials and fabrication processes for different studied samples. Outdoor data are even

rarer for these new products. Therefore, whether these different packaging strategies

lead to differences in PV modules’ reliability performance under certain environmental

conditions is unknown. Comparing PV modules with these different packaging strate-

gies using statistical analysis to identify performance differences is significant in guiding

the packaging selection and predicting the lifetime of commercial PV modules.

This work examined the degradation behaviors of sixteen module variants under two

indoor accelerated exposures or 1.6 years of outdoor exposure, evaluated by the confi-

dence intervals of different characteristic features. A cross-correlation algorithm was de-

veloped to compare the module degradation behaviors under different exposures con-

sidering both the power loss rate and similarity in trends of both power and other degra-

dation mechanism features. Enabled by the extensive characterization data collected in

this work, the ability of neural network models to predict the change in electrical fea-

tures based on images was explored.

Chapter 2 reviewed the literature for four scientific topics related to this work. Chap-

ter 3 introduced details of the module fabrication, indoor accelerated exposures with

stepwise characterizations, and outdoor exposure with timeseries data acquisition. Chap-

ter 4 analyzed the degradation behaviors of sixteen module variants of two brands under

the two accelerated exposures for 2,520 hours, with the comparison of the percentage of
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change for different mechanism features, pairwise correlation coefficients, and unsu-

pervised clustering to study the activated degradation mechanism and dependency on

packaging components. Chapter 5 introduced the timeseries data processing procedure

and compared the degradation behaviors of the sixteen module variants and four pack-

aging combinations after 1.6 years of outdoor exposure. Chapter 6 developed a cross-

correlation algorithm and introduced its working principle and results’ interpretation

using the dataset from this work as an example. Chapter 7 explored the ability of neu-

ral network models to predict the change in electrical features using image input. From

chapters 4 to 7, each one contained descriptions of its specific research significance,

study objects, characterizations, and analytical methods.
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2 Literature Review

In this chapter, a basic introduction of the photovoltaic (PV) module and its reliabil-

ity study is given, and recent relevant research progress and literature are reviewed. The

content is divided into four major sections: packaging of PV module, the outdoor relia-

bility study using timeseries electrical data, the application of machine learning models

in the PV reliability study, and methods to correlate degradation behaviors under indoor

accelerated and outdoor exposures. The content about common accelerated exposures

and module-level characterizations is added to the section 2.1 due to many related ex-

perimental results.

2.1 Packaging Strategies of PV Modules

The lifetime of a commercial PV module is usually between 20 to 30 years. Within the

warranty, the reduction of power output is usually assumed as linear, and by the war-

ranty deadline, the retained power output should be around 80%[6]. The working en-

vironment of PV modules contains complex outdoor conditions that change based on

location and time. The outdoor stressors that lead to the degradation of PV modules in-

clude light, especially ultraviolet (UV) light, extreme temperatures, temperature cycling,
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humidity, hail, wind, sand, dust, and a potential difference. The PV module needs a suit-

able packaging design with proper materials to achieve the warranty target under such

conditions, so solar cells, which generate electricity converted from light through pho-

tovoltaic effect and are dominated by the crystalline silicon (Si) material, can maintain

their performance.

There are five layers in a commercial PV module shown in Fig. 2.1, including the

front glass, the front encapsulant layer, solar cells, the rear encapsulant layer, and the

substrate layer. The substrate layer can be divided into two major categories, glass and

polymer backsheets, which are practically referred to as backsheets. The PV module us-

ing a polymer backsheet is usually mentioned as in the glass-backsheet (GB) module

architecture, and that using glass is described as in the double glass (DG) module archi-

tecture. Besides these five layers, a commercial PV module also contains several other

components, including an edge seal, a junction box, and sometimes a frame[7]. The

degraded performance in PV modules results from the interaction between the expos-

ing environment and the PV module itself. So similar PV modules could have different

degradation performance or activated mechanisms when exposed to different condi-

tions, such as installed in locations of different climates[8]. PV modules using different

materials, module architectures, and fabrication processes could also have very differ-

ent degradation performance[9]. All of them complicate requirements for the reliability

of PV modules.
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(a) Glass backsheet (GB) (b) Double glass (DG)

Figure 2.1. Multilayer structure of the PV module.

2.1.1 PV Encapsulants: EVA vs. POE

The encapsulant materials need to hold the electrical components such as solar cells

in place, provide electrical insulation, and reduce or prevent the ingress of harmful sub-

stances. They also need a high transmittance and to be optically coupled at the interface

and protect solar cells from corrosion and mechanical stress[10, 11]. These targets re-

quest the encapsulant to adhere well to all surfaces in the lifetime of PV modules and

maintain stable properties. There were many materials considered in the early stage

of development, such as polydimethyl silicone (PDMS), ethylene-vinyl acetate (EVA),

polyvinyl butyral (PVB), polyolefin elastomer (POE), thermoplastic polyolefine (TPO),

and ionomer[10]. EVA has been the dominant encapsulant material for almost four

decades, considering the cost and properties[2].

The cost of EVA has played an essential role in using it instead of other materials.

In the initial stage of commercializing PV modules around 1960 to 1970, most encapsu-

lant materials were based on PDMS, due to their outstanding stability against UV and

heat[10]. EVA has a backbone consisting of carbon-carbon (C-C) bonds, while PDMS

has a backbone consisting of silicon-oxygen (Si-O) bonds. Their dissociation energies

are about 83 kcal/mol and 108 kcal/mol, respectively, resulting in enhanced durability

of silicon encapsulants like PDMS over hydrocarbon-based materials like EVA[10]. EVA
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is a copolymer of ethylene and vinyl acetate (VA), and its properties can be tailored by

adjusting the VA content. Typically, a 27 wt% to 33 wt% VA content is used as the PV

encapsulant. Polyethylene (PE) is a cheap and simple polymer, but it is opaque semi-

crystalline, and its modulus is too high to protect the solar cell mechanically. VA is a

transparent and amorphous polymer with a glass transition temperature (Tg) around

35 ◦C, which is too high that can cause it to transform to the brittle glassy state in the

range of PV modules’ operating temperatures. Therefore, some VA is added to PE to de-

compose the crystals and make the copolymer a semi-crystalline and highly transparent

material. Meanwhile the Tg get reduced to -15 ◦C[12]. In order to shorten the man-

ufacturing time, delay and hinder the degradation of EVA, various additives of a small

amount are added, including peroxides as curing agents in lamination, UV absorbers,

UV stabilizers, antioxidants, and adhesion promoters[7, 10].

Based on observations of PV modules aged in the field, most problems related to

the encapsulant itself were delamination and discoloration. Delamination is due to the

breakage of interfacial bonds, which is related to high humidity and not simply propor-

tional to the dose of UV light[13]. When delamination occurs at the edge of a PV module,

it can develop faster due to much easier water ingress, bringing safety concerns due to

the current leakage. When it happens to the middle area of the PV module with a size

that is not likely to grow further, it could cause a transmittance decrease depending on

whether it is located above the cell[11]. Discoloration not only leads to the decrease of

transmittance, which further causes a power loss, but is also an important indicator of

polymer aging. There were two mechanisms proposed to explain EVA discoloration. The

preferred mechanism is the degradation of additives. The peroxide reacts with the UV
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absorber and phosphite, leading to the discoloration of EVA[11]. Another popular mech-

anism is the degradation of EVA itself through the Norrish I, II, and III reactions. These

reactions generate products containing polyenes with unsaturated conjugated double

bonds, ketones, aldehydes, acetic acids, free radicals, and some gas molecules, such

as CH4, CO, and CO2. Free radicals can further aggravate the chain scission as well as

crosslinking[2, 11]. The VA group is the main culprit behind the degradation of EVA since

the PE group is much more stable[2, 14]. If oxygen exists and oxides the unsaturated

polyene, the rate of yellowing can be slowed down due to photo-bleaching. One EVA

degradation product that brings lots of concern is acetic acid. It not only leads to corro-

sion of the metal contact but also has a self-catalytic effect of accelerating the degrada-

tion of EVA[7]. In addition, acetic acid could also promote the diffusion of Na+ from the

glass to the cell layer leading to more power loss due to potential induced degradation

(PID)[11].

It is generally believed that the generation of the PID problem is due to the long-

term exposure to a high voltage. With an increasing scale of PV power plants, a higher

system voltage is desired to increase the number of PV modules connected in a string

and reduce the number of inverters, which can lower the cost of the overall system[15].

There were three types of PID identified, namely shunting (PID-s), polarization (PID-

p), and metallization or cell-stack corrosion (PID-c). The last one was discovered on

the backside of bifacial passivated emitter and rear contact (PERC) monocrystalline Si

cells in 2019. Research showing that it is a common problem for bifacial PERC cells

was limited currently, and the theory was still in a hypothetical stage[16]. On the other

hand, PID-s and PID-p were well understood. The PID-s is due to the accumulation of
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Na+, which decorates Si crystalline defects like stacking faults and results in conduc-

tive shorts through the emitter layer in the solar cell. Therefore, it usually leads to a

lower shunting resistance (Rsh) and power output[17]. The PID-p is mainly because of

the concentrated charge in the silicon nitride, which is the anti-reflect layer in the solar

cell. The accumulated charge weakens the field-effect passivation. It thus increases the

chance of recombination, leading to a lower short-circuit current (Isc ) and open-circuit

voltage (Voc ) besides a lower power output[18].

Volume resistance is an indicator of anti-PID performance. Generally, the larger the

volume resistance, the better anti-PID performance is. The volume resistance of com-

mercial POE is usually higher than that of EVA in one to two orders of magnitude[10].

A study showed that using EVA and POE films with similar volume resistance (8.5×1013

Ω ·cm for POE and 1.3×1013 Ω ·cm for EVA), the module made by such EVA reached the

saturation of power loss around 10% to 15% in several minutes, while the module made

by such POE needed around five hours in the dark PID test. Therefore, the anti-PID per-

formance is not directly proportional to the volume resistance and maybe also related to

the properties of the ion channel in the polymer[5]. Water permeability could also lead

to a difference in anti-PID performance when exposed to a high humidity environment

since it is easier for the ion to diffuse with more moisture contained. The water vapor

transmission rate (WVTR) of POE is an order magnitude smaller than that of EVA[10].

Multiple studies showed that using POE as the encapsulant can bring a significant im-

provement for anti-PID, regardless of GB or DG module architectures[5, 15, 18].

Although the anti-PID performance can be improved for EVA to a certain extent by

adjusting the composition and additives, it has been shown difficulties reaching the in-

creased requirement with the base material EVA itself unchanged[15]. The rising trend
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of using glass as the substrate highlighted the concern of PID since the rear glass acted

as another sodium source. Therefore, POE has begun to occupy a considerable mar-

ket share and become the major competitor for EVA. POE is a copolymer of PE and

octene[19]. A significant advantage is the absence of acetic acid when degrading by re-

placing the VA side group with alkanes[20].

The transmittance of POE and EVA are very similar[10, 21]. A study showed that

EVA and POE laminated film samples had no apparent changes after 3,300-hour damp

heat exposure of 85 ◦C and 85% relative humidity (RH)[21] using the results of Fourier

Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). How-

ever, the UV transmittance dropped in POE samples, which might be related to the for-

mation of chromophores or the migration of additives. After 200 kWh/m2 UV exposure,

the transmittance in the visible light range decreased by 1.7% and 4.0% in the EVA and

POE samples, respectively. The temperature corresponding to a 95% retained weight

decreased by 21 ◦C (the first stage maximum decomposing temperature is about 350

◦C) for EVA and 29 ◦C (the maximum decomposing temperature is about 474 ◦C) for

POE, respectively. Therefore, the authors believed the stabilities of EVA and POE were

very similar[21]. It is worth noting that the EVA sample in this study most likely con-

tains much more UV absorbers than POE, speculating from the initial transmittance

curves. Therefore, the comparison is not entirely determined by different base materi-

als. Another study showed that the GB PV module with EVA or POE as encapsulant both

presented slight yellowing after 3,000 hours of the damp heat exposure. However, only

the EVA module had corrosion on the silver grid and ribbons[20]. Based on the current

published studies, EVA and POE have performed very similarly regarding stability, and
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POE has established a better anti-PID performance. It has no acetic acid as a degrada-

tion byproduct, relieving the concern of aggressive corrosion. No unique problems have

been identified for POE so far. However, there were still limited publications about POE

and its degradation. Research comparing POE and EVA commercial PV modules under

outdoor exposures was very rare in recent years.

2.1.2 Module Architecture: GB vs. DG

The front glass is generally the low-Fe tempered glass for the GB PV module with a thick-

ness of 3.2 mm. DG modules now reduce the glass thickness to 2 mm or 2.5 mm to lower

the weight to be competitive with GB modules and still able to pass the standard me-

chanical test. Their glass could be tempered or heat-strengthened[22]. Generally, the

glass used in PV modules has an anti-reflect coating and some textures to increase the

contact area to the encapsulant layer.

The substrate of PV modules could be made of glass or a polymer sheet, usually re-

ferred to as a backsheet. According to the ITRPV 2021, DG modules had an 18% market

share in 2020 and were expected to continuously grow over years to reach a 55% market

share in 2031[1]. Conventional PV modules are monofacial, so the backsheet is usually

opaque to protect encapsulant layers from reflected light. The backsheet typically has

three layers. The inner layer, which is contacted with the encapsulant layer, needs to

offer durable adhesion and chemical compatibility and be stable under direct sunlight

filtered through glass and front encapsulant layers. Materials such as fluoropolymers,

polyamide (PA), PE, or EVA are commonly used. The core layer is thicker and provides

the mechanical and electrical properties required for the overall backsheet. This layer is
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usually polyethylene terephthalate (PET), while few backsheet types use PA or polyole-

fine. The outer layer needs to be highly durable, as it provides environmental protection

for the other layers and gets directly exposed to the environment, such as the reflected

light. It is typically made of PET, polyvinylidene fluoride (PVDF), or polyvinyl fluoride

(PVF)[11].

The identified degradation modes for backsheet include delamination, cracking, chalk-

ing, burns, blister, and discoloration. The WVTR and the permeability of acetic acid and

oxygen of backsheet are much higher than glass, so the small molecular of such species

could enter or leave the module[11]. Therefore, backsheets are usually described as

breathable as compared to glass. The DG architecture is also used for monofacial PV

modules with an opaque rear encapsulant layer to gain more reflected light for a similar

power output to GB modules[23].

For commercial monofacial modules, EVA is often used for both DG and GB PV mod-

ules. In a study published in 2009, 204 PV modules were investigated after about 20 years

of outdoor exposure in a moderate subtropical climate (-10 ◦C to +35 ◦C, with less than

90% RH). The average power loss was 23% for DG modules, while that of GB modules

was 14%. So the DG modules showed a more significant power loss than the GB mod-

ules. However, the sample size for DG modules was relatively small, constituting about

10% of all studied modules, and their power losses distributed very dispersedly. Since

most PV modules in this study were manufactured around 1980 to 1990, the encapsu-

lant of PV modules had various options such as EVA, PVB, and silicone, especially for

DG modules[6]. Another study compared DG and GB modules using three commer-

cial PV modules after 10 to 21 years of outdoor exposure in a dry and hot climate. The

DG module got exposed for ten years, and the two GB modules got exposed for 18 and
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21 years, respectively. The degradation rate for the DG module was higher as 1.46%/a.

and 2.28%/a. for the maximum power (Pmp ) and Isc , respectively. The two GB modules

had degradation rates as 1.01%/a. and 0.44%/a. for Pmp , and 0.41%/a. and 0.29%/a.

for Isc [2]. Such differences were possibly caused by the higher operating temperature in

DG modules, higher chances of thermomechanical fatigue of cell interconnects, and the

accelerated EVA degradation due to the impermeability of glass[22].

While DG modules performed worse in the field, the studies comparing DG and

GB modules under indoor accelerated exposures have shown that the performance was

comparable, and DG modules even more often presented a better performance. A study

compared DG and GB modules with EVA as the encapsulant under damp heat test using

various temperatures and RH settings and found that the finger interruption happened

earlier in DG modules under drier conditions than GB modules. GB modules showed an

increase in series resistance (Rs) more severe in more humid conditions, indicating the

occurrence of corrosion. It was found that DG modules lost power faster under a drier

condition due to mechanical failures, and GB modules lost power faster under a more

humid condition due to more corrosion[24]. Zhang et al. selected several commercial

DG and GB modules and compared their performance under several accelerated expo-

sures, including 600 cycles of temperature cycling, 3,000 hours of damp heat, 600 hours

of PID test, and 50 hours of humidity freeze test[25]. DG modules outperformed the

GB modules under all tests. The maximum difference happened in the humidity freeze

test, which is a 2.72% and 33.73% power loss for the DG module and the GB module,

respectively. Another study showed that DG modules could delaminate earlier than GB

modules. This study first applied 1,000 hours of UVA exposure and then 1,000 cycles

of dynamic mechanical loading (DML) of 1,500 psi at 1/6 Hz, followed by another 1,000
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DML cycles of 1,500 psi at 1 Hz. The DG module was found to delaminate on the module

edge at the second DML, while the GB module did not show the same problem[4]. Tang

et al. compared the DG modules to the conventional GB modules using a sequential

accelerated exposure. The sequential exposure consisted of 200 hours of damp heat, 60

hours of UV, 10 hours of humidity freeze, another 129 hours of UV test, the second 20

hours of humidity freeze, and 1,000 DML cycles. The power loss for the DG modules was

3.35%, while that for the GB modules was 4.14%[23]. These variances in comparing DG

and GB modules are likely caused by differences in product manufacturing, materials

selection, and exposure conditions. For such a comparison, the sample should follow

strict variable control and be similar to the commercial product, or enough samples are

needed to represent the population. However, DG modules attracted less attention with

a minor market share for monofacial modules. There were limited publications about

DG modules, and their reported performance varied a lot.

As bifacial PV modules emerged and occupied more market share, the market share

of DG modules has increased due to their bifacial nature. The rear side of bifacial solar

cells also can convert electricity from light, reducing the cost by increasing the power

output by 5% to 30%[3]. The cost of bifacial PERC cells is very similar to monofacial

PERC cells[3]. A backsheet product named transparent backsheet arose to compete with

the glass as the substrate. Just like the conventional backsheet, the properties of the

transparent backsheet also vary with the selected materials[26]. A study showed that the

PVF-based transparent backsheet was very durable[27]. After 500 hours of UV exposure,

the UV absorption decreased by 18%, the elongation at break decreased by 30%, and

the transmittance in the visible range was unchanged. Gu et al. found that GB modules

outperformed DG modules using POE as the encapsulant under PID test at -1500 V with
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damp heat conditions[3]. However, another study, which also used a PVF based trans-

parent backsheet with POE as the encapsulant, found the DG module outperformed the

GB module under ± 1000 V PID test with damp heat conditions[5].

Some other factors were also usually discussed for comparing DG and GB modules.

The DG module was heavier than the GB module, and the increasing module size en-

larged the weight difference. Reducing the glass thickness could lower the weight dif-

ference, but it also reduced the maximum impact strength against hail weather for the

front cover. Due to the symmetry structure of DG modules, they usually performed bet-

ter under DML, indicating a lower risk in windy weather. The transparent backsheet

could block more UV light with the UV transmittance of about 1% initially, compared to

around 40% to 50% for glass. The transparent backsheet is also more resistant to alkali

corrosion and easier to clean due to the hydrophobic surface. Although the wear resis-

tance is no doubt better in glass, the transparent backsheet could withstand a 50 L sand

falling test, so the difference regarding the wear resistance within the lifetime of the PV

module could be minor in sandy weather[28]. It is important to note that most commer-

cial PV modules are still monofacial. Although bifacial modules were predicted to have a

70% market share in 2030, there are currently many challenges, such as solving the cur-

rent mismatch sourced from the rear irradiance, optimization of the PV system, and an

accurate performance estimation[22]. The widely used testing standard IEC 61215 has

not yet differentiated between monofacial and bifacial modules.

2.1.3 Accelerated Exposures & Module-level Characterizations

Many accelerated exposures mentioned above originate from the IEC 61215, which is

mainly designed to detect infant failure due to improper design instead of studying the
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wear-out failure around the product warranty[29]. In many studies that focused on the

long-term reliability of PV modules, the exposure conditions are derived from the stan-

dard with significantly increased exposure time or cycles. Some identified failure modes

from the field survey were hard to reproduce under single stressor exposure, such as

the formation of cracks in the co-extruded PA backsheet. Such failure mode could be

activated under sequential test or multi-stressor test[11].

Pmp is generally used as an overall performance indicator to evaluate module per-

formance under different accelerated exposures. However, it provides limited insights

into the degradation mechanisms. Other I -V features that are extracted from current-

voltage (I -V ) curves are more helpful in identifying the activated degradation mecha-

nisms. For example, under the PID test, the mechanism can be concluded as PID-s or

PID-p through whether the change presented on Rsh or Isc and Voc [18]. If spatial infor-

mation is also desired to identify defects and their properties, imaging technologies are

needed, such as electroluminescence (EL), photoluminescence (PL), and dark lock-in

thermography (DLIT).

2.2 Outdoor PV Reliability Study with Timeseries Electrical Data

Studying the performance of PV modules under real-world operating conditions is es-

sential for monitoring power plants’ health, evaluating the PV module’s reliability, and

improving the design of future products. As more and more PV power plants were built

with advanced data acquisition systems, more timeseries electrical data with an op-

erating time long enough for reliability study became available[30]. These timeseries

electrical data can be mainly divided into two categories: the timeseries Pmp and other
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timeseries electrical variables such as Isc , Voc , Rs , and Rsh . The former is much more

abundant and is often used to calculate the performance loss rate (PLR) and further

predict or forecast the lifetime of installed PV modules.

2.2.1 Time-series Power: PLR Calculation

PLR, which is referred to as the degradation rate sometimes, was shown as the third

most important factor influencing the levelized cost of electricity (LCOE)[31]. It is not

practical to use the outdoor environmental conditions to examine the warranty of PV

modules which is about 20 to 30 years[32]. The lifetime and PLR that can be found in

the datasheet of a commercial PV module are predicted or estimated values rather than

measured ground truth. Lots of studies have proved that PLR varied with climates of

installed locations[8, 33, 34]. Therefore, the real PLR of an installed PV module usually

differs from the value provided by the datasheet. While lots of PLR results were reported

in the last twenty years, there was no standard on how it should be calculated. The PLR

calculation commonly follows three steps. The first step is the data filtering, such as

removal of observations with extreme irradiance values, clear-sky filter, and timeseries

outlier detection for soiling and snowing[30, 32]. Next, a performance matrix is selected

to calculate a performance-rating parameter for the PV system. The choices can be cate-

gorized into three groups: electrical parameters corrected to standard testing conditions

(STC), predicted Pmp at a specified condition from empirical models such as X bX [35],

PVUSA[32], and corrected performance ratio, which is the ratio of the actual energy yield

over that under the reference conditions[32]. The last step is to apply a model to extract

the rate of change, like the slope in a linear model. These models fall into two major

categories: statistical and analytical models.
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The statistical models were more widely used. A simple linear model, also referred

to as ordinary least squared regression (OLS), is applied to the timeseries performance

matrix with or without a trend extraction which removes seasonality and noise. Several

options were often compared together for extracting the trend, such as classical sea-

sonal decompose (CSD), Holt-Winters (HW) exponential smoothing, season and trend

decompose using LOESS (STL), autoregressive integrated moving average (ARIMA)[32],

and robust principal component analysis (RPCA)[36]. A study showed that ARIMA and

STL performed relatively better, especially compared to a directly applied OLS, consid-

ering the smaller uncertainty in the calculated PLR due to their robustness in different

filtering conditions and outlier handling and less sensitiveness to seasonality[32]. How-

ever, some studies also showed that the uncertainty difference was not significant, and

a directly applied OLS could offer very comparable results for high-quality data[33, 37].

Another method called year-on-year (YoY) was also often used for determining PLR.

This method applies the simple linear model (OLS) to points of the same time (such as

the same day, the same month) across multiple years or every two subsequent years to

obtain a PLR distribution, from which the expectation and uncertainty can be evalu-

ated. YoY was also proved to be more robust against outliers and less sensitive to sea-

sonality compared to OLS [38, 39].

The performance loss is not always linear, especially in the early installation and in

the wear-out stage[40]. The pattern of the performance loss depends on the degradation

mechanisms. Degradation modes such as light-induced degradation (LID) and light and

elevated temperature induced degradation (LETID) were observed to have non-linear
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power loss, while encapsulant discoloration, which was the most widely reported prob-

lem for the installed module, caused approximately linear power loss[40]. Some stud-

ies applied the piece-wise linear regression[40, 41] or reported the PLR using different

numbers of years to account for non-linearities.

Another model category to calculate PLR is the analytical model, like the Arrhe-

nius model, which usually has exponential terms[32, 42–44]. The independent variables

were environmental stressors such as RH, average temperature, light dose for the pure

physics-based model[32, 41] and the exposure time for the hybrid model[42, 44]. In the

pure physical model, many parameters such as different activation energies were es-

timated from laboratory accelerated exposures applied to similar modules. Additional

field observations were also requested to validate the dominant degradation mechanism

for choosing the proper model corresponding to different reactions[32]. The published

hybrid model suggested using data with at least 3% degradation for the fitting[42].

Besides the model selection, data quality and imputation methods for missingness

also have influences on the PLR result. With more timeseries data becoming available,

data quality, imputation, and their influence on the PLR determination captured atten-

tion in the recent three years. Many visualization methods were suggested to investigate

the existence of specific data problems, such as data synchronization, data gap, and data

shift[30]. Moreover, both the latest IEA Task 13 report[35] and a publication of Livera et

al.[45] proposed some data processing and data quality verification frameworks. The

latter also compared the uncertainty in the performance ratio using different models to

impute the missing irradiance, power, module temperature with different percentages

of missingness.
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2.2.2 Utilization of Other Timeseries I-V Features

While timeseries Pmp is useful to obtain PLR, it offers limited insights into the cause of

power loss. Other I -V characteristic features such as Isc , Voc , Rs , and Rsh can provide

more information regarding the activated degradation mechanisms[40, 46, 47]. For ex-

ample, the drop in Isc was often associated with the encapsulant discoloration, and the

increase in Rs indicated corrosion or solder bond fatigue[40]. However, tracking I -V fea-

tures requests additional equipment, so timeseries I -V data were less available than the

timeseries Pmp . Some tracking equipment record the timeseries I -V curves and directly

measure all I -V features, while others only measure several features. The I -V features

can be extracted from the I -V curves using a physical diode model[48] or a data-driven

model[49]. The former has less bias but is computationally expensive due to the iter-

ation algorithm to solve the Lambert W equation. On the other hand, the latter may

contain some bias in the resistance features extracted, it requests fewer computational

sources and has better repeatability and is inherently comparable[50].

The approach to quantify the rate of change for these I -V features is similar to that of

PLR. The percentage of change in power associated with different features is not directly

proportional to that in different I -V features due to their physical relationship to power.

Several studies proposed methods to construct the outdoor Isc -Voc curve[51, 52] and

further correct the curve and decompose the total power loss into several power loss

factors[51, 53]. Wang et al. also published a corresponding open-source R package on

CRAN[54], so the developed algorithm could be easily implemented to other data[46].

Moreover, the outdoor Isc -Voc curves and similar curves such as Suns-Voc , Suns-Vmp

can be used for monitoring the operation of PV power plants and irradiance sensors[15,

52].
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2.3 Machine Learning Methods Applied in PV Reliability Study

Machine learning models have been applied to various research and applications in so-

lar energy. The major applied research fields include operational fault detection of PV

power plants, power forecasting, and solar cell defect classification. The implemented

models can be categorized into three classes, including supervised, semi-supervised

and unsupervised, based on whether the input data have labels or dependent variables.

They can also be classified into regression or classification based on the targeting prob-

lem. This section introduces study frameworks and machine learning models frequently

used for different research topics.

2.3.1 PV Array Operational Fault Detection

The safety and health of a PV power plant are inseparable from timely and effective prob-

lem diagnosis and elimination. Common operation faults include temporary or perma-

nent shading, anomalies or errors on either alternating current (AC) or direct current

(DC) side of the inverter, connection errors in the solar arrays such as open circuits,

line-line fault, and damaged PV modules[55]. Such operational faults are challenging to

troubleshoot with visual inspection. Many troubleshooting characterizations such as I -

V scanning require at least a part of the PV array to be disconnected, reducing generated

energy. Therefore, it has become an important research topic to identify faults without

interrupting the regular operations of power plants. Most input data for fault detection

could be divided into two categories: thermographic images and electrical parameters

such as Pmp , Isc , Voc , Imp , and Vmp [56]. Environment-related variables sometimes are

added, such as module temperatures, plane of array irradiance (PO A), and global hori-

zontal irradiance (G H I )[56, 57].
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The thermographic image can be used directly as the input or can undergo some

image processing to highlight hot spots and then be input to classification models[58].

Several image processing methods include gamma correction, masking, and edge de-

tection[58]. The classification model types that directly use images as the input are con-

volution neural networks (CNNs)[59, 60], extreme gradient boosting (XGBoost), random

forests (RFs), and support vector machines (SVMs)[58]. Feature vectors also can be ex-

tracted from images and used as the input. Such feature vectors contain results from

both local and global feature extractors, such as contrast, energy, homogeneity, and cor-

relation obtained from the Gray Level Co-Occurrence Matrix (GLCM) and the histogram

of gradient features[61, 62]. Then an artificial neural network or a simple classifier like

Naive Bayes can replace the CNN to achieve comparable performance, like achieving

an accuracy above 90%[61, 62]. It is known that CNN is a feed-forward neural network

where each neuron affects the other neurons in the adjacent layer to preserve the spatial

correlation of images so that CNN can capture local image characteristics. The trained

convolution kernel in CNN models plays a role of an image feature extractor. Besides

model structure and parameters’ settings, the CNN performance depends on the sam-

ple size. A study showed that when the input images were less than 5400, the model had

a testing classification accuracy much lower than that of the model trained with more

images[60]. When input images were limited, like less than one thousand, using feature

vectors as the input delivered a considerably better result[61]. At present, models pro-

posed in this area have generally achieved more than 95% accuracy[60–62]. However,

there was a lack of public image datasets for a model competition. It was challenging

to identify the best model across different datasets, especially when their performances

were very similar[58].
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Models for fault detection using electrical data as the input have the same problem

with more complexity due to simulation. Since electrical data for a specific operational

fault is difficult to collect naturally, the data used in some studies were simulated by

inputting actual weather data to some PV array circuit simulation algorithms. However,

such data did not contain errors and noises in the measured electrical data. So the actual

performance in the real application was very likely to be different from the reported

value[55]. Most classification machine learning models have already been tested in this

area[56, 63]. Some studies proposed semi-supervised classification methods to make

the model learn from both labeled and unlabeled data through graph shifting[57] or

conditional probability[64].

2.3.2 Power Forecasting

Power forecasting is a typical problem of regression through time. Some studies struc-

tured the input data as observations of the same time point (like a month or a day) across

different years to forecast the corresponding time in the following year. Then multiple

machine learning algorithms such as RF[65], Gradient Boosting Regressor (GBR)[65],

Decision Tree (DT)[65], ANN[66] were tested in different studies. However, structur-

ing input data in such a way is not necessary. The recurrent neural network (RNN) is

a typical machine learning model that processes timeseries data for prediction or fore-

cast[67]. It can process variable-length input sequences using its internal state. Because

the depth of an RNN neuron is decided by the length of the input sequence, which could

be relatively long in some cases, a plain RNN neuron is likely to encounter a gradient

vanishing problem through backpropagation. It could form a short-term memory and

hinder performance improvement through training with more input data. Therefore,
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some special RNN neurons are more popular used for RNN models such as long short-

term memory (LSTM)[68] and gated recurrent unit (GRU)[69]. Both of them have gates

using a sigmoid function to control the balance between long-term memory and the

current updated state so that the information obtained from the very early input can

also reach the recent output[68, 69]. Karimi et al. utilized the temporal coherence in

the power output for an individual power plant and the spatial coherence of the power

plants located in different places[70]. A graph layer decided by the geometric distance

was added in between RNN temporal layers to form several spatiotemporal blocks in the

model structure. Such a model was proved to have a better performance than the model

using the RNN temporal layer only.

2.3.3 Solar Cell Defect Detection

EL is commonly used to identify solar cell defects within a PV module. It has a much

higher resolution than the thermographic image. Thermographic images are more of-

ten used in diagnosing operational faults in a large-scale PV power plant to identify

whether or not a PV module has abnormal hot spots and the location of such a prob-

lematic PV module in a PV array. So the input images are for PV modules or arrays.

EL images are generally taken from each module to identify the damaged solar cell in-

side. Therefore the EL image for each cell is generally extracted from the module EL

image and used as the input for modeling. Al-Mashhadani showed examples of de-

fects that were detectable in the EL cell image, such as cracks, finger interruptions, and

contact failures[71]. Many studies applied CNN models for the solar cell defect classi-

fication. These models were usually customized to have about five convolution layers

[72, 73] or modified from published popular CNN models like the VGG series[74, 75].
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The targeting predicted classes could be binary, such as defective and defect-free[74],

or multiple depending on types of defects, such as cracked, corroded, and finger in-

terrupted[72, 73]. The image data used for model development generally were unbal-

anced due to fewer defective cell images. Image argumentation such as rotation and

flipping has been shown to make the model more general and to improve the model

performance[72, 74]. Using a CNN for classification is supervised learning, which re-

quires data pre-labeling. Each category needs to have enough images to be included in

the designed model, which makes some defects be ignored due to limited observations

or physical understanding.

Unsupervised learning has the advantage of learning patterns from unlabeled data.

Pierce et al. first extracted features from three aspects to form the feature vector and

then applied hierarchical clustering to identify clusters through a dendrogram[76]. K-

means and hierarchical clustering are both popular unsupervised classification algo-

rithms. Hierarchical clustering builds a hierarchy of clusters through merging or split-

ting depending on the direction of growth. K-means algorithm aims to partition n obser-

vations into k clusters. Each observation belongs to the nearest cluster decided by the

distance to centers or centroids, serving as cluster prototypes. Compared to K-means,

the hierarchical model has the advantage of a more flexible distance matrix, more stable

results without random initialization, and no need to define the number of clusters in

advance. However, it is computationally more expensive than K-means, making it less

popular to apply to large datasets. The quantitative results using EL images primarily

focus on classification, with very little work linking EL images to the overall electrical

performance. Karimi et al. defined four image features as the median intensity, the

fraction of dark pixels after thresholding, the normalized busbar width, and a corrosion
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degree[77]. Then the normalized Pmp and Rs were predicted by polynomial fitting from

the defined image features. Such artificial features may not be applicable for different

image datasets. While most solar cells in this study had degrees of corrosion, the major

problem presented in another image dataset could be something else, such as crack-

ing or area isolation. Although the images used in this study were obtained from step-

wise characterizations of modules under indoor accelerated exposures, the correlation

between features of the same cell at different exposure steps was not exploited in the

prediction of performance parameters.

2.4 Correlate Lab Reliability Results to Real World Performance

PV modules operate under complex and varying environmental conditions. It is not

practical to examine PV module lifetime using field conditions due to the long duration.

Therefore, indoor accelerated exposures are commonly applied to study reliability with

more aggressive conditions. It is essential to match results from indoor accelerated ex-

posures with field performance for lifetime prediction or evaluation of conditions and

duration needed for aging samples in the lab to satisfy specific outdoor performance

requirements.

There are generally two ways to correlate results from indoor accelerated exposures

and outdoor exposures. One is to match the exposure conditions using accumulated

values or the average of environmental variables. The other is to match the degrada-

tion performance of samples under different conditions and further estimate an accel-

erated factor. Here are several examples of the first approach of matching the exposure

conditions. Miller et al. used the maximum shear stress of glass|EVA|glass samples to
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study the adhesion at the interface[13]. Cumulative radiant was used to visualize the

stress reduction for samples under different exposures. Another study used finite el-

ement method (FEM) models to study the water ingress into the DG module[78]. Af-

ter obtaining several parameters related to the encapsulant through measurements of

water vapor transmission rate (WVTR), a FEM model was built to estimate the water

ingress with temperature and humidity conditions varying over time. The total mass of

absorbed water calculated for a sample after one hour of the standard damp heat ex-

posure was roughly equal to the one calculated for 584 hours in Miami, Florida. If the

interested area was changed as a 1.5 cm wide strip close to the edge, then one hour of the

standard damp heat led to the same total mass of absorbed water in the interested area

as the mass estimated for 21.6 hours in Miami. Bheemreddy et al. used the Hallberg-

Peck Model, which is a corrosion rate model to compare PV module performance under

different exposure conditions[79]. In addition to environmental variables such as tem-

perature and humidity, the model contained parameters such as activation energy, time

exponent, and relative humidity exponent. Those parameters were obtained by fitting

experimental data under various conditions. Kaaya et al. used three empirical kinet-

ics models describing the degradation rate through hydrolysis, photo-degradation, and

thermo-mechanical degradation, respectively[80]. Then the degradation rate consider-

ing the synthetic effect of different reactions was assumed to be equal to the product

of that in each reaction[80]. The major difficulty of matching exposure conditions for

such comparison is considering influences from multiple environmental variables and

their variation over time. The FEM model can simulate influences propagating to the

PV module from different exposure conditions. However, material and interface prop-

erties that are critical for simulations are usually unknown for various commercial PV
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modules, and simulations are computationally expensive. Using a single environmental

variable creates the problem of ignoring the effects of the others. Such neglect some-

times is inappropriate, depending on how determinant the role of the selected environ-

mental variable is. For example, Miller et al. found humidity and the hygrometric (com-

bined temperature and humidity) instead of the cumulative UV dose heavily reduced

the adhesion[13]. These studies sometimes ignored changes in environmental variables

over time and made assumptions about activated degradation mechanisms and their

synthetic relationships[79, 80].

The other way is to match the characterization results of the exposed samples. Gu et

al. first confirmed that the kinetic behavior of samples under an outdoor exposure was

similar to that under UV + 75% RH + 55 ◦C accelerated exposure by analyzing the sur-

face morphology through the atomic force microscopy (AFM) and identifying changes in

the functional groups through FTIR[81]. Then the authors decided an acceleration fac-

tor between outdoor and this indoor accelerated exposure by comparing the amount of

chemical changes. Kersten et al. used the ratio of power loss from PV modules installed

in Cyprus and those under the current injection around maximum power status at 75

◦C[82]. It found that installing the PV modules in Cyprus for one year led to a power loss

equal to 290 hours under the designed accelerated exposure. A similar approach was

also taken by another study, which investigated the acceleration factor between outdoor

exposure and multiple PID tests at different temperatures[83]. An essential premise of

using such an approach is to assume or prove that the dominant degradation mode is

consistent between results from different exposures. For example, if a PV sample under
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outdoor exposure experiences power loss because of encapsulant discoloration, and an-

other sample under indoor accelerated experiences power loss due to interconnect cor-

rosion, the acceleration factor obtained by matching their power losses has no practical

meaning. Therefore, in most cases, studies confirmed that the activated degradation

mechanisms are identical through multiple characterizations[81] or made assumptions

based on exposure conditions and observed degradation behaviors[82, 83]. For PV mod-

ules without access to further inspections, Liu et al. proposed an algorithm to evaluate

the similarity in rates and trends by comparing models describing how power and elec-

trical mechanism features change over time[84]. If the trends of degradation mechanism

features were more similar, the scale factor is more likely to be accepted.
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3 Experimental and Analytical Meth-

ods

This study aims to quantitatively analyze and compare the degradation behaviors

of PV modules with different packaging strategies under different exposure conditions.

The power loss was quantified, and the activated degradation mechanism was identi-

fied. In order to accomplish this goal, a four-part study was devised. The first part is the

fabrication of PV modules. Secondly, the indoor accelerated exposures are applied with

multiple characterizations at specific exposure steps. The third step consists of outdoor

exposure with electrical features and weather variables tracked over time. The afore-

mentioned three parts are experimental and introduced in this section since they were

used in more than an individual result section. The last part is for the data analysis.

This includes the processing of lab characterization results and outdoor timeseries data

and creating models. The modeling aspect incorporates regression, hierarchical cluster-

ing, neural networks, and an algorithm developed specifically in this study to compare

module degradation behaviors under different exposures. Each analysis method is in-

troduced in a separate chapter under the related research topic.
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3.1 Fabrication of Minimodules

The type of PV module used in this study is a minimodule that contains four solar cells

connected in series. Fig. 3.1 shows the front and backside of a DG minimodule. Five

junction boxes were installed on the backside and labeled from A to E to enable electri-

cal measurements for each cell. In total, there are 192 minimodules produced. Half of

the minimodules, labeled as brand A, were fabricated by a PV company using its stan-

dard commercial process. Our Solar Durability and Lifetime Extension Center (SDLE) at

CWRU fabricated the remaining minimodules labeled as brand B. However, it should be

noted that the solar cells used to make brand B minimodules were supplied by the same

company that fabricated the brand A minimodules. All these solar cells are P-type multi-

crystalline silicon PERC cells, doped with boron. The production duration for brand A

minimodules was very short, which was about one month, while brand B minimodules

were made in batches based on sets, and it took about three months to make one set.

There was roughly a three-month gap between the fabrication of each set of brand B

minimodules. Some cell discoloration was observed during the fabrication of set #3 and

set #4 minimodules despite proper containment within a box accompanied by nitro-

gen flow. Three different types of encapsulant materials were supplied by a company:

transparent, UV-Cutoff, and opaque with differences in additives. Some literature also

refers to the opaque encapsulant as "white encapsulant" instead. This company also

supplied the KPf backsheets used for sets #1, #2, and #3. The KPf backsheet has three

layers. The inner layer is a fluorine coating, the core layer is PET, and the outer layer is

PVDF. Despite different compositions, the KPf backsheets appear white on both sides.

Another company supplied the transparent backsheets used for the GB minimodules in

set #4. The transparent backsheet also has three layers: the inner layer is the transparent
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fluoroethylene vinyl ether (FEVE), the core layer is PET, and the outer layer is PVF. The

frontal glass for GB minimodules is tempered and 3.2 mm thick, while the glass for DG

minimodules is heat-strengthened and 2.5 mm thick.

(a) Front side. (b) Backside.

Figure 3.1. The front and back side appearance of one DG minimodule.

There are three steps in the module fabrication process, including soldering, lam-

ination, and junction box installation. The busbar and tape that are used to connect

the four cells together in a module were manually soldered for all brand B minimod-

ules. When soldering a busbar, a cell was put on a small hot plate to maintain a constant

temperature of 55 ◦C. The temperature of the soldering tip was set to 315 ◦C. Then the

soldered cells were stacked with the other layers of material, and everything was lam-

inated using a P.Energy L036A laminator. Lamination involves two steps: evacuation

and crosslinking. The evacuation step took six minutes. Crosslinking took 10 minutes

per minimodule using EVA and 20 minutes per minimodule using POE. The crosslinking
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temperature for both kinds of modules was 145 ◦C. Both the lamination time and tem-

perature were suggested by the company supplied encapsulant materials. Next, electro-

luminescence (EL) imaging was applied to inspect the laminated minimodule in order

to detect and remove samples with severe damage like a penetrating crack. The final step

was the installation of junction boxes. This fabrication procedure detailed above is for

all brand B minimodules. Brand A minimodules were fabricated using a similar process

with the main difference being that the equipment utilized is for commercial PV mod-

ule production. Their soldering was automated which means that it was less likely to

have cracking before and during exposure due to less local concentrated stresses. Fur-

thermore, due to the difference in the laminator, the position of solar cells in brand A

minimodules had less movement during lamination and followed the designed layout

better than in brand B minimodules.

Table 3.1 lists the quantity and specifications of all minimodules within this study.

There are sixteen module variants, divided into four sets, that have different PV compo-

nents, as shown in Fig. 3.2. Within each set, there are four module variants to keep the

comparison of EVA versus POE, and DG versus GB. There are differences in cell types

and rear encapsulant types between minimodules of distinct sets. Set #1 and set #3 use

monofacial solar cells, while set #2 and set #4 use bifacial solar cells. The rear encapsu-

lant in set #1 is the UV-Cutoff type, set #2 and set #3 use the opaque type. Set #4 is an

exception; the rear encapsulant is the UV-Cutoff type for the GB minimodules and the

transparent type for the DG minimodules in order to demonstrate the configuration of

commercial bifacial PV modules. If only considering the packaging materials, set #4 is

more similar to set #1. It is worth mentioning that, regardless of the type of solar cells
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used, only set #4 is for bifacial modules. The others are all monofacial since the rear side

of the module is not sensitive to light.

Figure 3.2. Possible material choices for each layer within the sixteen
module variants.

Table 3.1. Detailed quantities and specifications of the minimodules that
were fabricated and tested. mDH represents modified damp heat, and
mDH+FSL represents the sequential exposure of modified damp heat
with full-spectrum light. These are the two accelerated exposures used
in this study.

Set Module # of modules # # # # Cell Encap. Rear Architecture Module
# Variant Brand A Brand B Retained Outdoor mDH mDH+FSL Type Material Encap. Type
1 1 6 6 2 2 4 4 monofacial EVA UV-Cut GB monofacial
1 2 6 6 2 2 4 4 monofacial EVA UV-Cut DG monofacial
1 3 6 6 2 2 4 4 monofacial POE UV-Cut GB monofacial
1 4 6 6 2 2 4 4 monofacial POE UV-Cut DG monofacial
2 5 6 6 2 2 4 4 bifacial EVA Opaque GB monofacial
2 6 6 6 2 2 4 4 bifacial EVA Opaque DG monofacial
2 7 6 6 2 2 4 4 bifacial POE Opaque GB monofacial
2 8 6 6 2 2 4 4 bifacial POE Opaque DG monofacial
3 9 6 6 2 2 4 4 monofacial EVA Opaque GB monofacial
3 10 6 6 2 2 4 4 monofacial EVA Opaque DG monofacial
3 11 6 6 2 2 4 4 monofacial POE Opaque GB monofacial
3 12 6 6 2 2 4 4 monofacial POE Opaque DG monofacial
4 13 6 6 2 2 4 4 bifacial EVA UV-Cut GB bifacial
4 14 6 6 2 2 4 4 bifacial EVA Transparent DG bifacial
4 15 6 6 2 2 4 4 bifacial POE UV-Cut GB bifacial
4 16 6 6 2 2 4 4 bifacial POE Transparent DG bifacial

Each of the 16 module variants includes six minimodules from each brand. The six

minimodules of brand A were partitioned to the outdoor exposure and the two indoor

accelerated exposures with two minimodules for each. The six minimodules of brand B

were partitioned to the retained group and the two indoor accelerated exposures with

two minimodules for each. So there are two minimodules counting for eight cell samples
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under each accelerated exposure from each brand. Due to the dimensional restrictions

of a mechanical loading test applied to all GB minimodules exposed to modified damp

heat with full-spectrum light exposure (mDH+FSL), the size of these minimodules is

larger in one dimension than that of the other minimodules. As shown in Fig. 3.3, for

each brand of minimodules under mDH+FSL, one minimodule follows layout 2, and

the other follows layout 3. All the other minimodules follow layout 1. The four cells

always occupy a centralized square area no matter which layout is used. Layout 2 can

be described as layout 1 with an extended area in the length direction and no change in

cell position. The solar cells, as an entire unit, rotate 90 ◦ between layout 3 and layout 2.

(a) Layout 1. (b) Layout 2. (c) Layout 3.

Figure 3.3. The three layouts used for minimodules. Layout 2 and 3 were
only used for minimodules under mDH+FSL. The units are millimeters.

All minimodules were pre-conditioned before being exposed to different exposures.

The pre-conditioning process consisted of two steps: light soaking as the first step, and

boron-oxygen stabilization with current injection as the second step. However, there

were some differences in how the pre-conditioning was conducted for the minimodules

between the two brands. For brand A, minimodules were initially electrically shorted

and placed outdoors to obtain a light dose as high as 40 kWh. Then, they were con-

nected in series with a power supply to inject current around the current at maximum

power (8.8 A) for 48 hours at room temperature. For brand B, minimodules were first put
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in the full-spectrum light chamber with a 0.5Ω load resistor connected to have them op-

erate around maximum power status. Their total light dose was also 40 kWh. Next, they

were connected in series to a power supply that injected a current of 8.8 A. It should be

noted that these modules were put into a climate chamber to make their temperature

to about 80 ◦C. During the pre-conditioning, several minimodules from both brands

were selected for current-voltage (I -V ) measurements. Furthermore, it was observed

that they reached the stable level specified in IEC 61215: the difference between the

maximum and minimum Pmp should be less than 1% of the average Pmp in three con-

secutive measurements with a light dose interval more than 5 kWh.

3.2 Indoor Accelerated Exposures and Stepwise Evaluations

There were two kinds of accelerated exposures in this study. One was the modified damp

heat (mDH), where the temperature was adjusted to be 80 ◦C with relative humidity (RH)

of 85%. The temperature was lowered 5 ◦C below that of the standard damp heat to avoid

overemphasizing the hydrolysis of PET which is the core layer material in the backsheet

and has a Tg of 80 ◦C. This will result in a more fair comparison between GB and DG

modules. In addition, most outdoor PV modules also do not operate at such high tem-

peratures very often. The total exposure time, 2,520 hours, was divided into five expo-

sure steps meaning each step spanned 504 hours (21 days). The other was a sequential

accelerated exposure of modified damp heat with full-spectrum light (mDH+FSL). The

total exposure time was also 2,520 hours, divided into five exposure steps. Each step’s

21-day exposure was divided between two different tests: mDH for 14 days and FSL for

seven days. The full spectrum light exposure (FSL) was conducted with a class C solar



Experimental and Analytical Methods 37

simulator based on specialized HID lamps from Iwasaki Electric. The average light in-

tensity on the front and back sides of the exposed minimodule (due to reflection from

the walls of the chamber) was 420.4 W/m2 and 85.1 W/m2, respectively. The FSL light

source emitted minimal UV light. The light intensity for the range from 300 nm to 400

nm was only 6.68 W/m2 and 5.52 W/m2 for the front and back sides of the minimodule.

Such light intensities are only about 10% of the practical UV exposure intensity for ag-

ing backsheets[85]. A 0.5 Ω load resistor was connected to each minimodule to make

it operate around Pmp . The module temperature was below 70 ◦C under FSL. The pri-

mary purpose of the FSL exposure was to make the module fully operational, with the

PV module likely containing degradation products initiated from mDH.

There were six measurement steps, including the baseline. At each step, there were

four kinds of non-destructive characterizations, including current-voltage (I -V ) curves,

Suns-Voc , electroluminescence (EL) images, and photoluminescence (PL) images. The

I -V curves were measured at three different illumination levels: 1000 W/m2, 500 W/m2,

and 250 W/m2 at room temperature. Fig. 3.4 shows the Eternalsunspire solar simulator

used for measurements and the curves for the three illumination levels measured from

one cell in a laminated minimodule. Temperature corrections and the extraction of se-

ries resistance (Rs) using these three curves were performed based on IEC 60891. Other

I -V features including Pmp , the current at Pmp (Imp ), the voltage at Pmp (Vmp ), Isc , Voc ,

Rsh were extracted from the I -V curve measured at 1000 W/m2 using the ddi v package

published on CRAN[49].

Suns-Voc measures Voc under varying illumination. It can be converted to a Pseudo

I -V curve using Isc . For individual cell-level measurements, changes in the Pseudo I -

V curve (PIV) for aging solar cells reflect a change in the recombination behavior, and
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(a) Instrument for I -V measurement.
(b) I -V curves.

Figure 3.4. The Eternalsunspire solar simulation for the I -V measure-
ment and the three curves measured from a cell in one laminated min-
imodule.

the curve is not affected by a change in series resistance (Rs)[86]. Fig. 3.5 shows the

Sinton stage for performing the Suns-Voc measurement and the Suns-Voc and Pseudo

I -V curves for a cell in one laminated minimodule. In our study, the Pseudo I -V curve

(PIV) was converted from the Suns-Voc curve using a constant Isc , which was the name-

plate value of 9.465 A, rather than the measured Isc obtained from the I -V curve. This

was done in order to eliminate the influence of a varied Isc due to uncertainties in I -V

measurements or the degradation of the encapsulant layer. From the PIV, some features

such as Pmp , Imp , and Vmp , are extracted similarly to I -V features.

EL and PL images were taken with a Tau Science PixEL system, using a 20.2 megapixel

(5496 x 3672 pixels) ZWO ASI183MM Pro monochrome camera with a Peltier cooled

Sony IMX183CLK J back-illuminated CMOS sensor, and green LED illuminators for PL

measurements[87]. Fig. 3.6 shows the appearance of the room where images for a mini-

module were captured. Eight images were taken per measurement. Three of them were
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(a) Instrument for Sun-Voc

measurement.
(b) the Sun-Voc (cyan) and Pseudo IV curve (red).

Figure 3.5. The Sinton stage for the Suns-Voc measurement and the
Suns-Voc and Pseudo I -V curves results of a cell in one laminated mini-
module.

EL with different injected currents of 9.4 A (Io), 4.7 A (0.5 Io), or 2.4 A (0.25 Io). The cam-

era’s exposure time for taking each image was adjusted to reasonably utilize the range of

the allowed intensity in obtained images. Therefore, the lower the current is, the longer

the camera exposure time is.

Three EL dark images were taken using the same camera parameter settings as their

corresponding EL images without current being injected into the module. After dark

subtraction, we denoted the three EL images as EL@Io , EL@0.5Io , and EL@0.25Io . Two

PL images were captured using the same illumination but different settings for the elec-

trical status of the testing minimodule. Illumination was provided by ten green LEDs

arranged in two columns. The intensity was about two times stronger than that in the

corresponding band in the solar spectrum. One PL was performed with the module’s

current set to 0 A which is the open-circuit status. This image was labeled as PL@OC .
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Another PL denoted as PL@SC was performed with the voltage set to 0 V which is the

short-circuit status. This image was then subtracted from the PL@OC in order to obtain

the third PL image, PL@OC −SC .

Figure 3.6. The imaging room for the system designed by Tau-Sci used to
measure EL and PL images.

Fig. 3.7 shows the eight images obtained for one GB minimodule at baseline. The

power supply to control electrical status of the testing sample is connected to the whole

module when taking pictures. Next, each cell image was extracted from the module im-

age using a published cell extraction Python pipeline from pvi mag e package developed

by SDLE[88]. Therefore, our PL@SC is brighter than such images with electrical control

applied to individual cells in other published literature due to the current mismatch ef-

fect resulting from cells connected in series.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7. The resulting eight images from one GB minimodule mea-
surement. (a), (b), and (c) are the EL images measured with injected cur-
rents of 9.4 A, 4.7 A and 2.4 A respectively while (e), (f), and (g) are their
corresponding dark images. (d) and (h) are the open-circuit and short-
circuit PL images.

Fsd =
√∑

(xi −µ)2

N
(3.1)

Despite an accurate signal control, there was still a small amount of signal drift dur-

ing each measurement resulting in the average (Fmean) and median (Fmed ) intensities

of the image being less useful to track the cell degradation. While it is not visible to the

human eye, there is a uniformity issue in the images. The cell area closer to the camera

is brighter which causes the fraction of dark pixel (FF DP ) after thresholding to no longer

accurately reflect the size of a degraded area. However, we found that the standard de-

viation (Fsd ) is not strongly influenced by these two problems, and the change of it can

still indicate whether or not the image became more non-uniform due to degradation.
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(a) EL@Io before exposure. (b) Thresholded EL@Io before exposure.

(c) EL@Io after exposure exposure. (d) Thresholded EL@Io after exposure.

Figure 3.8. The EL@Io images for one cell before and after the mDH ac-
celerated exposure with and without the Otsu threshold.

The Fsd is calculated as Eq. 3.1 where µ is the average image intensity, N is the total

number of pixels, and xi is the intensity value of each pixel in the image. Fig. 3.8 shows

the EL@Io for one cell before and after the mDH accelerated exposure with and without

Otsu threshold[89], and Table 3.2 lists the Fmean , Fmed , FF DP , and Fsd for these two im-

ages without threshold. While comparing these two images without threshold, we can
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see busbar corrosion and some areas on the edge becoming inactive after the exposure;

only Fsd changes as the expected direction.

Table 3.2. The extracted global feature values for the EL@Io image of one
cell before and after mDH accelerated exposure.

Extracted Global Feature Before Exposure After Exposure
Fmean 0.4480 0.4492
Fmed 0.4552 0.4694
FF DP 0.3846 0.3143
Fsd 0.0750 0.1062

3.3 Outdoor Real-world Exposures and Timeseries Evaluations

There were 32 minimodules installed outdoors, with two minimodules for each mod-

ule variant. They were located at the SDLE solar farm: 243 Mt Sinai Dr, Cleveland, OH

44106. The longitude and latitude of the site are -81.616◦ and 41.511◦. According to the

Köppen-Geiger climate classification system implemented by the kg c package[90], this

installation site is in the Dfa climate zone, where the letter "D" stands for continental,

the letter "f" represents no dry season, and the letter "a" stands for hot summer. The Dfa

climate is generally not considered a very aggressive climate that leads to the degrada-

tion of PV modules due to a long winter period. The levels of aggressiveness in climates

for PV degradation are generally thought of in the following order: hot and dry > hot and

humid > moderate > snow and polar[11]. The Dfa climate is considered moderate. As

shown in Fig. 3.9, the outdoor minimodules were mounted on a fixed rack in three rows

and 11 columns with heights varying from 25 to 100 cm. The outdoor exposure started in

May 2020, and data acquisition finished in December 2021, meaning that the analyzed
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service lifetime was 1.61 years. However, the exposure and data collection continued for

future analysis.

Figure 3.9. The 32 outdoor minimodules installed on a fixed rack, ar-
ranged into three rows and eleven columns.

The electrical data from the minimodule were collected by a Daystar MT5 Multi-

Tracer. The accuracies for both current and voltage are within 0.1% of the full scale (5

V, 15 A). The time interval for collecting I -V curves was ten minutes. I -V characteris-

tic features such as Pmp , Isc , Voc , and Rs were extracted from the timeseries I -V curves.

In addition, a T-type thermocouple was attached to the rear side of each minimodule

around the cell center position in order to measure the module temperature Tmod . The

measured temperature’s accuracy was ± 0.5 ◦C. A Kipp Zonen CMP6 pyranometer was

installed at the same location to measure the plane of array irradiance (PO A). The pyra-

nometer was installed three meters above the ground to avoid ground activities such as

mowing the grass. The pyranometer and 32 thermocouples were connected to a Camp-

bell Sci data logger for programming measurement and regular data collection. The

time interval was set to one minute. The timeseries electrical data and sensor data were

joined by the closest time.
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4 Indoor, Stepwise, Accelerated Ex-

posure Study of PERC Module Vari-

ants

Title to submit: Statistically-informed, Stepwise, Degradation Study of the Impact

of Differing Encapsulants and Double Glass vs. Glass-Backsheet Architecture of Mono-

and Bi-facial PERC Minimodules

In recent years, with the rise in popularity of bifacial PV modules, the market share

of double glass (DG) modules has increased compared to that of conventional glass-

backsheet (GB) modules, thus further increasing the need to replace ethylene-vinyl ac-

etate (EVA) by polyolefin elastomer (POE) as the encapsulant material. The reliability

of PV modules depends on materials, module architectures, and exposure conditions.

This study compared the degradation behaviors of sixteen module variants from two

brands with varying encapsulant materials (EVA or POE), encapsulant types, module

architectures (GB or DG), and cell types (monofacial or bifacial) under accelerated ex-

posures and applied hypothesis tests to determine statistical significance. The modules

were exposed for 2,520 hours under two accelerated exposures: modified damp heat
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(mDH) and modified damp heat with full-spectrum light (mDH+FSL). The characteri-

zation methods used include current-voltage (I -V ) curves, Suns-Voc , electrolumines-

cence (EL) images, and photoluminescence (PL) images. For both brands, two DG mod-

ule variants with UV-Cutoff rear encapsulant have an average power loss of less than 5%,

while the module variants of EVA+GB with opaque rear encapsulant have a significantly

greater average power loss after each accelerated exposure. Interconnection corrosion

is identified as the primary degradation mechanism contributing to power loss. Unsu-

pervised hierarchical clustering finds that the degradation behaviors of modules from

one brand with a more strict manufacturing control in soldering, lamination, and cell

storage, strongly depend on module architectures only. However, the degradation be-

haviors of modules from the other brand show more complex dependency, including

module architectures, encapsulant materials, and cell types.

4.1 Introduction

Thanks to rapidly advancing technology, newly installed PV systems in 2020 have a larger

power generation capacity than any other renewable energy sources[1]. Since the degra-

dation of PV modules depends on the design of module packaging and their exposure

conditions, various indoor accelerated exposures have been designed to quantify the

degradation of PV modules under specific environmental stressors. According to the

type of rear sheet or cover, commercial PV modules can be categorized into two differ-

ent module architectures: double glass (DG) and glass-backsheet (GB). With the rising

popularity of bifacial PV modules, DG modules have an increased market share[1] due to

their bifacial nature. At the same time, a new product called transparent backsheet was
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commercialized to compete with glass used as the rear cover of PV modules, and PVF-

based transparent backsheet was found to be very durable. W. Gambogi et al. studied

PVF-based transparent backsheet using 500 hours of UV exposure[27]. The UV absorp-

tion decreased by 18%, the elongation at break decreased by 30%, and the transmittance

in the visible range was unchanged[27].

The market growth of DG modules motivates the replacement of EVA encapsulant.

PV encapsulants need to hold electrical components like solar cells in place, and provide

electrical insulation. They also need high transmittance and to be optically coupled

at the interface, and protect solar cells from corrosion and mechanical stress[10, 11].

Therefore, the encapsulant needs to adhere properly to all interfaces during the lifetime

of PV modules and maintain stable properties. EVA has been the dominant encapsulant

for nearly four decades with over 80% market share due to a balanced property with cost

ratio. However, its degradation product contains acetic acid, which can diffuse outside

through backsheets but be sealed inside by glass[11]. Recently, another encapsulant ma-

terial POE, which does not generate acetic acid, has risen to be the competitor of EVA.

POE is a copolymer of polyethylene and octene[19] and the significant advantage of POE

is the absence of acetic acid when degrading due to the replacement of vinyl acetate side

group with alkanes[20]. Multiple studies have shown that PV modules using POE have

a better resistance against potential induced degradation (PID) than EVA[5, 15, 18]. In

addition, Barretta et al. found that the cross-linked film of EVA and POE had very sim-

ilar stability under damp heat and UV accelerated exposures[21]. In recent years, the

changes to packaging materials and module architectures brought challenges to relia-

bility studies of PV modules. A few recent studies have compared DG and GB modules

using different encapsulant materials. In outdoor studies, there are fewer DG modules
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than GB modules, and their reliability performance differs from that of recent DG mod-

ules due to changes in manufacturing and materials[2, 6]. Recent laboratory studies are

also generally observational and lack statistically significant results. Therefore, no firm

conclusion could be made on whether the degradation performance has a significant

difference for modules with different encapsulant materials or module architectures[4,

20, 23–25].

In this study, the degradation behaviors of sixteen variants of DG and GB modules

using different types of EVA or POE encapsulants were investigated under two indoor ac-

celerated exposures: mDH and mDH+FSL. Our study objects are minimodules with four

solar cells connected in series with five junction boxes. Each cell’s electrical properties

can be measured separately. The characterization methods include current-voltage (I -

V ) curves, Suns-Voc , EL, and PL. The statistical significance from hypothesis tests[91]

was reported in comparing average power loss and degradation mechanism features

across different module variants to identify stable and relatively unstable module vari-

ants. Pairwise correlation[92] and principal component analysis[93] were also applied to

identify activated degradation mechanisms. Furthermore, the dependencies of degra-

dation performance on the choice of materials, module architectures, cell types, and

manufacturing process were explored through unsupervised hierarchical clustering.
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4.2 Methods

This section introduces the study object, accelerated exposure conditions, character-

ization methods with corresponding feature extraction, and the data analysis meth-

ods used, including principal component analysis (PCA) and unsupervised hierarchical

clustering.

4.2.1 The Study Object: Research Minimodules

The study has sixteen module variants from two brands: A and B. Brand A minimodules

are fabricated by a solar company using its manufacturing pipeline for commercial PV

modules, while brand B minimodules are fabricated in labs of the CWRU SDLE Research

Center. Two minimodules from each brand are put under each accelerated exposure,

contributing to measurements from eight cells at each measurement step. The sixteen

module variants, with differences shown in Fig. 3.2, are divided into four sets. Each set

includes four different combinations: EVA+GB, EVA+DG, POE+GB, and POE+DG. Across

the sets, cell type (monofacial or bifacial) and rear encapsulant type (transparent, UV-

Cutoff, and opaque) differ. The first three sets are monofacial modules with the poly-

meric backsheet of GB minimodules being a KPf backsheet. Set #4 modules are bifacial

modules with the backsheet for GB minimodules as a PVF transparent backsheet. The

glass is made of 3.2 mm tempered glass or 2.5 mm heat-strengthened glass for GB and

DG minimodules, respectively. Detailed specifications and quantities for the minimod-

ules under indoor accelerated exposures are listed in Table 3.1.
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4.2.2 Accelerated Exposures and Characterizations

Two accelerated exposures, mDH and mDH+FSL, were conducted in this study. Com-

pared to the standard damp heat accelerated exposure, the temperature was lowered by

5 ◦C to avoid overemphasis on hydrolysis in PET, which is the material of the core layer

of backsheet[11], to bring a more fair comparison between GB and DG modules. The

total exposure time was 2,520 hours for each accelerated exposure, and each exposure

step took 504 hours (21 days). Under mDH+FSL, a sequential exposure was conducted

with mDH taking 2/3 of the time (14 days) and FSL taking the remaining 1/3 of the time

(7 days) at each exposure step. The average irradiance intensity for the front and rear

sides of the module under FSL were 420.4 W/m2 and 85.1 W/m2, respectively. In addi-

tion, a 0.5 Ω resistor was connected to each module in order to make it operate around

maximum power (Pmp ). The module temperature was below 70◦C.

At each step, current-voltage (I -V ) curves of three irradiance levels (1000 W/m2, 500

W/m2, and 250 W/m2), Suns-Voc curves, electroluminescence (EL) images at three cur-

rent levels (9.4 A (Io), 4.7 A (0.5 Io), and 2.4 A (0.25 Io)), and open-circuit (OC) and

short-circuit (SC) photoluminescence (PL) images were collected. Another PL image

denoted by PL@OC −SC was obtained by subtracting the short-circuit PL image from

the open-circuit PL image. The corresponding dark images were subtracted from each

EL image, and the cell extraction pipeline from pvi mag e Python package[88] was ap-

plied to extract individual cell images from module images. The Rs was extracted us-

ing all three I -V curves following IEC 60891. The Pmp and Isc were extracted from the

1000 W/m2 I -V curve using the ddi v package[49]. Another Pmp was obtained from the

Pseudo I -V curve (PIV) converted from the Suns-Voc curve [86] using a constant Isc as

9.465 A, which was the nameplate value for the cell. In addition, the standard deviation
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(Fsd ) from cell images, including the three EL images for different current levels (EL@Io ,

EL@0.5Io , and EL@0.25Io), the open-circuit PL image (PL@OC ), and the PL@OC −SC

was calculated. Features extracted from multiple characterization methods were further

normalized by the value measured at baseline from the same cell. Outliers were removed

separately by checking the observations of each module variant from each brand at each

measurement step under each exposure using Eq. 4.1, where k was set as 3, and Q1 and

Q3 were the lower and upper quartiles, respectively.

[Q1 −k(Q3 −Q1),Q3 +k(Q3 −Q1)] (4.1)

4.2.3 Correlation Coefficient

Pearson correlation coefficient (PCC) measures the statistical linear relationship or as-

sociation between two continuous variables[92]. It is the ratio between the covariance

of two variables and the product of their standard deviations, as shown in Eq. 4.2. There-

fore, it is a normalized measurement of the covariance. PCC always has a value between

minus one and one, and the higher the absolute value, the higher the correlation. An ab-

solute value higher or equal to 0.5 is recognized as a strong correlation, and an absolute

value between 0.3 and 0.5 is a medium correlation.

PCC =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2 ∑

(yi − ȳ)2
(4.2)
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4.2.4 Unsupervised Hierarchical Clustering

Principal component analysis (PCA) is a process of computing the principal compo-

nents to perform a basis transformation on the data while retaining as much informa-

tion as possible in a lower dimension[93, 94]. Its computation relies on the singular

value decomposition, and the resulting principal components are orthogonal to each

other. Nine normalized features for each brand of minimodules after exposures were

selected for PCA, including n Isc,IV , nPmp,IV , nRs,IV , nPmp,PIV , nFsd ,EL@Io , nFsd ,EL@0.5Io ,

nFsd ,EL@0.25Io , nFsd ,PL@OC , and nFsd ,PL@OC−SC .

The data were scaled and centered before using as the input for PCA. The first three

principal components were taken for the agglomerative hierarchical clustering using

Ward’s linkage method. Ward’s method, also called the minimal increase of sum-of-

squares (MISSQ) method, evaluates the proximity between two clusters as the quantity

by which the summed square in their joint cluster minus the combined summed square

in the two clusters[95]. Intuitively, this method aims at finding compact, spherical clus-

ters. It was chosen because it is better at avoiding making outliers as individual clusters.

4.3 Results

4.3.1 Performance and Degradation Mechanisms for Module Variants un-

der Two Exposures

The normalized maximum power extracted from I -V curves (nPmp,IV ) for brand A min-

imodules after each accelerated exposure is shown in Fig. 4.1. The x-axis is the nPmp,IV

at the last exposure step, and the y-axis is the module variant. The two blue dashed lines

mark 1 ± 0.005. The red circles mark the average value for each module variant, and the
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purple bar is the 95% confidence interval (CI). In the case that a value is not within the

range indicated by the purple bar, the average value of the corresponding module vari-

ant is said to have a statistically significant difference from the compared value at the

significance level of 0.05. The black bar indicates the 83.4% confidence interval (CI). If

two of such bars have no overlap, then their corresponding averages have a statistically

significant difference at the significance level of 0.05. Comparing these black bars pro-

vides a way to visualize the null hypothesis two-sample t-test results of comparing the

average values of two groups[96–98].

Figure 4.1. nPmp,IV for brand A minimodules after each accelerated exposure.

The results of nRs,IV , n Isc,IV , and nPmp,PIV for brand A minimodules after each ac-

celerated exposure are presented in Fig. 4.2, Fig. 4.3, and Fig. 4.4, respectively. These

three electrical features are not only overall electrical parameters, but they are also closely

related to specific degradation mechanisms. The increase in nRs,IV indicates intercon-

nection corrosion, the decrease in n Isc,IV correlates to encapsulant discoloration, and

the reduction of nPmp,PIV reveals easier recombination after exposure. The association
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of these features to their degradation mechanisms is also based on understanding how

PV modules should degrade under our specific accelerated exposure conditions. While

the amount of change in each mechanism feature is not linearly proportional to its con-

tributed power loss, a significant change generally indicates the activated degradation

mechanism. The normalized electrical feature results of nPmp,IV , nRs,IV , n Isc , IV , and

nPmp,PIV for brand B minimodules after each accelerated exposure are presented in Fig.

4.5. The average and standard error (SE) of the change in each normalized electrical

feature for both brands under each accelerated exposure are listed in Table 4.1.

Figure 4.2. nRs,IV for brand A minimodules after each accelerated exposure.

4.3.2 Pairwise Features Correlation across Module Variants and Exposures

The pairwise Pearson correlation coefficient (PCC) was calculated using six selected nor-

malized features after each accelerated exposure for different data subsets. Fig. 4.6

shows the pairwise correlation information, including the raw data, the distribution,

and the pairwise correlation coefficients using the data containing all observations and
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Figure 4.3. n Isc,IV for brand A minimodules after each accelerated exposure.

Figure 4.4. nPmp,PIV for brand A minimodules after each accelerated exposure.

observations of each accelerated exposure. We denote the correlation coefficient be-

tween nPmp,IV and nRs,IV as r (nPmp,IV ,n Rs,IV ), and the correlation coefficient between

nFsd ,EL@Io and nFsd ,PL@OC as r (nFsd ,EL@Io ,n Fsd ,PL@OC ). Fig. 4.7 and Fig. 4.8 show the

r (nPmp,IV ,n Rs,IV ) and r (nFsd ,EL@Io ,n Fsd ,PL@OC ) under different subsetting conditions,
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(a) nPmp,IV . (b) nRs,IV .

(c) n Isc,IV . (d) nPmp,PIV .

Figure 4.5. Normalized electrical feature results, including nPmp,IV ,
nRs,IV , n Isc,IV , and nPmp,PIV , for brand B minimodules after each accel-
erated exposure.

Table 4.1. The average and standard error (SE) of the change in the four
normalized electrical features, including nPmp,IV , n Isc,IV , nRs,IV , and
nPmp,PIV , for brands A and B under each accelerated exposure.

Brand Exposure
Average ± SE (%)

nPmp,IV
n Isc,IV

nRs,IV
nPmp,PIV

A mDH -6.59 ± 0.42 -0.14 ± 0.06 +15.46 ± 1.30 +0.02 ± 0.03
A mDH+FSL -6.93 ± 0.47 -0.72 ± 0.10 +14.82 ± 1.10 -0.41 ± 0.05
B mDH -9.78 ± 0.64 -0.42 ± 0.11 +24.49 ± 1.85 -0.23 ± 0.07
B mDH+FSL -8.87 ± 0.59 -0.60 ± 0.08 +21.32 ± 1.87 -0.58 ± 0.07

including exposures, encapsulant materials, module architectures, cell types, and mod-

ule brands, respectively.
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Figure 4.6. The pairwise correlation for the six selected normalized fea-
tures after each accelerated exposure.

Figure 4.7. r (nPmp,IV ,n Rs,IV ) using different subsetting conditions.
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Figure 4.8. r (nFsd ,EL@Io ,n Fsd ,PL@OC ) using different subsetting conditions.

4.3.3 Hierarchical Clustering of Principal Components to Study Dependency

The proportion of data variance explained by each principal component is shown in

Fig. 4.9 for brands A and B. The first three principal components explain 80.0% data

variance for brands A and B. They were used as input for the hierarchical clustering al-

gorithm. The resulting dendrograms for brands A and B are shown in Fig. 4.10. Cutting

the dendrogram at the height of 19.5 for both brands resulted in three clusters.

For the result of brand A minimodules, Fig. 4.11 shows the clustered points using

the principal component basis with the variable vector. Table 4.2 lists the number of

observations in each cluster under different subsetting conditions. Fig. 4.12 and Table

4.3 show corresponding results for brand B minimodules. Table 4.4 lists the medium

value for nFsd ,EL@Io , nPmp,IV , and n Isc,IV for each cluster of each brand to associate the

degree of degradation to each cluster. These three features are selected based on the

importance of the variable to each principal component.
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(a) Brand A. (b) Brand B.

Figure 4.9. The proportion of data variance explained by each principal
component for brands A and B.

(a) Brand A. (b) Brand B.

Figure 4.10. The hierarchical clustering dendrograms for brands A and B.
Three clusters are obtained for each brand by cutting at the height of 19.5.

Table 4.2. The number of observations for each cluster under different
subsetting conditions, including encapsulant materials, module architec-
tures, and cell types after each accelerated exposure for brand A.

Cluster mDH mDH+FSL
ID Encapsulant Architecture Cell Type Encapsulant Architecture Cell Type

EVA POE DG GB Monofacial Bifacial EVA POE DG GB Monofacial Bifacial
1 28 31 28 31 24 35 29 25 17 37 30 24
2 15 19 25 9 20 14 26 26 38 14 23 29
3 9 3 3 9 7 5 0 0 0 0 0 0



Indoor, Stepwise, Accelerated Exposure Study of PERC Module Variants 60

(a) PC2 versus PC1. (b) PC3 versus PC1.

Figure 4.11. Principal component scores for brand A of each input obser-
vations, colored by the clusters identified by the hierarchical clustering
result. The arrow displays the loading of each variable, of which the pro-
jected length can be understood as the weight for each original variable
when calculating the principal component.

Table 4.3. The number of observations for each cluster under different
subsetting conditions, including encapsulant materials, module architec-
tures, and cell types after each accelerated exposure for brand B.

Cluster mDH mDH+FSL
ID Encapsulant Architecture Cell Type Encapsulant Architecture Cell Type

EVA POE DG GB Monofacial Bifacial EVA POE DG GB Monofacial Bifacial
1 22 20 16 26 29 13 18 16 15 19 26 8
2 14 33 30 17 18 29 23 36 38 21 24 35
3 8 1 1 8 6 3 7 1 0 8 4 4

Table 4.4. The medium value of selected features of each cluster for
brands A and B.

Cluster Brand A Brand B
ID nFsd ,EL@Io

nPmp,IV
n Isc,IV

nFsd ,EL@Io
nPmp,IV

n Isc,IV

1 1.05 0.940 0.997 1.19 0.900 0.992
2 0.979 0.926 0.998 1.03 0.927 1.00
3 1.28 0.918 0.997 1.65 0.859 0.986
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(a) PC2 versus PC1. (b) PC3 versus PC1.

Figure 4.12. Principal component scores for brand B of each input obser-
vations, colored by the clusters identified by the hierarchical clustering
result. The arrow displays the loading of each variable, of which the pro-
jected length can be understood as the weight for each original variable
when calculating the principal component.

4.4 Discussion

4.4.1 Study Protocol for Parametric Variations across Module Variants and

Exposures

Solar technology and products have changed rapidly in recent years, bringing signifi-

cant challenges to reliability studies. In most studies comparing the PV module relia-

bility performance, only average characterization results have been reported, ignoring

confidence intervals caused by sample and measurement uncertainties. Most studies

evaluated only the Pmp and paid less attention to features related to specific degrada-

tion mechanisms. A sufficient number of samples are essential to evaluate the statistical

significance of the results. In our study, eight cells laminated in two minimodules were

used to compare module variants from each brand under each accelerated exposure.
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Such sample size allows us to use the 83.4% confidence interval (CI) to visualize the null

hypothesis two-sample t-test results for comparing two module variants. Whether their

average performance has a statistically significant difference at the significance level of

0.05 is indicated by the overlapping of their confidence intervals. Our study evaluated

sixteen module variants of two brands, A and B, under two different accelerated expo-

sures: mDH and mDH+FSL. The sixteen module variants take different encapsulant ma-

terials (EVA and POE), encapsulant types, cell types, and module architectures (GB and

DG) into account. The detailed specifications of the sixteen module variants are listed in

Table 3.1. The two accelerated exposures were chosen to evaluate the module reliability

against high temperature and humid conditions, with or without operating solar cells. It

is worth noting that the minimodules tend to amplify the degree of degradation due to

the reduced size compared to the commercial PV module, which usually contains about

60 cells or more.

4.4.2 Performance and Degradation Mechanism Features

nPmp,IV was chosen as an indicator for the overall degradation since the power out-

put decides the performance of PV modules. In addition, nRs,IV , n Isc,IV and nPmp,PIV

were selected as indicators for different degradation mechanisms. Rs is expected to in-

crease when the solar cell experiences interconnection corrosion. The reduction in Isc

is generally linked to transmittance loss in the encapsulant layer due to discoloration

or encapsulant delamination which influences the optical coupling at the interface. On

the other hand, a very large Rs can also lead to a decrease in Isc , but such a high value is

not typical in practice. nPmp,PIV captures the change in recombination behavior. Eas-

ier recombination leads to a decrease in nPmp,PIV . EL reveals the spatial information of
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the solar cell through light emission under current excitation, while PL reveals the spa-

tial information through light emission under light excitation. The standard deviation is

an indicator for measuring signal uniformity. If more local defects are presented in the

solar cell and detectable under an excitation mechanism, the standard deviation of the

corresponding image will increase. Near-uniformly added or subtracted signal has a mi-

nor influence on the standard deviation of an image. The electrical status of a solar cell

when measuring EL is similar to that of measuring I -V curves, considering the forward-

ing current in common. The electrical status for measuring the open-circuit PL is similar

to that of measuring Suns-Voc . It is worth mentioning that the features selected in this

study can also be obtained from the outdoor timeseries I -V curves through modeling

methods[8, 54]. Thus, it provides common variables for data-driven methods to com-

pare the degradation behaviors of PV modules under indoor accelerated and outdoor

exposures.

4.4.3 Correlation of Performance and Mechanisms Features and Between

Mechanisms

Comparing the quantitative change of different electrical features related to specific

degradation mechanisms helps us understand the reasons behind power loss. Studying

the correlation between power loss and degradation mechanism features can give clues

on whether a specific degradation mechanism is strongly associated or not. In Fig. 4.6,

nPmp,IV and nRs,IV are found to have a highly negative correlation, and this correlation

coefficient is more negative for mDH than mDH+FSL. Considering that our exposure

conditions contain high humidity and temperature rather than mechanical stress, such

a correlation indicates that power loss is closely related to interconnection corrosion.
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However, strong correlations between mechanism features and power are necessary but

not enough to conclude the dominant mechanism of power loss, especially when multi-

ple features all correlate to the power. In addition, nFsd ,EL@Io and nFsd ,PL@OC are found

to have a moderate positive correlation as shown in Fig. 4.6. The defects detected in

PL@OC are also detectable in EL@Io , which is the physical foundation of a moder-

ate positive correlation between the standard deviations from both images. However,

it should be noted that not all correlations between variables related to the degrada-

tion mechanisms will have a physical meaning. For example, our PIV curves were con-

verted from Suns-Voc curves using a constant Isc . Therefore, no characteristic features

extracted from the PIV curve should be physically influenced by the Isc value extracted

from the I -V curve. The simultaneous changing effect could cause their statistical corre-

lation, but both mechanism variables are physically independent of each other. All three

degradation mechanisms features chosen in the study, nRs,IV , n Isc,IV , and nPmp,PIV are

physically relatively independent of each other.

4.4.4 Rank Ordering of Variant Factors on Degradation and Performance

This section discusses the differences in the reliability performance of the sixteen mod-

ule variants of brand A minimodules under each accelerated exposure. From Fig. 4.1,

under mDH, the average nPmp,IV drop for module variants 1, 2, 4, and 15 is lower than

5%, and these module variants are considered to be stable. Among these stable mod-

ule variants, module variant 1 has the lowest lower boundary of the 83.4% CI, which is

the criteria to decide the module variant with a significantly greater average power loss.

Module variants 5, 9, and 16 under mDH are observed to have a significantly greater av-

erage power loss than these stable module variants. A similar analysis is conducted for
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module variants under mDH+FSL exposure. Module variants 1, 2, 4, 11, and 14 are found

to have an average nPmp,IV drop that is less than 5%. The lower boundary of the 83.4%

CI of module variant 11 is the lowest, which is used as the deciding criteria. Then mod-

ule variants 5, 6, 8, 9, and 16 are identified to have a significantly greater average power

loss. Therefore, module variants 5, 9, and 16 perform relatively poorly under both accel-

erated exposures. Both module variants 5 and 9 are EVA+GB modules with the opaque

rear encapsulant, and module variant 16 is the bifacial POE+DG modules. Module vari-

ants 1, 2, and 4 are identified to be stable under both exposures, and they are EVA+GB,

EVA+DG and POE+DG modules with UV-Cutoff rear encapsulant, respectively.

From the results of nRs,IV , n Isc,IV , and nPmp,PIV , shown in Fig. 4.2, Fig. 4.3, and Fig.

4.4, respectively, nRs,IV has changed much more significantly than the other two fea-

tures. The average change in nRs,IV is much higher than that of n Isc,IV and nPpm,PIV for

brand A modules under both accelerated exposures as shown in Table 4.1. While more

changes occur in n Isc,IV and nPmp,PIV for modules under mDH+FSL than mDH, it is

still much smaller than the change in nRs,IV . The difference in the amount of change

in nRs,IV averaged across all module variants is minor between exposures, although

mDH+FSL only has 2/3 of the total exposure time under mDH. Therefore, the minor

difference can be related to the continuous aging effect of the degradation product ob-

tained under mDH. Moreover, the average power loss among all sixteen module vari-

ants is similar for both exposures, as 6.59% for mDH and 6.93% for mDH+FSL. However,

the comparable power loss between exposures is not general across all module variants.

Module variants 6, 8, 11, 14, and 15 have a difference of larger than 2% in the average

nPmp,IV between exposures. Several module variants have a relatively higher average
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nRs,IV shown in Fig. 4.2. Under mDH, module variants 3, 5, 9, 13, and 16 have an aver-

age nRs,IV increase of over 19%, and under mDH+FSL, module variants 5, 6, 8, 9, 13, and

16 have an average nRs,IV increase of over 18%. These identified module variants with a

more significant nRs,IV increase include all module variants that are identified to have a

significantly greater average power loss. Furthermore, none of the module variants with

an average power loss of less than 5% are identified in the module variants with a rel-

atively greater nRs,IV increase, which is evidence that corrosion dominates power loss

for modules under both defined exposures. One more piece of evidence is the negative

correlation coefficient of -0.891 between nPmp,IV and nRs,IV for brand A minimodules

considering both exposures, as shown in Fig. 4.7. The averages of n Isc,IV for most mod-

ule variants are within the range of 1± 0.005 under mDH as shown in Fig. 4.3. The largest

n Isc,IV drop under mDH occurs in module variant 1 at 1.37%. Module variant 1 is for the

EVA+GB monofacial modules with UV-Cutoff rear encapsulant. Under mDH+FSL, more

module variants show a slight n Isc,IV decrease. The most significant average drop under

mDH+FSL occurs in module variant 12 at 2.34%. Module variant 12 is for the POE+DG

modules with opaque rear encapsulant. In addition, module variant 8 which has similar

packaging as module variant 12, also shows a significant n Isc,IV drop. From the nPmp,PIV

results shown in Fig. 4.4, the recombination behavior can be considered as unchanged

for most module variants under both exposures since the average change is within 1%,

except module variant 1 which has a decrease in nPmp,PIV of 1.13% under mDH+FSL.

The PCA result of brand A minimodules using the centered and unit variance scaled

data as the input is shown in Fig. 4.11. From Fig. 4.11, the first principal component

(PC1) is found to represent most image features. PC2 is mainly influenced by nRs,IV

and nPmp,IV . The opposite directions of these two feature loadings agree with their
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highly negative correlation coefficient. Moreover, PC3 is mainly influenced by n Isc,IV

and nPmp,PIV with some ability to separate features obtained from EL and PL. The first

three principal components explain 80.0% of total data variance, as shown in Fig. 4.9.

Using the first three principal components obtained from the scaled and centered data

as the input to the clustering algorithm, the resulting clusters avoid influences from the

variance difference of selected features and the selection of correlated features. Based

on the dendrogram shown in Fig. 4.10 for brand A, the two large clusters are more simi-

lar to each other than the tiny cluster in the red color. Table 4.4 lists the median value for

nFsd ,EL@Io , nPmp,IV , and n Isc,IV to associate the degree of degradation to each cluster.

Cluster 3 has the most significant power loss and nFsd ,EL@Io increase. Therefore, it has

the highest degree of degradation. Cluster 1 has the least power loss with a slightly in-

creased nFsd ,EL@Io . Cluster 2 has the smallest nFsd ,EL@Io but a slightly greater power loss

than that of cluster 1. These three features are selected based on each principal compo-

nent, and the comparison of their medium values agrees with the similarity found in the

dendrogram.

Table 4.2 reveals the dependency of these clusters on the module specifications.

Cluster 3 is only made of samples under mDH, and it has 50% more EVA samples than

POE, and 50% more GB samples than DG. However, cluster 3 has a smaller number

of observations. Therefore, the revealed dependency does not indicate average per-

formance differences between EVA and POE or DG and GB. A better interpretation is

that a few samples under the category of EVA or GB have a higher risk of performing

like outliers than modules of its counterpart. Further investigation finds that six sam-

ples of cluster 3 belong to module variants 5 and 9, which are EVA+GB with opaque rear

encapsulant modules having significant power loss. In addition, cluster 2 is found to
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have 47.1% more DG samples than GB samples under mDH. Under mDH+FSL, cluster

1 has 37.0% more GB samples, and cluster 2 has 46.2% more DG samples. Therefore, the

unsupervised hierarchical clustering result finds that the identified clusters of brand A

minimodules under accelerated exposures mainly depend on the module architecture

rather than the encapsulant material or the cell type.

4.4.5 Impact of Manufacturing Variability on Degradation and Performance:

Two Brands

This section discusses the degradation performance of brand B minimodules and com-

pares the results to brand A. From the nPmp,IV result shown in Fig. 4.5, module variants

2 and 4 have an average nPmp,IV drop of less than 5% under mDH. Module variant 4 has

the lowest lower boundary of the 83.4% confidence interval of nPmp,IV , which is used

as the criteria to identify that module variants 5, 7, 9, and 13 have a significantly greater

average power loss. These four module variants are found to have an average nRs,IV in-

creased by 25%. Under mDH+FSL, module variants 2, 4, and 10 have an average nPmp,IV

drop of less than 5%. Module variant 10 has the lowest lower 83.4% CI boundary and

is used to identify the module variant with a significantly greater average power loss,

which was identified as module variants 5, 7, 9, 11, 13, 15, and 16. Among them, module

variants 5, 7, 11, and 13 have an average nRs,IV increase of over 25%, and the rest have

an average increase of over 18.5%. Module variants 2 and 4 are identified as the stable

module variants, and module variants 5 and 9 as the relatively unstable module variants

under mDH in both brands. Under mDH+FSL, module variants 2 and 4 are identified in

the stable group, and module variants 5, 9, and 16 are identified in the unstable group

in both brands. However, compared to the results of brand A, there are more GB module
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variants, which have an odd module variant ID, falling into the relatively unstable group

in brand B modules.

The average amount of change in nPmp,IV and nRs,IV is greater for brand B mod-

ules than for brand A under each exposure, as shown in Table 4.1, indicating reliability

performances differences due to manufacturing (lamination, soldering, and cell stor-

age) since the packaging materials used are the same. The change in nRs,IV is greater

than that of n Isc,IV and nPmp,PIV , and the change in n Isc,IV and nPmp,PIV is greater un-

der mDH+FSL than that under mDH, which are consistent with the findings for brand

A modules. Therefore, interconnection corrosion is again identified as the dominant

degradation mechanism contributing to the power loss of brand B modules. The cor-

relation coefficient between nPmp,IV and nRs,IV is even more negative for brand B than

that of brand A, as shown in Fig. 4.7. We also find the correlation coefficient between

nFsd ,EL@Io and nFsd ,PL@OC has a difference between the two cell types, as shown in Fig.

4.8. By calculating r (nFsd ,EL@Io ,n Fsd ,PL@OC ) using the data of each brand, each cell type,

and each accelerated exposure, a more positive correlation coefficient for modules with

monofacial cells is found to be mainly present in brand B modules, as shown in the re-

sults listed in Table 4.5.

The PCA results of brand B modules are shown in Fig. 4.12. The influence of different

features on each principal component for brand B modules is similar to that of brand A.

However, there is a slightly greater influence from n Isc,IV to PC1 and from PL image

features to PC3. The data variance explained by the first three principal components is

also 80% of the total as shown in Fig. 4.9. In the dendrogram shown in Fig. 4.10, three

clusters can be obtained by cutting at the height of 19.5. The small cluster is more similar

to one large cluster colored in blue than the other large cluster. However, in brand A,
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Table 4.5. The correlation coefficient between nFsd ,EL@Io and nFsd ,PL@OC

for each brand, each cell type, and under each accelerated exposure.

Brand Exposure Cell Type r (nFsd ,EL@Io ,n Fsd ,PL@OC )
A mDH bifacial 0.584
A mDH monofacial 0.541
A mDH+FSL bifacial 0.554
A mDH+FSL monofacial 0.349
B mDH bifacial 0.391
B mDH monofacial 0.512
B mDH+FSL bifacial 0.313
B mDH+FSL monofacial 0.546

the two large clusters are from the same branch and are more similar to each other.

Therefore, the reliability performance of most brand A minimodules is more consistent

than that of brand B. Based on the median feature value listed in Table 4.4 for brand

B modules, cluster 3 is found to have the highest level of degradation indicated by the

pronounced nPmp,IV drop and nFsd ,EL@Io increase, and cluster 2 has the slightest degree

of degradation.

From Table 4.3, brand B results have more complex dependencies for the cluster

separation than that of brand A. Under mDH, most observations under cluster 3 are EVA

samples or GB samples, which is similar to brand A. However, cluster 3 also has 25%

more samples that use monofacial cells than bifacial cells. Under mDH, the most signif-

icant difference in the number of samples for cluster 2 occurs between encapsulant ma-

terials at 40.4%. In addition, apparent differences are also presented in different module

architectures and cell types for cluster 2 under mDH. Differences between module archi-

tectures and cell types are also shown in cluster 1 under mDH, and the most prominent

difference occurs between cell types at 38.1%. Under mDH+FSL, we find cluster 3 has

more EVA samples and more GB samples than their counterparts. Cluster 1 has 52.9%
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more samples with monofacial cells than bifacial cells. The most noticeable difference

in cluster 2 under mDH+FSL occurs between module architectures, but it is only 28.8%

due to many observations in cluster 2. Comparing Table 4.2 and Table 4.3, the difference

in reliability performance caused by cell types and encapsulant materials could be re-

duced by a more strict manufacturing quality control. The difference between cell types

shown in brand B modules could be related to the storage duration and the compati-

bility with the manual soldering process. For brand B modules, set #1 was made earlier

than set #2, and set #3 was made earlier than set #4. Set #1 and #3 use monofacial cells,

and set #2 and #4 use bifacial cells. Although all solar cells were carefully stored in a dark

chamber with nitrogen flow, some cell discoloration was noticed when fabricating sets

#3 and #4 modules.

4.5 Conclusions

By comparing the characterization results of sixteen module variants of two brands un-

der the accelerated exposure of mDH and mDH+FSL of up to 2,520 hours, module vari-

ants 2 and 4, which are DG modules with the UV-Cutoff rear encapsulant, are identified

to experience an average power loss of less than 5%. Module variants 5 and 9, which

are EVA+GB modules with the opaque rear encapsulant, are identified to have a more

significant average power loss than that of the module variants in the stable group and

are considered as stable module variants. The power loss under both accelerated ex-

posures is mainly due to interconnection corrosion indicated by the increase in series

resistance, which is much higher than the change in n Isc,IV and nPmp,PIV after each ex-

posure, the highly negative correlation coefficient between nPmp,IV and nRs,IV , and the
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opposite directions of the feature loadings of nPmp,IV and nRs,IV in the PCA result. With

the same exposure hours, mDH+FSL leads to more changes in n Isc,IV and nPmp,PIV than

mDH but similar changes in nPmp,IV and nRs,IV on average for both brands. The man-

ufacturing process is found to influence the reliability performance. Brand A modules,

which have more strict quality control in manufacturing, experience less degradation

than brand B in power and series resistance. The unsupervised hierarchical clustering

result shows that the performance of most brand A modules only has a dependency on

the module architecture, which is GB or DG. However, the cluster of brand B modules

shows differences in the number of observations between encapsulant materials, mod-

ule architectures, and cell types. Therefore, different manufacturing processes could

amplify the differences in the reliability performance caused by encapsulant materials

and cell types under our accelerated exposure conditions.
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5 Outdoor Exposure Study of Mod-

ule Variants using Timeseries Data

Title to submit: Outdoor Degradation Study Using I -V , Pmp Timeseries Data and

Suns-Voc Analysis of PERC Minimodules with Differing Encapsulants and Module Ar-

chitectures

The degradation of photovoltaic (PV) modules depends on their interactions with

environmental stressors. Due to the rise of bifacial PV modules in the market, double

glass (DG) modules and modules using polyolefin elastomer (POE) encapsulants have

become strong competitors of conventional PV modules using ethylene-vinyl acetate

(EVA) encapsulants with polymer backsheets. In this study, 32 minimodules of 16 mod-

ule variants were fabricated with differences in encapsulant materials, rear encapsulant

types, module architectures, and cell types. These modules were mounted at an out-

door testing site in the Dfa climate zone (continental, no dry season, hot summer). Their

timeseries current-voltage curves, module temperature, and irradiance data measured

over the time period of 1.6 years were processed to obtain predicted electrical features

and power loss due to four factors using the outdoor Isc -Voc method implemented by

the SunsV oc package. The averages and confidence intervals of normalized features
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were calculated to identify statistically significant differences among module variants

and packaging combinations in the final three months. Two module variants are found

to have a significantly lower power output, and their dominant power loss factors are

current mismatch power loss and uniform current power loss. Uniform current power

loss, or power loss due to increased series resistance, is found to be the dominant power

loss factor for most module variants. No significant differences in the power output and

power loss factors are identified for the four packaging combinations considering only

the encapsulant materials and module architectures.

5.1 Introduction

The performance loss rate (PLR) of PV modules is considered to be the third most im-

portant factor affecting the levelized cost of electricity[31] of solar energy. The degrada-

tion of PV modules depends on their interactions with environmental stressors. Com-

mercial PV modules have several packaging layers to protect the internal solar cell. The

different combinations of packing materials can influence the degradation behaviors

of PV modules under certain exposure conditions[6, 11]. Due to the rise of bifacial PV

modules, double glass (DG) PV modules and modules using POE encapsulant have be-

come strong competitors to the conventional glass-backsheet (GB) modules using EVA

encapsulant, which have dominated the market for nearly 40 years[1, 2]. However, stud-

ies comparing the performance of PV modules in the field with these different commer-

cial packaging strategies are still lacking. The performance of modules fabricated ten

to twenty years ago in early studies differ from that of modules made today due to in-

novation and improvement in technology. In addition, the performance of commercial
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PV modules varies among brands[6]. Patel et al. studied two GB modules installed at

the same site for about 20 years. The degradation rates of the two GB modules were

significantly different as 1.01%/a. and 0.44%/a., respectively[2]. Studies using commer-

cial PV modules from different manufacturers commonly lack variable control in mate-

rial sources and fabrication processes. Therefore, a sufficient number of commercial PV

modules are required to represent the average performance of a module type. Moreover,

the comparison of PV modules in the field mainly focuses on comparing the PLR ob-

tained by processing timeseries power data[32]. Timeseries current-voltage (I -V ) curve

data are less abundant than timeseries power data, but they can provide more insights

into the cause of power reduction. The outdoor Isc -Voc method proposed by Wang et al.

provides the predicted electrical features and four power loss factors at reference condi-

tions[51], which enables a direct comparison to identify the significant contributors to

the total power loss[8].

In this study, 32 four-cell minimodules of sixteen module variants were fabricated

using a commercial PV module manufacturing pipeline. These minimodules were mounted

on a fixed rack at an outdoor testing site. Timeseries current-voltage curves, module

temperature, and irradiance data measured over the course of 1.6 years were processed

to compare the degradation behaviors with the statistical significance among different

module variants. The dominant contributor to the power loss of each module variant

was identified by comparing the four power loss factors. Finally, the dependencies of

power output and power loss factors on packaging combinations of different encapsu-

lant materials and module architectures were investigated.
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5.2 Methods

5.2.1 Outdoor PV Minimodules

In this study, minimodules were fabricated with four cells connected in series. A solar

company made these minimodules using its commercial manufacturing pipeline. There

were 32 minimodules mounted outdoor, with two minimodules for each module vari-

ant. These module variants have differences in encapsulant materials, rear encapsulant

types, module architectures, and cell types as shown in Fig. 3.2. The encapsulant mate-

rial is either ethylene vinyl acetate (EVA) or polyolefin elastomer (POE). The front encap-

sulant is always the transparent type, but the rear encapsulant has the choice of being

transparent, UV-Cutoff, or opaque (which is also called white encapsulant). The module

architecture is either glass-backsheet (GB) or double glass (DG). The solar cells in these

minimodules are multicystalline silicon P-type PERC cells with five busbars. However,

the cells are either monofacial or bifacial for the different module variants. The detailed

specifications of each module variant are described in Table 3.1.

After the initial boron-oxygen defect stabilization process, these minimodules were

mounted on a fixed tilted rack shown in Fig. 3.9 on our SDLE solar farm located in Cleve-

land, OH. The longitude and latitude of the installed site are -81.616◦ and 41.511◦, re-

spectively. According to the Köppen-Geiger climate classification system[99], this site

belongs to the Dfa climate zone, where the letter "D" stands for continental, the letter

"f" stands for no dry season, and the letter "a" stands for hot summer. These minimod-

ules were arranged into three rows and eleven columns on a south-facing rack with a

tilted angle of 23◦. The distance from the minimodule to the ground varied between 25
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to 100 cm. The outdoor exposure started in May 2020. Data for this analysis was col-

lected until Dec 2021, ending with a total exposure time of 1.6 years. The modules are

still being exposed today for future analysis.

5.2.2 The Timeseries Pmp, I-V, Meteorological Data

The electrical data, including the maximum power (Pmp ) and the current-voltage (I -V )

curve of each module, were collected by a Daystar MT5 Multi-Tracer. The time inter-

val between the I -V curves was ten minutes with accuracies for both current and volt-

age within 0.1% of the full scale (5 V, 15 A). Each I -V curve had about 200 data points.

Timeseries I -V features were extracted from the timeseries I -V curve. These features in-

clude Pmp , the current at Pmp (Imp ), the voltage at Pmp (Vmp ), the short-circuit current

(Isc ), the open-circuit voltage (Voc ), the series resistance (Rs), and the shunting resis-

tance (Rsh). In addition, a T-type thermocouple was attached to the back of each min-

imodule around the center position of a solar cell to record the module temperature.

The thermocouple had an accuracy of ± 0.5 ◦C. A Kipp Zonen CMP6 pyranometer was

installed nearby for tracking the plane of array irradiance (PO A). The pyranometer was

installed three meters above the ground to avoid influences from ground activities, such

as mowing the grass. The 32 thermocouples and the pyranometer were connected to a

Campbell Sci CR1000 data logger with a data recording frequency of every one minute.

The timeseries electrical data and sensor data were joined by the closest time. Obser-

vations with PO A lower than 5 W/m2 were treated as nighttime observations and were

removed.
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5.2.3 Outdoor Module Temperature Quality Detection & Imputation

The thermocouples for measuring the outdoor module temperature sometimes gave ab-

normal readings due to detachment or surrounding wildlife. The abnormal readings

were detected and then replaced by imputation. Outlier detection was applied to com-

pare around 180 readings recorded every five minutes from the 32 thermocouples using

Tukey’s fences method[100]. If the abnormal readings exceeded a certain percentage in

a day, all readings from that day were labeled as abnormal, taking the time continuity of

the thermocouple’s behavior into consideration.

Five regression models were evaluated to replace the abnormal readings with pre-

dicted module temperatures. First, normal readings in each hour were partitioned into

training and testing datasets using an 80:20 ratio. The adjusted R squared (adj R2) and

the testing mean absolute error (MAE) were used to evaluate the model performance.

Table 5.1 describes the five models examined to predict the outdoor module tempera-

ture. The independent variables included in these models were the ambient temper-

ature (Tamb), PO A, the installed position, cell types, and module architectures. The

installed position was specified by rows and columns, which were treated as factors in

the models rather than numeric values. The best model was then implemented to re-

place the abnormal readings. For every abnormal reading, all normal readings within

half an hour before and after were partitioned into training and testing datasets using

an 80:20 split. After obtaining the model by fitting it to the training dataset, the MAE was

calculated using the testing dataset. If the MAE was smaller than 2 ◦C, then the value

predicted by the model was accepted to replace the abnormal reading.
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Table 5.1. Specifications of the five regression models used to predict the
module temperature readings.

ID Expression
1 Tmod =β0 +β1 ×Tamb +β2 ×PO A
2 Tmod =β0 +β1 ×Tamb +β2 ×PO A+β3 ×Tamb ×PO A
3 Tmod =β0 +β1 ×Tamb +β2 ×PO A+β3 ×Tamb ×PO A+β4 × r ow +β5 × column
4 Tmod =β0 +β1 ×Tamb +β2 ×PO A+β3 ×Tamb ×PO A+β4 × cel l t y pe +β5 ×module ar chi tectur e
4 Tmod =β0 +β1 ×Tamb +β2 ×PO A+β3 ×Tamb ×PO A+β4 × r ow +β5 × column +β6 × cel l t y pe +β7 ×modul e ar chi tectur e

5.2.4 Data Processing: ddiv & SunsVoc

The ddi v package on CRAN[49] was applied to extract I -V features from each I -V curve.

These I -V features included Pmp , Imp , Vmp , Isc , Voc , Rs , and Rsh . The ddi v algorithm

first fits a smooth spline model to the I -V curve data and then obtains 500 points from

the model, which are evenly distributed in voltage from 0 V to Voc . Then Pmp , Imp , and

Vmp are identified globally. Linear models are applied to both ends of the curve to extract

the Isc , Voc , Rs , and Rsh . In addition, the algorithm uses a small moving window to avoid

the highly fluctuating data sometimes showing up around the Isc region.

Module temperatures, PO A, and these I -V features except Rsh were then put into

the SunsV oc package[54], which uses physics-based models to predict the I -V features

for a defined period, such as one week, at reference conditions. The reference condi-

tions are 1000 W/m2 PO A and the median annual module temperature at around 1000

W/m2 PO A. These models have been proven to have excellent performance on multiple

outdoor data sources[46, 51]. The SunsV oc package returns four power loss factors: the

uniform current power loss (∆PI sc ), the recombination power loss (∆PV oc ), the power

loss due to Rs (∆PRs), and the current mismatch power loss (∆PImi s). It is worth noting

that values of ∆PI sc , ∆PV oc , and ∆PImi s returned by the algorithm are changes relative

to a defined initial period. However, ∆PRs is the absolute power loss due to Rs . There-

fore it is always negative even at the beginning of the exposure time. The value of∆PImi s
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contains all power loss that can not be explained by the other three power loss factors.

Other degradation mechanisms, such as a change in Rsh could contribute to this kind of

power loss.

5.3 Results

5.3.1 Outdoor Module Temperature

When detecting abnormal readings in the timeseries module temperature, outliers were

identified by comparing the readings obtained from the 32 outdoor minimodules every

five minutes. Fig. 5.1 shows the percentage of outliers each day for the outdoor min-

imodule sa43070. The percentage of outliers is significantly higher within the period

from the 200th day to the 382nd day. A threshold of the percentage of outliers in each

day was set to account for the continuity of thermocouples’ abnormal behavior. If a day

had a percentage of outliers higher than the threshold, then all readings of that day were

labeled as abnormal. Fig. 5.2 shows the overall percentage of abnormal readings for two

outdoor modules with different threshold values. These two modules have no record of

thermocouple malfunctions. The red line in Fig. 5.2 marks the threshold value used in

this study, which is 25%. The total percentage of abnormal readings was 6.08%, but it

varied a lot among different outdoor minimodules. Fig. 5.3 shows the total percentage

of abnormal readings for each outdoor minimodule, from which seven minimodules are

found to have more than 5% abnormal readings with a maximum of 75.4% for sa43092.

Fig. 5.4 shows the boxplots of the adjusted R-squared (adj R2) and the testing mean

absolute error (MAE) of the five models listed in Table 5.1 using the hourly normal mod-

ule temperature readings. Model 5 has the highest adj R2 with a median value of 0.775
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Figure 5.1. Percentage of outliers in each day for module temperature
readings of the outdoor module sa43070.

(a) Sa43001. (b) Sa43057.

Figure 5.2. Percentage of abnormal module temperature readings for two
outdoor modules: sa43001 and sa43057.

and the lowest testing MAE with a median value of 0.669 ◦C. Therefore, it was chosen to

predict the module temperature for replacing the abnormal readings. 98.3% of the ab-

normal readings were successfully replaced, and the remaining abnormal readings were

removed.



Outdoor Exposure Study of Module Variants using Timeseries Data 82

Figure 5.3. Percentage of abnormal module temperature readings for
each outdoor minimodule.

(a) adj R2. (b) MAE.

Figure 5.4. Boxplots of the adj R2 and the testing MAE evaluated from the
normal readings for the five models predicting the module temperature.

5.3.2 Outdoor Isc-Voc Results of One Outdoor PV Module

Outdoor minimodule sa43099 is chosen as an example to show the results of predicted

electrical features and power loss factors obtained from the SunsV oc package[54]. Fig.

5.5 shows the four normalized electrical features, including nPmp,IV , n Isc,IV , nRs,IV , and
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nVmp,PIV for outdoor minimodule sa43099. These electrical features can also be ob-

tained in the lab through current-voltage (I -V ) and Suns-Voc characterizations. There-

fore, they can be common variables to compare module degradation behaviors under

indoor accelerated and outdoor exposures. The electrical features were normalized by

the average value of the corresponding feature for the first three months of the same

minimodule for Fig. 5.5. The curve in Fig. 5.5 is fitted by the local estimated scatterplot

smoothing (LOESS) method[101] to indicate the trend of how the feature changes over

time. Fig. 5.6 shows the four power loss factors with LOESS curves, in which a negative

∆Power value represents a power loss.

Figure 5.5. The normalized electrical features obtained from the
SunsV oc package for outdoor module sa43099, including nPmp,IV ,
n Isc,IV , nRs,IV , and nVmp,PIV .
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Figure 5.6. The four power loss factors obtained from the SunsV oc pack-
age for outdoor module sa43099, including ∆PI sc , ∆PV oc , ∆PRs , and
∆PImi s .

5.3.3 Normalized Electrical Features

Fig. 5.7 shows the average values and confidence intervals (CIs) of the normalized elec-

trical features, including nPmp,IV , n Isc,IV , nRs,IV , and nVmp,PIV , in the final three months

for each module variant. In the first two months of the outdoor exposure, there were fre-

quent troubleshooting issues and necessary repairs to be made. The data from the third

month were missing due to a problem with the hardware. Therefore, we used the data

from the fourth and fifth months for normalization. The red open circles in Fig. 5.7

mark the average values, and the two blue dashed lines mark the values of 1 ± 0.005.

The black bars represent the 83.4% CIs. If two of such bars have no overlap, then their

corresponding averages have a statistically significant difference at the significance level

of 0.05. The purple bars represent the 95% CI. When a value is not within the purple bar
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of a module variant, its average value is significantly different from that value at the sig-

nificance level of 0.05. The average values and CIs of the nRs,IV in the final three months

of each module are shown in Fig. 5.8. In addition, the averages and CIs of the nPmp,IV

for the four packaging combinations, considering only the encapsulant materials (EVA

or POE) and module architectures (GB or DG), are shown in Fig. 5.9.

(a) nPmp,IV . (b) n Isc,IV .

(c) nRs,IV . (d) nVmp,PIV .

Figure 5.7. The average value, 83.4% CI, and 95% CI of the four normal-
ized electrical features, including nPmp,IV , n Isc,IV , nRs,IV , and nVmp,PIV ,
from the final three months for each module variant.

5.3.4 Degradation Mechanisms: Power Loss Factors

Fig. 5.10 shows the average values and CIs of the normalized uniform current power

loss (n∆PI sc ) from the final three months of exposure for each module variant and each

outdoor minimodule. The red open circles in Fig. 5.10 represent the average values, and
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Figure 5.8. The average value, 83.4% CI, and 95% CI of nRs,IV from the
final three months for each module.

Figure 5.9. The average value, 83.4% CI, and 95% CI of nPmp,IV of the four
packaging combinations considering only the encapsulant materials and
module architectures using data from the final three months.
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the black and purple bars represent the 83.4% CI and 95% CI, respectively. If two black

bars have no overlap, then their corresponding averages have a statistically significant

difference at the significance level of 0.05. Comparing these black bars provides a way to

visualize the null hypothesis two-sample t-test results of comparing the average values

of two groups[96–98]. The two blue dashed lines mark the values of ± 0.5%. The average

value in the fourth and fifth months was first subtracted from each power loss factor.

Then the data were normalized by the average Pmp,IV for these two months. Similar

results for the normalized recombination power loss (n∆PV oc ), the normalized Rs power

loss (n∆PRs), and the normalized current mismatch power loss (n∆PImi s) are shown in

Fig. 5.11, Fig. 5.12, and Fig. 5.13, respectively. Moreover, Fig. 5.14 shows the average

values and CIs of the four normalized power loss factors in the final three months of

exposure for the four packaging combinations, namely EVA+GB, EVA+DG, POE+GB, and

POE+DG.

5.4 Discussion

5.4.1 Solution for Failure in Module Temperature Thermocouples

Fig. 5.1 shows the percentage of outliers each day for the module temperature read-

ings obtained from minimodule sa43070 through a comparison of the module temper-

ature readings from all 32 modules every five minutes. The percentage of outliers is

unusually high for most days between the 200th to the 382nd day. Based on our mainte-

nance records, the thermocouple for recording the module temperature of minimodule

sa43070 got repaired on the 382nd day. Therefore, the outlier detection based on com-

paring the module temperature readings from all modules can accurately reflect when
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(a) Each Module Type.

(b) Each Module.

Figure 5.10. The average value, 83.4% CI, and 95% CI of the normalized
uniform current power loss (n∆PI sc ) from the final three months of expo-
sure for each module variant and each module, respectively.

the status of a thermocouple changes. A threshold for the percentage of outliers each

day was set to consider the time continuity of the thermocouple behavior. When the
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(a) Each Module Type.

(b) Each Module.

Figure 5.11. The average value, 83.4% CI, and 95% CI of the normalized
recombination power loss (n∆PV oc ) from the final three months of expo-
sure for each module variant and each module, respectively.

percentage of outliers for a day exceeded the threshold, then all readings for that day

were labeled as abnormal. Otherwise, only the outliers were labeled as abnormal. If
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(a) Each Module Type.

(b) Each Module.

Figure 5.12. The average value, 83.4% CI, and 95% CI of the normalized
power loss due to series resistance (n∆PRs) from the final three months of
exposure for each module variant and each module, respectively.

the threshold is too small, like the extreme case of 0, then even one abnormal reading

will lead to all readings on the same day being labeled as abnormal. However, if the
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(a) Each Module Type.

(b) Each Module.

Figure 5.13. The average value, 83.4% CI, and 95% CI of the normalized
current mismatch power loss (n∆PImi s) from the final three months of
exposure for each module variant and each module, respectively.

threshold is too large, like the extreme case of 100%, it can not take the time continuity

of the thermocouple’s behavior into consideration. Fig. 5.2 shows the overall percentage
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(a) n∆PI sc . (b) n∆PV oc .

(c) n∆PRs . (d) n∆PImi s .

Figure 5.14. The average value, 83.4% CI, and 95% CI of the four normal-
ized power loss factors for the four packaging combinations from the final
three months of exposure.

of abnormal readings using different threshold values varying from 0% to 100% for two

outdoor minimodules, which have no record of thermocouple maintenance. It is found

that when the threshold value is less than 25%, there is an apparent increasing trend

in the percentage of abnormal readings with a decrease of threshold values. However,

the percentage of abnormal readings is very stable when the threshold value is no less

than 25%. Therefore, the threshold value was set to 25% to balance the continuity of

thermocouple behavior and the chances of mislabeling many normal readings.

Only 6.08% of all module temperature readings were detected as abnormal. They

did not appear evenly across all modules but were concentrated around a few modules.

As shown in Fig. 5.3, there are eight modules with more than 5% abnormal readings.
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Sa43092 has the highest percentage of abnormal readings at 75.4%. Five models de-

scribed in Table 5.1 were evaluated to predict the module temperature for replacing the

abnormal readings. The model was fit and evaluated using the normal readings in each

hour, with 80% of the data used for training the model and 20% for testing the model per-

formance. Fig. 5.4 shows the boxplot of the adjusted R-squared (adj R2) and the testing

mean absolute error (MAE) of each model. Model 5 has the highest median adj R2 and

the lowest median testing MAE, so it was selected as the imputation model to replace

abnormal module temperature readings. The performance of model 3 is very similar to

that of model 5. Their median adj R2, testing MAE, and testing root-mean-squared error

(RMSE) are 0.757 and 0.774, 0.538 ◦C and 0.522 ◦C, and 0.696 ◦C and 0.673 ◦C, respec-

tively.

Since the performance of model 3 is similar to that of model 5 and is much better

than that of model 4, the installed position (rows and columns) must be a more critical

independent variable than cell type or module architecture for predicting the module

temperature. When replacing abnormal readings, normal readings within half an hour

before and after the abnormal reading were selected first. Then 80% of the normal read-

ings were used to train the model, and the rest were used to calculate the testing MAE.

When the testing MAE was no more than 2 ◦C, the predicted module temperature was

used to replace the abnormal reading. 98.3% of abnormal readings were successfully

replaced, and the remaining 1.7% were removed. As can be seen in Fig. 5.4, there are

occasional cases with the model performing relatively worse, indicated by a lower adj R2

and a significantly higher testing MAE.
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5.4.2 Comparison of Power Output for the Sixteen Module Types

Fig. 5.5 shows how the normalized predicted electrical features under reference con-

ditions change over time for minimodule sa43099. The reference conditions are 1000

W/m2 PO A and the median annual module temperature when PO A is in the range of

1000 ± 10 W/m2. The reference module temperature was estimated to be 45 ◦C using

the data from the first year of exposure. nVmp,PIV is found to fluctuate around 1 with a

much smaller magnitude than that of the other three I -V features, including nPmp,IV ,

n Isc,IV , and nRs,IV , which also show more apparent seasonal changes. In PLR calcu-

lations with timeseries Pmp data, models such as classical seasonal decompose (CSD)

and autoregressive integrated moving average (ARIMA) are usually applied to obtain a

trend without seasonality and noise[32]. However, these models need data taken over

the course of more than two years, so they could not be implemented to process the

outdoor data that were currently available in this study. Therefore, we compare the nor-

malized features among different module variants, where the normalization is imple-

mented by the average performance of the same module at the beginning of the expo-

sure. The four normalized electrical features in Fig. 5.5 are obtained by being divided

by the average value of each feature from the first three months. However, due to fre-

quent maintenance work and missing records during the first three months, we use the

average reading from the fourth and fifth months for the normalization process when

comparing different module variants.

The average values and confidence intervals (CIs) of nPmp,IV for each module variant

in the final three months are shown in Fig. 5.7a. It is worth noting that a value of more

than one does not necessarily mean a power increase due to the retained seasonal effect.

Therefore, our analysis focuses on the differences between module variants rather than
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on the amount of change that occurs in an individual module variant. Module variants

7, 10, and 12 are found to have lower average nPmp,IV values, which are significantly

lower than that of module variants 2, 3, 8, 11, 13, and 15. We also notice that several

module variants, including 1, 7, 10, 11, 13, 15, and 16, have average nRs,IV values that

are significantly different from that of most module variants, accompanied by a large

confidence interval as shown in Fig. 5.7c. From Fig. 5.8, it can be found that six of these

module variants, except module variant 7, have one minimodule with an average nRs,IV

value that is significantly different not only from the majority of the other minimodules

but also the other minimodule of the same variant. Such a difference in nRs,IV between

two modules of the same type is likely to be caused by electrical connection failures

and repairs when strange electrical output was noticed. Without considering these six

module variants, module variants 7 and 12 are found to have lower average nPmp,IV

values, which are significantly lower than that of module variants 2, 3, and 8.

5.4.3 Comparison of Degradation Modes for the Sixteen Module Types

The amount of differences between module variants varies among n Isc,IV , nRs,IV , and

nVmp,PIV , which corresponds to different distances between the two blue dashed lines

in Fig. 5.7b, Fig. 5.7c, and Fig. 5.7d. The largest difference in the average values between

module variants is 6.69% for n Isc,IV , 7.69% for nRs,IV , and 1.57% for nVmp,PIV , respec-

tively. The evaluation of the largest difference in nRs,IV does not include the six module

variants suspected to be influenced by electrical connection failures and repairs. The

largest difference in the average nVmp,PIV is only about one-fifth of that of n Isc,IV and

nRs,IV . The changes in these I -V features reflect specific degradation modes and mech-

anisms. The decrease in Isc indicates the uniform current loss, which is often associated
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with the discoloration of the encapsulant. The increased Rs leads to more power loss as

dissipated heat caused by metal connection corrosion or joint fatigue. The decrease in

Vmp,PIV results from easier recombination due to solar cell defects. The differences in

these normalized electrical features reflect some quantitative differences in the degra-

dation behaviors of various module variants.

Module variants 6 and 7 are found to have lower average n Isc,IV values which are

significantly lower than that of module variants 2, 4, 5, and 8, as shown in Fig. 5.7b.

After excluding the module variants suspected to be influenced by electrical connection

failures and repairs, module variant 7 is found to have the highest average nRs,IV , which

is significantly higher than that of all the other module variants, as shown in Fig. 5.7c.

Module variant 4 has the lowest average nRs,IV , which is significantly lower than that

of module variants 3 and 14. While module variants 5, 7, 11, 12, and 14 have average

nVmp,PIV values that are significantly lower than those of module variants 13 and 16, the

amount of difference is generally small across module variants. Comparing results of

n Isc,IV , nRs,IV , and nVmp,PIV provides some clues on significant power loss differences

of nPmp,IV among module variants. Module variants 7 and 12, which have greater power

loss, both experience a greater Vmp,PIV decrease. Module variant 7 also experiences

more change in Isc and Rs . Module variants 2 and 8, which display less power loss, are

found to have the highest n Isc,IV , indicating a minimal decrease in Isc . However, the

percentage of change in these electrical parameters is not linearly proportional to their

contributed power loss due to their physical relationships to the Pmp . The four power

loss factors obtained from the SunsV oc package[54], which quantify the power loss due

to different degradation modes, can be compared directly to rank their contributions to

the total power loss.
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Fig. 5.10, Fig. 5.11, Fig. 5.12, and Fig. 5.13 show the average values and CIs of the

four normalized power loss factors, including n∆PI sc , n∆PV oc , n∆PRs , and n∆PImi s , for

each module variant and each module from the final three months of exposure. The nor-

malized power loss factor is the ratio of the change in a specific power loss factor to the

initial Pmp . The largest difference between module variants is 8.58% for n∆PI sc , 5.52%

for n∆PV oc , 7.72% for n∆PV oc , and 15.60% for n∆PImi s . The largest difference between

module variants is minimal for n∆PV oc , which agrees with the findings in comparing

nVmp,PIV to other I -V features, indicating minor differences in the change of recombi-

nation behavior among module variants.

As shown in Fig. 5.10, module variants 6 and 7 have lower average n∆PI sc values,

which are significantly lower than that of module variants 2, 4, 5, and 8. These identi-

fied module variants are in complete agreement with the comparison of n Isc,IV shown

in Fig. 5.7b. Comparing the 83.4% CIs of n∆PI sc between the two modules in each mod-

ule variant among these six module variants mentioned above, no significant differences

are found. Therefore, the module variant comparison result is affected less by the incon-

sistency of sample performance and better represents the universal performance of the

module variant. Module variants 6, 7, 8, and 14 have lower average n∆PV oc values than

the others, as shown in Fig. 5.11. No module variants are found to have a significantly

higher average n∆PV oc than these module variants, indicating comparable changes in

recombination behavior. As shown in Fig. 5.12, module variants 4 and 13 are found to

have lower average n∆PRs values than those of the other module variants, which are also

significantly lower than those of module variants 2, 6, 7, and 12. The results of module

variant 13 are strongly influenced by the sample disparity, indicated by the significant

differences in the average nRs,IV and n∆PRs of its two constituent modules. The results
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for n∆PImi s are shown in Fig. 5.13, in which module variants 7 and 15 are found to have

an average n∆PImi s that is significantly lower than that of module variants 2, 3, 5, 13, and

16. Significant differences in the average n∆PImi s are found between the two modules

of the same variant in module variants 2, 7, and 13, so the n∆PImi s results of these three

module variants are more affected by the inconsistency of modules.

From the comparison of the four power loss factors among different module vari-

ants, the three modules variants with a higher average nPmp,IV are found to have a better

performance in n∆PI sc and n∆PRs for module variant 2, n∆PImi s and n∆PI sc for module

variant 3 and module variant 8, respectively. Module variant 7, which has a lower aver-

age nPmp,IV , is found to have significantly lower average values in n∆PI sc and n∆PV oc .

While module variant 12 has a relatively low average nPmp,IV , which is 6.79% higher than

that of module variant 7, it had no significantly lower average values in any power loss

factors. The power loss factor with the lowest average value is defined as the dominant

power loss factor for each module variant. The dominant power loss factors for the two

module variants with significantly lower nPmp,IV values are ∆PImi s and ∆PI sc for mod-

ule variants 7 and 12, respectively. In addition, ∆PI sc is the dominant power loss factor

for most module variants, followed by ∆PRs .

5.4.4 Degradation Dependency on Module Specification

The sixteen module variants can be classified into four packaging combinations if con-

sidering only the encapsulant materials and module architectures, namely EVA+GB,

EVA+DG, POE+GB, and POE+DG. The average values and CIs of nPmp,IV for each pack-

aging combination from the final three months are shown in Fig. 5.9, in which no sig-

nificant differences are identified. The average nPmp,IV is higher for GB modules than
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that of their counterpart using the same encapsulant material. The power loss factors

of these four packaging combinations are compared in Fig. 5.14, in which no significant

differences are found among packaging combinations in any power loss factors. DG

modules are found to have a lower average n∆PV oc than GB modules, and POE modules

are found to have a lower average n∆PImi s than EVA modules. A longer exposure time is

needed to amplify the degradation performance differences among module variants or

packaging combinations and enable robust seasonal decomposition. As shown in Fig.

5.5 and Fig. 5.6, most electrical features and the four power loss factors all experience

noticeable seasonal changes over time. Recent studies have started paying more atten-

tion to data quality to obtain robust PLRs of outdoor modules. Timeseries data of less

than two years is not recommended for PLR evaluation in the latest IEA PVPS report of

task 13[35].

5.5 Conclusions

In this study, 32 minimodules were fabricated with four multicystalline Si P-Type PERC

cells in each, mounted on a fixed rack on an outdoor solar farm, which is in the Dfa

climate zone in the Köppen-Geiger climate classification system. Outdoor timeseries

current-voltage curves, module temperatures, and PO A taken over the course of 1.6

years were processed using the ddi v and SunsV oc packages to obtain the predicted

electrical features and the four power loss factors at references conditions. These power

loss factors include uniform current power loss (∆PI sc ), recombination power loss (∆PV oc ),
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power loss due to Rs (∆PRs), and current mismatch power loss (∆PImi s). A method of de-

tecting abnormal module temperature readings and a model to impute the correspond-

ing normal readings for replacement are proposed with a median testing MAE around

0.67 ◦C. After normalization, the averages and confidence intervals of these electrical

features and power loss factors are reported and compared among module variants for

the final three months of exposure. Two module variants are found to have a signif-

icantly lower nPmp,IV , and their dominant power loss factors are ∆PImi s and ∆PI sc ,

respectively. The dominant power loss factor for most module variants are ∆PI sc and

∆PRs . The dependencies of nPmp,IV and the four power loss factors on the four packag-

ing combinations considering only the encapsulant materials and module architectures

are investigated, and no statistically significant differences are observed. A further ex-

tension of outdoor exposure is necessary to enable robust seasonal decomposition and

to amplify the degradation differences among module variants and packaging combi-

nations.
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6 Indoor/outdoor Cross-correlation

for PV Degradation Studies

Title to submit: To Compare Activated Mechanisms and Performance Loss using

Cross-correlation of Stepwise Indoor and Timeseries Outdoor Degradation Studies

Indoor accelerated exposures are generally used to study the reliability of photo-

voltaic (PV) modules. They reproduce the degradation and failure mechanisms expe-

rienced during real-world exposure in a shorter timeframe. The environmental con-

ditions for outdoor exposures are complicated; they vary by time and installed location

leading to differences in the degradation behaviors of PV modules, which are hard to du-

plicate by accelerated exposures entirely. In recent years, more timeseries data have be-

come available for PV modules operating in the field with developed analytical methods

to obtain similar features to those measured using lab characterizations. This provides

opportunities to investigate their degradation behaviors in detail and compare perfor-

mance between indoor accelerated exposures and outdoor exposures using the same
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features. Linking the degradation behaviors under indoor accelerated and under out-

door exposures is essential to evaluate the PV module lifetime and guide the develop-

ment of accelerated exposures. This study developed a cross-correlation method com-

paring models that describe how the electrical features change over time to quantify

the difference in rates and trends to evaluate the similarities in the degradation behav-

iors of PV modules under different exposures. The developed method was applied to

compare sixteen module variants under the outdoor exposure and two indoor accel-

erated exposures, including modified damp heat (mDH) and mDH with full-spectrum

light (mDH+FSL). The results show that our accelerated exposures, on average, lead to

a twice faster power loss when compared to the outdoor exposure with high similarities

in trends of power reduction and series resistance increase during the exposure time

covered by the scaled indoor accelerated exposure.

6.1 Introduction

Most commercial PV modules operate under environmental conditions that vary with

time and location. PV reliability studies use indoor accelerated exposures more often

since outdoor exposures are generally more expensive due to the longer exposure time

needed. However, recently more timeseries data have become available for PV modules

installed in the field; this provides further opportunities to study their degradation un-

der daily operation. Some methods have been developed to process timeseries data in

order to obtain features that are usually characterized in a lab under strictly controlled

conditions. These methods make it possible to compare module performance under

indoor accelerated and outdoor exposures using the same features[51]. It is essential
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to link the degradation behaviors between indoor accelerated and outdoor exposures

to guide lifetime estimation and improve the design of accelerated exposures. There

are two typical ways to build such a link: one is to match the environmental condi-

tions, and the second is to match the characterized performance. For matching envi-

ronmental conditions, Miller et al. used an accumulated dose of light when comparing

the maximum shear stress of samples under different exposures[13]. Bheemreddy et

al. input the temperature and relative humidity to the time-dependent Hallberg-Peck

Model (a corrosion rate analytical model) to compare PV module performance under

different exposing conditions[79]. Matching the environmental condition for this com-

parison brings many challenges, including integrating a variety of environmental vari-

ables together, accounting for their dynamic behaviors, and choosing a proper model.

For matching characterized performance, Kersten et al. compared the power loss of

PV modules installed in Cyprus and module under current injection around maximum

power at 75 ◦C in the lab. A one-year exposure in Cyprus was found to cause power loss

equal to 290 hours in the specified indoor accelerated exposure[82]. A similar approach

was used to investigate accelerated factors between the outdoor exposure and multiple

accelerated exposures with different temperature settings to study the potential induced

degradation[83]. However, matching performance usually assumes identical degrada-

tion mechanisms, and the result is influenced by time point selection when the power

loss rate is not constant.

This study first modeled the degradation behaviors of modules under accelerated

and outdoor exposures through power and other electrical features related to different

degradation mechanisms. Then a method named indoor/outdoor cross-correlation was

developed to compare these models and quantitatively evaluate differences in power
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loss rates and similarity in trends of features changing over time by scaling the time

of indoor models. This method was then applied to compare the sixteen module vari-

ants under outdoor exposure in Cleveland and two indoor accelerated exposures: mDH

and mDH+FSL. The results showed that the indoor accelerated exposures led to a power

drop roughly two times faster with highly similar trends for power and series resistance

within the exposure time covered by the scaled indoor exposure.

6.2 Methods

6.2.1 Research Minimodules

In this study, minimodules containing four solar cells connected in series with five junc-

tion boxes were fabricated by a solar company using its commercial manufacturing

pipeline. There are sixteen module variants with differences in encapsulant materi-

als, rear encapsulant types, module architectures, and cell types, as shown in Fig. 3.2.

The encapsulant material is either ethylene-vinyl acetate (EVA) or polyolefin elastomer

(POE). While the front encapsulant is always the transparent type, the rear encapsulant

types can be transparent, UV-Cutoff, and opaque (also described as white encapsulant)

for different module variants. The module architecture is either glass-backsheet (GB)

or double glass (DG). The glass for DG modules is heat-strengthened and 2.5 mm thick.

For GB modules, the front glass is tempered and 3.2 mm thick. Monofacial GB mod-

ules have a KPf backsheet with a fluorine-coated inner layer, polyethylene terephthalate

(PET) core layer, and polyvinylidene fluoride (PVDF) outer layer. Bifacial GB modules

have a transparent polyvinyl fluoride (PVF) backsheet with a transparent fluoroethylene

vinyl ether (FEVE) inner layer, PET core layer, and PVF outer layer. The solar cell is either
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monofacial or bifacial multicystalline silicon P-type PERC with five busbars for different

module variants. The detailed specifications for each module variant are listed in Table

3.1.

6.2.2 Stepwise Characterizations and Accelerated Exposures

This study had two kinds of accelerated exposures including mDH and a sequential ex-

posure named mDH+FSL. For mDH, the temperature was set to 80 ◦C, and the relative

humidity (RH) was set to 85%. When the modules were exposed under full-spectrum

light (FSL), the average light intensity was 420.4 W/m2 and 85.1 W/m2 for the front and

rear sides of the exposed module, respectively. In addition, a 0.5 Ω resistor was con-

nected to each module in order to make it operate around maximum power (Pmp ), and

the module temperature was below 70◦C. The total exposure time was 2,520 hours for

each accelerated exposure. This was divided into five steps with 504 hours (21 days) per

step. Under mDH+FSL, a sequential exposure was conducted with mDH taking 2/3 of

the time (14 days) and FSL taking the remaining 1/3 of the time (7 days) at each expo-

sure step. For every solar cell at each step, including the baseline, current-voltage (I -V )

curves and a Suns-Voc curve were measured to obtain measurements from eight cells in

two laminated modules for each module variant under each accelerated exposure.

Every I -V measurement provided three I -V curves at three different irradiance lev-

els: 1000 W/m2, 500 W/m2, and 250 W/m2 at room temperature. After temperature cor-

rections, the maximum power (Pmp ) and the short-circuit current (Isc ) were extracted

from the 1000 W/m2 I -V curve using the ddi v package[49]. The series resistance (Rs)

was extracted using all three I -V curves based on IEC 60891. The Suns-Voc curve can

be converted into the Pseudo I -V curve (PIV) with an Isc input, to provide an I -V curve
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without the effects of Rs[86]. This study used the nameplate Isc at 9.465 A for the curve

conversion to avoid being influenced by the change and measurement error of Isc ob-

tained from the I -V measurement. Then the voltage at maximum power was extracted

from the PIV curve, denoted as Vmp,PIV . These extracted features from I -V and PIV were

normalized by the feature value measured from the same solar cell at baseline.

6.2.3 Outdoor Data Collection and Processing Pipeline

Two minimodules for each module variant were installed on a tilted fixed rack at an out-

door testing site. The testing site was in the Dfa climate zone according to the Köppen-

Geiger climate classification system[99], where "D" stands for continental, "f" stands for

no dry season, and "a" stands for hot summer. The timeseries I -V curves, module tem-

perature, and plane of array irradiance (PO A) data have been recorded since May 2020

and up through December 2021. All of these data have been analyzed and encompass

a total exposure time of 1.6 years. Timeseries I -V features were first extracted from the

timeseries I -V curves using the ddi v package[49]. Next, they were combined with the

module temperature and PO A data to obtain the predicted electrical features at refer-

ence conditions for each analyzed period (one week) using the SunsV oc package[54].

These predicted features included Pmp,IV , Isc,IV , Rs,IV , and Vmp,PIV . The reference con-

ditions specify a PO A of 1000 W/m2 and module temperature of 45 ◦C; this is the annual

median module temperature where PO A is in the range of 1000 ± 10 W/m2. These pre-

dicted features were normalized by the average value obtained from the same module

in the first three months of exposure.
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6.2.4 < S|R > and < S|M| Pathways Models

In the expressions of < S|R > and < S|M| models, "S" represents the stressor variable, "R"

represents the response variable, and "M" corresponds to the mechanism variable. In

this study, time was chosen as the stressor variable and was measured in years. The re-

sponse variable is the normalized maximum power from I -V measurement (nPmp,IV ).

The mechanism variables are n Isc,IV , nRs,IV , and nVmp,PIV . These features were chosen

due to their relative independence and association with different degradation mecha-

nisms. The reduction of Isc,IV is usually caused by the transmittance loss of the en-

capsulant material, the rise of Rs,IV indicates interconnection corrosion or joint fatigue,

and the decrease of Vmp,PIV is associated with recombination due to solar cell defects.

These features can be obtained from either lab characterizations and outdoor timeseries

I -V feature modeling. Therefore, they can be the common variables for comparing the

degradation behaviors of between modules under accelerated and outdoor exposures.

The purpose of < S|R > and < S|M| models in this study is to describe the approximate

trend of how the response and mechanism variables change over time. Table 6.1 lists

the five models considered in the study. The number of parameters in these five models

varies from two to four. The best model was selected by the highest adjusted R-squared

(adj R2). Since the purpose of these models was not an accurate prediction, and the de-

gree of freedom was high enough to eliminate the concern of overfitting due to a large

number of observations, all of the data were used to fit the model without splitting a

testing dataset to evaluate the root-mean-squared error (RMSE).
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Table 6.1. The five models considered for the < S|R > and < S|M| pathway
model.

Name Abbreviation Expression
Simple linear SL y =β0 +β1x

Simple quadratic SQuad y =β0 +β1x2

Quadratic Quad y =β0 +β1x +β2x2

Exponent Exp y =β0 +β1exp(x)

Change-point linear CP
y =β0 +β1x +β2(x −τ)c

f or x ≤ τ : y =β0 +β1x f or x > τ : y =β0 +β1x +β2(x −τ)

6.2.5 Indoor/Outdoor Cross-correlation Algorithm

This study developed a cross-correlation algorithm to evaluate the differences in the

degradation rates and trends between modules under different exposures. The algo-

rithm returns the optimal cross-correlation scale factor (CC SF∗) and the cross-correlation

coefficients (CCC s) to evaluate the rate difference and trend similarity separately. The

cross-correlation scale factor (CC SF ) is defined as the ratio of exposure time for indoor

accelerated exposure to the equivalent exposure time for outdoor exposure. Therefore,

it is generally lower than one because the indoor accelerated exposure usually leads

to a faster degradation than the outdoor exposure. The required inputs of the cross-

correlation algorithm include the < S|R > and < S|M| models for samples under the in-

door accelerated and outdoor exposures, their exposure times, and a guessing range of

CC SF . The algorithm begins by solving the CC SF∗ using only the < S|R > models. The

y-axis intercepts of the two < S|R > models are shifted to one in order to represent a

change in performance starting at exactly 100%. A CC SF is then taken from the guess-

ing range to scale the indoor < S|R > model. The green and blue curves shown in Fig. 6.1

are stretched indoor < S|R > models with different CC SF values. Next, the overlapping

exposure time is obtained between the outdoor and scaled indoor models, and one hun-

dred time points are evenly generated in this calculated overlapping time range. This
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time sequence is then input to the outdoor and scaled indoor models to obtain two pre-

dicted value sequences to calculate their RMSE. The above process is repeated for all

CC SF in the defined guessing range with a specified interval. The CC SF∗ corresponds

to the CC SF with the lowest RMSE. In summary, the indoor < S|R > is scaled along the

x-axis to approach the outdoor model within the overlapping exposure time, and the

corresponding scale factor is the CC SF∗. It is worth noting that the CC SF∗ tends to re-

turn at the guessing boundaries when the indoor model has a tendency to be stretched

or compressed to extremes. This will happen when the indoor and outdoor models have

opposite trends, or one model exhibits a much slower change than the other.

Figure 6.1. Illustration of the process for obtaining the optimal cross-
correlation scale factor (CC SF∗) by comparing the scaled indoor model
to the outdoor model in their overlapping exposure time.

Next, the CC SF∗ is applied to both the < S|R > and < S|M| models for the indoor

accelerated exposure. After obtaining the predicted value sequences from the outdoor
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model and the scaled indoor model within their overlapping exposure time, the Pear-

son correlation coefficient is calculated instead of RMSE and renamed as the cross-

correlation coefficient (CCC ). Therefore, the CCC is evaluated for each pathway us-

ing a common overlapping exposure time determined by the CC SF∗, which is obtained

by comparing the < S|R > models under different exposures. CCC quantifies the simi-

larity of trends described by the models. The more similar the two models’ trends are,

the closer the value of CCC is to one; the more opposing the two models’ trends are, the

closer the value of CCC is to minus one. Additionally, CCC s of the activated degradation

mechanisms should be the focus when using them to evaluate the similarity of degra-

dation behaviors for modules in different exposures. In this study, the outdoor modules

exhibit changes in both Isc,IV and Rs,IV , while the indoor modules experience a signifi-

cant change only in Rs,IV due to the exposure conditions. Therefore, Isc,IV and Vmp,PIV

are not common activated mechanisms for both exposures. They are included in this

study to illustrate how to select proper degradation mechanism features.

6.3 Results

6.3.1 Examples of Indoor and Outdoor < S|R > and < S|M| Data

Fig. 6.2 shows the four normalized electrical features including nPmp,IV , n Isc,IV , nRs,IV ,

and nVmp,PIV over time for module variant 8 under the mDH and the outdoor exposure

conditions. There are six unique time points with measurements obtained from eight

cells for each module variant in each indoor accelerated exposure. There are many more

unique time data points for each module variant in the outdoor exposure, but each time

point has results from only two modules. Table 6.2 lists the average percent change of
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the three mechanism features for the last step of the two indoor accelerated exposures

and the last three months of outdoor exposure across all modules.

(a) mDH.

(b) Outdoor.

Figure 6.2. The normalized electrical features over time for module vari-
ant 8 under mDH and the outdoor exposure.
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Table 6.2. The average percent change of the three normalized degrada-
tion mechanism features for each exposure of all of the modules.

Feature mDH mDH+FSL Outdoor
n Isc,IV -0.14% -0.72% -5.15%
nRs,IV 15.46% 14.82 % 2.58%

nVmp,PIV -0.09% -0.35% -0.75%

6.3.2 < S|R > and < S|M| Pathway Models

Table 6.3 shows the number of module variants for each model format that performed

best under each model format and the average adj R2 for each pathway of each acceler-

ated exposure. Table 6.4 shows the number of module variants for each model format

that performed best under each model format and the average adj R2 for each pathway

of the outdoor exposure.

Table 6.3. The number of module variants for each model format that
performed best under each model format and the average adj R2 for each
pathway of each accelerated exposure.

Exposure Pathway Average adj R2 Model Format
SL SQuad Quad Exp CP

mDH

< T i me|nPmp,IV > 0.444 4 4 1 2 5
< T i me|n Isc,IV | 0.427 1 1 5 1 8
< T i me|nRs,IV | 0.361 3 7 0 3 3

< T i me|nVmp,PIV | 0.141 6 3 6 0 1

mDH+FSL

< T i me|nPmp,IV > 0.400 3 5 2 3 3
< T i me|n Isc,IV | 0.339 3 3 5 0 5
< T i me|nRs,IV | 0.337 3 6 1 3 3

< T i me|nVmp,PIV | 0.222 2 0 4 1 9
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Table 6.4. The number of module variants for each model format that
performed best under each model format and the average adj R2 for each
pathway of the outdoor exposure.

Pathway Average adj R2 Model Format
SL SQuad Quad Exp CP

< T i me|nPmp,IV > 0.0345 0 1 2 1 12
< T i me|n Isc,IV | 0.0404 1 0 0 0 15
< T i me|nRs,IV | 0.127 1 0 1 1 13

< T i me|nVmp,PIV | 0.0549 0 0 0 1 15

6.3.3 Cross-correlation Scale Factors and Coefficients

The guessing range of CC SF was defined as 0.04 to 2, with an interval of 0.001. There-

fore, the indoor model could be compressed into half of its original exposure time and

stretched up to 25 times longer exposure time. The results of the CC SF∗ and CCC for

each module variant are listed in Table 6.5 for comparing the degradation behaviors be-

tween mDH and the outdoor exposure. Table 6.6 shows results of comparing the degra-

dation behaviors between mDH+FSL and the outdoor exposure.

6.4 Discussion

6.4.1 Power and Selected Degradation Mechanism Features

PV module performance is usually evaluated by either energy conversion efficiency or

power output under certain environmental conditions. Timeseries power data are usu-

ally used to calculate the performance loss rate (PLR) to quantify the degradation rate of

PV modules. Similarly, this study chose the nPmp,IV to evaluate the overall performance.
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Table 6.5. The results of CC SF∗ and CCC comparing the models for each
module variant between mDH and the outdoor exposure.

Module Variant CC SF∗ CCC
< T i me|nPmp,IV > < T i me|n Isc,IV | < T i me|nRs,IV | < T i me|nVmp,PIV |

1 2.000 0.804 0.999 0.968 1.000
2 2.000 0.374 0.307 0.783 0.968
3 2.000 -0.858 -0.925 0.968 1.000
4 0.169 0.726 0.561 0.259 0.068
5 0.511 0.959 0.716 0.968 -1.000
6 2.000 0.778 0.968 0.962 -0.860
7 0.210 1.000 -0.112 0.888 -0.515
8 0.792 0.935 -0.747 0.884 -0.586
9 0.398 0.972 0.893 0.999 0.231

10 0.122 0.885 -0.461 0.979 0.601
11 0.584 0.999 0.648 0.999 -0.649
12 2.000 -1.000 -0.775 -1.000 0.586
13 0.040 -0.696 -0.658 0.913 0.998
14 0.210 0.994 -0.918 1.000 -0.448
15 1.089 0.953 0.673 0.968 -1.000
16 0.654 1.000 -0.127 0.979 -0.994

Table 6.6. The results of CC SF∗ and CCC comparing the models for each
module variant between mDH+FSL and the outdoor exposure.

Module Variant CC SF∗ CCC
< T i me|nPmp,IV >| < T i me|n Isc,IV | < T i me|nRs,IV | < T i me|nVmp,PIV |

1 2.000 0.999 0.978 0.944 0.846
2 2.000 0.378 0.414 0.783 0.868
3 2.000 -0.968 -1.000 0.999 0.645
4 0.168 0.862 -0.602 0.439 0.524
5 0.599 0.968 0.612 0.968 -0.129
6 2.000 0.800 0.968 0.937 -1.000
7 0.207 1.000 -0.183 0.978 -0.670
8 0.475 0.964 0.981 0.968 -0.948
9 0.063 -0.308 -0.006 -0.406 0.260

10 0.188 0.864 0.349 0.988 0.275
11 0.576 0.968 0.995 0.968 0.821
12 2.000 -0.939 -0.975 -1.000 -1.000
13 0.040 -0.560 0.678 0.918 -0.979
14 0.357 1.000 -0.865 1.000 0.038
15 0.448 0.985 0.899 0.968 -0.616
16 1.217 0.932 0.731 0.940 0.563

The reduction in nPmp,IV can be caused by numerous reversible and irreversible physi-

cal and chemical changes happening to PV modules. These changes are reflected in dif-

ferent electrical signals, which can be used as indicators for different degradation mech-

anisms. For example, soiling and encapsulant discoloration both lead to a decrease in
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Isc . Multiple features extracted from different characterizations preserve some correla-

tions due to their physical relationships like the open-circuit voltage (Voc ) and the volt-

age at the maximum power (Vmp ) extracted from I -V curves. Features with less corre-

lation to the others regarding their physical relationships are preferred as indicators for

different degradation mechanisms. This study selected n Isc,IV , nRs,IV , and nVmp,PIV for

their associations to the encapsulant discoloration, interconnection corrosion, and in-

creased recombination. In addition, when selecting degradation mechanism features,

we should consider their availability. In this study, the four normalized electrical fea-

tures were obtained for both the sample under indoor accelerated exposure through

direct measurements and the sample exposed outdoor through modeling on timeseries

I -V features like the example in Fig. 6.2.

6.4.2 Indoor/outdoor Cross-correlation

The indoor/outdoor cross-correlation algorithm first calculates the CC SF∗ through the

comparison of two < S|R > models describing how the response variable changes over

time under different exposures. The CC SF∗ is obtained by scaling the indoor model

along the time axis (x-axis) to make it as close as possible to the outdoor model in the

overlapping exposure time. This CC SF∗ is then applied to all indoor models, including

< S|R > and various < S|M| models to calculate the CCC for different pathways in or-

der to quantify similarity between trends in the same overlapping exposure time range.

It is worth noting that the CCC of the pathway for activated degradation mechanisms

is more important to evaluate the similarity of the degradation behaviors due to their

higher contribution to power loss. In this study, the trends for the four normalized elec-

trical features for module variant 8, shown in Fig. 6.2, represent a general situation of all
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module variants. For modules in the indoor accelerated exposure, there are more signif-

icant changes in nPmp,IV and nRs,IV , comparing to those in n Isc,IV and nVmp,PIV . Such

differences can also be observed from the average percent change of the three mecha-

nism features for all samples under different exposures as shown in Table 6.2. The out-

door results in Table 6.2 are estimated for the final three months and are found to have

greater changes in both Isc,IV and nRs,IV than nVmp,PIV . If the CC SF∗ is evaluated for

each pathway rather than determined by the < S|R > pathway, CC SF∗ appears at the

guessing boundary as two in the majority cases for n Isc,IV and nVmp,PIV pathways, indi-

cating that our indoor accelerated exposures generally lead to minor changes in n Isc,IV

and nVmp,PIV .

The changes calculated from outdoor samples in this study are not entirely due to

degradation. It is challenging to extract trends while removing seasonality and noise

because the short outdoor exposure time limits the repetition of seasonality. The large

spread in outdoor data shown in Fig. 6.2 can be reduced by enabling seasonal decom-

position. Furthermore, looking at the number of module variants that chose different

model formats between Table 6.3 and Table 6.4 for different exposures, one can observe

that change-point models are strongly preferred for all pathways under outdoor expo-

sure. This is believed to be influenced by the retained seasonality. All PV modules have

been stabilized through light and current injection before different exposures. As a re-

sult, they are not supposed to experience a fast power reduction in the first year due to

light-induced degradation. The time length of current outdoor data was too short to in-

vestigate whether the performance loss rate changes over time. The primary purpose of
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this study is to illustrate the working principle of the developed cross-correlation algo-

rithm with examples of interpreted results, since the outdoor exposure was too short to

make firm conclusions on degradation performance comparison.

6.4.3 Modified Damp Heat vs. Outdoor

Table 6.5 shows the cross-correlation result comparing < S|R > and < S|M| models under

mDH and outdoor exposure conditions. Ten module variants have a CC SF∗ that does

not appear on the guessing boundaries. These CC SF∗ vary from 0.122 to 1.08 with an av-

erage of 0.4739, indicating that nPmp,IV drops two times faster under mDH than outdoor

exposure in the time covered by the scaled indoor model. Their CCC s for the pathways

of < T i me,n Pmp,IV > and < T i me,n Rs,IV | are very close to one with an average value of

0.9423 and 0.8924, respectively. However, the average value of CCC s for < T i me,n Isc,IV |

and < T i me,n Vmp,PIV | are 0.1126 and -0.4292, which demonstrates dissimilar trends for

how n Isc,IV and nVmp,PIV change over time. In addition, the three cases with a negative

CCC for < T i me,n Pmp,IV > are found to have CC SF∗ shown at the guessing bound-

aries. Another reason that will lead to a CC SF∗ appearing at the guessing boundaries is

a large difference in the changing rates of nPmp,IV . Most cases with a CC SF∗ appearing

at the boundaries have a CC SF∗ of two. For these cases, the change in nPmp,IV is even

slower under mDH than the outdoor exposure, which is believed to be partially due to

their stable performance under mDH and the retained seasonality in outdoor data.

6.4.4 Modified Damp Heat + Full-spectrum Light vs. Outdoor

Table 6.6 shows the cross-correlation result for comparing models under mDH+FSL and

the outdoor exposure. These are the same ten module variants with a CC SF∗ that does
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not appear at the guessing boundaries as the ones identified by comparing models un-

der mDH and the outdoor exposure, indicating similarities in the degradation behavior

under mDH+FSL and mDH. The CC SF∗ of these module variants varies from 0.063 to

1.217 with an average of 0.4298, indicating that nPmp,IV drops about twice as fast un-

der mDH+FSL than under the outdoor exposure, similar to mDH. The average CCC s for

< T i me|nPmp,IV > and < T i me|nRs,IV | are 0.8234 and 0.7809, which are slightly lower

than those obtained from comparing mDH and the outdoor exposure. This difference

is mainly due to the resulting difference in module variant 9. If module variant 9 is ex-

cluded, the average CCC s for < T i me|nPmp,IV > and < T i me|nRs,IV | for both indoor

accelerated exposures are in the range from 0.8805 to 0.9491. In addition, the average

CCC for < T i me|n Isc,IV | is 0.2911, which is higher than that obtained from compar-

ing mDH and the outdoor exposure. The decrease in n Isc,IV is slightly greater under

mDH+FSL than mDH as shown in Table 6.2, although it is still much smaller than the

change in nRs,IV . The average CCC for < T i me|nVmp,PIV | is only 0.0117, indicating dis-

similarity in trends of nVmp,IV between mDH+FSL and the outdoor exposure. It is worth

noting that even if the CCC s for n Isc,IV and nVmp,PIV are large in this study, it only indi-

cates similar trends for the corresponding degradation mechanisms and is not enough

to conclude highly similar degradation behaviors under different exposures. This is due

to the activated mechanisms not being consistent between the indoor accelerated and

outdoor exposures.
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6.5 Conclusions

This study proposes a cross-correlation algorithm to compare the degradation behav-

iors between PV modules under indoor accelerated exposures and outdoor exposures

in order to evaluate similarities in degradation rates and trends through models that

describe how electrical features change over time. The normalized maximum power

(nPmp,IV ) was chosen as the overall response variable; the other three electrical fea-

tures were chosen as mechanism variables which include n Isc,IV , nRs,IV , and nVmp,PIV .

These selected mechanism features are physically highly independent and related to

specific degradation mechanisms. For modules in indoor accelerated exposures, these

electrical features were obtained through lab characterizations. For modules exposed

outdoors, these features were predicted by modeling timeseries electrical and weather

data. The cross-correlation algorithm was applied to compare sixteen module variants

under an outdoor exposure and two indoor accelerated exposures, including mDH and

mDH+FSL. For each accelerated exposure, ten module variants are identified to have

a CC SF∗ that does not appear at the guessing boundaries. Their averages are 0.4739

and 0.4298 for mDH and mDH+FSL, respectively, indicating a power reduction roughly

two times faster than the outdoor exposure. Their average CCC s for < T i me|nPmp,IV >

and < T i me|nRs,IV | pathways are very close to one, indicating highly similar trends for

how nPmp,IV and nRs,IV change over time for the overlapping period between the scaled

indoor accelerated and outdoor exposures. However, the outdoor models in this study

describe changes that are not entirely explained by degradation; there was great diffi-

culty in robustly removing seasonality and noise over our short outdoor exposure time.
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Extending outdoor exposure time is essential in order to enable seasonal decomposi-

tion and to confirm the similarity between degradation behaviors for PV modules under

different exposures in this study.
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7 Regression CNN & RNN of Degra-

dation of Power and Series Resistance

Title to submit: Comparison of Regression CNN & RNN models for Simultaneous

Prediction of the Degradation of PV Module Power and Series Resistance Based on PV

Images

Electroluminescence (EL) is commonly used to detect defects in solar cells. It is pop-

ular to develop machine learning models to process these images due to the availability

of large datasets in recent years. However, most research utilized convolution neural

networks for defective cell classification. Few studies used images to evaluate the elec-

trical performance of the solar cell quantitatively. Although stepwise characterizations

are commonly applied to study photovoltaic (PV) module reliability under accelerated

exposures, this temporal relationship has not been exploited in machine learning mod-

els developed using such datasets. This study used EL images, photoluminescence (PL)

images, and electrical features collected from PV modules under stepwise accelerated

exposures. Different model variants in categories of convolution neural network (CNN),

recurrent neural network (RNN), and CNN+RNN were developed to predict the normal-

ized power and series resistance using images as the input. The influence of scaling
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the output features and using different images as the input on the modeling perfor-

mance was investigated. Combining an RNN model using a gated recurrent unit (GRU)

layer with the output dimension specified as two and the raw EL images as the input is

proposed as the best combination. This is determined by its lowest testing root-mean-

squared error (RMSE) and less complex image processing.

7.1 Introduction

Image characterization is a powerful approach to providing spatial information about

PV systems. Image characterizations commonly applied for PV reliability studies in-

clude EL, PL, and thermographic images. Thermographic images are often used to de-

tect operational faults in PV arrays by the presence of abnormal hot spots[59]. EL is

generally used to identify defective solar cells within a PV module[61]. PL is more popu-

larly applied to silicon wafers or bare solar cells since it does not require a well electrical

connection[102]. Human inspection of these images requires domain knowledge and is

a time-consuming process. A convolution neural network (CNN) is a typical model that

directly uses images as the input. It is known that CNN is a feed-forward neural net-

work where each neuron merely affects the neurons nearby in the adjacent layer and

retains the spatial correlation of the input images to capture local patterns[60]. The

trained CNN kernel can be thought of as a filter for feature extraction. The developed

CNN models to classify EL cell images were usually customized to have around five con-

volution layers[72, 73] or modified from published CNN models, like the VGG series[74,

75]. However, to produce optimal performance from CNNs, many images are required.

Lacking enough images could lead to a worse performance[60]. In such cases, other



Regression CNN & RNN of Degradation of Power and Series Resistance 123

machine learning models using feature vectors as the input could achieve comparable

performance with fewer images. Some studies take texture features such as contrast, en-

ergy, homogeneity, and correlation calculated from the Gray Level Co-occurrence Matrix

(GLCM) and the histogram of gradient features[61, 62]. Such feature vectors take contri-

butions from both local and global feature extractors. Then an artificial neural network

(ANN) or a simple classifier like Naive Bayes could replace the CNN to achieve compa-

rable performance (an accuracy above 90%)[61, 62]. Most studies in this field focused

on classification with targeting classes as binary[74] or multiple, like for different kinds

of defects such as isolation, cracks, corrosion[72, 73]. The image data have the problem

of being unbalanced in nature[74]. Image augmentation such as rotation, flipping has

been shown to improve the model performance[72, 74]. While EL images used in most

studies for defect classification were the single-channel grayscale images, multiple im-

ages of the same sample can be combined by merging into a single channel[76] or taking

multiple channels.

Few studies have designed models to predict the change in electrical parameters

through image characterizations quantitatively. There was a study that first calculated

four image features, including the median intensity, the percentage of dark pixels after

thresholding, the normalized busbar width, and a corrosion degree[77]. Then a model

was built using image features as independent variables to predict the normalized Pmp

and Rs through polynomial regression. The artificially defined image features have lim-

ited generality. While they worked well for the studied image dataset, in which the pri-

mary concern is corrosion, they might not work so well for another image dataset in

which the primary concern is cracking. Although the images and electrical parameters
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in this study were obtained through stepwise characterizations of PV modules under ac-

celerated exposures, the relationship of measurements for the same sample evaluated

at different steps was not utilized[77]. Another study predicted the change in efficiency

from EL images by a CNN model[103]. It first identified the location of defects and then

removed them by constructing a defect-free image through the generative adversarial

network (GAN). Next, the difference between the predicted efficiency from the actual

image and the fake defect-free image was calculated. The model was a CNN predict-

ing the efficiency rather than its change based on EL images. It also did not utilize the

relationship of stepwise measurements for the same cell sample.

In addition, machine learning models were also widely applied to timeseries PV data

for power prediction and forecast. A recurrent neural network (RNN) model is a typ-

ical neural network model type that processes timeseries data for prediction or fore-

cast[67]. It can process variable-length input sequences using its internal state. Be-

cause the depth of an RNN neuron is decided by the length of the input sequence, which

could be relatively long in some cases, a plain RNN neuron is likely to encounter a gra-

dient vanishing problem through backpropagation. It could form a short-term memory

that hinders performance improvement when training with more input data. Therefore,

some special RNN neurons are more popular in RNN models such as long short-term

memory unit (LSTM)[68] and gated recurrent unit (GRU)[69]. Both of them have gates

using a sigmoid function to control the balance between long-term memory and the

current updated state so that the information obtained from the very early input can

also reach the recent output[68, 69].

This paper collected a dataset of 396 cell samples in laminated modules with im-

ages and electrical parameters measured at six steps under accelerated exposures. The
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developed neural network models took images as the input to predict the normalized

power and series resistance. The performance of different model variants in categories

of CNN, RNN, and CNN+RNN using different input images was compared. RNN models

utilizing the stepwise measurements for each cell sample outperformed CNN models.

7.2 Methods

7.2.1 Minimodule Fabrication

Data for this study were acquired from stepwise characterizations applied to minimod-

ules under indoor accelerated exposures. Each studied minimodule has four cells con-

nected in series with five junction boxes installed on the rear side to enable each cell’s

current-voltage (I -V ) measurement. The solar cell is either the monofacial or bifacial

P-type multi-crystalline silicon PERC cell with five busbars. There are sixteen module

variants of each brand with differences in module architectures (GB or DG), encapsulant

materials (EVA or POE), rear encapsulant types (transparent, UV-Cutoff, or opaque), and

cell types (monofacial or bifacial). There are two brands: A and B. Brand A minimodules

were fabricated by a solar company using its manufacturing pipeline for commercial PV

modules. Brand B minimodules were fabricated by the Solar Durability and Lifetime Ex-

tension Center (SDLE). While their fabrication steps are identical, including soldering,

lamination, and junction box installation, there are differences in the finished module

due to differences in soldering methods such as machine soldering or manual soldering

and lamination equipment.
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7.2.2 Experimental Data Acquisition

Some minimodules were exposed under an accelerated exposure named modified damp

heat (mDH) with the condition of 80 ◦C and 85% relative humidity (RH), and the rest

of the minimodules were exposed under a sequential accelerated exposure of modified

damp heat with full-spectrum light (mDH+FSL). The total exposure time for each accel-

erated exposure was 2,520 hours, and each exposure step took 504 hours (21 days). For

each exposure step under mDH+FSL, FSL took 1/3 of the exposure time, and mDH took

2/3 of the exposure time. When modules were under FSL, a 0.5Ω resistor was connected

to each module to make it operate around the maximum power (Pmp ). The average irra-

diance intensity for the front and rear sides of the module under FSL were 420.4 W/m2

and 85.1 W/m2, respectively. At each exposure step, including the baseline, we measured

current-voltage (I -V ) curves at three irradiance levels, including 1000 W/m2, 500 W/m2,

250 W/m2, and eight images. Pmp is extracted from the 1000 W/m2 I -V curve by the

ddi v package[49], and series resistance (Rs) is extracted using the three I -V curves at

different irradiance levels following IEC 60891. The eight images contain three electro-

luminescence (EL) images with three different forwarding currents, three corresponding

dark images with the same camera settings and no forwarding current, and two PL im-

ages. The three forwarding currents are 9.4 A (Io), 4.7 A (0.5 Io), and 2.4 A (0.25 Io). The

camera exposure time was adjusted for each EL image to reasonably utilize the range of

allowed image intensity. One PL image denoted as PL@OC is measured under illumina-

tion with the module’s current set as zero, that is, open-circuit status. Another PL image

denoted as PL@SC is measured under illumination with the module’s voltage set as zero,

that is, short-circuit status. The illumination is about twice as intense as the green light



Regression CNN & RNN of Degradation of Power and Series Resistance 127

peak in the solar spectrum, provided by ten green LED lamps arranged in two columns

in the imaging chamber.

7.2.3 Pre-processing of Input Images and Output Features

Fig. 3.7 shows the eight images obtained from one GB minimodule at the baseline.

The power supply is connected to each module, and the obtained image is also for

each module. The three EL images are denoted as EL@Io , EL@0.5Io , and EL@0.25Io

after subtracting the corresponding dark images. A cell extraction python pipeline from

pvi mag e package[88] is applied to extract four cell images from each module image.

Fig. 7.1 shows an example of the extracted cell images from a module EL@Io image.

(a) Module.

(b) Cell 4. (c) Cell 3.

(d) Cell 1. (e) Cell 2.

Figure 7.1. Extracted cell images from an EL@Io module image obtained
from a glass-backsheet (GB) module measured at baseline.
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In addition to the extracted EL@Io cell images used directly as the input, other im-

ages were constructed by image pre-processing to investigate potential model perfor-

mance improvements, such as the baseline subtraction images, the enhanced signal-to-

noise (S/N) EL images, and some hyper images. The baseline subtraction image is ob-

tained by subtracting the studied image from the same type of image measured from the

same sample at baseline. Then the difference was normalized by the average intensity

of the baseline image. Therefore, the baseline subtraction image highlights a cell area

that becomes darker after some time under an accelerated exposure. The enhanced S/N

EL image is a weighted average of the three EL images measured with different forward-

ing currents. The weights are the reciprocal of their corresponding camera exposure

times. Table 7.1 lists the camera exposure time of these three EL images for modules

with monofacial cells and bifacial cells, which is the only difference in the settings of

the camera for three EL images with different forwarding currents. The enhanced S/N

image is calculated by Eq. 7.1 to form a weighted average of the three EL images as a

single-channel image, where the bit parameter is 16 for our images. Fig. 7.2 shows the

extracted EL@Io cell image of one solar cell after five steps of mDH exposure, the cor-

responding baseline subtraction image, and the enhanced S/N EL image. The hyper

image is constructed by putting different types of images into multiple image chan-

nels. Double-channel hyper images using the combination of EL@Io and EL@0.25Io ,

and EL@Io and PL@OC after the baseline subtraction were constructed in the study.
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Table 7.1. Camera exposure times of different EL images for modules with
monofacial cells and bifacial cells.

Image Type Cell Type Camera Exposure Time (second)
EL@Io monofacial 4.0

EL@0.5Io monofacial 9.0
EL@0.25Io monofacial 19.0

EL@Io bifacial 2.2
EL@0.5Io bifacial 5.0

EL@0.25Io bifacial 13.0

mono f aci al :
19.0
4.0 EL@Io + 19.0

9.0 EL@0.5Io + 19.0
19.0 EL@0.25Io

( 19.0
4.0 + 19.0

9.0 + 19.0
19.0 )× (2bi t −1)

bi f aci al :
13.0
2.2 EL@Io + 13.0

5.0 EL@0.5Io + 13.0
13.0 EL@0.25Io

( 13.0
2.2 + 13.0

5.0 + 13.0
13.0 )× (2bi t −1)

(7.1)

(a) Raw. (b) Baseline subtraction. (c) Enhanced S/N EL.

Figure 7.2. The raw EL@Io image (a), the baseline subtraction image (b),
and the enhanced S/N EL image (c) for a solar cell in a laminated module
after five steps of mDH exposure.

The normalized Pmp (nPmp,IV ) and Rs (nRs,IV ) were chosen as the predicted output

features. These electrical features were normalized by the feature value measured from

the same cell at baseline. Two kinds of scaling methods were tested for the output to
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explore the potential improvements in model performance, including the minimum-

maximum scaler (M MS) shown in Eq. 7.2 and the standard scaler (ST S) shown in Eq.

7.3. The scaler translates each feature individually, denoted as X in Eq. 7.2 and Eq. 7.3

using the statistics obtained from the training dataset, such as the range, the average (µ),

and the standard deviation (σ).

Xscaled = X −mi n(X )

max(X )−mi n(X )
(7.2)

Xscaled = (x −µ)/σ (7.3)

7.2.4 Neural Network Models

The convolution neural network (CNN) is designed to automatically and adaptively

learn spatial hierarchies of features through backpropagation by using multiple build-

ing blocks, such as convolution layers, pooling layers, and dense layers[104]. In this

study, multiple modifications were applied to CNN models to explore potential model

performance improvements, including adding dropout layers, changing the number of

neurons in dense layers, alternating the grid size in max-pooling layers, adding differ-

ent regularization and batch normalization, and changing convolution structures. The

simplest and the most complex CNN models in this study contain two and seven convo-

lution layers shown in Fig. 7.3. For CNN model expressions, the letter "c" stands for the

convolution layer, and the letter "p" stands for the max-pooling layer with the following

number as the layer order.

The recurrent neural networks (RNN) is a class of artificial neural networks (ANNs)

where connections between neurons form a directed or undirected graph along the se-

quence of input. A sequence is a particular order in which one thing follows another.
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(a) c1c2p1.

(b) c1c2p1c3c4p2c6c7p3.

Figure 7.3. The model architecture for the simplest and most complex
CNN models.

The most common sequential input is timeseries data such as audio, video, and the

daily stock price. A usual RNN neuron takes the current input like a typical feed-forward

neural network and information from the previous input to predict the current output.

So it exhibits temporal dynamic behavior and owns a memory. It is well known that a

very deep feed-forward neuron network suffers from the vanishing gradient problem.
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A usual RNN neuron will easily encounter the same issue. Its internal state can keep

a short-term memory since its depth is decided by the length of the input sequence,

which can be long in nature. Besides dividing a long input sequence into multiple short

input sequences, two specially designed RNN neurons are applied more often to enable

long-term memory. They are long short-term memory unit (LSTM) [68] and gated re-

current unit (GRU) [69] which can balance the contribution of the long-term memory,

the short-term memory, and the current input to predicting the current output. GRU is

used here due to its concise structure and fewer parameters. The number of parameters

in a GRU neuron is decided by the input dimension and the specified output dimension,

defined in the "units" parameter in the "tf.keras.layers.GRU" function. Performance of

RNN models was investigated with units changed as two, 20, and 200 for a single GRU

layer and the number of GRU layers chosen from one to three. The image dataset needs

to be reorganized into a video format to train an RNN model. The video is for each solar

cell with frames of images following the order of exposure steps.

Model Performance Matrix: The data of 396 solar cell samples were partitioned into

training, validation, and testing datasets according to a 75:15:15 ratio based on ran-

domly selected cells. Then rotations of 90◦, 180◦, and 270◦ were applied to each image to

increase the number of observations and make the model generalized across different

image orientations. Therefore, there were 1108 videos or 6648 images for training, 236

videos or 1416 images for validation, and 240 videos or 1440 images for testing. Mean

squared error (MSE) calculated by Eq. 7.4 was used as the loss function in the train-

ing process. The model performance was evaluated using the root-mean-square error

(RMSE) shown in Eq. 7.5 obtained from the testing dataset. In both Eq. 7.4 and Eq. 7.5,

n is the number of observations in the dataset, Yi is the actual output feature value, and
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Ŷi is the predicted output feature value. The number of epochs in the training process is

denoted by a number in parentheses following the model expression. Models returned

from checkpoints, denoted by a letter "c" following the defined training epoch number,

were sometimes used to obtain models before overfitting. The checkpoint was set to

continuously save model objects with a smaller MSE for the validation dataset in the

training process.

MSE = 1

n

n∑
i=1

(Yi − Ŷi )2 (7.4)

RMSE =
√∑n

i=1(Yi − Ŷi )2

n
(7.5)

Model Fitting Environment: Tensorflow 2.6.1 library was used for building the neu-

ral network model[105]. The model was trained and tested on Intel(R) Xeon(R) CPU

E5-2630 v4 @ 2.20GHz, 64 GB memory, 8 CPU cores, and 12 GB Nvidia GeForce RTX

2080 GPU card.

7.3 Results

A baseline model was made by guessing values of output features as one, and its testing

RMSE is 0.0958. The specification of all cases with differences in the model structure,

input, and output is described in Table 7.2 with the testing RMSE. "Raw" is for the origi-

nal image in the input column, and "BS" is for the baseline subtraction image. "Hyper"

is for the image with multiple channels for different image characterizations, and "EH"

is for the enhanced S/N EL image constructed by the three EL images with different for-

warding currents. The normalized electrical features were used directly as the output if
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the output column was left empty. Otherwise, a scaler was applied, where M MS repre-

sents the minimum-maximum scaler as Eq. 7.2 and ST S represents the standard scaler

as Eq. 7.3. The convolution structures for CNN#1 to CNN#10 are described in Table

7.4. This section organizes results based on model categories, including CNN, RNN, and

CNN+RNN.

7.3.1 CNN Model Variants

The experimental cases for CNN models include the first 42 rows in Table 7.2. Most

CNN models use the baseline subtraction images as the input for model performance

comparison. Table 7.3 shows the number of parameters in each layer in CNN#1 using

single-channel images as the input. CNN#1 has five convolution layers separated by two

max-pooling layers with a grid size of two by two. Its convolution part is followed by two

dense layers with the number of neurons specified as 256 for each layer. Its output layer

has two neurons for nPmp,IV and nRs,IV . The activation function for the output layer

and all the other layers is linear and rectified linear unit (ReLU), respectively.

Fig. 7.4 compares the testing RMSEs of the first six cases in Table 7.2, which contain

several modifications applied to CNN#1. These modifications are adding dropout lay-

ers (case 2), reducing neurons in dense layers (cases 3 and 4), and enlarging the grid in

max-pooling layers (cases 5 and 6). The red line in Fig. 7.4 marks the performance of the

baseline model. These six cases all have similar learning curves, as shown in Fig. 7.7a,

which show a sign of overfitting within 50 epochs. Therefore, more operations such as

batch normalization, kernel regularization, and activation regularization were tested as

possible solutions to delay overfitting and to improve model performance through more

epochs of training. Batch normalization has two notations based on the added position
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Table 7.2. The specification of each modeling experiment and its result-
ing testing RMSE.

Case Model Expression Comments Input Output # of Parameters RMSE
1 CNN#1(50) BS(EL@Io) 12,918,090 0.0844
2 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,090 0.0735
3 CNN#1+0.5D+RF1(50) reduce neurons in the first dense layer from 256 to 128 BS(EL@Io) 6,462,666 0.0758
4 CNN#1+0.5D+RF2(50) reduce neurons in the second dense layer from 256 to 128 BS(EL@Io) 12,884,938 0.0741
5 CNN#1+0.5D+MP3(50) change the grid in max-pooling as 3 × 3 BS(EL@Io) 2,633,034 0.0777
6 CNN#1+0.5D+MP4(50) change the grid in max-pooling as 4 × 4 BS(EL@Io) 875,850 0.0780
7 CNN#1+0.5D+KR(50) add kernel regularization to each convolution layer BS(EL@Io) 12,918,090 0.0742
8 CNN#1+0.5D+AR(50) add activation regularization to each convolution layer BS(EL@Io) 12,918,090 0.0788
9 CNN#1+0.5D+BNB16(50) add BNB with a batch size of 16 BS(EL@Io) 12,918,186 0.0783

10 CNN#1+0.5D+BNB64(50) add BNB with a batch size of 64 BS(EL@Io) 12,918,186 0.1154
11 CNN#1+0.5D+BNB256(50) add BNB with a batch size of 256 BS(EL@Io) 12,918,186 0.1154
12 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) 12,918,186 0.2017
13 CNN#1+0.5D+BNB1024(50) add BNB with a batch size of 1024 BS(EL@Io) 12,918,186 0.5036
14 CNN#1+0.5D+BN16(50) add BN with a batch size of 16 BS(EL@Io) 12,918,346 0.0779
15 CNN#1+0.5D+BN64(50) add BN with a batch size of 64 BS(EL@Io) 12,918,346 0.0783
16 CNN#1+0.5D+BN256(50) add BN with a batch size of 256 BS(EL@Io) 12,918,346 0.0792
17 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) 12,918,346 0.0851
18 CNN#1+0.5D+BN1024(50) add BN with a batch size of 1024 BS(EL@Io) 12,918,346 0.3259
19 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) ST S 12,918,090 0.0778
20 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) ST S 12,918,186 0.0738
21 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) ST S 12,918,346 0.0778
22 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) M MS 12,918,090 0.0757
23 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) M MS 12,918,186 0.0788
24 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) M MS 12,918,346 0.0951
25 CNN#1+0.5D+BNB512(250) add BNB with a batch size of 512 BS(EL@Io) 12,918,186 0.0787
26 CNN#1+0.5D+BN512(250) add BN with a batch size of 512 BS(EL@Io) 12,918,346 0.0798
27 CNN#1+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,090 0.0749
28 CNN#2+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 25,757,338 0.0730
29 CNN#3+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 25,757,922 0.0742
30 CNN#4+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,912,866 0.0738
31 CNN#5+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,674 0.0737
32 CNN#6+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,916,354 0.0752
33 CNN#7+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,915,770 0.0754
34 CNN#8+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,494,879 0.0737
35 CNN#9+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,507,130 0.0738
36 CNN#10+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,516,378 0.0734
37 VGG16(T)+0.5D(50c) trainable VGG16 with the same top layers structure BS(EL@Io) 21,203,778 0.0756
38 VGG16(NT)+0.5D(50c) non-trainable VGG16 with the same top layers structure BS(EL@Io) 21,203,778 0.0777
39 CNN#1+0.5D(50c) Raw(EL@Io) 12,918,090 0.0768
40 CNN#1+0.5D(50c) EH 12,918,090 0.0860
41 CNN#1+0.5D(50c) channel 0: BS(EL@Io); channel 1: BS(EL@0.25Io) Hyper 12,918,162 0.0923
42 CNN#1+0.5D(50c) channel 0: BS(EL@Io); channel 1: BS(PL@OC ) Hyper 12,918,162 0.0922
43 RNN#1(50c) one GRU layer with units as two Raw(EL@Io) 301,236 0.0593
44 RNN#2(50c) one GRU layer with units as 20 Raw(EL@Io) 3,013,332 0.0597
45 RNN#3(50c) one GRU layer with units as 200 Raw(EL@Io) 30,241,212 0.0631
46 RNN#4(50c) two GRU layer with units for each layer as two Raw(EL@Io) 301,272 0.0593
47 RNN#5(50c) three GRU layer with units for each layer as two Raw(EL@Io) 301,308 0.0605
48 RNN#1(50c) one GRU layer with units as two BS(EL@Io) 301,236 0.0616
49 RNN#1(50c) one GRU layer with units as two EH 301,236 0.0593
50 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 BS(EL@Io) 12,919,292 0.0599
51 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 Raw(EL@Io) 12,919,292 0.0594
52 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 EH 12,919,292 0.0596
53 RNN#1(50c) similar to case 43 with original resolution images as input Raw(EL@Io) 13,231,530 0.0593
54 RNN#1(50c) similar to case 49 with original resolution images as input EH 13,231,530 0.0592

in a model structure. BNB is for adding batch normalization to each convolution block

before each max-pooling layer. BN is for adding batch normalization following each

convolution layer. The number following BN or BNB is the batch size, which was turned
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Table 7.3. The number of parameters in each layer for CNN#1.

Layer Output Shape # of Parameters
Input 224 × 224 × 1 0

Convolution layer 1 224 × 224 × 8 80
Convolution layer 2 224 × 224 × 8 584

Max pooling 112 × 112 × 8 0
Convolution layer 3 112 × 112 × 16 1,168
Convolution layer 4 112 × 112 × 16 2,320
Convolution layer 5 112 × 112 × 16 2,320

Max pooling 56 × 56 × 16 0
Flatten 50,176 0

Dense layer 1 256 12,845,312
Dense layer 2 256 65,792

Output 2 512

from 16 to 1024. The momentum in batch normalization was set as 0.9. Fig. 7.5 shows

the performance comparison of adopting kernel regularization (case 7), activation regu-

larization (case 8), and two kinds of batch normalization with different batch sizes (cases

9 to 18).

Figure 7.4. Comparison of the testing RMSEs for adding dropout layers
and modifying dense layers and max-pooling layers in CNN#1.
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Figure 7.5. Comparison of the testing RMSEs for adopting kernel regular-
ization, activation regularization, and batch normalization in CNN#1.

In the training dataset, nPmp,IV and nRs,IV have averages as 0.970 and 1.073, re-

spectively. Cases 19 to 24 in Table 7.2 scale the output features and obtain the testing

RMSE using three models. Their testing RMSEs are presented in Fig. 7.6. Fig. 7.7c

shows the influence of scaling the output features by M MS on the learning curves of

CNN#1+0.5D+BNB512. In Fig. 7.7, the purple point marks the epoch with the minimal

MSE for the validation dataset. In Fig. 7.7b and Fig. 7.7c, the scale of the training MSE is

on the left side in red, and that of the validating MSE is on the right side in green.

Table 7.4 lists the model structures of the convolution parts for CNN#1 to CNN#10.

These CNN models have differences in the numbers of convolution layers varied from

two to seven and the numbers and positions of max-pooling layers. VGG16 is a pub-

lished CNN model with 13 convolution layers and five max-pooling layers[106]. The

parameters in its convolution part can be fixed by specifying the weights parameter in

the "VGG16" function as "imagenet" in non-trainable (NT) mode. These parameters
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Figure 7.6. Comparison of the testing RMSEs by scaling the output fea-
ture using three models.

(a) CNN#1+0.5D.

(b) CNN#1+0.5D+BNB512. (c) CNN#1+0.5D+BNB512&M MS.

Figure 7.7. The learning curves after adopting batch normalization and
the minimum-maximum scaler to CNN#1+0.5D.

certainly can be trained in trainable (T) mode. Fig. 7.8 compares the testing RMSEs of

these models with different convolution structures only using the model object returned

in the latest checkpoint during 50 epochs of training. The results presented in Fig. 7.8

correspond to cases 27 to 38 in Table 7.2.
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Table 7.4. The model expressions for the convolution parts in CNN#1 to
CNN#10.

ID Model Expression
CNN#1 c1c2p1c3c4c5p2
CNN#2 c1c2p1
CNN#3 c1c2c3p1
CNN#4 c1p1c2p2
CNN#5 c1c2c3p1c4c5c6p2
CNN#6 c1c2c3p1c4c5p2
CNN#7 c1c2p1c3c4p2
CNN#8 c1p1c2p2c3p3
CNN#9 c1c2p1c3c4p2c5c6p3

CNN#10 c1c2p1c3c4c5p2c6c7p3

Figure 7.8. Comparison of the testing RMSEs for CNN models with differ-
ent convolution structures.

Using CNN#1+0.5D returned at the latest checkpoint during 50 epochs of training,

the testing RMSEs are compared using different images as the input. The results are pre-

sented in Fig. 7.9 and recorded as cases 39 to 42 in Table 7.2 with a detailed description

of the input images.



Regression CNN & RNN of Degradation of Power and Series Resistance 140

Figure 7.9. Comparison of the testing RMSEs for different kinds of images
as the input using CNN#1+0.5D model returned at the latest checkpoint
during 50 epochs of training.

7.3.2 RNN Model Variants

In Table 7.2, cases 43 to 47 have results for five RNN models with differences in their out-

put dimensions and numbers of GRU layers using the raw EL@Io images as the input.

RNN models in cases 43, 44, and 45 only have one GRU layer, but their output dimen-

sions are two, 20, and 200, respectively. Cases 43, 46, and 47 have the same output di-

mension as two, but different numbers of GRU layers as one, two, and three, respectively.

The specification of each layer in RNN#1 is listed in Table 7.5, and its learning curves are

shown in Fig. 7.11a using the raw EL@Io images as the input. The testing RMSEs of

these RNN models using the raw EL@Io image are shown in Fig. 7.10. The influence

of different image inputs on the model performance is investigated using RNN#1. The

results are compared in Fig. 7.12 and listed in cases 43, 48, and 49 in Table 7.2 for using

the raw EL@Io images, the baseline subtraction EL@Io images, and the enhanced S/N

EL images, respectively.
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Table 7.5. The number of parameters in each layer for RNN#1.

Layer Output Shape # of Parameters
Input 6 × 50176 0
GRU 6 × 2 301080

Flatten 12 0
Dense layer 12 156

Reshape 6 × 2 0

Figure 7.10. Comparison of the testing RMSEs of RNN models with differ-
ences in the number and the output dimension of GRU layers using the
raw EL@Io images as the input.

7.3.3 CNN+RNN Model Variants

Cases 50 to 52 in Table 7.2 show results of a combined model of CNN and RNN us-

ing different input images, including the raw EL@Io images, the baseline subtraction

EL@Io images, and the enhanced S/N EL images. The combined model takes all layers

in CNN#1 described in Table 7.3 except the output layer, followed by the RNN#1 model
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structure described in Table 7.5 without the input layer. Fig. 7.11b shows the learning

curve for the combined model with the raw EL@Io images as the input. The testing RM-

SEs for models selected in the three major categories as CNN, RNN, and CNN+RNN with

three kinds of image inputs are compared in Fig. 7.12.

(a) RNN#1. (b) CNN#1+0.5D+RNN#1.

Figure 7.11. The learning curves for RNN#1 and CNN#1+0.5D+RNN#1 up
to 50 epochs of training using the raw EL@Io image as the input.

7.4 Discussion

7.4.1 Model Performance with Scaled Output Features

In this study, the goal is to accurately predict the nPmp,IV and nRs,IV using image charac-

terizations as the input. Based on our accelerated exposure conditions, the degradation

of solar cells leads to a reduction in power (Pmp ) and an increase in series resistance

(Rs), causing an average nPmp,IV lower than one and an average nRs,IV higher than one

after exposures. Two approaches were applied to scale each normalized electrical fea-

ture, including the minimum-maximum scaler (M MS) and the standard scaler (ST S).
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Figure 7.12. Comparison of the testing RMSEs of CNN, RNN and
CNN+RNN model examples with three kinds of input images, including
the raw EL@Io images, the baseline subtraction EL@Io images, and the
enhanced S/N EL images.

M MS scales each feature into the range from zero to one using the minimum and max-

imum of its original values. ST S centers each feature at zero and then scales the data

to make its standard deviation as one. The effect on model performance by scaling the

output feature was studied using three models: CNN#1+0.5D, CNN#1+0.5D+BNB512,

and CNN#1+0.5D+BN512.

Fig. 7.6 shows the comparison of the testing RMSEs for these three models after

50 epochs of training with different scalers applied to the output features. Scaling out-

put features for CNN#1+0.5D increases the testing RMSE, bringing no model perfor-

mance improvement. CNN#1+0.5D+BNB512 model has the batch normalization oper-

ation added before each max-pooling layer compared to CNN#1+0.5D. Using the scaled

output features significantly reduces the testing RMSE for the model obtained after 50

epochs of training. As can be seen in the learning curves shown in Fig. 7.7b and Fig. 7.7c,
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using the M MS scaled output features can speed up the convergence of the validating

MSE. The validating MSE drops rapidly in the first 30 epochs of training and then slowly

decreases, with a minimum appearing at the 242nd epoch in Fig. 7.7b. In Fig. 7.7c, the

validating MSE transients from the fast dropping stage to the slowly dropping stage more

smoothly, and its minimum appears at the 145th epoch training. CNN#1+0.5D+BN512

adds the batch normalization after each convolution layer compared to CNN#1+0.5D.

The testing RMSEs in cases 24 and 26 in Table 7.2 show that the testing RMSE is smaller

for the model with more epochs of training. So CNN#1+0.5D+BN512 has not yet overfit-

ted within 50 epochs of training. Compared to the RMSE of CNN#1+0.5D+BN512 model

using the normalized output features in Fig. 7.6, the ST S scaler is found to speed up

the convergence of model performance. However, scaling the output feature does not

improve the model’s performance even when trained with four times more epochs. The

testing RMSEs of the model returned at the purple point in Fig. 7.7b and Fig. 7.7c are

0.0787 and 0.0784, respectively. Both are higher than 0.0749 for that in Fig. 7.7a, which

is for CNN#1+0.5D without batch normalization and output feature scaling.

7.4.2 Performance of Model Variants: CNN, RNN, and CNN+RNN

In addition to the convolution layer, a CNN model can also contain max-pooling layers,

dropout layers, and dense layers. This study first adjusted layers outside the convolution

part to study other layers’ influence on model performance, and the results are shown

in Fig. 7.4. Adding a dropout layer after each dense layer reduces the testing RMSE from

0.0844 to 0.0735, improving the model performance. Other modifications, such as re-

ducing the number of neurons in dense layers or increasing the grid size in max-pooling

layers, do not improve the model performance. All studied models in Fig. 7.4 have a
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sign of overfitting within 50 epochs of training. The learning curves of 250 epochs of

training for CNN#1+0.5D are presented in Fig. 7.7a. While the training MSE has been

continuously decreasing, the validating MSE has a trend of first rising and then stabiliz-

ing after the purple point, with the lowest MSE for the validation data appearing at the

43rd epoch.

Kernel regularization, activation regularization, and batch normalization with dif-

ferent adding positions and batch sizes were examined to explore the chances of solving

the early overfitting problem so that the model can be improved through more epochs of

training. From Fig. 7.5, it can be observed that only when the batch size is large enough

does the testing RMSE become significantly different from that of CNN#1+0.5D. For the

model with BNB, which is for adding batch normalization before each max-pooling

layer, the batch size needs to be larger or equal to 256. For the model with BN, which

is for adding batch normalization after each convolution layer, the batch size needs to

be as large as 1024. Fig .7.7b shows the learning curve for CNN#1+0.5D+BNB512 of up

to 250 epochs of training. The validating MSE declines rapidly in the first 30 epochs,

then gradually decreases. It is worth noting that the training and validating MSE curves

in Fig. 7.7b and Fig. 7.7c use different scales and do not intersect. The training MSE

curve is higher than the validating MSE curve numerically. Comparing the testing RM-

SEs in cases 25 and 26 to case 2 listed in Table 7.2, batch normalization does not bring

an improvement in the model performance. After extending the training epochs by five

times, the testing RMSE for the model with batch normalization added is still higher

than that for the model without batch normalization. Therefore, the influence of mod-

ifying the convolution part on the CNN model performance was investigated without

adding batch normalization.
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Cases 27 to 36 in Table 7.2 show results of ten CNN models with differences in the

convolution part. The structure of their convolution parts is described in Table 7.4.

Among these ten CNN models, CNN#2 has the simplest structure with only two convo-

lution layers and one max-pooling layer, and CNN#10 has the most complex structure

with seven convolution layers and three max-pooling layers. The first dense layer af-

ter the flatten layer contributes the most parameters. For example, the first dense layer

occupies 99.4% of the total number of parameters in CNN#1 as described in Table 7.3.

Therefore, more max-pooling layers reduce the total number of parameters. The num-

ber of parameters for CNN#2+0.5D is about four times that for CNN#10+0.5D. However,

these ten CNN models are less complex than the VGG16, which contains 13 convolu-

tion layers and five max-pooling layers. The total number of parameters for VGG16 is

comparable to that for CNN#2 due to its significantly more kernels in each convolution

layer. However, for the VGG16 in non-trainable mode, the trainable parameters are only

6,489,090, similar to CNN#10, out of 21,203,778 parameters in total. As shown in Fig.

7.8, CNN#1 to CNN#10 perform very similarly. Their testing RMSEs have a minimum of

0.0730 for CNN#2 and a maximum of 0.0754 for CNN#7. Furthermore, the most complex

VGG16 in both modes has a higher testing RMSE than CNN#1 to CNN#10. Therefore, in-

creasing the complexity of convolution structures does not improve the performance of

CNN models.

RNN models’ performance was investigated using the raw EL@Io images as the in-

put and five RNN models with different complexities. The results are reported in cases

43 to 47 in Table 7.2 and compared in Fig. 7.10. The GRU layer occupies most parameters

when its output dimension is not too large, like RNN#1 introduced in Table 7.5, differen-

tiated from CNN models. In Fig. 7.10, RNN#1 and RNN#4 are found to have the lowest
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testing RMSE, both of which are 0.0593. Therefore, increasing the output dimension

and the number of GRU layers beyond the settings of RNN#1 does not help the model

performance. Moreover, the number of parameters of RNN#1 is only 4.64% of that of

CNN#8+0.5D, which is the CNN model with the least number of parameters. From the

learning curves of RNN#1 shown in Fig. 7.11a using the raw EL@Io as the input, it can

be seen that RNN#1 reaches a stable state within 50 epochs of training.

In addition, the CNN#1+0.5D+RNN#1 model is built by removing the output layer in

CNN#1+0.5D and then using it as the input for RNN#1. Its learning curves using the raw

EL@Io images are shown in Fig. 7.11b. The model also reaches a stable region within 50

epochs of training. The results of CNN#1+0.5D+RNN#1 using different kinds of images

as the input are recorded in cases 50 to 52 in Table 7.2. Fig. 7.12 compares the test-

ing RMSEs for three selected CNN, RNN, and CNN+RNN models. CNN#1+0.5D+RNN#1

performs similarly to RNN#1, and both have a testing RMSE that is significantly lower

than that of CNN#1+0.5D.

7.4.3 Model Performance with the Raw and the Baseline Subtraction Image

As shown in Fig. 7.12, using the baseline subtraction EL@Io images leads to a testing

RMSE that is slightly smaller than that of using the raw EL@Io for CNN#1+0.5D. The pre-

dicted output in our study is the normalized electrical feature, which measures the rel-

ative change for a sample after accelerated exposures. The baseline subtraction EL@Io

image is also an approach to quantify a relative change in the image characterization,

which could contribute to its better performance working with CNN models.
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Using the raw EL@Io images in RNN#1 has a smaller testing RMSE than using the

baseline subtraction EL@Io images. The RNN model has the essential property of build-

ing internal memory to identify changes in the input time sequence. The result indicates

that RNN models find more helpful information in the raw EL@Io , contributing to a

more accurate prediction of the normalized electrical feature. For the combined model

of CNN#1+0.5D+RNN#1, using different types of images ends up with very similar per-

formance, indicating the RNN model could process the temporal changes in image fea-

tures extracted by CNN and achieve similar results.

7.4.4 Model Performance with the Hyper Image and the Enhanced S/N Im-

age

The kernel in CNN models could learn through the depth of images which is different

channels of images, without increasing the number of parameters in the model struc-

ture. Therefore, for CNN models, we added the additional types of images in two ways

to investigate whether other image characterizations could help the prediction: the en-

hanced S/N EL image, which is a weighted average taking the three kinds of EL images,

and the hyper image, which puts the baseline subtraction EL@0.25Io or PL@OC as one

more channel in the input images. As shown in Fig. 7.9, incorporating other image char-

acterizations besides EL@Io images as part of the input increases the testing RMSE, and

the testing RMSE is smaller for the case utilizing the enhanced S/N EL images than the

case using hyper images. Moreover, the two cases using different hyper images perform

similarly. The EL@Io image has the largest weight factor in the enhanced S/N EL image.

Therefore, both results suggest that additional image characterizations except EL@Io do

not help predict the electrical features’ change while providing a more comprehensive
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evaluation of solar cells. The reason that other image characterizations are not that help-

ful could be due to that the electrical status of measuring the EL@Io images is closest to

that of measuring the current-voltage curves to extract Pmp and Rs .

Using hyper images as the input significantly increases the number of parameters

in RNN models, so the enhanced S/N EL images were used to investigate the influence

of adding additional image characterizations on model performance without changing

the number of parameters in the model. For RNN#1 and CNN#1+0.5D+RNN#1, the ad-

ditional characterizations other than EL@Io do not influence the model performance.

In Fig. 7.12, the testing RMSE using the raw EL@Io images is basically the same as using

the enhanced S/N EL images for RNN#1 and CNN#1+0.5D+RNN#1.

7.4.5 Quantitative Performance of RNN with Raw Images for Predicting Elec-

trical Performance

More complex image processing steps and model parameters require more computa-

tional resources and time to obtain predicted results. Based on results shown in Fig.

7.12, RNN#1 using the raw EL@Io and enhanced S/N EL images as the input has the

lowest testing RMSE with the least number of modeling parameters. Therefore, RNN#1

using the raw EL@Io images is proposed as the best combination to accurately predict

the normalized electrical features as nPmp,IV and nRs,IV , which are chosen as the over-

all evaluation index and the degradation mechanism feature, respectively. Compared to

the baseline model, the testing RMSE decreases from 0.0958 to 0.0593, realizing a reduc-

tion of 38.1%. Using original resolution images with a dimension of 1485×1485 as the

input increases the number of model parameters by 44 times, while the testing RMSE is
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unchanged, as shown in case 53 in Table 7.2. Therefore, our proposed model has good

stability against different image resolutions.

7.5 Conclusions

This study explores neural network models to predict the normalized power and series

resistance based on EL and PL images for PV modules under accelerated exposures. The

performance of different model variants in the categories of CNN, RNN, and CNN+RNN

was compared. The Influences of scaling the output features and using different types of

images as the input on the model performance were investigated. The early overfitting

problem can be solved by adding batch normalization with large batch sizes. Scaling

the output features can speed up the convergence of the validating MSE for training

CNN models with batch normalization using large batch sizes. However, both modifi-

cations do not improve the model performance when extending the training epochs by

five times. The baseline subtraction EL@Io image brings the lowest testing RMSE for the

CNN model, and the raw EL@Io image and the enhanced S/N EL image bring the low-

est testing RMSE for the RNN model. Incorporating other image characterizations into

the input, such as using the enhanced S/N EL image or the hyper image, harms CNN

models’ performance but does not influence the performance of RNN and CNN+RNN

models. The lowest testing RMSE for all CNN model variants is 0.0730, and for all RNN

model variants is 0.0593. Compared to the performance of the baseline model, the test-

ing RMSE is reduced by 23.8% for CNN models and 38.1% for RNN models at most. Com-

bining the RNN model with one GRU layer, which has the output dimension specified

as two, and the raw EL@Io images as the input is proposed as the best combination to
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predict the normalized electrical features, and the model is found to have good stability

against different image resolutions. The finding of a significant performance improve-

ment of RNN over CNN indicates that it is beneficial to take advantage of measurements

for the same sample taken at different exposure times to make a more accurate predic-

tion.
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8 Conclusion

Commercial PV modules are usually made of several layers such as glass, encapsu-

lant, solar cells, and backsheet, and the degradation is determined by their interaction

with the exposed environment as a system. The properties and combinations of these

packaging materials influence the ability to protect internal solar cells during long time

operation[11] and the degradation rate, which is vital to lower the levelized cost of elec-

tricity[31]. In this study, degradation behaviors of sixteen module variants available in

the PV market with considerable market share were compared under different exposure

conditions with statistical analysis. Four-cell minimodules with five junction boxes in-

stalled to allow electrical measurements on each solar cell are used as study objects, and

a total of 192 minimodules were fabricated. These sixteen module variants differed in

encapsulant materials (EVA and POE), rear encapsulant types (transparent, UV-Cutoff,

and opaque), module architectures (GB and DG), and cell types (monofacial and bifa-

cial). Some modules were exposed under indoor accelerated exposures, including mod-

ified damp heat (80 ◦C , and 85% RH) and modified damp heat with full-spectrum light

(mDH+FSL), with a total exposure time of 2,520 hours, evenly divided into five steps for

multiple stepwise characterizations. The remaining modules were installed in an out-

door testing site in the Dfa climate zone. Timeseries current-voltage curves, module
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temperature, and weather data recorded over the time period of 1.6 years were analyzed

in this study. The timeseries data were processed by the ddi v[49] and SunsV oc[54] R

packages to obtain the predicted electrical features and four power loss factors at refer-

ence conditions.

By comparing the confidence intervals (CIs) of various electrical features across dif-

ferent module variants, for both accelerated exposures and both brands, two DG module

variants with the UV-Cutoff rear encapsulant and monofacial cells, are found to have the

least average power loss of less than 5%. Two GB+EVA module variants with the opaque

rear encapsulant, are found to have a significantly greater average power loss. From

the comparison of the percent change in different electrical features, their correlation

to power, and the principal component analysis results, the power loss is identified to

be mainly affected by the increased series resistance (Rs). Considering the exposure

conditions, the Rs increase is associated with interconnection corrosion. Unsupervised

hierarchical clustering results show that clusters have a dependency on module archi-

tecture for both brands. As for the results of outdoor exposure, although some module

variants are influenced by the electrical connection issues leading to significant differ-

ences between the two modules of the same variant, significant differences are identi-

fied between three module variants and the other two module variants. The dominant

reason contributing to the power loss is identified by the lowest normalized power loss

factor and identified to be uniform current power loss (n∆PI sc ), followed by power loss

due to Rs (n∆PRs) for most module variants. However, the four package combinations,

namely EVA+GB, EVA+DG, POE+GB, and POE+DG do not exhibit significant differences

in normalized power and any normalized power loss factors for the last three months of

outdoor exposure. It is worth noting that the change in features is not entirely caused by
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degradation due to the technical difficulty of removing seasonality and noise caused by

the relatively short exposure time.

Nevertheless, the normalized electrical features were modeled over time for each

module variant under indoor accelerated and outdoor exposures to illustrate how the

developed cross-correlation algorithm works and the interpretation of the results. The

developed algorithm can quantify the similarity of module degradation behaviors be-

tween indoor accelerated and outdoor exposures, considering both the degradation rates

and trends over time. First, it scales the exposure time in the indoor model for nPmp,IV

and adjusts it to be closest to the outdoor model for nPmp,IV in their overlapping expo-

sure time and returns the scale factor as CC SF∗. The CC SF∗ is then applied to scale

all indoor models, and a cross-correlation coefficient (CCC ) is calculated for each fea-

ture to quantify the similarity in trends. For comparing each accelerated exposure and

outdoor exposure, ten out of sixteen module variants do not have a CC SF∗ on the guess-

ing range boundaries with an average of around 0.5, indicating that our indoor acceler-

ated exposures lead to about two times faster power drop than the outdoor exposure

in the overlapping time range. In addition, the CCC s for nPmp,IV and nRs,IV are very

high. However, due to the missing activated degradation mechanism indicated by a

much smaller change in n Isc,IV in accelerated exposures compared to the outdoor ex-

posure, it can not be concluded that the degradation behaviors are similar under both

exposures. In order to confirm the results of comparing module degradation behaviors

between exposures, extending outdoor exposure is necessary because the seasonality

heavily influences the outdoor models, as indicated by frequent occurrence of choosing

the change-point model as the best model.
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The extensive measurements of I -V , EL, and PL for samples at different exposure

times provide the opportunity to use neural network models to predict the change in

electrical parameters through image characterizations. Three primary neural network

model categories using different image pre-processing were investigated in this study,

which are CNN, RNN, and CNN+RNN. There are three main types of image input: the

raw EL image, the baseline subtraction EL image, and the enhanced S/N EL image con-

structed by the three EL images with different injected currents. Considering the model

performance and complexity of image processing, a combination of an RNN model and

raw EL images as the input is proposed as the best solution. While stepwise character-

izations are widely used for modules under indoor accelerated exposure, this temporal

relationship is often not explored for neural network models. The finding of a signifi-

cant performance improvement of RNN over CNN indicates that it is beneficial to take

advantage of measurements for the same sample taken at different exposure times to

make a more accurate prediction.
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Appendix A

Preparation of this document

This document was prepared using pdfLATEX and other open source tools. The (free)

programs implemented are as follows:

• LATEX implementation:

MiKTEX http://www.miktex.org/

TEXLive https://www.tug.org/texlive/

• TEX-oriented editing environments:

TexStudio https://www.texstudio.org/

• Bibliographical:

BibTEX http://www.bibtex.org/

Biber http://biblatex-biber.sourceforge.net/

Zotero https://www.zotero.org/

Better BibTEX For Zotero https://retorque.re/zotero-better-bibtex/

http://www.miktex.org/
https://www.tug.org/texlive/
https://www.texstudio.org/
http://www.bibtex.org/
http://biblatex-biber.sourceforge.net/
https://www.zotero.org/
https://retorque.re/zotero-better-bibtex/
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