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Abstract

Exploring Single-molecule Heterogeneity and the Price of Cell Signaling

Abstract

by

TENGLONG WANG

In the last two decades, advances in experimental techniques have opened up new

vistas for understanding bio-molecules and their complex networks of interactions in

the cell. In this thesis, we use theoretical modeling and machine learning to explore

two surprising aspects that have been revealed by recent experiments: (i) the discovery

that many different types of cellular signaling networks, in both prokaryotes and eu-

karyotes, can transmit at most 1 to 3 bits of information; (ii) the observation that single

bio-molecules can exhibit multiple, stable conformational states with extremely hetero-

geneous functional properties.

The first part of the thesis investigates how the energetic costs of signaling in bio-

logical networks constrain the amount of information that can be transferred through

them. The focus is specifically on the kinase-phosphatase enzymatic network, one of

the basic elements of cellular signaling pathways. We find a remarkably simple ana-

lytical relationship for the minimum rate of ATP consumption necessary to achieve a

certain signal fidelity across a range of frequencies. This defines a fundamental per-

formance limit for such enzymatic systems, and we find evidence that a component of

the yeast osmotic shock pathway may be close to this optimality line. By quantifying

xiii



the evolutionary pressures that operate on these networks, we argue that this is not a

coincidence: natural selection is capable of pushing signaling systems toward optimal-

ity, particularly in unicellular organisms. Our theoretical framework is directly verifiable

using existing experimental techniques, and predicts that many more examples of such

optimality should exist in nature.

In the second part of the thesis, we develop two machine learning methods to ana-

lyze data from single-molecule AFM pulling experiments: a supervised (deep learning)

and an unsupervised (non-parametric Bayesian) algorithm. These experiments involve

applying an increasing force on a bio-molecule or bio-molecular complex until it un-

folds or ruptures. The distribution of times it takes for this unfolding/rupture to occur,

collected from many repetitions of the experiment, contains signatures of heterogene-

ity: information about the number and properties of the different conformational states

that exist in a given system. We show that both machine learning techniques can ef-

fectively tease out this information, though each has its own strengths and weaknesses.

The algorithms are validated on a large set of synthetic data, generated to mimic the

wide range of biological parameters and experimental settings one would encounter in

real-world applications.

xiv



1

1 Introduction

This thesis concerns two topics—cell signaling and single bio-molecule heterogeneity—

that are both considered crucial for the biological function of living cells. Cell signaling is

essential for collecting information about the environment, while heterogeneity enables

this information to be reflected in different functional conformations of a bio-molecule:

for example environmental conditions can “anneal” a bio-molecule, allowing it to switch

rapidly between conformations [1], or alternatively favor long-lived states.

In Chapter 2, we will explore the price of information transfer in living cells by an-

alyzing a canonical signaling circuit: the enzymatic push-pull loop. In Chapter 3, we

will explore single-molecule heterogeneity using two different machine learning tech-

niques. Before going into the details of these two topics, let us first introduce some

general ideas, quantities, and useful techniques from biological information theory and

machine learning.

1.1 Cellular signaling

In focusing on how information is transferred in living cells, we will first introduce sev-

eral important properties through the theoretical framework of a simple input-output

signaling network. This network is a coarse-grained version of the full enzymatic model
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we introduce in Chapter 2, and hence less suitable for direct experimental comparisons.

But it is simple enough to provide a convenient introduction to the ideas we will explore

in more depth later on.

1.1.1 Modeling a simple input-output signaling network

Figure 1.1. (a) A simple signaling circuit, involving an input species X (t )
and output species Y (t ), related by the production rate R0. (b) Both in-
put X (t ) and output Y (t ) vary as function of time. The simple signaling
circuit can be treated as an amplifier, transducing an input signal into an
amplified output signal.

The complexity of cell signaling can be daunting: for instance, there are over 500

protein kinases operating in many interconnected pathways just inside humans [2]. To

obtain a better understanding, we start with a simple signaling network that illustrates

the general theoretical approach. This sets up a foundation for studying more realistic

biological signaling pathways. Consider the simple signaling pathway shown in Fig. 1.1,

including only two chemical species: the input species X (t ) and the output species Y (t ).

For example, the input and output species can be interpreted as the active and phospho-

rylated forms of two protein kinases. As shown in the figure, the upstream part of the

pathway is described by an effective production rate F for input species X . The output

species Y is produced by given input X with a production rate R0. The input and output
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have decay rate γx and γy respectively. In general, all the rates F , R0, γx and γy can be

time dependent (influenced by a fluctuating extracellular and intracellular conditions),

but we assume they are constant here for simplicity. This signaling network can function

as an amplifier, transducing an input signal into an amplified output signal.

1.1.2 Auto-correlation time and frequency of the input

# 
of

 m
ol

ec
ul

es

X(t)
gx

-1

Figure 1.2. The autocorrelation time of the input, γ−1
x , can be interpreted

as the characteristic timescale of the input fluctuations, and we will de-
note its inverse, γx , as the effective “frequency” of the input.

To quantitatively measure the information transfer from X (t ) to Y (t ), several prop-

erties of the system are crucial to our analysis. The first is the auto-correlation time τa

of the input, defined through the auto-correlation function

δX (t +τ)δX (t ) = δX 2 exp(−|τ|/τa), (1.1)

where the bar denotes an average over an ensemble of trajectories in the stationary state

and δX (t ) ≡ X (t )− X . For our simple model τa = γ−1
x , the inverse of the decay rate γx .

Note, in the stationary state, that instantaneous averages like X ≡ X (t ) and δX 2 ≡ δX 2(t )

are independent of t . Since γ−1
x is the characteristic timescale of the input fluctuations,
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we will denote its inverse, γx , as the effective “frequency” of the input. Similarly, the

output decay rate sets the response time scale γ−1
y over which Y (t ) can react to changes

in the input.

1.1.3 Chemical potential

Figure 1.3. (a) A simple signaling circuit with reverse reactions (red ar-
rows), involving an input species X (t ) and output species Y (t ). In the
limit of “irreversible” enzymatic reactions, λ1 → 0, λ2 → 0, the system re-
duced to the case Fig. 1.1(a). (b) Both input X (t ) and output Y (t ) varies
as function of time. The simple signaling circuit can be treated as an am-
plifier, transducing an input signal into an amplified output signal.

In reality, the input-output system described in Fig. 1.1 is incomplete, since the exis-

tence of reverse reactions are inevitable. Though the reverse rates are typically negligible

under cellular conditions, they need to be considered to make our system thermody-

namically consistent. Fig. 1.3 shows our model with reverse reactions. The rationale for

these reactions can be understood by looking at a more detailed biochemical descrip-

tion: imagine that the underlying system was a kinase-phosphatase signaling system

where X represents the kinase population. A substrate protein is phosphorylated to give

an output Y (population of phosphorylated substrates) with a pseudo-first-order rate

R0X (the R0 here depends on the substrate population). The reverse reaction in this
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context would be the phosphorylated substrate rebinding to the kinase and the phos-

phate group being removed, with some rate λ1X Y that depends on both kinase X and

phosphorylated substrate Y populations. Of course the main way dephosphorylation

occurs is not through such unlikely reversal events but through a phosphatase enzyme

binding to the phosphorylated substrate, with pseudo-first-order rate γy Y (the γy de-

pends on the phosphatase population). Reversal of the phosphatase-catalyzed reaction,

which depends on the substrate rebinding to the phosphatase and getting back a phos-

phate group, is reflected in the rate λ2 (with depends implicitly on both substrate and

phosphatase populations, neither of which explicitly appears in the simple model). In

the limit of “irreversible” enzymatic reactions, λ1 → 0, λ2 → 0, the system reduces to the

case described by Fig. 1.1.

Generally a biological signaling network requires consumption of some metabolic

“fuel”, our simple input-output system is no exception. In order to make this signaling

pathway transfer information effectively, the symmetry of the network should be bro-

ken, which means the forward rate direction (input to output X → Y direction) of the

pathway should be preferred. So, what fuel ensures this preference? It is typically the

chemical potential ∆µ associated with ATP hydrolysis. ATP is constantly replenished

from metabolic processing of nutrients to maintain sufficiently high chemical potential

to drive the X → Y current forward. Mathematically, we can link the product of the ra-

tios of the reverse rates relative to the forward ones and the chemical potential through

a key thermodynamic relation arising from the principle of detailed balance [3, 4],

e−β∆µ = λ1λ2

γy R0
, (1.2)
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where β = (kB T )−1, kB is the Boltzmann constant, and T is the temperature. As long

as ∆µ is large and positive, the strong preference for the forward reaction direction is

guaranteed. Moreover, every forward traversal (X → Y ) phosphorylates a substrate, in

the process consuming a single ATP molecule through hydrolysis, releasing the prod-

ucts ADP and inorganic phosphate Pi back into the surroundings. ∆µ depends on the

concentrations [ATP], [ADP], and [Pi] through

∆µ=∆µ0 +kB T ln
[ATP](1M)

[ADP][Pi]

where ∆µ0 is the standard free energy of ATP hydrolysis (∆µ0 ≈ 12 kB T at room temper-

ature [5]).

1.1.4 Gain parameter and ATP consumption

Another property we are interested in is the gain parameter: how much output is pro-

duced on average for each input molecule. For the simple signaling network here, it is

obviously given by the production rate R0. With the help of gain parameter R0, we can

quantify the average rate of ATP consumption. In stationary state, the average rate of

ATP consumption is just the mean rate of the forward reaction step as A = R0X , if we

assume that one ATP is consumed per reaction.

1.1.5 Mutual information

The last property of interest is a quantitative measure of the information transfer, given

by the instantaneous stationary mutual information I between X (t ) and Y (t ). This is

defined in terms of the joint probability P (X ,Y ) of observing input value X and output

value Y at the same moment of time, and the corresponding marginal probabilities P (X )
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and P (Y ),

I = ∑
X ,Y

P (X ,Y ) log2
P (X ,Y )

P (X )P (Y )
. (1.3)

The mutual information I ≥ 0 in all cases, and is measured in bits, with larger values

translating to a greater degree of correlation between input and output. In our model

at larger population sizes, the marginal and joint distributions can be approximated as

Gaussian:

P (X ) = e
−(X−X )2

2σ2
xp

2πσx
, (1.4)

P (Y ) = e
−(Y −Y )2

2σ2
y

p
2πσy

, (1.5)

P (X ,Y ) = e
− 1

2(1−ρ2)

[
(X−X )2

2σ2
x

+ (Y −Y )2

2σ2
y

− 2ρ(X−X )(Y −Y )
σxσy

]

2πσxσy
√

1−ρ2
, (1.6)

where X and Y are mean populations, σx =
√
〈X 2〉−〈X 〉2 and σy =

√
〈Y 2〉−〈Y 〉2 are

standard deviations, and ρ = (〈X Y 〉 − 〈X 〉〈Y 〉)/σxσy is the Pearson correlation coeffi-

cient. This allows us to use a expression for I valid in this limit that is more convenient

to evaluate [6]:

I ≈ −1

2
log2 E ,

where E ≡ 1− cov(X Y )2

var(X )var(Y )

≡ 1− (X Y −X Y )2(
X 2 −X

2
)(

Y 2 −Y
2
) . (1.7)

Here E = 1−ρ2 lies in the range 0 ≤ E ≤ 1. For E = 0 (or equivalently I = ∞) we have

perfect correlation between the input and output signal, while E = 1 (I = 0) corresponds

to an output that is completely independent of the input.



Introduction 8

1.1.6 Chemical Langevin solution

To derive analytical results for the above system, we need to mathematically describe the

time evolution of the species in the system. A stochastic method that captures this time

evolution at larger population sizes (where X (t ) and Y (t ) can be treated as continuous

variables) is the linearized chemical Langevin approach [7]. For the above input-output

system described in Fig. 1.3, the chemical Langevin equations are

d X

d t
= F −γx X +nx ,

dY

d t
= R0X +λ2 −λ1X Y −Y γy +ny , (1.8)

where the noise term ni (t ) = p
Πiηi (t ). The noise terms are associated with reactions

in the system, and the corresponding prefactors represent the sum of the mean produc-

tion(forward) and deactivation/unbinding (backward) contributions to each reaction,

Πx = 2Xγx and Πy = 2(X R0 +λ2). The Gaussian white noise functions ηi have correla-

tions 〈ηi (t )η j (t ′)〉 = δi j (t − t ′). Considering the above equations, it is easy to obtain the

stable-state solution as

X = 〈X 〉 = F

γx
, Y = 〈Y 〉 = F R0 +γxλ2

γxγy +Fλ1
. (1.9)

Plugging in X = X +δX and Y = Y +δY , converting to Fourier space and linearizing,

Eq. (1.8) becomes

ñx(ω)+δX̃ (ω)(iω−γx) = 0,

ñy (ω)+δX̃ (ω)(R0 −Y λ1)+δỸ (ω)(−γy −Xλ1 + iω) = 0, (1.10)

where the tilde indicates a Fourier-transformed function. The solutions of above equa-

tions (1.10) take the form of linear combination of the noise functions,
∑

i=x,y
ai (ω)ñi (ω),
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as follows:

δX̃ (ω) = 1

γx − iω
ñx ,

δỸ (ω) = i (R0 −Y λ1)

(γy +Xλ1 − iω)(iγx +ω)
ñx + (iγx +ω)

(γy +Xλ1 − iω)(iγx +ω)
ñy . (1.11)

The corresponding input, output and cross power spectra—PX (ω), PY (ω), and PX Y (ω)

respectively—are defined through:

δX̃ (ω)δX̃ (ω′) = 2πPX (ω)δ(ω+ω′), δỸ (ω)δỸ (ω′) = 2πPY (ω)δ(ω+ω′),

δX̃ (ω)δỸ (ω′) = 2πPX Y (ω)δ(ω+ω′).

(1.12)

These can be easily obtained from Eq. (1.11) and the correlation properties of the noise

terms:

PX X (ω) = 1

γ2
x +ω2

Πx = 2F

γ2
x +ω2

,

PY Y (ω) = (R0 −Y λ1)2

(γ2
x +ω2)(γ2

y +2Xλ1γy +X
2
λ2

1 +ω2)
Πx

+ 1

γ2
y +2Xλ1γy +X

2
λ2

1 +ω2
Πy

= N0 +N1ω
2

D0 +D1ω2 +D2ω4
,

RePX Y (ω) = 2F (γy +Xλ1)(R0 −Y λ1)

(γ2
x +ω2)(γ2

y +2Xλ1γy +X
2
λ2

1 +ω2)
, (1.13)
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where the coefficients Ni (Di ) for the ω2i terms in the numerator (denominator) of

PY Y (ω) are

N0 = 2γ3
x{F R0[R0γxγ

2
y + (γxγy +Fλ1)2]+γx[γ2

xγ
2
y +2Fγxγyλ1

+ Fλ1(Fλ1 −2R0γ0)]λ2 +Fγxλ
2
1λ

2
2},

N1 = 2γx(γxγy +Fλ1)2(F R0 +γxλ2),

D0 = γ2
x(γxγy +Fλ1)4,

D1 = (γxγy +Fλ1)2[γ4
x + (γxγy +Fλ1)2],

D2 = γ2
x(γxγy +Fλ1)2. (1.14)

With the help of the above power spectra, we can obtain the variances and covariances

as

var(X ) = 〈X 2〉−〈X 〉2 = 1

2π

∫ ∞

−∞
PX X (ω)dω,

var(Y ) = 〈Y 2〉−〈Y 〉2 = 1

2π

∫ ∞

−∞
PY Y (ω)dω,

cov(X Y ) = 〈X Y 〉−〈X 〉〈Y 〉 = 1

2π

∫ ∞

−∞
PX Y (ω)dω. (1.15)

Note that in the last line of Eq. (1.13), we only write down the real part of PX Y (ω), since

the imaginary part will cancel out in above integral. After some tedious calculation, the
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integrals in Eq. (1.15) can be explicitly evaluated to yield

var(X ) = F

γx
,

var(Y ) =
F R0

[
(Fλ1 +γxγy )2

(
Fλ1 +γx(γx +γy )

)+R0γ
3
xγ

2
y

]
+Fλ2

1λ
2
2γ

3
x

(Fλ1 +γxγy )3
(
Fλ1 +γx(γx +γy )

)
+

λ2γx

(
F 3λ3

1 +F 2λ2
1γx(γx +3γy )+Fλ1γ

2
xγy (−2R0 +2γx +3γy )+γ3

xγ
2
y (γx +γy )

)
(Fλ1 +γxγy )3

(
Fλ1 +γx(γx +γy )

) ,

cov(X Y ) = Fγx(R0γy −λ1λ2)

(γxγy +Fλ1)(γ2
x +γxγy +Fλ1)

. (1.16)

Inserting above variances into Eq. (1.7), we will obtain the corresponding mutual in-

formation. The above example illustrates how one can obtain a variety of signaling

properties analytically using the chemical Langevin approach. We will generalize this

technique to a more realistic many-species model in Chapter 2, and also validate the

approach by comparison to kinetic Monte Carlo simulations.

1.2 Single-molecule heterogeneity

Functional heterogeneity of single bio-molecules is significant variation in functional

properties (i.e. catalytic rates, bonding lifetimes) among covalently identical bio-molecules,

arising from multiple, distinct (and sometimes long-lived) structural conformations.

Functional heterogeneity is widely observed in many classes of bio-molecules such as

protein enzymes [8–10], ribozymes [11], DNA [12], motor proteins[13], and adhesion

complexes [14]. This type of heterogeneity allows molecules to have different functional

responses to changes in the external environment (i.e. differences in applied tension on

an adhesion complex). It is also effectively a source of epigenetic variation that can play
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a role in evolution, since the same genetic sequence can lead to a protein that exhibits a

variety of phenotypes.

The question we consider in this thesis is can we devise a method to quantify the ex-

tent of heterogeneity from experiments, specifically single-molecule force spectroscopy

conducted by atomic force microscopy (AFM). The experimental data is the rupture

times (or equivalently forces) one collects from an AFM pulling experiment as shown

as Fig. 1.4.

Figure 1.4. Schematic of an atomic force microscopy pulling experiment.

Typically, one connects the bio-molecule to the AFM cantilever and platform through

protein or nucleic acid linkers of known stiffness. Suppose the cantilever is pulled at a

constant velocity v , applying a force ramp with slope d f /d t = ωs( f )v , where ωs( f ) is

the effective stiffness of the setup (linkers plus the AFM cantilever). While the AFM can-

tilever is approximately a Hookean spring, theωs( f ) may in general depend on the force

because of the polymeric properties of the linkers. For simplicity, we define a charac-

teristic stiffness ω̄s ≡ the mean ωs( f ) over the range of forces probed in the experiment

(note that the precise value of ω̄s is not crucial in this work). This allows us to intro-

duce a constant characteristic force loading rate r proportional to the velocity, r = ω̄s v .

Therefore, we can write the force ramp r = d f /d t . The force is ramped up until rupture
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occurs (in the case of a complex of bio-molecules adhered together) or until unfolding

occurs (in the case of a single bio-molecule). For simplicity we will refer to both cases

as “rupture” times. If the molecule or molecular complex can exist in distinct confor-

mational states, differences in the non-covalent bonding in those states can lead to very

different distributions of rupture times. Our focus will be in systems where such states

are long-lived relative to the experimental run time, since multiple states that intercon-

vert rapidly before rupture lead to results that effectively look like a single state [15].

Moreover, as was shown in Ref. [15], there are ways to rule out the rapid interconversion

scenario based on the data. Hence the assumption will be that if we start in a certain

conformational state at the beginning of the experimental run, we will be in the same

state at the moment of rupture.

This experimental procedure is repeated multiple times, collecting a set of rupture

times (or forces) for the bio-molecule of interest. Now, we can pose the above question

more specifically. Suppose one did the AFM pulling experiments 200 times with one

certain bio-molecule, is it possible that one can quantify the heterogeneity of the bio-

molecule by analyzing the 200 rupture times at loading rate r ?

Figure 1.5. The left panel visualizes raw data one collects from 200 repe-
titions of an AFM pulling experiment. On the right is a schematic of ques-
tions we try to answer through the analysis of the rupture time data.
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As shown in Fig. 1.5, the first question we want to answer is: can we tell if the data

is collected from a single-state system or a heterogeneous (multiple state) system? If we

identify that the bio-molecule has multiple functional states, can we specify how many

functional states exist? If we could do this, i.e. deduce there are three states, can our

analysis give information about the state probability distribution p = {p1, p2, p3}, where

pi is the probability that an experimental run involves a molecule in state i . Further-

more, if the answers are yes for all above questions, can we provide physical param-

eters that characterize each of the functional states? In the context of pulling experi-

ments, these parameters would describe the different rupture time distributions associ-

ated with each state.

In this thesis, we provide potential solutions for the above questions with the help of

two machine learning techniques: deep learning and non-parametric Bayesian learn-

ing. To set up the detailed discussion of these in Chapter 3, in the following sections we

introduce some basics of machine learning.

1.2.1 Machine learning

Machine learning is a subdomain of computer science whose goal is to develop algo-

rithms that learn automatically from data—for example using data to identify hidden

patterns, infer underlying models, or make predictions. Of course such data analysis

has been an essential part of many disciplines—science, statistics, economics—long be-

fore the electronic computer was invented. However, in recent years, thanks to the rapid

development of information technology and computer science, machine learning has

dramatically broadened the scope of data analysis techniques. Our increasing ability to

generate big data sets for training purposes, and rising computational capacity, have al-

tered problem solving strategies in many fields. Machine learning algorithms are now
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used in a wide array of applications [16], such as medical diagnostics, spam detection,

computer vision, natural language processing, autopiloting, news recommendation, so-

cial network filtering, finance, material science, game design and more. Physics, with its

close ties to mathematics and computer science, and its rich troves of experimental data,

is no exception to this trend.

This section introduces basic concepts of machine learning, some of them are gen-

eral principles that can be applied to many different varieties of such algorithms. How-

ever, the main focus will be on machine learning techniques that are essential or closely

related to our single-molecule heterogeneity work. Readers who seek a more complete

and comprehensive coverage of machine learning are encouraged to explore machine

learning textbooks like Refs. [17, 18].

Machine learning by its nature is a type of statistical learning that requires the use of

computers. It is divided into two broad categories: supervised or unsupervised. In sim-

ple words, supervised learning is where you have input variables x and an desired target

Y and you use an algorithm to learn the mapping function from the input to the target. In

contrast, unsupervised learning has no predefined desired target and the learning task

is to model the underlying structure, pattern, features or distribution of the input data

set. We use both types of learning algorithms in our study of single-molecule heteroge-

neity, and explore their relative strengths and weaknesses. Brief introductions for both

our supervised (deep learning) and unsupervised (non-parametric Bayesian) learning

algorithms are provided in this section, and the details of how to apply them to AFM

pulling experimental data will be described in Chapter 3. Generally, a machine learning

algorithm consists of multiple components, including but not limited to a mathematical

model, training data set, a cost function, and an optimizer (or optimization algorithm).
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We will highlight how these work by first considering the example of deep learning be-

low.

1.2.2 Deep learning

In 2012, Jeff Dean and Andrew Y. Ng created a network that is able to detect higher-

level categories, such as cat faces and human bodies, through processing unlabeled im-

ages and YouTube videos [19]. This was one of the first widely publicized successes of

“deep learning”, covered in venues like Scientific American. The term “deep learning”

has become more and more popular in recent years, thanks to the increased computing

power from GPUs and distributed computing, allowing the design of large-scale net-

works for progressively more complex tasks. Though developments in modern deep

learning techniques are not necessarily inspired by analogies to neuroscience, as they

were at their origin [17], the field was once called artificial neural networks and most

deep learning algorithms are still based on artificial neural networks [16]. It all started in

1943 when Warren McCulloch and Walter Pitts posited that biological neural networks

could be described by means of propositional logic and mathematical modeling [20].

In trying to simulate learning, it is natural to draw a connection to the organ that spec-

tacularly achieves this task: the human brain. Covering the historical evolution of deep

learning is beyond the scope of this thesis, however it is quite important to note that a lot

of early developments in learning algorithms were motivated by modeling how learning

works in the brain. In recent years, artificial neural networks are usually not designed

to precisely and realistically reproduce the biological function of the nervous system.

Nevertheless, the original biological motivation still provides several key ideas. First, by

reverse engineering the mathematical principles and logic that underlie the biological

function of the brain, one can obtain a kind of artificial intelligence (AI) that is able to
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tackle complex tasks that were traditionally the domain of of natural intelligence. This

is optimistically supported by the conjecture: “Every aspect of learning or any other

feature of intelligence can be so precisely described that a machine can be made to sim-

ulate it” in the proposal of the 1956 Dartmouth Summer Research Project on Artificial

Intelligence [21], considered the founding event of AI as a field. Second, exploring neu-

ral networks would be beneficial for understanding the brain and hence uncovering the

true nature of intelligence. Finally, machine learning methods might inspire new meth-

ods to solve fundamental scientific questions in various disciplines.

1.2.3 Artificial neural network

In a generic supervised learning problem, we have an input vector x and a desired tar-

get Y. For our single-molecule heterogeneity study, these would be the experimental

observations and the underlying state probability distribution respectively. Though ar-

tificial neural networks might look mysterious and profound to people who are new to

the machine learning field, they are generally just nonlinear statistical models designed

to approximate a certain function F on the input. For example, assume there exists a

function F that outputs the correct target given any input, Y = F (x). Artificial neural

networks are designed to implement a mapping that outputs y = f (x;θ) based on some

unknown parameters θ. The learning process then attempts to optimize these parame-

ters to find a good approximation for the function F .

In this section, we will describe a simple example of an artificial neural network

called the single hidden layer back-propagation network (or single layer perceptron),

which is a representative deep learning model. As shown in Fig 1.6, the single layer per-

ceptron typically has a 3-layer architecture. For our input layer, we have an input vector
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Figure 1.6. Schematic of a single hidden layer, feed-forward neural network.

x = {x1, x2, ..., xM } with M components. The network outputs a vector y with N compo-

nents. For example, if this network were used for a regression problem, we would choose

N = 1, while N ≥ 2 for an N -class classification problem. In the latter case, the n-th com-

ponent of y could represents the probability of being in the nth class. The hidden layer

consists of K neurons, where each neuron outputs a value zk , k = 1,2, ...,K , based on lin-

ear combinations of the inputs. The output components yn , n = 1,2, ..., N , are obtained

from linear combinations of the values zk . Mathematically, this can be expressed as:

zk = h(α0k +αT
k x), k = 1,2, ...,K

yn = σ(v)n , n = 1,2, ..., N , (1.17)
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where the n-th component of the vector v is defined as vn ≡ β0n +βTn z, the vectors αT
k

and βTn have same dimensionality as x and z respectively. The functions h and σ will be

described below. We now look more closely at the various aspects of the network.

Hidden layer: The middle layer is called the hidden layer because the vector z that

best implements the correct input-to-target mapping is not known beforehand. In our

single layer perceptron example we have only one hidden layer, but in real-world appli-

cations of artificial neural networks multilayer perceptrons are widely used. The total

layer number represents the “depth” of the model, and that is where the term “deep

learning” comes from. In a multilayer network the input to each hidden layer after the

first is just the output of the previous one. The original input x is progressively trans-

formed layer by layer, allowing the network to modify which features of the input data

are given greater or lesser weight, or implement an alternative representation for x.

Neurons: Each individual unit of a hidden layer is called a neuron because they are

conceptually inspired by biological neurons. As shown in Eq. (1.17), the hidden layer

collectively involves many units working simultaneously, each implementing a vector

(x) to scalar (zk ) transformation. The units are similar to biological neurons in the sense

that they process a signal from the external input (or the output of other neurons in the

multilayer case) and “fire” a corresponding output value. The idea of using many layers

of vector-valued representation is also derived from neuroscience, with the connections

(colorful lines in Fig. 1.6) analogous to synapses.

Activation function for neurons: The output zk of each neuron, as shown in Eq. (1.17),

depends on an activation function h. Historically, activation functions were inspired by

modeling the rate of action potential firing in biological neurons [22]. For the simplest

case where the neuron only has two output states (on or off), the activation function
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could be written as a Heaviside step function. The non-linear aspect of the activation

function turned out to be crucial for certain learning tasks, but the step function fell

out of favor over time, replaced by other alternatives that gave better results. For exam-

ple, the sigmoid function h(v) = 1/(1+ e−v ) was once widely used. In addition to being

nonlinear, it is smooth (good for optimization algorithms), and the fact that it outputs a

value between 0 to 1 makes the result easily interpretable as a probability. However in

modern deep learning models, the rectified linear unit (ReLU) is recommended by de-

fault [23–25]. Both sigmoid and ReLU type activation function are depicted in Fig. 1.7.

Since the ReLU function is piecewise linear, it preserves some appealing features of lin-

ear models: easier optimization with gradient-based methods, and better generaliza-

tion [17]. It is important to note that, even though the choice of the function and how we

build the neural network was originally guided by observed features of biological neu-

ral networks, modern artificial neural network design generally does not have precise

modeling of the brain as its objective.

Bias: α0k and β0n are bias terms we add for the vector to scalar transformation.

Output function: The final output vector y in Eq.(1.17) depends on an output func-

tion σ. For example, if this network is designed for a regression problem, the output

function σ can simply be an identity function. For N -class classification, the σ is of-

ten chosen to depend on the entirety of the vector v, where vn ≡ β0n +βTn z through the

so-called softmax function:

σ(v)n = evn∑N
j=1 ev j

. (1.18)

By construction
∑N

n=1σ(v)n = 1, which allows the softmax output to represent a prob-

ability vector. Note that if we choose both h and σ to be identity functions, the whole
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Figure 1.7. (Top) The rectified linear (ReLU) activation function, the de-
fault functional form recommended for neural networks. (Bottom) The
sigmoid function, an alternative activation function.

network would reduce to a linear model, and the results would be an implementation

of conventional linear regression. It is useful to think of the neural network as a nonlin-

ear generalization of the linear model that enlarges the model capacity. For instance, a
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linear model could have trouble taking the interaction of two input variables into con-

sideration, while an artificial neural network with nonlinear activation functions would

have none. Ultimately, enlarging the model capacity increases our chance of finding a

good approximation for the function F that outputs our desired target Y.

1.2.4 Training the artificial neural network

As mentioned above, the goal of training our artificial neural network is to find a func-

tion f that gets the output of the network y = f (x;θ) as close as possible to our desired

target Y. As one can see from Eq. (1.17), the parameters such as α0k ,αk ,β0n ,βn are un-

known for each neuron. These unknown parameters are often referred to as “weights”

and constitute the parameter vector θ. Deep learning involves optimizing the values for

these weights by fitting training data.

Training data: For supervised learning, training data is a set of data that consists

of labeled input and labeled target, where the i th input vector corresponds to the i th

labeled target vector, {x(i )} → {Y(i )}.

Weights: These are the parameters that regulate the strength and sign of connections

between neurons, depicted as colorful lines in Fig. 1.6. For our example network the

weights are the parameters α0k ,αk ,β0n ,βn in Eq. (1.17),

Since we need to find the good fit for the training data, the first step is to define

a quantity that measures how good our fit is. This quantity is normally called a loss

function or cost function. The weights are obtained by minimizing the loss function.

For instance, if we are facing a classification problem, the target Y(i ) is just a vector of

zeroes except for a value of 1 at the position corresponding to the class to which the i th
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input belongs. The loss function in this case could be the mean squared error,

L(θ) = ∑
i∈data

(Y(i ) − f (x(i );θ))2, (1.19)

or the commonly used cross-entropy,

L(θ) =− ∑
i∈data

N∑
n=1

Y (i )
n log fn(x(i );θ). (1.20)

Note that the cross-entropy loss function is just the negative log-likelihood, so minimiz-

ing the cross-entropy is the same as maximizing the likelihood.

Normally, the global minimum of a loss function cannot be analytically derived, es-

pecially for a non-linear model. Generically, variants of gradient descent are used as an

iterative numerical optimization procedure to minimize the loss function L(θ).

Here we show the simplest gradient descent optimization approach for our example,

though in practice one would typically use an alternative like stochastic gradient descent

that allows us to escape local minima. For our weights αkm (k = 1,2, ...,K ;m = 1,2, ..., M)

and βnk (n = 1,2, ..., N ;k = 1,2, ...,K ), we can write derivatives ∂L(θ)
∂αkm

and ∂L(θ)
∂βnk

respectively.

For the i -th iteration update of gradient descent optimization, we have the weights:

α(i )
km = α(i−1)

km − lr
∂L(θ)

∂α(i−1)
km

,

β(i )
nk = β(i−1)

nk − lr
∂L(θ)

∂β(i−1)
nk

, (1.21)

where the lr is called learning rate, a positive value determining the update size. Usually

we set lr to be a small constant when searching for a minimum. However, the precise

value choice for the learning rate can be tricky and it generally varies case by case. In

fact, the learning rate itself can be optimized by an algorithm: a line search that mini-

mizes the loss function for each update. The gradient descent update converges when
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the gradient vanishes. If this happens to be the global minimum, this is where the output

y is closest to the desired target Y.

1.2.5 Non-parametric Bayesian learning

Consider the rupture time data we mentioned above in the discussion of AFM pulling ex-

periments. If this data originates from multiple conformational states, then all the rup-

ture times that correspond to the same state presumably have some features in common

(i.e. are drawn from the same underlying rupture time distribution). If the algorithm

could somehow use these features to group data by their state (a type of unsupervised

learning called clustering) and estimate the probability pi of each state, then we would

have an effective method for identifying heterogeneity. Our approach to implement this

clustering is known as Bayesian non-parametric learning.

Before we get into the details of Bayesian non-parametric learning, let us first briefly

review some concepts in Bayesian statistics. Bayesian statistics is based on the notion

that a probability can be interpreted as the degree of belief in an event. When we need

to predict the underlying model based on observations (data collected), we should con-

sider all possible models (meaning all possible parameter choices). Our differing levels

of belief in different models, given the observations, forms a probability distribution

over all possible models. Bayesian inference is used to update the probabilities for each

model if more observations become available.

Ordinary (so-called parametric) Bayesian inference methods work when we have a

finite number of parameters that defines the space of all possible models. The problem

for our heterogeneity analysis is that the number of parameters is not known before-

hand. For example each conformational state might have an associated distribution

of rupture times that depends on a small set of parameters, but we have no idea if the
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number of such states is 2 or 100. If the truth is somewhere in the middle, assuming 2

would lead to underfitting, while assuming 100 would lead to overfitting. In principle

our learning algorithm should be open to all possible numbers of states, and hence an

arbitrarily large (effectively infinite) number of parameters. This is precisely the prob-

lem that non-parametric Bayesian inference methods were designed to tackle. We will

concentrate in particular on one such method, known as a Dirichlet process mixture

model, that is ideally suited for our heterogeneity problem.

1.2.6 Dirichlet process mixture model

A mixture model is a description of a set of data (like our AFM rupture times) in terms of

a collection of subpopulations, where each subpopulation has its own characteristic dis-

tribution. In our case, all the experimental runs where the molecule was in state i would

form the i th subpopulation. The relative fractions of the subpopulations in the total

are known as mixture weights, which correspond to the state probabilities pi discussed

above. Since we do not know the true number of subpopulations beforehand, we do not

want to use a restrictive prior on the number of mixture weights (for example assuming

that the p = (p1, p2, p3) vector always has length three). Instead we use a more flexible

prior that allows for a countably infinite number of subpopulations, known as Dirichlet

process. This leads to a so-called Dirichlet process mixture model. Historically, such

models date back to the work of Antoniak [26] and Ferguson [27] in the 1970s. However,

analyzing data with such models was not computationally feasible until Markov chain

sampling methods (described below) were developed two decades later. In 1995, the

Gibbs sampling approach introduced by Escobar and West [28] finally made this model

practical, and since then a variety of more efficient sampling techniques have been de-

veloped. Our description in this section is based on the excellent review by Neal [29].
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To understand the model in more detail, let us define a number of basic quantities.

Our data set consists of N observations, which we will denote as a vector t = (t1, t2, ...tN ).

This is an exchangeable sequence, in the sense that each rupture time ti was calculated

using an independent experimental run, so the joint probability of observing a certain

sequence does not depend on the order in which we write down the times. The hy-

pothesis is that each time ti is drawn from some unknown mixture distribution. We

can describe the mixture distribution using two vectors: (i) the first is the “class” vector

c = (c1, ...,cN ), where ci is the label of the class (subpopulation) to which the i th data

point belongs. For example imagine there are three subpopulations, corresponding to

three conformational states, which we label with integers 1− 3. Then ci = 2 would in-

dicate that the i th experiment involved a molecule in conformational state 2. (ii) Each

distinct class with label c has an associated set of physical parameters φc (which could

be multidimensional, though we write it for simplicity as a scalar). These parameters

characterize the distribution of rupture times from that state: F (t |φc ), the probability

density that one would observe a rupture time t given the parameter set φc . Note that

this distribution is normalized so that
∫ ∞

0 d t F (t |φc ) = 1. The functional form for F (t |φc )

will depend on the problem, but in the AFM pulling case as we describe in Chapter 3

it can be well approximated using a Bell model [30]. For our discussion here the pre-

cise nature of F (t |φc ) is not important, but we assume the functional form is known (or

guessed) from physical considerations, even if we do not know the parameters φc that

characterize each class. We collect the parameters for all the distinct classes into a vector

φ:

φ≡ {
φc : c ∈ {c1, ....,cN }

}
(1.22)
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Note thatφmight have different dimensionality depending on how many distinct classes

there exist in the set {c1, . . . ,cN }. Finding the true underlying c andφ for a given data set

would be the ultimate (and typically unattainable) goal of the heterogeneity analysis. If

for example there are N = 7 observations, then the ground truth might look like:

c = (2,1,2,2,3,2,1), φ= (φ1,φ2,φ3). (1.23)

Here there are three distinct classes, with parameter sets (φ1,φ2,φ3), and c identifies

which experimental run came from which class. In a Bayesian context the goal is more

modest: we will not necessarily be able to zero in on the true (c ,φ) of the mixture model

that produced the data set, but ideally we should be able to evaluate the posterior prob-

ability P (c ,φ|t ). This is the probability of having a certain (c ,φ), given our experimental

observations t . If we could maximize P (c ,φ|t ) with respect to (c ,φ), we could find the

most likely values for (c ,φ), which would be our best estimate of the truth.

To tackle this maximization question, let us rewrite P (c ,φ|t ) using Bayes’s theorem:

P (c ,φ|t ) = P (t |c ,φ)P (c ,φ)

P (t )
≡ AP (t |c ,φ)P (c ,φ). (1.24)

Here the constant A = 1/P (t ) reflects the fact that P (t ) does not depend on (c ,φ), and

hence is irrelevant for the maximization. However if we want to know that actual value

of P (c ,φ|t ) we will need to worry about this factor as a normalization constant. Because

P (c ,φ|t ) must be a properly normalized probability distribution over (c ,φ), the constant

has to satisfy:

A =
∫

d(c ,φ)P (t |c ,φ)P (c ,φ), (1.25)

where the integral is over all possible choices of (c ,φ). In practice it is often difficult or

impossible to evaluate Eq. (1.25) directly.
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The first factor P (t |c ,φ) in the numerator of Eq. (1.24) is the likelihood of observing

data t given (c ,φ). This can be expressed as:

P (t |c ,φ) =
N∏

i=1
F (ti |φci ). (1.26)

The second factor P (c ,φ) is the prior distribution of (c ,φ), reflecting our assumptions

about the possible values of (c ,φ) before taking into account any experimental observa-

tions. If we knew that there were a fixed number of classes, for example 3, then P (c ,φ)

would reflect this constraint, only taking non-zero values when the length of φ is 3. In

our case we will use a less restrictive prior, based on a Dirichlet process, described in de-

tail in the next section. This prior allows (c ,φ) choices whereφ can have various lengths.

For now however let us assume we have specified a suitable prior.

Even after choosing a prior, the problem is that the posterior distribution in Eq. (1.24)

may be difficult to directly evaluate (particularly because of the normalization constant

in Eq. (1.25)), or even directly sample from. There are certainly exceptions to this, such

as when the prior is specifically compatible with the likelihood (a so-called conjugate

prior) in a way that allows for easier evaluation of the posterior. However when we

have some non-traditional, problem-specific F function determining the likelihood in

Eq. (1.26), figuring out a conjugate prior becomes challenging. The alternative in this

case is to devise a numerical scheme that will generate samples (c ,φ) from the posterior

distribution in Eq. (1.24). Then quantities that depend on knowledge of the posterior,

like the integral in Eq. (1.25) or expectation values or marginal distributions with respect

to the posterior, can all be estimated assuming we have a large enough set of samples.
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How to generate such samples is the goal of a set of techniques known as Markov

chain Monte Carlo (MCMC) methods. We will show an algorithm that implements a spe-

cific MCMC sampling method for our heterogeneity problem in Chapter 3. The general

idea is as follows: imagine that you start with a particular choice of (c ,φ). The MCMC

method is a stochastic algorithm that allows us to choose a new sample (c ′,φ′) given

that the current sample is (c ,φ). This constitutes one iteration of the algorithm, and we

can then go from (c ′,φ′) to (c ′′,φ′′) and continue iterating as long as we desire. The end

result is a chain of K samples (c ( j ),φ( j )), j = 1, . . . ,K . Because the algorithm is stochastic,

the (c ′,φ′) value you get starting from a given (c ,φ) could be different every time you run

it. Let us imagine that the probability of getting (c ′,φ′) at the next iteration, starting from

(c ,φ), is denoted by Wc ,φ;c ′,φ′ . Because the probability of the next sample only depends

on the current one, the process is Markovian, and (c ( j ),φ( j )) constitutes a Markov chain

whose transition matrix is W .

For this procedure to be useful, the generated samples should be distributed ac-

cording to the posterior distribution in Eq. (1.24). To ensure this, our algorithm must

be designed so that the posterior distribution P (c ,φ|t ) is the stationary distribution of

the Markov chain. This occurs if the matrix W satisfies the following detailed balance

condition with respect to the posterior:

P (c ,φ|t )Wc ,φ;c ′,φ′ = P (c ′,φ′|t )Wc ′,φ′;c ,φ. (1.27)

In other words if we are at stationarity the probability of starting at (c ,φ) and jumping

to (c ′,φ′) at the next iteration is exactly counterbalanced by the probability of starting

at (c ′,φ′) and jumping to (c ,φ). One of the nice aspects of Eq. (1.27) is that fulfilling the

condition does not depend on knowing the precise value of the normalization constant
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A from Eq. (1.25), since it can be cancelled out on both sides of the equation. Of course

there are many ways to construct an algorithm whose W matrix satisfies Eq. (1.27). In

physics, the most well known example is the Metropolis-Hastings algorithm [31], his-

torically the first general-purpose MCMC method. Often MCMC methods are tailored

to specific problems in order to try to sample the stationary distribution as efficiently

as possible. Note that the it may take many steps for the Markov chain to relax to the

stationary state. Thus typically for a chain (c ( j ),φ( j )) generated by the method, we throw

away samples with j ≤ Kb , where Kb defines a “burn-in period” that is sufficiently long

to guarantee equilibration [32]. The samples for j > Kb are assumed to be representative

draws from the posterior distribution.

Once we have numerically calculated a Markov chain (c ( j ),φ( j )), Kb < j ≤ K , we can

use it to do various kinds of analysis involving the posterior. For example, let ni (c) be

a function that counts the number of times class i appears in the vector c . In the case

of the vector shown in Eq. (1.23), we have: n1(c) = 2, n2(c) = 4, n3(c) = 1. Note that

ni (c) = 0 if the class i does not appear in c . From the ni (c) values we can construct an

estimate p̃ j (c) for the underlying state probabilities p j based on the sample (c ,φ). Since

the state labels are arbitrary, for convenience we will sort the probability components

from largest to smallest. To do this we define a sorting function σ j (c) that outputs the

index of the j th largest value in the list (n1(c),n2(c), . . .). For Eq. (1.23) this would give:

σ1(c) = 2, σ2(c) = 1, σ3(c) = 3. Then our p̃ j (c) function can be defined as:

p̃ j (c) ≡
nσ j (c)(c)

N
. (1.28)
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The larger the size N of the experimental data set, the closer p̃ j (c) would be to the true

value of the j th largest probability, assuming we had a good estimate for the under-

lying c . Let us look at one component of the p̃(c) vector, for example the largest one

( j = 1) and treat it as an observable. We can calculate this observable for every sample

(c ( j ),φ( j )), Kb < j ≤ K in our chain, and then plot a histogram for p̃1(c). The tallest bin

in the histogram would correspond to our best estimate for the the largest probability.

If the histogram was peaked near p̃1 ≈ 1 this would indicate that the data came from a

single state system, while a peak at significantly smaller values of p̃1 would point to he-

terogeneity. Chapter 3 discusses a variety of other observables that can be analyzed in

similar fashion based on the MCMC results.

1.2.7 Dirichlet process prior and the ”Chinese restaurant” analogy

The final element of our Bayesian non-parametric model that we need to specify is the

prior distribution P (c ,φ) in Eq. (1.24). As mentioned earlier, this will be based on a

Dirichlet process, denoted as DP(Φ,α). The process depends on two quantities: (i) the

first is the prior distributionΦ for the parameter setsφc that determine the rupture time

distribution F (t |φc ) for each class c. Φ(φc ) would thus be the prior probability of a class

having parameters φc , if we did not know anything about the experimental data points

that belonged to that class. In practice, the parameters that enter into a specific F (t |φc )

(for example the Bell model) have certain biological ranges. We use Φ(φc ) to encode

these constraints, thus ensuring that our estimation procedure does not venture into

unreasonable values for φc . (ii) The second quantity is the concentration parameter α,

a positive number whose role will be highlighted below.

Perhaps the simplest way to explain the Dirichlet process DP(Φ,α) is to describe the

way one would draw a sample (c ,φ) from it. This is done through a sequential algorithm,
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choosing the class labels ci for each data point ti one by one, i = 1, . . . , N , and along

the way building up a parameter vector φ. At the end of the draw algorithm one has a

single sample (c ,φ) from the Dirichlet process. The draw algorithm has been likened

to a seating system at a Chinese restaurant [33], and is sometimes called the “Chinese

restaurant process” as a result. Though this hypothetical establishment is unlike any

real-life Chinese restaurant, the metaphor provides a concrete illustration of the draw

algorithm: imagine that the data points ti correspond to N customers that enter the

restaurant sequentially. The restaurant can provide potentially an infinite number of

tables, and each table will correspond to a class c, characterized by a parameter set φc

(the food at that table).

Every customer that enters the restaurant makes a stochastic decision about which

table to sit at (the class ci that will be assigned to data point ti ) and each table has infinite

capacity. The first customer is special: they are immediately seated at table 1 (c1 = 1) and

the parameter set φ1 for that table is drawn from the prior distribution Φ. However, the

next customer (and subsequent ones) have two options: either sit at an occupied table

or sit at a new, empty table. The probability that customer i sits at a new table is given

by:

P (ci 6= c j for all j < i |c1, . . . ,ci−1) = α

i −1+α . (1.29)

If a new table seating occurs, the table (class) is given a label c one higher than largest

previous class label, and a new parameter set φc drawn from Φ. On the other hand,

there is a chance that the customer i seats at one of the occupied tables. Choosing an

occupied table c occurs with probability

P (ci = c|c1, . . . ,ci−1) = νi ,c

i −1+α , (1.30)
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where νi ,c is the number of c j for j < i where c j = c. In other words, νi ,c is the occupancy

of the cth table, and the chance of choosing that table is proportional to its occupancy. If

the customer chooses to sit at occupied table c, then we make the assignment ci = c. No

new parameter set needs to be drawn, since that class already has a parameter set. Note

that before customer i makes their choice, i −1 customers have already been seated, so

the sum of νi ,c for all occupied c is i −1. Hence the probabilities of all occupied choices

c from Eq. (1.30) and the probability of choosing a new table from Eq. (1.29) sum to 1.

Let us imagine how this seating process might play out in one realization. The sec-

ond customer enters, and the probability they will choose to sit at table 1 is 1/(1+α),

since the first customer has been seated there. Or the second customer can choose to

sit at a new table (table 2) with probability α
1+α . Assume the second customer chooses

to sits at table 2. Then the third customer enters and has several choices: they can sit

at the occupied table 1 with probability 1/(2+α), the occupied table 2 with probability

1/(2+α), or the new table 3 with probability α/(2+α). This process continues until all

the N customers have been seated. At the end of the algorithm we have constructed the

vectors c andφ.

If we repeated this draw algorithm many times, each time we would get a (c ,φ) pair

that could potentially have a different number of distinct classes. The entire set of such

(c ,φ) samples can be said to be distributed according to the Dirichlet process DP(Φ,α).

Note the role of the concentration parameter α in determining the nature of the (c ,φ)

distribution. In the limit α → 0 no customer after the first would ever choose a new

table, and c = (1,1, . . . ,1) for every draw. This would not be a good prior P (c ,φ) for our

heterogeneity problem, because it would assume from the start that no heterogeneity

is possible. Hence α should be finite, but the proper choice is problem-specific (and
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there exist algorithms that do not keep α constant, but iteratively update it as part of

the MCMC procedure [29]). The larger the α, the more heterogeneous the prior, in the

sense that (c ,φ) with many more and varied numbers of classes are assumed possible.

In Chapter 3 we discuss how we determined an appropriate value of α for our problem.
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2 The price of a bit: energetic costs,
bandwidth and the evolution of cel-
lular signaling

2.1 Introduction

Survival for living cells depends in part on accurate and responsive signaling: the ability

to collect enough information about the micro-environment to make decisions in re-

sponse to external stimuli such nutrients, hormones, and toxic agents [34]. This capacity

to react to extracellular cues developed early in evolutionary history, and is now seen at

all levels of biological organization, from chemotaxis in unicellular organisms [35–37] to

the pathways that regulate cell differentiation and disease in multicellular life [38–41].

Despite the resulting diversity of biochemical networks that implement this signaling,

information theory provides a powerful universal framework to quantify the amount

of information transferred through a network, allowing comparisons between different

systems [42].

Over the last decade a remarkable experimental consensus has emerged from such

comparisons: studies of both prokaryotic and eukaryotic signaling pathways have found

they can transmit at most ∼ 1 to 3 bits of information [43–50]. These values refer to



The price of a bit: energetic costs, bandwidth and the evolution of cellular signaling 36

mutual information (MI) between pathway input (concentrations of a molecule repre-

senting the signal) and the output (concentrations of a downstream molecule produced

by the network, sampled either at a single or multiple time points). MI is a measure

of signal fidelity, representing the degree of correlation between input and output. Ex-

periments have typically focused on a closely related quantity known as the channel

capacity [6, 51]: the maximum MI achievable among all input distributions.

The consistently small channel capacities observed in cellular signaling pathways

seem to indicate that cells operate with a fairly coarse representation of their surround-

ings: n bits of MI corresponds to being able to reliably distinguish between 2n levels of

the input, so a 1 bit pathway can only discriminate between “high” versus ”low” con-

centrations of signal. Though 1 bit is typical for MI measured at single time points,

one can achieve higher MIs by focusing on output responses collected over several time

points [47, 48], or by designing the experiment to isolate single-cell responses (as op-

posed to estimating MI from the responses of a population of cells) [50]. But these en-

hancements, which can push values to the 2-3 bit range, do not change the fundamental

order of magnitude of the MI.

The central question we explore in this work is to what extent this fundamental infor-

mation scale is shaped by the energy requirements of the underlying biochemical signal-

ing networks. In order to transmit information, these networks necessarily need to op-

erate out of equilibrium, fueled by processes like ATP hydrolysis that consume energetic

resources. Recent research highlights these costs as an essential factor in understanding

constraints on signaling [35–37, 52–55], often focusing on the ATP hydrolysis chemical

potential difference ∆µ = µATP −µPi −µADP between the reactant (ATP) and products

(ADP and inorganic phosphate, Pi ), quantifying the free energy available to drive the
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system per ATP. Crossing a certain minimum threshold of ∆µ is a prerequisite for a va-

riety of signaling functions: accurate read-out of ligand-bound receptors [35, 36, 55],

maintaining the phase coherence of oscillations in circadian clocks [52], or preserving

the integrity of methylation-based “memory” to facilitate adaptation in chemotaxis [37].

This threshold is typically a few times larger (i.e. by a factor of ∼ 3−4 [35, 55]) than the

energy scale of thermal fluctuations, kB T , where kB is the Boltzmann constant and T the

temperature. And indeed cells across the various domains of life maintain a sufficiently

high ∆µ≈ 21−29 kB T [5] to enable such functions.

The large value and remarkably narrow range of ∆µ observed in modern organisms

opens up additional questions. The metabolic cycles that sustain ∆µ, constantly replen-

ishing ATP as it is hydrolyzed, must almost necessarily have been far more inefficient

and wasteful in the earliest stages of evolutionary history [56]. To what degree could or-

ganisms operating with smaller ∆µ still process information about their environment?

What kinds of evolutionary pressures might have driven ∆µ to its modern range? And if

the costs of individual signaling systems are non-trivial [35, 37], could natural selection

have driven these networks toward optimized, energy-efficient solutions?

To investigate these issues, we focus on one of the canonical signaling circuits in bi-

ology, the kinase-phosphatase “push-pull loop”, which often forms a basic unit of more

complicated signaling cascades [57–60]. An active kinase enzyme instigates the “push”,

chemically modifying a substrate protein via phosphorylation (consuming ATP in the

process), while a phosphatase enzyme provides the “pull”, dephosphorylating the mod-

ified substrate, reverting it to its original state. We derive the relationships between three

facets of the system: i) the MI between the input (active kinase) and output (phospho-

rylated substrate) molecular populations; ii) the timescales over which the input signal
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varies; and iii) the energy requirements, expressed in terms of ∆µ and the rate of ATP

consumption. Exploring the entire spectrum of kinase/phosphatase enzymatic param-

eters from bioinformatic databases, we find that physiological ∆µ values are just large

enough to enable an MI of 1-2 bits for the widest possible parameter range. However to

achieve this MI for signals that vary rapidly in time becomes more challenging, requiring

both precise fine-tuning of parameters and a certain minimum rate of ATP consump-

tion. In fact, taking advantage of results from optimal noise filter theory [61, 62], we

derive a remarkably simple analytical relationship that describes the tradeoffs between

minimum ATP rate, the MI, and the maximum characteristic signal frequency (the so-

called bandwidth) which the push-pull network can handle. Verified via extensive nu-

merical simulations across the whole gamut of enzymatic parameters, this relation is a

novel theoretical prediction that can be directly tested in future experiments. The re-

lation rationalizes the observed range of MI by showing that values much higher than

1-2 bits would require sacrificing the ability to process fast-changing signals. Finally we

explore the question of whether there exist evolutionary pressures that would push such

a system to be energy efficient, optimizing the ATP consumption for a given target MI

and bandwidth. Using a recently developed formalism relating metabolic costs to the

strength of natural selection [63, 64], we show that these pressures can indeed be signif-

icant, particularly for single-celled organisms. We highlight a kinase-phosphatase loop

in the yeast Hog1 signaling pathway as a system that may have been optimized by such

pressures.
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Figure 2.1. (A) A schematic signaling pathway involving cascades of ki-
nase phosphorylation, initiated by a receptor embedded in the cell mem-
brane that responds to extracellular ligands. The system we focus on will
be one stage of the pathway, a kinase-phosphatase push-pull loop, high-
lighted in the dashed box. (B) The molecular species and reaction pa-
rameters of the push-pull loop. The kinase (K ) binds to the substrate (S),
forming the complex (SK ) that catalyzes the production of phosphory-
lated substrate (S∗). Phosphatase (P ) binds to S∗, forming a complex (S∗

P )
that catalyzes the dephosporylation of the substrate. Forward reaction
/ binding rates are labeled in black, while reverse reaction / unbinding
rates are in red. (C) The loop serves to transduce an input signal, defined
as the total population of kinase (bound or unbound), X (t ) = K (t )+SK (t ),
into an output, defined as the total population of phosphorylated sub-
strate, Y (t ) = S∗(t )+S∗

P (t ). The input signal has a characteristic autocor-
relation time γ−1

x .
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2.2 Theory

2.2.1 Modeling an enzymatic push-pull loop

This push-pull network consists of two opposing reactions: a kinase enzyme instigates

the “push”, chemically modifying a substrate protein via phosphorylation, while a phos-

phatase enzyme provides the “pull”, dephosphorylating the modified substrate, revert-

ing it to its original state [57–60]. Since a single kinase can catalyze the phosphorylation

of many substrate proteins, this loop can effectively act like an amplifier [59], translat-

ing a weaker signal (a small cellular population of an active kinase) into a stronger one

(a large population of a phosphorylated substrate). Often the substrate itself is a kinase

that can exist in catalytically inactive and active states, with activation triggered by phos-

phorylation. In this case one can have multi-tiered signaling cascades enhancing the

amplification (as shown schematically in Fig. 2.1A) with the active substrate produced

by one loop serving as the kinase for a downstream loop [65]. More complex signal-

ing networks are also possible, with multiple cascades connected by crosstalk through

shared components [66], feedback from downstream to upstream populations [65], or

activation requiring multisite phosphorylation [67]. However the starting point for un-

derstanding any of these more complex signaling topologies is the behavior of a single

loop, with a substrate activated / deactivated through a single phosphorylation site.

The reaction scheme of a single push-pull loop is shown in Fig. 2.1B. Binding of free

kinase (population K (t ) at time t ) to substrate (population S(t )) occurs with rate con-

stant κb , forming a kinase-substrate complex (population SK (t )). Phosphorylation of

the substrate and its subsequent release constitutes the catalytic step, with rate κr , yield-

ing free phosphorylated substrates (population S∗(t )). A phosphatase can subsequently

bind, with rate ρu , forming a phosphatase-substrate complex (population S∗
P (t )), and
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catalyzing the dephosphorylation / release of the substrate with rate ρr . These reactions

also can occur in reverse: kinase-substrate unbinding (rate κu), reverse kinase catalysis

(rateκ−r ), phosphatase-substrate unbinding (rate ρu) and reverse phosphatase catalysis

(rate ρ−r ). Under physiological conditions some of these reverse rates may be negligible

compared to their forward counterparts, but accounting for them is crucial to enforce

thermodynamic consistency. In fact the product of the ratios of the reverse rates rel-

ative to the forward ones must satisfy a key thermodynamic relation arising from the

principle of detailed balance (closely related to the Haldane relation for enzymes) [3, 4],

κ−rρuρ−rκu

κrρbρrκb
= e−β∆µ. (2.1)

This relation is derived in the Supplementary Information (SI), found at the end of the

chapter. It reflects the fact that for every complete traversal of the loop along the for-

ward direction (clockwise along the black arrows in Fig. 2.1B) a single ATP molecule is

removed from the environment, hydrolyzed, and the products ADP and inorganic phos-

phate Pi released back into the surroundings. ∆µ depends on the concentrations [ATP],

[ADP], and [Pi] through ∆µ = ∆µ0 + kB T ln([ATP](1M)/([ADP][Pi])), where ∆µ0 is the

standard free energy of ATP hydrolysis (∆µ0 ≈ 12 kB T at room temperature [5]). Liv-

ing systems expend energetic resources to maintain an imbalance of [ATP] relative to

[ADP] and [Pi], making∆µ in physiological conditions larger than∆µ0. Despite the wide

variety of metabolic pathways used to achieve this, measured ∆µ values in organisms

from E. coli to humans lie within a relatively narrow range, ∆µ ≈ 21−29 kB T [5]. This

means reverse rates are sufficiently slow that the numerator in Eq. (2.1) is 9-12 orders of

magnitude smaller than the denominator. One of the questions we tackle below is the

significance of this disparity for transmitting information through the loop.
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To quantitatively measure this information transfer, it is useful to explicitly describe

the network behavior in terms of transducing an input signal into an amplified out-

put, with degradation of the signal due to the stochastic nature of the reactions that

mediate this process. We take the time-dependent input X (t ) = K (t )+SK (t ) to be the

population of active kinases (both free and substrate-bound), and the corresponding

output signal Y (t ) = S∗(t )+S∗
P (t ) as the population of phosphorylated substrates (free

and phosphatase-bound). For any specific system, the input kinases would be activated

through a particular upstream signaling network. Here, however, we are interested here

in a more general problem: what is the effectiveness of this loop in processing a vari-

ety of possible input signals, spanning different amplitudes and timescales. The sim-

plest mechanism that allows us to tune the dynamical characteristics of the input is to

imagine the kinases activated at a constant rate F and deactivated at a constant rate

γK . We focus on the long-time limit where a stationary state has been achieved, and

so F allows us to regulate the amplitude of the input signal while γK controls the au-

tocorrelation time of the input fluctuations. While the analysis below could be done for

other, system-specific models of the input, our choice allows us to explore a broad range

of possible inputs to establish general bounds on information processing through the

loop. With this input model, the reaction network model is fully specified. For a given

set of parameters (drawn from distributions based on kinase/phosphatase biochemical

information collected in enzymatic databases, as described below) we can derive ana-

lytical results for dynamical quantities using the linearized chemical Langevin approxi-

mation [7]. As shown in the SI, this provides excellent agreement with the exact kinetic

Monte Carlo [68] simulation results in the parameter ranges of interest.
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In focusing on how X (t ) is transduced to Y (t ), we frame our analysis in terms of

three properties of the system. The first is the autocorrelation time of the input, γ−1
x ,

defined through δX (t +τ)δX (t ) = δX 2 exp(−γx |τ|), where the bar denotes an average

over an ensemble of trajectories in the stationary state and δX (t ) ≡ X (t )− X . Note that

instantaneous averages like X ≡ X (t ) and δX 2 ≡ δX 2(t ) are independent of t in the sta-

tionary state. γ−1
x is the characteristic timescale of the input fluctuations, and we will

denote its inverse, γx , as the effective “frequency” of the input. The second property is

related to the mean rate at which phosphorylated substrates are produced through the

catalytic reaction step, κr SK , relative to the mean total number of activated kinases X .

We define the gain parameter R0 ≡ κr SK /X as a measure of the production of output for

a given input level. Both γx and R0 can be expressed, to a good approximation, in terms

of the reaction rates as follows (see SI for derivation):

γx = C1

C1 +C2
γK , R0 = C2

C1 +C2
κr , (2.2)

where C1 ≡ κ−PγKρbρr +Fκ−rκuρ−, C2 ≡ S[Fκbκ−rρ−+PγK (κbρbρr +κ−rρ−rρu)]. Here

κ− ≡ κu +κr , ρ− ≡ ρu +ρr . Note the dependence on mean unmodified substrate S and

free phosphatase P populations: these two numbers are free parameters that (along with

the reaction rates) determine the network dynamics.

The final property of interest is the instantaneous stationary MI I between X (t ) and

Y (t ). This is defined in terms of the joint probability P (X ,Y ) of observing input value

X and output value Y at the same moment of time, and the corresponding marginal

probabilities P (X ) and P (Y ),

I = ∑
X ,Y

P (X ,Y ) log2
P (X ,Y )

P (X )P (Y )
. (2.3)
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The value of I is non-negative in all cases, and is measured in bits, with larger values

translating to a greater degree of correlation between input and output. For our pa-

rameter ranges, P (X ,Y ) can be approximated as a bivariate Gaussian, and so we use an

expression for I valid in this limit that is more convenient to evaluate [6]:

I ≈−1

2
log2 E , where E ≡ 1− (X Y −X Y )2(

X 2 −X
2
)(

Y 2 −Y
2
) . (2.4)

Here E = 1−ρ2, where ρ is the Pearson correlation coefficient, and hence lies in the range

0 ≤ E ≤ 1. For E = 0 (or equivalently I = ∞) we have perfect correlation between the

input and output signal, while E = 1 (I = 0) corresponds to an output that is completely

independent of the input.

2.2.2 Determining the enzymatic parameter range

Once the input signal is specified through F and γK , there are ten parameters related

to the kinase, phosphatase, and substrate that determine the observables of interest γx ,

R0, and I discussed above. These parameters are: κb , κu , κr , κ−r , ρb , ρu , ρr , ρ−r , S̄, P̄ .

We know from surveys of enzymatic parameters that each of these quantities can span

several orders of magnitude among different systems, often with an approximately log-

normal distribution [69, 70]. To understand the performance limits of enzymatic loops

in general, it makes sense to explore the entire range of biologically realistic parameters,

rather than focus on a single choice of parameters. Existing online databases are excel-

lent resources for this purpose, and Fig. 2.2 shows the resulting histograms of kinase /

phosphatase parameters (full extraction details are available in the SI). For the substrate

protein (which we take as a kinase) and the phosphatase, the concentrations [S] and [P ]

in Fig. 2.2A are derived from the PaxDb protein abundance database [71], using Unit-

Prot gene ontology associations to identify kinases and phosphatases [72]. Enzymatic



The price of a bit: energetic costs, bandwidth and the evolution of cellular signaling 45

reaction parameters are available in the Sabio-RK database [73]. The reaction rates

κr and ρr (Fig. 2.2D) are typically listed directly, but the others are most often in spe-

cific combinations: the Michaelis constants K kin
M = (κr +κu)/κb , K pho

M = (ρr +ρu)/ρb for

kinase/phosphatase respectively (Fig. 2.2B) and the specificity ratios κr /K kin
M , ρr /K pho

M

(Fig. 2.2C). For all of these parameters there is a paucity of data on phosphatases relative

to kinases, but the phosphatase ranges seem to largely overlap with those of kinases.

Thus for simplicity we take kinase and phosphatase parameters to have the same distri-

butions (log-normal) and use a numerical fitting procedure to find an overall log-normal

joint probability distribution for the eight underlying model parameters represented in

the data: κb , κu , κr , ρb , ρu , ρr , S̄, P̄ (see SI). Note that data in concentrations units (like

[S] and [P ] in molars) is converted to mean abundances (S̄ and P̄ ) by assuming a vol-

ume of 30 fL (comparable to the cytoplasmic volume of yeast [5, 74]). This procedure

is designed so that the resulting joint distribution yields marginal probability densities

(solid curves in Fig. 2.2) that exhibit good agreement with the histogram data for any of

the measured parameter combinations. Despite this agreement, we note that the joint

distribution likely spans a portion of the parameter space larger than the true distri-

bution of biological values: this is because it cannot fully capture correlations between

different parameters. (Such correlations are difficult to reconstruct since many database

entries are incomplete, containing some but not all of the enzymatic parameters.) For

our purposes, having a distribution that effectively acts like a superset of the biological

distribution is fine: whatever performance bounds we infer from the whole distribution

will then also apply to the subset of the distribution that corresponds to current real-

world systems. Moreover this also allows us to explore a larger enzymatic design space,

which may have been accessible at earlier points in evolutionary history.
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Two of the model parameters are still unaccounted for: the reverse reaction rates

κ−r and ρ−r . Though usually small in magnitude and typically not measured in enzyme

kinetic assays, we also know that they are crucially related to ∆µ through the detailed

balance relation of Eq. (2.1). Thus, as explained in the next section, these become impor-

tant free parameters that we can vary to explore signaling efficiency and its dependence

on ∆µ.

2.3 Results

2.3.1 Minimum cost of transmitting information

Given the model described above, with a parameter set drawn at random from the em-

pirical joint distribution, we can ask a basic first question: what is the minimum chem-

ical potential difference ∆µ required to achieve a certain mutual information I ? The

answer will depend on the nature of the input signal X (t ), and thus we would like to test

different effective input frequencies γx . To do this we will fix the mean free kinase con-

centration at the level of a low amplitude input, [K ] = 5 nM, and vary γK , which varies γx

according to Eq. (2.2) with F = γK K̄ for fixed K̄ . In the SI we also show the same analysis

for [K ] = 0.5 and 50 nM, with results qualitatively similar to those described below. After

drawing enzyme parameters from the joint distribution and specifying γx at a given [K ],

the only two free parameters are the reverse reaction rates κ−r and ρ−r .

Fig. 2.3A shows a contour diagram of I as a function of κ−r and ρ−r for a sample en-

zyme parameter set and value of γx . Superimposed are dotted lines of constant∆µ from

Eq. (2.1). If one were interested in achieving a particular I value, for example I = 1 bit,

one can then numerically determine the κ−r and ρ−r point along the I = 1 bit contour

where ∆µ is smallest. For this specific enzyme parameter set and γx , the value turns out
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Figure 2.2. Enzymatic parameter ranges for kinases/phosphatases based
on the PaxDb [71] and Sabio-RK [73] databases. Because of the relative
lack of phosphatase data (orange histograms) relative to kinases (blue his-
tograms), we fit an overall log-normal joint probability to the total data
set including both kinases and phosphatases. The marginal distributions
from that global fit are plotted as purple curves. The parameters are as
follows: (A) kinase substrate [S] and phosphatase [P ] concentrations; (B)
kinase/phosphatase Michaelis constants K kin

M , K pho
M ; (C) the correspond-

ing specificity ratios κr /K kin
M , ρr /K pho

M ; (D) kinase/phosphatase catalytic
rates κr and ρr .

to be ∆µ = 6.72 kB T , which would then be recorded as the minimum necessary ∆µ to

achieve 1 bit of MI. Note that it is not guaranteed that a minimum ∆µ solution exists for

every parameter set sampled from the joint distribution. If the I contours plateau at a

maximum less than 1 bit, no possible ∆µ will allow that particular system to achieve the

desired MI target. We will return to this important point below.
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If one keeps the enzyme parameters (other than κ−r and ρ−r ) fixed, and just varies

γx , an interesting trend appears in the minimum ∆µ results. Fig. 2.3B shows two exam-

ples of minimum ∆µ curves, for target I values of 1 and 2 bits respectively. For a given I

target, the minimum ∆µ is nearly constant at low input frequencies, but then increases

rapidly and diverges at a maximum frequency which we will dub the “bandwidth” of the

system. This intuitively makes sense: the higher the input frequency, the more rapid

the catalytic reaction rates needed to accurately transmit the signal through the system,

increasing the required ∆µ threshold. However there is an inherent limit, given finite

enzyme catalysis rates. Above the bandwidth, whose value depends on the enzyme pa-

rameters, the system can no longer achieve the target I . The higher the informational

burden (i.e. increasing the target I from 1 to 2 bits) the lower the bandwidth: if one

desires higher fidelity transmission, the range of transmissible signal frequencies will

suffer.
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Figure 2.3. (A) A representative contour diagram of I (solid curves) as a function of

κ−r and ρ−r for a parameter set drawn randomly from the joint distribution. Dotted

lines denote contours of constant ∆µ. In this case ∆µ= 6.72 kB T is the smallest value at

which the system can achieve I = 1 bit. (B) For a sample parameter set, the minimum

∆µ needed to achieve I = 1, 2 bits as a function of input frequency γx . For the 1 bit

case, the dashed line represents γhigh
x , the maximum γx compatible with I = 1 bit for

this parameter set. As described in the text, we highlight two points along the curve: one

at a frequency γhigh
x at roughly 95% of the bandwidth, and the other at frequency γlow

x

at roughly 1% of the bandwidth. The points will be plotted for a many random draws of

the enzyme parameters from the joint distribution in the lower panels of the figue. (C)

For each target value of I = 1, 1.5, 2 bits, the percentage probability of randomly drawing

a parameter set that has a γhigh
x higher than a given frequency. (D-F) The distribution

of γhigh
x (blue) and γlow

x (green) for many random parameter draws, keeping only those

that can achieve I = 1 bit (D), 1.5 bits (E), or 2 bits (F). The probabilities of successfully

drawing such a set are shown in red in each panel. The blue and green circles denote

the median of each distribution respectively. (G-I) The same γhigh
x distributions as in

panels (D-F), except plotted in terms of gain R0 on the vertical axis. The solid line is the

analytical maximum bandwidth bound γmax
x of Eq. (2.5). The purple circle in panel G

shows the estimated result for the near-optimal yeast Pbs2/Hog1 system.
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To make more sense of these results, it is useful to look at a broad sample of en-

zyme parameters rather than a single set. To visualize global behaviors, we will calculate

two numerical results for each set drawn from our joint distribution. The procedure

is as follows: i) Sample an enzyme parameter set from the distribution; ii) Determine

if it can achieve our target I for any input frequency; iii) If the answer is yes, vary γK

until one finds the maximum possible value γmax
K where one can still achieve the I tar-

get. iv) Calculate the minimum ∆µ for an input signal very near the bandwidth fre-

quency, where γK = 0.95γmax
K . We will call this result ∆µhigh. The corresponding in-

put frequency is γhigh
x . v) Analogously, calculate the minimum ∆µ for an input signal

with a frequency much lower than the bandwidth, where γK = 0.01γmax
K . This set of re-

sults we denote as ∆µlow and γlow
x . Fig. 2.3B shows the two points (γhigh

x ,∆µhigh) and

(γlow
x ,∆µlow) as blue and green dots respectively for that particular parameter set at I = 1

bit. These two points encapsulate several key features of the minimum ∆µ versus γx

curve: ∆µlow roughly corresponds to an “entry level” price, the minimum ATP hydroly-

sis chemical potential necessary to transmit the signal at any frequency, while the differ-

ence ∆µhigh −∆µlow is the premium one has to pay to transmit signals near the highest

possible frequencies. The value γhigh
x approximately corresponds to the bandwidth.

If one were to make numerous draws from the parameter distribution, and plot

(γhigh
x , ∆µhigh) and (γlow

x ,∆µlow) for each draw, one would get a cloud of blue and green

dots. These are shown in Fig. 2.3D-F for target I of 1, 1.5, and 2 bits respectively. As

mentioned above, not every draw will lead to a parameter set that can achieve the tar-

get, and the plots are labeled by the fraction of draws that are capable of reaching that

particular value of I . That fraction decreases with I , from 13% for I = 1 bit down to
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only 2% for I = 2 bits. As I increases not only does it become progressively more dif-

ficult to find enzymatic parameters compatible with higher fidelity, but the accessible

frequency range becomes more restricted. Fig. 2.3C shows the percentage of the param-

eter space that can achieve bandwidths higher than a given frequency for different I . For

example let us consider the frequency 1.22×10−3 s−1, which is the bandwidth estimated

for the Hog1 signaling pathway in yeast using periodic osmolyte shocks [75]. Note that

this is the bandwidth for the entire pathway, which must be a less than or equal to the

bandwidth of the individual enzymatic loops that compose the pathway. From Fig. 2.3C

it is evident that only about 0.41% of the draws from the parameter distribution have

γ
high
x ≥ 1.22×10−3 s−1 for a target I = 1 bit. If one were to attempt to transmit signals at

such high frequencies for I = 2 bits, the fraction of compatible parameter space shrinks

to a miniscule 9×10−3%. This reflects the exquisite fine-tuning required to put together

a set of enzymatic loops capable of responding to quick, life-or-death variations of the

external environment on time scales of a couple of minutes. Going much beyond I = 1

bit and maintaining fast response times for a single push-pull loop is extremely diffi-

cult, and hence it makes sense that biology settles for I in the vicinity of 1 bit in many

circumstances. Going much below 1 bit poses another set of difficulties, since such sys-

tems would not even be able to reliably transmit the difference between high and low

values of input signal. For signaling that can occur over longer timescales (hours in-

stead of minutes) it becomes much easier to find compatible parameter sets, with the

median of the distribution of γhigh
x for I = 1 bit around ∼ 6×10−5 s−1.

From the perspective of costs, the bulk of the distribution of entry level prices ∆µlow

for I = 1 bit is& 1 kB T . Any system much below this would be too close to equilibrium

(reverse rates comparable to forward rates) for effective information transfer to occur.
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The median of the ∆µlow distribution in Fig. 2.3C is 4 kB T , increasing to about 6 kB T

for I = 2 bits in Fig. 2.3E. These values are on the same scale as estimates of minimum

∆µ ∼ 4 kB T ln2 required for 99% accurate readout of a ligand-bound receptor via the

activation of a downstream molecule, assuming an arbitrarily slow readout process [55].

In that system (as in ours), processing information at faster time scales requires large

∆µ. Indeed we find that the median values for ∆µhigh range between 8 − 10 kB T for

I = 1− 2 bits. The minimum ∆µ near the bandwidth is typically shifted up by about

4 kB T , reflecting the premium necessary to transmit near the frequency limit. Paying

this premium is worthwhile: frequencies γlow
x accessible at∆µlow prices are likely far too

low to have biological relevance, with the distributions of γlow
x largely below 10−5 s−1.

To get the ability to respond to signals at more biologically reasonable time scales thus

means being capable of transmitting closer to the bandwidth, making ∆µhigh a more

useful measure of minimum biological costs.

The ∆µhigh distributions show that it is possible to have signaling systems that trans-

mit at least 1 bit of MI and operate at ∆µ lower than the current physiological range

(∆µ≈ 21−29 kB T [5], indicated in pink in Fig. 2.3D-F). This is true even for systems with

the fastest responses (large γhigh
x near the right edges of the distribution). This means

the one can imagine enzymatic signaling systems in the earliest stages of evolutionary

history that can reliably distinguish high and low inputs even before ATP metabolism

(maintaining high ATP concentrations relative to ADP and Pi ) reached its modern levels

of efficiency.

In fact a fascinating universal feature of the distributions is that the physiological

∆µ range lies just above the top edge of the distributions. Naively it would seem as if

the physiological values are just high enough to allow these signaling loops to transmit



The price of a bit: energetic costs, bandwidth and the evolution of cellular signaling 53

I = 1− 2 bits across the broadest possible parameter subset. This gives evolution the

largest possible space in which to tweak tradeoffs between fidelity and response times

without running into chemical potential limitations. Of course ∆µ influences not just

signaling networks but the entire range of cellular functions, so it is impossible to say

with certainty what factors played the largest role in determining the values of ∆µ we

see in present-day organisms. But at least from the perspective of signaling at the level

of a push-pull loop, it is clear that ∆µ ≈ 21−29 kB T is more than good enough for ba-

sic information transfer needs, and there would be no benefit in having a system with

substantially higher ∆µ. To maintain ∆µ = 40 or 50 kB T for example, would require

significant additional metabolic resources, with little payoff in terms of either I or band-

width.

2.3.2 Analytical bound describes tradeoff between bandwidth and infor-
mation

The results above already illustrated the tradeoff between bandwidth and MI, with pa-

rameter sets that achieve very large γhigh
x becoming progressively harder to find as the

target I increases. Can we understand this relationship in more detail? For this purpose

we take advantage of optimal noise filter theories, originally developed in the context

of signal processing [76–78], and in recent years applied to a variety of biological sig-

naling networks [61, 62, 79–82]. The original motivation involved designing a filter for a

signal corrupted by noise, such that the output matched the uncorrupted input signal

as closely as possible. In the biological context, this same framework allows us to put

bounds on the maximum MI achievable between input and output signals for given in-

put and enzymatic parameters. As shown in the SI, our enzymatic push-pull loop can

be approximately mapped onto an effective two-species input-output system, which is
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then amenable to analytical treatment using the Wiener-Kolmogorov optimal filter the-

ory [61, 76–78].

The end result is a remarkably simple analytical relation between the maximum pos-

sible bandwidth γmax
x achievable given a target value of I ,

γmax
x = R0

4I+1(4I −1)
. (2.5)

The only other enzymatic parameter that appears in the relation is the gain R0, a mea-

sure of output production relative to the input. Fig. 2.3G-I shows the same parameter

set distribution as the (γhigh
x ,∆µhigh) points in Fig. 2.3D-F, except replotted in terms of

(γhigh
x ,R0), where R0 is the gain for each parameter set. The solid line is the bound of

Eq. (2.5). Even though this bound is based on an approximation of the full enzymatic

system, and hence is not guaranteed to be exact, it still provides an excellent cutoff

for the distribution of (γhigh
x ,R0) points. For systems at a certain R0, we see that as I

is increased and the denominator in Eq. (2.5) gets larger, the maximum bandwidth γmax
x

shifts to lower values. If we are interested in a fast response time, increasing I system-

atically reduces the compatible parameter space, since we are forced to rely on cases

with larger and larger R0. Thus Eq. (2.5) rationalizes the earlier observation of limited

options for networks that can simultaneously respond to signals fluctuating on minute

time scales and achieve I significantly larger than 1 bit.

2.3.3 Optimality and the yeast Pbs2/Hog1 push-pull loop

There is an alternative way of thinking about the R0 versus γhigh
x results in Fig. 2.3G-

I. Imagine a system working at γhigh
x with a certain gain parameter R0 and achieving

a target value I . Comparing other parameter sets with the same bandwidth γ
high
x and

target I (taking a vertical slice of one of the panels in Fig. 2.3G-I), they will have a variety
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Figure 2.4. (A) The same (γhigh
x ,∆µhigh) point distribution as in Fig. 2.3C

for I = 1 bit, except plotted in terms of ATP consumption rate A on the
vertical axis. The solid line is the approximate lower bound Amin on ATP
consumption given by Eq. (2.7). (B) This distribution replotted with se-
lection coefficient |s| on the vertical axis. |s| quantifies the fitness cost as-
sociated with a system that achieves the target I = 1 bit but is sub-optimal
in ATP consumption, relative to an optimal variant where A = Amin. The
value of |s| becomes evolutionarily significant when it is higher than a
“drift threshold” N−1

e , where Ne is the effective population of the organ-
ism (a measure of genetic diversity). The ranges of N−1

e for different
classes of organisms are shown on the right [63, 83]. The vertical dotted

line corresponds to the estimated γhigh
x for the yeast Pbs2/Hog1 system.

of different R0 values, but all of these will be bounded from below by the minimum value

Rmin
0 = 4I+1(4I −1)γhigh

x . (2.6)

When R0 = Rmin
0 , the system sits on the optimality line of Eq. (2.5), with γhigh

x = γmax
x .

The discrepancy between R0 and Rmin
0 for a given system allows us to see how close

the signaling behavior is to optimality. Let us take a concrete biological example: the

Pbs2/Hog1 enzymatic push-pull loop from yeast, part of the Hog1 signaling pathway
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that allows the organism to respond to osmotic stress. As described in the SI, key pa-

rameters for this system can be estimated based on an earlier model [74] fit to microflu-

idic experimental data where yeast was exposed to periodic salt shocks [84]. The re-

sults for the bandwidth and gain for I = 1 bit are: γhigh
x = (1.22± 0.04)× 10−3 s−1 and

R0 = 0.0621± 0.0001 s−1, with the error bars reflecting uncertainties due to unknown

parameters (where we used priors based on the log-normal distributions Fig. 2.2.) The

scale of the predicted bandwidth γhigh
x is consistent with microfluidic estimates. Ref. [75]

found a steep dropoff in the mean amplitude of the Hog1 response to periodic step-like

changes in external osmolyte concentrations when the frequencies of the changes in-

creased from 10−3 s−1 to 10−2 s−1. At frequencies beyond the dropoff the Hog1 output

can no longer reproduce the osmolyte input at high fidelity. Though the form of the

input in this case is different than in our model, and the experiment probes the en-

tire pathway rather than just the Pbs2/Hog1 component, the similarity in scales to our

γ
high
x value suggests that the Pbs2/Hog1 system may play a major role in determining

the bandwidth of the whole pathway (since the bandwidth of the whole is constrained

by the bandwidths of the components).

Intriguingly, the estimated gain R0 is very close to the minimum possible value Rmin
0

for signaling at the bandwidth γ
high
x with I = 1 bit, as seen in Fig. 2.3G. Using Eq. (2.6),

we find Rmin
0 = 0.059± 0.002 s−1. This naturally leads to the question: is the fact that

this system lies so close to optimality a coincidence, or are there reasons why natural

selection might favor minimizing R0 in this case? To answer this question, we first have

to consider the relationship between gain and ATP consumption.
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2.3.4 Minimum ATP consumption to achieve a certain signaling fidelity and
bandwidth

This bound on the gain parameter in Eq. (2.6) is directly related to the metabolic cost

of signaling, since higher production of the output per given input level will generally

require a higher rate of phosphorylation events. We can roughly quantify the average

rate of phosphorylation: in the stationary state this is just the mean rate of the kinase-

catalyzed reaction step, A = κr SK . Assuming one ATP hydrolyzed per reaction, A is the

mean rate at which ATP is consumed by the system, and is related to R0 through A =

κr R0K /(κr −R0), as shown in the SI. In the enzymatic parameter ranges we consider, κr

is typically much larger than R0, so we can approximate this relation as A ≈ R0K . Using

Eq. (2.6) we can then estimate the minimum possible ATP consumption rate given a

target I and bandwidth γhigh
x :

Amin ≈ Rmin
0 K̄ = 4I+1(4I −1)γhigh

x K . (2.7)

Fig. 2.4A shows the same parameter set values as the (γhigh
x ,∆µhigh) points in Fig. 2.3D

for I = 1 bit, except plotted in terms of (γhigh
x , A). The A values are exact, but the ap-

proximate relation of Eq. (2.7) provides an excellent lower bound on the distribution.

Qualitatively, the individual elements of Eq. (2.7) all make intuitive sense. An increase in

any of the constituent factors (the mean free input kinase population K , the target infor-

mation I , the bandwidth γhigh
x ) puts greater demands on the signaling system, requiring

more catalytic activity and hence faster ATP consumption. Note that the above results

are easily generalized if the reaction step consumes more than one ATP: for example the

effective model for yeast Pbs2/Hog1 discussed above involves phosphorylation at two

sites, which would lead to the expressions for A and Amin getting a prefactor of two.
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2.3.5 Evolutionary pressure on the metabolic costs of signaling

It is clear from Fig. 2.4A that for many parameter set choices the ATP consumption rate A

is significantly larger than for a system near optimality (A ≈ Amin) given the same I and

γ
high
x . Let us consider a specific scenario where the bandwidth γhigh

x and the target I are

sufficient for the biological function of the signaling i.e. there are rapidly diminishing

fitness returns in going to higher bandwidth and signal fidelity. In this scenario a system

with A > Amin has no significant adaptive advantage over one with A ≈ Amin, but instead

incurs a fitness penalty because of the superfluous ATP consumption. Would there be

evolutionary pressure on this sub-optimal system to move toward optimality?

The answer to this question has practical ramifications, because it will allow us to

predict whether we should expect to see natural enzymatic push-pull loops cluster around

the optimality line (as we saw in the yeast Pbs2-Hog1 example). The alternative, in the

absence of strong evolutionary pressure to optimize, is a wider dispersion, more sim-

ilar to Fig. 2.4A where the points are drawn at random from the enzymatic parameter

distribution. Note that this is a question that is directly amenable to future kinetic ex-

periments: for systems where we can fully characterize the enzymatic parameters of the

push-pull loop (for both the kinase and phosphatase), all the relevant quantities like

γ
high
x , A, and I can be calculated.

Naively one might expect evolution to always drive systems to optimality due to

natural selection, but genetic drift can play a significant competing role, allowing sub-

optimal variants to flourish and even fix in a population [85]. To be specific, let us con-

sider a unicellular organism that reproduces via binary fission, and two genetic variants

of that organism that differ in the enzymatic parameters of a push-pull signaling loop:

both variants achieve the same γhigh
x and I , but one has A > Amin and one has A = Amin.
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Let us denote the relative fitness of the sub-optimal versus the optimal type as 1 + s,

defining a selection coefficient s. In other words the sub-optimal variant will have on

average 1+ s offspring relative to the optimal one during the generation time of the op-

timal type. In the scenario described above, where the extra production does not confer

any adaptive advantage and only imposes a metabolic cost, we will have s < 0, because

the superfluous ATP consumption will lead to slower growth.

The magnitude of s determines the degree of selective pressure on the sub-optimal

variant. The key quantity that sets the relevant scale for s is the effective population Ne

of the organism, the size of an idealized population that exhibits the same changes in

genetic diversity per generation due to drift as the actual population [83]. When s < 0

and |s| À N−1
e , natural selection dominates drift, exponentially suppressing the proba-

bility of a sub-optimal mutant fixing in a population of optimal organisms. On the other

hand if |s| ¿ N−1
e , drift dominates, and the fixation probability of sub-optimal mutants

is roughly the same as for a neutral (s = 0) mutation [86]. In this case it would be difficult

to maintain optimality in a population over the long term. Ne for organisms is typically

smaller than their actual population in the wild, and varies by several orders of mag-

nitude among different classes: for unicellular species it can be as high as ∼ 109 −1010

in bacteria down to ∼ 106 − 108 in single-celled eukaryotes [63, 83]. (It becomes even

smaller among higher eukaryotes, going down to ∼ 104 in vertebrates.) The correspond-

ing ranges for the “drift threshold” N−1
e [63] are shown on the right in Fig. 2.4B.

The question then becomes: how do we estimate s and how does it compare to

the relevant N−1
e for the class of interest? For the case where a variant imposes meta-

bolic costs but no adaptive advantage, there is a very useful relation that posits s ∼

−δCT /CT [63, 87, 88]. Here CT is the total resting metabolic expenditure of an organism
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during a generation time, measured for example in units of P, where 1 P = one phos-

phate bond hydrolyzed (ATP or ATP equivalent consumed). δCT is the extra expendi-

ture incurred by the more costly mutant. This relation has already been used to explore

selective pressures in yeast [88], unicellular prokaryotes and eukaryotes [63], and viral

infections [89]. It was recently derived from first principles through a general bioener-

getic growth model [64], where the relation was refined with a more accurate prefactor:

s ≈− ln(Rb)δCT /CT . Here Rb is the mean number of offspring per individual (i.e. Rb = 2

for binary fission).

The value of CT can be readily estimated for single-celled organisms, where it scales

roughly with cell volume [63, 64]. Given the 30 fL cell volume used in our calculations,

and assuming a generation time (cell division time) tr = 1 hr, we find CT ≈ 7×1011 P (see

details in the SI), comparable in magnitude to experimental estimates for yeast [63].

Since δCT reflects the extra ATP consumed by the costly mutant (with consumption

rate A) versus the optimal variant (rate Amin) over one generation time, we can write

δCT = (A − Amin)tr . We can thus calculate s for all the near-bandwidth I = 1 bit param-

eter sets represented in Fig. 2.4A. The results for |s| versus γhigh
x are plotted in Fig. 2.4B.

Because increased ATP consumption is required to achieve larger bandwidths (as seen

in Eq. (2.7)), the distribution of selective penalties |s| for being sub-optimal is pushed to

larger values with greater γhigh
x . In other words, higher bandwidths make the energetic

stakes more significant.

We can now rationalize why the yeast Pbs2/Hog1 loop might be close to optimal-

ity. The bandwidth for that system (indicated by a vertical dashed line in Fig. 2.4B) is

near the higher end of the spectrum. Suboptimal parameter values that achieve approx-

imately the same bandwidth at I = 1 bit span a range of |s| values between 10−8 and 10−4.
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Given Ne = 106 −108 for single-celled eukaryotes [63, 83], and estimates of Ne ≈ 107 for

wild yeast populations [90], these suboptimal systems likely have |s| near or above the

drift threshold N−1
e . Thus we would expect yeast to be under evolutionary pressure to

optimize the energy expenditures associated with the enzymatic loop.

2.4 Discussion and Conclusions

The kinase-phosphatase push-pull signaling network, which maintains a certain value

of mutual information I between input and output, incurs energetic costs in the form

of ATP consumption. These costs have two related facets: (i) the free energy expendi-

ture ∆µ for each hydrolysis reaction, and (ii) the number of such reactions A per unit

time. Achieving empirical values like I = 1− 2 bits requires satisfying both aspects of

the cost. There is a minimal price in terms of ∆µ to achieve any given I , and this price

increases if one demands either greater fidelity (larger I ) or the ability to process faster

signals (larger γx). Modern cells are more than willing to pay this part of the price, with

∆µ sufficiently high to meet the minimal requirements for any enzymatic parameter set

that hits a target I on the order of 1 bit. However, as the distributions in Fig. 2.3D-F il-

lustrate, there are certainly options for signaling systems that work at similar fidelities

under conditions of smaller ∆µ, the presumptive scenario earlier in evolutionary his-

tory. In all cases we require some degree of fine-tuning of enzymatic parameters: the

higher the fidelity or frequency demands, the smaller the fraction of parameter space

that satisfies them. This leaves vanishingly small room to achieve networks that operate

at I significantly larger than the known empirical range.

For particular parameter combinations the system is optimal, exhibiting the maxi-

mum possible bandwidth (γmax
x of Eq. (2.5)) with the minimal ATP consumption (Amin
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of Eq. (2.7)). Is such optimality widely realized in nature? Analyzing the selective pres-

sures due to superfluous ATP expenditures indicates that this is a worthwhile question

to pursue. We have already identified one near-optimal candidate in the yeast Hog1 sig-

naling pathway. Based on the results of the previous section, we predict that the best

place to look for others is among signaling pathways with high bandwidths, for example

∼ 10−3 −10−2 s−1 at the extremes of the current biological distribution. Here the meta-

bolic costs of being suboptimal would be significant for single-celled organisms.

More broadly, strong selective pressure on the costs of running signaling networks in

single-celled organisms is likely to be a widespread phenomenon. To give another exam-

ple, the expenditure of running the chemotaxis machinery in E. coli has been estimated

to be about ∼ 107 P per ∼ 1 hr cell cycle [35, 37]. Compared to a value of CT ≈ 2×1010

P for E. coli [63, 64], we get an |s| ∼ 10−4, which is definitely significant for a bacterial

population. We have barely begun to understand the kinds of optimization that such

selective pressure has induced. Our approach readily generalizes beyond the kinase-

phosphatase system, setting the stage for exploring these issues in a much wider array

of biochemical networks.

2.5 Supplementary information for this chapter

2.5.1 Derivation of the detailed balance relation

To derive the detailed balance relation of Eq. (2.1), it is convenient to focus on the reac-

tions from the perspective of an individual substrate molecule [4]. A given molecule in

our model can be in one of four states, indicated in Fig. 2.5 with corresponding forward

and reverse transition rates. For example if the molecule is an unmodified substrate
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Figure 2.5. The enzymatic push-pull loop from the perspective of an indi-
vidual substrate molecule. The protein can exist in one of four states: un-
modified substrate (σ), bound to kinase (σK ), phosphorylated (σ∗), and
bound to phosphatase while phosphorylated (σ∗

P ). The forward (clock-
wise) transition rates between these states are indicated in black, while
the reverse (counterclockwise) rates are in red.

(state σ) it can transition to a kinase-bound substrate (state σK ) with rate κb[K ], pro-

portional to the surroudning concentration [K ] of kinase molecules. It can revert from

σK to σ with rate κu . The other transitions in Fig. 2.5 are defined analogously, with for-

ward rates colored black and reverse rates in red. Detailed balance entails that product

of reverse rates divided by the product of forward rates is equal to exp(β∆G), where ∆G

is the free energy change of the system associated with a single forward traversal of the

loop and β = (kB T )−1 [4]. Since after one loop from σ to σ the substrate is back in the

same state (as well as the kinase and phosphatase), there is no free energy contribution

from these molecules. However a single loop leads to the hydrolysis of a single molecule

of ATP, so ∆G = −∆µ, as defined in the main chapter text. Putting everything together,

the detailed balance relation reads

e−β∆µ = κu

κb[K ]

κ−r [K ]

κr

ρu

ρb[P ]

ρ−r [P ]

ρr
= κ−rρuρ−rκu

κrρbρrκb
, (2.8)

yielding Eq. (2.1).
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2.5.2 Chemical Langevin approach for the kinase-phosphatase push-pull
loop

In this section we derive the stationary state properties of the kinase-phosphatase push-

pull loop via the chemical Langevin approximation. The derivation will follow analo-

gously to Ref. [61], except here the system is more complicated due to the inclusion of

reverse enzymatic reactions. The end goal will be a method to estimate the mutual in-

formation I , given by Eq. (2.4),

I ≈−1

2
log2 E , where E ≡ 1− (X Y −X Y )2(

X 2 −X
2
)(

Y 2 −Y
2
) , (2.9)

which requires evaluating the variances of the input and output, var(X ) = X 2−X
2
, var(Y ) =

Y 2 −Y
2
, as well as the covariance cov(X ,Y ) = X Y − X Y . The quantity E here will be

referred to as the “error” in signal propagation between input and output, and can be

equivalently expressed as E = 1−ρ2, where ρ is the Pearson correlation coefficient be-

tween X and Y .

Dynamical equations. Our starting point is the full system of reactions for the enzy-

matic push-pull loop,

∅
F


γK

K ,

K +S
κb


κu

SK
κr


κ−r

K +S∗,

P +S∗ ρb


ρu

S∗
P

ρr


ρ−r

P +S,

(2.10)
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where ∅ represents the void (upstream deactivated kinase which does not enter into our

model). The corresponding chemical Langevin equations [7] are given by:

dK

d t
= F −γK K −κbK S + (κu +κr )SK −κ−r K S∗+n1 +n2 +n3,

dSK

d t
= κbK S − (κu +κr )SK +κ−r K S∗−n2 −n3,

dS∗

d t
= κr SK −ρbPS∗+ρuS∗

P −κ−r K S∗+n3 +n4,

dS∗
P

d t
= ρbPS∗− (ρu +ρr )S∗

P +ρ−r SP −n4 +n5,

dP

d t
=−dS∗

P

d t
,

dS

d t
=−dSK

d t
− dS∗

d t
− dS∗

P

d t
,

(2.11)

where the last line ensures that the total populations of free or bound phosphatase

(P +S∗
P ) and free or bound substrate in all its forms (S +SK +S∗+S∗

P ) remain constant.

The noise terms ni (t ) = p
Πiηi (t ), where ηi (t ) are Gaussian noise functions with zero

mean and correlations ηi (t )η j (t ′) = δi jδ(t − t ′). The five noise terms are associated with

reactions in the system, and the corresponding prefactors represent the sum of the mean

production (forward) and deactivation/unbinding (backward) contributions to each re-

action:

Π1 = F +γK K , Π2 = κbK S +κuSK , Π3 = κr SK +κ−r K S
∗

,

Π4 = ρbPS
∗+ρuS

∗
P , Π5 = ρr S

∗
P +ρ−r SP .

(2.12)

Setting the left-hand sides of Eq. (2.11) to zero, and taking the average of the right-hand

sides, we can solve for the stationary state populations:

K = F

γK
, SK = FC2

γK C1
, S

∗ = C3

C1
, S∗

P = C4

C1
. (2.13)
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with the following definitions:

κ− ≡ κu +κr , ρ− ≡ ρu +ρr

C1 ≡ κ−PγKρbρr +Fκ−rκuρ−

C2 ≡ S
[

Fκbκ−rρ−+PγK (κbρbρr +κ−rρ−rρu)
]

C3 ≡ S(PγKκ−ρ−rρu +Fκbκrρ−)

C4 ≡ PS
[

PγKκ−ρ−rρb +F (κbρbρr +κ−rρ−rκu)
]

(2.14)

The input (total kinase) is X = K +SK and the output (total activated substrate) is Y =

S∗+S∗
P , and hence Eq. (2.13) can be used to calculate the stationary values X and Y .

Second moments. In order to calculate the variance and covariance of the input and

output, we also need to know X 2, Y 2, X Y . To estimate these quantities, the first step is

to switch variables in Eq. (2.11) to focus on deviations from the stationary state values:

δK ≡ K −K , δSK ≡ SK −SK , δS∗ ≡ S∗−S
∗

, δS∗
P ≡ S∗

P −S
∗
P . We can in turn rewrite these

four variables in terms of the input and output deviations δX = X −X and δY = Y −Y :

δK = C1

C1 +C2
δX +δXq ,

δSK = C2

C1 +C2
δX −δXq ,

δS∗ = C3

C3 +C4
δY +δYq ,

δS∗
P = C4

C3 +C4
δY −δYq ,

(2.15)

where we have introduced two additional auxiliary variables δXq and δYq . Plugging

Eq. (2.15) into Eq. (2.11), we simplify the system through linearization, ignoring any

terms of second order or higher in the deviations. As demonstrated below in com-

parisons with kinetic Monte Carlo (KMC) simulations of the original system, this lin-

earized chemical Langevin approximation works well for our parameter ranges. Finally,
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we Fourier transform the linearized Eq. (2.11), and the resulting system of equations

takes the form

M(ω)



δ̃X

δ̃X q

δ̃Y

δ̃Y q


=



−ñ1

ñ2 + ñ3

−ñ3 − ñ5

ñ4 − ñ5


(2.16)

where Q̃(ω) denotes the Fourier transform of quantity Q(t ). The matrix M is given by:

M(ω) =
iω− C1γK

C1+C2
γK 0 0

C1(κb S+κ−r S∗)−C2(κb K+κ−−iω)
C1+C2

κb (K+S)+κ−r S
∗+κ−−iω

C3Kκ−r
C3+C4

−κb K Kκ−r

C2κr −C1κ−r S∗
C1+C2

−κr −κ−r S
∗ −C3Kκ−r +C4ρr

C3+C4
+iω ρr −κ−r K

0 0
C3Pρb−C4(S∗ρb+ρ−−iω)

C3+C4
Pρb+S

∗
ρb+ρ−−iω

.

(2.17)

The Fourier-space system of equations Eq. (2.16)-(2.17) can be solved for δ̃X (ω) and

δ̃Y (ω). The expressions are complicated, but take the form of a linear combination of

Fourier-space noise terms:

δ̃X (ω) =
5∑

i=1
aX

i (ω)ñi , δ̃Y (ω) =
5∑

i=1
aY

i (ω)ñi , (2.18)

where aX
i (ω) and aY

i (ω) are some prefactors which can be expressed as rational func-

tions of ω. The prefactors have the property aX
i (−ω) = (aX

i (ω))∗, aY
i (−ω) = (aY

i (ω))∗.

In Fourier space the correlations among the noise terms take the form ñi (ω)ñ j (ω′) =

δi jΠiδ(ω+ω′). Hence we can calculate the input power spectral density (PSD) PX (ω),

the output PSD PY (ω) and the cross PSD PX Y (ω), defined via

δ̃X (ω)δ̃X (ω′) = 2πPX (ω)δ(ω+ω′), δ̃Y (ω)δ̃Y (ω′) = 2πPY (ω)δ(ω+ω′),

δ̃X (ω)δ̃Y (ω′) = 2πPX Y (ω)δ(ω+ω′).

(2.19)
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Plugging Eq. (2.18) into Eq. (2.19), we find expressions for the PSDs in terms of the pref-

actor functions:

PX (ω) =
5∑

i=1
|aX

i (ω)|2Πi , PY (ω) =
5∑

i=1
|aY

i (ω)|2Πi , PX Y (ω) =
5∑

i=1
aX

i (ω)aY
i (−ω)Πi .

(2.20)

The final step is to calculate the second moments from integrals of the PSDs, using the

inverse Fourier transform of Eq. (2.19) evaluated at t = t ′:

X 2 =
∫ ∞

−∞
dω

2π
PX (ω), Y 2 =

∫ ∞

−∞
dω

2π
PY (ω), X Y =

∫ ∞

−∞
dω

2π
PX Y (ω). (2.21)

Given the explicit expressions for the prefactor functions in Eq. (2.20) (which are avail-

able as part of the Mathematica notebooks in the Github repository associated with

the manuscript), one can numerically evaluate the integrals in Eq. (2.21) to get the mo-

ments.

Comparison to kinetic Monte Carlo simulations for mutual information. The chemi-

cal Langevin calculation of the second moments allows us to use Eq. (2.9) to estimate the

mutual information I . We can then check whether this estimate is consistent with the

results we would get from KMC simulations of the full system. Fig. 2.6 shows this com-

parison for two sample parameter sets drawn from the enzymatic parameter distribu-

tion described in Sec. 2.5.4. Since we are interested in exploring the full range of chem-

ical potentials ∆µ, in each case we calculate I varying the reverse-to-forward rate ratio

κ−r /κr , keeping all other parameters constant. Through Eq. (2.1), increasing κ−r /κr cor-

responds to decreasing the magnitude of∆µ. At very large∆µ (smallκ−r /κr ) the I curves

saturate at the maximum possible mutual information for that parameter set, while at

small ∆µ (large κ−r /κr ) the mutual information approaches zero, the equilibrium limit.
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Across the whole range we see that the chemical Langevin theoretical prediction is in

close agreement with the KMC results.
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Figure 2.6. The mutual information I for the enzymatic push-pull loop
as a function of the reverse-forward rate ratio κ−r

κr
. The predictions from

the chemical Langevin approach (dashed line) are compared against the
corresponding KMC simulation results (circles). The parameters sets are
as follows (all units are s−1 except for the mean populations; molar units
have been converted to populations by assuming a cell volume of 30 fL):
(top) κb = 2.94×10−6, ρb = 3.68×10−7, κu = 1.58×10−2, ρu = 4.42×10−4,
κr = 12.8, ρr = 1.34, ρ−r = 2.50× 10−5, F = 2.49× 10−3, γk = 2.68× 10−5,
S̄ = 614, and P̄ = 45; (bottom) κb = 2.32× 10−5, ρb = 1.46× 10−4, κu =
6.94×10−2, ρu = 5.48, κr = 0.994, ρr = 5.05×10−2, ρ−r = 2.06×10−8, F =
2.46×10−2, γk = 2.65×10−4, S̄ = 2380, and P̄ = 127.
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2.5.3 Characteristic frequency γx , gain R0, and the conditions for Wiener-
Kolmogorov noise filter optimality

Deriving the γx and R0 expressions in Eq. (2.2). Since the effective frequency γx of the

input and the gain R0 play central roles in the analysis, having simple closed form ap-

proximations for them [Eq. (2.2)] is useful. The original definitions of these two vari-

ables, as described in the main chapter text, are as follows: (i) γx is related to the au-

tocorrelation of input fluctuations, δX (t +τ)δX (t ) = δX 2 exp(−γx |τ|); (ii) R0 ≡ κr SK /X

measures output production for a given level of input. As demonstrated in the next sec-

tion, both of these can be calculated from KMC simulations (at significant computa-

tional expense for each different set of parameters). Alternatively, the chemical Langevin

approximation of Sec. 2.5.2 can be used to derive somewhat cumbersome analytical ex-

pressions.

However the most convenient option is to take advantage of the meaning of γx and

R0 in an effective, two-species description of the kinase-phosphatase reaction network.

Imagine a system with an input species population X (t ), output Y (t ), and a simplified

chemistry with only four reactions: production of input at rate F , deactivation of input

at rate γx X (t ), production of output at rate R0X (t ), and deactivation of output at rate

γy Y (t ). In this two-species system the inverse input autocorrelation time is given by

the deactivation rate parameter γx , and the coefficient R0 in the output production rate

is also the gain parameter. To relate this simplified model to the full reaction network

of Sec. 2.5.2, we compare analogous quantities in the simplified and full schemes. For

example, let us take the mean input population X . In the simplified scheme this is given

by

X = F

γx
. (2.22)
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In the full network X = K +SK can be calculated from Eq. (2.13) as

X = F (C1 +C2)

C1γK
, (2.23)

where the Ci are expressed in terms of full network parameters in Eq. (2.14). Comparing

Eqs. (2.22) and (2.23) we see that γx should be given by

γx = C1γK

C1 +C2
, (2.24)

which is the first expression in Eq. (2.2). Similarly the mean production rate of the out-

put in the simplified scheme is R0X̄ . In the full system the mean output production is

the average rate at which new phosphorylated substrate is produced via catalysis by the

kinase-substrate complex,

κr SK = κr
FC2

γK C1
= κr

C2

C1 +C2
X̄ , (2.25)

where we have again used Eqs. (2.13)-(2.14). Comparing Eq. (2.25) to R0X̄ , we see that

R0 should correspond to

R0 = κr
C2

C1 +C2
, (2.26)

which is the second expression in Eq. (2.2).

Validation through kinetic Monte Carlo simulations. To verify that the expressions for

γx and R0 derived above are good approximations, we ran KMC simulations for various

parameter sets drawn at random from the enzymatic parameter distribution detailed in

the Sec. 2.5.4. For each parameter set the simulation was run long enough after reaching

the stationary state to collect sufficient statistics for both the mean population values

and the input autocorrelation function. As described above, these allow us to calcu-

late γx and R0. The simulation results are compared against the approximation from

Eqs. (2.24) and (2.26) in Fig. 2.7. The agreement is excellent for both quantities, across
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Figure 2.7. Comparison of the simple analytical approximations for R0

from Eq. (2.26) (top) and γx from Eq. (2.24) (bottom) versus KMC simula-
tion results. Each point corresponds to a parameter set drawn randomly
from the enzymatic parameter distribution described in Sec. 2.5.4. Error
bars for R0 are smaller than the symbol size, and hence not indicated in
the figure.

the entire range of γx and R0 values. Thus we can confidently use the simple analytical

expressions of Eqs. (2.24) and (2.26) to predict γx and R0 for any given parameter set.

Relating maximum bandwidth, minimum ATP consumption rate, and mutual infor-

mation via Wiener-Kolmogorov optimal noise filter theory. One of the benefits of the

approximate relation between the full system and the two-species model described in

Sec. 2.5.3 is that it allows us to use results from the two-species case to make predictions
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for the behavior of the kinase-phosphatase push-pull loop. The two-species model has

been analyzed in detail in Refs. [61, 82], where it was shown to be able to map onto a

Wiener-Kolmogorov optimal noise filter. The error E from Eq. (2.9) for the two-species

case can be evaluated in closed form as [61]:

E = 1−
γ2

y R0

(γx +γy )2

[
γy +R0

γy

γy +γx

]−1

. (2.27)

It achieves its minimum value (hence maximizing the mutual information I ) when the

following condition is fulfilled:

γy = γx

p
1+Λ, (2.28)

where Λ = R0/γx . The corresponding minimum E , where the system behaves like an

optimal Wiener-Kolmogorov (WK) noise filter is given by:

EWK = 2

1+p
1+Λ . (2.29)

Interestingly, this remains the bound even if we generalize the output production term

R0X (t ) to be nonlinear in X (t ) [61]. Using the relation between E and I in Eq. (2.9), we

can translate the bound E ≥ EWK into an equivalent statement that γx ≤ γmax
x at a given

value of mutual information I . The value of γmax
x is shown in Eq. (2.5):

γmax
x = R0

4I+1(4I −1)
. (2.30)

As shown in Figs. 2.3G-I, the above γmax
x expression provides an excellent approximate

upper bound on the γhigh
x values calculated for the full enzymatic system. Even though

the effective two-species model lacks reverse rates, it provides a useful tool for deriv-

ing this bound, since the maximum bandwidth is achieved when the reverse rates are

negligible (large ∆µ).
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As mentioned in the discussion around Eq. (2.6), the expression for γmax
x in Eq. (2.30)

also has an alternative interpretation. This gives the minimum production rate Rmin
0

necessary to achieve mutual information I at a certain bandwidth γhigh
x :

Rmin
0 = 4I+1(4I −1)γhigh

x . (2.31)

By relating R0 in turn to the ATP consumption rate A = κr SK , we can convert Eq. (2.31)

into an expression for the minimum necessary ATP consumption rate Amin. To accom-

plish this, note that A can be rewritten as:

A = κr K
C2

C1
= κr K

R0

κr −R0
, (2.32)

where we have used Eqs. (2.13) and (2.26). Finally, taking advantage of the fact that

typicallyκr À R0 for the parameter distributions of interest, we make the approximation

A ≈ R0K . This allows us to derive Eq. (2.7):

Amin ≈ Rmin
0 K̄ = 4I+1(4I −1)γhigh

x K . (2.33)

2.5.4 Enzymatic parameter distribution

Earlier surveys of enzymatic kinetic parameters in Refs. [69, 70], over broader classes

than just kinases and phosphatases, showed that their distributions could be approxi-

mately described by log-normal distributions. For a given parameter x, we will denote

this as log10 x ∼ N (log10 x̃,σ2
x), or in other words that the base-10 logarithm of x is dis-

tributed according to a normal distribution with mean log10 x̃ and standard deviation

σx . The value x̃ is the median of the resulting log-normal distribution for x.

For our work the focus is on kinases and phosphatases, and we are interested in look-

ing at the push-pull loop signaling behavior over the entire distribution of biologically

plausible parameters. The parameter data we collected, summarized in the histograms
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Parameter x Unit log10 x̃ σx Data source
direct fits to database values:

kinase/phosphatase concentrations [S], [P] [M] -7.93 0.84 PaxDb [71]

Michaelis constants K kin
M , K pho

M [M] -4.26 1.21 Sabio-RK [73]

specificity ratios κr /K kin
M , ρr /K pho

M [M−1 s−1] 3.86 1.19 Sabio-RK [73]
reaction rates κr , ρr [s−1] -0.04 1.16 Sabio-RK [73]

results of joint fitting:
reaction rates κr , ρr [s−1] -0.06 1.18 joint fit
binding rates κb , ρb [M−1 s−1] 3.94 1.12 joint fit

dissociation constants K kin
D , K rho

D [M] -7.00 1.31 joint fit

Table 2.1. Results of log-normal fits to various kinase/phosphatase enzy-
matic parameters. For each fit the mean log10 x̃ and standard deviation
σx are listed. The top rows of the table correspond to individual fits to pa-
rameters collected from the PaxDb and Sabio-RK databases. The bottom
rows show the results of a joint fit, described in the text of Sec. 2.5.4.

of Fig. 2.2, had far more representation of kinases than phosphatases, which is a well

known limitation of the existing experimental literature. Despite this sampling issue, the

orders of magnitude spanned by phosphatase parameters were comparable to those of

the kinases. For each parameter type, we thus decided to fit both types of enzyme with a

single overall distribution, based on pooling of all the available kinase and phosphatase

data together. The data available from the databases took the forms listed below (all

raw data and the files used to process it are included in the Github repository associated

with the manuscript). The mean log10 x̃ and standard deviation σx values from the log-

normal fits for the different parameter classes are listed in the first four rows of Table 2.1.

Enzymatic data:

• Mean substrate [S] and phosphatase [P ] concentrations, where the substrate is

taken to be a kinase [Fig. 2.2A]. These numbers were derived from the PaxDb
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protein abundance database [71], taking advantage of UnitProt gene ontology

associations to focus on just kinases and phosphatases in signal transduction

pathways [72]. Each PaxDb data entry is in terms of ppm (parts per million) of

abundance, relative to the total number of proteins in the cell. To convert from

ppm to molar concentrations, we looked at data from human cells (which had

the best representation in the database), and used the estimated total concen-

tration of 2.7× 106 proteins per µm3 for human cells [91]. The latter concen-

tration corresponds to 4.48×10−3 M. If y is the abundance in ppm units, then

4.48(y/106)× 10−3 M is the corresponding molar concentration. Note that to-

tal concentrations are very similar across many different types of species [91],

so there should not be a strong species-dependence in the analysis. For ex-

ample the same analysis in mouse cells rather than human ones yields quan-

titatively similar results: a mean kinase/phosphatase concentration 10−8.31 M

(versus 10−7.93 M in human cells), and a log-normal standard deviation of 1.03

(versus 0.84 in human cells).

• Reaction parameters [Fig. 2.2B-D]. These values were taken from the Sabio-RK

database [73], where they were most often available in the following forms:

for the kinase/phosphatase, Michaelis constants K kin
M = (κr +κu)/κb , K pho

M =

(ρr +ρu)/ρb (Fig. 2.2B), the corresponding specificity ratios κr /K kin
M , ρr /K pho

M

(Fig. 2.2C), and the reaction rates κr and ρr (Fig. 2.2D). The resulting distribu-

tions were entirely consistent (though slightly narrower) with the distributions

for the same parameter types analyzed in Ref. [69], which considered all en-

zymes (not just kinases and phosphatases).
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Note that the six reaction parameter types that were collected from the Sabio-RK

database (K kin
M , K pho

M , κr /K kin
M , ρr /K pho

M , κr , ρr ) are not directly in the form that we need

to calculate push-pull loop signaling properties. For the latter we would like to know

(κb , ρb , κu , ρu , κr , ρr ), or equivalently (κb , ρb , K kin
D , K pho

D , κr , ρr ). Here the dissociation

constants are defined as K kin
D = κu/κb and K pho

D = ρu/ρb . Let us denote the parameter

vector (κb , ρb , K kin
D , K pho

D , κr , ρr ) as v, with components vα, α = 1, . . . ,6. We would like

to find a joint distribution for v that is self-consistent with the individual log-normal

distributions for the alternative parameter types fitted directly from the database values

(first 4 rows of Table 2.1). We will assume the simplest form for the joint distribution

Φ: a product of individual log-normal distributions for each parameter vα, with median

values ṽα and standard deviations σα:

Φ(v) =
6∏

α=1

1

vα ln(10)
√

2πσ2
α

exp

(
− (log10 vα− log10 ṽα)2

2σ2
α

)
. (2.34)

Note that the vα ln(10) term in the denominator of the prefactor comes from the Jaco-

bian due to the variable change between log10 vα and vα. This ensures that the prob-

ability is properly normalized:
∫ ∞

0
∏
αd vαΦ(v) = 1. As explained above, kinases and

phosphatase parameters are assumed to be drawn from the same distributions, so we

enforce that ṽ1 = ṽ2, ṽ3 = ṽ4, ṽ5 = ṽ6, and analogously for the standard deviations σα.

This leaves six distinct values that determine the distribution: ṽ1, ṽ3, ṽ5, σ1, σ3, σ5.

To estimate these six distribution parameters, we use the following iterative numer-

ical fitting procedure. We start with a guess for (ṽ1, ṽ3, ṽ5, σ1, σ3, σ5) and then draw

104 parameter sets v from the resulting distributionΦ(v). For each parameter set we can

calculate the alternative parameter types (K kin
M , K pho

M , κr /K kin
M , ρr /K pho

M , κr , ρr ). We then
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fit the resulting 104 values for these alternative types to individual log-normal distribu-

tions, and compare the means and standard deviations to the empirical results in the top

half of Table 2.1. The sum of the relative absolute errors between the new joint fit values

and the empirical results for the means / standard deviations is our overall goodness-of-

fit measure. We perturb our guess for (ṽ1, ṽ3, ṽ5, σ1, σ3, σ5) and accept the perturbation

if it improves the goodness-of-fit. This procedure is iterated until convergence. The

results of this joint fit are shown in the bottom half of Table 2.1. The joint fit predic-

tions for the binding rate (κb , ρb) and dissociation constant (K kin
D , K pho

D ) distributions

are consistent with earlier estimates of these parameters in specific kinase/phosphatase

systems [92]. As another consistency check, the joint fit distribution for the reaction

rates (κr ,ρr ) is nearly identical to the individual empirical fit based on the Sabio-RK

database values.

Finally we note that the simple joint distributionΦ(v) in Eq. (2.34) is by construction

too broad: it may produce the correct marginal distributions for quantities collected

from the Sabio-RK database, but it ignores any correlations between those individual

parameters that may be present in natural systems. Estimating these correlations from

the existing database entries is quite challenging, because relatively few entries have a

complete list of all the parameters of interest. Hence, as explained in the main chapter

text, we take Φ(v) to be effectively a superset: it should contain the true, presumably

narrower, biological distribution plus parameter sets that are less likely to be observed

in nature. A convenient aspect of this interpretation is that any collective conclusion we

draw from the entire distribution Φ(v) should also be true for the subset of biological

parameters. Moreover we can thus explore a larger design space (potentially available

for evolution) than what we currently observe in modern biological systems.
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2.5.5 Results for alternative input kinase concentrations

The results in Fig. 2.3D-F were for a mean input kinase concentration [K ] = 5 nM. In

Fig. 2.8 we show the analogous results for two different choices: [K ] = 0.5 nM (left col-

umn) and [K ] = 50 nM (right column). The main conclusions remain unchanged: the

physiological ∆µ range (highlighted in pink) is always just above the upper edge of the

γ
high
x cloud, and the number of available parameter sets decreases rapidly as the mutual

information I is increased.

2.5.6 Analysis of the Pbs2-Hog1 push-pull loop in yeast

To illustrate our theoretical framework in a concrete biological example, let us consider

a kinase-phosphatase loop from one of the most extensively studied signaling pathways:

the Hog1 mitogen-activated protein kinase (MAPK) pathway that allows yeast to adapt to

extracellular osmotic changes [74, 75, 84]. We will focus in particular on the final portion

of the pathway, where the active (phosphorylated) kinase Pbs2pp catalyzes the conver-

sion of inactive Hog1 into phosphorylated Hog1pp. The latter protein is interchanged

quickly between cytoplasm and nucleus, where it regulates a variety of responses to

osmotic stress. Hog1pp is dephosphorylated by a combination of phosphatases Ptp2

(mainly in the nucleus) and Ptp3 in the cytoplasm [93]. Thus Pbs2pp will play the role

of K in our model, Hog1 will be S, Hog1pp will be S∗, and Ptp2/Ptp3 will be P . To pa-

rameterize our model, we start with a more detailed theoretical description of the entire

pathway developed by Zi et al. [74]. A key appeal of this work is that its parameters were

carefully fit to extensive experimental data from yeast cells exposed to different time
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Figure 2.8. Analogous to Fig. 2.3D-F, except for input kinase concentra-
tion [K ] = 5 nM (left column) and 50 nM (right column). The rows cor-
respond to mutual information I = 1, 1.5, and 2 bits respectively. The
probabilities of successfully drawing such a parameter set that achieves
the specified I value are shown in red in panel.

series of external salt shocks in microfluidic experiments [84]. However since the pa-

rameters of Zi et al. are not expressed in the same form as the enzymatic reaction rates

of our model, we do have to convert from their framework to ours, as described below.

Parameter estimation based on earlier literature. Ref. [74] explicitly distinguishes be-

tween the concentration of Hog1 and Hog1pp in the cytoplasm and nucleus, denoted

with c and n superscripts respectively: [Hog1c], [Hog1n], [Hog1ppc], [Hog1ppn]. If we
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are interested in the average concentrations overall, we can denote these as:

[S] ≡ [Hog1c]Vc + [Hog1n]Vn

Vc +Vn
, [S∗] ≡ [Hog1ppc]Vc + [Hog1ppn]Vn

Vc +Vn
, (2.35)

where Vc and Vn are the volumes of the cytoplasm and nucleus respectively, taken to

have a ratio of Vn/Vc = 0.14 [74]. Eq. (2.35) also implies:

d [S]

d t
= d [Hog1c]

d t
f + d [Hog1n]

d t
(1− f ),

d [S∗]

d t
= d [Hog1ppc]

d t
f + d [Hog1ppn]

d t
(1− f ),

(2.36)

where f = Vc /(Vc +Vn) = 0.88. As a simplification of Eq. (2.35), we note in Ref. [74] im-

port and export of the Hog1 proteins is fast relative to other reactions, and for a given

input level the system rapidly reaches a stationary state with [Hog1n]≈[Hog1c]≈ [S],

[Hog1ppn]≈[Hog1ppc]≈ [S∗].

We can now look at individual reactions that contribute to the time derivatives on

the right-hand sides of Eq. (2.36) and find their analogues in our model. For example

the phosphorylation step that converts Hog1c to Hog1ppc is expressed in Ref. [74] as an

effective second order reaction of the form K Hog1
pho [Pbs2pp][Hog1c], with rate constant

K Hog1
pho = 11.2 µM−1·min−1. This contributes positively to d [Hog1ppc]/d t and with a mi-

nus sign to d [Hog1c]/d t , and so leads to contributions magnitude f K Hog1
pho [Pbs2pp][Hog1c]

to the right-hand sides of Eq. (2.36). Note that even though activation of Hog1 is actu-

ally a double phosphorylation (of a threonine and tyrosine residue), the entire process

in this case can be well approximated through a single rate constant.

In our model the conversion of S to S∗ occurs through the intermediate state SK .

However if we want to compare to the phosphorylation step of Ref. [74] in order to

match parameters, we can look at the deterministic contribution to the dynamics (ig-

noring fluctuations) in the Michaelis-Menten approximation for enzyme kinetics [3]. In
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this picture the phosphorylation reaction contributes to d [S]/d t and d [S∗]/d t through

a term of magnitude κr [K ][S]/(K kin
M + [S]) ≈ (κr /K kin

M )[K ][S], where the last simplifica-

tion is valid when K kin
M À [S]. If we compare (κr /K kin

M )[K ][S] to f K Hog1
pho [Pbs2pp][Hog1c],

noting that [K ] = [Pbs2pp] and [S] ≈ [Hog1c], we can make the following identification:

κr

K kin
M

≈ f K Hog1
pho = 1.64×105 M−1s−1. (2.37)

The dephosphorylation steps in Ref. [74] are modeled as two pseudo-first-order re-

actions: conversion of Hog1ppc to Hog1c with rate K Hog1ppc

depho [Hog1ppc], and the conver-

sion of Hog1ppn to Hog1n with rate K Hog1ppn

depho [Hog1ppn]. The pseudo-first-order rate

constants are given by: K Hog1ppc

depho = 0.0906 min−1 and K Hog1ppc

depho = 4.14 min−1. These reac-

tions will lead to contributions of magnitude

( f K Hog1ppc

depho [Hog1ppc]+ (1− f )K Hog1ppn

depho [Hog1ppn])

to the right-hand sides of Eq. (2.36). In our model (using a similar Michaelis-Menten

approximation to the one described above, with K pho
M À [P ]), the analogous expression

for dephosphorylation is effectively a second-order reaction with rate (ρr /K pho
M )[P ][S∗].

Comparison of the two expressions, using the approximation [Hog1ppn]≈[Hog1ppc]≈

[S∗], leads to the identification:

ρr

K pho
M

≈ [P ]−1
(

f K Hog1ppc

depho + (1− f )K Hog1ppn

depho

)
= 1.69×105 M−1s−1. (2.38)

Here we set [P ] = 0.058 µM as an average measure of phosphatase concentrations, to

facilitate the conversion from pseudo-first-order to second-order rate constants. The

value of [P ] is based on estimates of the concentrations of the two phosphatases in yeast

from Ref. [94]: 0.049 µM for Ptp3 in the cytoplasm, and 0.067 µM for Ptp2 in the nucleus,

where we have used Vc = f (Vc +Vn), Vn = (1− f )(Vc +Vn) and Vc +Vn ≈ 30 fL [5, 74] to
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Parameter Value Data source
substrate concentration [S] 0.38 µM Hog1 abundance from Ref. [94]

phosphatase concentration [P ] 0.058 µM Ptp2/Ptp3 abundance from Ref. [94]

kinase specificity ρr /K kin
M 1.64×105 M−1s−1 analysis of Ref. [74] model fit to ex-

periments of Ref. [84]

phosphatase specificity ρr /K pho
M 1.69×105 M−1s−1 analysis of Ref. [74] model fit to ex-

periments of Ref. [84]

Table 2.2. Summary of parameters for the yeast Pbs2/Hog1 system esti-
mated from earlier literature.

convert from populations to concentrations. Since the concentrations were of similar

scale, we let [P ] be the mean of the two values.

As a consistency check to make sure the final estimates of the specificity ratiosκr /K kin
M

and ρr /K pho
M in Eqs. (2.37)-(2.38) are biologically plausible, we can compare them with

the distribution of these ratios among kinases/phosphatases from the Sabio-RK data-

base in Fig. 2.2C. The values for the Hog1/Pbs2 system are not unusual, and lie near the

higher end of the range, at about the 0.87 quantile. The final parameter value we can

estimate from the literature is the mean Hog1 concentration [S] = 0.38 µM, based on the

abundance reported in Ref. [94].

Estimation of remaining parameters. Based on the above analysis, we have estimates

for four quantities in the Pbs2/Hog1 system drawn from the earlier literature: κr /K kin
M ,

ρr /K pho
M , [S], [P ]. These are summarized in Table 2.2. The relationship of the enzy-

matic reaction/binding/unbinding rate parameters to the estimated values then takes
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the form:

κr =
(
κr

K kin
M

)
K kin

M = (1.64×105M−1s−1)K kin
M ,

κb =
(
κr

K kin
M

)
K kin

M

K kin
M −K kin

D

= (1.64×105M−1s−1)
K kin

M

K kin
M −K kin

D

,

κu =
(
κr

K kin
M

)
K kin

M K kin
D

K kin
M −K kin

D

= (1.64×105M−1s−1)
K kin

M K kin
D

K kin
M −K kin

D

,

ρr =
(
ρr

K pho
M

)
K pho

M = (1.69×105M−1s−1)K pho
M ,

ρb =
(
ρr

K rho
M

)
K rho

M

K rho
M −K rho

D

= (1.69×105M−1s−1)
K rho

M

K rho
M −K rho

D

,

ρu =
(
ρr

K rho
M

)
K rho

M K rho
D

K rho
M −K rho

D

= (1.69×105M−1s−1)
K rho

M K rho
D

K rho
M −K rho

D

,

(2.39)

The above parameters depend on the values of K kin
M , K pho

M , K kin
D , K kin

D . While we do not

know what these are for the Pbs2/Hog1 system, we can draw their values from the cor-

responding empirical log-normal distributions described in Table 2.1. By repeating the

draw many times, we can check how our final optimality analysis (see below) depends

on the precise values of the unknown parameters. As it turns out the dependence of R0,

γ
high
x and Rmin

0 on the unknown values is quite weak, and we will be able to make robust

estimates for these quantities. In the cases of K kin
M and K pho

M , we constrain the random

draw from their log-normal distributions to enforce K kin
M ≥ 100[S] and K pho

M ≥ 100[P ].

This ensures self-consistency with the assumptions K kin
M À [S] and K pho

M À [P ], which

were used in the previous subsection to match the form of the phosphorylation / de-

phosphorylation reactions between Ref. [74] and our model. The final two parameters

are the reverse reaction rates κ−r and ρ−r . Since we do not have any experimental esti-

mates of these for the Pbs2/Hog1 system, we assume that the physiological value of ∆µ
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in yeast (around 21 kB T [5]) is sufficiently high that κ−r and ρ−r are negligible under

normal conditions.

Bandwidth and gain. Given the parameter estimation procedure described above, we

can calculate γhigh
x , R0, Rmin

0 for each draw of the unknown parameters. The results re-

main within a narrow distribution, relatively insensitive to the values of the unknown

parameters. The mean and standard deviations for 50 draws are: γhigh
x = (1.22±0.04)×

10−3 s−1, R0 = 0.0621±0.0001 s−1, Rmin
0 = 0.059±0.002 s−1.

2.5.7 Estimation of total resting metabolic expenditure

For single-celled organisms, the total resting metabolic expenditure CT can be estimated

by the approach outlined in Ref. [64]. CT has two contributions: CT = CG + tr CM . Here

CG is the expenditure involved in growth during one generation time tr , and CM is the

maintenance cost per unit time. Using a large collection of metabolic data from Ref. [63],

covering both prokaryotes and single-celled eukaryotes, one can observe that both CM

and CT scale approximately linearly with cell volume V , agreeing with the prediction of

the bioenergetic growth model of Ref. [64]. The expression for CT based on the results

of these linear fits is [64]:

CT = (2.3×1010 P/fL)V + (9.2×104 P/(s · fL))tr V. (2.40)

where the unit P corresponds to the hydrolysis of a phosphate bond (i.e. the consump-

tion of one ATP or ATP equivalent). Using the main chapter text values of V = 30 fL and

tr = 3600 s, we get CT = 7.0×1011 P.
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3 Machine learning methods for ex-
ploring single-molecule heterogene-
ity

3.1 Introduction

Recent decades have seen huge triumphs for single-molecule experimental techniques

in the life sciences. Methods such as Förster resonance energy transfer (FRET), atomic

force microscopy (AFM), optical tweezers, and single particle tracking (SPT) offer the op-

portunity to infer structures, conformations, and also dynamics of single bio-molecules.

One of the most interesting discoveries from single-molecule experiments is the exis-

tence of functional heterogeneity: multiple, distinct (and sometimes long-lived) struc-

tural conformations of molecules can have significantly different functional properties

(for example catalytic rates changing by several orders of magnitude). This is true de-

spite the fact all conformations correspond to covalently identical bio-molecules, coded

by the same genetic sequence. The biological consequences of this novel form of epi-

genetic variation are just beginning to be explored. Many questions remain regarding

how the conformational changes are regulated by cell signaling networks or other cel-

lular micro-environments, and how the changes couple with biological function [11].

The problem is made more complex by the fact that functional heterogeneity exists in



Machine learning methods for exploring single-molecule heterogeneity 87

different incarnations in many classes of bio-molecules: protein enzymes [8–10], ri-

bozymes [11], DNA [12], motor proteins[13], and adhesion complexes [14].

Along with in-depth studies focusing on the biological roles of heterogeneity in spe-

cific systems, one needs general methods to identify heterogeneity in single-molecule

experimental data. The fact that such heterogeneity can be overlooked was demon-

strated in Ref. [15], which focused on analyzing ten previously published data sets from

AFM pulling experiments—one of the most well-established single-molecule techniques,

with an extensive research literature. Heterogeneity was discovered in half of the data

sets, most of which were not flagged as heterogeneous in the original studies. The method

introduced in Ref. [15] has two nice features: (i) it extracts a single non-dimensional pa-

rameter ∆≥ 0 from the pulling data (histograms of the rupture times/forces). Values of

∆¿ 1 indicate that all the experimental trajectories come from a single conformational

state (or a group of rapidly interconverting states that effectively act as a single state).

For∆& 1, the system must have more than one long-lived conformational state. (ii) The

method allows one to put upper bounds on the interconversion rates in heterogeneous

systems. Among those data sets that were identified as such, the rates were all less than

10 s−1, slow enough that each pulling trajectory would involve only a single state.

However a key drawback of the Ref. [15] approach is that the information it pro-

vides about the heterogeneous states is fairly limited: it tells us nothing about the num-

ber of states, their relative proportions, or the parameters that characterize each state.

The goal of the study presented here is to fill in those details, using two different ma-

chine learning techniques to analyze single-molecule AFM pulling data: a supervised
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deep learning algorithm and an unsupervised non-parametric Bayesian approach. Us-

ing large sets of synthetic data covering a wide range of possible experimental condi-

tions and bio-molecular parameters, we demonstrate the effectiveness of both methods

at characterizing heterogeneity, and investigate their relative strengths and weaknesses.

The result is a robust, automated system that is ready to be deployed for the analysis of

empirical data.

Deep learning algorithms now play important roles in many fields [16] from facial

recognition [19] to drug discovery [95, 96]. Applications of deep learning algorithms in

the field of biophysics recently exploded, owing to their unprecedented ability to extract

patterns in noisy biological data. Non-parametric Bayesian inference, which dates back

to the 1970s [26, 27], is also gaining a foothold in biophysics [97, 98]. This is particularly

true for analysis of time series data [99–105]. However to our knowledge the current

work is the first application of either deep learning or non-parametric Bayesian ideas to

the problem of heterogeneous states in single-molecule AFM pulling data.

3.2 Modeling the rupture time distribution in an AFM pulling
experiment

Before discussing the algorithms, let us give a brief overview of AFM pulling experiments

and the biophysical models used to describe them. It will be simplest to start with the

case of a bio-molecule with a single state, and then generalize to a heterogeneous sys-

tem.

3.2.1 Rupture time distribution for a single state system

Consider a generic free-energy landscape for a bio-molecular system with a single func-

tional state S, corresponding to the deep well in Fig. 3.1A. Note that a “state” in more
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Figure 3.1. (A) Schematic bio-molecular free energy landscape with a sin-
gle functional state, S. Under an adiabatically increasing external force
f , there is a instantaneous rupture rate k( f ) describing transitions be-
tween S and the unfolded/unbound ensemble U. (B) Schematic free-
energy landscape of a heterogeneous system with multiple functional
states. Each functional ensemble Si will have a state-dependent adiabatic
rupture rate ki ( f ). A single overall scale rate ki is introduced to described
interconversion between the various states.

technical terms always refers to a ensemble of structural conformations, since thermal

fluctuations are always present and will make the molecule explore the local vicinity of

the well minimum. However the functional properties (like the associated catalytic rate

if the system is an enzyme, or the adhesion lifetime if it is a complex) do not change

significantly in the presence of thermal fluctuations. Hence it makes sense to collec-

tively refer to the ensemble as a state. There may of course be other (typically shallower)

minima in the landscape, for example corresponding to non-functional misfolded or

unfolded states. As shown in Fig. 3.2A, the AFM experiment involves connecting the

bio-molecular system to the cantilever and platform through protein or nucleic acid
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linkers of known stiffness. The cantilever is pulled at a constant velocity v , applying a

force ramp with slope d f /d t =ωs( f )v , where ωs( f ) is the effective stiffness of the setup

(linkers plus the AFM cantilever). As described in Chapter 1, we define a characteristic

stiffness ω̄s ≡ the mean ωs( f ) over the range of forces probed in the experiment (note

that the precise value of ω̄s is not required in this work). This allows us to introduce a

constant characteristic force loading rate r proportional to the velocity, r = ω̄s v .

If the initial state of the system is state S at time t = 0, the force ramp tilts the land-

scape along the end-to-end extension coordinate. If we model the conformational dy-

namics of the system as diffusion within this landscape, the tilting eventually leads to a

transition out of S into a state U, associated with unbinding of the complex or unfolding

of the molecule. The rupture (or unfolding) rate k( f ) at a constant external force f is

assumed to take the form of the Bell model [30]:

k( f ) = k0eβ f D , (3.1)

where k0 is the escape (rupture) rate at zero force, D is the transition state distance

(quantifying how sensitive state S is to the destabilization effects of external force), β =

1/kB T , kB is Boltzmann constant, T is temperature. More complicated rupture models

can easily be substituted [106], but the Bell model provides an excellent approximation

for the rupture dynamics of a wide variety of systems. We assume the force ramp is slow

enough that we are in the so-called adiabatic regime, which is a typical assumption for

AFM experiments [15, 106]. This entails that equilibration within the well is rapid, so

that the system reaches quasi-equilibrium at the instantaneous value of the force f (t ) at

all times t before rupture. As was shown in Ref. [15], it is possible to detect violations of

this adiabatic assumption from the data, and experimental ramp values r are generally
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within the adiabatic regime. Thus the instantaneous rupture rate at time t can be taken

as k( f (t )), or equivalently we can change variables from f (t ) to t to get k(t ) = k0eβr tD .

Let Σr (t ) be the survival function of state S for ramping rate r : the probability that

rupture has not occur before time t . In the adiabatic regime, the survival function satis-

fies the kinetic equation,

dΣr (t )

d t
=−k(t )Σr (t ), (3.2)

with boundary condition Σr (0) = 1. This equation can be easily solved to yield Σr (t ) =

exp
(
k0(1−eβDr t )/(βDr )

)
, which then allows us to write down our main quantity of in-

terest, the distribution of rupture times Fr (t |φ):

Fr (t |φ) =− d

d t
Σr (t ) = k0e

k0−eβr tD k0+(βr D)2t
βr D . (3.3)

The parameters which determine the rupture time distribution are the Bell model pa-

rameters φ= (k0,D).

3.2.2 Rupture time distribution for a heterogeneous system

Multiple functional states lead to a free energy landscape with many deep wells (Fig. 3.1B),

each corresponding to a distinct state Si . Transitions can occur between these states,

which we describe with some overall interconversion rate ki. As discussed at the be-

ginning of this chapter, the analysis method of Ref. [15] can put an upper bound on the

scale of ki, and our focus will be on experiments where ki is much slower than the typical

range of rupture rates k( f (t )). In this scenario the heterogeneous states are long-lived

to the degree that each experimental run involves a single state from beginning to end.

In the opposite regime of ki À k( f (t )), the energy barriers between different functional

states are so small that they rapidly equilibrate among themselves before rupture, effec-

tively acting like a single state system.
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For the slow interconversion case, each rupture time recorded by AFM corresponds

to one of the transitions Si to U represented by red arrows in Fig. 3.1. Let pi be the prob-

ability that the system started in state Si . The associated rupture rate ki ( f ) will generally

depend on i , since the Bell model parameters φi = (k0i ,Di ) could be different for each

conformational state. Thus the rupture times t that we observe in the experiment have

a mixture distribution

Fr (t |p ,φ) =∑
i

pi Fr (t |φi ), (3.4)

where φ = (φ1,φ2, . . .) is the vector of parameters for the different states. Note that

Eq. (3.4) reduces to single-state case Eq. (3.3) if some component of state probability

vector pi = 1.

3.3 Overview of the machine learning workflow

The main problem can now be stated concisely: given a set of N rupture times t =

(t1, ..., tN ) collected from independent AFM pulling experiments, can we infer the state

probabilities p and parameters φ that characterize the mixture distribution in Eq. (3.4)

from which the times were sampled? We designed two machine learning algorithms to

answer this question in part or whole, summarized in the workflow diagram of Fig. 3.2.

Both algorithms operate on the same data set t from AFM pulling experiments (panel

A), a generic example of which is illustrated in panel B. The analysis then proceeds

through either the non-parametric Bayesian pipeline (panels B-D-F) or the deep learn-

ing pipeline (panels B-C-E-G).

For the deep learning case, since the ordering of the times is arbitrary, we preprocess

the data by first sorting it by time (panel C). This is fed into our trained neural network
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(panel E), which ultimately yields an estimate of the state probability vector p . As ex-

plained below, the network can only handle up to some specified maximum number of

states (for example Mmax = 4), so the vector p has dimensions Mmax. If the system is es-

timated to have fewer than Mmax states, components of the vector will be close to zero,

but the network cannot fully infer the details of systems with more than Mmax states.

For the non-parametric Bayesian pipeline, an MCMC method is used to sample from

the posterior distribution over different mixtures and state parameters (panel D), as

summarized in Chapter 1. The end result is a Markov chain of (c ,φ) pairs, where c is

an N -dimensional vector whose component ci is the state label of the i th data point. As

explained below, we can use this Markov chain to estimate the most likely state prob-

abilities p and parameters φ (panel F). Notably the number of states does not have an

arbitrary upper cutoff, though the results are influenced by the concentration parameter

α that is used to define the Dirichlet process prior for the posterior distribution.

In the following sections, we delve into the details of both algorithms, evaluate per-

formance metrics for each one, and compare the results.



Machine learning methods for exploring single-molecule heterogeneity 94

Figure 3.2. Overview of workflow : A: N repetitions of an AFM pulling
experiments for a bio-molecular system. In this hypothetical example
the system has three different functional states with probabilities p =
(0.5,0.3,0.2) and corresponding Bell parameters φ = (φ1,φ2,φ3). B: Raw
rupture time data t collected from the experiments, with N = 200. Rup-
ture times are found from t = f /r , where f is the rupture force and r is the
ramping rate. C: Sorted rupture times as input to E: a trained neural net-
work that outputs G: the state probabilities p , where spheres represent
each functional states and sphere color reflects the probability weight.
The dimensionality of p reflects the cutoff Mmax = 4 for maximum num-
ber of states hardwired into the neural network. Alternatively, feeding the
raw data to D: a non-parametric Bayesian algorithm can eventually return
F: both p and the corresponding state parametersφ.
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3.4 Data set generation

Both machine learning approaches require large data sets: for training in the deep learn-

ing approach, and for testing the algorithms in both cases. The data sets consist of

(t , p ,φ) covering many different possible mixture and parameter values, designed to

mimic biological ranges. Each set of Bell model parameters φ = (k0,D) is drawn from

a prior distribution Φ defined as follows: k0 = 10x s−1 and D = 10y nm, where x is a

uniform random real number from the range [−4,−2] and y is a uniform random real

number in the range [−2.0,−0.5]. These cover typical Bell model parameter ranges seen

in the literature [15]. The ramp rate r is not a hidden variable, since experimental data

is collected for a known ramp protocol. We set r = 100 pN/s as a typical experimental

ramp scale, though as it turns out the results scale with r in a simple way: any change

in r can be compensated for by renormalization of the parameter D in Eq. (3.3) to yield

the same rupture time distribution. Networks trained at one value of r should be able to

successfully analyze data collected at other r , and we have verified this in practice. For

N , the number of experimental runs, we will investigate a range N = 4−200. The upper

end of that range covers the numbers found in typical AFM experiments [15], and the

lower end is explored to see the effect of limited rupture time data sets. When choosing

a number of states M for each instance of (t , p ,φ), we let M be an integer in the range 1

to Mmax. We will choose equal numbers of examples for each value of M in that range.

In the results below we set Mmax = 6, a guess at the typical extreme of what might be

realistically observed in an experimental system. But we have verified that the training

and analysis works at even larger Mmax. This cutoff Mmax will also appear as a hyperpa-

rameter describing the output layer dimension in our neural network. The algorithm for

generating a set of data for a certain choice of M is summarized below:
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Algorithm 1: Data generation for systems with M states
Loop

1. Draw a state probability vector p = {p1, p2, ..., pM } from the uniform

distribution on the (M −1)-dimensional probability simplex;

2. Draw Bell parameters φi = {k0i ,Di } for each i = 1, ..., M from the distribution

Φ;

3. for n=1, ..., N do

Draw a rupture time tn from the mixture distribution
∑M

i=1 pi Fr (t |φi );

end

End Loop

3.5 Deep learning algorithm

It is natural to consider a supervised learning algorithm based on an artificial neural net-

work as a potential solution for our task. If we focus on the state probability distribution

p as the target, we can use a fully connected neural network with a softmax final layer of

size Mmax that outputs a probability q = {q1, q2, ..., qMmax }. Given the experimental data t

as input, the goal of the network will be to output q as close as possible to the underlying

p that describes the mixture.

3.5.1 Training set format

The training data set is generated by applying Algorithm 1 and takes the form of in-

put (t ) and target output (p) pairs. Since the rupture time observations collected in the

vector t = (t1, t2, ..., tN ) are independent of one another, the ordering of the sequence
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is arbitrary. As a preprocessing step, we found that sorting the vector in ascending or-

der by time, as shown in Fig. 3.2C, improved the effectiveness of the training. Similarly

the ordering of the state labels for the components of p is arbitrary, so in the training

data we always presented the network with p vectors whose components were sorted

from largest to smallest probability. (In the discussion below we will always assume p is

sorted in this manner.) Though not explicitly constrained to do so, the network will then

learn to output q with components that are also sorted in descending order.

For any given network training, we always use the same N , defining the length of t ,

and the same Mmax, defining the length of p . As mentioned above, we trained a number

of different networks with N = 4−200 to compare their performance, but kept Mmax =

6. For each training, the data set was constructed as follows: for every value of state

number M = 1, . . . ,6 we created 2000 systems defined by distinct (p ,φ), and for every

such system we created 25 different sets of experimental observations t . The end result

is 3×105 examples of the form (t , p ,φ).

3.5.2 Architecture

We found the best performance using the simple fully connected neural network archi-

tecture shown in Fig. 3.3. The input and output layer sizes, N and Mmax respectively, are

set by our learning task, and we choose the size of the three hidden layers to be equal to

the input dimension N . The activation function of each hidden layer is rectified linear

unit (ReLU), as described in Chapter 1. We explored more complex architectures up to

10 hidden layers, but found no significant improvement in the accuracy of the network,

as described by the metrics defined below. The required length of training does increase

with more hidden layers, so we kept the number at 3 to make the training as efficient as

possible without sacrificing performance.
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Figure 3.3. Schematic of the neural network architecture. The number of
neurons in each hidden layer is the same as the input size N . The acti-
vation function for every hidden layer is ReLU. The state number cutoff
Mmax is set as the softmax layer size so that the output can take the form
of a probability vector q = {q1, q2, ..., qMmax }.

3.5.3 Loss function

In order to define the loss function that we use for our training, let us introduce three

quantities that allow us to compare the network output q and the target p for a given

experimental data set t as input.

The first is the fidelity F (q , p) [107], a widely used quantity in quantum information

theory that also works well as a measure of similarity for classical probabilities. In the

classical case it is defined as follows:

F (q , p) =
(∑

i

p
qi pi

)2

. (3.5)

Notice that F (q , p) = 1 if and only if our algorithm outputs a perfect prediction, q = p . In

general 06 F (q , p)6 1. However when both q and p are sorted probability vectors, as
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in our case, the minimum possible fidelity is given by 1/Mmax, and achieved for example

when q = (1/Mmax,1/Mmax, ...,1/Mmax) and p = (1,0,0, ...,0).

A second way of analyzing probabilities is to ask how many states does a probability

vector effectively correspond to? For example let us say the target was p = (1,0,0, ...,0), a

single-state (M = 1) system. If the network predicted q = (0.5,0.5,0, ...,0) it would clearly

be wrong, since it would have interpreted the data coming from an equal mixture of two

states. But what about a prediction of q = (0.98,0.01,0.01,0, ...,0). Clearly this is better,

but is there a way of saying such a q corresponds to (roughly) a one state prediction,

rather than three (the number of non-zero components)? We thus introduce an effective

dimension Deff(q) defined as follows:

Deff(q) = 1∑
i q2

i

. (3.6)

For q = (0.5,0.5,0, ...,0) this would give Deff(q) = 2, and in general if the probability is

equally distributed among M states, Deff(q) = M . For q = (0.98,0.01,0.01,0, ...,0) the ef-

fective dimension Deff(q) = 1.04, agreeing with our intuition that this is approximately

a one-state prediction. From another perspective, Deff provides a measure of the hete-

rogeneity of a mixture, with larger Deff corresponding to more heterogeneous cases. We

can thus use the absolute difference between the predicted and actual effective dimen-

sion, |Deff(q)−Deff(p)|, as another performance metric for the algorithm.

Finally, we can also employ the cross entropy H(q , p), traditionally used in machine

learning applications for comparing probabilities:

H(p , q) =−∑
i

pi log qi . (3.7)

The smaller the value of H(p , q), the more similar the two probabilities. Eq. (3.7) can

also be expressed as H(p , q) = H(p)+DKL(p||q), where H(p) is the Shannon entropy
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and DKL(p||q) is the Kullback-Leibler divergence. Since the target H(p) is fixed by the

training data set, varying the network weights to minimize H(p , q) is equivalent mini-

mizing the Kullback-Leibler divergence between q and p .

In practice, we found that a loss function that linearly combines all three comparison

measures discussed above works well for training:

L(q , p) =−F (q , p)+ ∣∣Deff(q)−Deff(p)
∣∣+H(p , q). (3.8)

Optimization of the loss function was implemented via stochastic gradient descent to-

gether with adaptive moment estimation (Adam) [108], a common choice in modern

deep learning applications.

3.6 Non-parametric Bayesian learning

The second machine learning approach we deploy is non-parametric Bayesian learn-

ing, summarized in the discussion at the end of Chapter 1. The appeal of this method

is that it does not require a cutoff Mmax on the number of states, allowing us in princi-

ple to consider mixtures with arbitrary numbers of components. However though we

get rid of Mmax, we do have a different kind of hyperparameter in the form of α, which

influences the nature of the Dirichlet process prior P (c ,φ) used in the posterior distri-

bution of Eq. (1.24). Increasing α has some similarities to increasing Mmax, by allowing

the search for parameter sets that describe the data to explore a larger space of hetero-

geneous mixtures.

As explained in Chapter 1, the practical implementation of the non-parametric Bayesian

approach involves using an MCMC method to create a Markov chain (c ( j ),φ( j )), j =

1, . . . ,K . After a certain burn-in period of Kb iterations (we use Kb = 103) where the
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MCMC method converges to stationarity, the subsequent samples for j > Kb represent

draws from the posterior distribution of Eq. (1.24). The specific MCMC algorithm we use

is based on Algorithm 8 of Ref. [29], and is designed to exactly satisfy the detailed bal-

ance condition in Eq. (1.27). Given that the Dirichlet process prior was used as part of

the posterior, the way the MCMC method draws new samples has some similarity to the

Chinese restaurant process described in Chapter 1. The full details of one MCMC itera-

tion are described in Algorithm 2 below, but it is worth first summarizing it qualitatively

using the restaurant metaphor. At each MCMC iteration, there is an existing seating ar-

rangement (c) and different food options for each table (φ). The iteration consists of

updating the seating assignment ci for each customer ti sequentially, i = 1, ..., N . When

being reseated, the customer can choose to sit at any of the already occupied tables, or

at m new (empty) tables, where each of the new tables has food φc drawn from the dis-

tribution Φ (The hyperparameter m, which we set to m = 2, is discussed in more detail

below). The concentration parameterα determines how likely the customer is to choose

a new table, while the probability of going to an occupied table is proportional to how

many people are already seated there. If the customer was dining alone previously, their

current table is considered one of the “new” set for the purposes of the algorithm, but

the food at that table is not changed. At the end of this whole reseating process we have

an updated seating arrangement. This then becomes the starting point for the next it-

eration. However there is one more step not present in the original Chinese restaurant

process: after reseating is completed, we do a Metropolis-Hastings update of the food

at each table φc → φ′
c , where c runs over the number of distinct classes (tables). The

probabilities of the reseating process and the food update are both influenced by the

customer’s happiness with the food, expressed in terms Fr (ti |φc ), the likelihood that a
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particular ti would be observed for a Bell model parameter set φc . The net effect of the

update is to make the customers happier with the food at their table (the data points in

a certain class c more likely to be observed given parameters φc ). In the original Chi-

nese restaurant process, which constructed a prior without reference to the experimen-

tal data, this consideration of food preference was absent. Here it reflects the fact that

the MCMC is designed to draw samples from the posterior, which involves not just the

Dirichlet prior but also the likelihood function of Eq. (1.26).

Algorithm 2: MCMC update for class assignments c and parametersφ

1. Class reassignment and addition of new classes:
for i=1, ..., N do

Create a set of m new (empty) classes; draw parameters fromΦ for each one.
if current class ci has only one occupant then

Empty the current class and move it to the new set, replacing one of the
m classes there.

end
Choose a new value c for ci with the following probabilities:{

b
µi ,c

N−1+αFr (ti |φc ) if c is a class with occupants

b α/m
N−1+αFr (ti |φc ) if c is a new (empty) class

Here µi ,c is the number of occupants in class c, excluding the current data
point ti . The prefactor b is for normalization, to ensure that the
probabilities for all choices sum to 1.

end
2. Delete parameters for any empty classes fromφ, and if necessary relabel

occupied classes so that the sequence of class labels does not have any gaps.
3. Parameter update via Metropolis-Hastings:
for each class c do

Create a candidate parameter set φ′
c by perturbing each value in φc

randomly by ±1%.
ifΦ(φ′

c ) > 0 then
Update φc →φ′

c with acceptance probability:

min

[
1,

∏
ti∈c Fr (ti |φ′

c )∏
ti∈c Fr (ti |φc )

]
.

Otherwise keep φc unchanged.
end

end
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The MCMC procedure in Algorithm 2 is iterated K = 15,000 times for a given a data

set t collected at ramp rate r . The Markov chain sequence (c ( j ),φ( j )), j = Kb , . . . ,K is then

used to make estimates in the following manner. For each c ( j ) in the chain, we create an

estimate p̃(c ( j )) of the state probabilities via Eq. (1.28). This in turn allows us to estimate

the effective dimension Deff(p̃(c ( j ))) using Eq. (3.6). We construct a histogram of the

effective dimensions, with bin size 0.05, and then identify the indices j that fall into the

tallest bin. The mean of p̃(c ( j )) for all j in that bin forms our final estimate of the state

probability vector for that data set. Because the p̃(c ( j )) could possibly have different

lengths (though those that belong to the same bin are usually the same length), we pad

the ends of the vectors with zeros as necessary. We can in a similar manner estimate the

Bell parametersφ.

For the hyperparameter α we settled on the value α = 1 by comparing results from

smaller and larger α. We tested a modified version of the algorithm that automatically

updates α as part of the MCMC iteration [28], did not see any improvement in accuracy.

We chose m = 2 based on the recommendation of Ref. [29], as this provided a combi-

nation of good accuracy and relatively fast iteration time (since the MCMC procedure

slows down as m is made larger).

3.7 Results

3.7.1 Test data set

The test data sets have the same form as the training data sets described above, except

a different size: for each M = 1, . . . , Mmax, we generated 4000 different systems defined

by (p ,φ), with two experimental observations t for each system. Thus we have a total of
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48,000 examples of the form (t , p ,φ). These test sets could then be used to evaluate the

performance of our two machine learning approaches, as described below.

3.7.2 Performance of the deep learning algorithm

For N = 200, a typical experimental number of runs in actual experiments, the trained

neural network performs very well in predicting the state probability distribution. For

the test set, the average fidelity between the network prediction q and the true states

probabilities p is F (q , p) = 0.945, and 97.6 percent of fidelities have values higher than

0.8. The average absolute effective dimension difference between predicted and true

values is
∣∣Deff(q)−Deff(p)

∣∣= 0.45.

To better understand what these numbers mean, we show density histogram plots

of predicted versus true values in Fig. 3.4 (top row) for the first three largest state prob-

abilities p1, p2, p3. (For p2 and p3 we only include systems that have these probability

components.) Ideally, if our network performs perfectly, all the mass in each density his-

togram should land along the diagonal line. While there is spread, all the distributions

are centered along the diagonal. In contrast, we can compare a null model that learns

nothing from the input, and hence outputs a state distribution randomly. Here the mass

would not distributed around the identity function, with the peaks of the histograms

landing away from the diagonal, as shown in Fig. 3.4 (bottom). Though these results are

all for ramping rate r = 100 pN/s, the performance is similar for r tested in a broader

range 10−105 pN/s (covering most AFM pulling experiments).

Fig 3.5 shows results for mean fidelity F (q , p) and mean effective dimension differ-

ence
∣∣Deff(q)−Deff(p)

∣∣ with varying N , to gauge how well the algorithm can perform

even with limited experimental information. There is a broad plateau for both measures

for N & 100, with only incremental improvements for larger N . The typical range of
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Figure 3.4. (Top) Density histogram plots for the first three compo-
nents of the state probabilities predicted by the deep learning ap-
proach. “Truth” represent non-zero components of state probability vec-
tors p1, p2, p3 respectively while “Prediction” corresponds to the neural
network output q1, q2, q3. Blue solid lines: identity function. Ideally, a
perfect prediction is achieved if all mass is on the blue line. Clearly, our
trained network performs well in predicting the state probabilities, since
most predictions are distributed in the vicinity of the identity function.
The hyperparameter choices are: input size N = 200, total state num-
ber cutoff Mmax = 6. The ramping rate r = 100 pN/s for both training
and test set. (Bottom) Density histogram plots of predictions from purely
random guesses. In contrast to our deep learning model, the mass is not
distributed around the identity function, with the peaks of the histograms
lying in the off-diagonal regions.

experimental observations is N ∼ O (100), and we see the algorithm performs robustly,

without a strong dependence on precise value of N . For smaller N there is a gradual

dropoff in performance that becomes quite steep for N . 25. At extremely small values
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of the N , the network output is close to the mean state probability vector of the entire

training set. This is effectively an educated guess in the absence of more data to deter-

mine the specific underlying system.

Figure 3.5. Performance of deep learning algorithm as a function of in-
put size N . The performance metrics are average fidelity F (q , p) (Top)

and average absolute effective dimension difference
∣∣Deff(q)−Deff(p)

∣∣
(Bottom). Error bars are standard error of the mean calculated from the
results of 20 different test sets for each point.
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In actual experiments, the rupture time resolution will be limited by thermal fluctu-

ations of the AFM cantilevers, which lead to uncertainty in measurements of the rupture

force f . Assuming a typical AFM cantilever with a spring constant on the order ofωc ∼ 10

pN/nm, we can anticipate an error in force measurement of magnitude δ f =
√
ωc kB T ∼

6 pN [109]. To model the effects of noise, we added Gaussian fluctuations with standard

deviation δ f to our training and test sets. The error propagates into the rupture time

distribution since t = f /r . For N = 200 and ramping rates r in the experimental range

between 10 and 105 pN/s, the noise leads to no significant drop in the performance of

our approach.

3.7.3 Performance of the non-parametric Bayesian learning algorithm and
comparison to deep learning

Turning to the non-parametric Bayesian approach, for N = 200, r = 100 pN/s it outper-

forms deep learning, giving F (q , p) = 0.962 and
∣∣Deff(q)−Deff(p)

∣∣= 0.3. We can see this

clearly in Fig. 3.6, which shows density histograms at N = 200 for predicted vs true values

of the three largest state probabilities. The non-parametric Bayesian results, shown in

the top row, are more aligned along the diagonal than the deep learning results, plotted

in the bottom row for comparison.

The advantage for the non-parametric Bayesian approach does not persist at all N .

In Fig. 3.7 we compare performance metrics for both algorithms as a function of N .

Deep learning does better for small numbers of observations, N . 20, but is superseded

by the non-parametric Bayesian approach at larger N (more typical of actual experi-

ments). Despite the impressiveness of the non-parametric Bayesian results at larger

N , there still remains a technical challenge to real-world implementation. In order to

make the algorithm capable of handling data corrupted by thermal fluctuation noise,
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Figure 3.6. Predicted vs true value density histograms for the non-
parametric Bayesian learning algorithm (Top) and deep learning algo-
rithm (Bottom) with N = 200, Mmax = 6. “Truth” represents non-zero
components of the state probability vector p1, p2, p3, while “Prediction”
corresponds to values q1, q2, q3 estimated by our machine learning ap-
proaches. Blue solid lines: identity function.

an analytical form for a noise-broadened rupture time distribution Fr (t |φ) would have

to be known. Convolving Eq. (3.3) with a Gaussian is not directly tractable, but future

work could identify a suitable approximation. If noise is not taken into account, the

original non-parametric Bayesian approach shows a significant performance dropoff:

for N = 200 and the same kind of Gaussian noise with standard deviation δ f ∼ 6 pN

discussed in the previous section, the mean fidelity F (q , p) falls to 0.898 and the mean

effective dimension difference
∣∣Deff(q)−Deff(p)

∣∣ grows to 0.63.
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Figure 3.7. Performance comparison of the two machine learning algo-
rithms for different input sizes. NB (orange dashed line) represents the
non-parametric Bayesian learning algorithm. DP (blue solid line) repre-
sents deep learning algorithm. The performance metrics are average fi-
delity F (q , p) (Top) and average absolute effective dimension difference∣∣Deff(q)−Deff(p)

∣∣ (Bottom). Error bars correspond to standard error of
the mean calculated from the results of 20 different test sets.
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There is also a significant difference between the two algorithms in terms of com-

putational time. The deep learning approach is fairly light-weight. Training the data

sets described above for N = 200 is accomplished in ∼ O (100 s) on GPU. Once the net-

work is trained, analysis of a given input data set is nearly instantaneous, taking only

∼ O (10−4 s). In contrast, while the non-parametric Bayesian method requires no train-

ing, the MCMC iteration for an input data set is more computationally expensive, taking

∼ 50 s for N = 200 and K = 15,000. On the other hand, in the payoff for this longer com-

putation is an estimate of both the state probabilities and their associated Bell model

parameters.

The pros and cons of both machine learning algorithms can be summarized as fol-

lows:

Deep learning algorithm:

Pros:

• Straightforward and scalable: the simple neural network architecture is easy to

implement, and can be readily enlarged to handle more complex tasks if re-

quired.

• Quick results: A trained network outputs the result for one experimental data

set almost instantly.

• Works well for limited numbers of observations: the algorithm can handle small

N better than the non-parametric Bayesian approach.

• Robust against noise: errors introduced by typical thermal fluctuations have

almost no effect on the performance of this method.

Cons:

• A cutoff Mmax for the number of possible states must be specified beforehand.
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Bayesian non-parametric learning algorithm:

• Pros:

• Works well for larger numbers of observations: the algorithm outperforms deep

learning for N typical of actual experiments.

• Handles arbitrary numbers of states: in principle, all possible state configura-

tion can be explored.

• Estimation of state parameters: unlike the deep learning case, the parameters

that characterize each state can be predicted.

Cons:

• Conceptual and technical hurdles: non-parametric Bayesian inference is to date

not widely familiar to physicists and biologists. The mathematical complexity

makes it harder to modify the method, for example incorporating the handling

of noise-corrupted data.

• Computational expense: processing a single data set is significantly slower com-

pared to the deep learning algorithm.

3.8 Conclusion

In this chapter, we introduced two machine learning methods for characterizing hete-

rogeneity in single bio-molecules based on observations collected from AFM pulling ex-

periments. We focus on the state probability distribution p , which allows us to directly

quantify the degree of heterogeneity that exists in the system on the timescales of the

pulling experiment. Though we did not explore it here, the estimation of state parame-

ters is another crucial aspect, and a unique advantage of the non-parametric Bayesian

method. The performance of both methods is demonstrated by synthetic data designed
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to mimic a variety of experimental conditions. Our deep learning approach achieves

excellent results without complex network architecture or a time-consuming training

process. The more sophisticated non-parametric Bayesian approach does provide ben-

efits for larger data sets, but is slower and more challenging to modify. The next stage

is to begin testing both methods on actual experimental data, for example the data sets

identified in Ref. [15]. Beyond AFM pulling data, both of our approaches can be eas-

ily generalized to data sets from other experimental systems (e.g. optical or magnetic

tweezers). Identifying multiple, long-lived active conformations of bio-molecules is a

critical step in understanding the full scope of their biological function, and our work

provides new methods to shed light on this important problem.
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4 Conclusions

In the first part of this thesis, we developed a theoretical approach to study the non-

equilibrium statistical mechanics of biological signaling networks. Applying our ap-

proach to a typical canonical signaling circuit, the “enzymatic push-pull loop”, we ex-

plored how the ability to transfer information through the circuit is constrained by en-

ergetic requirements. In the second part, we explored ways to analyze single-molecule

heterogeneity with machine learning methods. Two different learning algorithms (both

supervised and unsupervised) were introduced and applied to simulated AFM pulling

experimental data, and we found that they both perform well in quantifying heteroge-

neity, though each method has its own advantages and tradeoffs.

In Chapter 2, we focused on the relation between information and energetic cost in

a kinase-phosphatase push-pull loop signaling network. The information is quantified

via the mutual information (MI) between the signal input and output, while the ener-

getic cost takes the form of ATP consumption. The latter has two aspects: (i) the free

energy∆µ for an ATP hydrolysis reaction, and (ii) the number of these reactions per unit

time. With the help of the chemical Langevin approximation [7], our work shows that

achieving the level of MI measured in experimental contexts requires crossing a thresh-

old in both aspects of the cost. Optimal noise filter theory leads to a simple analytical
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relationship capturing the tradeoffs between minimum ATP consumption, MI, and the

bandwidth of the network (its ability to accurately transmit signals up to a certain max-

imum frequency). We show that a component of the yeast Hog1 signaling pathway has

potentially minimized its energetic costs, lying close to the predicted optimality line.

We rationalize this result by quantifying the evolutionary pressures that act on such sys-

tems, which can force them to optimize ATP consumption given a certain desired MI

and bandwidth.

Chapter 3 details the deep learning and non-parametric Bayesian approaches we

developed to analyze rupture time data from AFM pulling experiments. Covering a

wide range of possible bio-molecular parameters and experimental settings, the results

showed that both of our algorithms perform well in predicting the state probability dis-

tribution p , a key aspect of heterogeneous systems. Even though our work focused on

AFM experiments, our machine learning approach readily generalizes beyond the AFM

pulling context, contributing one step to the long journey to understanding biological

function at the single-molecule level.

4.1 Outlook

Many remarkable experiments over the last decade on both prokaryotic and eukary-

otic signaling pathways have found they can transmit at most ∼ 1 to 3 bits of informa-

tion [43–50]. Trying to explain why different signaling networks can only transmit this

low amount information was a crucial part of the motivation for our cell signaling work.

As shown in this thesis, this has opened up another, unexpected aspect of the prob-

lem: for particular parameter combinations a signaling system can be optimal, in the

sense that it can achieve a certain target value of mutual information, while exhibiting
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the maximum possible bandwidth with the minimal ATP consumption. Every aspect

of our theory can be directly tested, assuming the enzymatic parameters for individual

systems are carefully measured. We already have some intriguing results for the yeast

Hog1 system, but it would be valuable to revisit the experimental systems where mutual

information was directly quantified. How many of these are operating near their per-

formance limits? Can we understand the evolutionary pressures that may have brought

them there?

For our exploration of single-molecule heterogeneity, the logical next step is to be-

gin testing on actual empirical data. Even though we have tried to design biologically

plausible synthetic data sets, there are still likely lessons to be learned from tackling the

real thing. Both algorithms also have room for improvement: for the deep learning algo-

rithm, finding an effective way to incorporate state parameter prediction can make it a

even better approach; for our non-parametric Bayesian learning approach, accounting

for the effects of noise in the data analysis would be a significant enhancement.
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[43] Gašper Tkačik, Curtis G Callan, and William Bialek. Information flow and opti-
mization in transcriptional regulation. Proc. Natl. Acad. Sci., 105(34):12265–12270,
2008.

[44] Raymond Cheong, Alex Rhee, Chiaochun Joanne Wang, Ilya Nemenman, and An-
dre Levchenko. Information transduction capacity of noisy biochemical signaling
networks. Science, 334(6054):354–358, 2011.

[45] Shinsuke Uda, Takeshi H Saito, Takamasa Kudo, Toshiya Kokaji, Takaho Tsuchiya,
Hiroyuki Kubota, Yasunori Komori, Yu-ichi Ozaki, and Shinya Kuroda. Robustness
and compensation of information transmission of signaling pathways. Science,
341(6145):558–561, 2013.

[46] Margaritis Voliotis, Rebecca M Perrett, Chris McWilliams, Craig A McArdle, and
Clive G Bowsher. Information transfer by leaky, heterogeneous, protein kinase sig-
naling systems. Proc. Natl. Acad. Sci., 111(3):E326–E333, 2014.

[47] Jangir Selimkhanov, Brooks Taylor, Jason Yao, Anna Pilko, John Albeck, Alexander
Hoffmann, Lev Tsimring, and Roy Wollman. Accurate information transmission
through dynamic biochemical signaling networks. Science, 346(6215):1370–1373,
2014.

[48] Garrett D Potter, Tommy A Byrd, Andrew Mugler, and Bo Sun. Dynamic sampling
and information encoding in biochemical networks. Biophys. J., 112(4):795–804,
2017.

[49] Ryan Suderman, John A Bachman, Adam Smith, Peter K Sorger, and Eric J Deeds.
Fundamental trade-offs between information flow in single cells and cellular pop-
ulations. Proc. Natl. Acad. Sci., 114(22):5755–5760, 2017.



Bibliography 120

[50] Amiran Keshelava, Gonzalo P Solis, Micha Hersch, Alexey Koval, Mikhail
Kryuchkov, Sven Bergmann, and Vladimir L Katanaev. High capacity in g protein-
coupled receptor signaling. Nat. Commun., 9(1):1–8, 2018.

[51] Claude E Shannon. A mathematical theory of communication, bell systems tech.
J, 27:379–423, 1948.

[52] Yuansheng Cao, Hongli Wang, Qi Ouyang, and Yuhai Tu. The free-energy cost of
accurate biochemical oscillations. Nat. Phys., 11(9):772–778, 2015.

[53] Yoshihiko Hasegawa. Optimal temporal patterns for dynamical cellular signaling.
New J. Phys., 18(11):113031, 2016.

[54] Pankaj Mehta, Alex H Lang, and David J Schwab. Landauer in the age of syn-
thetic biology: energy consumption and information processing in biochemical
networks. J. Stat. Phys., 162(5):1153–1166, 2016.

[55] Thomas E Ouldridge, Christopher C Govern, and Pieter Rein ten Wolde. Ther-
modynamics of computational copying in biochemical systems. Phys. Rev. X,
7(2):021004, 2017.

[56] Nick Lane and William F Martin. The origin of membrane bioenergetics. Cell,
151(7):1406–1416, 2012.

[57] ER Stadtman and PB Chock. Superiority of interconvertible enzyme cascades in
metabolic regulation: analysis of monocyclic systems. Proceedings of the National
Academy of Sciences, 74(7):2761–2765, 1977.

[58] Albert Goldbeter and Daniel E Koshland. An amplified sensitivity arising from co-
valent modification in biological systems. Proceedings of the National Academy
of Sciences, 78(11):6840–6844, 1981.

[59] Peter B Detwiler, Sharad Ramanathan, Anirvan Sengupta, and Boris I Shraiman.
Engineering aspects of enzymatic signal transduction: photoreceptors in the
retina. Biophysical Journal, 79(6):2801–2817, 2000.

[60] Reinhart Heinrich, Benjamin G Neel, and Tom A Rapoport. Mathematical models
of protein kinase signal transduction. Molecular cell, 9(5):957–970, 2002.

[61] Michael Hinczewski and D Thirumalai. Cellular signaling networks function
as generalized wiener-kolmogorov filters to suppress noise. Physical Review X,
4(4):041017, 2014.

[62] Michael Hinczewski and D. Thirumalai. Noise control in gene regulatory networks
with negative feedback. J. Phys. Chem. B, advanced online publication, 2016.



Bibliography 121

[63] Michael Lynch and Georgi K Marinov. The bioenergetic costs of a gene. Proc. Natl.
Acad. Sci., 112(51):15690–15695, 2015.

[64] E. Ilker and M. Hinczewski. Modeling the growth of organisms validates a gen-
eral relation between metabolic costs and natural selection. Phys. Rev. Lett.,
122:238101, 2019.

[65] Oliver E Sturm, Richard Orton, Joan Grindlay, Marc Birtwistle, Vladislav
Vyshemirsky, David Gilbert, Muffy Calder, Andrew Pitt, Boris Kholodenko, and
Walter Kolch. The mammalian mapk/erk pathway exhibits properties of a nega-
tive feedback amplifier. Sci. Signal., 3(153):ra90–ra90, 2010.

[66] Manju Saxena, Scott Williams, Kjetil Taskén, and Tomas Mustelin. Crosstalk be-
tween camp-dependent kinase and map kinase through a protein tyrosine phos-
phatase. Nat. Cell Biol., 1(5):305, 1999.

[67] Carlos Salazar and Thomas Höfer. Multisite protein phosphorylation–from molec-
ular mechanisms to kinetic models. FEBS J., 276(12):3177–3198, 2009.

[68] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361, 1977.

[69] Arren Bar-Even, Elad Noor, Yonatan Savir, Wolfram Liebermeister, Dan Davidi,
Dan S Tawfik, and Ron Milo. The moderately efficient enzyme: evolutionary and
physicochemical trends shaping enzyme parameters. Biochemistry, 50(21):4402–
4410, 2011.

[70] Wolfram Liebermeister and Edda Klipp. Biochemical networks with uncertain pa-
rameters. IEE Proc.-Syst. Biol., 152(3):97–107, 2005.

[71] Mingcong Wang, Christina J Herrmann, Milan Simonovic, Damian Szklarczyk,
and Christian von Mering. Version 4.0 of paxdb: protein abundance data, inte-
grated across model organisms, tissues, and cell-lines. Proteomics, 15(18):3163–
3168, 2015.

[72] UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic
Acids Res., 47(D1):D506–D515, 2018.

[73] Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke
Jong, Enkhjargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib Mir,
et al. SABIO-RK—database for biochemical reaction kinetics. Nucleic Acids Res.,
40(D1):D790–D796, 2011.



Bibliography 122

[74] Zhike Zi, Wolfram Liebermeister, and Edda Klipp. A quantitative study of the Hog1
MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLOS
ONE, 5(3):e9522, 2010.

[75] Pascal Hersen, Megan N. McClean, L. Mahadevan, and Sharad Ramanathan.
Signal processing by the hog map kinase pathway. Proceedings of the National
Academy of Sciences, 105(20):7165–7170, 2008.

[76] N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Times Series.
Wiley, New York, 1949.

[77] A. N. Kolmogorov. Interpolation and extrapolation of stationary random se-
quences. Izv. Akad. Nauk SSSR., Ser. Mat., 5:3–14, 1941.

[78] H. W. Bode and C. E. Shannon. A simplified derivation of linear least square
smoothing and prediction theory. Proc. Inst. Radio. Engin., 38(4):417–425, 1950.

[79] Nils B Becker, Andrew Mugler, and Pieter Rein ten Wolde. Optimal prediction by
cellular signaling networks. Phys. Rev. Lett., 115(25), 258103, 2015.

[80] Christoph Zechner, Georg Seelig, Marc Rullan, and Mustafa Khammash. Molec-
ular circuits for dynamic noise filtering. Proc. Natl. Acad. Sci. USA, 113(17):4729–
4734, 2016.

[81] Himadri S Samanta, Michael Hinczewski, and DJPRE Thirumalai. Optimal infor-
mation transfer in enzymatic networks: A field theoretic formulation. Phys. Rev. E,
96(1):012406, 2017.

[82] David Hathcock, James Sheehy, Casey Weisenberger, Efe Ilker, and Michael
Hinczewski. Noise filtering and prediction in biological signaling networks. IEEE
Trans. Mol. Biol. Multi-Scale Commun., 2(1):16–30, 2016.

[83] Brian Charlesworth. Effective population size and patterns of molecular evolution
and variation. Nature Rev. Genet., 10(3):195, 2009.

[84] Jerome T. Mettetal, Dale Muzzey, Carlos Gómez-Uribe, and Alexander van Oude-
naarden. The frequency dependence of osmo-adaptation in saccharomyces cere-
visiae. Science, 319(5862):482–484, 2008.

[85] John H Gillespie. Population genetics: a concise guide. JHU Press, 2010.

[86] Motoo Kimura. On the probability of fixation of mutant genes in a population.
Genetics, 47(6):713–719, 1962.



Bibliography 123

[87] Leslie E Orgel and Francis HC Crick. Selfish dna: the ultimate parasite. Nature,
284(5757):604, 1980.

[88] Andreas Wagner. Energy constraints on the evolution of gene expression. Mol.
Biol. Evol., 22(6):1365–1374, 2005.

[89] Gita Mahmoudabadi, Ron Milo, and Rob Phillips. Energetic cost of building a
virus. Proc. Natl. Acad. Sci., 114:E4324–E4333, 2017.

[90] Isheng J Tsai, Douda Bensasson, Austin Burt, and Vassiliki Koufopanou. Popula-
tion genomics of the wild yeast saccharomyces paradoxus: quantifying the life
cycle. Proc. Natl. Acad. Sci., 105(12):4957–4962, 2008.

[91] Ron Milo. What is the total number of protein molecules per cell volume? a call to
rethink some published values. Bioessays, 35(12):1050–1055, 2013.

[92] Birgit Schoeberl, Claudia Eichler-Jonsson, Ernst Dieter Gilles, and Gertraud
Müller. Computational modeling of the dynamics of the map kinase cascade ac-
tivated by surface and internalized EGF receptors. Nat. Biotech., 20(4):370–375,
2002.

[93] Christopher P Mattison and Irene M Ota. Two protein tyrosine phosphatases, Ptp2
and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast.
Genes Dev., 14(10):1229–1235, 2000.

[94] Sina Ghaemmaghami, Won-Ki Huh, Kiowa Bower, Russell W Howson, Archana
Belle, Noah Dephoure, Erin K O’Shea, and Jonathan S Weissman. Global analysis
of protein expression in yeast. Nature, 425(6959):737–741, 2003.

[95] Erik Gawehn, Jan A Hiss, and Gisbert Schneider. Deep learning in drug discovery.
Molecular informatics, 35(1):3–14, 2016.

[96] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement
learning for de novo drug design. Science advances, 4(7):eaap7885, 2018.

[97] Keegan E Hines. A primer on bayesian inference for biophysical systems.
Biophysical journal, 108(9):2103–2113, 2015.

[98] Christopher P Calderon and Kerry Bloom. Inferring latent states and refining force
estimates via hierarchical dirichlet process modeling in single particle tracking
experiments. PloS one, 10(9):e0137633, 2015.

[99] Keegan E Hines, John R Bankston, and Richard W Aldrich. Analyzing single-
molecule time series via nonparametric bayesian inference. Biophysical journal,
108(3):540–556, 2015.



Bibliography 124

[100] Ioannis Sgouralis and Steve Pressé. An introduction to infinite hmms for single-
molecule data analysis. Biophysical journal, 112(10):2021–2029, 2017.

[101] Ioannis Sgouralis and Steve Pressé. Icon: an adaptation of infinite hmms for time
traces with drift. Biophysical journal, 112(10):2117–2126, 2017.

[102] Ioannis Sgouralis, Miles Whitmore, Lisa Lapidus, Matthew J Comstock, and Steve
Pressé. Single molecule force spectroscopy at high data acquisition: A bayesian
nonparametric analysis. The Journal of chemical physics, 148(12):123320, 2018.

[103] Ioannis Sgouralis, Shreya Madaan, Franky Djutanta, Rachael Kha, Rizal F Hariadi,
and Steve Pressé. A bayesian nonparametric approach to single molecule forster
resonance energy transfer. The Journal of Physical Chemistry B, 123(3):675–688,
2018.

[104] Sina Jazani, Ioannis Sgouralis, Omer M Shafraz, Marcia Levitus, Sanjeevi
Sivasankar, and Steve Pressé. An alternative framework for fluorescence correla-
tion spectroscopy. Nature communications, 10(1):1–10, 2019.

[105] Meysam Tavakoli, Sina Jazani, Ioannis Sgouralis, Omer M Shafraz, Sanjeevi
Sivasankar, Bryan Donaphon, Marcia Levitus, and Steve Pressé. Pitching single-
focus confocal data analysis one photon at a time with bayesian nonparametrics.
Physical Review X, 10(1):011021, 2020.

[106] Olga K Dudko, Gerhard Hummer, and Attila Szabo. Theory, analysis, and inter-
pretation of single-molecule force spectroscopy experiments. Proceedings of the
National Academy of Sciences, 105(41):15755–15760, 2008.

[107] Richard Jozsa. Fidelity for mixed quantum states. Journal of modern optics,
41(12):2315–2323, 1994.

[108] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[109] Keir C Neuman and Attila Nagy. Single-molecule force spectroscopy: optical
tweezers, magnetic tweezers and atomic force microscopy. Nature methods,
5(6):491–505, 2008.


	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Chapter 1. Introduction
	Cellular signaling
	1.1.1. Modeling a simple input-output signaling network
	1.1.2. Auto-correlation time and frequency of the input
	1.1.3. Chemical potential
	1.1.4. Gain parameter and ATP consumption 
	1.1.5. Mutual information
	1.1.6. Chemical Langevin solution

	Single-molecule heterogeneity
	1.2.1. Machine learning
	1.2.2. Deep learning
	1.2.3. Artificial neural network
	1.2.4. Training the artificial neural network
	1.2.5. Non-parametric Bayesian learning
	1.2.6. Dirichlet process mixture model
	1.2.7. Dirichlet process prior and the ''Chinese restaurant'' analogy


	Chapter 2. The price of a bit: energetic costs, bandwidth and the evolution of cellular signaling
	Introduction
	Theory
	2.2.1. Modeling an enzymatic push-pull loop
	2.2.2. Determining the enzymatic parameter range

	Results
	2.3.1. Minimum cost of transmitting information
	2.3.2. Analytical bound describes tradeoff between bandwidth and information
	2.3.3. Optimality and the yeast Pbs2/Hog1 push-pull loop
	2.3.4. Minimum ATP consumption to achieve a certain signaling fidelity and bandwidth
	2.3.5. Evolutionary pressure on the metabolic costs of signaling

	Discussion and Conclusions
	Supplementary information for this chapter
	2.5.1. Derivation of the detailed balance relation
	2.5.2. Chemical Langevin approach for the kinase-phosphatase push-pull loop
	2.5.3. Characteristic frequency x, gain R0, and the conditions for Wiener-Kolmogorov noise filter optimality
	2.5.4. Enzymatic parameter distribution
	2.5.5. Results for alternative input kinase concentrations
	2.5.6. Analysis of the Pbs2-Hog1 push-pull loop in yeast
	2.5.7. Estimation of total resting metabolic expenditure


	Chapter 3. Machine learning methods for exploring single-molecule heterogeneity
	Introduction
	Modeling the rupture time distribution in an AFM pulling experiment
	3.2.1. Rupture time distribution for a single state system
	3.2.2. Rupture time distribution for a heterogeneous system

	Overview of the machine learning workflow
	Data set generation
	Deep learning algorithm
	3.5.1. Training set format
	3.5.2. Architecture
	3.5.3. Loss function

	Non-parametric Bayesian learning
	Results
	3.7.1. Test data set
	3.7.2. Performance of the deep learning algorithm
	3.7.3. Performance of the non-parametric Bayesian learning algorithm and comparison to deep learning

	Conclusion

	Chapter 4. Conclusions
	Outlook

	Complete References

