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ABSTRACT

Revisit Kernel Pruning with Lottery Regulated Grouped
Convolutions

SHAOCHEN (HENRY) ZHONG

Structured pruning methods which are capable of delivering a densely pruned
network are among the most popular techniques in the realm of neural network
pruning, wheremost methods prune the original network at a filter or layer level.
Although such methods may provide immediate compression and acceleration
benefits, we argue that the blanket removal of an entire filter or layermay result in
undesired accuracy loss.

In this paper, we revisit the idea of kernel pruning (to only prune one or sev-
eral k × k kernels out of a 3D-filter), a heavily overlooked approach under the
context of structured pruning. This is because kernel pruning will naturally in-
troduce sparsity to filters within the same convolutional layer — thus, making
the remaining network no longer dense. We address this problem by proposing
a versatile grouped pruning framework where we first cluster filters from each
convolutional layer into equal-sized groups, prune the grouped kernels we deem
unimportant from each filter group, then permute the remaining filters to form a
densely grouped convolutional architecture (which also enables the parallel com-
puting capability) for fine-tuning.

Specifically, we consult empirical findings from a series of literature regarding
Lottery Ticket Hypothesis to determine the optimal clustering scheme per layer,
and develop a simple yet cost-efficient greedy approximation algorithm to deter-
mine which group kernels to keep within each filter group. Extensive experiments
also demonstrate ourmethod often outperforms comparable SOTAmethods with
lesser data augmentation needed, smaller fine-tuning budget required, and some-
times even much simpler procedure executed (e.g., one-shot v. iterative). Please
refer to our GitHub repository for code.
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1 Introduction

The applications of convolutional neural networks (CNNs) have demonstrated
proven success in various computer vision tasks36. However, with modern CNN
architectures being increasingly deeper and wider, over-parameterization has be-
come one of the major challenges of deploying such models to devices with lim-
ited computational resources andmemory capacity3. Therefore, the study of net-
work pruning— the technique of removing redundant weights from the originally
trained network without significantly sacrificing accuracy— has been an impor-
tant subject both for practical concerns28 and better understanding of the proper-
ties andmechanisms of neural networks1.

The practical motivation of network pruning is clear, as a smaller, faster, more
deployment-friendly network that is equally (or inmany cases, more) capable of
its large counterpart is always favorable. This is especially the case under the con-
text of devices with limited computational capability ormemory capacity (mobile
devices, IoTs, wearable technologies, etc.), as a large network will likely be burden-
some or even impossible to deploy on such devices. However, though network
pruning is unusually regarded as an application-oriented field, the procedure of
pruning — removing a portion of components from a large network while keep-
ing the rest static — is controlled anatomy of the original network by its nature.
Thus, the implication and empirical findings of the pruned network will also pro-
vide scholars some guidance in terms of the properties andmechanisms of neural
networks.

2
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In the realm of CNN pruning, a spectrum of techniques have been studied
where the two ends are populated by structured pruning and unstructured prun-
ingmethods24. Methods from the former end often propose to remove redundant
weights in groups while following some geometrical constraints— such as remov-
ing a certain filter or layer. The methods from the latter end, on the other hand,
prune thenetworkwith amorefine-grained viewwhere they evaluate everyweight
individually. Yet, there are many other methods lay in between of the two ends.
Methods that aremore “unstructured” are believed to be capable of yielding better
accuracy retention with a commensurate amount of parameters pruned, due to
having a higher degree of freedom on how and where to introduce sparsity to the
originally dense network. Empirical findings also support this claim21,24.

Despite having advantages on accuracy retention, the resultant networks from
methods closer to the unstructured end will be more sparse and less regulated
on where to introduce sparsity. It may not provide actual compression and ac-
celeration without relying on custom-indexing, sparse convolution libraries, or
even dedicated hardware devices; thus, limits the deployability of suchmethods24.
Meanwhile, methods closer to the structured end, by preserving amore regulated
resultant network, are more likely to be library/hardware-friendly. The most de-
ployable structured pruningmethodmay deliver a densely resultant network and
therefore gain immediate compression and acceleration benefits. We denote this
kind of pruningmethod as densely structured.
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Figure 1.1. Comparing different pruning techniques to our method
(TMI-GKP)

Naturally, many scholars want to develop new methods within the realm of
densely structured pruning but with better accuracy retention. The majority of
densely structured pruningmethods focus on pruning the original network at a fil-
ter, channel, or layer level (as visualized in Figure 1.1 (b) and (c)). We argue that the
blanket removal of an entire filter, channel, or layer may harm the representation
power of the network and result in undesired accuracy loss— as removing a filter
would consequently remove all feature maps generated by such filter. Even worse,
removing a layer would eliminate more feature maps and even face the danger of
layer-collapse, a phenomenon of having an untrainable pruned network due to
premature pruning of an entire layer34.

In this paper, we revisit the idea of kernel pruning (to only prune one or several
k × k kernels from a 3D-filter, instead of an entire one) as an alternative and less
aggressive pruning approach with higher degree of freedom.We hypothesize that
by not removing the entire filter, the representation power of the original network
will be better preserved. Although the idea of kernel pruning is nothing too novel
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(as it is simply a special case of individual weights pruningwith 100% of weights of
a kernel pruned), it ismostly applied under the context of unstructured pruning or
structured pruningmethods whichmay not deliver a dense pruned network23,24;
also see Figure 1.1 (d),where theprunednetwork is clearly sparse. This is because a
direct implementation of kernel pruning with no constraint would introduce spar-
sity across the network and thereforemake the pruned network no longer dense.
We address this problem by proposing a versatile grouped pruning framework,
where we:

(1) Cluster similar filters from each convolutional layer into a (predefined)
number of equal-sized filter groups (see left-hand side of Figure 1.1 (e),
where clusters are color-coded).

(2) Foreachfilter group, identify a certainportionof groupedkernels toprune
according to the required pruning ratio (see left-hand side of Figure 1.1
(e), where pruned grouped kernels are marked in white).

(3) Permute the remaining filters to form a densely grouped convolutional
architecture according to the number of groups used in step 1 (see right-
hand side of Figure 1.1 (e)).

Likemost other post-train grouped pruningmethods, we face the challenge of
determining which clustering schemes and which importance metrics to use in
step 1 and 2 of the above procedure. Upon investigations and experiments, we
discovered that a classical clustering scoring system (e.g., the Silhouette score)
might not capture the better clustering scheme in regard to accuracy retention.
Yet many filter importance metrics require sophisticated procedures, which are
not computationally friendly or easy to execute when applied at a kernel level. We
address the first challenge by consultingmodel-generated information— in this
case, the empirical findings on Lottery Ticket Hypothesis (LTH) and related litera-
ture on weights shifting— to develop a scoring system that identifies the optimal
clustering scheme among options per each convolutional layer3,30. For the second
challenge, we design a simple and cost-efficient greedy algorithm with multiple
restarts to generate multiple candidate kernel selection queues and identify the
one queue where the preserved kernels are most “distinctive” from each other yet
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“similar” to the pruned kernels. The main contributions and advantages of our
method are:

• Bring back an overlooked approach: We brought attention to the heav-
ily overlooked approach of kernel pruning under the context of densely
structured pruning.
• Simple but effective — a vanilla adaptation of our framework outper-
forms sophisticated variants of other comparable frameworks (e.g., fil-
ter pruning): Even by just applying well-understood classical mathemat-
ical tools, extensive experiments demonstrate our method outperforms
comparable SOTAmethods across different networks and datasets. Addi-
tionally, our method often needs less data augmentation, a smaller fine-
tuning budget, and it executes without requiring any custom retraining,
special fine-tuning, or iterative prune-train cycles—which is rare for the
approaches relying on LTH-related studies.
• Better longevity:Wedevelopeda frameworkthat is compatiblewith further-
developed/discovered clustering schemes and inductive biases, or more
advanced variations upon them. This overcomes one of the major draw-
backs of many filter pruningmethods: as most of them propose different
filter importance metrics that are largely incompatible with each other
either in terms of their procedures or computational requirements.
• Improved deployability: The resultant network of our method is struc-
tured as a densely grouped convolution, which enables parallel comput-
ing capability andgreatly increases thepractical deployability of ourmeth-
ods: aswe cannowshare the requiredcomputation andmemory footprint
across multiple end-user devices, wheremost of them have very limited
said resources individually (e.g., IoTdevices,mobile phones,andwearable
technologies).
• General impact on LTH and beyond network pruning: Please refer to
Section 5.



2 Related Work

Many prior arts have explored the possibility of obtaining a smallermodel with
comparable performance by removing redundant weights8,49, filters11,25,37,45, lay-
ers20,38, image input7,13, or fromall three dimensions39. It is clear that filterpruning
attracts themost attention among all structured pruning approaches.

Our method is inspired by grouped convolution, a widely adopted convolu-
tional architecture which could be implemented efficiently on common devices14.
Although kernel pruning used together with filter clustering is not a popular trend,
we have seen such a combination in work like Yu et al. 44 . However, the proposed
method by Yu requires iterative analysis of many different intermediate feature
maps per layer, involves a complex knowledge distillation application during the
fine-tuning stage, and lacks comparable experiment results to recent pruning lit-
erature. Where our method (and concurrent work like Zhang et al. 46) provides a
muchcleaneradaptationof theabovementionedcombination thatdeliversbeyond-
SOTA performance with a straightforward one-shot pruning and standard fine-
tuning procedure. In addition, our method consults empirical findings on the lot-
tery ticket hypothesis and its derived literature regarding weights shifting3,30,48,
and we propose a novel greedy kernel pruning algorithm that is again simple, effi-
cient, yet effective—more on this in Section 3.

7



3 Methods

3.1 Preliminaries

Assume a convolutional neural networkW has L convolutional layers, we denote
theW ` to be the `-th convolutional layer ofW (for ` ∈ {Z+ | [1, L]}). Therefore, we
shall have a 4-D tensorW ` ∈ RC`out×C`in×H

`×W ` where C`
out represents the number of

filters inW ` (also known as the number of output channels in some literature),C`
in

represents the number of kernels per filter (a.k.a. number of input channels), and
H` ×W ` represents the size of each kernel.

3

5

1

2

3

4

5

6 6

5

4

3

2

1

Input Output

Original 

Convolutional Layer

Filter

Grouping

1

3

2

5

4

6

1

2

3

4

5

6

Input Output

Group 1

Group 2

Group 3

Pruning 

Within 

Groups

1

3

2

5

4

6

1

2

3

4

5

6

Input Output

Layer 

Reconstruction

1

3

2

5

4

6

4

1

4

5

3

5

Input Output

6

3

1

Group 1

Group 2

Group 3

Pruned 

Convolutional Layer

Weights:

Input Channels

Layer:

Group 1

Group 2

Group 3

1
3
2
5

6
4

1 2 3 4 5 6

O
u

tp
u

t 
C

h
an

n
el

s

Input Channels

1
3
2
5

6
4

1 3 4 1 4 5 3 5 6
Input Channels

O
u

tp
u

t 
C

h
an

n
el

s

Group 1

Group 2

Group 3

FilterKernel

Filter
1
2
3
4

6
5

1 2 3 4 5 6

O
u

tp
u

t 
C

h
an

n
el

s

Kernel

Grouped Filter

1
3
2
5

6
4

1 2 3 4 5 6

O
u

tp
u

t 
C

h
an

n
el

s

Input Channels
Grouped Kernel

 
(a) (b) (c) (d)

Figure 3.1. Steps of our method

The overall procedure of ourmethod can bemainly divided into four stages: 1)
Clustering filters into n equal-sized groups, where the best clustering scheme for

8
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each convolutional layer is determined using the tickets magnitude increase score
derived from prior arts on lottery ticket hypothesis and weight-shifting; 2) Evalu-
ating several candidate grouped kernel pruning strategies generated by a greedy
approximation algorithmwithmultiple restarts,where the strategywith preserved
grouped kernels that are most distinctive from each other, yet most similar to the
pruned grouped kernels gets selected; 3) Permuting the preserved filters to form a
grouped convolutional architecture with n groups; 4) Fine-tuning the pruned and
grouped network to recover accuracy lost from pruning.

3.2 Clustering filters into groups

The first step of our method is to cluster filters from the same convolutional layer
into n equal-sized groups. Known that for a layerW ` we have C`

out filters, there
shall be C`

out/n filters inside each equal-sized filter group. We denote F `
i to be the

i-th filter inW ` (namely, F `
i = W `

[i,:,:,:]) for i ∈ {Z+ | [1, C`
out]}. Filter clustering is a

maturely adopted technique in network pruning since it is a widely accepted as-
sumption thatwhen similarfilters are clustered together, the representationpower
of some filters can be covered by the rest of the filters in the same group (which
therefore enables the potential of pruning). Additionally, this technique drastically
decomposes the scope of the problem, as we may now proceed to evaluate in a
group-by-group fashion instead of evaluating all of the filters fromW ` at the same
time.

Many prior arts have developedmethods on filter clustering with linearity as-
sumptions6, via retraining with a custom loss function42, or through an iterative
process44. We argue that since each filter F `

i is a tensor of C`
in ×H` ×W `, consid-

erations regarding non-linearity and high-dimensional relationships should be
added. Therefore, we utilize the following three combinations of proven mathe-
matical tools on dimensionality reduction and clustering in order to cluster filters
from each layer into n equal-sized groups.
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3.2.1 Available clustering schemes

To reduce thedimensionoffilters inW ` andcluster them inton equal-sizedgroups,
we utilize the following three sets ofmethods:K-PCA+ k-Means,Spectral Cluster-
ing + k-Means, and t-SNE+DBSCAN (with slightmodifications done to obtain the
desired cluster size and number). Since all fivemethods here have beenmaturely
studied, wewill omit the introduction of thesemethods; please refer to section 0.5
for details. We denote each set of methods as a clustering scheme.

3.2.2 Decide optimal clustering scheme per layer with TMI score

With the three proposed andmany other unimplemented clustering schemes, one
natural question to ask is how are we suppose to decide the optimal clustering
scheme? And at what scale should wemake such a decision? The latter question
was relatively easier to answeraswealready set on clusteringfilters into groups in a
layer-by-layer fashion, so it is reasonable enough to findout themost suitable clus-
tering scheme for each layer. But to address the former question, we need to find a
way to quantify the “quality” of proposed clustering results. Mathematicians have
provided us with classical tools such as the Silhouette score to measure the quality
of clusters. However, experiment results suggest such tools can hardly identify the
better cluster method under the context of accuracy retention (0.1).

We hypothesize that this is because tools like the Silhouette score focus on
properties regarding clusters themselves — such as distances between clusters,
or cohesion within each cluster—while accuracy retention relies on filter impor-
tance,orbalancebetweenfiltergroupsunder thecontextof thenetwork. Therefore,
we decide to introduce network-induced information to help us quantify the qual-
ity of different clustering results: wherewe consult empirical findings froma series
of literature regarding Lottery Ticket Hypothesis and weights shifting.

BackgroundonLotteryTicketHypothesis,WeightsShifting,andWeightsRewind-
ing. Foradense convolutionalneuralnetworkW randomly initializedwithweights
ofW0, the conventional post-train pruning procedure has three steps:
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(1) Train the proposed network for t epochs. Where we denote the network
has weights ofWk at the k-th epoch for 0 ≤ k ≤ t.

(2) Prune the networkwithweightsWt according to the definedpruning ratio
and achieve subnetworkW ′

t , whereW
′
t ⊂ Wt.

(3) Fine-tune the network withW ′
t and f more epochs to recover accuracy.

The Lottery Ticket Hypothesis claims that instead of fine-tuning upon the sub-
network W ′

t , there exists a subnetwork W
′

k (defined as W
′
t but replaced with its

counterpart weights fromWk) that, when trained in isolation for f more epochs,
may match or outperform the test accuracy of the fine-tunedW ′

t achieved from
step 3 above. ThisW ′

k is therefore known as thewinning ticket 3.
A vast amount of research has been done to demonstrate the existence of win-

ning tickets across different networks and datasets, making the lottery ticket hy-
pothesis one of themost tested inductive biases among neural networks30. Schol-
ars have additionally investigated the relationship between the winning ticket’s
weights and final weights in regard to accuracy retention. Zhou et al. 48 did one of
themost thorough experiments on exploring such relationship by deploying nine
different zeromask criteria related to initial weights, final weights, and weights
shifting during training. They concluded that ||wt| − |w0|| (where wt, w0 respec-
tively represent the sameweight inWt andW0), themagnitude increase of aweight
at its initialization and after training, has demonstratedmost significant positive
correlation with accuracy retention.

Note that the Zhou et al. 48 experiments were conducted under the assumption
that the winning ticket exists atW0. This is because, for early or even concurrent
arts on the lottery ticket hypothesis, scholars have their disagreements onwhether
to reinitialize the weights ofW ′

t to their initial values (namely, k = 0 for k inW ′

k)3,
to near initialization (0 < k � t)30, or just to reset randomly21. However,withmore
comprehensive experiments conducted, the findings reveal there aremultiplewin-
ning tickets that exist within a range of epochs starting from near initialization:
such that for any k where 0 < k1 ≤ k ≤ k2 < t,W ′

k can be a winning ticket (with k1
being close to 0). This technique is referred asweights rewinding and we denote
the range of [k1, k2] as the tickets window 30.
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Ticket Magnitude Increase scoring system. Based on the fact that a winning
ticketmayoccur at near initialization butnot necessary exactly at initialization,we
slightly modify themagnitude increase criteria from Zhou et al. 48 by replacing the
initialization weights as the ticket weights. Thus, we define the ticket magnitude
increase score (hereinafter “TMI score”) as ||wt|−|wk|| for0 < k � t (wherewt,wk re-
spectively represent the sameweight inWt andWk). Since we aim to use such scor-
ing system to govern the clustering quality of filter groups, we further expand this
scoring system from individual weight to a filter-level. For a filter F `

i ∈ RC`in×H
`×W ` ,

we denote the weight at (h,w) index from the c-th kernel of F `
i asW `

[i,c,h,w]; so the
TMI score for filter F `

i in regard to a winning ticket at the k-th epoch should be
defined as the following.

TMI(F `
i , k) =

C`in∑
c

H`∑
h

W `∑
w

(||W `
t[i,c,h,w]

| − |W `
k[i,c,h,w]

||). (3.1)

Similarly, for a filter group g` of {F `
i , F

`
j , . . . }, its TMI score would be:

TMI(g`, k) =
∑
gi∈g`

TMI(F `
gi
, k). (3.2)

Qualifying cluster results with TMI scores. With the TMI score for a filter group
defined, the next question to address is what makes a good clustering result in re-
gard to TMI scores? We already observed that tools like the Silhouette score could
not capture the better clustering result in terms of accuracy retention, and we hy-
pothesized that this is due to the lack of attention on filter importance and bal-
ance between filter groups. Since Zhou et al. 48 has established the relationship
betweenbetter accuracy retention andweightswith largermagnitude increase,we
expect such relationship will expand to a filter level where filters with large TMI
scoresmayhelponaccuracy retention and thereforebedeemed“more important.”
We confirm such assumption in 0.4.

In terms of the balance betweenmultiple filter groups—with each filter’s TMI
score being an indicator of its importance — we would prefer clustering results
where all filter groups have a similar TMI score. As if one filter group’s TMI score
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is significantly larger than another filter group, the former group will presumably
containmore “important filters” than the latter group.Whenwe proceed to prune
the same ratio of grouped kernels out of both groups, the network will losemore
“important kernels” and therefore damage the accuracy retention. In other words,
wewant tominimize the intervals between theTMI scores of all filter groups. So for
a clustering resultG`, assume g`i , g`j, ..., g`n−1, g`n are the n filter groups ofG` sorted
in descending order according to their TMI scores. We denote the intervals ofG`

with respect to winning ticket k as:

Interval(G`, k) = [TMI(g`i , k)− TMI(g`j, k), . . . , TMI(g`n−1, k)− TMI(g`n, k)], (3.3)

where the clustering result G` =G` (Sum[Interval(G`, k)]) is preferred. To further
identify the clustering result with themost balanced filter groups in terms of TMI
scores, we also want tominimize the variance of intervals between the TMI scores
of all filter groups. By combining the two heuristics with a balancing parameter α,
the overall scoring system for a clustering resultG` is defined as:

Score
filters clustering

(G`, k) = R(Sum[Interval(G`, k)]/(n− 1)) + α ·R(Var[Interval(G`, k)]),

(3.4)
where the functionR denotes the ranking of the currentG` against other proposed
clustering results (for ranking in an ascending order). For example, if clustering
result G` has the smallest Sum[Interval(G`, k)] among all proposed clustering re-
sults, then R(Sum[Interval(G`, k)]) = 1. We choose to use rank instead of the raw
value as we are only interested in if one clustering result is better than another on
one particular criterion (intervalmean or interval variance), but not by howmuch.
Therefore, by projecting both criteria to rank indices, we avoid the imbalance be-
tween the raw values of the two criteria. The of this Equation 3.4 yields the best
G`.

Increase robustness withmultiple ticket evaluations. Nowwe defined how to
identify the preferred clustering scheme from all proposed G`s in layerW `, the
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last challenge is to find the winning ticket k for TMI score calculations. Unfortu-
nately, finding thewinning ticket requires an extremely computationally intensive
process called iterative magnitude pruning, in whichmultiple training and prun-
ing cycles are involved4. To make matters worse, since we know that there are
oftenmultiple winning tickets available from the training process30, picking one
ticket but not the other will potentially yield a different set of preferred clustering
schemes for the network. Thismakes the k both a hard-to-find task and a sensitive
parameter to tune.

We address both challenges by relying on the same finding from Renda et al. 30 ,
which demonstrates that for any k where 0 < k1 ≤ k ≤ k2 < t,W ′

k can be a win-
ning ticket. This ticketswindow [k1, k2] is shown to be robust for the similarmodels
across different datasets and pruningmethods. Thus, we can decide whichmodel
wewill prune on, identify its ticketswindowby consulting experiment results from
Renda et al. 30 , and truncate someepochs in suchwindow to conductmultiple eval-
uations. The optimal clustering scheme forW `will be the one thatmost often yield
as the preferred clustering scheme per different k settings1. By doing this, we first
avoid searching for the winning ticket k, which greatly reduces the computational
power needed to implement our method. Secondly, it increases the robustness of
ourmethod, since the optimal clustering schemeper layer is no longer sensitive to
thechoiceofk. Last,grantedthewide rangeof [k1, k2]observedfrommostnetworks,
practicallywe don’t even need to search for the exact (k1, k2)pair; an approximated
guesswith a reasonable overlapwith the ideal (k1, k2)wouldoften suffice. The kind
of tolerance, combined with the proven generalizability of winning tickets across
different tasks, models, and datasets27, withmore efficientmethods of finding the
winning tickets become available34,43. Our proposedmethod can also be applied
to experiments outside of Renda et al. 30 .

1For example, suppose k1 + 29 = k2, clustering scheme A is chosen as the preferred clustering
scheme by Equation 3.4 for 20 times on layerW `, yet clustering schemes B and C are chosen 5
times respectively. In this case,Awill be the optimal clustering scheme forW `.
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3.3 Evaluate candidate preserved grouped kernel queues

With filters ofW` grouped into filter groups {g`1, g`2, ..., g`n}, we will carry out the
pruning procedure within each filter group. LetKg`

i be the i-th grouped kernel in
filter group g` (for 1 ≤ i ≤ C`

in) such thatK
g`

i is the collection of the i-th kernels
from every filter in g`. The pruning of a filter group g` can be viewed as the task of
identifying a set group kernels in g` that needs to be preserved. To start off such
identification, we first hypothesize a set of grouped kernels that are most “distinc-
tive” from each other may provide the best help on preserving the representation
power of the original filter group. We define a distance matrix between grouped
kernels from g` asD(g`))whereD(g`)[u,v] = |Kg`

u −Kg`

v |. ThisD(g`)) shall be a sym-
metric matrix with its diagonal full of 0s.

With thismatrix,wemaynowtranslate thisproblemasamaximumedge-weight
connected subgraph problem: Given a filter group g` represented as an undirected
complete graph G(V,E) with edge weights w(u, v) = D(g`)[u,v] between nodes u
and v, find a subset V ∗ ⊆ V with |V ∗| = s where the total edge sum of G[V ∗] :=

(V ∗, E ∩
(
V ∗

2

)
) is maximal (with s = (1− pruning rate) · C`

in).
The brute force solution of this problem requires iterating through every possi-

ble subset of grouped kernels with size s and calculate their edge sum.With
(|V |

s

)
possible subsets available and each subset having

(
s
2

)
edges, this procedure has a

time complexity ofO(s2 · |V |s). This can be quite a compute-extensive task given
eachgraphG(V,E)deduced from g` has a |V | equals toC`

in; whichcanbe as large as
512 inmodels like ResNet-101. To address this, we hereby propose a simple greedy
algorithmwithmultiple restarts that may approximate the V ∗ in question.

Our approximated solution was based on the hypothesis that, assume we al-
ready have a set of nodes U∗ ⊂ V ∗ representing grouped kernels which will be
preserved. To find the next node unext ∈ V ∗ for unext 6∈ U∗, such unext should have a
maximal edge sum to all nodes in U∗. Namely, unext =unext (

∑
u∈U∗ w(u, unext)). With

this, for a filter group g`wemay simply set the first grouped kernel uinitial ∈ U∗ to be
every grouped kernelKg`

i ∈ g`, find the unext until |V ∗| = s, and obtain C`
in pruning
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strategies. This trick is known asmultiple restarts and is widely adopted inmany
algorithms such as k-Means clustering.

We formalize the procedure of our approximation algorithm in pseudocode at
0.2. Thecoreofouralgorithmresides atline 10,whereweuse the computed result
of previous row inM to reduce time complexity of our algorithm.WithM ∈ Rs×C`in

and filledC`
in times, our approximation algorithm therefore has a time complexity

ofO(s|V |2) (as |V | = C`
in). This provides a sensible improvement upon theO(s2 ·

|V |s) brute force solution. To further and better identify the best grouped kernel
pruning strategy among the C`

in candidate strategies in PS, we define the score of
a strategy V ∗ on g` as the following:

Score
grouped kernel pruning

(V ∗, g`) =
∑

su,sv∈(V
∗
2 )

w(su, sv)− β
( ∑

p∈g`\V ∗

( sγ∑
si=1∈V ∗

w(p, si)
))
. (3.5)

The first term calculates the inner distance sum of V ∗, where a larger value
represents greater inner heterogeneity within the kept grouped kernels. The sec-
ond term iterates through every pruned grouped kernel p, finds the γ number of
kept grouped kernels that are closest to each p according to the distance matrix
D(g`), then sums over the distance between each p to its corresponding γ kept
grouped kernels. A pruning strategy with a smaller second term has better homo-
geneity between kept and pruned grouped kernels. Since a strategy with greater
inner heterogeneity and smaller outer homogeneity is desired, we further intro-
duce a tunable parameter−β to balance two terms anddefine thebest the pruning
strategyof g` to beV ∗best =V ∗ (Score(V ∗, g`)) for allV ∗s available inPS.Wehavealso
implemented a toy experiment to verify if our grouped kernel pruningmethod
mayobtain theoptimal or a close-to-optimal solution, please refer to 0.1 for de-
tails. Ablation studies conducted at 0.4 also confirm the efficacy of our greedy
algorithm.
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3.4 Layer reconstruction to grouped convolution architecture

The layer reconstruction of our method happens at two places: 1) Given a con-
volutional layerW `, we permute the output channels of such layer according to
the filter clustering result. This makes filters withinW ` form n grouped filters as
demonstrated in Figure 3.1 (a) to (b). 2) After a certain ratio of grouped kernels
were pruned from their corresponding filter groups, we permute the input chan-
nels of the remaining grouped kernels to remove sparsity from each filter group
(Figure 3.1(c) to (d)). As the result of the above two channel permutations, we will
have n dense grouped filters left in the prunedW `. Since every grouped filter has
its own set of input-output pathways, the prunedW ` is essentially a grouped con-
volution architecture. This architecture enables parallel computing capabilities,
because every grouped filter can be deployed to a different device so that all group
filtersmay compute simultaneously.Please refer to 0.2 for the general procedure
in pseudocode.



4 Results

4.1 Experiment Settings

Network Architectures and Datasets. We evaluate the efficacy of our method
on popular networks with various depth and architectures: ResNet-20/32/56/110
with the BasicBlock implementation and ResNet-50/101 with the BottleNeck im-
plementation9. For datasets, we choose CIFAR-1016, Tiny-ImageNet41, and Ima-
geNet (ILSVRC-12)2 as they vary in complexity andWang et al. 39 has carried out
a fairly large-scale comparative experiments of many different structured prun-
ing algorithms running under the same setting — which provides us with a rich
background to compare against.

ComparedMethods and Performance Evaluation. We test our method against
various existingpruningmethods showed inTable .1. Allmentionedpruningmeth-
ods are evaluated against the following criteria: ∆Acc, ↓ Params, and ↓ FLOPs
which are defined as the difference of top-1 accuracy, parameters reduction, and
FLOPs reduction between the baseline and pruned model (where x represents
x% of parameters/FLOPs were removed/reduced comparing to the original net-
work). In addition, we investigate the pruning procedure and pruning setting of
the comparedmethods in the three following aspects: 1) Does themethod require
an iterative pruning procedure? 2) Does themethod require a special fine-tuning
setup that deviates from Section 3.2.2 or Figure 1(a) of Wang et al. 40? 3) What is
the fine-tuning budget of the method-in-question? We believe these are crucial
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information for building a fair understanding of the three aforementioned numer-
ical criteria. Note, a method with iterative pruning procedure will automatically
require special fine-tuning, as it will fine-tune/retrain after each pruning opera-
tion,which is intrinsically different from theprocedure introduced in Section 3.2.2.
Our training and pruning settings are fairly simple given ourmethod follows a
one-shot procedure, please refer to 0.3 for details.

4.2 Results and analysis

Asdemonstrated inTable .1,ourmethodyields superior accuracy retention than
variousmodernSOTAmethodsacross six testednetwork-dataset combinations
withacommensurateamountofparametersprunedwiththeexceptionofResNet-
56 on Tiny-ImageNet,where our performance is reasonably close (−0.12% behind)
to the best offering of 3D byWang et al. 39 . Specifically, our method achieves such
resultswitha simpleone-shotpruningprocedureanda standardfine-tuning setup.
Which are usually considered two less advantageous design as many recent SOTA
methodsutilize iterativeprune-train cycles3,39. Yet somesimple tricks likedynamic
pruning rate, soft-pruning (keep the pruned components updatable until very
end), andweight reinitialization before fine-tuningmay often providemost algo-
rithms anotherperformanceboost10,17,21,30.Weoptnot to implement such tricks to
provide a cleaner delivery of our method. Last, although not universally observed,
ourmethod often requires a smaller fine-tuning budget than other offerings.Here
we include an abbreviated version of our experiment report at Table 4.1, please
refer to Table .1 for the full one. Please also refer to 0.3 and 0.3 for discussions on
hyperparameters and speedup.

4.3 Ablation studies

We anatomize the effectiveness of different components of our proposedmethod.
Specifically,wefirstdemonstrate if the ideaofourproposedTMIsystemandgreedy
approach are sound at a fundamental level; then we evaluate if they are better
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Table 4.1. Abbreviated comparisons of different pruning methods
with ResNet-20/32/56/110 on CIFAR-10, ResNet-56/101 on Tiny-
ImageNet, and ResNet-50 on ImageNet (ILSVRC-12). “IT”, “SF” re-
spectively indicate if the method-in-question requires an iterative
pruning or a special fine-tuning procedure. “FB” is the fine-tuning
budget of eachmethod (in terms of# of epochs). “BA” represents the
pre-pruned network’s accuracy. A cell with “-” implies either such in-
formation is inapplicable or we failed to confidently identify such
information. Methods noted with � are replicated by Wang et al. 39 ,
the rest are drawn from their original papers. The pruning rates (PR)
of our method are adjusted tomeet the ↓Params or ↓FLOPs of other
methods.

Method IT FB SF BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5

DBP� 38 3 560 3 93.69 ↓ 0.42 40 52
FPGM11 3 100 3 93.59 ↓ 0.33 - 52
GAL20 7 100 7 93.26 ↑ 0.12 12 38
PScratch40 3 ≈600 3 93.23 ↓ 0.18 - 50
SFP10 3 100 3 93.59 ↓ 1.33 - 53
3D39 3 560 3 93.69 ↑ 0.07 40 50
TMI-GKP (ours, PR = 43.75%) 7 300 7 93.78 ↑ 0.22 43.49 43.23

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
DHP18 - - 3 94.69 ↓ 0.06 37 36
FPGM11 3 100 3 93.68 ↑ 0.05 - 52
GAL20 7 - 7 93.50 ↓ 0.76 45 49
PScratch40 3 ≈500 3 93.49 ↑ 0.20 - 40
SFP10 3 100 3 93.68 ↓ 0.30 - 41
TMI-GKP (ours, PR = 43.75%) 7 300 7 94.26 ↑ 0.64 43.52 43.31

ResNet-101 on Tiny-ImageNet: FLOPs: 1.01E10 Params: 4.29E7
DBP� 38 3 420 3 64.83 ↓ 3.48 76 77
DHP� 18 - 420 3 64.83 ↓ 0.01 50 75
GAL� 20 7 420 7 64.83 ↓ 0.50 45 76
3D39 3 420 3 64.83 ↑ 0.44 51 75
TMI-GKP (ours, PR = 87.50%) 7 300 7 65.51 ↑ 1.38 43.53 43.25

ResNet-50 on ImageNet (ILSVRC-12): FLOPs: 5.37E9 Params: 2.56E7
PScratch40 3 ≈409 3 77.20 ↓ 0.50 29.8 26.8
Taylor26 3 25 3 76.18 ↓ 0.70 30.0 28.1
ThiNet22 3 1 per prune 3 72.88 ↓ 0.84 - 36.7
FPGM11 3 100 3 75.96 ↓ 0.92 33.2 33.7
SFP10 3 100 3 76.15 ↓ 1.54 - 41.8
TMI-GKP (ours, PR = 75%) 7 90 7 76.15 ↓ 0.62 33.21 33.74

than some common alternative approaches with similar functionalities. With the
procedure design evaluated,we also provide some real-word runtime experiments
of our proposed pruning procedure. Last, we evaluate the relationship between
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the hyperparameters and the pruned network’s accuracy retention. Please refer
to 0.4 for details.



5 Conclusions

We proposed a densely structured pruning framework capable of yielding be-
yond SOTA performance with a straightforward one-shot procedure. We believe
the power of densely structured kernel pruning may go well beyond our imple-
mentation, as a) there will certainly bemore— and hopefully better— inductive
biases and unsupervised clustering schemes made available, and b) our adapta-
tion of kernel pruning and grouped convolution is rather vanilla, wheremore so-
phisticated variants are available to explore; our framework may thrive on these
further-discoveries.

In addition, our work serves as a proof of the lottery tickets-induced heuristics
can be used to guide a structured pruning strategy. This is an often overlooked
usage despite the popularity of LT-related research, possibly due to the high cost
of winning tickets searching. In such case, we hope themultiple (potential) tickets
evaluations trick we introduced in our method may help in levitating such con-
cerns. Thismight have an impact beyond the field of network pruning, as scholars
of other tasksmight find the ticket-inducedheuristics to be useful but are deterred
by the high cost of tickets searching. Where our trick provides a form of approxi-
mation by just inspecting the weights shifting log saved during training.
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6 Reproducibility

As we advocate our proposed framework is able to shine a new light on ker-
nel pruning under the context of densely structured pruning, we have prepared a
GitHub repositorywith checkpoints placedon every stage of ourmethod.Wehope
this will facilitate the reproduction of our work and invite our fellow scholars to
research and optimize on different stages of our pruning framework. To reproduce
the exact training and pruning settings of our experiments in Table .1, please refer
to 0.3.
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0.1 Supplementary material to Proposed Method

Silhouette score and Accuracy Retention. We experiment ResNet-32 on CIFAR-10
(BA = 92.82%) with K-PCA + Equal-sized k-Means and Spectral + Equal-sized k-
Means. The mean Silhouette score of the latter combination is 0.3349/0.0268 =

12.49 times higher than the previous combination; indicating that if the Silhouette
scoremay capture the better clustering result with respect to accuracy retention,
the latter approach should be significantly better. However, the K-PCA approach
has a pruned accuracy of 92.68%where the Spectral approach has a pruned accu-
racy of 92.41%, a+0.27% in favor of themethodwhich the Silhouette score strongly
suggests against. This demonstrates that tools like the Silhouette scoremight not
be a good judge of clustering quality in terms of accuracy retention.
Effectiveness of our greedy approximation algorithm with toy example. To test out
whether our greedy approximation algorithm may yield a solution that is close
enough to the optimal one, we conducted a trial of TMI-GKP with β = 0 in Equa-
tion3.5onResNet-32. For thefirst tenconvolutional layers (80filtergroupspruned),
all approximated solutions are within 0.5% in terms of the score difference (as de-
fined in Equation 3.5) to the optimal solution—which implies the effectiveness
of our approximation algorithm.
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0.2 Additional Method Procedure Information

Algorithm 1Generate C`
in grouped kernel pruning strategies

Input: Filter group g` . one of the n filter group in layerW `

Input: s . number of grouped kernels to preserve, s = (1− pruning rate) · C`
in

Initialize: Empty list PS . for storing grouped kernels pruning strategies
Initialize: C`

in,D(g`) . number of grouped kernel in g` and distancematrix of
g`

Ki ∈ g`

1: Initialize: Empty list U∗ . storing preserved grouped kernels per the current
strategy

2: Initialize: Zero-filledmatrixM ∈ Rs×C`in . the cost matrix
3: M[0,j] ← w(Ki, Kj) for allKj ∈ g`\Ki

4: U∗.append(Ki) .makeKi the first grouped kernel to keep
5: for row← 1 to s do
6: Klast ← U∗[−1] grouped kernelK ∈ g` butK 6∈ U∗

7: Kindex← g`.getindex(K)

8: M[row,Kindex] ←M[row−1,Kindex] + w(Klast, K)

9: U∗.append(K(M[row]))

10: if |U∗| == s then
11: V ∗ ← U∗, PS.append(V ∗) and break

12:

13:

14: return PS

Greedy Grouped Kernel Pruning Procedure.
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Algorithm 2General Procedure of TMI-GKP
Input:W, (k1, k2) . trainedmodel, tickets window
Input: CS, PR, n . clustering schemes, pruning ratio, number of groups

convolutional layerW ` ∈ W
1: Initialize: Empty listG`

candidates . To store candidate clustering results
2: for ki ∈ [k1, k2] do
3: Cluster filters fromW ` into n equal-sized groups according to each scheme in CS
4: Identify the preferred clustering resultG`

ki
←G` ( Score

filters clustering
(G`, ki))[Equation3.4]

5: G`
candidates.append(G`

ki
)

6: IdentifyG`
best ← themost occurred item inG`

candidates

7: ApplyG`
best onW ` filter group g`i ∈ G`

best

8: Get grouped kernel pruning strategies V ∗ ← Algorithm 1(g`i ) [0.2]
9: Identify V ∗best ←V ∗ ( Score

grouped kernel pruning
(V ∗, g`i )) [Equation 3.5]

10: Apply V ∗best on g`i
11:

12: W ` ← prunedW ` reconstructed in grouped convolution architecture
13:

14: returnW

General Procedure.

Time Complexity Analysis of the TMI Clustering Procedure. Ourpruningprocedure
is basically two-stage: filter clustering and grouped kernel pruning. Since we have
already analyzed the time complexity of the second stage at the end of Section 3.3,
we hereby focus on the time complexity of our filter clustering procedure.

Given a clustering result of convolutional layerW `, we first calculate the TMI
score of each filter group defined by Equation 3.2. The TMI score of a clustering re-
sult in regards toanepochkhasa timecomplexityofO(W `) forW ` ∈ RC`out×C`in×H

`×W ` .
This is because TMI scores are essentially achieved by finding out themagnitude
increase of individualweights inW ` fromepoch k to epoch t (the final epoch). TMI
scores for filters and filters groups are simply sum of the TMI scores of a certain



Appendix 27

individual weights—where the summing procedure is at mostO(W `) as we only
got thesemany weights to sum.

The TMI score for this clustering result is then determined by Equation 3.4.
Which is a O(n) procedure as we have n groups (thus n − 1 intervals). Granted
O(n)� O(W `), this term is negligible and theoverall time complexity is stillO(W `)

Note wemay havemultiple clustering results generated bymultiple clustering
schemes, where we use their TMI scores and Equation 3.4 to determine the best
clustering result for layerW `. Thus, we need tomultiple the time complexity of a
single clustering result to the number of clustering schemes available, we denote
this number as CSnum. The overall complexity is now CSnum · O(W `). It is hard
to analyze the time complexity of each clustering scheme as it involves various
dimension-reduction and clustering combinations. For the ease of expression, we
uniformly denote all clustering schemes to have a time complexity ofO(CS(W `))

on layerW ` (for CS(W `) > W ` as a clustering scheme need to read all weights in
W ` to produce a proper clustering result).

Last, as illustrated in Section 3.2.2 - Increase robustness withmultiple ticket
evaluations, we need to repeat the whole procedure for knum times for knum being
the number of potential ticket epochs we evaluated. Thus, the final “rough” big-O
complexity for our filter clustering procedure is:

CSnum · O(CS(W `)) + CSnum · knum · O(W `). (.1)

Inourexperiments,suchknum is usually set to35 (unless thenetwork is too large)
andCSnum is 3 aswe have three different clustering schemes available (see Section
3.2.1). By the “absorption” law of big-O analysis, the theoretical time complexity
is onlyO(CS(W `))—which is identical to a standard single-shot filter clustering
procedure. This implies the theoretical lightweight-ness of our proposedmethod.

For more information, we included a discussion on how to adjust the prun-
ing procedure to meet a time/computation budget at 0.2 with real-world runtime
experiments available at 0.4.
Adjust the pruning procedure to meet a time/computation budget. Although the
analysis at 0.2 and experiments in 0.4 demonstrate our TMI pruning procedure is
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reasonably fast, we admit that it can be slow if given a wide network to prune or
were asked to evaluate many potential ticket epochs— as our algorithmwill have
to repetitively evaluate the network with different TMI scores over and over again.
We hereby provide several points for adjustability of our method.

(1) Reduce the range of ticket window: If a ticket window is defined to be
[k1, k2], consider using [k′1, k

′
2]where k1 < k′1 and k′2 < k2. So less potential

ticket epochs were evaluated.
(2) Add a ticket step: For a ticket window [k1, k2], consider adding a kstep so in-

steadofevaluatingk1, k1+1, k1+1+1, ...wenowevaluatek1, k1+kstep , k1+kstep+kstep , ....
By doing this, less potential ticket epochs were evaluated while a wide
range of potential ticket epochs from different stage of the network train-
ing are still considered.

(3) Relax the granularity of clustering evaluation: The proposed TMI-GKP
determines the optimal clustering scheme at a per layermanner. For CNN
models with block-like structure (such as ResNet), onemay opt to deter-
mine the clustering scheme for one layer of the block, then proceed to use
such clustering scheme on the whole block.

(4) Adjust clustering schemes: Onemay opt to reduce the number of cluster-
ing schemes available for the TMI score evaluation. Or onemay opt to use
clustering schemeswhichare less computationaldemanding.Granted the
TMI system is likely to capture the “better” clustering scheme among the
options, themethodwould still function, but likely not at its full potential.

0.3 Supplementary material to Experiments and Results

Training and Pruning Settings. For all experiments done on CIFAR-10 and Tiny-
ImageNet, we train the baselinemodels for 300 epochs with the learning rate start-
ing at 0.1 and dividing by 10 per every 100 epochs. The baseline model is trained
using SGDwith a weight-decay set to 5e-4, momentum set to 0.9, and a batch-size
of 64. All data are augmented with random crop and randomly horizontal flip. For
the experiments done on ImageNet, we train the ResNet-50model for 90 epochs
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with the weight-decay set to 1e-4 and learning rate dividing by 10 per every 30
epochs (while keeping all other settings the same as CIFAR-10 and Tiny-ImageNet
experiments). Our pruning settings are largely identical to our training settings
except for the learning rate, which is set to 0.01 at the start.
Choice of Hyperparameters. There are threemain tunable hyperparameters in the
mainframe of TMI-GKP, α from Equation 3.4 and β, γ from Equation 3.5. Note in
practice γ is not a fixed value but rather a value that has a fixed proportion to its
the convolutional layer’s input channels, i.e., γ = γratio · C`

in for layerW `. This is
because different convolutional layer may have a different Cin, so it makes better
sense to let γ of a layer adjust along with its Cin.

Forexperiments shown inTable .1,wefixα to0.5andγratio to0.2 forconvenience.
For experiments of ResNet-56 on CIFAR-10 and ResNet-101 on Tiny-ImageNet, we
setβ to 2. For the experimentofResNet-32 onCIFAR-10,we setβ to 1. For the rest of
theexperiments inTable .1,wesetβ =

(
V ∗

2

)
/(|g`\V ∗|·γ)withrespect toEquation3.5.

This basically implies we want the two terms in Equation 3.5 to evaluate an equal
amount of grouped kernel pairs.

To further ensure/demonstrate the reproducibility of our work, in our code-
basewewill provide aGoogle Colab notebook that replicates all CIFAR-10 pruning
experiments conducted in Table .1. For every completed experiment, our code-
base may register a setting.json, a cluster.json (upon extraction of a pruned
model), and an experiment.log. Where the setting.json includes all hyperpa-
rameters’ settings,cluster.json includes the clustering schemeper each convolu-
tional layer and its resultant permutationmatrix for converting the baselinemodel
from (a) to (b) in Figure 3.1, and experiment.log contains the experiment print-
outs. In addition, we have implemented a set of methods so a fellow researcher
may pipeline the cluster.json file to the baselinemodel and try for a different set
of pruning strategies. This will save them the work of re-clustering the filters and
re-calculating/re-evaluating the TMI scores for every layer.
Omitting Speed Up Analysis. We purposefully omitted the speedup analysis be-
tween the original and the pruned network mainly due to lack of optimization
of grouped convolution on current ML platforms. As an example, on PyTorch, a
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grouped convolution with groups = 8 is much slower than the standard convolu-
tion despite the former one hasmuch less parameters and FLOPs.

Pleasedirect toourGitHubrepositorywherewediscuss in lengthofwhy PyTorch
is slowing us done, what’s the reason behind it, and empirically show that it is in-
deed PyTorch lacks of optimization that causing this problem.We also discusswhy
this will not be an issue for long (by presenting ML platforms’ commitments of
optimizing the speed of grouped convolution), why this is an achievable goal (as
scholars have already accelerated grouped convolution on said platforms5,29), and
how this is not likely to affect the serious implementation of our method for its in-
tended purposes— as a group convolution network can be deployed as standard
convolution onmultiple edge devices in a parallel fashion33.
Specific experiments requested by reviewers. Upon the requests of two reviewers,
we have additionally conducted experiments with our proposedmethod on VGG-
1632 and on ResNet-56 on CIFAR-10 against pruning method GAL by Lin et al. 20

(but with a more aggressive pruning rate as ↓ Params and ↓ FLOPs are ≈ 60%

instead of≈ 43%).
Please refer to our OpenReview entry (former experiment, latter experiment,

context of the latter experiment) for details — as these requests should only make
sense under their Q&A context, andwe have not (or for some literature, we are not
able to) conduct the pruning procedure investigations like we did in Table .1 as
defined in Section 4.1.

0.4 Ablation Studies

In this sectionwewill anatomize ourmethod in the following aspects. The general
idea is we first show the basic format(s) of our approach works— as if the results
achieved by following our approach would be better than the results achieved by
going against our approach— then, we show that our approach works better than
some common alternative approaches with similar functionalities.

First, we confirm the effectiveness of our TMI scoring system by conducting
the following ablation studies:

https://github.com/choH/lottery_regulated_grouped_kernel_pruning
https://openreview.net/forum?id=LdEhiMG9WLO&noteId=kbRgRIZsCjY
https://openreview.net/forum?id=LdEhiMG9WLO&noteId=G6AFUll4-Oz
https://openreview.net/forum?id=LdEhiMG9WLO&noteId=jMdNxNOReyr
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(1) TMI/MIscoresandfilterpruning: wherewe investigate iffilterswithhigher
TMI score or larger magnitude increase will lead to better accuracy reten-
tion. This shows our TMI scoring systemworks at a filter level.

(2) TMI-driven clustering and accuracy retention: where we compare the
TMI-driven clustering results with shuffled clustering results in terms of
accuracy retention. This shows our TMI scoring systemworks in terms of
filter clustering.

(3) TMI-driven clustering v. Other filter clustering schemes: where we in-
vestigate if the TMI-driven clustering schemes are better than some com-
mon alternative clustering schemes.

(4) TMI-GKP v. Grouped convolution-only: where we investigate if the per-
formance of ourmethod is from theprocedureweproposed, or it is simply
due to the adaptation of grouped convolution.

Then, we investigate our greedy grouped kernel pruning algorithm with the
following ablation studies:

(1) Greedy-inducedpruningandaccuracyretention: wherewecompare the
grouped kernel pruning results induced by our greedy approach to two
approaches that take the “inverse” and “complement” of our greedy ap-
proach. This shows the basic principle of our greedy approach works.

(2) Greedy-inducedpruningv.Othergroupedkernelpruningpolicies: where
we compare the greedy approach against some alternative kernel prun-
ing policies applied on grouped kernel pruning. This shows our greedy
approach works better than some common alternative kernel pruning
policies.

Last, we provide some experiments to evaluate the real-world runtime of the
pruning procedure of TMI-GKP and ablation studies on hyperparameters.
TMI/MI scores and filter pruning. We first address the question of whether the TMI
score (or the original “MI” magnitude increase score from Zhou et al. 48) has a
relationship with accuracy retention when relaxed to a filter level. Although the
question is straightforward, it is up to different interpretations as the TMI score
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was proposed as a tool to determine which clustering result is the optimal one—
which requires multiple tickets evaluation. Thus, it is hard to determine the TMI
scores of a filter, as it is sensitive to the choice of k in Equation 3.1.

To address such problem,we run Equation 3.1 on the same set of ks as our TMI-
GKP algorithm, then we rank (sort) all filters according to their TMI scores under
each k. Namely,when k = 35,wemayhavefilterA to be rank 1, filterB to be rank 2...
and for k = 36wemay haveB to be rank 1 andfilterC to be rank 2. We then sumall
ranks of each filter across different ks, where the filter with smallest sum (highest
sum of ranks) is considered the one that is most preferred by the TMI system.We
denote this sum the TMI Filter Ranking Score.

We opt to use rank-per-each-k, but not simply adding TMI scores of the same
filter on different ks together and rank all filters, because the former approach is a)
less sensitive to potential extreme value introduced by a certain k and b) similar to
the proposed scoring mechanism defined in Equation 3.4, which is used in TMI-
GKP.

We zero-mask different filters according to the following five criteria. All exper-
iments are conducted on ResNet-32 (baseline accuracy: 92.82%)with pruning rate
set to 50% (half of the filters per each layer are zeromasked).

(1) TMI preferred: We kept filters that have the lowest TMI Filter Ranking
Scores, and zero-masked the rest.

(2) TMI complement:We kept filters that have the highestTMI FilterRanking
Scores, and zero-masked the rest. Since the pruning rate is set to 50%, this
is essentially taking the complement of the above scheme.

(3) MI preferred: We kept filters that have the highest magnitude increase
since initialization, and zero-masked the rest.

(4) MI complement: The complement of above scheme.
(5) Random: Half of the filters per each layer were randomly zero-masked.

Scheme TMI preferred TMI complement MI preferred MI complement Random
Acc. (%) 64.48 61.93 63.25 62.06 63.92
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The above experiments clearly demonstrate that both better TMI filter ranking
scores and larger MI scores are correlated with better accuracy retention. In addi-
tion, the 1.23% lead of TMI preferred toMI preferred scheme also implies that
our TMI system—withmultiple tickets evaluation— is superior than the orig-
inal magnitude increase system introduced in Zhou et al. 48 at the filter level.
TMI-driven clustering and accuracy retention. Knowing that TMI preferred filters
might lead to better accuracy retention.We are interested in learning if the cluster-
ing results produced by the TMI systemmay also lead to better accuracy retention.
Thus, we implement the following criterion:

• TMI shuffled: Take a clustering result determined by the TMI scoring sys-
tem (argmin of Equation 3.5) and shuffle its filters across different groups.
By “shuffle,” we mean that if a set of filters were originally in the same
group, after the shuffle, no two of the above-mentioned filters will be in
the same group anymore.

Model Baseline (%) TMI-GKP (%) TMI shuffled (%)
ResNet-20 92.35 ↓ 0.34 ↓ 0.67
ResNet-32 92.82 ↑ 0.22 ↓ 0.09
ResNet-56 93.78 ↑ 0.22 ↓ 0.05
ResNet-101 94.26 ↑ 0.64 ↑ 0.25

The experiment results confirmed that our TMI systemmay provide positive
contribution evenunder thefilter clustering context. Although the improvement is
not as significant as the one provide by the greedy approach (see 0.4), the improve-
ment is consistent. Yet without it, our methodmay not exceed SOTA performance
at all.

We further include a discussion in 0.4 on why empirical evidence suggests the
TMI-driven clusteringmay not guarantee on finding the best clustering in terms
of accuracy retention, but rather a robust policy withmore comprehensive consid-
erations done to deliver a “better” and very usable solution.
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TMI-driven clustering v. Other filter clustering schemes. We set the greedy grouped
kernel pruning procedure to fixed and feed our method with different schemes
on filter clustering: three clustering schemes individually and a uniform random
assignment of the three clustering schemes. The results with ResNet-32 on CIFAR-
10 suggest the TMI-driven clusteringmay deliver the best accuracy retention.

Method BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.29E7

TMI Clustering w/ Greedy 92.82 ↑ 0.22 43.43 43.09
K-PCA + k-Means w/ Greedy 92.82 ↑ 0.01 43.43 43.09
Spectral + k-Means w/ Greedy 92.82 ↓ 0.16 43.43 43.09
t-SNE + DBSCANw/ Greedy 92.82 ↓ 0.14 43.43 43.09

RandomClustering Schemes w/ Greedy 92.82 ↑ 0.03 43.43 43.09

However, by conducting experiments for the 0.4, we notice that for the combi-
nation of ResNet-110 on CIFAR-10, forcing the clustering scheme as Spectral Clus-
tering may achieve slightly superior accuracy retention to TMI-GKP (+0.06%). But
by running the same clustering scheme on other experiment combinations like
ResNet-20 and ResNet-32 on CIFAR-10, spectral clustering induces much lower
results (−0.33% and −0.16% in comparison to TMI-GKP). This implies the TMI-
driven clustering may not guarantee on finding the best clustering in terms of
accuracy retention, but rather a robust policy with more comprehensive consid-
erations done to deliver a “better” solution than many other structured pruning
methods when combined with our greedy-induced pruning procedure.

We observe similar phenomena on the K-PCA + k-Means clustering scheme as
it only shows slightly lower performance (−0.21% in comparison to TMI-GKP) on
ResNet-32 on CIFAR-10. But the same clustering scheme performs consistently
worse than TMI-GKP on ResNet-20/56/100 with CIFAR-10: coming as respectively
−0.38%,−0.29%, and−0.24% to our TMI-GKPmethod; which implies TMI-GKP is
likely more robust on providing a “better” solution across different networks.
TMI-GKP v. Grouped convolution-only. Since the architecture of grouped convolu-
tion itselfmay induce a reduction of parameters, we are also interested in learning
howmuch it contributes to accuracy retention. Wemodified the original network
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as a vanilla grouped convolution, trained it with the same training settings as in
0.3, and compared it against TMI-GKP. With a comparable amount of parameters
and FLOPs reduction, the results achievedwith grouped convolution-only arewell
below our TMI-GKP.

Method BA (%) Pruned Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-20 on CIFAR-10: FLOPs: 4.09E7 Params: 2.70E5

Grouped Conv (n = 2) 90.48 - 49.0 49.5
TMI-GKP 92.35 92.01 43.4 42.9

ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.64E5
Grouped Conv (n = 2) 91.75 - 49.2 49.6

TMI-GKP 92.82 93.04 43.4 43.1
ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5

Grouped Conv (n = 2) 92.34 - 49.4 49.7
TMI-GKP 93.78 94.00 43.5 43.2

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
Grouped Conv (n = 2) 92.90 - 49.5 49.7

TMI-GKP 94.26 94.90 43.5 43.3

Greedy-induced pruning and accuracy retention. Our greedy grouped kernel prun-
ing approach is developed on the assumption of (grouped) kernels that are most
distinctive from each other are better. We now put this assumption to test with the
following two schemes:

(1) Greedy complement: wherewe keep the group kernels thatwas originally
pruned in TMI-GKP.

(2) Greedy reverse: where we flip the on line 11 of Algorithm 0.2 to with
β = 0 in Equation 3.5. This means the algorithm is now searching for the
next grouped kernel that is “most similar” to the selected grouped kernels.

Here are the experiment results with pruning rate set to 43.75%:
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Model Baseline (%) TMI-GKP (%) Greedy complement (%) Greedy reverse (%)
ResNet-20 92.35 ↓ 0.34 ↓ 1.50 ↓ 1.38
ResNet-32 92.82 ↑ 0.22 ↓ 1.38 ↓ 0.56
ResNet-56 93.78 ↑ 0.22 ↓ 0.88 ↓ 0.54
ResNet-110 94.26 ↑ 0.64 ↓ 0.76 ↓ 0.67

The experiment results once again demonstrate the significance of our greedy
approach. In addition,we observeGreedy reverse to have better accuracy retention
toGreedy complement. We believe this is because the pruning strategy produced
byGreedy reversemay have overlaps with the one produced by TMI-GKP; yet the
pruning strategy producedGreedy complement is mutually exclusive with the one
produced by TMI-GKP. This indirectly suggests the grouped kernels selected by
our greedy approach are certainly “the better” ones, as only a partial overlap with
the TMI-GKP’s pruning strategymay lead to noticeably better accuracy retention.

Upon request, we further investigated Greedy reverse with β = 1 on ResNet-
20/32/56/110 onCIFAR-10,where such scheme is identical toGreedy reversewith
the exception of setting β to 1. This means the algorithm is still searching for the
next grouped kernel that is “most similar” to the selected grouped kernels. But
among the C`

in candidate pruning strategies, it will pick the one with best outer
homogeneity (pruned and kept filters are most similar). The results are ↓ 1.52%, ↓
0.42%, ↓ 0.45%, and ↓ 0.61% respectively to the baseline of four aforementioned
networks.

This is in line with our anticipation. As per the design of Algorithm 2 and Equa-
tion 3.5, the set of grouped kernels preserved by greedy reverse with β = 1 should
be very similar to the set group kernels preserved by greedy reverse with β = 0.
This is because both of them will preserve a set of grouped kernels that are very
similar to eachother; and as 56.25%of grouped kernels per layer are preserved, the
two policies might very likely end up on the same (or similar) set of grouped ker-
nels. Empirical evidence supports this hypothesis, as the performance differences
between the two policies are marginal.
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Greedy-induced pruning v. Other grouped kernel pruning policies. We set the filter
clustering scheme to fix as Spectral Clustering and feed ourmethod with different
commonly applied grouped kernel pruning policies (L2 and center pruning). Ex-
periments ofResNet-32/110 onCIFAR-10have confirmed that our greedy-induced
pruning schememay yield better accuracy retention in a controlled setting.

Method BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.29E7

Greedy-induced Pruning 92.82 ↑ 0.06 43.4 43.1
L2 Pruning 92.82 ↓ 0.30 43.4 43.1

Center Pruning 92.82 ↓ 0.19 43.4 43.1
ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6

Greedy-induced Pruning 94.26 ↑ 0.70 43.3 43.5
L2 Pruning 93.76 ↓ 0.08 43.3 43.5

Center Pruning 93.76 ↓ 0.05 43.3 43.5

Runtime analysis of TMI-GKP. The followingexperimentsareconductedona2.00GHz
4 core Intel Xeon CPU and Tesla V100. Evaluated on 35 potential ticket epochs.

In ourcode implementation,wefirst cluster a layer, thenprune it, thenmoveon
to the next layer. So the runtime is amixedproduct of both the TMI filter clustering
procedure and the greedy grouped kernel pruning procedure. Please refer to the
table below for the runtime of the pruning procedure of our TMI-GKPmethod. All
experiments are against the CIFAR-10 dataset.

Model ResNet-20 ResNet-32 ResNet-56 ResNet-101

Clustering and Pruning Runtime
2,977 sec
(49.62min)

4,741 sec
(78.18min)

10,376 sec
(172.93min)

19,818 sec
(330.3 min)

We also separately analyze the runtime of our greedy grouped kernel pruning
procedure. This is done by assigning a pre-determined permutationmatrix to the
network (same effect as clustering, as it permutes a convolutional layer from Fig-
ure 3.1(a) to Figure 3.1(b)), so the actual greedy-only approachwill be even slightly
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faster). Also note the runtime of this greedy procedure is theoretically related to
the choice of γ in Equation 3.5, but the greedyprocedure itself is so fast to the point
the value of γ does not matter anymore.

Model ResNet-20 ResNet-32 ResNet-56 ResNet-101

Greedy Pruning Runtime 47 sec 16 sec
250 sec

(4.17min)
2,205 sec
(36.75min)

We consider this sort of runtime is totally tolerable as an overhead. When com-
pared tomethods involve iterative prune-train cycles39, custom loss function42, or
feature maps analysis44, our method is significantly more efficient and applicable
to a broader set of pre-trained networks.
Effects of different hyperparameters choices. As mentioned in 0.3, the two hyper-
parameters we tuned are β and γ (derived from γratio) in Equation 3.5. We hereby
provide a set of experiments to showhowdifferent choices of such two parameters
will affect theaccuracy retentionof theprunednetwork. All experimentsweredone
on ResNet-32 onCIFAR-10with pruning rate set to 43.75% (baseline: 92.82%). Note
the experiments below were done with setting one parameter fixed and adjusting
the other, so the two tables should be inspect in a collective manner.

We first fixed γratio to 0.2 — namely, for every pruned grouped kernel, 20% of
all kept grouped kernels which are most similar to such pruned grouped kernel
were evaluated — and try with different β settings. The term “auto” implies β =(
V ∗

2

)
/(|g`\V ∗|·γ)with respect to Equation 3.5,please refer to 0.3 onhowwe inferred

this value.

Fixed / Tuned param β = 0 β = 1 β = 2 β = 4 β = 6 β = 8 β = auto
γratio = 0.2 92.71 93.04 92.58 92.67 92.8 92.76 92.74

The experiment results suggest a relatively more “balanced” relationship be-
tween the two terms in Equation 3.5 may lead to better accuracy retention. This
implies both the innerheterogeneity of kept groupedkernels andouterhomogene-
ity between kept and pruned grouped kernels should be taken into consideration
—which is exactly how Equation 3.5 was designed.
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We then fixed β to “auto” and try with different γratio settings:

Fixed / Tuned param γratio = 0.1 γratio = 0.2 γratio = 0.4 γratio = 0.6 γratio = 0.8 γratio = 1

β = auto 92.97 92.74 92.7 92.65 92.74 92.53

The experiment results suggest γratio should be a relatively small value as in-
creasing its value may lead to worse accuracy retention of the pruned network.
This is a rather intuitive result, as when γratio = 1 every pruned grouped kernel is
evaluated against all kept grouped kernels. In such case, the second term of Equa-
tion 3.5 can no longer reveal if there are some kept grouped kernels that are similar
to a pruned one, because all kept kernels are evaluated, yet all kept kernels are
already distinctive from each others due to the selection procedure introduced in
0.2.

Additionally,we have conducted/disclosedmore experimentswith specific set-
tings required by one reviewer (e.g., with β = and γratio = 0.1 on ResNets; choice of
β being 2 verses auto). Please refer to our OpenReview entry for more details — as
these specifically requested experiments should only make sense under the Q&A
context, and they do not fit well to the structure of our ablation studies.

0.5 Dimensionality Reduction and Clustering Schemes

Kernel Principal Component Analysis (K-PCA). Kernel PCA is considered an im-
proved version of PCA. The choice of kernel functions will significantly affect the
experimental results. Global kernels (e.g. polynomial, Sigmoid) and local kernels
(e.g. RBF,Laplacian) are themost commonlyusedkernel functions forK-PCA. They
capture different characteristics of the data: the former one demonstrates better
extrapolation abilities, and the latter one has better interpolation abilities15. Since
the filters are usually not linearly separable and often there are fewer filters than
the number of features, wewillmix the global and local kernel functions to benefit
both extrapolation and interpolation properties. Specifically, wemixed a polyno-
mial and an RBF kernel. We use a parameter λ to control the balance of these two

https://openreview.net/forum?id=LdEhiMG9WLO&noteId=Wf4CefitQGV
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functions.
Knew(x, y) = λKPoly(x, y + (1− λ)KRBF(x, y)

= λ(axT · y + c)d + (1− λ) exp

(
−‖ x− y ‖

2

2σ2

)
,

(.2)

where λ ∈ [0, 1), parameters a and c in polynomial kernel have been fixed to 1 and
0. d = 2 is the degree of polynomial kernel and σ in RBF kernel is the reciprocal of
the width of the radial basis function. In practice, such λ is set fixed to 0.5.
Spectral Clustering. SpectralClustering is yet anothermaturely studiedandwidely
adopted clusteringmethod. Unlike in K-PCA, for thismethodwe simply utilize the
implementation of Von Luxburg 35 . Specifically in TMI-GKP, we utilize the varia-
tion ofmutual-KNN as the similarity graph and cosine distance as the adjacency
matrix based on empirical observations. We rely on Yikun Zhang’s version of im-
plementation.
Equal-Sized k-Means. To ensure wemay have n equal-sized groups out of each fil-
ter group, we utilize the default Same-size k-Means Variation offered by Schubert
and Zimek 31 . Specifically, we rely on Nathan Danielsen’s version of implementa-
tion.
t-SNE and DBSCAN. Weexplore theoptionof t-SNEandDBSCANbecausewewant
to add a density-based clustering scheme from the two distance-based offerings.
For implementation details: we set the perplexity of t-SNE to be the size of the
filter group (namely,C`

in/n in layerW `) and iterate through different combinations
of n_components, ε, and min_samples until theDBSCANalgorithmmay yield a clus-
tering result of≥ n + 1 groups (for n_components ∈ [2, n)). After that, we execute
the same data-point reassignment procedure as listed in Schubert and Zimek 31

until n equal-sized groups are achieved.

https://github.com/zhangyk8/Spectral-Clustering
https://github.com/ndanielsen/Same-Size-K-Means
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Table .1. Full comparisons of different pruning methods with
ResNet-20/32/56/110 on CIFAR-10, ResNet-56/101 on Tiny-
ImageNet, and ResNet-50 on ImageNet (ILSVRC-12). Please refer to
Table 4.1 for details regarding the presented evaluating criteria.

Method IT FB SF BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-20 on CIFAR-10: FLOPs: 4.09E7 Params: 2.70E5

DHP18 - - 3 92.54 ↓ 1.00 44 48
FPGM11 3 100 3 92.20 ↓ 1.11 - 42
PScratch40 3 ≈ 600 3 91.75 ↓ 1.20 - 50
Rethink21 3 40 3 92.41 ↓ 1.34 - 40
SFP10 3 100 3 92.20 ↓ 1.37 - 42
TMI-GKP (ours, PR = 43.75%) 7 300 7 92.35 ↓ 0.34 43.35 42.87

ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.64E5
DBP� 38 3 560 3 93.18 ↓ 0.53 28 48
FPGM11 3 100 3 92.63 ↓ 0.32 - 42
GAL� 20 7 560 7 93.18 ↓ 1.46 39 50
PScratch� 40 3 560 3 93.18 ↓ 1.00 - 50
SFP10 3 100 3 92.63 ↓ 0.55 - 42
3D39 3 560 3 93.18 ↑ 0.09 38 49
TMI-GKP (ours, PR = 43.75%) 7 300 7 92.82 ↑ 0.22 43.43 43.09

ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5
CP12 - 20 7 92.80 ↓ 1.90 - 50
DBP� 38 3 560 3 93.69 ↓ 0.42 40 52
DHP� 18 - 560 3 93.65 ↓ 0.07 42 49
FPGM11 3 100 3 93.59 ↓ 0.33 - 52
GAL20 7 - 7 93.26 ↑ 0.12 12 38
HRank19 - 30 per layer - 93.26 ↓ 0.09 42 50
PScratch40 3 ≈ 600 3 93.23 ↓ 0.18 - 50
Rethink21 3 40 3 93.80 ↓ 0.73 - 50
SFP10 3 100 3 93.59 ↓ 1.33 - 53
3D39 3 560 3 93.69 ↑ 0.07 40 50
TMI-GKP (ours, PR = 43.75%) 7 300 7 93.78 ↑ 0.22 43.49 43.23

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
CP12 - 20 7 92.80 ↓ 1.90 - 50
DHP18 - - 3 94.69 ↓ 0.06 37 36
FPGM11 3 100 3 93.68 ↑ 0.05 - 52
GAL20 7 - 7 93.50 ↓ 0.76 45 49
PFEC17 7 - 7 93.53 ↓ 0.61 - 39
PScratch40 3 ≈500 3 93.49 ↑ 0.20 - 40
Rethink21 3 40 3 93.77 ↑ 0.15 - 40
SFP10 3 100 3 93.68 ↓ 0.30 - 41
TMI-GKP (ours, PR = 43.75%) 7 300 7 94.26 ↑ 0.64 43.52 43.31

ResNet-56 on Tiny-ImageNet: FLOPs: 5.06E8 Params: 8.65E5
DBP� 38 3 420 3 56.55 ↓ 0.98 25 53
DHP� 18 - 420 3 56.55 ↓ 0.73 46 55
GAL� 20 7 420 7 56.55 ↓ 0.68 32 52
3D39 3 420 3 56.55 ↓ 0.51 34 59
TMI-GKP (ours, PR = 37.25%) 7 300 7 55.59 ↓ 0.63 36.74 37.05

ResNet-101 on Tiny-ImageNet: FLOPs: 1.01E10 Params: 4.29E7
DBP� 38 3 420 3 64.83 ↓ 3.48 76 77
DHP� 18 - 420 3 64.83 ↓ 0.01 50 75
GAL� 20 7 420 7 64.83 ↓ 0.50 45 76
3D39 3 420 3 64.83 ↑ 0.44 51 75
TMI-GKP (ours, PR = 87.50%) 7 300 7 65.51 ↑ 1.38 43.53 43.25

ResNet-50 on ImageNet (ILSVRC-12): FLOPs: 5.37E9 Params: 2.56E7
FPGM11 3 100 3 75.96 ↓ 0.19 22.1 22.5
PScratch40 3 ≈409 3 77.20 ↓ 0.50 29.8 26.8
TMI-GKP (ours, PR = 50%) 7 90 7 76.15 ↓ 0.19 22.1 22.5
Taylor26 3 25 3 76.18 ↓ 0.70 30.0 28.1
ThiNet22 3 1 per prune 3 72.88 ↓ 0.84 - 36.7
FPGM11 3 100 3 75.96 ↓ 0.92 33.2 33.7
SFP10 3 100 3 76.15 ↓ 1.54 - 41.8
TMI-GKP (ours, PR = 75%) 7 90 7 76.15 ↓ 0.62 33.21 33.74
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