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Graph Matrices under the Multivariate Setting

Abstract

by

IMRAN HOSSAIN

We expand on the framework of graph matrices first introduced by Ahn et al. [1],

which are a class of random matrices whose entries’ dependence can be described

by a small graph. While Ahn et al. assume that a univariate distribution underlies

this dependence, we relax this assumption and introduce graph matrices whose input

structure is derived from a multivariate probability distribution. We then show

spectral norm bounds on these graph matrices as being consistent with those under

the univariate setting using the trace power method. Our result expands Ahn et al’s

work by allowing for random matrices with more complicated dependencies between

elements. We present potential applications that have such dependencies under the

multivariate setting in fields such as graph theory.

vi
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CHAPTER 1. INTRODUCTION

In this thesis, we expand on the work of Ahn, Medarametla, and Potechin [1], who

introduce graph matrices, a class of matrices whose random-valued entries depend on

some input probability distribution. In particular, this dependence can be characterized

by a small graph. While the theory of random matrices has been studied for many

decades, with applications in nuclear physics [2], statistics [3], and quantum physics

[4], typically these applications make the assumption that entries of these random

matrices are independent. The framework that Ahn et al. introduce using graph

matrices allow for the analysis of large dependent random structures (whose size

is described by a parameter n) in a way that makes their analysis easier and more

mechanical. These structures can come in the form of (but are not limited to) matrices,

polynomials, or graphs, e.g. the Erdős-Rényi model of random graphs on n vertices,

which we discuss in Section 2.2.1. This work arose out of Potechin’s work involving

the sum-of-squares hierarchy [5], [6], and so the applications discussed often involve

problems that end up analyzing this hierarchy. In their work, Ahn et al. showed

spectral norm bounds on graph matrices and have used them to more easily reproduce

upper bound analyses of the sum-of-squares hierarchy. This sum-of-squares hierarchy is

often used to show bounds on refutation algorithms in constraint satisfaction problems

[7], a core topic of interest in theoretical computer science, as well as in inference

problems in machine learning such as tensor completion [8]. The proofs of some of

these bounds often required clever arguments, whereas graph matrices makes their

analysis more mechanical and straightforward.

One core assumption Ahn et al. made in their work is that the entries of a graph

matrix are expressed in terms of random variables that are sampled from an input

distribution on one variable, i.e. a univariate probability distribution. For example,

the presence of edges in a random graph on [n] vertices are events sampled from

the Rademacher distribution. As another example, the coefficients of a polynomial

in n variables are products of random variables sampled from the standard normal
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CHAPTER 1. INTRODUCTION

distribution [1, Section 9.2]. Notably, this assumption does not generally allow for

random variables that have nonzero covariance, since samples are independent of one

another.

In our work, we relax this univariate assumption and port the graph matrix frame-

work to the multivariate setting, letting these random variables instead be sampled

from a probability distribution in d ≥ 2 dimensions. This allows for distributions

that follow a stricter set of rules that either cannot be expressed or are much more

difficult to express using a univariate distribution. By consequence, this increases the

framework’s versatility, allowing its use in more applications. We begin in Chapter 2

with preliminary backgrounds in linear algebra, graph theory, and probability theory.

We then introduce the graph matrix framework in Section 2.2, starting with a warm-up

example from [1, Section 2.1] of a clique indicator matrix for Erdős-Rényi random

graphs, then moving on to more generalized definitions. Towards the end of the

chapter, we reproduce the main theorem of Ahn et al. [1], bounding the spectral norm

of a graph matrix.

In Chapter 3, as a preface to our contributions, we present the techniques and

theorems used to prove this bound, namely the trace power method, constraint graphs,

and the handling of an input distribution. We then move on to the multivariate setting

and modify these techniques in Chapter 4. In particular, we modify theorems used

to bound the input distribution and properties of constraint graphs. Some of these

modifications required straightforward proofs that were essentially modified from Ahn

et al’s work, while others required more sophisticated arguments. This ultimately

culminates in the same upper bound on the spectral norm on a graph matrix in the

multivariate setting as in the univariate setting, though these bounds can be refined

given a specific input distribution.

Chapter 5 then presents a few potential applications that would either be much

more difficult or impossible to work with in the univariate setting. First in Chapter 5,

3



CHAPTER 1. INTRODUCTION

we extend Ahn et al’s application of bounding polynomials over the unit sphere.

While in [1, Section 9] the coefficients of these polynomials are random variables

from the standard normal distribution, we modify one of their examples to use a

multivariate normal distribution with non-zero covariance and show a bound on this

polynomial over the unit sphere. We then revisit the clique indicator matrix in

Section 5.2, modify it by introducing a new random graph model with edge coloring

and creating a monochromatic clique probability matrix, then show spectral norm

bounds on this matrix. Finally, in Section 5.3 we discuss a potential application in

quantum physics, using graph matrices to represent expressions involving pure states

and density matrices.

4
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CHAPTER 2. BACKGROUND

In this chapter we provide the necessary background on top of which our work is

built. Section 2.1 provides a basic introduction to matrices and graphs as well as related

concepts and notation used in the rest of the paper. Section 2.2 introduces the concept

of graph matrices, a type of random matrix whose dependencies can be characterized

by a graph. Section 2.3 defines some properties of probability distributions, specifically

those that are multivariate.

2.1 Preliminary Definitions & Notation

For some n ∈ N, we write [n] to mean the set {1, 2, . . . , n}.

Let M be some matrix over some field F. We use the notation M(i, j) to signify

the element in M at index (i, j), and the notation M(i) to signify the ith column

vector in M . Similarly, for some order-d tensor T where d > 2, we use T (i1, . . . , id)

to signify a specific element in T . We also use the notation T (i1, . . . , id−1) to denote a

“subtensor” of T taken by fixing the first d− 1 indices. For example, for a n1×n2×n3

tensor T (visually, a “cube” of elements), T (i, j) is the vector (or “rod”) of elements

at position (i, j) in the tensor.

In the field of linear algebra, there are several matrix norms (all denoted with

‖ · ‖), all of which obey the properties listed below.

Definition 2.1 (Properties of matrix norms). Given matrices M ,N over F and scalar

k ∈ F, a matrix norm ‖ · ‖ must satisfy the following properties:

1. (Non-negativity). ‖M‖ ≥ 0

2. (Definiteness). ‖M‖ = 0 if and only if M is the zero matrix

3. (Scaling). ‖kM‖ = |k|‖M‖

4. (Triangle inequality). ‖M +N‖ ≤ ‖M‖+ ‖N‖

6



CHAPTER 2. BACKGROUND

In this thesis we focus on the spectral norm, which is roughly how much a vector

is scaled by a matrix. Throughout the rest of this paper, we write ‖ · ‖ to denote the

spectral norm. We give a concrete definition below.

Definition 2.2 (Spectral norm). Given a matrix M over a field F, the spectral norm

of M , written as ‖M‖, is defined as

‖M‖ = sup
v 6=0

‖Mv‖2
‖v‖2

= sup
‖v‖2=1

‖Mv‖2,

where v is some vector over F and ‖v‖2 is the Euclidean norm, or 2-norm, of v. The

spectral norm is also known as the operator norm or induced 2-norm.

We also define some additional terminology concerning matrices which we use

throughout the paper.

Definition 2.3 (Trace). For an n× n matrix M , the trace of M , written as Tr(M ),

is the sum of the entries on its main diagonal. That is,

Tr(M) =
n∑

i=1

M (i, i).

Definition 2.4 (Definiteness). For some real-valued square matrix M ∈ Rn×n, we

say that M is positive semi-definite, written M � 0, if x>Mx ≥ 0 for all x ∈ Rn.

Given a graph G, we write its vertex set as V (G) and edge set as E(G). Each

edge e = {v1, v2} ∈ E(G) is a set of two vertices v1, v2 ∈ V (G). In a hypergraph H, an

edge can connect any number of vertices. That is, E(H) is made up of (non-empty)

subsets of V (H) of any size. We introduce some properties of graphs below.

Definition 2.5 (Clique). We say that a graph G is a clique if any two vertices in G

are adjacent.

Definition 2.6 (U, V -separator). For a graph G and subsets U, V ⊆ V (G) of its vertex

set, we say that S ⊆ V (G) is a vertex separator between U and V , or a U, V -separator,

7



CHAPTER 2. BACKGROUND

if all paths between U and V go through S. We call S a minimum U, V -separator if

no other U, V -separators are smaller. Note that paths of length zero are allowed, so

S ⊇ U ∩ V .

Definition 2.7 (Matching). For a graph G, a matching is a set of edges M ⊆ E(G)

such that no two edges are incident to the same vertex. We call M a maximum

matching if no other matching on G is larger. For subsets U, V ⊆ V (G), a U, V -

matching is a set of edges M ⊆ E(G) such that no two edges are incident to the same

vertex, and each edge has an endpoint in U and another in V .

Our work also deals with probability distributions, so we provide some definitions.

Definition 2.8 (Support). Let Ω be some probability distribution. The support

of Ω is defined as supp(Ω) = {x | X ∼ Ω, p(X = x) > 0}, the set of all values with

nonzero probability under Ω. Intuitively, this is the set of all values which can be

sampled from Ω.

Definition 2.9 (Moments). Let X ∼ Ω be some random variable drawn from a

probability distribution, and EΩ(f(X)) be the expectation of f(X) over Ω. For all

j ∈ N, the j-th moment of Ω is defined as µΩ(j) = EΩ[X
j].

Definition 2.10 (Polynomial vector space). The vector space of polynomials F[x] is

the set of all expressions of the form

c0 + c1x+ . . .+ ckx
k

where coefficients ci are elements of the field F. Further, we define the canonical basis

of F[x] to be the set of all monomials {1, x, x2, x3, . . .}.

Lastly, we provide a definition regarding asymptotic complexity.

Definition 2.11 (Soft-O notation). We define the notation Õ(f(n)), called soft-O,

as shorthand for big O notation ignoring polylogarithmic factors: O(f(n) logc n) for

8



CHAPTER 2. BACKGROUND

some c ≥ 0. That is, a function g(n) = Õ(f(n)) when it grows asymptotically no

faster than a polylogarithmic factor of f(n).

2.2 Graph Matrices

Many problems in fields such as quantum physics [9] or sum-of-squares [10] boil down

to analyzing some class of matrices. In many cases, entries of this matrix may be

random variables drawn from some distribution. We call these random matrices. The

properties of random matrices whose entries are independent random variables have

been well-studied in random matrix theory, a field with many applications in physics,

mathematics, and computer science. Some examples of such properties are as follows:

• For a symmetric random n×n matrix whose entries are iid random variables from

the standard normal distribution N (0, 1), Wigner’s Semicircle Law [11] describes

the limit of the distribution of eigenvalues, or the limiting spectral distribution,

as n → ∞ stating that its probability density function is a semicircle.

• For a random n× n matrix whose entries are iid complex random variables with

unit variance, Girko’s circular law [12] states that the limiting distribution of

eigenvalues as n → ∞ follows the uniform distribution over the unit disc on the

complex plane.

• Given a symmetric n × n matrix whose off-diagonal entries are iid random

variables drawn from a distribution with unit variance and whose diagonal

entries are iid from another such distribution, the spectral norm of the matrix is

bounded from above by 2(1 + o(1))
√
n. [13], [14]

As seen in these examples, random matrix theory is often interested how properties of

a random matrix behave asymptotically as the size of the matrix increases.

9



CHAPTER 2. BACKGROUND

Now, rather than a matrix whose entries are iid, consider a matrix whose entries

are dependent on some underlying random input distribution such that entries are

no longer independent of each other. Ahn et al. [1] introduce such a class of random

matrices, called graph matrices. As we will discuss in this section, we can express this

dependence with a small graph we call a shape. In their paper, Ahn et al. prove a

rough bound on the spectral norm of these matrices and demonstrate applications of

these bounds by reproducing results of various theorems concerning the sum-of-squares

hierarchy.

2.2.1 Warm-up: Clique Indicator Matrix

To introduce the concept of a graph matrix, we consider a simple example excerpted

from [1, Section 2.1] throughout this subsection. We will revisit this example and

modify it later in Section 5.2.

Example 2.12. Consider the distribution of graphs G whose vertex sets V (G) = [n],

and each possible edge has independent probability 1/2 of appearing in G. This is

known as an Erdős-Rényi distribution of random graphs, denoted G(n, 1/2).

Suppose we want to analyze the following n · (n− 1)× n · (n− 1) indicator matrix

CLIQUE, defined as

CLIQUE((i1, i2), (j1, j2)) :=


1 if i1, i2, j1, j2 are distinct and form a clique in G

0 otherwise.
(2.1)

Note that the matrix indices are tuples of 2 vertices or monomials, and that each

of the indices are elements of the vertex set [n]. Also note that the entries of this

matrix are random, but not independent, as they each depend on varying factors of

the same underlying graph G ∼ G(n, 1/2). We provide the following definitions to

formalize the indices of a matrix.

10



CHAPTER 2. BACKGROUND

Definition 2.13 (Ground set). Since each monomial takes on a value from [n], we

call this set a ground set.

Definition 2.14 (Matrix index). A matrix index A = (a1, . . . , am) is an m-tuple of

distinct indices for some m ∈ N, where each ai is drawn from the ground set [n]. We

define V (A) to be the set of vertices {a1, . . . , am}.

One way we could try to analyze this matrix is by decomposing each of its

entries M((i1, i2), (j1, j2)) into all possible graphs on the 4 vertices {i1, i2, j1, j2},

then querying the existence of each edge in those graphs. We call this analysis by

decomposition Fourier analysis.

To perform this analysis, we first need a way to encode the existence of some edge

{k1, k2} in G. We encode these as variables χ{k1,k2}, where

χ{k1,k2} :=


+1 if {k1, k2} ∈ E(G)

−1 if {k1, k2} /∈ E(G).

We can then decompose the CLIQUE matrix into a sum over each possible subgraph

on four vertices as in the following proposition.

Proposition 2.15 ([1, Equation 2.2]). For distinct i1, i2, j1, j2 ∈ [n],

CLIQUE((i1, i2), (j1, j2)) =
1

26
·

∑
R: graph on {i1,i2,j1,j2}

∏
e∈E(R)

χe. (2.2)

If a clique exists for a particular index of CLIQUE, then each factor χe = +1 in the

product, and this is true across the sum over all graphs over those indices. Otherwise

some edge e is missing, and χe = −1 in half of the summands, resulting in a perfect

cancellation.

Note how each summand is a product of all the χe variables on the edge set of

each possible graph on the given indices. We call this the Fourier character of the

11



CHAPTER 2. BACKGROUND

edge set.

Definition 2.16 (Fourier characters). Given some edge set E whose elements are

pairs of distinct indices from the ground set [n], the Fourier character of E is defined

as χE =
∏

e∈E χe.

Consider a specific entry of CLIQUE, taken by mapping indices i1, i2, j1, j2 to

distinct values from [n]. We call this a realization of the variables in the matrix index.

For example,

CLIQUE((1, 2), (4, 5)) =
1

26
·

∑
R: graph on {1,2,4,5}

χE(R)(G)

We call each graph R corresponding to a summand in the entry a ribbon, for which

we give a precise definition in Definition 2.17. Each ribbon has a set of left and right

vertices, signified by the matrix index, which we call AR and BR. Ribbons may also

have middle vertices distinct from the matrix index, which we call CR. In this case,

A = (1, 2) and B = (4, 5). We define the Fourier character of a ribbon R as that of

its edge set E(R). That is, χR := χE(R). Thus, we can express the above entry using

ribbons and Fourier characters as:

CLIQUE((1, 2), (4, 5)) =
1

26
·

∑
ribbon R

V (R)={1,2,4,5}
AR=(1,2), BR=(4,5)

χR.

Consider one of the terms in Equation (2.2). For example, one such term is

χ{1,5}χ{2,4}χ{2,5}. Figure 2.1 shows the ribbon corresponding to this term.

We give a formal definition for ribbons below.

Definition 2.17 (Ribbons). A ribbon R consists of (possibly intersecting) matrix

indices AR and BR, a set of additional distinct indices CR, and a set of pairs of indices

E(R). We represent R as a graph with left vertices V (AR), right vertices V (BR),

12
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1

2

4

5

AR BR

Figure 2.1: Ribbon R where V (R) = {1, 2, 4, 5}, AR = (1, 2), BR = (4, 5) and
E(R) = {{1, 5}, {2, 4}, {2, 5}}.

middle vertices V (CR), and edge set E(R). The left and right vertices may intersect,

but the middle vertices are distinct. The Fourier character χR of a ribbon is defined

as that of its edge set, χE(R).

Note how, in Figure 2.1, the left and right vertices in R correspond to the first

and second matrix indices in CLIQUE((1, 2), (4, 5)), respectively.

We can then consider all terms across all entries that have the same configuration,

or shape, as this ribbon. Call this shape α. To do this, we replace the exact assignments

1, 2, 4, 5 with free variables u1, u2, v1, v2, respectively. Each of these variables, when

realized, will take on values from the ground set [n]. Additionally, we replace the exact

matrix indices AR and BR with tuples Uα = (u1, u2) and Vα = (v1, v2), respectively.

We call these tuples index shapes, and say that a matrix index A has index shape U

if they are the same size. Figure 2.2 shows the shape of the ribbon R in the above

example.

Shapes then are essentially an abstraction of ribbons, where indices are replaced

by free variables. To formalize this, we give a definition for shapes.

Definition 2.18 (Shapes). A shape α consists of index shapes Uα and Vα, a set of

additional distinct indices Wα, and a set of pairs of variables E(α) taken from any of

those sets. We represent α as a graph with left vertices V (Uα), right vertices V (Vα),

middle vertices V (Wα), and edge set E(α) between these vertices. The left and right

13
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u1

u2

v1

v2

Uα Vα

Figure 2.2: Shape α where V (α) = {u1, u2, v1, v2}, Uα = (u1, u2), Vα = (v1, v2) and
E(R) = {{u1, v2}, {u2, v1}, {u2, v2}}, abstracting the ribbon in Figure 2.1.

vertices may intersect, but the middle vertices are distinct. Variables in Uα, Vα,Wα

are written as ui, vi, wi, respectively.

Now, we can rewrite the CLIQUE decomposition in Equation (2.2) using shapes.

Given a specific shape, we take all ribbons with that shape together to construct a

matrix. In other words, for each shape α, we take all ribbons such that we can map

the shape variables to the ribbon’s indices. We then construct a matrix Mα from this

as follows:

Mα((i1, i2), (j1, j2)) :=


χR if i1, i2, j1, j2 are distinct

0 otherwise
,

where R is a ribbon with shape α such that AR = (i1, i2) and BR = (j1, j2). We call

this matrix Mα a graph matrix, and give a precise definition below.

Definition 2.19 (Graph matrices). Given a shape α, the graph matrix Mα is a
n!

(n−|Uα|)! ×
n!

(n−|Vα|)! matrix where, for indices A,B ⊆ [n] such that |A| = |Uα| and

|B| = |Vα|,

Mα(A,B) =
∑

ribbon R: R has shape α

χR.

We can then rewrite the entire CLIQUE indicator matrix using graph matrices over

each applicable shape. Recall that CLIQUE is indexed using 2-tuples. This means we

14
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sum over all shapes with 2 left vertices and 2 right vertices (i.e. |Uα| = |Vα| = 2),

giving us the following equation:

CLIQUE =
1

26
·

∑
shape α

V (α)={u1,u2,v1,v2}
Uα=(u1,u2), Vα=(v1,v2)

Mα (2.3)

By the triangle inequality, the norm of CLIQUE then involves bounding the norm

of each of its parts Mα, which Ahn et al. demonstrate in [1, Section 2.5]. For

completeness, we restate their informal norm bounds on a graph matrix with some

shape α.

Theorem 2.20 ([1, Theorem 2.24]). Let α be a shape, u be the number of isolated

middle vertices in Wα, and smin be the minimum size of a Uα, Vα-separator. Then,

w.h.p., ‖Mα‖ ≤ Õ
(
n

1
2
(|V (α)|+u−smin)

)
.

We show a more formal bound on the norm of a graph matrix in Theorem 2.35.

Next, we show rough norm bounds on CLIQUE.

Proposition 2.21. ‖CLIQUE‖ = Õ(n2).

Proof. Given the expression for CLIQUE in Equation 2.3, all shapes α have 4 vertices,

i.e. |V (α)| = 4 and no middle vertices. To show a norm bound, we split these shapes

into three groups:

• For shapes where there are no edges between Uα and Vα, the size of a minimum

Uα, Vα-separator is smin = 0, so ‖Mα‖ = Õ(n2).

• For shapes with a maximum Uα, Vα-matching of size 1, the size of a minimum

Uα, Vα-separator is smin = 1, so ‖Mα‖ = Õ
(
n

3
2

)
.

• Lastly, for shapes with a maximum Uα, Vα-matching of size 2, the size of a

minimum Uα, Vα-separator is smin = 2, so ‖Mα‖ = Õ(n).
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Because matrix norms follow the triangle inequality as in Definition 2.1, ‖CLIQUE‖ is

bounded from above by the sum of these individual norms. Adding these all together,

the Õ(n2) terms dominates all others, so we obtain a norm bound of Õ(n2), concluding

the proof.

2.2.2 Generalized Definitions

Ahn et al. generalize their technique for bounding the norm of graph matrices beyond

the Erdős-Rényi model, to bounding the norm for random matrices whose dependence

can be described using a small hypergraph. This generalization extends the potential

applications of graph matrices. For instance, Ahn et al. use graph matrices to replicate

various proofs in papers that use the sum-of-squares hierarchy, such as in the work

of Hopkins et al. [15]. To show this, we introduce an example of a homogeneous

polynomial of even degree and demonstrate how we can upper bound the value of this

polynomial over the unit sphere using graph matrices. We discuss this application in

more detail in Section 5.1.

Example 2.22. Rather than a random graph, suppose the input is an m× n matrix

A with off-diagonal entries drawn from the standard normal distribution N (0, 1), and

that we would like to bound polynomials whose coefficients are factors of entries from

A. For example, suppose row index i ∈ [m] and column indices j1, j2 ∈ [n], and the

polynomial

f(x1, . . . , xn) =
∑

j1 6=j2∈[n]

∑
i∈[m]

A(i, j1)(A(i, j2)
2 − 1)

xj1xj2 . (2.4)

If we construct another matrix M whose entries are coefficients of this polynomial,

it turns out that bounding the norm of this matrix will upper bound the value of the

polynomial over the unit sphere, and we can derive this bound using a generalized

graph matrix. To do this, we need to:

16
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1. Represent entries A(i, j) by an edge between some vertices that represent indices

i ∈ [m] and j ∈ [n]. Since these indices are taken from different ground sets, we

represent them by two different types of vertices: row and column vertices.

2. Represent varying-degree polynomials of the input entries, such as A(i, j)2. To

achieve this, we project these polynomials onto a basis for the input distribution

N (0, 1), then create labeled edges for each element of the basis that appears in

the projection.

Towards these ends, we provide the generalized framework for graph matrices over

a given input distribution Ω as given in [1]. We will return to this specific example

and bound its value over the unit sphere later in Example 5.5. First, we generalize

definitions from the previous section. Index monomials can now consist of variables of

multiple types (e.g. row and column indices), so we assume there are t such types of

variables. Thus, we define notation for the ground sets of different types.

Definition 2.23 (Ground sets [1, Definition 7.6]). For all i ∈ [t], we write Ni to

mean the i-th ground set of indices for variables of type i. Usually, Ni = [ni] for some

ni ∈ N.

In representing Equation (2.4), we have two types of variables: those representing

row indices and column indices, so our ground sets would be [m] and [n] (the dimensions

of A), respectively.

Next, we generalize the matrix indices in Definition 2.14. Note that entries of the

input structure (e.g. a polynomial or a matrix like CLIQUE) can now be expressed in

terms of higher-degree polynomials such as (A4
ij −1)A2

ij′ instead of simply the product

of ±1 entries as in
∏

e χe. We therefore need a way to encode these expressions in

the indices of the graph matrix. Below, we define a new type of matrix index by

decomposing expressions by type and exponent.

17
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Definition 2.24 (Generalized matrix indices [1, Definition 7.10]). A generalized matrix

index A = {Ai} is a set of disjoint matrix index pieces Ai = ((a1, . . . , am), ti, pi), where

each aj ∈ Nti represents the jth monomial of type ti raised to the power pi. All pieces

(for i < j) are ordered by type (ti < tj) then exponent (ti = tj =⇒ pi < pj).

The size of A is a tuple |A| = (|A1|, |A2|, . . .), where |Ai| is the number of indices

in Ai.

To clarify the definition above, we provide an example of a matrix index.

Example 2.25. Suppose we want to represent the monomial x1x2x
2
1x

2
3y1y2, where xi

and yi are variables of two different types. To represent this monomial as a matrix

index, we perform the following:

1. Decompose the expression by type, then power: x1x2, x2
1x

2
3, y1y2.

2. Create index pieces for each decomposition: A1 = ((1, 2), 1, 1), A2 = ((1, 3), 1, 2),

A3 = ((1, 2), 2, 1).

3. Compose the pieces together to create the matrix index A = {A1, A2, A3}.

We can generalize the index shapes similarly as U = {Ui}, each piece Ui carrying a

type and exponent. We say that a matrix index A has index shape U if they have the

same number of pieces of the same type and power, and all pieces are of the same size.

Next, we generalize the input distribution Ω. An example of Ω is the standard

normal distribution, N (0, 1). For an input structure with some underlying Ω, we

need to define a way to perform Fourier analysis on the structure similar to how we

analyzed the CLIQUE matrix. To do this, we need to use some orthonormal basis for

Ω so we can analyze expressions in terms of that basis.

Definition 2.26 (Orthonormal basis for Ω [1, Definition 7.14]). Given an input

probability distribution Ω and its associated probability function fΩ, we define {hi}

18
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as a set of polynomials found by applying the Gram-Schmidt process to the canonical

basis of the polynomial space R[x]. These polynomials have the following properties:

1. ∀i, EΩ[h
2
i (x)] = 1,

2. ∀i 6= j, EΩ[hi(x)hj(x)] = 0,

3. ∀i, the leading coefficient of hi is positive.

Note that, if |supp(Ω)| is finite, there are a finite number of basis polynomials

{hi : i ∈ [|supp(Ω)| − 1]}.

See Definition 4.2 for a definition of the Gram-Schmidt process as applied to

a canonical basis. We also provide the orthonormal basis for the standard normal

distribution in Appendix A.1.

Obtaining a basis then lets us project expressions such as Equation (2.4) onto that

basis, i.e. represent expressions as a linear combination of the basis polynomials {hi}.

Recall that each edge e in a shape is associated with a random variable, such as χe

from the Rademacher distribution (i.e. taking on +1 or −1 with probability 1/2) in

the case of the CLIQUE matrix. Additionally, recall how in Equation (2.4) there were

multiple terms of varying degrees in each summand for entries A(i, j1),A(i, j2), and

how we represent such entries by edges between vertices that represent such indices.

When projecting this expression onto a basis, we will end up with elements of that

basis in each summand instead. Thus, when coming up with a shape representation for

this polynomial (which we define in Section 5.1), we assign labels to each edge in the

shape denoting which element of the basis to use for the random variable associated

with that edge. We use these to define the Fourier character of a set of edges below.

Definition 2.27 (Fourier characters [1, Definition 7.17]). For a hyperedge e, we

assign label le to denote which element of the orthonormal basis to use for the random

variable associated with e. For a set E of hyperedges, we define the Fourier character
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χE as

χE =
∏
e∈E

hle(xe),

where xe is the random variable associated with e.

We make the following additional definitions for an input distribution which we

use in Theorem 2.35.

Definition 2.28 (Bound function of Ω [1]). For a given input distribution Ω, we say

that a function BΩ : N → R is a bound function of Ω if

1. BΩ is non-decreasing.

2. ∀j ∈ N, |µΩ(j)| ≤ BΩ(j)
j.

Definition 2.29. For a given input distribution Ω and a basis {hi}, let hk(x) =∑k
j=0 cjx

j be the polynomial expansion of the degree k polynomial in that basis. We

define

h+
k (x) =

k∑
j=0

|cj|xj.

We are now ready to generalize ribbons and shapes.

Definition 2.30 (Generalized ribbons [1, Definition 7.18]). A generalized ribbon

R consists of (possibly intersecting) generalized matrix indices AR and BR, a set of

additional distinct indices CR, and a set of subsets of indices E(R). We represent R

as a graph with left vertices V (AR), right vertices V (BR), middle vertices V (CR), and

hyperedge set E(R). The left and right vertices may intersect, but the middle vertices

are distinct. The Fourier character χR is defined as χE(R).

Definition 2.31 (Generalized shapes [1, Definition 7.19]). A shape α consists of

generalized index shapes Uα and Vα, a set of additional distinct variables Wα, and a

set of subsets of variables E(α). We represent α as a hypergraph with left vertices

V (Uα), right vertices V (Vα), middle vertices V (Wα), and hyperedge set E(α) between
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these vertices. The left and right vertices may intersect, but the middle vertices are

distinct.

Because these shapes can now consist of vertices of different types, we assign

weights to these vertices depending on their type, which will be used later in the norm

bound.

Definition 2.32 (Weights of vertices). Let n = maxi∈[t] |Ni|, the size of the largest

ground set. Given a generalized shape α, the weight of a vertex v of type i is defined

as w(v) = logn |Ni|. The weight of any subset of vertices S ⊆ V (α) is defined as the

sum of the weights of each vertex in S.

This gives us a way to define some ordering on the types based on the size of their

ground set.

Recall that shapes are simply abstracted ribbons with index assignments replaced

by free variables. We generalize what it means for a ribbon R to have shape α.

Definition 2.33 (Realizations of shapes). Given some realization σ : U → ∪i∈[t]Ni

(i.e. mapping an index shape to elements of all ground sets), we say σ is type-respecting

if vertices of type i in the index shape are mapped to elements of Ni, the i-th ground

set.

For a shape α and ribbon R, we say that R has shape α if there exists a type-

respecting realization σ such that σ(α) = R.

Next, we define the graph matrix of a generalized shape α.

Definition 2.34. For a generalized shape α, we define the graph matrix Mα as

Mα(A,B) =
∑

σ:σ is type-respecting for α
σ(Uα)=A, σ(Vα)=B

χσ(E(α)),

where A and B are generalized matrix indices such that |A| = |Uα| and |B| = |Vα|.
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Lastly, we state the main theorem of [1] showing probabilistic bounds on the norm

of a generalized graph matrix.

Theorem 2.35 (Norm bound on generalized graph matrices, [1, Theorem 8.4]). For a

given generalized shape α, let Smin be a minimum weight Uα, Vα-separator, and let Wiso

be the set of isolated middle vertices in Wα. For each i ∈ [t], let mi be the number of

vertices of type i not in Uα ∩ Vα. Then, with probability 1− ε,

‖Mα‖ ≤ 2

(
t∏

i=1

mmi
i

)
· n

1
2
(w(V (α))−w(Smin)+w(Wiso))

min
q≥3

(2q)|V (α)\(Uα∩Vα)|

 ∏
e∈E(α)

h+
le
(BΩ(2qle))

 2q

√
nw(Smin)

ε

 .

We refer readers to [1, Section 8.1] for a formal proof of this theorem, the techniques

for which are described in Chapter 3.

2.3 Multivariate Distributions

In Section 2.2.2, we made the assumption that the input distribution Ω was univariate,

i.e. single-valued. However, in this thesis we seek to expand the graph matrix framework

by letting Ω be multivariate. To that end, we provide some definitions concerning

multivariate random variables and distributions. Let d be the dimension of the

multivariate distribution.

Definition 2.36 (Multivariate moment). For all j = 〈j1, j2, . . . , jd〉 ∈ Nd, the j-th

moment of Ω is defined as

µΩ(j) = µΩ(j1, j2, . . . , jd) = EΩ

[
d∏

i=1

xji
i

]
,

where x = 〈x1, x2, . . . , xd〉 ∼ Ω.

22



CHAPTER 2. BACKGROUND

The multivariate moment is a generalization of EΩ[X
j] for a univariate distribution.

We also define the marginal distribution of an individual random variable in a

multivariate distribution.

Definition 2.37 (Marginal distribution). Suppose some d-variate distribution Ω with

density function fΩ(x1, . . . , xd), and let X = 〈X1, X2, . . . , Xd〉 ∼ Ω. The marginal

distribution of the random variable Xi is defined as a probability distribution in Xi

with density function

fXi
(x) =

∫
fΩ(x1, . . . , xd) dx1 · · · dxi−1 dxi+1 · · · dxd.

As an example of a multivariate distribution, recall the univariate normal distribu-

tion N (µ, σ2), with probability density function 1
σ
√
2π

exp
(
−1

2

(
x−µ
σ

)2). The standard

normal distribution is defined as N (0, 1). We can generalize these distributions to the

multivariate case, which we define below.

Definition 2.38 (Multivariate normal distribution). The d-variate normal distribution

Nd(µ,Σ), with mean vector µ ∈ Rd and d × d covariance matrix Σ � 0 is defined

with the following probability density function:

f(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where x ∈ Rd and |Σ| is the determinant of the covariance matrix.

We can define the parameters of a multivariate normal distribution: Suppose

x ∼ Nd(µ,Σ). Then, we define the mean vector µ as

µ = E[x] =
[
E[x1] E[x2] . . . E[xd]

]>
,
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and each entry of the covariance matrix Σ as

Σ(i, j) = Σ(j, i) = E[(xi − µi)(xj − µj)] = Cov[xi, xj].

24



Chapter 3

Techniques for Proving Bounds of

Graph Matrices

25



CHAPTER 3. TECHNIQUES FOR PROVING BOUNDS OF GRAPH MATRICES

In this chapter, we discuss techniques used to bound the spectral norm of a graph

matrix. We begin with the trace power method in Section 3.1 as a means to bound the

spectral norm of a general matrix. Section 3.2 then introduces constraint graphs, a

concept used to apply the trace power method to the spectral norm of a graph matrix

based on its shape. We then discuss how to handle the input distribution in the norm

bound of a graph matrix in Section 3.3.

3.1 The Trace Power Method

As explained by van Handel in [16], the spectral norm as a function M 7→ ‖M‖ is

nonlinear, since it is a complicated function in terms of entries M (i, j). Recall the

definition of the spectral norm given in Definition 2.2. We can rewrite this norm as

‖M‖ = σmax(M ) =
√

λmax(MM>),

where σmax(M) is the largest singular value of M , and λmax(M ) is the largest

eigenvalue of M . This is indeed a complicated function in terms of entries of a matrix.

Now consider the trace of a matrix, which by contrast is very much linear in the

entries of M , as seen in Definition 2.3. We have the linear algebra identity that

Tr(M ) =
∑

i λi(M ), the sum of M ’s eigenvalues. More generally, we can also say

that

Tr(M q) =
n∑

i=1

λq
i .

We then have the following lemma, derived from the above, relating ‖M‖ to

Tr
(
MM>).

Lemma 3.1 ([1], [16]). For some matrix M and q ∈ N, let λ1, . . . , λn be the eigenvalues
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of MM>. Then,

‖M‖2q = λmax(MM>)q =
∥∥MM>∥∥q ≤ n∑

i=1

λq
i = Tr

(
(MM>)

q)
.

This lemma lets us bound the spectral norm with the trace, which is a simpler

expression to analyze. This is known as the trace power method or the moment method

as described in other texts.

Thus, if we can bound the expected trace power of a random matrix for each q

with some function, it follows that we can bound the spectral norm with those bounds.

Ahn et al. give the following variant of the trace power method using this reasoning.

Lemma 3.2 (The trace power method [1]). Suppose M is a random matrix, and

that we have bounds {B(2q) | q ∈ N} such that ∀q ∈ N, E
[
Tr
(
(MM>)

q)] ≤ B(2q).

Then, for all ε > 0,

Pr

[
‖M‖ > min

q∈N

{
2q

√
B(2q)

ε

}]
< ε.

The proof for this lemma uses Markov’s inequality: Pr
(
x ≥ E[x]

c

)
≤ c.

Thus, bounding the spectral norm of a graph matrix Mα involves finding a bound

on the expected trace power of MαM
>
α for some q ∈ N.

3.2 Constraint Graphs

Ahn et al. then derive a bound using the trace power method by encoding the terms

of the expectation in Lemma 3.2 for some shape α using a concept called a constraint

graph. To introduce these graphs, we first provide a definition of a multi-graph based

on a shape α.

Definition 3.3. Given a shape α, we define its “transpose” shape α> by taking α and

swapping its index shapes Uα and Vα. Next, given a q ∈ N, we define the multi-graph

H(α, 2q) by doing the following:
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u1 w1 v1

v2

(a) Shape α

ū1

ū2

w̄1 v̄1

(b) α>: Transpose of shape α

u1
1 w1

1 v11

v12

w̄1
1

u2
1

w2
1

v21

v22

w̄2
1u3

1

w3
1

v31 v32

w̄3
1

(c) H(α, 2q) for q = 3. Edges in copies of α> are colored red.

Figure 3.1: Example shape α, its transpose α>, and H(α, 2q) for q = 3.

1. Stitch q copies of α and α> together by their left/right vertices, forming a cyclic

structure. That is, for copies α1, α
>
1 , . . . αq, α

>
q , set Vαi

= Uα>
i

and Vα>
i
= Uαi+1

,

where i is modulo q.

2. Keep any overlapping edges as multi-edges.

We provide an example shape α, its transpose α>, and H(α, 2q) for a fixed q in

Figure 3.1, using the following notation:

• Each unique vertex in Uαi
and Vαi

is labeled ui
j and vij, respectively.

• Each vertex in Wαi
is labeled wi

j. The same copy of the vertex in the transpose

shape is labeled w̄i
j.

Having defined these graphs, the reader might notice the symmetry between

the (MαM
>
α )

q terms and the H(α, 2q) graphs. In particular, expanding the former

expression yields copies of a matrix and its transpose strung together q times, while
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graphically the latter expression shows its associated shape and its transpose strung

together q times. Indeed, this gives us one of the tools needed to map terms in

E
[
(MαM

>
α )

q
]

to different graphs that build upon H(α, 2q). To that end, we consider

mappings on the vertex set of H(α, 2q), which we write as V (α, 2q), that assigns

indices from the ground sets
⋃

i∈[t] Ni to those vertices. We restrict these mappings

to only those such that no two vertices in the same copy of α (or α>) receive the

same index. Additionally, because vertices can be of different types, mappings need

to respect those types. The following definitions and proposition formalize these

restrictions.

Definition 3.4 (Type-respecting mappings [1]). We say that a mapping φ : V →
⋃

i Ni

is type-respecting if and only if, for each i ∈ [t], vertices of type i are mapped to the

ground set Ni.

Definition 3.5 (Piecewise injectivity [1]). A mapping φ : V (α, 2q) →
⋃

i∈[t] Ni is

piecewise injective if φ is injective on each copy of αi and α>
i for all i ∈ [q]. That is, no

two vertices in the same copy of a shape (or its transpose) receive the same mapping.

Ahn et al. rephrase the expected trace power as a summation over such mappings

using the H(α, 2q) graphs.

Proposition 3.6 ([1]). For all shapes α and q ∈ N,

E
[
Tr
(
(MαM

>
α )

q)]
=

∑
φ:V (α,2q)→

⋃
i Ni

φ is piecewise injective
φ is type-respecting

E
[
χφ(E(α,2q))

]
,

where E(α, 2q) denotes the edge set of H(α, 2q).

We note that the expectation of the terms of both sides are over the input

distribution Ω.

Ahn et al. then observe that the expectations on the right-hand side of the above

proposition only depend on sets of vertex pairs in V (α, 2q) (i.e. the vertex set of

29



CHAPTER 3. TECHNIQUES FOR PROVING BOUNDS OF GRAPH MATRICES

H(α, 2q)) that receive the same mapping from each φ. We therefore define constraint

graphs for a given mapping on a set of vertices, which capture this concept by linking

such vertices together by constraint edges.

Definition 3.7 (Constraint graphs [1]). Given a set of vertices V and a mapping

φ : V →
⋃

i∈[t] Ni, the constraint graph C(φ) on V is constructed as follows:

1. Give C(φ) the vertex set V .

2. For each pair of vertices u, v ∈ V that receive the same mapping φ(u) = φ(v),

add a constraint edge {u, v} to C(φ).

3. Remove one constraint edge from any cycles to remove redundancies.

We say that two constraint graphs on V are equivalent, written C ≡ C ′, if for each

pair u, v ∈ V , there exists a u, v-path in C if and only if there exists a u, v-path in C ′.

Next, we provide some definitions concerning constraint graphs specifically on

H(α, 2q).

Definition 3.8. Let C(α,2q) = {C(φ) | φ : V (α, 2q) →
⋃

i Ni} be the class of all possible

constraint graphs on H(α, 2q) with some type-respecting, piecewise injective mapping

φ. We define the following:

1. N(C) to be the size of the equivalence class on C under the set of all possible

such mappings φ.

2. val(C) = EΩ

[
χφ(E(α,2q))

]
for some φ such that C(φ) ≡ C.

φ in the above definitions are assumed to be type-respecting and piecewise injective.

Then we simplify Proposition 3.6 as follows:

Proposition 3.9. For all shapes α and q ∈ N,

E
[
Tr
(
(MαM

>
α )

q)]
=

∑
C∈C(α,2q)

N(C) val(C).
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Ahn et al. then analyze the expected trace power using combinatorial arguments

to bound N(C) and val(C). After coming up with these bounds on the expected

trace power, Ahn et al. use another technique called the vertex partitioning lemma,

which is a way to break up a more complicated graph matrix Mα into well-behaved

pieces Mα,P by partitioning the ground set of indices. These pieces are bounded

individually using some bounding function, then recombined to form a norm bound

on the graph matrix itself. As this technique does not change when relaxing the

univariate assumption, we refer readers to [1, Section 5] for more details.

3.3 Handling the Input Distribution

The analysis of these constraint graphs is done for any general (univariate) input

distribution Ω, over which expectations throughout the previous section are computed.

Bounding val(C) however requires bounding moments of the input distribution. For

completeness, we re-state these definitions and refer readers to [1, Section 7.4] for the

proofs of the given lemmas. We modify such lemmas and give our own proofs under

the multivariate setting later in Chapter 4.

Recall the definition of basis polynomials in Definition 2.26 and their absolute

value counterparts in Definition 2.29. The latter set of polynomials have the following

bound on the former:

Lemma 3.10. For all k, r ∈ N, EΩ[hk(x)
r] ≤ h+

k (BΩ(kr))
r.

The h+ polynomials are then used to finally bound val(C) for some well-behaved

constraint graph C ∈ C(α,2q). We define this well-behaved property below, then state

the bound on val(C).

Definition 3.11 (Well-behaved constraint graph). We say that a constraint graph

C(φ) ∈ C(α,2q) is well-behaved if, for every constraint edge (u, v) ∈ E(C(φ)), u and v
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are both copies of the same vertex in α across different copies of α (or α>). That is,

vertices that receive the same mapping under φ are copies of the same vertex.

Lemma 3.12. For a generalized shape α with edge labels {le}e∈E(α) (as in Defini-

tion 2.27) and constraint graph C ∈ C(α,2q),

val(C) ≤
∏

e∈E(α)

h+
le
(BΩ(2qle))

2q
.

Proving the norm bound then just requires bounding the expected trace power

terms along with the vertex partitioning lemma mentioned in Section 3.2. The bound

on the expected trace power terms is given by the following lemma:

Lemma 3.13 ([1, Lemma 8.7]). Let Smin be a minimum weight Uα, Vα-separator.

Then, for all vertex partitions P and q ∈ N,

E
[
Tr
(
(Mα,PM

>
α,P )

q)] ≤
 ∏

e∈E(α)

h+
le
(BΩ(2qle))

2q

(2q)2q|V (α)|nq(w(α)−w(Smin))+w(Smin).

The proof for this lemma involves combinatorial arguments that examine the

weight of constraint edges (i.e. the weight of one of their endpoints, well-defined under

the well-behaved constraint) and number of constraint graphs in C(α,2q).
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In this chapter we extend the graph matrix framework to accomodate multivariate

input distributions. From here on, we assume the input distribution Ω has dimension

d. That is, values sampled from Ω are vectors of size d. For example, Ω could be the

standard d-variate normal distribution N (0d, Id), where 0d is the zero vector of size d,

and Id is the d× d identity matrix.

Previous sections as well as theorems throughout [1] assumed a univariate input

distribution Ω, so we must retrofit some of these theorems to the multivariate case.

We begin by redefining an orthonormal basis for Ω in Section 4.1. Section 4.2 will

then modify the techniques introduced in Chapter 3 to fit the multivariate case.

4.1 Orthonormal Bases

Recall the definition of an orthonormal basis in Definition 2.26. An orthonormal

basis in the univariate case is taken by performing the Gram-Schmidt process on

the canonical basis of the polynomial vector space F[x], where F is usually R. We

generalize this vector space to the d-variate case F[x] in the following definition.

Definition 4.1 (Multivariate polynomial space). We write a monomial in d variables

as

xa = xa1
1 xa2

2 · · ·xad
d ,

where a = 〈a1, . . . , ad〉 is a vector of exponents we call the degree of the monomial.

We also call ‖a‖1 the degree sum of the monomial. The vector space of polynomials

F[xd] is the set of all expressions of the form

∑
a∈Nd

cax
a,

where ca = ca1,...,ad uses the multi-index notation to denote the coefficient of monomial
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xa. Further, we define the canonical basis of F[xd] as

{1, x1, . . . , xd, x
2
1, . . . , x

2
d, x1x2, x1x3, . . . , xd−1xd, . . .}

or, more succinctly,
⋃∞

k=0 {xa | ‖a‖1 = k}, the union of all monomials with degree

sum k and unit coefficient for k = {0, 1, 2, . . .}.

Unless otherwise noted, we use R as our field.

Next, we define the Gram-Schmidt process as used in deriving an orthonormal

basis. All distributions Ω have a probability mass or density function associated with

them, which we will write as fΩ(xd). The Gram-Schmidt orthogonalization process

with respect to this density function is as follows.

Definition 4.2 (Gram-Schmidt process for multivariate Ω). Consider the polynomial

vector space F[xd] equipped with the following inner product:

〈pi, pj〉 = EΩ[pi(x)pj(x)] =

∫
supp(Ω)

pi(x)pj(x)fΩ(x) dx , (4.1)

where pi(x) and pj(x) are polynomials in xd (shortened to pi and pj for clarity).

Define the projection operator proj as

projpi(pj) =
〈pi, pj〉
〈pi, pi〉

pi.

Let {p0, p1, p2, . . . , pn} be a basis for F[xd], possibly with infinitely many elements in

the case where Ω has infinite support. The Gram-Schmidt process for obtaining an
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orthonormal basis is defined as first calculating the polynomials

q0 = p0

q1 = p1 − projq0(p1)

q2 = p2 − projq0(p2)− projq1(p2)

...

qk = pk −
k−1∑
j=0

projqj(pk)

...

for k ∈ [|supp(Ω)|]. We then normalize each qk to get polynomials hk = qk√
〈qk,qk〉

so

that 〈hk, hk〉 = 1.

Finally, we are ready to define an orthonormal basis for Ω using this process.

Definition 4.3 (Multivariate orthonormal basis for Ω). Given an input distribution

Ω in d variables and its associated probability function fΩ, we define {hi} as a set of

polynomials bound by applying the Gram-Schmidt process in Definition 4.2 to the

canonical basis of the polynomial space F[xd]. The set of basis polynomials is indexed

by a vector i ∈ Nd. These polynomials have the following properties:

1. (Normality). ∀i, EΩ[h
2
i(x)] = 1.

2. (Orthogonality). ∀i, j such that i 6= j, EΩ[hi(x)hj(x)] = 0.

3. (Positive leading coefficient). ∀i, the monomial xi of hi has a positive coefficient.

Note that the first two properties can be restated as: the polynomials form an

orthonormal basis of the polynomial vector space equipped with the inner product

defined in Equation (4.1).

A careful reader might notice that the indices of the basis polynomials in Defini-

tion 4.2 are scalars while those in Definition 4.3 are vectors. For our purposes, since
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we will use the canonical basis to obtain an orthonormal basis, we associate a basis

polynomial hi with the polynomial obtained using the canonical basis monomial xi

during the Gram-Schmidt process.

With these polynomials, we can then modify the techniques described in Chapter 3

to apply the graph matrix framework in the multivariate case.

4.2 Modified Techniques

Recall that bounding the norm of a graph matrix involves bounding the expected trace

power of that matrix as explained in Section 3.1, and that this expression is bounded

using properties of constraint graphs, specifically the functions N(C) and val(C) for

a class of constraint graphs C(α,2q). In [1], this involved bounding val(C) using the

orthonormal bases of the input distribution Ω, which we showed in Section 3.3. Because

Ω is now a d-variate distribution, we must modify the lemmas given in Section 3.3

that were used to bound val(C).

First, we make the following definitions for bounding functions for a distribution

Ω.

Definition 4.4 (Bound function of Ω). For any input distribution Ω, a bound function

BΩ : Nd → R for Ω satisfies the following

1. It is component-wise nondecreasing.

2. ∀j1, j2, . . . , jd ∈ N, |µΩ(j1, j2, . . . , jd)| ≤ BΩ(j1, j2, . . .)
∑d

i=1 ji .

Note that this function is not unique for each Ω, but finding a bound function

that produces tighter bounds on the moment of the distribution will produce a better

refined bound on val(C).

Next, to bound each polynomial in the orthonormal basis {hk}, we define a new

set of polynomials that are a “flattening” and normalization of the basis polynomials,

similar to Definition 2.29:
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Definition 4.5. For some vector k = 〈k1, k2, . . . , kd〉, let hk(x1, x2, . . . , xd) be the

polynomial taken by applying the Gram-Schmidt process for Ω to the element of

the canonical basis with degree k1 in x1, degree k2 in x2, and so on. Consider the

polynomial expansion of hk as

hk(x) =
∑
j∈Nd

cj1,j2,...,jdx
j .

We define h+
k (x) to be

h+
k (x) =

‖k‖1∑
j=0

 ∑
j1,...,jd

j1+···jd=j

|cj1,...,jd|

xj (4.2)

That is, we group all monomials with a given degree sum j and sum the absolute

value of their coefficients, giving us the coefficient for the monomial xj. This is done

for all j from 0 to ‖k‖1, since no monomials will have a higher degree sum due to the

way we index each hk.

With these, we can state the following theorem.

Theorem 4.6. For all k ∈ Nd, r ∈ N,

EΩ[hk(x)
r] ≤ h+

k (BΩ(rk))
r,

where rk = 〈rk1, rk2, . . . , rkd〉.

Proof. Consider the polynomial expansion of hk(x)
r and h+

k (x)
r. That is, write

hk(x)
r =

k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

aj1,...,jdx
j1
1 x

j2
2 · · · xjd

d
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and

h+
k (x)

r =

k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

bj1,...,jdx
j,

where j =
∑d

i=1 ji. Then, we can write the expectation as

EΩ[hk(x)
r] =

k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

aj1,...,jd EΩ

[
xj1
1 x

j2
2 · · ·xjd

d

]
=

k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

aj1,...,jdµΩ(j1, . . . , jd)

≤
k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

|aj1,...,jd|µΩ(j1, . . . , jd)

By Definition 4.4, BΩ bounds the moment of Ω, so

≤
k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

|aj1,...,jd|BΩ(j1, . . . , jd)
j

And since BΩ is component-wise nondecreasing,

≤
k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

|aj1,...,jd|BΩ(k1r, . . . , kdr)
j.

Before we proceed any further, we make the following proposition.

Proposition 4.7. Using the polynomial expansions above, each coefficient aj in hk(x)
r

is matched by a coefficient bj of equal or greater value in h+
k (x)

r.

Proof. Fix the vector j. Each aj1,...,jd = aj is a product of multiple coefficients {cl}

and a multinomial coefficient
( ‖k‖1r
j1,...,jd

)
. Similarly, each bj is a product of the same

coefficients {|cl| ≥ cl} and the same multinomial coefficient
( ‖k‖1r
j1,...,jd

)
.

To show this, consider how monomials in hk(x) are grouped by degree sum in

h+
k (x) as in Equation (4.2), so that each monomial xl in the latter has coefficients

equal to the sum of monomials xl in the former where ‖l‖1 = l. We can separate this
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sum of coefficients out so Equation (4.2) becomes

h+
k (x) =

‖k‖1∑
l=0

 ∑
l1,...,ld

l1+···+ld=l

|cl1,...,ld|xl

 .

(Note how the xl term is distributed to the coefficients in the inner sum.) Each of

these monomials thus corresponds to a monomial cl1,...,ldxl in hk(x).

So when expanding h+
k (x)

r, to calculate the coefficient bj , we would multiply the

monomials in h+
k (x) that correspond to those in hk(x), the only difference being the

coefficients in the former are the absolute value of those in the latter. The resulting

product of coefficients in the former, bj , is therefore the same as the absolute value of

that in the latter, aj . In other words, bj = |aj|. We repeat this for all j as necessary,

proving the proposition.

Returning to the proof for Theorem 4.6, using the above proposition, we can then

bound the left-hand side of the theorem’s inequality by

EΩ[hk(x)
r] ≤

k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

|aj1,...,jd |BΩ(k1r, . . . , kdr)
j

≤
k1r∑
j1=0

k2r∑
j2=0

· · ·
kdr∑
jd=0

bj1,...,jdBΩ(k1r, . . . , kdr)
j.

But this is just the polynomial expansion of h+
k (x) for x = BΩ(rk), so

= h+
k (BΩ(rk))

r,

which concludes the proof.

With this theorem, we can state our bound on val(C).

Theorem 4.8. For a shape α containing hyperedges labeled with {le}e∈E(α), let
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C ∈ C(α,2q) be a well-behaved constraint graph. Then

val(C) ≤
∏

e∈E(α)

h+
le
(BΩ(2qle))

2q.

Proof. Let φ be the mapping associated with C ∈ C(α,2q). Recall from Definition 3.8

that val(C) = EΩ

[
χφ(E(α,2q))

]
. In the case where val(C) = 0, this bound is trivial.

Consider val(C) 6= 0. We can say that

val(C) = EΩ

[
χφ(E(α,2q))

]
= EΩ

 ∏
e∈φ(E(α,2q))

hle(x)

 (by definition of χE)

Partition H(α, 2q) into {Ce}e∈E(α), where each Ce is the subset consisting of only the

2q copies of e. Since C is well-behaved, two hyperedges e1, e2 ∈ E(α, 2q) correspond

to the same hyperedge e under the mapping φ(E(α, 2q)) if and only if e1 and e2

are copies of each other, and are thus in the same set Ce. The random variable

corresponding to each hyperedge is independently drawn from the input distribution

Ω, so the expectation becomes

val(C) =
∏

e∈E(α)

EΩ

[
χφ(Ce)

]
. (4.3)

Now suppose each of the p unique hyperedges ei ∈ Ce appears ri times for i ∈ [p].

Then, each term in the above product becomes

EΩ

[
χφ(Ce)

]
=

p∏
i=1

EΩ [hle(x)
ri ] ,
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and using Theorem 4.6,

≤
p∏

i=1

h+
le
(BΩ(rile))

ri .

Since ri ≤ 2q, and by Definition 4.4 BΩ is component-wise nondecreasing,

≤
p∏

i=1

h+
le
(BΩ(2qle))

ri

≤ h+
le
(BΩ(2qle))

2q (
∑p

i=1 ri = 2q)

Returning to Equation (4.3), we can then apply this bound to each factor in the

product (i.e. all edges e ∈ E(α)), which gives us

val(C) =
∏

e∈E(α)

EΩ

[
χφ(Ce)(X)

]
≤

∏
e∈E(α)

h+
le
(BΩ(2qle))

2q.

Because the bound mostly stays the same with a few adjustments to account for

the multivariate setting, the bound on the expected trace power of a graph matrix

piece is mostly the same as well:

Lemma 4.9. Let Smin be a minimum weight Uα, Vα-separator. Then, for all vertex

partitions P and q ∈ N,

E
[
Tr
(
(Mα,PM

>
α,P )

q)] ≤
 ∏

e∈E(α)

h+
le
(BΩ(2qle))

2q

(2q)2q|V (α)|nq(w(α)−w(Smin))+w(Smin).

The most notable change to the bound is that the labels of the shape’s edges

e ∈ E(α) are now vectors le of length d rather than scalars, since basis polynomials

for Ω are now in d variables. As a result, the main theorem bounding the norm of a

graph matrix Mα in Theorem 2.35 also is unchanged aside from the same change to
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the labels. For completeness, we state the modified theorem here.

Theorem 4.10 (Norm bound on graph matrices for multivariate Ω). Given a gener-

alized shape α, let Smin be a minimum weight Uα, Vα-separator, and let Wiso be the set

of isolated middle vertices in Wα. For each i ∈ [t], let mi be the number of vertices

of type i not in Uα ∩ Vα, and let n = maxi∈[t] |Ni|, the size of the largest ground set.

Then, with probability 1− ε,

‖Mα‖ ≤ 2

(
t∏

i=1

mmi
i

)
· n

1
2
(w(V (α))−w(Smin)+w(Wiso))

min
q≥3

(2q)|V (α)\(Uα∩Vα)|

 ∏
e∈E(α)

h+
le
(BΩ(2qle))

 2q

√
nw(Smin)

ε

 .

Again, we refer readers to the proof in [1, Section 8.1] as the proof is largely

unchanged. As a brief summary, proving Theorem 4.10 roughly involves

1. Bounding NP (C) and val(C) for a well-behaved constraint graph from the class

C(α,2q),

2. Using these bounds and Lemma 3.10 to bound the expected trace power of a

partitioned graph matrix Mα,P , and

3. Using the bounds over all partitions P of the ground sets with the vertex

partitioning lemma ([1, Lemma 5.14]) to derive a bound on the spectral norm

of a graph matrix Mα.

Ahn et al. also remark that a nearly optimal minimum value for q is often q =

3

⌈
log

(
nw(Smin)/ε

)
3|V (α)\(Uα∩Vα)|

⌉
(the factor 3 is included to ensure q ≥ 3).
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This chapter discusses the various applications that we can analyze with graph

matrices under a multivariate distribution.

5.1 Representing Polynomials as a Shape

One of the primary motivations for developing graph matrices was analyzing the sum-

of-squares hierarchy, used to solve some special optimization problems. Some proofs

for these problems involved proving an upper bound on the maximum value of some

polynomial over the unit sphere. Ahn et al. show that, while the proofs for some of

these bounds involved complex and technical reasoning, reproducing the same bounds

using graph matrices (within a polylogarithmic factor) is fairly straightforward and

mechanical [1, Section 9]. For a given polynomial, we first find a shape representation

of this polynomial, then apply the theorem bounding the norm of the graph matrix of

this shape. Bounding this norm will end up bounding the norm of the polynomial

over the unit sphere.

These polynomials involve coefficients whose factors are drawn from a univariate

distribution, usually N (0, 1). We expand this by letting several of these factors be

grouped into samples from a multivariate distribution instead.

For completeness, we first introduce what it means to have a shape representation

of a polynomial. We consider only the set of homogeneous polynomials of even degree,

defined below.

Definition 5.1 (Homogeneous polynomial). We say that a polynomial is homogeneous

if all its terms have the same degree sum r. Further, we say that the polynomial is a

homogeneous polynomial of degree r. For example, x4 + x2y2 + z3x is a homogeneous

polynomial of degree 4. On the other hand, x4+xy2 is not a homogeneous polynomial,

since its terms have different degree sums.

These polynomials are scalar-valued and will take some number n of input variables
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drawn from some ground set, so we need some operator which takes a vector of inputs

x = 〈x1, x2, . . . , xn〉 and some matrix M and outputs a scalar. In this case we can

use the vector-matrix-vector operator x>Mx. For example, consider n = 2 and

M =

1 0

2 1

. This gives us

x>Mx =

[
x1 x2

]1 0

2 1


x1

x2


=

[
x1 + 2x2 x2

]x1

x2


= x2

1 + 2x1x2 + x2
2.

(5.1)

The reader might notice that this only allows us to represent homogeneous polynomials

of degree 2. We would like to be able to express polynomials of arbitrary (even) degree

using this method. To achieve this, we need to somehow expand the vector of inputs

so they contain every possible monomial of a certain degree. To that end, we use the

tensor product over vectors, which we define below.

Definition 5.2 (Tensor product of vectors). Suppose two vectors x,y, where

x =



x1

x2

...

xd


, y =



y1

y2
...

yd


.

The tensor product of these vectors, written x⊗y, is the vector containing the product

of each pairing of the elements of x and y. Formally, this is the vector

x⊗ y =

[
x1y1 x1y2 · · · x1yd x2y1 x2y2 · · · x2yd · · · xdyd

]>
.
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We use the notation x⊗k for some integer k to denote

x⊗k = x⊗ · · ·⊗︸ ︷︷ ︸
k times

x.

Trivially, when k = 1, this is equivalent to x.

Note that x⊗k gives all monomials of degree k in x. Given this definition, we can

then proceed to define the shape representation of a homogeneous polynomial of even

degree.

Definition 5.3 (Matrix and shape representations of polynomials). Let r be some even

natural number. For some degree r polynomial f in n variables x1, . . . , xn, we say that

an nr/2 × nr/2 matrix M is a matrix representation of f if, ∀x = 〈x1, . . . , xn〉 ∈ Rn,

f(x1, . . . , xn) =
(
x⊗r/2

)>
Mx⊗r/2.

Additionally, we say that a matrix representation M is a graph matrix representation

if M = Mα is a graph matrix with corresponding shape α. In this case we also call α

a shape representation of f .

We provide a few illustrative warm-up examples below.

Example 5.4. As a brief warm-up example, consider the polynomial

f(x1, x2, . . . , xn) =
∑

j1 6=j2∈[n]

xj1xj2 = 2x1x2 + 2x1x3 + . . . 2xn−1xn,

where the last equality is due to the fact that each pair of monomials xj1xj2 appears

twice with indices in different order. Clearly this is a homogeneous polynomial of

degree 2, so we do not need to use the tensor product on our input vector x.

To determine the matrix representation M of this polynomial, we can work

backwards. If we expand each term 2xj1xj2 into xj1xj2 + xj2xj1 , we can observe that
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u1 = j1 v1 = j2

Uα Vα

Figure 5.1: Shape representation of the polynomial in Example 5.4.

these entries correspond to the entries M (j1, j2) = M (j2, j1) = 1, since each term

only occurs once in the sum, and the term has unit coefficient. Additionally, since the

summation is over all pairs of distinct indices j1, j2, terms like xj1xj1 do not appear in

the polynomial, so the diagonal entries of M are zero.

To obtain a shape representation α that corresponds to this matrix, recall in

Definition 2.18 how each vertex corresponds an index in the underlying structure.

In this case, we need two vertices in our shape, which we put in the left and right

sets Uα and Vα, respectively. Also note that this polynomial is deterministic, i.e. its

coefficients do not follow a probability distribution. It follows that no elements of

any basis appears in the polynomial, and therefore our shape representation does not

need any edges. Thus, we are left with the empty graph on two vertices, shown in

Figure 5.1. As this shape has no edges, the left and right vertex sets Uα and Vα are

already separated.

Thus, using Theorem 4.10, the norm of the graph matrix has a bound of Õ(n).

To relate this to a bound on the actual polynomial, recall the definition of a spectral

norm in Definition 2.2. As mentioned in Chapter 2, one intuition for the spectral norm

‖M‖ is the maximum amount that a vector is scaled by that matrix. Similarly, we can

view the vector-matrix-vector multiplication operator x>Mx as a “generalized dot

product” 〈x,x〉, distorted by M as a basis matrix (or alternatively as the dot product

between x and Mx). It should then follow that, for a unit vector x = 〈x1, . . . , xn〉,

max
‖x‖=1

f(x1, . . . , xn) = x>Mx ≤ ‖M‖.
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(Note that the same will apply in general we replace x by x⊗r/2 for a homogeneous

polynomial of degree r, since our matrix indices will have size r/2.) So we can conclude

this example by saying max‖x‖=1 f(x) = Õ(n).

Let us now modify this polynomial to add some random-valued coefficients. Specif-

ically, we revisit the introductory polynomial used in Example 2.22 to introduce

generalized graph matrices.

Example 5.5. Let A be an m× n matrix whose values are drawn from the standard

normal distribution, where m ≤ n. Consider the following homogeneous polynomial:

f(x1, x2, . . . , xn) =
∑

j1 6=j2∈[n]

xj1xj2

∑
i∈[m]

A(i, j1)
(
A(i, j2)

2 − 1
).

Here we now have two ground sets: one for row indices [m] (from which i is drawn)

and one for column indices [n] (from which j1, j2 are drawn). The matrix representation

for this polynomial will then be filled with products of normally-distributed entries,

because the coefficients themselves are products of normally-distributed random

variables.

To come up with the shape representation α for this polynomial, we first observe

that the variables of the polynomial have indices j1, j2, both of which are column

indices. This implies that the two indices I1, I2 of our matrix representation M(I1, I2)

should each be of size 1: one to represent the variable xj1 and another to represent xj2 ,

as in the previous example. The vertex set of our shape, which represent the indices

used in each summand, is then comprised of three vertices: two of the type for column

indices, and one of the type for row indices. Since the left and right vertex sets Uα and

Vα correspond with the matrix indices, each get one “column index” vertex u1 = j1

and v1 = j2, respectively. The remaining vertex for the row index i is placed in the

middle vertex set Wα, so we call it w1 = i.

Next, recall that edges in a shape represent the random variables drawn from the
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u1 w1 v1

Uα
Wα Vα

1 2

Figure 5.2: Shape representation of the polynomial in Example 5.5. Vertex shaping is
used to resemble vertices of different types.

input distribution. In this case, the input distribution Ω = N (0, 1), and its basis

polynomials are the normalized Hermite polynomials, as shown in Appendix A.1. We

give the first few below:

h0(x) = 1

h1(x) = x

h2(x) =
1√
2

(
x2 − 1

)
h3(x) =

1√
6

(
x3 − 3x

)
(5.2)

To project the coefficients of our polynomial onto this basis, we take note of the terms

for each random variable, in this case A(i, j1) and A(i, j2)
2 − 1. These are equal to

h1(A(i, j1)) and
√
2 · h2(A(i, j2)), respectively. This translates to two edges in our

shape: one connecting u1 to w1 with label 1, and one connecting v1 to w1 with label 2.

We show the final shape in Figure 5.2.

Finally, to calculate the norm bound using Theorem 4.10, we need to find a

minimum-weight Uα, Vα-separator. We have three different choices for a separator:

{u1}, {v1}, or {w1}. To determine the best to use, recall that in Definition 2.32

we assign weights according to the size of the ground set of the vertex. In this

case, since m ≤ n, we let N = max{m,n} = n and assign weights as follows:

w(u1) = w(v1) = logN n and w(w1) = logN m. This implies that {w1} is our minimum
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weight separator, giving us a bound of:

max
‖x‖=1

f(x) = Õ
(
n

1
2
(2 logn n+logn m−logn m)

)
= Õ(n).

Now let’s introduce a polynomial whose coefficients are drawn from a multivariate

distribution.

Example 5.6 (Adapted from [1, Example 9.2] and [15]). Let d = 2, and suppose the

following input distribution:

Ω = N


0
0

 ,

1 1
2

1
2

1


.

Note how each sample drawn from this distribution is a vector of length 2 where the

two entries have non-zero covariance. Next, suppose some m× n× 2 tensor B for

n ≤ m, where each “rod” of the tensor B(i, j) = 〈ai,j, bi,j〉 ∼ Ω. That is, each pair

of entries B(i, j, 1),B(i, j, 2) is drawn from the distribution Ω, and thus the entries

themselves are dependent on each other. Consider the following polynomial:

f(x1, . . . , xn) =
∑

j1 6=j2∈[n]

xj1xj2

 ∑
i∈[m], j3∈[n]
j3 /∈{j1,j2}

ai,j1bi,j1(a
2
i,j3

− 1)bi,j2

.

Here we have one row index i and three column indices j1, j2, j3, implying that our

shape representation α will have one row vertex and three column vertices. We also

note that the column indices are distinct. Similarly to Example 5.5, the left and right

vertex sets will have one column vertex each for j1 and j2, since those indices are used

in the variables of the polynomial. Call these vertices u1 and v1, respectively since

they go into Uα and Vα. The remaining vertices for indices i and j3 go to the middle

vertex set Wα, call them w1 and w2, respectively. Given the indices of the coefficients,
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we can also write our shape’s edge set E(α) = {{u1, w1}, {v1, w1}, {w1, w2}}.

However, we also need to assign labels to these edges. To do this, we first need

to compute the basis polynomials of Ω so that we may project the coefficient terms

onto that basis. As mentioned in Definition 4.3, we begin with the canonical basis, in

this case the basis in two variables (for consistency, we use a and b). If we separate

the coefficients by index, we have three terms: ai,j1bi,j1 , a2i,j3 − 1, and bi,j2 . Because

these coefficients are only up to degree two, we only need to consider the canonical

basis monomials up to degree two: {1, a, b, a2, ab, b2}. We also take note of the density

function of Ω:

fΩ(a, b) =
1

π
√
3
exp

(
−2

3

(
a2 − ab+ b2

))
.

Using this density function, we apply the Gram-Schmidt process on the canonical

basis to obtain the following basis polynomials up to degree two:

h0,0(a, b) = 1

h1,0(a, b) = a

h0,1(a, b) =
−a+ 2b√

3

h2,0(a, b) =
a2 − 1√

2

h1,1(a, b) =
2ab− a2√

3

h0,2(a, b) =
4b2 − 4ab+ a2 − 3

3
√
2

See Appendix A.2 for the derivation of these polynomials using the Gram-Schmidt

process. To project our coefficients onto this basis, i.e. express each coefficient term as

a linear combination of the basis polynomials, for each of the coefficient terms, we

can devise a system of equations Hc = b and solve for c, where H is the matrix of

coefficients of each basis polynomial (call this the “basis coefficient matrix”), c is our

desired vector of coefficients to apply to our basis polynomial, and b is the vector of
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coefficients of the polynomial we are projecting. The matrix H is given by populating

each column with the coefficients of each term in the basis polynomial.

H =



1 0 0 − 1√
2

0 − 1√
2

0 1 − 1√
3

0 0 0

0 0 2√
3

0 0 0

0 0 0 1√
2

− 1√
3

− 1
3
√
2

0 0 0 0 2√
3

4
3
√
2

0 0 0 0 0 4
3
√
2


.

Each row corresponds to the coefficients of a certain monomial in each basis polynomial.

For example, the first row corresponds to the constants in each polynomial, the second

to the coefficients of the monomial a, then b, a2, ab, and finally b2.

Now consider the first coefficient term ai,j1bi,j1 . Because it only involves the

monomial ab, we need only to set b =

[
0 0 0 1 0 0

]>
and solve Hc = b for c.

Solving gives us c =

[
1
2

0 0 1√
2

√
3
2

0

]>
, which tells us that

ai,j1bi,j1 =
1

2
h0,0 +

1√
2
h2,0 +

√
3

2
h1,1.

Repeating this process for the rest of the coefficients gives us

a2i,j3 − 1 =
√
2h2,0

bi,j2 =
1

2
h1,0 +

√
3

2
h0,1.

Note that hk1,k2(a, b) has been shortened to hk1,k2 for clarity. Additionally, observe that

expressing something even as simple as bi,j2 requires more than one basis polynomial

due to the covariance between ai,j2 and bi,j2 . This implies that, under the inner product

space equipped with the density function fΩ, it is not possible to express one variable
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u1 w1

w2

v1

Uα
Wα Vα

〈0,0〉,〈2,0〉
〈1,1〉 〈1, 0〉, 〈0, 1〉

〈2, 0〉

Figure 5.3: Shape representation of the polynomial in Example 5.6. Coloring is used to
resemble vertices of different types, and multiple labels are shown to denote arbitrary
choice.

b without using the other variable a, which we see here.

These equations tell us the labels that we can assign to each edge in E(α), in

particular using the indices of the polynomials on the right-hand sides that have

non-zero coefficients. For example, for edge {u1, w1} representing coefficient ai,j1bi,j1 ,

we can assign any of 〈0, 0〉, 〈2, 0〉, 〈1, 1〉. Since our choice of label for all three edges

does not affect the minimum weight separator, we pick some arbitrary label. The final

shape representation α is show in Figure 5.3.

Finally, we can compute the minimum weight Uα, Vα-separator and bound the

norm of the graph matrix representation, thereby bounding the polynomial over the

unit sphere. Recall that n ≤ m in our tensor of coefficients B, so a minimum weight

Uα, Vα separator would be either {u1} or {v1}. The size of the largest ground set is

m, so using Theorem 4.10, this gives us a bound of

max
‖x‖=1

f(x) = Õ
(
m

1
2
(3 logm n+logm m−logn n)

)
= Õ(n

√
m),

where the second equality above is due to the following:

m
1
2
(3 logm n+logm m−logn n) = m

1
2
(2 logm n+logm m) = mlogm n+ 1

2 = n
√
m.
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As we have shown, we are able to bound the norm of random polynomials over

the unit sphere, where the polynomials’ coefficients are sampled from a multivariate

distribution (especially one whose random variables are dependent). This can easily

be extended for d > 2. Importantly, if we had refined bounds for our choice of Ω,

i.e. if we had a sufficient bounding function BΩ and a bound on h+
k (x) as defined

in Definition 4.4 and Definition 4.5, we would be able to derive a refined version of

Theorem 4.10 specific to Ω by picking a proper minimum over q. This refined bound

may give us insight into an optimal choice of label to use for each edge.

5.2 Monochromatic Cliques in Randomly Colored

Graphs

Let us return to the CLIQUE indicator matrix example introduced in Section 2.2.1 and

introduce more complex dependencies between its entries. Suppose now that, instead

of regular cliques in a random graph, we were interested in monochromatic cliques

in a randomly-colored complete graph. Specifically, suppose we label (or “color”)

each edge of a complete graph according to some discrete probability distribution,

called the categorical distribution. We would like to compute the expected number of

monochromatic 4-cliques in this graph, i.e. the number of 4-cliques in which all edges

in the clique have the same color. Before we formalize this problem, we first go over a

few definitions. First, we briefly define the categorical distribution.

Definition 5.7 (Categorical distribution). The categorical distribution with parame-

ters p1, p2, . . . , pd is a discrete probability distribution describing the probability of

drawing each of the d possible outcomes. Its support is [d], and its probability mass

function is p(x = i) = pi for i ∈ [d].

Recall that in the CLIQUE matrix, the distribution of graphs used was G(n, 1/2),

the Erdős-Rényi random graph model. The random variables in that example were
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appearances of each possible edge in the graph, which followed the Rademacher

distribution (each sample taking on +1 or −1 with equal probability 1/2). Clearly

this model does not fit our new problem, so we need to define a new model of random

graphs.

One of the advantages of working in the multivariate setting is that distributions

are able to accommodate more complicated supports. For example, rather than just

a single random variable, we can use a distribution whose sample is a d-vector with

values in the interval (0, 1) that all sum to 1. In fact, samples from this distribution

can themselves be treated as categorical distributions. This distribution is called the

Dirichlet distribution, and we define it below.

Definition 5.8 (Dirichlet distribution). The Dirichlet distribution with shape param-

eter s, denoted Dir(s) for d-vector with positive entries s, is a d-variate probability

distribution whose support is the (d− 1)-simplex. That is for 〈x1, . . . , xd〉, xi ∈ (0, 1)

and
∑d

i=1 xi = 1. The distribution has density function

fDir(s)(x1, . . . , xd) =
1

B(s)

d∏
i=1

xsi−1
i ,

where B(s) is a normalization constant defined as the multivariate beta function

B(s) =

∏d
i=1 Γ(si)

Γ(‖s‖1)
, Γ(s) =

∫ ∞

0

ts−1e−tdt.

For the remainder of this section, we set Ω = Dir(1, 1, . . . , 1), akin to the uniform

distribution on the (d − 1)-simplex. This is also known as the “flat” Dirichlet dis-

tribution, as its density function is flat across the simplex. We can now define our

random graph model. Our vertex set is the same as that of the Erdős-Rényi model, i.e.

V (G) = [n]. However, our base graph is the complete graph Kn on the vertex set [n].

For each edge, we sample a random variable 〈p1, . . . , pd〉 from the Dirichlet distribution
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Ω. Each pi is the probability that the edge receives the color i. To encapsulate this

into a structure, we let C be an n× n× d tensor where

C(i, j) =


〈p1, . . . , pd〉 ∼ Ω if i < j

0d if i = j

C(j, i) otherwise.

Note that C(i, j) is used to denote the “rod” of elements at index (i, j) of the tensor.

Then, for each edge i, j ∈ G, we assign color k with probability C(i, j, k) for k ∈ [d].

We are thus interested in bounding the spectral norm of the following matrix:

COLORCLIQUE((i1, i2), (j1, j2)) =


Pr(i1, i2, j1, j2 form a monochromatic clique)

if i1, i2, j1, j2 ∈ [n] are distinct

0 otherwise.
(5.3)

For simplicity, we assume there are d = 3 colors, but remark that this can easily be

extended to any finite number of colors. Additionally, for a sample 〈p1, p2, p3〉 ∼ Ω,

note that p3 = 1 − (p1 + p2). In this sense, p3 is a redundant element, and for this

reason, we assume that the density function fΩ(x, y, (1− x− y)) is in two variables

instead, written fΩ(x, y).

Theorem 5.9. ‖COLORCLIQUE‖ = Õ(n).

Proof. The proof of this bound involves a few steps:

1. Split COLORCLIQUE into different “submatrices” such that they sum to the

original matrix.

2. Derive the norm bound for each submatrix.

3. Compute the bound of COLORCLIQUE using the bounds of the submatrices.
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Step 1 To determine how we split up COLORCLIQUE, we first write an explicit form

for each of its entries in the following proposition.

Proposition 5.10. For i1, i2, j1, j2 ∈ [n],

COLORCLIQUE((i1, i2), (j1, j2)) =
d∑

k=1

∏
i 6=j∈{i1,i2,j1,j2}

C(i, j, k).

Proof of Proposition 5.10. For fixed matrix indices (i1, i2), (j1, j2), consider the sub-

graph H of G where V (H) = {i1, i2, j1, j2}. (Note that H is the complete graph on 4

vertices.) Then, the matrix entry is the probability that H is a monochromatic clique.

Recall that each edge {i, j} in G has a color k with probability C(i, j, k), and that

the color of each edge is sampled from its own categorical distribution, so they are

independent events. Thus, the probability that H is a monochromatic clique of color

k is the product of the probabilities that each edge in H has color k, giving us the

product of C(i, j, k) for each {i, j} ∈ E(H). Adding this up for all k ∈ [d], we recover

the sum in the proposition.

Looking ahead to projecting each matrix entry onto the basis for Ω, we see that

each entry is the sum of products of elements from a sample of Ω. In particular, the

sum is over each index k, and the product is over the kth element of each sample. To

make analysis easier, we therefore break up COLORCLIQUE by color into d submatrices.

That is, for k ∈ [d], we define

CLIQUEk((i1, i2), (j1, j2)) =
∏

i 6=j∈{i1,i2,j1,j2}

C(i, j, k). (5.4)

It is then clear that

COLORCLIQUE =
d∑

k=1

CLIQUEk. (5.5)
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Step 2 Now we find the norm bound of each submatrix CLIQUEk. To do this, we

first give an orthonormal basis for Ω, project each entry of CLIQUEk onto this basis,

then derive the shape representation of each entry. Note that each entry in CLIQUEk

is made up of terms that are of degree 1 for each pair of indices i, j. For this reason,

we only need to apply the Gram-Schmidt process on the canonical basis monomials

up to degree 1, i.e. {1, x, y}. See Appendix A.3 for the application of this process.

This gives us the three basis polynomials below:

h0,0(x, y) = 1

h1,0(x, y) =
√
2(3x− 1)

h0,1(x, y) =
√
6(2y + x− 1),

giving us the basis coefficient matrix

H =


1

√
2 −

√
6

0 3
√
2

√
6

0 0 2
√
6

 .

If we expand Equation (5.4) for each k, we get

CLIQUE1((i1, i2), (j1, j2)) = xi1,i2xi1,j1xi1,j2xi2,j1xi2,j2xj1,j2

CLIQUE2((i1, i2), (j1, j2)) = yi1,i2yi1,j1yi1,j2yi2,j1yi2,j2yj1,j2

CLIQUE3((i1, i2), (j1, j2)) = zi1,i2zi1,j1zi1,j2zi2,j1zi2,j2zj1,j2 ,

(5.6)

where xi,j = C(i, j, 1), yi,j = C(i, j, 2), and zi,j = C(i, j, 3) = 1− xi,j − yi,j.

Like in Section 5.1, we now need to project these expressions onto our basis for Ω.

59



CHAPTER 5. APPLICATIONS USING THE MULTIVARIATE SETTING

In other words, we need to solve the equation Hc = b for c given H from above and

b ∈




0

1

0

 ,


0

0

1

 ,


1

−1

−1


 .

Solving for each value of b gives us the following projections:

xi,j = C(i, j, 1) = −1

3
h0,0 +

1

3
√
2
h1,0

yi,j = C(i, j, 2) =
2

3
h0,0 −

1

6
√
2
h1,0 +

1

2
√
6
h0,1

1− xi,j − yi,j = C(i, j, 3) =
2

3
h0,0 −

1

6
√
2
h1,0 −

1

2
√
6
h0,1,

where hr1,r2(xi,j, yi,j) is shortened to hr1,r2 for clarity. This means that, while the

shape of each CLIQUEk (call it αk) will have the same vertex and edge sets (they

use the same indices, after all), the edges potentially could have different labels. For

example, while the edges in α2 could have any of the labels 〈0, 0〉, 〈1, 0〉, 〈1, 0〉, those

in α1 could only have the label 〈0, 0〉 and 〈1, 0〉.

Next, for each k, we bound ‖CLIQUEk‖ by deriving the shape representation. Note

that there is only one ground set [n], so all vertices will be of the same type. We have

four indices i1, i2, j1, j2 used in the formula for each entry, so our shapes will have

four vertices representing these indices. Additionally, the matrix indices are (i1, i2)

and (j1, j2), so the left vertex set Uα = {u1 = i1, u2 = j2} and the right vertex set

Vα = {v1 = j1, v2 = j2}. Finally, recall that in Equation (5.4), the product is taken

over all possible (distinct) pairs of the four indices, i.e. all edges on the subgraph H.

It follows that the edge set of our shape will then have all possible edges on the vertex

set. The final shape representation of CLIQUEk is shown in Figure 5.4.

Since this is a complete graph, the minimum Uα, Vα-separator is in fact either

Uα or Vα. In either case, the separator will have 2 vertices, so we can then invoke
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u1

u2

v1

v2

Uα Vα

Figure 5.4: Shape representation of CLIQUEk. Choice of labels for each edge depend
on k.

Theorem 4.10 to show that

‖CLIQUEk‖ = Õ(n
1
2
(4−2)) = Õ(n).

Step 3 Recall that all matrix norms obey the triangle inequality. Therefore, using

Equation (5.5),

‖COLORCLIQUE‖ =

∥∥∥∥∥
d∑

k=1

CLIQUEk

∥∥∥∥∥ ≤
d∑

k=1

‖CLIQUEk‖.

Since we have a bound on ‖CLIQUEk‖ for each k, adding these up gives a bound on

‖COLORCLIQUE‖ of Õ(n), concluding the proof.

Again, while we only showed this for d = 3, it is simple to expand this to higher

(but finite) values of d, since it would only leave us with more submatrices of the same

kind to bound.

5.3 The Uniform Distribution on Quantum States

One potential application for the multivariate setting is representing expressions

involving quantum pure states with shapes. As a brief introduction, consider the

state of some system in classical computing, such as the state of a bit b in memory.
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This bit can either be set to 1 or 0, so overall one number is used to specify the

state of this system. In contrast, a quantum system is described in qubits |φ〉, such

as the polarization of a photon. A 2-state quantum system is described in the form

α |0〉+ β |1〉, where α, β ∈ C, |α|2 + |β|2 = 1, and |0〉 and |1〉 are basis states. (This

is sometimes written as a vector [α β]>.) In other words, the state of a quantum

system can be described as a complex convex combination of basis states, Such a state

is called a “pure state“, and is said to be in a “superposition” of basis states. (In

contrast, a “mixed state” cannot be expressed purely in terms of basis states, but for

now we focus on pure states.)

This was our primary motivation for investigating graph matrices under the

multivariate setting. Letting the input distribution Ω be multivariate increases the

expressive power of graph matrices, since we can use them to represent structures

that follow a more strict set of rules. In this case, we would like a way to uniformly

sample from the space of quantum pure states in d dimensions, i.e. a quantum system

whose state can be described as
∑d−1

k=0 αk |k〉, where αk ∈ C,
∑d−1

k=0 |αk|2 = 1, and |k〉

is a basis state.

Khatri in [17] discusses such a distribution, calling it a Haar measure, and expands

on this distribution in a note [18]. Specifically, we are interested in the following

procedure:

Proposition 5.11. To sample a random pure state uniformly from distribution on

pure states in d dimensions,

1. Let Ω be the 2d-variate standard normal distribution N (0, I2d). From this

distribution, sample 〈a0, a1, . . . , ad−1, b0, . . . , bd−1〉 ∼ Ω.

2. Let N =
∑d−1

k=0(ak + bk)
2. Construct the pure state as

|φ〉 =
d−1∑
k=0

(
ak
N

+
bk
N
ı

)
|k〉 .
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Khatri proves this in [18] by first showing that the uniform distribution on d-

dimensional pure states has density function fd(φ) =
(d−1)!
πd−1 using a derivation of the

volume of the space of pure states. If we consider |φ〉 in the form
∑d−1

k=0

√
pke

ıϕk |k〉,

where pk is a probability and ϕ ∈ [0, 2π] is an angle, marginalizing the angles out

gives us a uniform distribution on the (d − 1)-simplex, which happens to coincide

with the density function of the Dirichlet distribution Dird(1, 1, . . . , 1). This implies

that the probabilities {pk}d−1
k=0 jointly follow the same distribution. Khatri then proves

a theorem that shows that the above random variables ak
N

and bk
N

follow the same

distribution.

This procedure would then allow us to use Ω = N (0, I2d) as our input distribution

and produce large random expressions involving quantum states formed using the

expression in Proposition 5.11.

Another recently published article from Chen and Tumulka [19] defines a uniform

distribution on density matrices, which are used to expressed mixed states, i.e. quantum

states which cannot be expressed purely in terms of basis states. This mirrored prior

work from Hall [20], answering a similar question of how to derive the “most random”

distribution of possible states of a quantum system. In a purely mathematical sense,

density matrices are simply complex matrices that are Hermitian, positive definite,

and have unit trace. A distribution on such matrices could be used to form even more

complicated expressions involving quantum states, such as large random quantum

operators. We refer readers to Bengtsson and Życzkowski’s text [21] for more details

on the geometry of the space of density matrices and of quantum states more generally.

Additionally, while this thesis focused on bounding the spectral norm of graph

matrices, further work has been done on analyzing other properties. Cai and Potechin

in [22] determined the limiting distribution of singular values of graph matrices whose

shape forms a ‘Z’. An important property of quantum operators states that the possible

measurement outcomes of an operator A are the set of eigenvalues of A. Further
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work in investigating the extent of the expressive power of graph matrices under a

multivariate distribution remains, and we leave such exploration to future research.
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In this appendix, we show the Gram-Schmidt process for deriving orthonormal

basis for some input distribution Ω. We begin with the univariate standard normal

distribution as a warm-up in Appendix A.1, then move on to a multivariate distribution

with covariance in Appendix A.2. Finally, in Appendix A.3 we tackle a different

distribution used in Section 5.2, the “flat” Dirichlet distribution.

A.1 Standard Normal Distribution

Recall that in the space of polynomials with real coefficients R[x], we defined our

canonical basis in Definition 2.10 as the set {pi(x)}∞i=0 = {1, x, x2, x3, . . .}. The first

step in the Gram-Schmidt process is to define the inner product space over which

we orthogonalize this basis. The standard normal distribution N (0, 1) has density

function:

fN (0,1)(x) =
1√
2π

exp

(
−x2

2

)
.

This gives us the inner product between two polynomials under N (0, 1):

〈pi(x), pj(x)〉 =
1√
2π

∫
R
pi(x)pj(x)e

−x/2dx,

where the integral is taken over the support of the distribution. For clarity, throughout

this chapter we use pi, qi, hi as shorthand for pi(x), qi(x), hi(x), respectively.

Next, we use the Gram-Schmidt process to orthogonalize the canonical basis.

Looking at the process as defined in Definition 4.2, we start by calculating the

polynomials qk using the projection operator, then normalizing each qk with respect

to our inner product to obtain our desired basis polynomials hk. Trivially we have

that p0(x) = q0(x) = 1. Normalizing this gives us

h0(x) =
q0√

〈q0, q0〉
=

1

(2π)−1/2
∫∞
−∞ e−x2/2dx

=
1√

(2π)−1/2(2π)1/2
= 1.
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We note that
∫∞
−∞ e−x2/2dx =

√
2π.

Next, we orthogonalize p1(x) = x. We first use the projection operator to calculate

q1:

q1 = p1 − projq0(p1) = x− proj1(x)

= x− 〈1, x〉
〈1, 1〉

· 1

= x−
∫∞
∞ xe−x/2dx

1
· 1

= x− 0

1

= x.

Then we normalize q1:

h1 =
x√
〈x, x〉

=
x

1
= x,

which turns out to have no effect, giving us h1(x) = x.

Notice how the first two basis polynomials are actually equivalent to the canonical

basis monomials. The first one is trivial since q1 = p1 in general, but the second one is

more notable because it is explained by the fact that the first moment (more generally,

odd moments) of the normal distribution, i.e. its mean is equivalent to zero:

µN (0,1)(j) = EΩ[x
j] =


0 if j is odd

(j − 1)!! if j is even,
(A.1)

where n!! denotes the double factorial n(n−2)(n−4) · · · 1. We use this when calculating

〈1, x〉 = EN (0,1)[x] = µN (0,1)(1) = 0. We will return to this fact later as we calculate

more basis polynomials, because it leads to another observation about these basis

polynomials further along the Gram-Schmidt process.
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Next in the process is p2(x) = x2. We first use the projection operator to calculate

q2:

q2 = p2 − projq0(p2)− projq1(p2) = x2 − proj1(x
2)− projx(x

2)

= x2 − 〈1, x2〉
〈1, 1〉

· 1− 〈x, x2〉
〈x, x〉

· x

= x2 −
∫∞
−∞ x2e−x/2dx

1
−
∫∞
−∞ xe−x/2dx

1
· x

= x2 − µN (0,1)(2)− µN (0,1)(1)x

= x2 − 1.

Then normalize it:

h2 =
x2 − 1√

〈x2 − 1, x2 − 1〉
=

x2 − 1√∫∞
−∞(x2 − 1)2ex2/2dx

=
x2 − 1√

2
,

giving us the basis polynomial h2(x) =
x2−1√

2
.

Continuing this process for the next few canonical basis monomials gives us the

following:

q3(x) = x3 − x h3(x) =
x3 − x√

6

q4(x) = x4 − 6x2 + 3 h4(x) =
x4 − 6x2 + 3√

24

q5(x) = x5 − 10x3 + 15x h5(x) =
x5 − 10x3 + 15x√

120
.

At this point, the reader may notice that each polynomial only uses monomials

of the same parity as its index. This is due to the fact that the projection step

for monomial xj involves subtracting polynomials qi(x) with coefficients that have

µN (0,1)(i) as factors from xj. In particular, when i is odd, this moment factor is

zero, removing that monomial altogether from the projection. Additionally, when
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orthogonalizing, the reader may notice hj(x) =
1√
j!
qj(x). We will stop the process here

but note that the process continues infinitely since the distribution has a support of

infinite size. However, for a given expression of degree j we can truncate this process

at pj(x) = xj, since the resulting projection will never use monomials of any degree

greater than j.

The polynomials qi are commonly known as the probabilist’s Hermite polynomials.

Rahman gives us the following formula for these Hermite polynomials based on the

density function of the normal distribution [23]:

Hj(x) =
(−1)j

fN (0,1)(x)

dj

dxj
fN (0,1)(x),

where the normalization is given by

hj(x) =
Hj(x)√

EN (0,1)[H2
j (x)]

.

A.2 Multivariate Normal Distribution

In this section, we set Ω to the same input distribution used in Example 5.6,

Ω = N


0
0

 ,

1 1
2

1
2

1


.

Notably, the two elements of random vectors sampled from this distribution have a

covariance of 1
2
. For clarity, since there are only two elements (i.e. d = 2), we write

them as x and y. Again, we start with defining the inner product space.

Since we are now in the multivariate setting, we move to the 2-variate canonical

basis monomials {pi,j(x, y)}i,j = {1, x, y, x2, xy, y2, . . .}. We note that there are many

orderings of this basis since it is in multiple variables, and in this case we use the graded
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lexicographic order: first comparing the degree sum, then applying a lexicographic

ordering on monomials of the same degree sum. We also use the degree in x and

y of each monomial as the indices i and j in pi,j(x, y), respectively. For example,

p1,2(x, y) = xy2. Similarly to the previous section, we use the notation pi,j as shorthand

for clarity.

To find the density function for this distribution, first recall the formula for the

density function of a general multivariate normal distribution from Definition 2.38.

We substitute our specific mean vector (the zero vector) and covariance matrix into

this formula to get

fΩ(x, y) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)

=
1√√√√√√(2π)2

∣∣∣∣∣∣∣
1 1

2

1
2

1

∣∣∣∣∣∣∣
exp

−1

2

[
x y

] 4
3

−2
3

−2
3

4
3


x
y




=
1√

4π2 · 3
4

exp

(
−1

2
·
(
x ·
(
4x

3
− 2y

3

)
+ y ·

(
−2x

3
+

4y

3

)))

=
1

π
√
3
exp

(
−2

3
(x2 − xy + y2)

)
.

This gives us the inner product under Ω:

〈pi1,j1 , pi2,j2〉 =
1

π
√
3

∫
R2

pi1,j1(x, y)pi2,j2(x, y) exp

(
−2

3
(x2 − xy + y2)

)
dxdy.

Now that we have an inner product defined on our polynomial space, we can use it

to orthogonalize the canonical basis monomials using the Gram-Schmidt process. This

will be very similar to Appendix A.1, with the primary difference being the indices
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used. Again, the trivial monomial p0,0(x, y) = q0,0(x, y) = 1. Normalizing it, we get

h0,0(x, y) =
q0,0√

〈q0,0, q0,0〉

=
1(

π
√
3
)−1 ∫

R2 exp
(
2
3
(x2 − xy + y2)

)
dxdy

=
1(

π
√
3
)−1

π
√
3

= 1.

After applying this process to a few of the monomials, we get the following:

q1,0(x, y) = x h1,0(x, y) = x

q0,1(x, y) = −x+ 2y h0,1(x, y) =
−x+ 2y√

3

q2,0(x, y) = x2 − 1 h2,0(x, y) =
x2 − 1√

2

q1,1(x, y) = 2xy − x2 h1,1(x, y) =
2xy − x2

√
3

q0,2(x, y) = 4y2 − 4xy + x2 − 3 h0,2(x, y) =
4y2 − 4xy + x2 − 3

3
√
2

Again, note how each basis polynomial only uses monomials of the same parity in

degree sum. For example, h1,1, the polynomial taken from xy in the canonical basis,

only uses monomials x2, y2, xy, and a constant, where h0,1 uses monomials x and y

(with no constant). This is similar to the basis for the univariate normal distribution,

as their moment functions share a similar property. Additionally, we also note that

this process continues infinitely since the support of Ω is of infinite size.

Rahman also gives an expression for multivariate Hermite polynomials for a given

covariance matrix [23], which also can serve as an orthonormal basis for Ω:

HΣ
j (x) =

(−1)‖j‖1

fN (0,Σ)(x)

∂j

∂xj
fN (0,Σ)(x),
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where ∂j

∂xj is shorthand for ∂‖j‖1/∂xj1
1 · · · ∂xjd

d . Plugging our covariance matrix in, we

obtain the polynomials:

h0,0(x, y) = 1

h1,0(x, y) =
1√
3
(2x− y)

h0,1(x, y) =
1√
3
(−x+ 2y)

h1,1(x, y) =
1

3
√
5
(3 + 10xy − 4x2 − 4y2)

h2,0(x, y) =
1

3
√
2
(−3− 4xy + 4x2 + y2)

h0,2(x, y) =
1

3
√
2
(−3− 4xy + x2 + 4y2).

These are mostly different from the basis we obtained through the Gram-Schmidt

process, but we remark that different basis polynomials may be obtained by changing

the ordering of the canonical basis monomials. As noted earlier, we used the graded

lexicographic ordering.

A.3 Flat Dirichlet Distribution

The Dirichlet distribution Dir(s), defined in Definition 5.8, is a multivariate distribution

with a support that is notably different from the previous two distributions we have

examined. Rather than being Rd, the support is a set of d-dimensional vectors where

each element is positive and the sum of these elements is one. Alternatively, one can

consider the last element xd of these vectors as simply 1 −
∑d−1

i=1 xj, in which case

the support can also be defined as the open interval (0, 1)d−1. In particular, we will

examine the flat 3-variate Dirichlet distribution Ω = Dir(〈1, 1, 1〉), but for simplicity

we will do it in two variables x, y for the reason mentioned above, i.e. that the third

variable is simply 1− x− y and the resulting support is easier to use for integration.
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Having different support does not change the basis over which we apply the Gram-

Schmidt process however: we still use the canonical basis monomials (specifically in

graded lexicographic order). Rather, the support changes our domain of integration

when defining the inner product. The density function of Ω turns out to be a constant:

fΩ(x, y) =
1

B(〈1, 1, 1〉)
x1−1y1−1

=
Γ(1 + 1 + 1)

Γ(1) · Γ(1) · Γ(1)
=

2!

(0!)3

= 2,

which gives the “flat” Dirichlet distribution its nickname. Our inner product then

becomes

〈pi1,j1 , pi2,j2〉 = 2

∫
(0,1)d−1

pi1,j1 · pi2,j2dxdy.

Now we generate our orthogonal basis, starting with h0,0 = q0,0 = p0,0 = 1.

Applying the Gram-Schmidt process as before gives us:

q1,0 = 3x− 1 h1,0 =
√
2(3x− 1)

q0,1 = 2x+ y − 1 h0,1 =
√
6(2x+ y − 1)

q2,0 = 10x2 − 8x− 1 h2,0 =
√
3(10x2 − 8x− 1)

q1,1 = 10xy + 5x2 − 6x− 2y + 1 h1,1 = 3 · (10xy + 5x2 − 6x− 2y + 1)

q0,2 = 6y2 + x2 + 6xy − 2x− 6y + 1 h0,2 =
√
15(6y2 + x2 + 6xy − 2x− 6y + 1).
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