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FIRST PRINCIPLES STUDY OF ELECTRONIC AND

VIBRATIONAL PROPERTIES OF WIDE BAND GAP OXIDE

AND NITRIDE SEMICONDUCTORS

Abstract

by

AMOL RATNAPARKHE

The ever-increasing number of applications requiring semiconductor materials at their

core is driving the need to understand certain oxide and nitride materials. In this

thesis, we investigate two of such classes. The first of those is the class of wide

band-gap oxides and includes materials like β-Ga2O3 and the (AlxGa1−x)2O3 alloy

system. β-Ga2O3 is the most stable of the five phases in which Ga2O3 is found to

exist. With a significantly high experimentally measured band gap of 4.5-4.9 eV, it

is touted to be an excellent material for high-power electronics and UV transparent

optoelectronic applications. Using first-principles calculations, we study this material

and present the electronic band structure calculations using the quasiparticle self-

consistent GW method. Next, we extend this study to the alloy system (AlxGa1−x)2O3

in which Ga2O3 is alloyed with an even higher band-gap material, Al2O3. We study

the system in both the phases, α and β, present the electronic band structures for

varying compositions of Al ranging from 0% to 100%, and predict the most favorable

composition and phase for such an alloy to exist.

The second class of materials in this thesis is the alloy system formed by the combi-

nation of group III- and II-IV nitrides, GaN and ZnGeN2, respectively. In particular,

we study the vibrational properties of ZnGeGa2N4. ZnGeGa2N4, at 50% composition,

is an octet-preserving and lowest energy superlattice of half a cell of ZnGeN2 and half

GaN along the b-axis of ZnGeN2 in the Pbn21 structure. Using Density Functional

perturbation theory implemented in ABINIT, the phonon modes at the zone center,

Γ allow us to calculate longitudinal optical-transverse optical splittings using Born
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effective charges. In addition, the IR and Raman spectra along with the phonon

density of states, and the phonon band structure are presented. Lastly, we study the

transition metal oxide, MoO3. We present the vibrational properties of orthorhombic

α-MoO3 with an emphasis on the IR and Raman spectra. We find good agreement

with experimental IR and Raman studies of this materials, obtain its Born effective

charges and explain the nature of the complex vibrational modes.
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Chapter 1

Introduction

There is a strong interest currently in wide band gap oxides and nitrides that is driven

by the immense number of applications in semiconductor devices. The fundamental

properties of such materials, such as the band structure and the vibrational proper-

ties can be studied using first-principles calculations. Here we study three distinct

materials systems, β-Ga2O3 and the (AlxGa1−x)2O3 alloy, ZnGeGa2N4 and MoO3.

For Ga2O3 and its alloys, we are focussing on the electronic structure while the other

two namely, ZnGeGa2N4 and MoO3, we will study the phonons and other vibrational

properties.

1.1 β-Ga2O3 and (AlxGa1−x)2O3 alloys

There has been a significant interest in the study of β-Ga2O3 over the past decade or

so. The primary reason behind this surge of interest in β-Ga2O3 can be attributed

to the fact that it is a wide band-gap semiconductor with many applications ranging

from high power electronics [1, 2, 3, 4] to deep UV transparent conductive oxide(TCO)

[5, 6]. Ga2O3 naturally is found to exist in five different forms. Of the five, it is found

to be in its most stable form in the β phase. Previously known semiconductors like

GaAs and GaN have experimentally measured band-gaps at about 1.4 eV and 3.4

1



CHAPTER 1. INTRODUCTION

eV, respectively. Compared with those numbers, β-Ga2O3 has a rather big band gap

of 4.5− 4.9 eV. Materials with such high band gaps are usually insulators with high

resistance. However, it was found that Ga2O3 has semiconducting behavior because

even unintentionally it was found to be n-type doped thanks to the presence of Si

impurities. It’s still not entirely clear why it tends to be unintentionally n-doped.

It may very well depend on the growth method. What is clearly known is that it

is possible to carry out intentional n-type doping in β-Ga2O3 using Si, Ge and Sn

that can act as n-dopants with shallow donor levels [7]. An important parameter for

high power transistors is the breakdown voltage. It is the highest voltage that can be

applied to a dielectric before its breakdown in which case the conductivity suddenly

increases. For example, in Zener breakdown, the electrons start tunneling from the

VBM to the CBM across the region when the applied voltage crosses the threshold

value. There is a trend people have observed in semiconductors with large band

gaps and their respective breakdown voltages. As seen from Fig. 1.1, the breakdown

voltage grows exponentially with the band gap. And, given the high value of about

4.9 eV for β-Ga2O3, if the trend holds for β-Ga2O3 then, its breakdown voltage will

be much larger than either of GaAs or GaN. It is predicted to be as high as 8 MV/cm

based on Fig. 1.1 and in real devices, it has already reached the value of 3.8 MV/cm

[8].

Thus, there is a huge potential in this material to be used in applications in the

fields of high frequency and power electronics [9]. β-Ga2O3 is also found to be n-type

doped.Conventional transparent conductive oxides like ITO and ZnO are opaque in

the deep-UV region due to their small band gaps (∼ 3.2 eV). With the band gap

as large as 4.9 eV., β-Ga2O3 has a much higher band gap which allows for much

deeper UV transparency thus, it can be used as a transparent conducting oxide in

the applications of UV range optical devices [10, 11].

In this dissertation, we investigate the electronic and optical properties of β-

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Breakdown field vs Bandgap [1]
.

Figure 1.2: β-Ga2O3 primitive unit cell
.
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CHAPTER 1. INTRODUCTION

Ga2O3. Since it is a somewhat novel material, the properties of this material are not

yet fully understood. The band gap calculations, both theoretically and experimen-

tally measured generally hover in the range 4.5-4.9 eV [10]. The conventional unit

cell has 20 atoms. However, the primitive unit cell of the centered C2/m space group

has half the number of atoms and is thus computationally more efficient to treat.

The primitive unit cell is shown in Fig. 1.2. Our aim is to understand the electronic

band structure of the material β-Ga2O3 using the primitive unit cell as described by

Geller [12]. It has a monoclinic crystal structure with the space group symmetry of

C2/m . The cation sites are occupied by the Ga atoms which are are equally divided

among tetrahedral and octahedral coordinations. Our aim is to also understand the

anisotropy in the absorption onset for the material by means of selection rules and

the symmetry labels.

Self-trapping of holes in polarons has been found to occur in β-Ga2O3 [6, 13].

Varley et. al. [13] investigated the role of self-trapped holes in the valence band

region using hybrid functional calculations on β-Ga2O3. Self-trapping means that

around a hole, even in the absence of an impurity or defect, there is a local distortion

of the atoms around the hole which localizes the hole state. This creates a level in the

gap for the self-trapped polaron. The conduction band is primarily derived from Ga

s-orbitals while the valence bands come mainly from the O 2p orbitals. These orbitals

are susceptible to the formation of polarons, i.e. holes trapped in a local potential

well. They studied the stabilization of these self-trapped holes or STHs by calculating

the energy differences between the STH and the delocalized holes and reported the

optical absorption and emission energies associated with it. Based on the calculated

emission line at 3.10 eV, they reported that their results are in excellent agreement

with the experimentally observed emission lines in undoped single-crystal Ga2O3 and

concluded that the the UV luminescence exhibited by the material is indeed due to

the presence of STHs. In a recent study of β-Ga2O3, Varley et. al. [14] explored the
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CHAPTER 1. INTRODUCTION

luminescence of self-trapped holes and impurity-related acceptors. In the presence

of acceptor impurities like MgGa, BeGa, the luminescence spectrum ranges from UV

region to green but is often dominated by the ultraviolet band which is independent

of the impurities present and is therefore associated with the ubiquitous self-trapped

hole polarons.

Computationally, the band-gap has been calculated before by [10] using the Hy-

brid Density Functional Theory. They report a value of ∼ 4.8 eV by mixing about

35% of the exact Hartree-Fock non-local exchange with the conventional DFT ex-

change correlation potential. The 35% fraction of the exact exchange is chosen so

as to match the calculations with the experimental results. The computations are

carried out using the projector augmented wave(PAW) potentials implemented in the

VASP code [15]. On the other hand, Bechstedt et. al. [16] used both, the stan-

dard DFT and Hedin’s GW approximation in the single-shot approximation. They

used the Generalized Gradient Approximation(GGA) for the DFT calculations im-

plemented within the VASP code. Using a finer k-point mesh for their calculations,

they reported the value of the indirect band-gap around 2.35 eV, significantly lower

than the experimentally observed results. This result is expected as DFT is known

for producing highly underestimated results and thus needs to be supplemented with

additional tools to improve the results. In the GW single shot approximation start-

ing from the above GGA result, they obtain a gap of 5.048 eV (direct) and 5.046

(indirect). In other words, they now predict that in GW the gap is direct and closer

to the indirect gap and their value is somewhat larger than the experimental value.

On the other hand, Mengle et. al. [17] performed the first-principles calculations of

the near-edge optical properties of β-Ga2O3. Unlike [16] who reported direct band

gaps, they reported indirect band-gap of 1.9 eV and 4.2 eV in LDA and LDA + GW ,

respectively using the Quantum Espresso code [18]. Experimentally, the band-gap

has been measured using the methods of optical absorption onset [19]. Given the
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CHAPTER 1. INTRODUCTION

Figure 1.3: α-Al2O3 primitive unit cell
.

monoclinic crystal structure, the absorption spectra produced for polarization along

the different axes vary and the results range from 4.9 eV for E ‖ b to 4.54 eV for

E ‖ c.

Al2O3, on the other hand is another oxide with a very high band-gap of about

∼ 8.8 eV. Commonly known as alumina, α-Al2O3 is the most stable form of the many

forms in which the oxide exists. α-Al2O3 has been studied before and our aim in this

dissertation is not really focussed on it but included in our study as the end member of

alloys between Ga2O3 and Al2O3. Many semiconductors related applications require

that the band-gap be tailored with another material according to the needs of the

device. This can be achieved by alloying the two oxides. Between the two stable

oxides for Ga and Al, namely β-Ga2O3 and α-Al2O3 there is a potential for an alloy

system by changing the composition of the two cations, Ga3+ and Al3+. This alloy

system could potentially be used to tune the band gap as a function of the cation

composition. α-Al2O3 or the alpha phase exists in a crystal structure known as the

corundum phase or R3̄c whereas the β-Ga2O3 or the beta phase as we know, exists in

the monoclinic crystal structure. The rhombohedral structure of α-Al2O3 as seen in

Fig. 1.3 also has an equal number of cation sites with all of them occupied by much

smaller Al atoms. Unlike the β phase, all the cation sites are octahedrally coordinated

to the neighboring O atoms. The question we want to address is which structure will
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CHAPTER 1. INTRODUCTION

be adopted by an alloy or mixture of the two materials and over which range the α

or β structure has lower energy. The alloy (AlxGa(1−x))2O3 has already been grown

and we intend to study this alloy in both of the α and β structures to find out which

one is lowest in energy as a function of the Al concentration, x. Later in the chapter

on the Ga-Al alloy, we investigate in detail how the band gaps behave as function of

concentration of Al and what the miscibility energy costs are.

1.2 II-IV nitride: ZnGeGa2N4

The second material we have studied in this thesis comes from the class of alloys

formed by combining group III nitrides and the corresponding heterovalent II-IV-N2

compounds. In particular, the compound under study is ZnGeGa2N4. ZnGeN2 can

be viewed as obtained from GaN by replacing each Ga atom by either Zn or Ge in

such a way that around each N, two of the neighbors are Zn and two are Ge instead of

all four being Ga. This maintains the same average valence because Ga belongs in the

column III of the periodic table and is thus trivalent while Zn and Ge are respectively

divalent (II) and tetravalent (IV). Such II-IV-N2 compounds are called heterovalent

compounds. Often, just like their parent III-N compounds, these compounds tend

to have similar properties such as the crystal structures, band gaps, and are thus of

great interest.[20, 21, 22] They maintain the so-called octet rule of chemistry. By

sharing the 3 valence electrons of Ga with 5 valence electrons of N, we maintain 8

electrons ( or a closed shell) around each atom. In other words, in the tetrahedral

structure, where each atom has four neighbors, each bond will contain 2 electrons.

The II-IV-N2 have many similar properties compared to the corresponding III-N ones

but provide additional flexibility in tuning the materials properties. And, the process

of alloying these materials could help tune the properties for its applications. The

two nitrides GaN and ZnGeN2 have similar crystal structure and the band gap is
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roughly around 3.5 eV. The two are thus very similar in properties. However, there

is a significant band offset between the two. The valence band offset is the energy

difference between the valence band maximum between two materials when they are

brought in contact with each other at an interface. It can depend on the interface

orientation and the strain state of the two materials. For example, if one is in a thin

film on top of a thick substrate, the film may be under compressive or tensile strain

by the need to match the lattice constants in the plane. This strain itself affects the

position and splitting of the VBM. The heterostructure of the two materials has the

valence band maximum(VBM) in ZnGeN2 is about 1.1-1.4 eV above that of GaN at

the junction [23, 24]. The origin of this band offset can be found in the fact that

the Zn−3d orbitals lie above the Ga−3d orbitals and thus push the VBM with which

the lower d states hybridize, to higher energy. Potentially, this band offset problem

could present a way towards tuning the band gaps of the two materials. A natural

way towards this solution is the formation of an alloy composed of these two nitrides.

Historically, alloys have been formed between various compounds in order to pro-

duce materials with desirable properties. Alloys help tune these properties to desired

values and thus can be employed in numerous applications. Recently, mixed com-

pounds of ZnGeN2 and GaN were studied by first-principles calculations [25]. Using

the knowledge that the two nitrides have roughly the same crystal structure, at 50%

composition, there are two possible pathways to creating a 16-atom unit cell for the

alloy, with space groups Pmn21 and P1n1. In order to preserve the octet rule in a

mix of ZnGeN2 with GaN, one pair of ZnGe around each N needs to be transformed

back to a pair of Ga atoms. Thus around each N we now need two Ga one Zn and

one Ge. It turns out within the usual 16 atom cell, this can again be done in two

ways. The lowest energy structure of this 50% compound with space groups Pmn21

is a superlattice of half a cell of ZnGeN2 and half GaN along the b-axis of ZnGeN2

in the Pbn21 structure. The other octet rule preserving structure P1n1 is formed
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by starting with the 8-atom unit cell of ZnGeN2 in the Pmc21 structure(this struc-

ture has a lower calculated band gap but high energy of formation in comparison with

Pbn21). From Fig 1.4, we can see how the different compositions of ZnGeN2 and GaN

are realized in terms of the two phases of ZnGeN2, Pbn21 and Pmc21. While both

Pmn21 and P1n1 crystal structures satisfy the octet rule, and consequently, have a

much lower energy of formation, there are two more possible superlattices with the

stacking between half a cell of ZnGeN2 in Pbn21 and half GaN along the a-axis or

c-axis as seen in Fig 1.5. Both of these structures have local tetrahedra that break

the octet rule. These structures are found to have high energy of formation and lower

gap when compared to their octet rule preserving counterparts. The presence of the

type II offset, where the VBM of ZnGeN2 lies above the one of GaN, while the CBM

of GaN lies below that of ZnGeN2, in principle, suggests that in a heterostructure

composed of these two materials, the gap at the interface between the CBM of GaN

and the VBM of ZnGeN2 could be lowered by about 1 eV thus, expecting the gap

to be smaller than in either ZnGeN2 or GaN. However, contrary to the expectations,

the calculations showed that the gap is actually slightly higher than both ZnGeN2

and GaN. This anomaly was explained by taking into account the size quantization

effects in thin electrons quantum wells of GaN or hole quantum wells of ZnGeN2.

This effect effectively cancels the reduced gap due to the type - II band-offset causing

this unexpectedly high band gap of about 3.82 eV [25].

The ZnGeN2-GaN alloys were first synthesized using the technique of powder

synthesis [26]. It lead to a disordered system having lower gap than its constituents.

The initial idea behind the synthesis of this material was indeed to grow a material

with a lower gap. However, the random distribution of the ions isn’t an ideal property

in such materials due to the higher energy of formation and failure to obey the octet

rule. Overall, the goal is to grow a charge-neutral crystal. In case of local deviations

in the cations, the compensating defects must form some locally positive and some
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CHAPTER 1. INTRODUCTION

Figure 1.4: Octet-rule preserving ZnGeGa2N4 structures and their relation to ZnGeN2

with (a) Pbn21, (b) Pmc21, (c) Pmn21, and (d) P1n1. Image taken from [25].

Figure 1.5: Non-octet-rule-preserving ZnGeGa2N4 structures: (a) [100]1/2 and (b)
[001]1/2 superlattices, based on the Pbn21 ZnGeN2 structure. Image taken from [25].
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locally negative regions. This might then lead to strong charged defect scattering of

carriers and lower mobility. Recently, the crystals of the 50% composition of ZnGeN2

and GaN were grown using the method of Metalorganic Chemical Vapor Deposition

(MOCVD) [27].

1.3 Transition metal oxide: MoO3

Another interesting material we investigate in this thesis is the layered transition

metal oxide, MoO3. The stable phase of MoO3 has an orthorhombic crystal structure

and is known as the α-MoO3. However, it’s also known to exist in a metastable

monoclinic phase [28]. MoO3 has been found to have many applications in the fields

of chemical sensing[29, 30], batteries[31], catalysis,[32]. Due to its very high electron

affinity, it has applications as hole-extraction layer in organic photovoltaic cells.[33]

MoO3 thin films have also been found to have high dielectric constant and were used

as the gate oxide in thin film transistors.[34] Owing to its layered crystal structure

and weak van der Waals force between the layers, it is touted to be an excellent

candidate oxide for exfoliation to mono- or few-layer ultra-thin films [35].

Previous experimental results on the Raman and infrared spectra have been re-

ported and can be found in [36, 37, 28, 38]. To the best of our knowledge, no prior

first-principles calculations of the vibrational modes have been performed and only

semi-empirical ball and spring constant models were used in the previous works to

model these spectra. In this thesis, we present a first-principles calculation of the

phonons in α-MoO3 including simulations of the Raman and infrared spectra. More

details about the material, in particular, the crystal structure, the related symmetries

and the results are provided in the subsequent chapters.
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Chapter 2

Computational Methods

In this thesis, we apply several of the existing computational methods to understand

the electronic, optical and vibrational properties of semiconductor materials. Among

them are density functional theory(DFT), quasi-particle self consistent GW method

(QSGW) and the density functional perturbation theory(DFPT). Density functional

theory is the primary method used for calculating the ground state energies of mate-

rials. However, for the study of the excited states, the answers provided by DFT are

not accurate enough. This gives rise to other improvements over DFT in the form

of QSGW theory. And, for the study of vibrational properties, we have employed

density functional perturbation theory within the ABINIT package[39].

2.1 Density Functional Theory

Density Functional Theory(DFT) has been the cornerstone of Solid State Physics

since its inception. The foundations of DFT were first laid down by Hohenberg-Kohn

in their 1964 paper [40]. The details of density functional theory can be found in

many textbooks including the original papers of the founding authors. In this disser-

tation, I’ll summarize chapters 6 and 7 of the book, Electronic Structure [41]. Density

functional theory was formulated to be an exact theory of many-body systems. It
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CHAPTER 2. COMPUTATIONAL METHODS

is a computational method used primarily to study the electronic structure(mainly,

ground state properties) of the many-body systems. In order to calculate the proper-

ties of any many-body system, the Schrödinger equation for the many-body Hamil-

tonian has to be solved which in turn gives the wavefunction, Ψ. This wavefunction,

essentially contains all the information regarding the system. The Hamiltonian for

such a system can be written as

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|

−
∑
I

h̄2

2Me

∑
I

∇2
I +

1

2

∑
I,J

ZIZJe
2

|RI −RJ |

(2.1)

In this equation, the electrons and the nuclei are represented by indices (i, j) and

(I, J), respectively. The operator can be broken down into the electronic and nucleic

kinetic energy terms, the nucleon-nucleon, electron-electron and the electron-nucleon

interaction terms. Solving for such a system in the presence of complex interaction

terms is nearly impossible due to the order of parameters involved, roughly equal

to the Avogadro number. Thus, we employ approximations to make the equations

simpler to solve. The Born-Oppenheimer approximation enables us to reduce the

number of parameters involved. Using the fact that the electrons are much lighter

than the nuclei, we assume the nuclei to remain fixed in their positions while the

electrons move around them. The Born-Oppenheimer approximation decouples the

nuclear and the electronic motion and thus the two can be solved independently.

Reducing the complex Hamiltonian to a much simpler one looks like

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj|
(2.2)

Here, we’re only considering the motion of electrons in a lattice of fixed nuclei.

The Hamiltonian can be split into the kinetic energy, the electron-electron interaction
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energy and the interaction term between the nuclei and the electrons in terms of

Vext(r). This however, is still a 3N - dimensional problem. In a nutshell, the goal of

DFT is to reduce the complex problem of 3N degrees of freedom to only 3.

The Hohenberg-Kohn theorem states that all the ground state properties can be

exactly calculated from the ground state electron density of the many-body system.

Except for a constant, there is a unique external potential that determines the ground

state electron density. Solving for the Schrödinger equation gives us the many-body

wavefunction and by extension, the properties as well. The second Hohenberg-Kohn

theorem states that a universal energy functional E[n] can be defined as a function

of the electron density, n(r) for any external potential, Vext(r). And, for any given

external potential Vext(r), the energy surface, E[n] is then minimized to obtain the

ground state energy and the argument, n(r) that minimizes the energy is the ground

state electron density for the system. Thus, the existence of such a functional and

the corresponding ground state energy is known. However, we still don’t know about

the construction of any such energy functional.

The solution to this problem was proposed by Kohn and Sham [42]. The Kohn-

Sham approach was to consider an alternative system where the ground state electron

density is exactly the same as the interacting many-body system. And, the interacting

particles are replaced by non-interacting particles. This leads to independent-particle

equations which are much easier to solve. The approximate energy functional now

can be written in terms of the electron density as

EKS = T [n] + EHartree[n] + Exc[n]. (2.3)

The Hartree term is written in terms of the density as

EHartree[n] =
1

2

∫
drdr′

n(r)n(r′)

r− r′
(2.4)
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The density itself is given by

n(r) =
N∑
i

|ψi(r)|2 (2.5)

and, the wavefunctions ψ are the solutions to the one-particle Schrödinger equation

[
−1

2
∇2 + Veff [n](r)

]
ψn = εnψn. (2.6)

Now, once we have these one-particle wavefunctions, we can express our kinetic energy

in terms of the one-particle wavefunctions that constitute the density as

T =
occ∑
i

ψ∗i (r)∇2ψi(r)dr (2.7)

Veff [n(r)] is a functional of the density. It is composed of three parts and is

explicitly written as

Veff [n](r) = Vext(r) + VHartree(r) + Vxc(r)

= Vext(r) +
δEHartree
δn(r)

+
δExc
δn(r)

(2.8)

The first term Vext(r) is the Coulomb potential felt by the electrons due to the

nuclei. Second is the Hartree term which accounts for the electron-electron interac-

tions and the last term is the exchange-correlation term. Since the electrons in this

alternate system are assumed to be non-interacting, we have to account for the quan-

tum effects like exchange and correlation interactions between the electrons owing to

the fact that Pauli exclusion principle forbids the two electrons with the same spin

from coming close thus keeping the electrons farther to lower the energy. We can

think of the exchange-correlation term as a correction term which compensates for

using the non-interacting system by incorporating all the exchange and correlation
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effects. The two most common procedures for calculating Exc that we have employed

in this thesis are local density approximation(LDA) and generalized gradient approx-

imation(GGA). In LDA, it can be expressed as

Exc[n] =

∫
drn(r)εxc([n], r) (2.9)

where εxc([n], r) is the energy per electron at position r and it depends only on the

density, n(r) in its neighborhood.

This set of equations (2.5, 2.6 and 2.7) can then be solved iteratively starting with

a trial effective potential until we arrive at the lowest energy from eq. 2.3.

Finally, once we have the lowest energy for the fixed positions of the nuclei, the

total energy of the system can be optimized as the nuclei move on the energy surface.

This relaxation of the nuclei eventually leads to the ground state energy of the system.

2.1.1 FP-LMTO Method

For our purposes, we need to solve Eq. 2.6 for a periodic crystal. Using Bloch’s

theorem and the translational symmetry of the crystal in terms of the Bloch functions,

it allows us to reduce the periodic lattice to a single unit cell. The Schrödinger

equation is then solved using the variational principle. It is done by expanding the

eigenstates of Eq. 2.6 in a basis set. The basis set could in principle, consist of plane

waves or Bloch sums of atomic like wave functions around each atom. Since, it is

the valence electrons that participate in bonding, the effective potential of the nuclei

gets often replaced by pseudopotentials which describe the interactions with the core

electrons and nuclei. For example, we use ABINIT for the study of the vibrational

properties of the semiconductors. ABINIT uses the basis set of plane waves and treats

only the valence electrons. In an all-electron method, one keeps all the electrons but

typically describes core electrons separately and calculated with atomic boundary
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conditions. However, the valence electrons are then required to be orthogonal to the

core states. Nonetheless it has the advantage that the total density is used in the

exchange correlation so that core-valence exchange is included. Comparing with the

pseudopotentials, the all electron methods tend to be more accurate. Among the

many variants out there, we use the full-potential LMTO or FP-LMTO method for

our calculations.

FP-LMTO[43, 44] is an augmentation based method. It means the space is first

divided in different regions, in this case a sphere around each atom and the interstitial

space in between the spheres. The basis functions are then constructed from the

solutions of the Schrödinger equation separately in each region at some fixed energies

in the energy range of interest and stitched together. This process of stitching the

solutions together is called augmentation. For example, in the interstitial region, the

potential is approximately constant and for the purpose of constructing the basis

set, it is assumed to be flat. Inside the spheres, the potentials are approximately

spherically symmetric (dominated by the −Z/r nuclear potential) and again for the

purpose of constructing the basis set, we assume it is spherical. Later on in the

construction of the Hamiltonian, these approximations are relaxed and no longer

imposed. This division of space is called the muffin-tin construction because of its

resemblance to a muffin-tin, which is a pan to bake muffins in. The actual muffin-tin

would be a two dimensional cross section of the potential as function of space in a

plane. So far, we have talked about how the space is divided into the spherical and

interstitial regions and the process of augmentation. Next, we need to talk about

the construction of the basis set. In the oldest of the augmentation type methods,

the augmented plane wave method (APW), the solutions inside the interstitial region

are simply plane waves but, they are now expanded in spherical harmonics around

each sphere and thereby matched in value and slope to the solutions of the radial

Schrödinger equation in each sphere. To be able to match them in value and slope

17



CHAPTER 2. COMPUTATIONAL METHODS

one needs to use two functions inside, these are the radial functions at some chosen

linearization energy and its energy derivative. This then turns it into the LAPW

method with L standing for linearized. (In the original APW method one matches

only the value but not the slope, so they still have kinks but are also still energy

dependent. This leads to a more cumbersome method where the energy ultimately

has to be chosen so as to make the kinks go away once linear combinations of these

basis functions are used.) Now, in the LMTO method, instead of plane waves the

interstitial choice of ”envelope” functions are spherical waves centered around each

atom. These are decaying Hankel functions times spherical harmonics if we choose

the energy in this region to be slightly negative relative to the constant potential in

the interstitial region, which is called the muffin-tin zero. In our actual method, these

are replaced by slightly more sophisticated smoothed Hankel functions. But again

they are now replaced inside each sphere, its own sphere around which it is centered

and all other spheres in the system, by matching solutions inside the spheres by the

above described augmentation procedure. So, this is possible because one knows how

to expand a spherical harmonic times Hankel centered on one site about another

one. This is described in terms of so-called structure constants. (With smoothed

Hankel functions, they are actually expanded in polynomials in an approximate way

instead of having analytical equations for the structure constants.) Once we have the

basis functions defined, all one needs to do is calculate the expectation values of the

Hamiltonian and the overlap matrix between all these basis functions and diagonalize

the Hamiltonian matrix. This is done by applying the variational Rayleigh-Ritz

method. It finds the right linear combinations of the basis functions which give the

actual solutions of the full Hamiltonian of the system. For a crystal, first the basis

functions are turned into Bloch sums so they are already Bloch functions but not

yet solutions of the Hamiltonian but this then means that one has to diagonalize a

Hamiltonian at each point k in the BZ. In the next section, we see how FP-LMTO
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is implemented within the QSGW method to address the excited state energies to

improve upon the performance of DFT.

2.2 QSGW Method

Density Functional Theory is a good approach when dealing with the ground state

properties. However, the framework falls short when it comes to calculating excited

state properties like the band structure. While the eigenvalues of the DFT Kohn-

Sham equation for a periodic crystal are often called the band structure, within the

DFT framework, these eigenvalues do not have the meaning of excitation energies,

i.e. the energy for adding or removing a particle in that state from the N-particle

system. They are just an intermediate result related to the fictitious non-interacting

particle system used in the construction of the DFT total energy. The measurable

band structure corresponds to the addition/removal energies and is an excited state

property. To counter this problem, we use Quasi-particle self consistent GW (QSGW)

method [45, 46, 47] to calculate all the excited state properties. QSGW is a pertur-

bation theory based framework which improves upon Hedin’s work [48, 49] on GW

approximation. Before beginning with QSGW, it is useful to summarize the GW

framework upon which it is built.

GW theory is a many-body-perturbation theory approach for calculating the one-

particle excitation energies. These are the energies for adding or extracting a particle

to the interacting N-elecron system system and they are called quasiparticle energies.

All effects of the interactions in this theoretical framework beyond the Hartree term

are described by an energy dependent ( or time-dependent) self-energy operator, Σ.

The one particle excitations are described by the one-particle Green’s function G.

In the Hedin’s theory, the self-energy is expanded in the screened as opposed to the

bare electron electron interaction W and the first term in this series is schematically
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Σ = −iGW and hence it is called the GW approximation.

To illustrate it in a little more detail, we begin with the one-particle Hamiltonian

H0 = −∇
2

2m
+ V eff (r, r′) (2.10)

where V eff (r, r′) is the non-local potential operator used for the alternate system in

the Kohn-Sham framework. This Hamiltonian, H0 determines the set of eigenvalues

and eigenfunctions, {εi, ψi(r)}. Once we have the set, we can construct the non-

interacting Green’s function G0 as

G0(r, r′, ω) =
∑
i

ψi(r)ψ
∗
i (r
′)

ω − εi ± iδ
(2.11)

where −iδ and iδ correspond to occupied and unoccupied states, respectively. We

write the screened Coulomb interaction in the random phase approximation(RPA) as

W = ε−1v = (1− vΠ)−1v (2.12)

where Π = −iG0×G0 is the polarization function and v(r,r′) is the bare Coulomb in-

teraction. Drawing similarities with the Kohn-Sham framework, here the self-energy

operator will take care of all the interactions between the particles. In Hedin’s frame-

work, the self-energy is written as

Σ(1, 2) = iG0(1, 2+)W (1, 2) (2.13)

where the arguments for the self-energy, e.g., 1 refers to the position r1(σ1,t1). The

self-energy, Σ is dynamic and thus, it can be written in the time-dependent way.

However, in practice, we do not use the time-dependent expression for the self-energy.
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Instead, we perform a Fourier transformation over the energy, ω giving

Σ(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω − ω′)W (r, r′, ω′)e−iδω

′
. (2.14)

The self energy, Σ is calculated by doing a convolution over the energy with a

convergence factor of e−iδω. Thus, the self-energy now is not only non-local but

energy-dependent too. The one-body effective potential in GW approximation can

thus be written in terms of this non-local but energy-dependent Σ as

V GW = V ext + vHartree + Σ (2.15)

Thus, using Dyson’s equation, we can construct the interacting one-body Green

function as G = 1/
[
−∇2/2m+ V GW

]
, it can be seen that the GWA maps the one-

body V eff from eq. (2.10) to V GW in Eq. (2.14). In other words, the difference

∆V = V GW − V eff can be thought of as the perturbative correction to the LDA

Kohn-Sham energies. In the context of QSGW, this correction is regarded as the

1-shot GW and the results obtained are observed to be somewhat dependent upon

the choice of the starting Hamiltonian, H0.

QSGW formalism overcomes this dilemma to having to pick the suitable starting

Hamiltonian by determining the effective potential, V eff self-consistently. In other

words, it attempts to find a self-consistent mapping procedure that determines V eff

by mapping V eff −→ V GW −→ V eff −→ ...

Based on the quasiparticle picture, the fundamental equation for the excitations

can be written as[
− 1

2m
∇2 + V ext(r) + V Hartree(r) + V xc(r)

]
Φn(r)

+

∫
dr′ [Σ(r, r′, Ei)− V xc(r)δ(r− r′)] Φi(r) = EnΦn(r)

(2.16)
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The set of eigenvalues and eigenfunctions in the QP picture is {Ei,Φi}. In QSGW,

the perturbations are required to be small. Thus, the correction term Σ − V xc is

required to be as small as possible. Thus, to complete the self-consistent mapping, a

mapping is constructed from V GW −→ V eff as

V xc =
1

2

∑
i,j

|Ψi〉 [Re[Σ(εi)]ij +Re[Σ(εj)]ij] 〈Ψj| (2.17)

under the approximation {Ei,Φi}(≈ {εi,Ψi}) . Thus, we have constructed a mapping

V eff −→ V GW −→ V eff . For a given V eff , we can calculate V xc through Σ in the

GW approximation. With this new V xc together with V ext and V Hartree, we get a

new V eff . Thus, the QSGW method determines all the key components H0, V eff ,W,

and G self-consistently. The basis set for H0 is chosen to be the Bloch functions,

{Ψkn(r)} implemented in the full-potential LMTO method. The wavefunctions are

restricted to the periodic unit-cell and the wavevector k refers to the Brillouin zone

while n represents the band index.

The QSGW method however, overestimates the GW corrections to the band gap

typically by 20% of the self-energy correction. This overestimation was first observed

in materials like GaAs and other semiconductors [47, 46]. The overestimation is

actually caused in the calculation of W due to the overestimation in its screening and

as seen from Eq. (2.13), gets passed along to the self-energy, Σ. In GW theory, the

screening to the Coulomb potential is calculated from Eq. (2.12) and

ΠI,J(q, ω) =
BZ∑
k

occ∑
n

unocc∑
n′

〈Mq
I Ψkn|Ψq+kn′〉〈Ψq+kn′|ΨknM

q
J 〉

×
(

1

ω − εq+kn′ + εkn + iδ

− 1

ω + εq+kn′ − εkn − iδ

)
,

(2.18)

is the polarization propagator, Π [46]. Π is expressed in the Fourier space in terms of
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Figure 2.1: QSGW (blue) and LDA(red) optical dielectric constant ε∞ compared to
experiment[55].

an auxiliary basis set Mq
I . These are Bloch functions and are a mix of plane waves and

products of muffin-tin orbitals. In the calculation of the polarization however, only the

bubble diagram contributions are considered while the more expensive ladder diagram

contributions are not included. Thus, not considering the electron-hole contribution

in the form of ladder diagrams leads to the underestimation in the calculation of

the dielectric constant which, in turn, leads to the above mentioned factor of 20%.

These corrections can now be done explicitly in Questaal [50] via the Bethe Salpeter

equation(BSE) [51].

In practice, these calculations are very expensive to perform hence they have

been performed only for a few materials with fewer atoms per cell. The alternative

approach would be to find a simpler way of estimating how big these effects are. The

idea of a 80% correction was first proposed by Chantis and Kotani [52, 53, 54].

An alternative approach by Shishkin et. al.[56] and later by Chen et. al.[57]

proposed adding an exchange correlation kernel. Thus, replacing the polarization
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propagator with a modified polarization, Π̃ as

Π̃ = [1− (v + fxc)Π]−1Π (2.19)

where fxc is an exchange-correlation kernel.

From Fig. 2.1, it can be seen that the agreement between the calculated(QSGW)

and experimentally observed ε∞ is underestimated by about 20%. Bhandari et. al [55]

compared the QSGW results with and without the exchange-correlation correction

kernals and the ratio of the corrected self-energy contribution to the original QSGW

gaps came out to be about 0.8 over all the materials studied. In conclusion, all of

these studies indicate that for a wide range of materials, the additional computational

work of incorporating the electron-hole effects in a better calculation of the screened

potential, W led to the reduction of self-energy contribution to the band-gap by a

universal factor of 0.2. This mixing of 0.8 factor of QSGW with 0.2 factor of LDA

produces the results which present excellent agreement with the experiments.

2.3 Density Functional Perturbation Theory

The last method used in this thesis is the density functional perturbation theory.

DFPT is a self-consistent perturbation theory built around the underlying density

functional theory. It describes the response to a perturbation of the external potential

to first order and is therefore sometimes also called linear response theory [58]. Such a

perturbation of the external potential for example can arise from displacing an atom

an infinitesimal amount and this theory then allows us to not only calculate the total

energy and forces but also the corresponding force constants, which is what we will

need to calculate phonons. The perturbation can also be an applied static electric

field, in which case, the theory will allow us to calculate the electrical susceptibility.

As discussed in the section on the DFT, the external potential and the electron density
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are solved for in a self-consistent manner. In DFPT however, small perturbations in

the system allow us to solve for the corrections in the DFT total energy where the

first order changes in the external potential and the electron density are also solved

for using the variational principle.

Starting with the Kohn-Sham orbitals as our wavefunctions, we can write our

ground state electron density as

n(r) =
occ∑
α

ψ∗α(r)ψα(r) (2.20)

Expanding the external perturbative potential vext(λ) in terms of the parameter λ,

the first order response in the electron density, n(1)(r) can be described as

n(1)(r) =
occ∑
α

ψ∗(1)α (r)ψ(0)
α (r) + ψ∗(0)α (r)ψ(1)

α (r) (2.21)

where ψ(1) and ψ(0) refer to the first and the zeroth order Kohn-Sham orbitals, re-

spectively and the two are under the constraint

〈ψ(0)
α |ψ

(1)
β 〉 (2.22)

for all the occupied states α and β. In eq. 2.21, we need the first order corrected

wave functions which are obtained by solving the Sternheimer equations in a self-

consistent manner. Using the variational approach, the first-order corrections to the

wavefunctions are obtained from the Sternheimer equation

Pc(H
(0) − ε(0)α )Pc |ψ(1)

α 〉 = −PcH(1) |ψ(0)
α 〉 , (2.23)

where Pc is the projection operator acting on the empty or the conduction band
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orbitals thus making sure that the orthogonality relation in Eq. (2.19) remain valid.

H(1) = v
(1)
ext + v

(1)
Hxc = v

(1)
ext +

∫
δ2EHxc

δn(r)δn(r′)

∣∣∣∣
n(0)

n(0)(r′)dr′

+
d

dλ

δEHxc
δn(r)

∣∣∣∣
n(0)

(2.24)

The first-order perturbation H(1) includes not only the bare external potential due

to displacing an atom but also the self-consistent Hartree and exchange correlation

potential from the first order corrected density of Eq. 2.21. Thus, again we need to

solve a self-consistent set of equations. To be specific, we solve Eqs. 2.21, 2.23 , and

2.24.

Many physical properties can be efficiently calculated using the derivatives of the

DFT total energy. In this thesis, we calculate the fundamental properties like the

force constants. The (2n + 1) theorem states that using the nth order corrections to

the wavefunctions, we can calculate up to (2n+1)th order derivatives of the DFT total

energy [59, 60]. The first-order corrected densities make second order errors in the

density which lead to only 4th order errors in the total energy due to the variational

principle underlying DFT. For example, for n = 1, we can potentially calculate the

physical properties that involve up to 3rd order derivatives. Primarily, the two kinds

of perturbations we are dealing with here are, the atomic displacements and a static

external electric field.

In addition, DFPT allows us to calculate the mixed derivatives of the two pertur-

bations as well. The force constants are the second order derivatives of the energy with

respect to the atomic displacements that eventually lead to the dynamical matrices

and the phonon frequencies over the Brillouin zone. The Born effective charges(BEC)

on the other hand, are the mixed derivative of the total energy with respect to the dis-

placements as well as the long range electric field. Born effective charges are required
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to describe the long range dipole-dipole interactions in the polar materials. In addi-

tion, along with with the oscillator strength tensors, they provide the details about

the LO-TO splittings in the q → 0 limit. The dielectric constants of the material

are the second order derivative of the energy with respect to the electric field. The

last quantity we investigate is the Raman tensor which can be described as 3rd order

derivative of the total energy [61]. Namely, the Raman tensor involves the derivative

of the susceptibility vs. atomic displacement. In other words, it involves two deriva-

tives vs. electric field and one vs. atomic displacement. All the calculations using

DFPT are performed using ABINIT. The underlying DFT has been implemented in

the code in the basis of plane waves and pseudopotentials and unlike the FP-LMTO

method, only the valence electrons interact with the ions.

An important advantage of DFPT is that for perturbations with a given wave

vector, to linear order the response also has the same wavevector. For example,

in a phonon mode a wave like displacement pattern is applied with a well defined

wavevectors instead of displacing just a single atom in the crystal. What we then

need is the corresponding perturbed first-order density response with the same wave

vector, and from it the corresponding self-consistent potential which becomes part of

the total first order perturbation. The DFPT theory can then be applied separately

for each wave vector by working with the periodic parts of the Bloch functions and

their corresponding Hamiltonian. Thus, the response can be worked out for wave

like perturbations without the need for a supercell. All calculations can be done just

using the primitive cell but they need to be done for each wavevector separately.

Often we are interested only in the phonons at q = 0 because they are the ones

most easily measured with infrared or Raman spectroscopy. But even in this case,

one is actually interested in the limit q → 0 which involves the above mentioned

LO-TO splitting. But to obtain the full phonon band structure or phonon density

of states, we need the dynamical matrix or force constants for several values of q in
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the Brillouin zone. Additional details regarding the methods and the materials with

specific crystal structures and symmetries , the IR and Raman spectra are provided

in the subsequent chapters along with the results.
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Chapter 3

QSGW study of β-Ga2O3

3.1 Introduction

In the last few years β-Ga2O3 has garnered a lot of interest mainly from an applied

point of view because of its potential as an ultra-wide band gap semiconductor in

high-frequency and power electronics. This has also led to a renewed interest in

its fundamental properties, such as the electronic band structure, phonons among

many others as can be seen in some of the recent work [62, 63, 64]. The band gap

however, remains a property still somewhat uncertain among the practitioners (4.5-

4.9 eV). The measurements of the band gap are based on the optical absorption

onset. As expected for a material with monoclinic structure, the absorption onset

shows anisotropy. The absorption onset was found to be larger for E ‖ b than for

E ⊥ b but surprisingly, the energy difference between the two onsets is smaller at 77

K than at room temperature. The uncertainty in density functionals, even in hybrid

functionals hasn’t led to a complete first-principles understanding of the gap.
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3.2 Computational Method

The QSGW framework has been explained in the chapter on computational meth-

ods. As discussed before, the GW method overestimates the band gap by about 20

%. This inconsistency is universal across semiconductors. This overestimate can be

traced back to the underestimated screening of the screened Coulomb interaction,

W by about 20 %. This underestimation is caused by the use of the random phase

approximation(RPA) in the GW theory. In the calculation of the higher order correc-

tions to the screened interaction, W the electron-hole interactions are not considered

and this lack of additional ladder diagrams causes the underestimated screening. How-

ever, even including this 80% correction our initial QSGW calculations still seemed

to overestimate the gap. We thus studied whether this can be due to electron-phonon

coupling effects. Around the time this work was being completed, Botti and Marques

[65] proposed that in polar materials, in addition to the electron-hole interactions, the

lattice polarization corrections must also be included to account for the screening of

W . In strongly ionic materials, these corrections can almost be of the order of 1 eV.

We have included the lattice polarization effect in our calculations. The long range

screened Coulomb interaction W (q → 0, ω) must include the effects of the lattice

relaxation on the dielectric response function ε−1. The Coulomb interaction diverges

as 1
q2 but in calculating the GW self-energy, Σ which involves a convolution over

q-space, this leads to an integrable divergence. Nonetheless, the q = 0 point and its

neighborhood needs to be treated separately to treat this integrable divergence prop-

erly in evaluating its contribution to the self-energy. The behavior of the screened

Coulomb energy in the limit q→ 0 involves the macroscopic inverse dielectric tensor

or more precisely its projection along the direction unit vectors along which we ap-

proach q = 0. In the usual GW method, this inverse dielectric tensor includes only

the electronic screening. The simplest treatment for including the atomic displace-

ments or lattice polarization, as proposed by Botti and Marques is then to replace εel
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Table 3.1: Band gaps in β-Ga2O3 in different approximations.

Approximation LDA QSGW 0.8Σ 0.8Σ 0.8Σ
+LPC LPC + ZPM

Eg(Γ− Γ) (eV) 2.36 6.21 5.44 4.93 4.8±0.1
Eg(LI − Γ) (eV) 2.26 6.09 5.33 4.82 4.7±0.1

by εtotal in the neighborhood of q→ 0. This change in macroscopic dielectric constant

due to the lattice polarization can be related to the LO-TO splittings via the LST

relation.

The Lydanne-Sachs-Teller(LST) relation reads as

εαtot(q→ 0, ω)

εαel(q→ 0, ω)
=
∏
m

(ωαLOm)2 − ω2

(ωαTOm)2 − (ω + i0+)2
(3.1)

where the superscript α corresponds to the direction along which q → 0 and the

product is over the modes for which there is an LO-TO splitting in that direction.

The subscripts tot and el mean including lattice relaxation or purely electronic re-

spectively. This lattice polarization correction (LPC) was recently implemented in

the GW codes.[66, 50] It takes into account the anisotropy of the macroscopic di-

electric tensor by means of the modified offset-Γ method described in Kotani et al.

[67] which itself is based on the approach by Friedrich et al. [68] It requires as input

the LO and TO frequencies in the limit of q → 0 for a few chosen directions. The

phonon frequencies were taken from the recent first-principles density functional per-

turbation theory calculations of Liu et al. [69] For simplicity and because they were

not available in this paper, we ignored the directional dependence of the LO phonon

frequencies in the ac plane. Despite getting satisfactory results for β-Ga2O3, we will

show in subsection 3.3.1 that this was somewhat fortuitous and did not give the right

results for the right reasons.

The conventional unit cell consists of 20 atoms. However, it is advantageous to

use the small, primitive unit cell. The lattice parameters for the cell were taken from
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Figure 3.1: Band structure of β-Ga2O3 in the 0.8Σ QSGW approximation plus lattice
polarization correction. The k-point labels are named as in Ref. [10].

Geller [12]. The primitive unit cell of 10 atoms and the Brillouin-zone symmetry lines

were constructed in the way described by Peelaers et al. [10] The Wyckoff positions

of the atoms in the cell were relaxed using the density functional theory in the local

density approximation using the FP-LMTO method.[43, 44] They agreed well with

the values given in Peelaers et al. [10] A 6 × 6 × 3 k-point mesh was used for the

self-consistency cycle in the DFT calculations. The band structure in the LDA agreed

qualitatively with the hybrid functional results of Peelaers in that the gap is indirect,

with a valence band maximum between L and I about 0.1 eV higher than at Γ

and a conduction band minimum at Γ. Of course the gap in LDA is significantly

underestimated.

3.3 Results

The band gaps at different levels of approximation are summarized in Table 3.1. A

large basis set with two sets of smoothed Hankel function decays κ and smoothing

radii was used: spdf − spd on both atoms for the QSGW calculations. A 4 × 4 × 2
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k-point mesh was used. The interstitial plane-wave expansion used a cut-off of 3 Ry.

Above 2.5 Ry the Σ(ω) calculated up to ω = 3 Ry is approximated by an average

diagonal matrix as explained in Ref. [46]. The Ga-4d states were treated as bands and

the 3d as local orbital.[70] Alternatively, treating the Ga-3d as band with Ga-4d as

local orbital and adding floating orbitals centered at interstitial sites gave a band gap

of 6.12 eV in full QSGW and 5.36 eV in the 0.8Σ approach, in good agreement with

the other calculation. Taking into account the 0.8Σ as well as the lattice-polarization

correction, the direct gap at Γ is found to be 4.93 eV. The full band-structure near

gap including the lattice-polarization and 0.8Σ corrections is shown in Fig. 3.1.

The zero-point motion correction to the gap was only recently implemented in

first-principles calculations.[71, 72]

Here we only make a simple estimate of it based on the fact, which one can

verify in Table III of Thewalt and Cardona[73], that the ZPM correction to the gap

is proportional to the gap itself within a family of closely related semiconductors.

Based on this observation and the ZPM correction of the gap of 0.15 eV in MgO,

which has a somewhat larger gap of 7.8 eV, we estimate this correction to be of order

0.1-0.2 eV. With these corrections, the gap of β-Ga2O3 is finally found to be 4.8±0.1

eV in good agreement with experiment. The large lattice polarization effect of ∼0.5

eV on the gap is indicative of strong polaronic effects, consistent with Varley et al. ’s

finding of a self-trapped hole-polaron.[13]

Table 3.2: Character table of C2h.

irrep E C2y i σy
Γ1+ Ag 1 1 1 1 s
Γ2+ Bg 1 -1 1 -1
Γ1− Au 1 1 -1 -1 y
Γ2− Bu 1 -1 -1 1 x, z
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3.3.1 Lattice polarization analysis

We briefly review the accuracy of the QSGW method and the above mentioned lattice-

polarization correction for the band gap of β-Ga2O3. The above discussion based on

our previous work [74] suggested that in order to obtain good agreement for the band

gaps with experiment, both the electron-hole and lattice polarization or electron-

phonon coupling effects were important. We had estimated the lattice polarization

correction to the band gap to be as large as 0.5 eV. However, since then, new insights

were gained . These findings were carried out in the study of (AlxGa(1−x))2O3 alloys

and thus led us to revisit the GW calculations for pure β-Ga2O3. And, contrary to

the significant lattice polarization corrections reported in the original work, as we will

see the LPC corrections actually turn out to be not so significant(< 0.1 eV).

The recent study [66] indicates that the previously implemented Botti-Marques

approcach is highly sensitive to the density of the q-point mesh. The lattice polar-

ization corrections are now understood to be applied only over a length scale set by

the polaron length and they’re specific to each band. This polaronic effect acts on

the conduction band minimum (CBM) and the valence band maximum (VBM) sepa-

rately and depends on the effective masses of the latter, which sets the polaron length

scale over which the effect is active, aP =
√
h̄/(2m∗ωL), where ωL is the longitudinal

optical phonon. In principle, the contributions from all the phonons towards the cal-

culation of aP must be included. However, for a rough estimate of the upper limit of

this effect, we pick the phonon with the highest frequency(as they have the shortest

aP ). Using a hole effective mass of 2me, the polaron length scale for holes comes out

to about 8.5 a0. The estimated effect on the VBM shift is then (e2/4aP )(ε−1∞ − ε−10 )

which amounts to about 0.07 eV with the factor (ε−1∞ − ε−10 ) being about 0.17. The

corresponding shifts in the CBM are even smaller because the effective mass is much

smaller (∼0.2-0.3) and the corresponding polaron length is about 22 a0. Thus, we

estimate the total effect must be smaller than 0.1 eV because this assumed the highest
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phonon fully contributed the maximal effect.

An alternative way for estimating this correction was developed based directly

on polaron theory in the Fröhlich description of longitudinal optical phonon electron

phonon interaction. We calculate the effect explicitly by adding a Lyddane-Sachs-

Teller correction factor ε0/ε∞ to the macroscopic dielectric constant around the q = 0

point singularity of the screened Coulomb interaction. We apply this correction only

to a region of q-space of size 1/aP . The quantity, 1/aP (averaged over electrons and

holes) gives a q-point spacing of about 0.04 a−10 and this amounts to about a 10th of

the Brillouin zone in the ab plane.

We find that with a finer 5× 5× 3 mesh, adding this correction factor to the W

at q = 0 reduced the gap by 0.1 eV. It shows that in our previous work[74] where an

insufficient k-point sampling (4×4×2) was used, the effect was overestimated. Thus,

we conclude that we can safely neglect the electron-phonon effects on the gap but need

a sufficiently fine GW k-point mesh. In fact, with a GW k-point mesh of 5×5×3 the

gap was found to be 4.9 eV even without including any LPC. Thus the overestimate

of the gap by QSGW in our first attempt was just a result of incompletely converged

GW theory and not because of the need of a an additional LPC correction. Thus,

these results for pure β-Ga2O3 are in good agreement with experiment and no further

corrections are needed for the alloys from this effect.

3.3.2 Absorption onset

We now turn to the origin of the anisotropy of the optical absorption. The absorption

edge (shown in Fig. 3.2) is calculated from the band structures using the standard

Adler-Wiser approach,[75, 76] neglecting local field or excitonic effects. For details of

the implementation in the LMTO method and using the QSGW self-energy, see Ref.

[77]. The optical absorption onset appears to behave as ∝ E2 rather than ∝
√
E.

This is because, except at the very onset, the band dispersion is nearly linear.
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Figure 3.2: Calculated imaginary part of the optical dielectric function, for different
polarizations in β-Ga2O3. The z direction is perpendicular to the ab-plane, close to
but not exactly along c because c makes an angle β = 103.82◦ with the a axis.

The selection rules and symmetry labeling of the valence and conduction bands

at the Γ-point is used to explain the absorption anisotropy. The space group of β-

Ga2O3 is C3
2h (or C2/m in international notation). The b = y axis corresponds to the

2-fold symmetry axis. The character table is given in Table 3.2 giving the irreducible

representations in two commonly used notations. The symmetry label and energy

of the highest few valence bands and lowest few conduction bands at Γ are given

in Table 3.3. The conduction band minimum (CBM) and valence band maximum

(VBM) have symmetry Ag and Bu respectively. This implies according to the dipole

selection rules that the lowest direct gap at Γ is allowed for polarizations E ⊥ b.

This agrees with the experimental fact that the lowest onset of absorption occurs for

E ⊥ b.

One can see that only the VBM-4, at −0.67 eV has the proper symmetry (Au)

to have dipole allowed transitions to the CBM for E ‖ b. This would suggest a shift

of the onset of absorption as large as 0.67 eV. However, inspection of the calculated

absorption curves in Fig. 3.2 shows that the splitting between the curves is only about

0.35 eV slightly above the edge in agreement with experimental extrapolations. This
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Table 3.3: Energy levels at Γ near the VBM and CBM in 0.8Σ+LPC approximation,
and their irreducible representation.

En (eV) irrep
VBM−6 -1.633 Bu

VBM−5 -0.706 Au
VBM−4 -0.669 Au
VBM−3 -0.585 Bg

VBM−2 -0.464 Ag
VBM−1 -0.133 Bu

VBM 0.000 Bu

CBM 4.933 Ag
CBM+1 8.778 Bu

CBM+2 9.339 Ag
CBM+3 9.412 Bu

CBM+4 10.593 Bu

CBM+5 11.385 Ag

is because the selection rules strictly only apply at the high-symmetry point but are

weakly broken if one goes slightly away from it in k-space. The ordering of the optical

absorption onsets for the three different polarizations agrees with experiment[19] and

the matrix element analysis of Mengle et al. ,[17] once we take into account the

two different labelings of the axes: our x, y, z correspond to their z, x, y. There is a

slight difference in the splittings of the valence bands and their 4th and 5th level are

interchanged from ours. The reason for the difference between room temperature and

77 K is still unclear but suggests that the optical absorption at low temperature may

be influenced by excitonic effects. Optical absorption calculations including excitonic

effects were recently reported,[16, 78] and indicate the excitonic nature of the first

peaks in optical absorption and the excitonic binding energy is of order 0.1 eV. The

underlying reasons for the absorption anisotropy remain the same.
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3.4 Conclusions

In summary, the QSGW method was found to obtain the band gap in excellent

agreement with experiment provided a sufficiently dense q-mesh is used and the self-

energy is reduced by a factor 0.8 to mimic the effect of electron-hole interaction

effects missing in the polarization function as has been found in numerous other

materials and is also justified in some detail in [55]. The electron-phonon coupling

or specifically the lattice polarization effect were found ultimately to be at most 0.1

eV, once understood as being the polaronic corrections related to electron-phonon

interaction with the LO phonons.
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Chapter 4

QSGW study of (AlxGa(1−x))2O3

alloys

4.1 Introduction

In the previous chapter, we discussed the QSGW band structure and the anisotropy

of the absorption onset in β-Ga2O3. Many semiconductor devices require tailoring

the band gap in a closely related material, to construct heterostructures. In this

chapter, we present the results for an alloy system of two oxides, Ga2O3 and Al2O3.

Both of these materials occur in different phases. The α-phase which corresponds

to the corundum structure, is the preferred phase for Al2O3 while Ga2O3 occurs in

the monoclinic structure, or the β phase. The primitive unit cell of the β phase of

Ga2O3 was shown in 1.2 while the corundum or the α phase can be found in 1.3.

As can be seen from the two figures, the β phase has the 4 cation sites distributed

equally among the tetrahedral and octahedral coordinations while in the case of the α

phase, all the cations are octahedrally coordinated and has an overall rhombohedral

symmetry. In this chapter, we study the natural question that arises in an alloy

system: of these two preferred crystal structures for its constituents, which one does
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the alloy system prefer? As the proportion of Al can be changed in the alloy from

0 % to 100 %, it would be interesting if we could map the preferred ground state

structure of the alloy system as a function of the concentration. This question had

been addressed independently and simultaneously of our own work by Peelaers et al.

[79]. It was published shortly before ours but still left some questions open. For

example, they used the hybrid functional approach [80, 81]. How important was

the use of hybrid functionals in obtaining their results and more importantly, they

used only the lowest energy local configurations of the Al, in its site preference for

octahedral vs. tetrahedral sites. Is this assumption justified in a random alloy and

how does it affect the results?

4.2 Computational method

The lattice constants and internal coordinates of the atoms in both the primitive unit

cells were optimized within density functional theory (DFT) in PBE-GGA using the

ABINIT plane wave pseudopotential approach. We used the Hartwigsen-Goedeker-

Hutter (HGH)[82] pseudopotentials from the ABINIT website and a plane wave cut-off

of 50-70 Hartree and a 4× 4× 4 mesh to sample the Brillouin zone.

Keeping the structures fixed, we then recalculated the total energies in the all-

electron full-potential linearized muffin-tin orbital (FP-LMTO) method, [43, 44] which

has the advantage to be free of pseudopotential choices. Further relaxation of the in-

ternal coordinates was found not to change the structure or total energy. A well

converged double-κ smoothed Hankel function basis set was used with angular mo-

mentum cut-offs of spdfspd and augmentation cut-off inside the sphere of lmax = 4.

Ga-3d semicore orbitals are included in the basis set as local orbitals (defined inside

the muffin-tin sphere only). The Brillouin zone integrations of the total energy and

self-consistency used a 6 × 6 × 6 mesh. The band structures were calculated using
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the QSGW method[46] with most parameters chosen as in Ref. [74] except that we

found it necessary to use a finer k-point mesh for the GW calculations in order to

obtain well-converged self-energy corrections to the band gap. Specifically, we find

that in order to have comparable convergence in the α and the β-structures, a mesh

of 5× 5× 3 is required for the latter and 4× 4× 4 in the α structure. This gives the

QSGW gaps converged to better than 0.1 eV.

4.3 Modeling of disorder

Here we discuss the treatment of disorder. In principle, in an alloy one would need

to consider an ensemble average over many different local configurations of the two

different cations. One way to accomplish this is the special quasirandom structure

(SQS) approach[83] in which one constructs the placement of the different A and B

atoms of a chosen size supercell such that various correlation parameters, such as dif-

ferent distance pair correlations and other local motifs all are as close as possible to

the random ones. The idea is then that the energy of formation or other properties of

interest can be expanded in a cluster expansion in terms of these correlations or local

structural motifs and the random average is then well represented by this one care-

fully chosen structure. In metallic alloys, one typically needs to include various pair

correlation functions in this treatment. However, in a semiconductor, one can argue

that what matters most for both, the total energy of bonding and for the band gap

is the local coordination. For example, in a tetrahedrally coordinated semiconductor

alloy with cation alloying, one could focus on the different tetrahedral environments of

each anion, such as A4, A3B, A2B2, etc. Here we take this idea even one step further

and assume that the properties will depend only on the relative occupation by the

two atoms of the octahedral vs. tetrahedral sites. Within the 10 atom primitive cell

of the β-structure, two cation sites are octahedral and two tetrahedral. Thus, we need

41



CHAPTER 4. QSGW STUDY OF (ALXGA(1−X))2O3 ALLOYS

to average in principle only over the probabilities that each site is occupied by Al or

Ga. We hence calculate the total energies and band gaps for all possible occupations

and then average them according to a Boltzmann factor e−E/kBT . Now, if the energy

differences between different sites are high compared even to the growth temperature,

then it means the higher energy configurations will be strongly suppressed and we

might as well assume only the lowest energy configuration occurs in the alloy. On the

other hand, if the growth method is far from equilibrium, one could assume at the

other extreme limit that the occupations are completely random. Specifically, for 25

% Al, the Al has then equal probability to be on a tetrahedral(t) or octahedral (o)

site. Similar for 75 % the single Ga has equal probability to be on the tetrahedral or

octahedral site. For 50 % there are 4 different configurations for the Al, tt, oo and two

different to configurations. The two different to configurations differ depending on

whether the two Al are next to each other or separated by a Ga in between. We thus

need to check whether these have different energies (and gaps) or not. Assuming that

they are close or that we neglect their difference than we would average the tt, to,

oo configurations for the Al occupation with probabilities 1/4, 1/2, 1/4 respectively.

Our approach of considering all alloy configurations in a 10 atom cell is similar to

Ref. [79] but somewhat more detailed analysis is provided here.

4.4 Results

4.4.1 Lattice constants

We first show the calculated pseudocubic lattice constants V 1/3 where V is the volume

per formula unit of the alloys as function of Al concentration x in Fig. 4.1 for both

structures. Here we used the structure with lowest energy in terms of the different

Al occupations. We can clearly see that the lattice constants vary linearly with

composition, in other words, they obey Vegard’s law. Secondly, we see that the
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Figure 4.1: Pseudocubic lattice parameter of (AlxGa1−x)2O3 as function of x for both
crystal structures.

lattice constant is systematically smaller for the corundum than for the monoclinic

phase. The octahedral coordination usually leads to closer packing. Thus, the fact

that there are 4 octahedral sites in corundum as opposed to 2 in monoclinic leads to

a consistently smaller volume per formula unit across all the Al concentrations, x.

4.4.2 Energy of formation

Next, we present the energies of formation, which are defined by

Ef [(AlxGa(1−x))2O3] = E[(AlxGa(1−x))2O3]

− xE[αAl2O3]− (1− x)E[βGa2O3]

(4.1)

in Fig. 4.2. Please note that the reference energies of pure Ga2O3 and pure Al2O3

here are each calculated in their own lowest energy phase, whereas the alloy either

can be in the α or β-phase. This ensures that at the end points x = 0 the monoclinic

energy of formation is zero while at x = 1 the corundum one is equal to zero. All

of the total energies are per formula unit. We first consider only the lowest energy
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Figure 4.2: Energy of formation per formula unit for the alloys in the two structures
across compositions. Solid data points show Al atoms occupying the octahedral posi-
tions while the higher energy hollow data points show the energies for configurations
with increasing number of Al occupying tetrahedral sites. The × and ∗ show the av-
erage formation energies assuming random probability of the different configurations.
The dotted lines show the corresponding interpolation while the solid lines assume
the minimum energy configuration at each composition.
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configuration at each composition, which for the β structure amounts to placing Al

preferentially on octahedral sites. The results are in excellent agreement with those

of Peelaers et al. [79] if we assume that the latter contains a typo in that the energies

of formation here are per formula unit and not per cation. It is clear from the results

that the Al strongly prefers to occupy the octahedral site. The energy difference per

Alt going on a tetrahedral site however is not constant. The energy difference at

the 50 % concentration ∆Eto = Eto − Eoo is not equal to that of Et − Eo at 25 %,

where only one Al needs to choose between a tetrahedral and octahedral site and the

energy difference Ett−Eto 6= Eto−Eoo. This indicates that other aspects of the local

configuration do play a role besides the nearest neighbor coordination.

The fact that the energy of formation in the monoclinic structure has a non-

monotonic, bimodal distribution is interesting, in particular that the energy of for-

mation even has a slightly negative value at 50 % is remarkable. The lower energy

for adding two Al instead of one may in part be because this is a more symmetric

structure. The two Al both on octahedral sites are related by the mirror plane sym-

metry perpendicular to the b-axis. The low energy of formation is clearly related to

the optimum octahedral surrounding of Al combined with tetrahedral surrounding

for Ga. Strictly speaking, the negative value of the energy of formation for this con-

figuration indicates that the 50 % compound with all Al occupying octahedral sites

is a separate crystalline phase distinct from a disordered alloy and would constitute

a new compound on the convex hull in the ternary phase diagram.

To further study the effects of the Al distribution, we calculated the energy of

formation and the band gaps for different configurations as shown in Table 4.1. These

results are also shown as open symbols in Fig.4.2. We can see here that for the 50

% composition, four different Al distributions can be considered in the unit cell.

Both Al on octahedral site, both on tetrahedral site and two different ways of one

Al octahedral and one tetrahedral. The latter two differ in that in one case, the
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Table 4.1: Energy of formation per formula unit and band gaps in different con-
figurations as function of concentration in (AlxGa1−x)2O3 alloys. In the monoclinic
structure the configuration is specified by which atoms go in the octahedral (o) and
tetrahedral (t) sites In the corundum structure, the sites are all octahedral but we
can still distinguish the corner (c) and middle (m) sites in the structure.

x Config. ∆Ef (meV) Eg (eV)
monoclinic structure

t-o-o-t
0.00 Ga-Ga-Ga-Ga 0 4.91
0.25 Ga-Ga-Al-Ga 20 5.48
0.25 Al-Ga-Ga-Ga 88 5.64
0.50 Ga-Al-Al-Ga −7 6.16
0.50 Al-Ga-Ga-Al 122 6.30
0.50 Al-Al-Ga-Ga 95 6.20
0.50 Ga-Al-Ga-Al 116 6.25
0.75 Al-Ga-Al-Al 122 6.82
0.75 Al-Al-Al-Ga 61 6.87
1.00 Al-Al-Al-Al 75 7.74

corundum structure
c-m-m-c

0.00 Ga-Ga-Ga-Ga 129 5.28
0.25 Al-Ga-Ga-Ga 108 5.74
0.25 Ga-Ga-Al-Ga 108 5.74
0.50 Al-Ga-Ga-Al 79 6.72
0.50 Ga-Al-Al-Ga 79 6.72
0.50 Al-Ga-Al-Ga 75 6.41
0.50 Al-Al-Ga-Ga 122 6.79
0.75 Al-Al-Ga-Al 54 7.40
0.75 Al-Al-Al-Ga 54 7.40
1.00 Al-Al-Al-Al 0 8.88
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octahedral and tetrahedral are next to each other along the b-direction, while in the

other case, there is Ga in between them. We can see that both of these have an

energy of formation in between the fully tetrahedral or fully octahedral one but are

still slightly different. Also, the energy cost of moving one Al from an octahedral to

a tetrahedral site is not equal to half the energy for moving two of them. This again

indicates that other aspects in the Al distribution play a role in the energetics, such

as how close the Al containing octahedra or tetrahedra are to each other.

In the corundum structure, we have only octahedral sites but nonetheless we can

define different sites in the unit cell and consider the effects of which ones are occupied

by Al or Ga. The differences in energy of formation as well as band gap between the

different configurations are much smaller in this case. The only exception is the case

of two Ga atoms next to each other in the 50 % case, which has a 43 meV/formula

unit higher energy. This may be because the two larger atoms are next to each other

causes more distortion in the structure.

From Fig. 4.2, we can see that the (Alx-Ga(1−x))2O3 prefers to be in the monoclinic

phase up to 70% Al concentration and the corundum phase thereafter. This however

corresponds to the assumption that at each alloy composition the Al distribution

is relaxed so the Al find their lowest energy configuration. If a random occupation

would occur, modeled by the average energies of each possible configuration in the

10 atom cell the dotted lines are obtained in Fig. 4.2. Under that assumption the

crossing to corundum phase would occur at lower concentration of Al. Nonetheless,

from a thermodynamic point of view when comparing the relative stability of the two

structures on the basis of energy, the assumption of minimizing the energy among

different configurations is the more natural assumption. Since the total energy differ-

ences between the different configurations in Fig. 4.2 is of order 0.1 eV/formula unit,

the Boltzmann factors for the higher energy configurations with tetrahedral Al occu-

pations would be about e−1 = 0.37 for a growth temperature of 1200K. This means
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Figure 4.3: Direct band gap for the alloys as function of composition for each of
the crystal structures. The solid symbols correspond to the lowest energy structure.
The lines are a fit to these points with the parabolic equation defining the bowing
coefficient. The open symbols to different configurations as detailed in Table 4.1.

the higher energy configurations are not expected to make a sizable contribution to

the energy of formation.

4.4.3 Band gaps

Next, we consider the band gaps as function of concentration in each phase in Fig.

4.3. In this plot we show the band gap in the alloy configuration with the lowest

energy of formation as solid symbols and the line is interpolated through them. We

can see that the gaps are systematically higher in the α than in the β structure but

the difference increase with Al-concentration x. The band gaps do not vary linearly

but the amount of band gap bowing is moderately small. Using the usual bowing

equation Eg(x) = xEAl
g + (1− x)EGa

g − bx(1− x), the bowing coefficient b is 0.8±0.1

eV for the β-phase, and 2.1±0.3 eV for the α-phase by fitting this equation to the

data points for the lowest total energy configuration.

Next we consider the band gap differences for different Al sites reported in Table
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Figure 4.4: Brillouin zones representing the high-symmetry points for (AlxGa1−x)2O3

in (a) monoclinic(β-phase) [10], and (b) rhombohedral(α-phase) “ c© IOP Publishing.
Reproduced with permission. All rights reserved.” [84].
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Figure 4.5: Band structures of (AlxGa1−x)2O3 for 0% Al concentration in: (a) α-phase
and (b) β-phase.

4.1. These are indicated as open symbols in Fig. 4.3 and show the slight variation

of the gaps due to fluctuations in the local configuration. For the β phase, we can

see that the gap is the smallest in the lowest energy structure of fully octahedrally

coordinated Al but differs only by 0.14 eV from the highest energy configuration of

both tetrahedral Al. The same is true for the 25 % Al case. In the 75 % case, the

gaps are within 0.05 eV for both configurations. At 50 % we can see that when the

two Al are adjacent to each other the gaps are slightly lower than when they are

separated by a Ga. This is true both when the two Al are on adjacent tetrahedral

sites and when they are on adjacent tetrahedral-octahedral sites.
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Figure 4.6: Band structures of (AlxGa1−x)2O3 for 25% Al concentration in: (a) α-
phase and (b) β-phase.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 F  L  Γ  Z  F  Γ 

E
n
er

g
y
 (

eV
)

50% Al concentration(One Al each on inner and outer octa)

-20

-15

-10

-5

 0

 5

 10

 15

 20

 N  Γ  Y  F  L  I  M  Z  Γ 

E
n
er

g
y
 (

eV
)

50% Al concentration(Both Al in octa)

Figure 4.7: Band structures of (AlxGa1−x)2O3 for 50% Al concentration in: (a) α-
phase and (b) β-phase.
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Figure 4.9: Band structures of (AlxGa1−x)2O3 for 100% Al concentration in: (a)
α-phase and (b) β-phase.

Thus the band gaps differ only very slightly depending on the precise configuration.

This is even more so for the corundum structure. Hence the band gap bowings in

Fig.4.3 obtained from the minimum energy configuration are adequate and a more

random distribution will not lead to significantly larger or smaller bowing. Even when

assuming completely random, non-equilibrium distribution of the Al, the band gaps

will at most differ by 0.1 eV.

For completeness sake, the full band structures of (AlxGa1−x)2O3 alloy for all

Al concentrations in both α and β-phase are presented in Figures 4.5, 4.6, 4.7, 4.8,

and 4.9. These band structures are created for the lowest energy configurations of all

possible configurations. From the figures, we can see that as the Al concentration goes

up, the band gap goes up for both the phases although it’s always slightly higher in the

α-phase throughout concentrations. Also, for all concentrations in the β-phase, the

compound appears to have an indirect band gap with the VBM somewhere between

the symmetry points, F and L. In the α-phase however, the band gap remains direct

for all concentrations. Noticeably, the bands around -13 eV are the Ga 3d related

bands which are absent in the cases of pure Al2O3 in either crystal structure.

Overall, our band gaps are in good agreement with those of Ref. [79] obtained

using a hybrid functional with adjusted exact exchange fraction for the two end

compounds. They are thus also in good agreement with the available experimental
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data [79].
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Chapter 5

Vibrational properties of

ZnGeGa2N4

5.1 Introduction

ZnGeGa2N4 comes from a class of alloys formed by combining the group-III nitrides

and the corresponding heterovalent II-IV-N2 compounds. These alloys have been

proposed to add flexibility to the nitride semiconductors by tuning their properties.

Among the many possible combinations, ZnGeGa2N4 happens to be an ordered com-

pound at 50 % composition of two closely lattice matched nitrides, GaN and ZnGeN2.

This structure obeys the local octet rule which means that every N atom is surrounded

by two Ga, one Zn, and one Ge atom. This ensure local charge neutrality. Owing to

the fact that both GaN and ZnGeN2 are lattice matched and have almost identical

band gap with a significant band offset of ∼ 1 eV, the alloy of these two nitrides

presents an ideal candidate to tailor the properties of these semiconductors further.

The details about different phases of ZnGeN2, and their heterostructures with GaN

are presented in the Introduction Chapter subsection 1.2. In this chapter, we investi-

gate the vibrational properties of this novel compound and present the infrared(IR)
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and Raman spectra which may be useful in further understanding of the material and

the class of alloys, in general. A group theoretical analysis, phonon frequencies and

related Born effective charges, dielectric constants, infrared oscillator strengths and

Raman tensors, are presented. Polarized infrared and Raman spectra for different

scattering geometries are presented as well as the phonon band structure and density

of states.

5.2 Computational method

The calculations are done using Density Functional Perturbation Theory (DFPT)[59,

60] using the plane-wave pseudopotential method as implemented in the ABINIT code

[39]. Specifically, we here choose the Hartwigsen-Goedecker-Hutter pseudopotentials[82]

The energy cutoff used is 80 Hartree, which was tested first to give converged results.

For the Brillouin zone integration or charge densities and total energy a 4 × 4 × 4

k-point mesh is used. A first set of phonon calculations are done at the Γ-point.

These are sufficient to determine the infrared absorption and reflection (IR) spec-

tra as well as the Raman spectra assuming momentum conservation and using that

visible and infrared light has negligible momentum compared to the Brillouin zone

size. As has been observed in the past, [85] the Local Density Approximation (LDA)

often provides higher accuracy phonons than the Generalized Gradient Approxima-

tion (GGA) in the Perdew-Burke-Ernzerhof (PBE) parametrization, [86] although a

newer PBEsol is promising for both phonons and lattice constants. Here we do not

focus on a comparison of different functionals. At present no experimental data are

available so this would seem to be premature and the LDA has been found usually

to be adequate for predicting the phonon properties. We here use the LDA based on

the Ceperley-Alder parametrization.[87]

For the phonon densities of states and phonon band structures, we use the ap-
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Figure 5.1: Crystal structure of ZnGeGa2N4 in the Pmn21 spacegroup.

proach described in Ref. [60] of separating the short range part of the force constant

from the long-range dipole part as a way to interpolate to a finer mesh of k-points for

the phonon density of states calculations and for a fine set of k-points along symmetry

lines. A mesh of 10× 10× 10 was used for the phonon DOS integration.

5.3 Results

5.3.1 Group theoretical analysis and crystal structure

The unit cell of the Pmn21 structure contains 16 atoms, 4 Ga, 2 Zn, 2 Ge, 4 NGa,

2 NZn and 2 NGe, where the subscript means the cation the N sits on top of. The

lattice constant and reduced coordinates were optimized within LDA and are given

in Table 5.1. The crystal structure is shown in Fig. 5.1.

In total there are 48 degrees of freedom. The Zn and Ge and their respective

N atoms on top are all in Wyckoff 2a positions which lie in the ordinary m mirror

planes, which are yz planes. The Ga and NGa are in 4b Wyckoff positions, which

is the most general type of position. The point group is C2v, the two-fold rotation

screw axis is along the z-axis with z chosen along c. The xz mirror plane n is a glide

mirror-plane. The character group is given in Table 5.2.

Using standard group theoretical procedure, applied to the x, y, z displacements
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Table 5.1: Lattice constant (in Å) and reduced coordinates. The Wyckoff positions
are indicated with each atom type.

Lattice constants a b c
6.380 5.520 5.180

Reduced coordinates x y z
Ga (4b) 0.000 -0.002 0.000
NGa (4b) -0.015 0.000 0.376
Zn (2a) 0.250 0.830 0.500
NZn (2a) 0.250 0.816 0.891
Ge (2a) 0.750 0.838 0.500
NGe (2a) 0.750 0.850 0.857

Table 5.2: Character table of C2v.

irrep E C2z mxz myz basis function
a1 1 1 1 1 z
a2 1 1 −1 −1 xy
b1 1 −1 1 −1 x
b2 1 −1 −1 1 y

of each type of Wyckoff position, we find that the 48 atomic displacement degrees

of freedom build a representation, which can be decomposed into three translations

(corresponding to a1, b1, b2 irreducible representations) and the following set of 45

vibrational modes:

Γvib = 13a1 ⊕ 10a2 ⊕ 9b1 ⊕ 13b2. (5.1)

In fact, the x, y, z displacements of each 2a Wyckoff position leads to 2a1 ⊕ a2 ⊕

b1 ⊕ 2b2 and each 4b Wyckoff position leads to 3a1 ⊕ 3a2 ⊕ 3b1 ⊕ 3b2 as irreducible

representations. Of these modes, the a1, b1 and b2 are infrared active and show a

LO-TO splitting for electric fields along z = c, x = a, y = b and all modes are Raman

active. More precisely, the Raman tensors are of the form
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. . .
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 , for b1,


. . .

. . f

. f .

 , for b2.

(5.2)

Based on the form of the Raman tensors, one can deduce a set of scattering ge-

ometries which would allow one to measure all possible modes and all possible Raman

tensor elements. These are described for all possible point groups in https://www.

cryst.ehu.es/cgi-bin/cryst/programs/nph-polarizationselrules. A scatter-

ing geometry is specified by ki(eieo)ko, where ki is the incoming wave vector, ko is

the scattered wave vector and the corresponding polarizations are ei, eo. Applied to

the present group, a complete set of relevant scattering geometries, for which we will

provide simulated spectra in Sec. 5.3.4 is as follows.

For parallel incident and scattered light polarizations, the only allowed modes are

a1. If in addition the wave vectors are along z and −z for backscattering geometry,

(or z and z in transmission) then the modes measured are LO modes, a1L, whereas
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otherwise they are TO modes a1T . Depending on the polarization being along x, y, or

z one would measure the a, b or c tensor elements defined in Eq.(5.2) but one needs

to distinguish the transverse, aT , bT , cT and longitudinal aL, bL mode Raman tensor

elements. Note that cL does not appear because a1 modes are only longitudinal

if ki ‖ ẑ, and ko ‖ ẑ, but obviously, the polarizations can then not be along z.

For crossed polarizers with polarizations x, y and light incident along z one would

measure a2 modes. Likewise, b1 modes will be measured in a ki(eieo)ko = y(xz)ȳ

geometry and b2 modes in the x(yz)x̄ geometry. In both cases, these correspond to

transverse modes. In order to detect b1L or b2L modes one would need a set up with

orthogonal incoming and scattered wave vectors and in that case both longitudinal

and transverse modes would be active. For example, in y(xz)x geometry or z(xz)x

one would measure both b1T and b1L modes. Similarly, to measure b2L+b2T one could

use x(yz)y or z(yz)y geometry.

5.3.2 Phonon frequencies and related results

The phonon frequencies at Γ are given in Table 5.3. Corresponding to the light

propagating along z, x or y, the LO-TO splittings are observed for a1, b1 and b2 modes,

respectively. Below we will refer to specific modes of each irreducible representation by

adding a superscript ordered from low to high frequency, e.g. ω(b11T ) = 174.76 cm−1.

From Table 5.3, we can observe that the splittings are minute for the first few modes.

However, the splittings get larger for the higher frequency modes. This is because

the low energy modes are essentially folded acoustic modes of the underlying wurtzite

lattice, while the higher frequency modes are optical modes corresponding to bond

stretches between anions (N) and cations and therefore have a strong dipole character.

The larger LO-TO splittings are also correlated with stronger oscillator strengths for

infrared absorption. Since the a2 modes behave like the basis function xy they are

not subject to LO-TO splitting. One may also observe that each TO phonon mode
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Table 5.3: Phonon frequencies in Pmn21 ZnGeGa2N4 in cm−1 labeled by irreducible
representation in the column heading.

a2 b1T b1L b2T b2L a1T a1L
134.18 174.76 174.94 161.65 161.66 135.84 135.85
136.80 185.34 185.46 183.66 183.76 176.28 176.29
176.50 232.81 232.89 196.66 197.26 198.70 199.28
219.39 276.85 280.82 263.86 264.25 243.91 244.54
255.19 499.81 516.76 308.55 309.45 291.14 292.79
473.63 558.18 591.71 327.06 327.09 305.25 305.40
537.72 592.09 619.21 485.31 506.29 480.30 480.33
594.27 628.29 662.1 510.99 539.24 500.64 547.80
654.59 674.41 730.37 555.72 579.74 548.97 563.61
673.74 593.16 634.69 585.96 636.26

674.77 696.42 657.88 674.39
698.72 705.95 693.77 699.46
717.37 749.64 699.57 749.50

of a given symmetry is followed by an LO before the next TO phonon occurs. This

is a general rule obeyed by any crystal with at least orthorhombic symmetry,[88] but

not for monoclinic symmetry. We note that this follows from general considerations

of the phonon related ε and ε−1 in a Lorentz oscillator model. However, it does not

mean that the eigenvectors of the TO-LO pairs constructed in this way are necessarily

close to each other.

5.3.3 Infrared spectra

Besides inelastic neutron scattering, which allows one to measure complete phonon

spectra, the most readily available methods to obtain information on the phonons

are infrared absorption and Raman spectroscopy. In this section, we present our

simulated infrared spectra. These are obtained from calculating the contribution of

phonons to the dielectric response function in terms of the classical Lorentz oscillator

model. Within DFPT, the oscillator strengths can be obtained directly from the

phonon eigenvectors and the Born effective charges, which describe the coupling of
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Table 5.4: Born effective charge tensor elements ( in units |e|) for the atom of each type
given in Table 5.1, indicated by the column. These local tensor elements transform
between symmetry related atoms as indicated by the irreducible representation label.

atom κ
Components irrep Ga Zn Ge NGa NZn NGe

Z∗κxx a1 2.667 1.930 3.012 -2.577 -2.543 -2.580
Z∗κyy a1 2.678 1.838 3.198 -2.580 -2.927 -2.307
Z∗κzz a1 2.784 2.008 3.219 -2.669 -2.427 -2.992
Z∗κxy a2 -0.094 0.000 0.000 -0.156 0.000 0.000
Z∗κyx a2 0.021 0.000 0.000 -0.260 0.000 0.000
Z∗κxz b1 0.030 0.000 0.000 0.183 0.000 0.000
Z∗κzx b1 -0.086 0.000 0.000 0.189 0.000 0.000
Z∗κyz b2 -0.008 0.045 -0.091 -0.018 0.059 -0.094
Z∗κzy b2 0.014 0.013 0.014 0.006 0.067 -0.098

the vibrational modes to an electric field and are obtained as a mixed derivative of

the total energy vs. a static electric field and an atomic displacement,[60] given by

Z∗κβα =
∂2Etot
∂uκα∂Eβ

= V
∂Pβ
∂uκα

=
∂Fκα
∂Eβ

, (5.3)

where Pβ is the macroscopic polarization, V the unit cell volume and uκα the dis-

placement of atom κ in direction α, which, for a q = 0 mode, is the same in each unit

cell. Fκα is the force on the atom κ in direction α and Eβ is the electric field compo-

nent. Atomic units defined by e = 1, h̄ = 1,me = 1, with e the elementary charge and

me the free electron mass, are used throughout the equations. The oscillator strength

is then given by

Sn,αα =

∣∣∣∣∣∑
κ,α′

Z∗κ,αα′Un(κ, α′)

∣∣∣∣∣
2

, (5.4)

where Z∗κ,αα′ are the Born effective charge tensor components given in Table 5.4,

Un(κ, α′) are the eigenvectors for each of the modes n at q = 0 and, κ refers to the
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atom label. The Un(κ, α) are the eigenvectors of

∑
κ′α′

[
Mκδκκ′δαα′ω2

n −Kκα,κ′α′
]
Un(κ′, α′) = 0, (5.5)

with Mκ the mass of atom κ and Kκα,κ′α′ the force constant matrix at q = 0. The

eigenvectors are normalized as

∑
κα

Un(κ, α)∗MκUm(κ, α) = δnm. (5.6)

The eigenvectors or mode eigendisplacements for each mode are presented in Ap-

pendix A. Note that because of the orthorhombic symmetry only diagonal elements

of the tensorial quantity Sn,αβ are non-zero. They are listed in Table 5.5. One can

see from this table, that the higher frequency modes tend to have higher oscillator

strengths. This is because they correspond to bond stretches and thus have a signifi-

cant dipole moment associated with them. The lower modes correspond to vibrations

of groups of atoms relative to each other or modes that do not have such a clear dipole

character. As already mentioned, this is directly related to the size of the LO-TO

splitting.

The frequency dependent dielectric function in the region below the band gap is

given by

εαα(ω) = ε∞αα +
4π

V

∑
n

Sn,αα
ω2
n − ω2 − iΓnω

, (5.7)

where ωn are the phonon frequencies and Γn is a damping factor. The first term ε∞,

usually referred to as the high-frequency dielectric constant, is the ω → 0 limit of the

electronic only part of the dielectric function, in other words the contribution from

all the inter-band optical transitions, which, in the present material, start in the UV

region. It is calculated in the DFPT framework as the adiabatic response to a static

electric field in the x, y, z directions. Because of the orthorhombic symmetry, it is
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Table 5.5: Oscillator strength tensor elements for each mode of a given symmetry
in order of increasing frequency and in atomic units, e2/me. For each irreducible
representation given in parenthesis, only the indicated diagonal component of Sn,αα
defined in Eq. 5.4, is non-zero as indicated in the column heading.

xx (b1) yy (b2) zz (a1)
1.38× 10−6 7.77× 10−8 4.40× 10−8

9.67× 10−7 8.90× 10−7 1.06× 10−7

8.22× 10−7 5.43× 10−6 5.64× 10−6

5.11× 10−5 5.09× 10−6 7.84× 10−6

7.75× 10−4 1.49× 10−5 2.54× 10−5

1.41× 10−3 6.33× 10−7 2.21× 10−6

1.30× 10−5 1.44× 10−3 3.30× 10−6

1.43× 10−4 2.29× 10−4 1.94× 10−3

1.15× 10−4 2.98× 10−4 2.05× 10−5

2.17× 10−4 4.12× 10−4

2.62× 10−4 1.39× 10−4

1.38× 10−5 2.04× 10−4

8.38× 10−5 4.42× 10−6

also a diagonal tensor, ε∞αα. The values of these tensor elements are given in Table

5.6. They are related to the anisotropic indices of refraction in the visible region at a

frequency with h̄ω well below the band gap energy but far enough above the highest

phonon frequencies, before the dispersion will bend the ε(ω) down. The values of

nαα =
√
ε∞αα are given in Table 5.7 for convenience.

The static dielectric constant ε0αα is the value obtained by taking the ω → 0 limits

of Eq.(5.7) and applies for frequencies well below the lowest phonon frequency. They

are also included in Table 5.6. There is actually another contribution at even lower

frequencies which is due to the piezoelectric response, which leads to strain in response

to an applied electric field and the strain in turn leads to an induced polarization,

but this contribution is here not included, so our value corresponds to clamped lattice

vectors or unit cell shape.

Please note that unlike the oscillator strength and susceptibility or dielectric func-

tion, which are all global quantities, the Born effective charge tensors are local quan-
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Table 5.6: High-frequency and static dielectric tensor components.

ε∞xx ε∞yy ε∞zz ε0xx ε0yy ε0zz
5.7825 5.830 5.893 10.223 10.626 11.008

Table 5.7: The indices of refraction.

nxx nyy nzz
2.405 2.4145 2.4275

tities at particular sites in the unit cell. This implies that they only have the local

site symmetry of the Wyckoff site, which for site 2a is only a mirror plane and for

site 4b is no symmetry at all. They are thus not required to be diagonal or symmetric

but still obey the sum-rule
∑

κ Z
∗
κ,αα′ = 0 for each α, α′. For the diagonal elements,

the Z∗κ,αα have the same sign on each of the symmetry related atoms and thus it is

only after summing over all types of atoms that cancellation takes place, balancing

the cation and anion charges. For the off-diagonal elements they sum to zero for each

type of atom separately. In fact, while the Ga and NGa which are on 4b sites can have

all off-diagonal elements non-zero, the Zn, Ge and their corresponding NZn, NGe still

are required by symmetry to have zero xy and xz elements but can have non-zero yz

elements because they are located on the yz mirror plane. These off-diagonal compo-

nents sum to zero when adding the contributions of the symmetry related atoms of

each type in the unit cell because the Z∗κβα tensor element will change sign under the

symmetry operation relating the two atoms according to the irreducible representa-

tion corresponding to βα, which is a2 for xy or yx, b1 for xz or zx and b2 for yz or

zx. These irreducible representations are indicated in Table 5.4. The reason why the

Z∗κβα 6= Z∗καβ is that the first index corresponds to the electric field component and

the second to the atom displacement component involved in their definition, given in

Eq.(5.3).
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From the above defined ε(ω) we can extract various related optical functions, in the

infrared range. In particular, the optical absorption coefficient α(ω) = 2ωIm[ε(ω)]/n(ω)

and the reflectivity R(ω) = |(ñ(ω)− 1)/(ñ(ω) + 1)|2 with ñ = n+ iκ =
√
ε the com-

plex index of refraction as well as the loss function −Im{ε(ω)−1} are the most closely

related to the measurements. The zeros in the real part Re{ε(ω)} = ε1(ω) and

the peaks in the loss function indicate the LO mode frequencies, while the peaks in

Im{ε(ω)} = ε2(ω) give the TO modes. The reflectivity shows the typical Reststrahlen

bands (RB) which jump to almost 100% reflectivity at the TO modes and fall back at

the LO modes. Note that the absorption coefficient α(ω) can show features at both

the TO and LO modes because of the possibility of a zero in the index of refraction.

The infrared spectra for the three polarizations are shown in Fig. 5.2. For each

polarization z, x, y the corresponding irreducible mode a1, b1, b2 imaginary and real

parts of ε(ω) are shown in black solid and red dashed lines. The blue (green) solid

lines show the reflectivity (loss function). The purple dashed line shows the absorption

coefficient. In the low frequency region it is multiplied by the factor indicated to make

these much lower intensity features visible. We note that the broadening or damping

factors Γn were not calculated but just given some typical value. Calculating these

damping factors would require including anharmonic terms and hence phonon-phonon

scattering processes. In reality these broadening factors may be mode dependent but

here the same value of Γn = 5 cm−1 is applied to all modes.

We next discuss in some detail how these spectra relate to the data of Table 5.3.

We start with the b1 modes or x-polarization. Although there are in principle nine b1

modes, at first sight, we see only five clearly distinguishable RBs. The first one is the

one corresponding to mode b41T at 276.8 cm−1. This mode is indeed seen to have an

oscillator strength of order 10−5 in Table 5.5 compared to the lower ones which are

1-2 orders weaker but is itself rather weak compared to the ones above 400 cm−1. To

see the lower frequency modes better, we show the absorption coefficient multiplied
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Figure 5.2: IR spectra for (a) a1 modes, (b) b1 modes and (c) b2 modes.
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Figure 5.3: IR spectrum of b1 modes with very small Γn = 10−5 cm−1 broadening
zoomed in on region 500 < ω < 640 cm−1 focused on modes 6-8. The y-scales have
been arbitrary adjusted.

by a factor 50 separately in the region below 400 cm−1. The next band correspond to

the TO mode b51T at 499.81 cm−1 and the corresponding LO one is at 516.76 cm−1.

The next RB for mode b61T starts at 558.18 cm−1 but it comes down only at 619.21

cm−1. Table 5.5 shows that the b71T mode at 592.09 cm−1 has much weaker oscillator

strength of order 10−5 and hence is hidden by the 6th mode RB. Looking only at

the spectra and without knowledge of Table 5.5, which is essentially the situation

the experimentalists would be confronted with, one could be tempted to associate

the LO mode of 619.21 cm−1 with mode 6. One would then have missed one of the

modes entirely. Upon closer inspection, the shape of the ε1(ω) in this energy region

already shows that the zero crossing, which should have occurred at 591.71 cm−1, is

hidden simply because of the broadening. There is also a very small dip visible in

the reflection spectrum, but one could easily imagine that additional experimental

broadening could hide this feature. As shown in Fig. 5.3, when we recalculate these

spectra with a much smaller (in fact un-physically small broadening of 10−5 cm−1 or

less) we can see the the b61L and b71T modes clearly as a sharp dip in the reflectivity

curve to almost zero and a peak in ε2.
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On the other hand, in view of the LO-TO rule, it is clearly not allowed to assume

that the 591.71 cm−1 LO mode would correspond to the 592.09 cm−1 TO mode, even

if rounded to one cm−1 these appear to be the same and could have been just a

mode with very weak LO-TO splitting below the error bar of the calculation. Indeed,

associating the 558.18 cm−1 TO mode with the 619.21 cm−1 LO mode would violate

the LO-TO rule.

The origin of the LO-TO rule is the alternation of poles in the dielectric and inverse

dielectric function and follows from the analytical form of ε(ω), in other words from

the Kramers-Kronig relations or causality, that each pole is followed by a zero before

the next pole. On the other hand, from the first-principles computational point of

view, the LO and TO set of modes for a given symmetry result from diagonalization of

a different dynamical matrix, one including long-range forces and the other not. From

that point of view, their eigenvectors need not be the same and the pairing of modes

on a on-to-one basis is not obvious. In other words, the TO-LO rule which ensures a

one-to-one pairing of TO to LO modes does not require that the eigenvectors of these

corresponding modes are closely related. To analyze the correlation between TO and

LO eigenvectors of corresponding mode numbers we calculate[89]

Cnm =
1

2

∑
κ,α

[UTn
καMκU

Lm
κα + ULn

καMκU
Tm
κα ]. (5.8)
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. (5.9)

Note that the eigenvectors at q = 0 are real, so no complex conjugate is needed.

This shows that the first 4 TO-LO modes are almost perfectly correlated while from

mode 5 and onward, the correlation between corresponding modes becomes poorer.

In particular, mode b61T is more correlated with b71L than with its own LO mode.

For the a1 modes, there should be 13 modes, but we see only 4 RBs in the region
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above 400 cm−1 and one rather weak one near 300 cm−1. Inspection of the table of

oscillator strengths shows that this must be mode a51T at 201.1 cm−1 with an oscil-

lator strength of order 10−5. The modes number 6 and 7 again have weak oscillator

strengths of order 10−6, so the first strong RB corresponds to mode 8 at 500.6 cm−1

and coming down at 563.6 cm−1 which however corresponds to a91L. So again, look-

ing at the spectra only, we apparently skipped a hidden mode with weak oscillator

strength. We can see that the frequency of a91T is close to that of a81L. In the RB we

just see a little dip near 550 cm−1 which signals the hidden mode. Mode a101T at 585.9

starts an RB ending at 636.2 cm−1. Mode a111T corresponds to the onset of the RB

at 658.8 cm−1 is nicely isolated but the next RB starting at a121T ends only at 749.5

cm−1 which corresponds rather to a131L with again a weak hidden mode at 699.5 cm−1

in between.
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The correlation matrix of the TO and LO eigenvectors is
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1
n
m
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Again, we see that from mode 8 onward, the correlations between corresponding

TO and LO eigenvectors becomes small and in particular modes 8 and 9 have larger

correlation with each other’s eigenvectors than with themselves.

A similar analysis applies to the b2 modes. Here we see actually 6 clearly dis-

tinguishable RBs with corresponding peaks in ε2(ω) in the region above 400 cm−1

and one clear dip in the 5th band indicating another weaker mode. Even in the low

frequency region we may see 3 small features in the reflectivity curve signaling the
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corresponding weak RBs. The eigenvector correlation matrix for b2 modes is

C
b 2 n
m

=
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5.3.4 Raman spectra

The Raman cross-section for the Stokes process (energy loss) for each mode is given

by,[61]

dS

dΩ
=

(ω0 − ωm)4

c4
|ei ·αm · eo|2

h̄

2ωm
(nm + 1), (5.12)

where ω0 is the incident light frequency, ωm the mode frequency, and nm is the boson

occupation number nm = [exp (h̄ωm/kBT )− 1]−1, ei and eo refer to the incident and

the scattered polarization directions and αm is the second-rank Raman susceptibility

tensor for mode m which is given by,

αmαβ =
√
V
∑
κγ

∂χαβ
∂τκγ

Um(κγ), (5.13)

in terms of Um(κγ),the eigenvector of the m-th vibrational mode and the derivative

of the susceptibility vs. atomic displacements. Given the Raman tensor, the Raman

spectrum can be generated for any choice of incoming and scattered light polariza-

tions. Therefore we first provide the full set of Raman tensor elements in Table 5.8.

Whether the longitudinal or transverse modes are excited depends on the direction

of the incoming and scattered wave vectors as explained in Sec. 5.3.1.

The spectra are simplest to interpret when the polarization vectors are along the

crystallographic axes. Specific scattering geometries can be used to excite only modes

of one irreducible representation at a time and measure a specific component of the

Raman tensors as given in Eq.(5.2). These were already explained at the end of

Sec.5.3.1. The Raman spectra for a complete set of backscattering geometries that

would allow one to measure each of the TO modes and the a2 modes which are only

Raman but not IR active, and their different tensor components as well as the a1L

LO modes are given in Figs. 5.4, 5.5, 5.6.

In Fig. 5.4 one can distinguish all 13 modes. Six of them occur for frequencies

below 400 cm−1. However, some seem to be absent for particular polarizations. For
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Table 5.8: Raman tensor components.

a1(TO) a1(TO) a1(TO) a1(LO) a1(LO) a1(LO)
aT = αTxx bT = αTyy cT = αTzz aL = αLxx bL = αLyy cL = αLzz
−3.77× 10−4 3.68× 10−4 −6.24× 10−5 −3.74× 10−4 3.70× 10−4 −6.50× 10−5

1.84× 10−4 −6.21× 10−4 −3.16× 10−4 1.84× 10−4 −6.18× 10−4 −3.22× 10−4

−1.68× 10−4 −2.12× 10−4 4.51× 10−4 −1.35× 10−4 −1.91× 10−4 4.15× 10−4

−2.30× 10−4 −5.29× 10−4 4.48× 10−4 −1.88× 10−4 −5.06× 10−4 4.12× 10−4

5.18× 10−4 3.69× 10−4 2.32× 10−4 4.52× 10−4 3.47× 10−4 3.49× 10−4

6.25× 10−5 3.05× 10−4 8.72× 10−4 6.74× 10−5 3.04× 10−4 8.31× 10−4

3.35× 10−3 −1.10× 10−3 1.42× 10−3 3.28× 10−3 −1.16× 10−3 1.53× 10−3

−2.03× 10−3 −1.58× 10−3 2.78× 10−3 −3.98× 10−3 −5.37× 10−3 4.70× 10−3

−3.65× 10−3 −5.65× 10−3 −5.45× 10−3 −1.51× 10−4 −3.24× 10−3 2.07× 10−3

5.14× 10−5 4.23× 10−3 −1.68× 10−3 1.75× 10−3 −3.23× 10−3 1.78× 10−3

−4.00× 10−3 9.93× 10−5 1.31× 10−3 −2.71× 10−3 −1.73× 10−3 1.13× 10−3

7.64× 10−4 −6.62× 10−4 −3.01× 10−3 −3.24× 10−3 −3.49× 10−3 −3.41× 10−3

3.49× 10−3 3.51× 10−3 2.89× 10−3 4.42× 10−3 3.29× 10−3 6.86× 10−3

b1(TO) b1(LO) a2 b2(TO) b2(LO)
eT = αTxz eL = αLxz d = αxy fT = αTyz fL = αLyz
−1.93× 10−4 −1.08× 10−4 2.77× 10−4 −1.97× 10−4 −1.97× 10−4

1.27× 10−5 1.26× 10−5 −2.86× 10−4 −1.80× 10−4 −1.81× 10−4

3.80× 10−4 3.80× 10−4 −7.13× 10−5 1.15× 10−4 1.26× 10−4

−1.19× 10−4 −1.39× 10−4 7.89× 10−4 −1.50× 10−4 −1.53× 10−4

7.18× 10−4 −5.95× 10−5 4.21× 10−4 2.43× 10−4 2.48× 10−4

1.53× 10−3 −3.38× 10−4 −8.97× 10−4 1.16× 10−4 1.14× 10−4

−1.14× 10−4 4.24× 10−4 2.14× 10−3 7.19× 10−4 1.38× 10−4

6.46× 10−4 1.04× 10−3 1.61× 10−3 −2.41× 10−4 6.17× 10−4

−3.37× 10−4 2.90× 10−3 −2.45× 10−3 −6.63× 10−4 2.58× 10−4

3.34× 10−4 6.89× 10−4 1.04× 10−3

−8.37× 10−4 8.58× 10−4

6.95× 10−4 1.09× 10−3

5.85× 10−4 2.28× 10−3
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Figure 5.4: Raman spectra for a1T modes for ȳ(xx)y, x̄(yy)x and x̄(zz)x scattering
geometries.
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Figure 5.5: Raman spectra for a1L modes for z̄(xx)z, z̄(yy)z scattering geometries.
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Figure 5.6: Raman spectra for z̄(xy)z scattering geometry, giving the a2 modes with
d tensor component.
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Figure 5.7: Raman spectra for ȳ(xz)y showing only b1T modes and for y(xz)x scat-
tering geometry, giving b1T + b1L modes.
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Figure 5.8: Raman spectra for x̄(yz)x showing only b2T modes and for x(yz)y scat-
tering geometry, giving b2T + b2L modes.

example, the first peak has almost zero intensity for xx or zz polarization. Inspection

of Table 5.8 shows that these modes indeed have very low Raman tensor components

of order 10−5, while the strongest peaks have matrix elements of order 10−3. Please

note that the intensity is proportional the tensor element modulo squared, thus this

means a ratio of 4 orders of magnitude between the weakest and strongest modes.

Modes 12 and 13 are very close to each other and mode 12 is only strong for zz

polarization while 13 is strong for all three polarizations. Thus modes 12 and 13 are

merged into one peak but its peak position is slightly shifted for zz compared to the

other polarizations. Mode 11 is seen be very weak for yy polarization but is strongest

for xx polarization. These observations can be verified to be consistent with Table

5.8. Thus to find all a1T modes experimentally, it would be important to explore the

three polarizations.

For the a1L spectra, shown in Fig. 5.5, we can see modes 7-13 clearly for y

polarization but mode 9 is very weak in xx polarization. Thus for the xx polarization
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there appear to be only 6 peaks above 400 cm−1. Comparing now infrared with

Raman spectra, we note that modes 7 and 9 which are quite weak in IR are strong

in Raman spectra, in particular the TO mode a91T is the strongest peak both for yy

and zz polarization.

The a2 modes shown in Fig. 5.6 were labeled to show that modes 1 and 2 are too

close together to be distinguished and mode 10 only shows up as a small shoulder. In

Fig. 5.7 we show spectra for ȳ(xz)y backscattering geometry, displaying only the b1T

modes as red lines and for y(xz)x right-angle geometry displaying b1T + b1L modes

as blue lines. In the low energy region we see only 3 peaks because the second mode

at 185 cm−1 has negligible Raman tensor component. Since these modes show very

little LO-TO splitting, the b1T + b1L spectrum has about twice the intensity in this

region as the b1T one. In contrast, the next two peaks are clearly b51T and b61T . Mode

b51L at 516.7 cm−1 has very weak intensity and is not seen. The highest two peaks

clearly belong only to b1L, while the shoulder at 674.4 cm−1 right above the b81L mode

(662.1 cm−1) belongs to the b1T spectrum. Similar results are shown for b2 modes in

Fig. 5.8.

The above set of spectra all depend only on the Raman tensor elements modulo

squared. However, the reader may notice that in Table 5.8 these matrix elements also

have a sign. In order to reveal the sign one needs to look at a scattering geometry

where more than one tensor element is at play so that their terms are added including

the proper signs before taking the modulo squared. This can for instance be done by

focusing on a single mode and mapping out the angular dependence of the polarization

in a polar plot. As an example, consider an incoming wave with ki and ko both along

z and polarization ei = eo = x̂ cosφ + ŷ sinφ The Raman intensity will then be

proportional to
∣∣a cos2 φ+ b sin2 φ

∣∣2. If a and b have the same sign this will give a

“peanut shaped” pattern as function of angle φ but if a and b have opposite signs, it

will trace out a four-lobed polar plot. If a = b it would give a circular pattern. For
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Figure 5.9: Polar plot for mode a71L as function of angle φ of ei with respect to x-axis
(crystallographic a-direction) eo ‖ ei and ki/o along z or c are assumed.

Figure 5.10: Polar plot for mode a111L as function of angle φ of ei with respect to x-axis
(crystallographic a-direction) eo ‖ ei and ki/o along z or c are assumed.
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Figure 5.11: Polar plot shapes for all a1L modes as function of azimuthal angle (about
the c-axis) in the xy-plane with x horizontal,

Figure 5.12: Polar plot shapes for all a1T modes as function of azimuthal angle
(about the b-axis) in the xz-plane with x horizontal,

Figure 5.13: Polar plot shapes for a1T modes as function of azimuthal angle (about
the a-axis) in the yz-plane with y horizontal. In each case the plots correspond to the
modes in order of increasing frequency as given in Table 5.3. Note that the size of
each plot relative to the others is arbitrary, only the shape’s aspect ratio has meaning.
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example for mode a71L we see that bL and aL have opposite signs and indeed the polar

plot of this mode, shown in Fig. 5.9 shows a four-lobed shape. Because |a| > |b|

it is more extended in the x-direction then the y direction. As another example,

the angular pattern for mode a111L, for which a and b have the same sign is shown in

Fig. 5.10 and shows a peanut shape. In fact, Fig. 5.11 shows the polar plot angular

shapes for all a1L modes in order of increasing frequency. Similarly, the a1T -modes

as function of the azimuthal angle about the b or a axes are given in Fig. 5.12 and

5.13. Clearly all of these modes have characteristic fingerprint like angular shapes

which might be useful to identify specific modes in comparison between theory and

experiment.

For a2 modes in the xy plane and for ei at an angle φ from the x-axis and eo at

an angle φ+ π
2

from the x-axis the angular pattern is d2 cos 2φ, which is a symmetric

four-leave clover pattern. The same is true for the b1T modes with crossed polarizers

and with azimuthal angle φ with respect to the b axis in the xz plane and for b2T

modes in the xy plane as function of azimuthal angle about the a-axis.

5.3.5 Phonon dispersion and density of states

The phonon densities of states (DOS) are shown in Fig. 5.14. The DOS figure shows

the partial density of states for each of the constituents as well as the total DOS. The

vibrational modes fall clearly in two ranges, the quasi-acoustic range below 400 cm−1

and the optic range above 500 cm−1. The heavier atoms, Zn, Ge and Ga have their

strongest weight in the low-frequency range, which shows two peaks. In these two

peaks, we can see that the Ga contribution is about equally spread over both, while

the Zn contributes more to the low energy region and Ge more to the higher energy

region. As the masses of these atoms increase from Zn to Ga to Ge, but are all close

to each other, it is clear that this distribution does not reflect the mass differences

but rather the differences in force constants related to these frequencies. The high

81



CHAPTER 5. VIBRATIONAL PROPERTIES OF ZNGEGA2N4

frequency optical mode range can almost entirely be attributed to the presence of the

lighter N atoms. It consists of three peaks and zooming in on the cation contributions,

we can see that Ga atoms show a higher contribution in the middle and lower peaks,

the Zn contribution is stronger in the lower frequency peak, and that of the Ge atoms

in the highest peaks. While we cannot simply separate Zn-N, Ga-N and Ge-N bond

stretch modes because the actual normal modes are mixtures of them, it still suggest

clearly an increasing bond strength in the same order. The phonon densities of states

of GaN and ZnGeN2 can be found in the Materials Project [90] and were here included

for comparison. Comparing the DOS figure with either of ZnGeN2 or that of GaN, we

find striking similarities. The acoustic region in GaN also shows two distinct peaks.

However the optical range is much narrower and has basically a TO and LO branch

peak only.

In ZnGeN2 the optical mode region has a similar overall frequency range but is

split in more distinct peaks and is overall stretched over a wider range of frequencies

than even for ZnGeGa2N4. This indicates that the Ga-N bond stretch related modes

are intermediate in frequency between the Zn-N and Ge-N ones and hence fill out

this spectral range in a more uniform way. The relative contribution of Zn-N and

Ge-N bonds in different frequency ranges in ZnGeN2 is found to be consistent with

the present results in ZnGeGa2N4.

The phonon density of states is important because several thermodynamic prop-

erties can be obtained from integrating over it. Secondly, it was found in previous

studies of phonons in ZnGeN2 and related materials[91, 92] that for disordered forms

of this material, the Raman spectra resemble the phonon DOS more than the spe-

cific modes at Γ. In other instances, a mixture of disorder related DOS type peaks

and sharp peaks corresponding to specific Γ-modes can be seen [93]. This is be-

cause disorder breaks the momentum conservation law and allows modes throughout

the Brillouin zone to contribute to the Raman scattering. Precise ordering in these
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Figure 5.14: Phonon total and atom resolved partial densities of states of ZnGeGa2N4

compared with those for GaN and ZnGeN2, the latter two from Materials Project.
The dashed lines in the high frequency region for Zn, Ga and Ge were multiplied by
a factor 5 for easier viewing of their relative contribution.

ternary and even more so in the present quaternary alloys is a significant challenge

for the crystal growth.

Finally, the phonon band dispersions throughout the Brillouin zone are shown in

Fig. 5.15. In addition to the information about the acoustic and optical phonon

modes at high symmetry points as well as the sharp jumps in the phonon dispersion

at Γ indicating LO-TO splitting along particular directions, this figure shows that

the structure is dynamically stable, as it does not show any modes with imaginary

frequency. At Γ, the plot gives the TO modes but one can clearly see that when

one approaches Γ along for example the X − Γ direction, some modes (namely the

b1 modes) approach the LO mode until the last data point along the line where they

jump to the TO-value at Γ. Along Z − Γ this behavior happens for a1 modes and

along Y − Γ it happens for b2 modes. We used 100 points along these lines. This

reflects that the phonon frequencies in the limit q → 0 depend on the direction one

approaches 0 from. The objective behind using a much larger division of 100 points

when approaching Γ is to capture the LO-TO splitting in the form of a sudden jumps
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Figure 5.15: Phonon band structure of ZnGeGa2N4. X, Y , Z U , R, S correspond to
b1/2, b2/2, b2/2, (b1 + b3)/2 (b1 + 2 + b3)/2 and (b1 + b2)/2.

in the optical phonon dispersion.

5.4 Conclusions

In this chapter, we presented a comprehensive study of the phonons in ZnGeGa2N4,

a mixed 50 % compound of ZnGeN2 and GaN with a specific ordering, obeying the

octet rule and with Pmn21 spacegroup. A group theoretical analysis of the modes at

Γ is presented and besides the vibrational frequencies, related quantities, such as the

Born effective charges, and dielectric constants ε∞, ε0 tensors are presented. We then

used these to predict infrared spectra and Raman spectra for various polarizations,

which could be used to obtain fully all different modes and Raman tensor components.

We showed that although the number of peaks seen in these spectrum simulations

doesn’t always match with the expected number of phonon modes from the symmetry

analysis, this can be explained by some modes having very weak oscillator strengths or

by the occurrence of closely spaced modes which merge into one peak. We showed that

the alternation of TO and LO modes is obeyed in detail even though the Reststrahlen

bands may give the impression of a mode switch in some instances. The correlation

between LO and TO mode eigenvectors was also investigated and shows that for

higher frequency modes there is no clear one-to-one correlation between corresponding
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mode numbers. Angular patterns for Raman spectra of the modes were also shown

and provide a further fingerprinting method to identify the modes and an opportunity

to observe the sign of the Raman tensor elements. We also presented the full Brillouin

zone phonon band structure and densities of states and resolved the latter into atom

components, identifying thereby the contributions from separate cation-N bonds and

their distribution over the phonon DOS.
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Chapter 6

Vibrational properties of α-MoO3

6.1 Introduction

Orthorhombic α-MoO3 is a layered oxide with various applications and with excellent

potential to be exfoliated as a 2D ultra-thin film or monolayer. While there have been

prior Raman and infrared studies [36, 37, 28, 38] a full first-principles analysis of the

vibrational properties and polarization dependent Raman spectra on single crystals

or thin films has not yet been reported. Here we present a first-principles calculation

of the phonons in α-MoO3 including simulations of the Raman and infrared spectra.

This study may be useful in the characterization of ultra-thin layers or nano-flakes of

MoO3 and may assist in further understanding of α-MoO3 and the transition metal

oxides, in general. A group theoretical analysis, phonon frequencies and related Born

effective charges, dielectric constants, infrared oscillator strengths and Raman tensors

are presented as well.

6.2 Computational Method

The calculations are done using Density Functional Perturbation Theory (DFPT)[59,

60] using the plane-wave pseudopotential method as implemented in ABINIT [39].
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Specifically, with the Abinit code we choose the Hartwigsen-Goedecker-Hutter pseu-

dopotentials [82] and the local density approximation. The energy cutoff used in these

calculations 160 Rydberg, which was tested first to give converged results. For the

Brillouin zone integration or charge densities and total energy a 4 × 4 × 4 k-point

mesh is used. A first set of phonon calculations are done at the Γ-point. These

are sufficient to determine the infrared absorption and reflection (IR) spectra as well

as the Raman spectra assuming momentum conservation and using that visible and

infrared light has negligible momentum compared to the Brillouin zone size.

6.3 Results

6.3.1 Crystal structure and group theoretical analysis

The space group of α-MoO3 is Pmcn number 62 (or D16
2h). Note that the standard

setting of the International Tables for Crystallography is Pnma but then the normal

mirror plane, labeled m, is perpendicular to b whereas ours is perpendicular to a.

In the symmetrized version of the Materials Project coordinates [90], corresponding

to Pnma the direction normal to the layers is the a direction, which is our c. Hence

the double glide mirror plane, labeled n, is perpendicular to c in our case. The point

group is D2h. The unit cell of the structure contains 16 atoms, 4 Mo and 12 O

atoms, which belong to three different types. The optimized lattice constant within

LDA and reduced coordinates are given in Table 6.1. We also give the volume of

the cell V in this table and compare our lattice constants with the experimental ones

by Seguin et al. [28] and with the ones from Materials Project [90] optimized in the

generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)

parameterization.[86] Note that Seguin et al. [28] used yet another setting Pbnm

where the largest lattice constant normal to the layers is the b direction.

We may note that our lattice volume is slightly underestimated compared to the
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experiment while the GGA value is 6 % overestimated. However, we should also note

that this overestimate is mostly stemming from the c-lattice constant overestimate,

which is 4 % and the about 2 % from the a lattice constant. The c lattice direction

is perpendicular to the layers and thus most sensitive to the weak van der Waals

interactions. The good agreement for this in LDA may be somewhat spurious and

does not indicate that LDA should always perform well on such interlayer interactions

but is useful here. Our b/a ratio at 1.062 is intermediate between the experimental

value of 1.072 and the PBE value of 1.055. Our c/a ratio at 3.708 is smaller than

the experimental value of 3.748 and the Materials Project [90] value of 3.855. The

character table of the point group D2h is given in Table 6.2.

The crystal structure is shown in Fig. 6.1. Note that the O2 is bonded to a

single Mo and has a short bond of only 1.702 Å. O1 is bonded to two Mo in a bridge

configuration along the b direction with alternating bond lengths of 1.781 Åand 2.218

Å. O3 is bonded to two Mo along the a direction each at 1.978 Åbut also to another Mo

at a larger distance of 2.386 Åin the c-direction. When this last long bond is ignored

the structure can be described in terms of slightly distorted square pyramids which

are corner sharing in the ab-plane. Two adjacent layers of such pyramids face each

other via their flat faces and form a double layer with the short Mo-O2 bonds facing

outward. These double layers are weakly van der Waals bonded. When the longer

bond of 2.386 is included in the coordination polyhedron, the structure can be viewed

as consisting of distorted octahedra which share edges with the lower octahedron in

the a direction and corners in the a and b-directions. Along the c axis double layers

are stacked with a van der Waals gap formed between the O2 single bonded oxygens.

Excluding the translations along the three directions, x, y and z, the vibrational
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Figure 6.1: Crystal structure of α-MoO3 in the Pmcn spacegroup setting. Viewed in
terms of pyramidal or distorted octahedral units. The small red spheres are O atoms,
the larger grey spheres hidden under the polyhedra are the Mo atoms. In the view on
the left, the longest Mo-O bond in the vertical direction is omitted from the nearest
neighbor polyhedron.

modes are distributed over the irreducible representations as

Γvib =8Ag ⊕ 4B1g ⊕ 4B2g ⊕ 8B3g ⊕ 4Au

⊕ 7B1u ⊕ 7B2u ⊕ 3B3u.

(6.1)

Table 6.1: Reduced coordinates and lattice constants in α-MoO3 in the Pnma space-
group.

atom Wyckoff x y z
Mo 4c 0.25 0.91613 0.60637
O1 4c 0.25 0.46959 0.58859
O2 4c 0.25 0.95868 0.72917
O3 4c 0.25 0.50056 0.93527

a (Å) b (Å) c (Å) V (Å3)
Calc. (LDA) 3.7217 3.9510 13.7916 202.798
Expt. [28] 3.6964 3.9628 13.855 202.949
MP (PBE)[90] 3.761 3.969 14.425 215.328
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Table 6.2: Character table of D2h.

irrep E I C2y mxz C2z mxy C2x myz basis function
Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 xy
B2g 1 1 1 1 −1 −1 −1 −1 xz
B3g 1 1 −1 −1 −1 −1 1 1 yz
Au 1 −1 1 −1 1 −1 1 −1 xyz
B1u 1 −1 −1 1 1 −1 −1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x

6.3.2 Phonon frequencies and related results.

The phonon frequencies at Γ are given in Table 6.3. Corresponding to the light

propagating along z, x or y, the LO-TO splittings are observed for B1u, B3u and

B2u modes, respectively. From Table 6.3, we can observe that the splittings are

significantly smaller for the lower frequency modes compared to the higher frequency

modes. This is because only the high frequency modes have significant bond stretch

dipolar character. The larger LO-TO splittings are also correlated with stronger

oscillator strengths for infrared absorption.

Our calculated values are compared with the experimental results of Seguin et al.

[28] who also includes previous experimental results and provides a symmetry labeling

of the modes. These data are here reproduced in Fig. 6.2 for easier comparison with

the results in figs for IR and Raman spectra. However, we have relabeled them

to take into account the different choice of crystallographic axes here. Our a, b, c

correspond to Seguin’s c, a, b. Taking x, y, z along a, b, c this then also implies that

our B1u, B2u, B3u correspond to their B2u, B3u, B1u respectively and our B1g, B2g, B3g

become their B2g, B3g, B1g. Ag and Au stay the same. The Au modes are silent and

can thus not be measured by either infrared or Raman spectroscopies. The calculated

phonon frequencies can be seen to generally underestimate the experimental value up

to 14 %, although the errors are not uniformly distributed. The modes with −14%
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error turn out to be modes with quite weak oscillator strengths and where several

modes are close in frequency so that the experimental assignment may not be entirely

clear if polarization selection rules were not used. For example for mode B4
1u, the

value 374 cm−1 was measured by Seguin et al. [28] while Py and Mashke [37] give a

calculated value B4
1uT = 380 cm−1 but did not observe it experimentally. Seguin et

al. assign this mode as strong while nearby B2u mode at 358 cm−1 is designated as

weak. Another weak peak is observed in the IR spectrum at 350 cm−1. The oscillator

strengths given in Table 6.5 show clearly that B4
1u should be weaker than B3

2u and B4
2u.

The proximity of these modes makes it different to disentangle them experimentally

without using polarization dependence. If we re-assign the experimental 358 cm−1

mode as our B4
1uT then our error on this mode frequency is reduced to −7%. The

experimental 374 cm−1 peak would then correspond to the B4
2u average of TO and

LO modes.

One may also observe that each TO phonon mode of a given symmetry is followed

by an LO before the next TO phonon occurs. This is a general rule obeyed by any

crystal with at least orthorhombic symmetry, but not for monoclinic symmetry. We

note that this follows from general considerations of the phonon related ε and ε−1 in

a Lorentz oscillator model. However, it does not mean that the eigenvectors of the

TO-LO pairs constructed in this way are necessarily close to each other.

We now discuss the nature of a few of the vibrational modes. The lowest frequency

B1
1u corresponds to a sliding of an entire bilayer with respect to the other in the b

direction as can be seen in Fig. 6.2(a). The B1
2u mode on the other hand has bilayers

moving relative to each other perpendicular to each other Fig. 6.2(b).

The A1
g mode on the other hand consists mostly of a sliding of the layers within one

bilayer with respect to each other but also with a slight breathing component of the

distance between these layers within the bilayer (Fig. 6.3)(a). This mode is already

significantly higher in frequency which clearly shows that the bonding between layers
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Figure 6.2: Eigendisplacement pattern for (a) B1
1uT mode and (b) B1

2uT modes.

Figure 6.3: Eigendisplacement pattern for (a) A1
g mode and (b) B1

3g mode.
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Figure 6.4: Eigendisplacement pattern for (a) A7
g mode and (b) A8

g mode.

within a bilayer is stronger than between bilayers. The lowest B1
3g mode is similar

but with the two bilayers having opposite sign instead of the same sign (Fig. 6.3(b)).

The A2
g and B2

3g modes are mostly a breathing mode of the interlayer distance within

a bilayer but again, either in phase between the two bilayers or out of phase. The

intermediate frequency modes are more complex in nature.

6.3.3 Infared spectra and associated quantities.

In this section, we present our simulated infrared spectra and associated quantities.

These are obtained from calculating the contribution of phonons to the dielectric

response function in terms of the classical Lorentz oscillator model. Within DFPT,

the oscillator strengths can be obtained directly from the phonon eigenvectors and

the Born effective charges, which describe the coupling of the vibrational modes to

an electric field and are obtained as a mixed derivative of the total energy vs. a static

electric field and an atomic displacement, given by

Z∗κβα =
∂2Etot
∂uκα∂Eβ

= V
∂Pβ
∂uκα

=
∂Fκα
∂Eβ

(6.2)
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Table 6.3: Phonon frequencies of α-MoO3 in cm−1. Experimental values from Seguin
et al. [28]. σ is the error of the calc. compared to expt. in %

B1uT B1uL B2uT

calc expt σ calc expt σ calc expt σ
53.24 53 0.4 53.28 53 0.5 46.88 44 6
241.45 260 −7 243.10 260 −7 213.97 228 −6
303.31 353 −14 312.88 363 −14 301.57 348 −13
333.42 374 −11 334.62 3801 −12 327.98 363 −10
428.85 441 −3 477.10 505 −5 476.96 500 −5
725.40 814 −11 737.92 825 −11 732.49 818 -10
909.44 962 −5 959.67 1010 −5 948.17 1002 −5

B1g B3uT B3uL

calc expt σ calc expt σ calc expt σ
101.50 116 −12 174.14 191 −9 176.97 191 −7
183.80 198 −7 244.22 268 −9 322.23 343 −6
258.69 283 −9 535.38 545 −2 799.16 851 −6
651.88 666 −2

Ag B2uL B3g

calc expt σ calc expt σ calc expt σ
73.44 83 −11 46.98 6 44 89.94 98 −8
151.43 158 −4 214.00 228 −6 146.16 154 −5
195.69 197 −1 321.22 352 −9 227.42 246 −8
299.00 337 −11 351.13 390 −10 302.60 338 −11
329.83 366 −10 490.32 525 −7 342.49 380 −10
445.84 472 −0.2 906.12 974 −7 447.71 472 −5
727.19 819 −11 948.17 1002 −5 729.82 820 −11
945.50 996 −5 957.39 996 −4

Au B2g

calc calc expt. σ
48.84 117.27 128 −8

211.03 224.88 217 4
263.01 270.29 291 −7
535.78 652.04 666 −2
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Table 6.4: Born effective charge tensor elements for the atoms listed in Table 6.1. By
symmetry all Z∗xy, Z

∗
yx, Z

∗
xz, Z

∗
zx are zero.

Components(label) Mo O1 O2 O3

Z∗xx(Ag) 7.483 −1.139 −0.552 −5.790
Z∗yy(Ag) 6.649 −4.859 −0.619 −1.169
Z∗zz(Ag) 4.571 −0.686 −2.275 −1.609
Z∗yz(B3g) 0.285 −0.305 −0.343 −0.303
Z∗zy(B3g) 0.617 −0.506 −0.350 −0.197

where Pβ is the macroscopic polarization, V the unit cell volume and uκα the dis-

placement of atom κ in direction α which for a q = 0 mode is the same in each unit

cell. Fκα is the force on the atom κ in direction α and Eβ is the electric field com-

ponent. Atomic units are used throughout in which h̄ = e = me = 1. Note that the

Born effective charge tensors are not macroscopic tensors but only reflect the point

group symmetry of the Wyckoff site of that atom. Because the atoms are all in 4c

positions which lie on the mirror planes mx and hence need to have zero xz and xy

tensor elements. However they do have a non-zero yz and zy element, which differ

because the first index refers to the derivative vs. electric field and the second to

the derivative vs. atom displacement direction. The Born charges are seen to devi-

ate significantly from the nominal charge of Mo+6 and O−2 and have also significant

anisotropies. Specifically, O2 which is bonded to a single Mo in the z direction is

seen to be anomalously small in the x and y directions. On the other hand O1 which

is the bridge oxygen is seen to have the largest effective charge component in the y

direction and O3 in the x direction. The off-diagonal yz, zy elements sum to zero for

each atom type separately because of the sign changes of the symmetry related atoms

which behave as B3g. The diagonal terms sum to zero for each diagonal component

when summing over all atoms, balancing the cation and anions.
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Table 6.5: Oscillator strength tensors.

Sn,xx (B3u) Sn,yy (B2u) Sn,zz (B1u)
9.07× 10−5 3.05× 10−7 6.94× 10−8

1.67× 10−3 4.85× 10−7 1.559× 10−5

4.33× 10−3 5.94× 10−4 1.08× 10−4

1.06× 10−4 1.07× 10−5

2.73× 10−4 5.05× 10−4

3.55× 10−3 1.62× 10−4

2.22× 10−9 8.71× 10−4

The oscillator strength is then given by

Sn,αα =

∣∣∣∣∣∑
κ,α′

Z∗κ,αα′Un(κ, α′)

∣∣∣∣∣
2

, (6.3)

where Z∗κ,αα′ are the Born effective charge tensor components given in Table 5.4,

Un(κ, α′) are the eigenvectors for each of the modes n at q = 0 and, κ refers to the

atom label. The eigenvectors are normalized as

∑
κα

Un(κ, α)∗MκUm(κ, α) = δnm, (6.4)

where Mκ are the atom masses. Note that because of the orthorhombic symmetry

the oscillator strength tensor is diagonal. Its non-zero elements are listed in Table

6.5. One can see from this table, that the higher frequency modes tend to have

higher oscillator strengths. This is because they correspond to bond stretches and

thus have a significant dipole moment associated with them. An exception is the

highest B2u mode has quite small oscillator strength and correspondingly also small

TO-LO splitting.

The frequency dependent dielectric function in the region below the band gap is
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Table 6.6: High-frequency and static dielectric tensor components.

ε∞xx ε∞yy ε∞zz ε0xx ε0yy ε0zz
6.792 6.162 4.662 27.210 13.024 7.173
5.959 5.205 4.001

Table 6.7: The indices of refraction.

nxx nyy nzz
2.606 2.482 2.159
2.441 2.282 2.000

given by

εαα(ω) = ε∞αα +
4π

V

∑
n

Sn,αα
ω2
n − ω2 − iΓnω

(6.5)

where ωn are the phonon frequencies and Γn is a damping factor.

The first term ε∞ is the high-frequency dielectric constant, meaning at frequencies

below the gap but above the phonon frequencies. More precisely it is the static limit of

the electronic contribution to the dielectric function, in other words the contribution

from all higher frequency excitations, namely the inter-band optical transitions. It is

calculated in the DFPT framework as the adiabatic response to a static electric field

in the x, y, z directions. Because of the orthorhombic symmetry it is also a diagonal

tensor, ε∞αα. The values of this tensor are given in Table 6.6. They are directly

related to the anisotropic indices of refraction in the visible region below the gap but

above the phonon frequencies. The values of nαα =
√
ε∞αα are given in Table 6.7 for

convenience. The static dielectric constant ε0αα in Table 6.6 applies for frequencies

well below the phonon frequencies.

From the above defined ε(ω) we can extract various related optical functions, in

the infrared range. In particular, the optical absorption α(ω) = 2ωIm[ε(ω)]/n(ω)

and the reflectivity R(ω) = |(ñ(ω) − 1)/(ñ(ω) + 1)|2 with ñ = n + iκ =
√
ε the
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Figure 6.5: IR and Raman spectra of o-MoO3. The Raman spectrum below 500 cm−1

is amplified by a factor of 5. Image taken from [28].

complex index of refraction as well as the loss function −Im{ε(ω)−1} are the most

closely related to the measurements. The zeros in the real part ε1(ω) = Re[ε(ω)] and

the peaks in the loss function indicate the LO mode frequencies, while the peaks in

ε2(ω) = Im{ε(ω} give the TO modes. The reflectivity shows the typical Reststrahlen

bands (RB) which jump to almost 100% reflectivity at the TO modes and fall back

at the LO modes. Note that the absorption coefficient shows peaks corresponding to

those in ε2(ω) but also shoulders at the zeros of ε1(ω). The infrared spectra for the

three polarizations are shown in Figs. 6.6,6.7,6.8. These correspond respectively to

B1u, B2u and B3u modes which are active for polarizations along z, y and x.

We may compare these with the IR absorption spectra of Seguin et al. [28] as seen

in Fig. 6.5 which however do not mention the polarization. The highest absorption

band found by them near 1000 cm−1 agrees well with our B1u peak at 909-945 cm−1

and corresponds to z-polarization, related to the Mo-O2 bond stretch of the shortest

bond. The next main feature in Seguin et al. [28] corresponds to our B2u spectrum

for y-polarization and starts at B6
2uT at 732 cm−1 and ends at the B6

2uL at 906 cm−1.

Note that this mode is also close to the strongest Ag mode in Raman. However, the

sharp feature on that peak at lower energy with much smaller LO-TO splitting is the

B6
1uT , B

6
1uL RB. The next broad feature is clearly dominated by the B3

3u RB between
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Figure 6.6: IR spectra for B3u modes.

535 cm−1 and 799 cm−1. In the lower frequency region, a RB occurs near 260 cm−1 in

the experiment, which corresponds to peaks in our spectra near 240 cm−1 and stems

mostly from the x polarization B2
3u mode. A less intense RB is seen near 350 cm−1

which corresponds to our B4
2u mode.

6.3.4 Raman spectra

The Raman cross-section for the Stokes process (energy loss) for each mode is given

by,

dS

dΩ
=

(ω0 − ωm)4

c4
|ei ·αm · eo|2

h̄

2ωm
(nm + 1) (6.6)

where ω0 is the incident light frequency, ωm the mode frequency, and nm is the phonon

occupation number nm = [exp (h̄ωm/kBT )− 1]−1, ei and eo refer to the incident and

the scattered polarization directions and αm is the second-rank Raman susceptibility

tensor for mode m which is given by,

αmαβ =
√
V
∑
κγ

∂χαβ
∂τκγ

Um(κγ), (6.7)
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Figure 6.7: IR spectra for B2u modes.
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Figure 6.8: IR spectra for B1u modes.
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Table 6.8: Raman tensor components.

Ag Ag Ag
a = αxx b = αyy c = αzz

1.99× 10−3 3.34× 10−3 −6.09× 10−5

−6.93× 10−3 −3.85× 10−3 −2.39× 10−4

3.84× 10−3 1.83× 10−3 −2.69× 10−3

1.04× 10−2 1.16× 10−2 −1.22× 10−4

−6.95× 10−3 3.32× 10−3 −3.98× 10−4

2.97× 10−3 4.26× 10−3 −9.03× 10−3

3.20× 10−2 7.01× 10−2 4.84× 10−4

1.52× 10−2 1.90× 10−2 3.04× 10−2

B1g B2g B3g

d = αxy e = αxz f = αyz
3.24× 10−3 −3.09× 10−3 1.00× 10−3

−3.92× 10−3 3.67× 10−3 7.40× 10−4

1.17× 10−2 −9.62× 10−3 1.33× 10−3

9.17× 10−3 −1.72× 10−2 2.16× 10−4

−7.88× 10−3

1.26× 10−3

8.75× 10−4

−9.53× 10−4
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Figure 6.9: Raman spectrua for Ag modes.

in terms of Um(κγ),the eigenvector of the m-th vibrational mode and the derivative

of the susceptibility vs. atomic displacements.

The Raman tensor elements are given in Table 6.8. The Raman spectra for dif-

ferent scattering geometries, denoted by ki(eieo)ko with ki/o the incident/scattered

wavevector and ei/o the incident and scattered light polarization are given in Figs.

6.9,6.10, 6.11 and 6.12. For Ag modes corresponding to parallel polarizations, the

intensity of the spectrum depends on the polarization selected. For z(xy)z (transmis-

sion) or z(xy)z̄ (reflection) one measures B1g modes, for xz-polarizations one measures

B2g and for yz polarization one measures B3g modes.

One can see that the Ag have by far the strongest intensities. The B3g modes are

the weakest. The strongest Ag mode at 727 cm−1 in yy polarization corresponds to a

mode with mostly in-plane eigendisplacements of Mo-O1 bond stretches. It also has

fairly strong xx intensity but negligible zz motion because it does not involve motions

normal to the layer. On the other hand, the Ag mode at 945 cm−1 has its strongest

polarization as zz and corresponds to a Mo-O2 stretch mode. The strongest B1g mode

is at 259 cm−1 while the strongest B2g mode are at 270 cm−1 and 652 cm−1. All modes
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Figure 6.10: Raman spectrum for B1g modes, scattering geometry z(xy)z.
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Figure 6.11: Raman spectrum for B2g modes, scattering geometry y(xz)y.
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Figure 6.12: Raman spectrum for B3g modes, scattering geometry x(yz)x.

below ∼ 500 cm−1 are significantly weaker. The three most prominent modes, Ag at

945 cm−1, 727 cm−1 and the B1g mode at 652 cm−1 agree well with the experimental

spectrum of Seguin et al. [28] shown in Fig. 6.5 apart from our underestimates of

these frequencies compared to the experiment.

6.4 Conclusions

In this chapter, we have presented a DFPT study of the phonons in orthorhombic

α-MoO3 with an emphasis on the Raman and infrared spectra. Agreement in phonon

frequencies with experimental data is obtained to within about 10 % giving mostly

an underestimate of the phonon frequencies in spite of using the LDA, which here

apparently gives the volume very close to the experiment, while usually it tends to

underestimate lattice constants. However the intensities in Raman spectra and the

assignments of the major features are in good agreement with the experimental data

reported in Seguin et al. [28], which also include previously measured values.

As we have seen from the eigendisplacement figures for various vibrational modes
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in the bilayer structure, it seems some of the modes lead to interestig dynamics such

as to cause one layer to slide past another or pull the layers apart. As an outlook for

my future work, it would be interesting to study the monolayer structure as well and

study the shifts in these phonon frequencies.
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Chapter 7

Conclusions

In this thesis, we mainly focussed on two classes of materials, the wide band-gap oxides

and the group II-III-IV nitride alloy system. In view of the growing interest in these

materials with wide variety of applications, the goal of this thesis was to perform first-

principles calculations and enhance the understanding of these materials. In chapter

3, we performed the QSGW band structure calculations for β-Ga2O3 and reported

the value of the band gap to be 4.9 eV. While initial calculations at the QSGW level

gave an overestimate of the band gap, good agreement with experiment was obtained

when (1) the calculation is sufficiently converged in the k-point mesh on which the

GW self-energy is calculated and (2) a reduction of the screening by 20% justified for

many materials on the basis of including electron-hole interactions is included. On the

other hand, electron-phonon coupling or specifically the lattice-polarization effect of

the screening were found ultimately to be negligible. In addition to the band structure

calculations, we also reported the anisotropy in the absorption onset. New insights

were gained as we were studying the alloy system, (AlxGa1−x)2O3 in chapter 4. It was

found that the LPC corrections in our initial calculations were significantly higher in

comparison with the new calculations. It was primarily because of our use of a coarse

k-point mesh in the earlier work and thus the LPC corrections overestimated for the
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electron-phonon interactions. We studied the alloy system for both the phases α and

β. Al2O3 is found to be most stable in the rhombohedral crystal structure(R3̄c) as the

most stable α phase with a band gap of ∼ 8.8 eV. Likewise, Ga2O3 is found to be most

stable in the monoclinic crystal structure(C2/m) as the most stable β phase. Both the

phases consist of 10-atom unit cells with 4 cation positions available. The monoclinic

cell has 2 tetrahedral and 2 octahedral cation coordinations while in the rhombohedral

structure, all the 4 cation sites are octahedrally coordinated. The compositions of

the alloy were varied from 0% Al concentration to 100% in the increments of 25%.

The compositions were reported to be in excellent agreement with Vegard’s law and

the band structures for the lowest energy configurations for each composition were

presented. With the finer k-point mesh of 5×5×3 for monoclinic and 4×4×4 for the

rhombohedral structure, the results were found to have the LPC corrections to be less

than 0.1 eV and were in excellent agreement with the computational work reported

by Peelaers et. al. [79] around the same time.

In chapter 5, we presented the first-principles calculations of the vibrational prop-

erties of ZnGeGa2N4, an alloy compound formed at 50% composition of GaN and

ZnGeN2. Of the many possible configurations, we focussed on the lowest energy,

octet preserving superlattice formed by half a cell of ZnGeN2 and half GaN along the

b-axis of ZnGeN2 in the Pbn21 structure. Using density functional perturbation the-

ory implemented in ABINIT [39], we calculated the phonon modes at the zone center,

Γ and presented the group theoretical analysis of the modes and several related quan-

tities like the dielectric constants, Born effective charges, and oscillator strengths,

which were then used to calculate the LO-TO splittings as well as the IR and Raman

spectra. We also reported the element wise contributions as well as the total phonon

density of states, and the phonon band structures. In chapter 6, we studied the vibra-

tional properties of the bilayered, orthorhombic α-MoO3. The phonon modes at the

zone center Γ, the group theoretical analysis, and the related properties like dielectric
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constants, Born effective charges, oscillator strengths are calculated and compared

with the experimental work presented by Seguin et. al. [28]. Good agreement was

obtained with the experimental data but our calculations provide additional details

such as the polarization dependence of the IR and Raman spectra, which were not

explicitly resolved in the previous experimental work. Our calculations also provide

insights into the nature of the modes and why many modes occur in groups of four

with closely related frequencies. This is related to the relative phases of the atomic

motions in the bilayers relative to each other and those of the two layers that make

up each bilayer. We also gained insight into the importance of the weak inter bilayer

interactions for particular modes.
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Appendix

A.1 Supplemental material for ZnGeGa2N4

In this section we provide eigendisplacement patterns for each of the modes. First,

in Table A.1 we give the positions of the 16 atoms in the cell and their symmetry

relations. The structure and the symmetry elements are given in Fig. A.1.

The eigen displacement patterns of the modes are shown as bar graphs showing

ux, uy, uz displacements of each of the atoms labeled as in Table A.1 and normalized

by multiplying the actual displacements of atom κ by 1
√
Mκ. The patterns of sign

changes in ux, uy, uz displacements between the atoms related by symmetry are given

in Table A.2 for each type of Wyckoff position.

The a1 mode displacement patterns are shown in Figs. 7.2-7.15, the b1 modes in

Figs. 7.16-7.24, the b2 in Figs. 7.25-7.37 and the a2 in Figs. 7.38-7.42. The TO and

LO mode displacements of corresponding modes are shown together.
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Table A.1: Reduced coordinates of atoms in the cell and the symmetry elements
linking them to the first atom of each type. Note that 21z is a two fold screw axis
along z with translation in the z direction by c/2 and placed at x = 0 y = −b/3
and is thus accompanied by an additional translation of y = b/3, mx is an ordinary
reflection but with translation x = a/2 because it is placed at x = a/4, ny is a glide
mirror plane with translations x = a/2, z = c/2 and an additional y = b/3 because
of its placement at y = b/6.

atom x y z symmetry elements
Ga1 0.001 -0.002 0.000 1
Ga2 0.501 0.335 0.500 ny
Ga3 0.499 -0.002 0.000 mx

Ga4 -0.001 0.335 0.500 21z

Zn1 0.250 0.830 0.500 1, mx

Zn2 0.750 0.503 0.000 21z, ny
Ge1 0.750 0.838 0.500 1, mx

Ge2 0.250 0.495 0.000 21z, ny
NGa1 -0.015 -0.001 0.376 1
NGa2 0.485 0.334 0.876 ny
NGa3 0.515 -0.001 0.376 mx

NGa4 0.015 0.334 0.876 21z

NZn1 0.250 0.816 0.892 1, mx

NZn2 0.750 0.517 0.382 21z, ny
NGe1 0.750 0.850 0.857 1, mx

NGe2 0.250 0.483 0.357 21z, ny

Figure A.1: Pmn21 structure of ZnGeGa2N4 projected along c-axis indicating sym-
metry elements. Image taken from [25].
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Table A.2: Sign changes of displacements between symmetry related atoms 1-4 for
Wyckoff 4a and 1-2 for Wyckoff 2b atom ordered as in Table A.1.

irrep 4a 2b
ux uy uz ux uy uz

a1 + +−− +−+− + + ++ 00 +− ++
a2 +−+− + +−− +−−+ +− 00 00
b1 + + ++ +−−+ + +−− ++ 00 00
b2 +−−+ + + ++ +−+− 00 ++ +−

Figure A.2: an1 modes eigendisplacements (a) LO (b) TO for n = 1

Figure A.3: an1 modes eigendisplacements (a) LO (b) TO for n = 2
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Figure A.4: an1 modes eigendisplacements (a) LO (b) TO for n = 3

Figure A.5: an1 modes eigendisplacements (a) LO (b) TO for n = 4

Figure A.6: an1 modes eigendisplacements (a) LO (b) TO for n = 5
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Figure A.7: an1 modes eigendisplacements (a) LO (b) TO for n = 6

Figure A.8: an1 modes eigendisplacements (a) LO (b) TO for n = 7

Figure A.9: an1 modes eigendisplacements (a) LO (b) TO for n = 8
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Figure A.10: an1 modes eigendisplacements (a) LO (b) TO for n = 9

Figure A.11: an1 modes eigendisplacements (a) LO (b) TO for n = 10

Figure A.12: an1 modes eigendisplacements (a) LO (b) TO for n = 11
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Figure A.13: an1 modes eigendisplacements (a) LO (b) TO for n = 12

Figure A.14: an1 modes eigendisplacements (a) LO (b) TO for n = 13
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Figure A.15: bn1 modes eigendisplacements (a) LO (b) TO for n = 1

Figure A.16: bn1 modes eigendisplacements (a) LO (b) TO for n = 2

Figure A.17: bn1 modes eigendisplacements (a) LO (b) TO for n = 3
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Figure A.18: bn1 modes eigendisplacements (a) LO (b) TO for n = 4

Figure A.19: bn1 modes eigendisplacements (a) LO (b) TO for n = 5

Figure A.20: bn1 modes eigendisplacements (a) LO (b) TO for n = 6
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Figure A.21: bn1 modes eigendisplacements (a) LO (b) TO for n = 7

Figure A.22: bn1 modes eigendisplacements (a) LO (b) TO for n = 8

Figure A.23: bn1 modes eigendisplacements (a) LO (b) TO for n = 9
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Figure A.24: bn2 modes eigendisplacements (a) LO (b) TO for n = 1

Figure A.25: bn2 modes eigendisplacements (a) LO (b) TO for n = 2

Figure A.26: bn2 modes eigendisplacements (a) LO (b) TO for n = 3
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Figure A.27: bn2 modes eigendisplacements (a) LO (b) TO for n = 4

Figure A.28: bn2 modes eigendisplacements (a) LO (b) TO for n = 5

Figure A.29: bn2 modes eigendisplacements (a) LO (b) TO for n = 6
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Figure A.30: bn2 modes eigendisplacements (a) LO (b) TO for n = 7

Figure A.31: bn2 modes eigendisplacements (a) LO (b) TO for n = 8

Figure A.32: bn2 modes eigendisplacements (a) LO (b) TO for n = 9
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Figure A.33: bn2 modes eigendisplacements (a) LO (b) TO for n = 10

Figure A.34: bn2 modes eigendisplacements (a) LO (b) TO for n = 11

Figure A.35: bn2 modes eigendisplacements (a) LO (b) TO for n = 12

122



APPENDIX A. APPENDIX

Figure A.36: bn2 modes eigendisplacements (a) LO (b) TO for n = 13
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Figure A.37: an2 mode eigendisplacements for (a) n = 1 (b) n = 2

Figure A.38: an2 mode eigendisplacements for (a) n = 3 (b) n = 4

Figure A.39: an2 mode eigendisplacements for (a) n = 5 (b) n = 6
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Figure A.40: an2 mode eigendisplacements for (a) n = 7 (b) n = 8

Figure A.41: an2 mode eigendisplacements (a) n = 9 and (b) n = 10.
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