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The Trefoil: An Analysis in Curve Minimization and Spline Theory

Abstract

by

TROY ARTHUR CLARK

We will consider a variational problem arising out of the localized induction equation.

We are motivated by the idea of finding “fair” splines, by considering an energy

functional involving the derivative of the curvature. Among the solutions to the

Euler-Lagrange equations are two elastic curves and the Kiepert Trefoil. We will

introduce features and properties of the trefoil. One of the features of the trefoil is

that it is an algebraic curve with a simple parametrization to handle. In addition to

this, we will show that the trefoil is a model for a two-parameter spline and provide

examples of how pieces of the trefoil can be cut, transformed and fitted so that the

resulting curve is aesthetically “fair”.
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Introduction

What is the goal of this thesis? Well, we are studying a family of curves defined

by a variational problem arising from the Localized Induction Equation. Among

the solutions to the problem, two special ones are elastic curves. The third is the

Kiepert trefoil, which has a number of remarkable properties. The trefoil is a model

of a two parameter family of splines. We will show that it satisfies the conditions

to be such a model and explore its properties.

In Chapter 1, we will provide a brief introduction to the calculus of variations.

We will need to understand the theory behind the subject due to its use to

find variational solutions to our problem. We will look at the derivations of the

Euler-Lagrange and the Euler-Poisson equations, both key in finding solutions that

extremize functionals. It is in this chapter where we will propose a new energy

functional where its solutions would be considered as good candidates for splines.

One of these solutions is the Kiepert trefoil. Further work in this claim will be

explored in Chapter 5.

Chapter 2 will discuss exactly what an elliptic function is and some of their

properties. We will also discuss different types of elliptic function: Weierstrass,

Jacobi and Dixon since our solutions will be in terms of these functions. Further

calculations of these functions will be provided in Chapter 5.

Chapter 3 will discuss splines. It is here where the notion of “fairness” will be

discussed and different variations of the definition. We will also cover some desirable

properties that we wish for splines to satisfy, such as roundness, extensionality and

x



locality. Levien’s criterion for a curve to be a model for a two-parameter family of

splines will be introduced, along with a more geometric proof for general curves.

Chapter 4 gives a small history of the Minimum Energy Curve, the Euler elastica

and the derivation of its solutions via calculus of variations and differential

geometry. These derivations will be needed in the next chapter when we derive

the Euler-Lagrange equation for our proposed functional. The chapter ends with

a discussion about the Minimum Variation Curve, defined as the integral of the

squared change of curvature. We will discuss some properties this functional holds

and why is it a better metric than the Minimum Energy Curve.

Chapter 5 is the heart of this thesis, where we analyze the special solutions of our

proposed metric for desirable candidates for splines. We will primarily focus on the

Kiepert trefoil and its properties. We will also explore scale-invariant minimizations

of our special solutions along with proposed analytical/numerical solutions based

on the behaviors of elliptic functions.

In Chapter 6, we will start with observing a special value that came from the

criterion mentioned in Chapter 3. This value is called the aberrancy and has a

special geometric relationship to curves. We will show that the three solutions to

our proposed metric satisfy the criterion mentioned in Chapter 4. In addition to

this, we will also provide examples of how the trefoil produces a suitable spline for

circumscribed circles around a regular polygon and a few special cases with general

polygons.

In Chapter 7, we will close out the thesis with some numerical computations of the

xi



trefoil spline via Mathematica. These numerical solutions will provide us a way to

find certain measures of angles in our spline given a set of predetermined values. We

will also present a number of non-circular examples of how the trefoil can be used

in splines, primarily in fonts.

xii



Chapter 1

Calculus of Variations

1.1 An Introduction

The formation of calculus of variations came almost simultaneously with that of

differential and integral calculus. While it can be argued that the first person to solve

a problem of calculus of variations was Queen Dido of Carthage, it is undisputed that

Sir Issac Newton was the first mathematician to publish a result in this field [61]. In

1696, Johann Bernoulli furthered the development by publishing a letter in which he

advanced the problem of the line of quickest descent, the brachistochrone problem.

In 1698, Jacob Bernoulli solved the problem involving geodesics, which determined

the line of minimum length that connects two points on a surface. However, a more

general solution would later be formulated by both Leonhard Euler and Joseph-Louis

Lagrange [21], [26]. Calculus of variations was just a mathematical curiosity and

it was not until the works of Leonhard Euler that it became its own independent

mathematical discipline. One of Euler’s contributions was his general solution to

the isoperimetric problem, which asks to find a closed curve of a given length such

that it bounds a maximum area. Due to his own extensive work in the subject,

some may even consider Euler to be the founder of calculus of variations. In 1760,
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Joseph-Louis Lagrange introduced a general method of dealing with variational

problems connected to mechanics [41].

In differential calculus, if given a function f(x), we find the extrema by taking the

derivative f ′(x) and set it equal to 0. The values of x where f ′(x) = 0 tell us where

the slope of the curve is constant, hence why these values are called stationary points.

However, we would have to do further testing to see whether these points qualify as

maxima, minima or neither. This is usually done by the utilization of the Second

Derivative Test.

The goal of calculus of variations is to systematize the theory of the extrema of

functions of a finite number of independent variables [41]. Here, we deal with

functionals, which are maps from a space of functions (which can be continuous,

smooth, etc.) to R or C. Instead of finding stationary points, we will need to find

stationary functions, which will involve differential equations. For the purpose of

calculus of variations, the functionals F [y] are generally written as integrals in the

form

F [y] =

∫ x1

x0

f(x, y(x), y′(x))dx.

We wish to find the extrema of this function which satisfies the boundary conditions

of

y(x0) = y0 y(x1) = y1.

Numerous laws and problems of mechanics and physics can be reduced to the

statement that a certain functional in a given process has to reach a maximum

2



or minimum. Such laws and problems are called variational. Some variational

principles or consequences of them include the principle of least action, the law of

the conservation of energy, the law of the conservation of motion, amongst others

[26].

1.2 The Euler-Langrange Equation

Consider the variational problem

F [y] =

∫ x1

x0

f(x, y(x), y′(x)) dx,

where the solution satisfies the boundary conditions

y(x0) = y0 y(x1) = y1.

Suppose there is a solution y(x) for the problem above which satisfies the boundary

conditions and produces the functional’s extremum. We will also assume that y(x)

is twice differentiable. To show that this function produces an extremum, we will

need to show that any alternative must fail [46].

Consider a family of admissible functions:

Y (x) = y(x) + εη(x),

where η(x) is an arbitrary fixed function of x, that is also twice-differentiable and

vanishes at both endpoints

η(x0) = η(x1) = 0.

3



This ensures us that Y (x0) = y0 and Y (x1) = y1.

Now since Y (x) satisfies the boundary conditions, we can substitute Y (x) for y(x)

in the functional

F [ε] =

∫ x1

x0

f(x, Y (x), Y ′(x)) dx,

where Y ′(x) = y′(x) + εη′(x).

The new functional is identical to the original when ε = 0 and reaches its extremum

when

∂F [ε]

∂ε

∣∣∣
ε=0

= 0.

Performing the derivation and taking the resulting derivative into the integral (the

limits of integration are fixed) with the chain rule results

∂F [ε]

∂ε
=

∫ x1

x0

(∂F
∂Y

dY

dε
+
∂F

∂Y ′
dY ′

dε

)
dx.

Now clearly,

dY

dε
= η(x) and

dY ′

dε
= η′(x),

which results in

∂F [ε]

∂ε
=

∫ x1

x0

(∂F
∂Y

η(x) +
∂F

∂Y ′
η′(x)

)
dx.

Integrating the second terms by parts yields

4



∫ x1

x0

( ∂F
∂Y ′

η′(x)
)
dx =

∂F

∂Y ′
η(x)

∣∣∣x1
x0
−
∫ x1

x0

( d
dx

∂F

∂Y ′

)
η(x) dx

= 0−
∫ x1

x0

( d
dx

∂F

∂Y ′

)
η(x) dx

= −
∫ x1

x0

( d
dx

∂F

∂Y ′

)
η(x) dx

By substitution, the problem becomes

∂F [ε]

∂ε
=

∫ x1

x0

(∂F
∂Y
− d

dx

∂F

∂Y ′

)
η(x) dx.

The extremum is achieved when ε = 0, thus

∂F [ε]

∂ε

∣∣∣
ε=0

=

∫ x1

x0

(∂F
∂y
− d

dx

∂F

∂y′

)
η(x) dx.

Now, we need to state a lemma:

Lemma 1.2.1 (The Fundamental Lemma of the Calculus of Variations) Suppose

that G(x) is continuous and η(x) is continuously differentiable over the interval

[x0,x1] such that η(x0) = η(x1) = 0. Then if for all such η(x),

∫ x1

x0

η(x)G(x) dx = 0,

then

G(x) = 0

in the whole interval.

Proof . By means of contradiction, assume that there exists at least one such
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value ζ where x0 ≤ ζ ≤ x1 such that G(x) is not zero. Without loss of generality,

suppose G(ζ) > 0. Then by the condition of continuity of G(x), there must be a

neighborhood ζ − h ≤ ζ ≤ ζ + h where G(x) > 0. However, the integral becomes

∫ x1

x0

η(x)G(x) dx > 0,

for the right choice of η(x), which forms our contradiction. Hence, the statement of

the lemma must be true.

By applying the lemma to the work above, we arrive at the Euler-Lagrange Equation

∂F

∂y
− d

dx

∂F

∂y′
= 0,

which gives us a necessary and sufficient condition for y(x) to be a stationary function

of F [y] [46]. The Euler-Lagrange Equation can be generalized for functionals containing

higher derivatives or multiple functions. One such generalization for when higher

derivatives are involved, the Euler-Poisson equation, will be discussed and derived

in the next section. Believe it or not, the derivation of these equations is actually the

easiest part of the calculus of variations. The hardest part is actually solving these

equations, which will involve differential equations. These differential equations may

be of higher order and may or may not even be linear!

1.3 The Euler-Poisson Equation

The Euler-Lagrange equation will not be enough to solve general variational problems

since it can only handle functionals written in terms of the first derivative. For this,

we will need to define a more general version of the Euler-Lagrange equation called

the Euler-Poisson equation.
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Suppose we have a variational problem with a functional that has a single function

but instead of having a first derivative, it has higher order ones

J [y] =

∫ x1

x0

f(x, y, y′, ..., y(m)) dx.

In addition, we are given the following boundary conditions

y(x0) = y0, y(x1) = y1

y′(x0) = y′0, y′(x1) = y′1

y′′(x0) = y′′0 , y′′(x1) = y′′1

...

y(m−1)(x0) = y
(m−1)
0 , y(m−1)(x1) = y

(m−1)
1

As noted in the first chapter, consider a family of admissible functions:

Y (x) = y(x) + εη(x),

where η(x) is an arbitrary fixed function of x, that is continuously differentiable and

vanishes at both endpoints

η(x0) = η(x1) = 0,

as does its derivative

η′(x0) = η′(x1) = 0.

7



The variational problem in terms of this set of functions is:

J [ε] =

∫ x1

x0

f(x, Y, Y ′, ..., Y (m)) dx

Taking the derivative with respect to ε gives

dJ

dε
=

∫ x1

x0

d

dε
f(x, Y, Y ′, ..., Y (m)) dx

and by using the chain rule, we can rewrite the integrand as

∂f

∂Y

dY

dε
+

∂f

∂Y ′
dY ′

dε
+

∂f

∂Y ′′
dY ′′

dε
+ · · ·+ ∂f

∂Y (m)

dY (m)

dε
.

Now by substituting Y and its derivatives with respect to ε yields

∂f

∂Y
η +

∂f

∂Y ′
η′ +

∂f

∂Y ′′
η′′ + · · ·+ ∂f

∂Y (m)
η(m).

The function then becomes

dJ

dε
=

∫ x1

x0

( ∂f
∂Y

η +
∂f

∂Y ′
η′ +

∂f

∂Y ′′
η′′ + · · ·+ ∂f

∂Y (m)
η(m)

)
dx.

Integrating by terms produces

dJ

dε
=

∫ x1

x0

∂f

∂Y
η dx+

∫ x1

x0

∂f

∂Y ′
η′ dx+

∫ x1

x0

∂f

∂Y ′′
η′′ dx+ · · ·+

∫ x1

x0

∂f

∂Y (m)
η(m) dx

and integrating by parts gives

dJ

dε
=

∫ x1

x0

η
∂f

∂Y
dx−

∫ x1

x0

η
d

dx

∂f

∂Y ′
dx+

∫ x1

x0

η
d2

dx2

∂f

∂Y ′′
dx−· · · (−1)m

∫ x1

x0

η
d(m)

dx(m)

∂f

∂Y (m)
dx.
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Factoring the auxiliary function η out and combining the terms simplifies to

dJ

dε
=

∫ x1

x0

η
( ∂f
∂Y
− d

dx

∂f

∂Y ′
+

d2

dx2

∂f

∂Y ′′
− · · · (−1)m

d(m)

dx(m)

∂f

∂Y (m)

)
.

At the extremum at ε = 0 and using the Fundamental Lemma of the Calculus of

Variations, we arrive at the Euler-Poisson Equation

∂F

∂y
− d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y′′
− · · · (−1)m

d(m)

dx(m)

∂f

∂y(m)
= 0.

1.4 Application: A Proposed Energy Functional

A question that we will face over and over again is the idea of fairness. In other

words, we want to explore if there is a quantified way to determine whether a curve

is “nice”. We can use this quantity to compare: Given two curves, which one looks

aesthetically better? Functionals have been proposed for decades as a universal

measure, or metric, of fairness. In this thesis, we will explore various functionals

which are used to describe the “energy” of a curve. The notion of energy is derived

from the study of elastic curves, where the functional
∫
k(s)2 ds represents the

bending energy of the elastica. The curve is of fixed length and has fixed endpoints,

where s denotes the arc-length of the curve and k denotes the (signed) curvature.

The functional is often referred to in spline theory as the Minimum Energy Curve,

or MEC, and will be explored in further detail later on. However, the MEC does

have a few shortcomings which causes it to fail a few desirable properties for splines

(such as roundness). Thus, a new functional called the Minimum Variation Curve,

or MVC, was proposed. The MVC is represented as the integral of the squared

change of curvature, i.e.
∫
k̇(s)2 ds. The MVC does satisfy some properties that

the MEC fails to (such as roundness). But we wonder if there is another functional
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that we can propose as a better fairing metric, a better “energy” curve?

We notice that the functional
∫
k(s)2 ds actually belongs to a hierarchy of functionals.

The filament equation (also called the Betchov-Da Rios equation or the localized

induction equation) is an evolution equation on arc-length parameterized curves

Γ(s) in R3 defined as

Γ′ = Γ̇× Γ̈,

where Γ′ is a derivative with respect to time and Γ̇, Γ̈ are derivatives with respect to

arc-length s along the curve Γ. It is a solition equation for space curves, best

known as a model for the behavior of thin vortex tubes in an incompressible,

inviscid, three dimensional fluid. This is an infinitely dimensional, completely

integrable Hamiltonian system [9], [52]. The filament equation possesses infinitely

many conserved quantities, all involving integrals in terms of the curvature k and

the torsion τ of a curve. This forms a hierarchy of Poisson commuting integrals

which start with

∫
1 ds,

∫
τ ds,

∫
k2 ds,

∫
k2τ ds,

∫ (
k̇2 + k2τ 2 − 1

4
k4
)
ds, ...

Suppose if we take a look at the hierarchy of integrals and examine their stationary

functions via calculus of variations. From
∫

1 ds, the equilibria are geodesics.

The equilibria for the linear combinations of
∫

1 ds and
∫
τ ds form helices. The

equilibria for the linear combinations of
∫

1 ds,
∫
τ ds and

∫
k2 ds form Kirchhoff

elastic rods [52]. For the purpose of this paper, we will deal with plane curves in

R2, where the torsion element τ = 0. With this in mind, what about the next one

in line that does not completely vanish when τ = 0,
∫ (
k̇2 − 1

4
k4
)
ds? What do

equilibria look like and if we minimize this integral, what functions do we expect as
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a result?

For simplification, multiply that particular integral by 1
2
. Given the functional

F =

∫
1

2
k̇2 − 1

8
k4 ds

in the plane R2, we wish to minimize it. For this, we will need to derive the variation

formulas for k2, k4 and k̇2 by using differential geometry. These derivations will be

described and formulated later in the thesis. But after all the work is done, we will

have the Euler-Lagrange equation

E =
....
k +

5

2
k2k̈ +

5

2
kk̇2 +

3

8
k5 = 0.

As for solutions to the Euler-Lagrange equation above, let’s assume that a solution

has the form

1

2
k̇2 = −1

8
k4 + φ(k).

Then φ satisfies the third order equation

0 = 2φ′′′φ− 1

4
k4φ′′′ + φ′′φ′ + k2φ′ − 1

2
k3φ′′ − kφ, where ′ =

d

dk

which has first integral

C = 2φφ′′ − 1

2
φ′2 − 1

4
k4φ′′ +

1

2
k3φ′ − 1

2
k2φ.

This has polynomial solutions

φ1(k; a) = ak2 + 4a2 when C = 16a4
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and

φ2(k; a) = bk when C = −1

2
b2

.

Solving 1
2
k̇2 = −1

8
k4 + φ(k) in the case φ = φ1 yields the Jacobi elliptic function

k = Acn(αs, p) where A = 2αp

where the elliptic modulus is

p2 =
3−
√

3

6
or p2 =

3 +
√

3

6
.

Figure 1.1: p2 = 3−
√

3
6

Figure 1.2: p2 = 3+
√

3
6

The corresponding solution curves are certain elastic curves, which we will provide

their corresponding graphs [See Figures 1.1 and 1.2]. Solving 1
2
k̇2 = −1

8
k4 + φ(k) in
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the case of φ = φ2 yields the Weierstrass elliptic function

k =
1

℘(s; 0, 1
4
)
.

The corresponding solution curve is the Kiepert trefoil [See Figure 1.3].

Figure 1.3: The Kiepert Trefoil

The highlight of this thesis will be an analysis of the Kiepert trefoil. The trefoil is

a particularly fascinating curve, with many astounding properties. But as we will

see, the trefoil is actually a good candidate for a model for a two parameter family

of splines. We will derive the reasons why and provide a few examples as to how

well pieces of the trefoil can be used to approximate an inscribed circle around a

polygon.
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Chapter 2

Elliptic Functions

2.1 An Introduction to Elliptic Functions

While elliptic functions and curves do not resemble ellipses, the origin of their name

comes from the integral used when calculating the arc length of an ellipse, which was

first studied by John Wallis in 1655. Both Wallis and Sir Issac Newton published

an infinite series expansion for the arc length of an ellipse. In the late 1700s,

Adrien-Marie Legendre began to use elliptic functions in mathematical applications

to physics. These applications included the movement of the pendulum and the

deflection of a thin elastic bar (which we will explore in the chapter discussing the

elastica). Legendre spent over forty years of his life working on elliptic functions and

the classification of elliptic integrals. His first published writings on elliptic integrals

consisted of two papers in 1786. His major work on elliptic functions appeared in a

three volume series between 1811 and 1816. He then repeated much of his work in

another three volume series, which was published between 1825 and 1830. Despite

all of the time, work and dedication he put into this research on elliptic functions,

Legendre’s work would go unnoticed. Gauss would later make connections between

elliptic functions and trigonometric functions, which would also go unnoticed.
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That is, until 1827, when Niels Henrik Abel and Carl Gustav Jacob Jacobi revived

the subject. Not only they brought life back to the works of Legendre and Gauss,

they also utilized elliptic functions into their individual works, advancing the fields

of mathematics and physics. Abel discovered how elliptic functions were doubly

periodic while Jacobi found that elliptic functions were beneficial when it came to

integrating second order kinetic energy equations. Jacobi’s work showed that the

motion equations (in rotational form) are integrable only for the three cases of the

pendulum, the symmetric top in a gravitational field and a freely spinning body.

All of which have solutions in terms of elliptic functions. In 1862, Karl Weierstrass

would generalize the theory of elliptic functions based on his ℘-function to show that

they can be applied to problems in both algebra and geometry [3]. One of his results

was that any elliptic function can be expressed in terms of ℘ and its derivative ℘′

[22]. In 1890, Alfred Cardew Dixon introduced his elliptic functions which displayed

fascinating symmetries with hexagons.

Although not taught in the standard collegiate mathematics curriculum, elliptic

functions are still used in many applications today. In physics, they are used to

calculate the particle charge from its curved path through a magnetic field. In

mechanics, they are used to make calculations about the motion of certain objects.

The classic example in mechanics is the motion of pendulums. In astronomy, they

are used to define the trajectories of spacecraft. One example was the Dawn probe,

which explored the asteroid belt, primarily Ceres and Vesta [3].

Before we define what an elliptic function is, let us recall a few notions from complex

analysis. Let D be a connected open set in C. We say that a function f(z) defined on
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D is analytic if f ′(z) exists everywhere in D. In relation to that, we say a function

f : D → C ∪ {∞} is meromorphic if whenever f(a) = ∞, then a is an isolated

point, and there exists a positive integer n such that limz→a(z − a)nf(z) exists and

is nonzero. Such a value a is called a pole and n is called the order of the pole [83].

Suppose that f(z) is a complex function of one variable. A value L is called a period

of a function if

f(z + L) = f(z)

for every z where it is defined. Elementary examples of period functions would be

trigonometric functions (for example, sin(z) and cos(z) each have a period of 2π).

Now suppose that f(z) has two non-parallel periods, ω1 and ω2 ∈ C, which obeys

the following property

f(z + ω1) = f(z), f(z + ω2) = f(z),

whose ratio ω1

ω2
is not purely real. Then, the function f(z) is called a doubly-periodic

function with periods ω1 and ω2 (we need this condition to ensure these values

correspond to different directions in the complex plane) [68].
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Figure 2.1: The lattice generated by ω1 and ω2. Reprinted from [17].

We define a lattice to be a module over the integers

Λ = Zω1 + Zω2 := {mω1 + nω2 : m,n ∈ Z},

where ω1

ω2
/∈ R. By defining such a lattice, we can see that Λ acts on C by (ω, z) 7→ z+

ω and that all discrete translational subgroups of C with two independent directions

“tile” the complex plane with parallelograms. For instance, the complex numbers

0, ω1, ω2, ω1 +ω2 define a parallelogram on the complex plane. If we choose ω1, ω2 to

be values of smallest modulus, then we may define a fundamental parallelogram for

the lattice as a connected, compact subset of C such that its translates under the

action of Λ tiles the plane [See Figure 2.2]. In other words, we define the fundamental

parallelogram of Λ to be the region F such that

F := {aω1 + bω2 : 0 ≤ a, b < 1}.
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Figure 2.2: A fundamental parallelogram. Reprinted from [17].

We can now formally define an elliptic function. A function f(z) is called elliptic if

it is meromorphic and is doubly-periodic with respect to Λ. For this thesis, we will

focus on three types of elliptic function: Weierstrass, Jacobi and Dixon. Two of the

solutions for our proposed functional involve Jacobi elliptic functions and the trefoil

can be represented in terms of both Weierstrass and Dixon elliptic functions. We

will explore these different types in detail.

2.2 The Weierstrass ℘ Function

The first example of an elliptic function is the Weierstrass ℘ Function associated

with a lattice Λ:

℘ =
1

z2
+

′∑
ω∈Λ

1

(z − ω2)
− 1

ω2

where the prime on the sum (’) denotes that the sum excludes terms with a denominator

of zero. It can be shown that ℘ is indeed an elliptic function. More than that, ℘

is an even function with a double pole at each lattice point. Even more astounding

is that any elliptic function can be written as a rational function of ℘(z) and its

derivative, ℘′(z) = −2
∑
ω∈Λ

1
(z−ω)3

.
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Define the modular invariants of the lattice as

g2 = 60

′∑
ω∈Λ

1

ω4
and g3 = 140

′∑
ω∈Λ

1

ω6.

Then, we can derive the first few terms of the Laurent series of φ(z) at z = 0:

℘(z) =
1

z2
+

′∑
ω∈Λ

1

ω2

((
1− z

ω

)−2

− 1
)

=
1

z2
+

′∑
ω∈Λ

∞∑
n=1

1

ωn−2
(n+ 1)zn

=
1

z2
+
∞∑
n=1

zn(n+ 1)

′∑
ω∈Λ

1

ωn+2

=
1

z2
+
g2

20
z2 +

g3

28
z4 +O(z6)

Note that the order of the summation can be interchanged since the series converges

uniformly on a compact neighborhood of the origin. The odd terms cancel out

due to −ω and ω are both in the lattice, so raising both to an odd power causes

them to cancel in the sum [17]. Using this expansion of ℘ and some rather tedious

calculation, the following theorem is proven in Chapling [17]:

Theorem 2.2.1 ℘ and its derivative ℘′ satisfy the following nonlinear differential

equation:

℘′2 = 4℘3 − g2℘− g3.

and its corollary

Corollary 2.2.2 ℘ is the inverse of the elliptic integral

∫ z

0

dw√
w3 − g2w − g3

.
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2.3 The Jacobi Elliptic Function

The most common type of elliptic functions are the Jacobi elliptic functions. These

functions parallel trigonometric functions, except that the unit circle is replaced

with an ellipse. William A. Schwalm gives a detailed, algebraic argument for the

derivation of the Jacobi elliptic functions in his lecture series [72]. For this paper,

we will base the derivation on the inversion of a particular elliptic integral.

The three standard Jacobi elliptic functions are the elliptic sine sn(u, k), the elliptic

cosine cn(u, k) and the delta amplitude dn(u, k). These functions are derived from

the inversion of the elliptic integral of the first kind

F =

∫ z

0

dz√
1− z2

√
1− k2z2

.

We let

u = F (φ, k) =

∫ φ

0

dt√
1− k2 sin2 t

where 0 ≤ k2 ≤ 1 and the upper bound on the elliptic integral F is often referred to

as the Jacobi amplitude, or am for short. The inversion of the elliptic integral yields

φ = F−1(u, k) = am(u, k).

From this, we can officially define the Jacobi elliptic functions:
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sinφ = sin(am(u, k)) = sn(u, k)

cosφ = cos(am(u, k)) = cn(u, k)√
1− k2 sin2 θ =

√
1− k2 sin2(am(u, k)) = dn(u, k)

Note that if the context makes clear as to what k is, then we may omit the modulus

(sn(u), cn(u), dn(u)) when writing these functions to make calculations less messy.

Some immediate consequences of the Jacobi elliptic definitions defined above are

sn2(u) + cn2(u) = 1, k2sn2(u) + dn2(u) = 1, sn(0) = 0, cn(0) = dn(0) = 1.

In total, there are twelve Jacobian elliptic functions, where the remaining nine can

be defined by the ratios of the three we have already defined. Before we start, one

may be tempted to relate standard trigonometry and state that sn(u)
cn(u)

= tn(u) for

some tangent equivalence to elliptic functions. While in some texts that is done,

there is a nicer notation devised by Gudermann and Glaisher in which the reciprocals

are indicated by reversing the letters [72]:

ns(u) =
1

sn(u)
, nc(u) =

1

cn(u)
, nd(u) =

1

dn(u)
.

Also, the ratios are named by catenation of the first letters, and so

sc(u) =
sn(u)

cn(u)
, cs(u) =

cn(u)

sn(u)
, sd(u) =

sn(u)

dn(u)
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ds(u) =
dn(u)

sn(u)
, cd(u) =

cn(u)

dn(u)
, dc(u) =

dn(u)

cn(u)
.

2.4 The Dixon Elliptic Functions

In 1890, Alfred Cardew Dixon introduced a series of elliptic functions on the complex

plane which parameterized the Hessian cubic curve

x3 + y3 − 3axy = 1.

For the purpose of this paper, we would like to focus on the case of the Fermat

cubic curve where a = 0, which produces the Fermat cubic curve. The entire

complex plane can be tiled by regular hexagons such that the restriction of the

function to such a hexagon is a shift of its restriction to any of the other hexagons.

Going back with how elliptic functions were defined, the Dixon elliptic functions

do not contradict the notion that a doubly periodic meromorphic function has a

fundamental parallelogram. This is due to the vertices of such a parallelogram may

be taken to be the centers of four suitable selected hexagons [82].
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Figure 2.3: The entire complex plane can be tiled by regular hexagons. Reprinted
from [55].

The Dixonian sine function w = sm(z) is implicitly defined as the inverse of the

equation

z =

∫ w

0

dx

(1− x3)
2
3

.

The Dixonian cosine function cm(z) is defined by the relation

sm3(z) + cm3(z) = 1.

From these definitions, one can easily show that

sm(0) = 0, cm(0) = 1

along with their derivatives

d

dz
sm(z) = cm2(z),

d

dz
cm(z) = −sm2(z).

The Dixonian elliptic functions can also be defined in terms of the Weierstrass elliptic
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function ℘ and its derivative ℘′:

sm(z) =
6℘(z; 0, 1

27
)

1− 3℘′(z; 0, 1
27

)

and

cm(z) =
3℘′(z; 0, 1

27
) + 1

3℘′(z; 0, 1
27

)− 1
.

The Dixonian elliptic functions have periods of 3K and 3ωK where

ω =
−1 + i

√
3

2

is a cube root of unity and for j = 0, 1, 2, ...

sm(z + 3ωjK) = sm(z), cm(z + 3ωjK) = cm(z).
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Chapter 3

Splines, Their Properties and a Criterion

for Suitable Splines

3.1 Splines and Their Properties

What is a spline curve? A spline curve in the plane is a curve passing consecutively

through a specified set of points P1, P2, ..., Pn, called knots. The segment of the curve

joining Pi and Pi+1 is a smooth curve, but the entire curve is typically piecewise

smooth, with at least a tangent line at each knot (See Figure 3.1). While most

mathematical descriptions of splines assume each piece is given by polynomials, we

will be interested in more general (“nonlinear”) splines. In fact, the original spline

used by draftsmen was a flexible strip of wood, and the resulting curve was an

elastica. We will be considering splines defined by a variational criterion.
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Figure 3.1: An example of a spline.

Given a set of points, the set of all possible interpolating splines that go through

these points are infinite. We would like to narrow down the list to only include the

ones which are the “best”. But as of this time, there is no agreement as to what

qualifies as the “best” spline. Raph Levien lists a number of ideal properties that

would be desirable for splines to have. But be forewarned. Some splines do not exist

for an arbitrary sequence of points and a number of desirable properties may not

apply to all splines [57].

In most of the literature pertaining to splines, the one property that comes up

repeatedly is fairness, which is essentially the notion of smoothness. Fairness is more

of an aesthetic property, opposed to a mathematical one since fairness depends on

how humans perceive curves. But there are some metrics which correlate reasonably

well to the notion of fairness. One such metric is curvature, which also has a

mathematical association with how much a curve deviates from a straight line.

But the human mind is fickle since we perceive curves with regions of extremely

high curvature not fair, as with curves with discontinuities in curvature or regions
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of curvature variation.

Another property related to fairness is the idea of continuity, i.e. how many higher

derivatives of a curve exists. Continuity can be divided into two classes: parametric

and geometric. Parametric continuity refers to the smoothness of both the curve

itself and its parametrization, denoted as Ck. A curve is Ck continuous if all partial

derivatives up to order k exist and are continuous. Geometric continuity refers to

the smoothness of a curve that is independent of any curve parametrization, denoted

as Gk. For instance:

G0 (Positional continuity): The curve meets at each joint point.

G1 (Tangent continuity): The curve share a common tangent direction at each

joint point.

G2 (Curvature continuity): The curve share a common center of curvature at

each joint point.

G3 (Torsion continuity): The curve share a common rate of change of curvature

at each joint point.

As we can see, parametric continuity is stronger than geometric since parametric

requires the derivatives at each joint point to be continuous where geometric only

requires the tangents at each joint to be continuous. Keep in mind that just because

a curve is continuous does not necessarily mean that it is fair. A typical counter

example would be the Euler spline (which has G2 continuity) compared to the circle

spline (which has G3 continuity). The Euler spline is more fair than the circle spline

since it has less variation in the curvature.
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A specific aspect to fairness is the notion of roundness, i.e. the idea that a spline will

yield a circular arc when the points are co-circular. Intuitively, the circle should be

the fairest curve due to their common occurrence in nature. However, remember that

many splines are approximations with some doing a much better job than others.

Also note that if one uses a spline based on polynomials, it will never be exactly

round. It should be noted that some splines are too sensitive for the roundness

condition to apply. A common technique used to handle these cases is to normalize

the parametrization by the chord length. However, this is done at a price since the

extensionality of the spline is compromised.

Figure 3.2: Roundness failure. Reprinted from [57].

Extensionality is a property that explores the local (and in turn, the global) behavior

of the spline. While often used as a filter to weed out crude approximations,

extensionality is useful to determine whether or not a certain spline curve is optimal.

Suppose an additional data point is added to the spline. Will the shape of the curve

change or will it remain the same? This notion is closely related to choosing an
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optimal curve based on some fairness metric. This is because if the shape of the

spline changes with the introduction to a new data point, then either the original

curve or the new one must have not been optimal.

Figure 3.3: The circle spline fails at extensionality. Reprinted from [57].

Where extensionality focuses on the addition of a data point, locality explores what

happens if a particular data point moves. How much of the resulting curve will

change? Will it be a small local region where the shift took place or will it be the

entire spline? Some splines have a property called finite support, where moving a

data point changes the curve only for a section bracketed by a finite number of

points on either side of the one moved. However, this conflicts with extensionality

directly. For this reason, locality is measured by how quickly the effect of moving a

point dies out as one moves further away from it. One can assume the higher the

degree of geometric continuity a curve possesses, the more fair the curve would look.

But this assumption actually decreases locality and can cause discontinuities to be

more visible. According to literature based on the fairness of splines, it is required

that the spline should be at least G2 continuous.
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Figure 3.4: G2 spline (on the left) has better locality than G4 spline (on the right).
Reprinted from [57].

One desirable property of splines is for them to be invariant to transformations. All

functions worthy of being considered as splines should have some form of transformational

invariance, i.e. unchanged under rigid transformations such as rotation, (uniform)

scaling and translation. A sometimes equally desirable property is affine invariance

or affinity, which preserves the shape of the spline. Recall that affinities are transformations

which preserve points, straight lines and planes. These transformations include

homothety, reflection, rotation, scaling, shear mapping, similarity transformation

and translation. Affinity is observed in many polynomial based splines but it often

conflicts with roundness. So more often than not, roundness is considered by many

authors as the better trade-off.

3.2 Parameters of Splines and a Criterion for Suitable

Splines

One can count how many parameters does the spline depend on, since the family

of curve segments between any two points is potentially drawn from an infinite

space. But in practice, most splines use segments chosen from a finite dimensional

manifold (which will be defined in Chapter 5). In general, there is a vector of
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real parameters that uniquely determines the shape of the curve between any two

endpoints. By counting these parameters, we can hold the endpoints of each segment

fixed and apply the rotation, scaling and translation to make the curve coincide

with the endpoints. The common types of parameters in recent papers about spline

interpolation are the two-parameter and the four-parameter variety.

A two-parameter spline is a spline such that every interpolating curve segment

between two adjacent knots is uniquely determined by the two angles between

tangent and chord at the endpoints of the segment. In his thesis, Levien showed that

there was a special relationship between two-parameter and extensional splines. He

found that all two-parameter extensional splines correspond to a single generating

curve, where segments between adjacent knots can be cut from such a curve (subject

to scaling, rotation, translation and mirror image transformations). This is done so

that the endpoints of the cut segments can be aligned with the endpoints in the

spline. In addition to that, any generating curve can be used as the basis of a

two-parameter extensional spline [57]. This is stated in his theorem:

Theorem 3.2.1 (R.L. Levien, 2009)

In an extensional, G2-continuous, two-parameter spline, there exists a curve such

that for any spline segment (parametrized by angles θ0 and θ1) there exist two points

on the curve (s0 and s1) such that the segment of the curve, when transformed by

rotation, scaling and translation so that the endpoints coincide, also coincides along

the length of the segment.
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Figure 3.5: Construction of the generator curve of a two-parameter spline. Reprinted
from [57].

Levien states that the proof to this theorem revolves around the quantity k̇/k2, which

he asserts is limit of the quantity 6(θ1 − θ0)/(θ0 + θ1)2 as both θ0 and θ1 approach

zero (i.e. as the length of the curve segment becomes infinitesimal). This particular

quantity represents how much curvature variation there is for a segment for a fixed

curvature. However, there are some limitations to the derivation. In addition to

that, we wonder if there is a special geometric meaning behind the quantity k̇/k2.

With this in mind, we present a more mathematically rigorous explanation which

gives a direct meaning behind that quantity for any arbitrary curve.

First, let X(t) be a smooth curve defined on an interval [a, b]. Assume that the

curvature k satisfies the condition k̇/k2 is a strictly monotonic function on (a, b),

where k̇ is the derivative of k with respect to arc length.

Theorem 3.2.2 (T.A. Clark)

Given a < u < v < b and let V be the secant line from X(u) to X(v).

Let θ0 > 0 be the angle between the tangent vector T (v) at X(v) and V .

Likewise, let θ1 > 0 be the angle between the tangent vector T (u) at X(u) and V .

Then for any sufficiently close pair of angles θ′0 and θ′1, there exists a unique nearby

pair of points X(u′) and X(v′) such that the corresponding secant line achieves these

angles.
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Proof .

We define the secant line that passes through X(v) and X(u) as a unit vector by

the following:

V =
X(u)−X(v)

‖X(u)−X(v)‖
=
X(u)−X(v)

r
=
X10

r

where

X10 = X(u)−X(v)

and

r = ‖X10‖ = ‖X(u)−X(v)‖.

We will define the angles formed by V and the tangent vectors at each endpoint by:

sin θ0 = 〈V,N(v)〉 and sin θ1 = 〈V,N(u)〉

where

N(s) = N(0)− sk(0)T (0) +
s2

2
(−k̇T (0)− k2N(0)) + · · · .

We define the following function:

F (v, u) = (θ0, θ1) = (arcsin〈V,N(v)〉, arcsin〈V,N(u)〉).

We now find the Jacobian J of this multivariable function where

J =

∣∣∣∣∣∣∣
∂
∂u
θ0

∂
∂v
θ0

∂
∂u
θ1

∂
∂v
θ1

∣∣∣∣∣∣∣ .
where
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∂

∂u
θ0 =

1

cos θ0

(
− 1

r3
〈T (u), X10〉〈X10, N(v)〉+

1

r
〈T (u), N(v)〉

)
∂

∂v
θ0 =

1

cos θ0

( 1

r3
〈T (v), X10〉〈X10, N(v)〉+

1

r
〈X10,−k(v)T (v)〉

)
∂

∂u
θ1 =

1

cos θ1

(
− 1

r3
〈T (u), X10〉〈X10, N(u)〉+

1

r
〈X10,−k(u)T (u)〉

)
∂

∂v
θ1 =

1

cos θ1

( 1

r3
〈T (v), X10〉〈X10, N(u)〉+

1

r
〈−T (v), N(u)〉

)

where

∂

∂u

(1

r

)
= − 1

r3
〈T (u), X(u)−X(v)〉 and

∂

∂v

(1

r

)
=

1

r3
〈T (v), X(u)−X(v)〉.

For the Jacobian, we wish to find in which case(s) does J 6= 0. We wish to show

that the derivative of the function F is non-singular and is locally homeomorphic

near 0. To make the Jacobian a bit easier to calculate, we will change the variables

from (v, u) to (v, v + e). This means we are in the half plane e > 0. We will also

fix v at 0 and let e become s. So by the change of variables, we transform (v, u)

to (0, s). By using Taylor series centered at 0 and truncating all expansions to the

cubic term, we arrive at the following computations:

X(s)−X(0) = rV = sT +
s2

2
kN +

s3

6
(k̇N − k2T )

T (s) = T + skN +
s2

2
(k̇N − k2T ) +

s3

6
((k̈ − k3)N − 3kk̇T )

N(s) = N − skT +
s2

2
(−k̇T − k2N)− s3

6
((k̈ − k3)T + 3kk̇N)
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where

T = T (0), N = N(0), k = k(0), k̇ = k̇(0) and k̈ = k̈(0).

Then, by making the necessary substitutions and dot products, we have

J =
1
12

(2k̇2 − kk̈)s8 + 1
24
k̇(k3 + 2k̈)s9 + 1

24
k3k̈s10

r6 cos θ0 cos θ1

.

Since the angles are small when s is small, we can use the small angle approximations

for cosine which yield the product cos θ0 cos θ1 ≈ 1. The value r2 is approximately

s2 when s is small, and so r6 is approximately s6 when s is small. Thus, we can

estimate J by a polynomial of lowest order term s2

J ≈ 1

12
(2k̇2 − kk̈)s2 +

1

24
k̇(k3 + 2k̈)s3 +

1

24
k3k̈s4.

If s = 0, the Jacobian is singular. But if s 6= 0 but is sufficiently small, the higher

order terms are irrelevant and the lowest order term 1
12

(2k̇2 − kk̈)s2 dominates.

The assumption that ˙k/k2 is strictly monotonic means that

d

ds

( k̇
k2

)
=
k2k̈ − 2kk̇2

k4
= −2k̇2 − kk̈

k3
6= 0.

Thus, J 6= 0.

Keep in mind that because we used a Taylor expansion for the curve and for the

tangent and normal vectors, this does not give us a global result. Rather this is a
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local result but for the sake of splines, we are more concerned with local properties

so this is fine.

There are a number of desirable splines which are extensional but do not fit into a

two-parameter space, rather they require the use of four parameters. A four-parameter

spline is a spline in which is determined by both tangent angles and curvatures at

the endpoints. Four parameters are needed when one wishes for a spline or to study

a surface with greater than G2-continuity. They are useful due to many shapes are

not best represented as a simple interpolating spline, such as various fonts designs.

With annotating curves with additional constraints, the improvement of the locality

property is possible. As noted by Levien, constraints that propagate curvature

derivatives in one direction, but leave the parameters unconstrained on one side

can isolate sections of extreme changes of curvature, so that those sections do not

influence nearby regions of gentle curvature change [57].
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Chapter 4

The Minimum Energy Curve and The Minimum

Variation Curve

4.1 The Minimum Energy Curve

The Minimum Energy Curve (MEC) is the mathematical idealization of a flexible

strip that is constrained to go through all the control points, so that the strip can

slide freely. This curve minimizes the bending energy. Mathematically, the MEC is

the curve which minimizes the following functional:

EMEC =

∫ l

0

k2 ds.

Lee and Forsythe, who both did extensive work with the MEC, showed that the

spline can be defined as piecewise segments of the rectangular elastica between each

pair of adjacent control points, with G2 continuity across them. It was proposed that

the bending energy would make a good fairness metric. While it is the optimum of

the bending energy, this does not make the best spline. The MEC is a two-parameter,

extensional spline. So, the shape of the curve above any given chord can be completely
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determined by the two tangent directions of the curve at either end of the chord.

Despite having such desirable properties, it lacks in roundness and robustness. But

most of all, it does not accurately predict perceived smoothness. This key result

was discovered by Raph Levien in his thesis, where he conducted a survey where he

asked participants to pick from a family of curves to determine which one was more

fair to them. He found that the concept of fairness is fuzzy at best and varies based

on who is being asked [57]. The MEC also fails to be scale invariant, meaning that

zooming in and out and redoing the calculation does not produce the same curve

[16]. While the MEC does not make an optimal spline, it is still a fascinating curve

to study.

4.2 A History on the Elastica

So...what are these elastic curves? Well, the study of them trace back to 1691 when

Jacob Bernoulli observed the shape of a thin elastic rod under a heavy load until

the two ends are perpendicular to a given line. We will also assume that the beam

will recover its original shape once the load is removed. Let γ(s) = (x(s), y(s)) be a

parametrization of the centerline of the beam.

In 1694, Jacob Bernoulli stated his solution as the following system of differential

equations

dy =
x2

√
1− x4

dx

ds =
1√

1− x4
dx
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with an additional hypothesis where the bending moment is directly proportional to

some constant related to the composition of the bar and inversely proportional to

the radius of curvature [29]. This idea led to the creation of elliptic functions, which

were discussed back in Chapter 3. The problem was then attempted again forty

years later by his nephew Daniel Bernoulli and Leonhard Euler. In 1742, Daniel

had suggested to Euler a method to figure out the shape of an elastic rod under

pressure at both ends. He suggested the way to achieve this was to minimize the

following integral ∫ L

0

1

R2
ds

where s is the arc length, R is the radius of curvature and L is the length of the

elastic rod. The solution to this variational problem (defined in the next section) is

called an elastica. More formally, an elastica (or elastic curve) is a regular curve γ,

with fixed endpoints and fixed tangent vector at the endpoints, which is critical of

the functional

Fλ(γ) =

∫ L

0

(k2 + λ) ds,

where λ is a length penalty. Note that when λ = 0, the curve γ is called a free

elastica.

The main focus of the elastic curve problem is to minimize the energy function

defined as the integral of the squared curvature for a curve of a fixed length subjected

to boundary conditions. Additional progress on this problem was established over

the years. One essential work in elastica was credited to both Joel Langer and David

Singer with their study of all closed elastic curves in Euclidean space. They explored

the elastica in Euclidean space and classifed the elastic curves in a Riemannian

manifold with constant sectional curvature G.
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We would like to begin by asking how do we apply variations onto a curve? Exactly,

what is a variational problem? A variational problem can be summed up in two

descriptions. On one hand, it is something we wish to study how it is changing.

On the other hand, it is an “admissible” action, a way to do the change such that

the action is isometry invariant (deformations of the object that involve bending

without stretching, thus leaving the intrinsic distances undisturbed) [29], [77].

For the purpose of elastic curves, we will consider the following set:

C = {γ : [a, b]→M |γ(ai) = αi, γ
′(ai) = α′i}.

This represents the the set of functions which have fixed length and boundary

conditions (some sources will refer to this as “nailed” curves since they have the

same endpoints) [29, 75]. We will then consider the functional

F =

∫
γ

k(s)2ds =

∫ b

a

k(t)2vdt,

where γ is an immersed curve where ‖γ′(t)‖ = ds
dt

:= v 6= 0, s is the arc length

parameter and k is the curvature function. We wish to find the critical points of

this functional, which will minimize the bending energy of it.

The derivations that we will need to find the Euler-Lagrange equation of the MEC

functional can be drawn from observations of a curve on a Riemannian manifold.

But since we are only dealing with planar curves, we will reduce all of the work

down to two-dimensions, R2.
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The covariant derivative ∇XY measures the derivative of a vector field Y in the

direction of a vector X. But since we are dealing with planar curves, the covariant

derivative is the same as the ordinary derivative. For vector fields X, Y and Z on

R2, the Lie Bracket [X, Y ] is represented by:

[X, Y ] = ∇XY −∇YX.

We will also need the following formula:

∇[X,Y ]Z = ∇X∇YZ −∇Y∇XZ,

where this represents the vanishing curvature of the plane.

Let γ be an immersed curve in R2. Then, it has velocity vector V = γ′ = vT and

squared geodesic curvature k2 = ‖∇TT‖2. Let τ represent the torsion. From this,

we can get the Frenet equations for a curve:

γ′ = vT

dT

ds
= ∇TT = kN

dN

ds
= ∇TN = −kT + τB

dB

ds
= ∇TB = −τN

We will denote by γ a variation, defined as:
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γ : (−ε, ε)× I →M

(w, t)→ γ(w, t) = γw(t)

with γ(0, t) = γ(t). For a family of curves γw(t) = γ(w, t), we can write

W = W (w, t) =
∂γ

∂w

V = V (w, t) =
∂γ

∂t
= v(w, t)T (w, t)

We can say that s represents the arc-length, V is our velocity, v = ds
dt

is the speed,

and W represents an infinitesimal variation of the curve. Note that s ∈ [0, L] and

in order for the critical curve of the functional to be an elastic curve, the variation

field must satisfy the following conditions [67]

W (0) = 0,∇TW (0) = 0

and

W (L) = 0,∇TW (L) = 0.

4.3 A Geometric Approach to Minimization

The study of elastic curves within a general Riemannian manifold has been explored

by Joel Langer and David Singer [54], [75]. We begin by letting γ : [a, b]→M be an

immersed curve where ‖γ′(t)‖ = ds
dt

:= v 6= 0 such that s is the arc length parameter.

Let k be the curvature function, where k 6= 0 (we assume this for if k = 0, then γ
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would be a straight line, which isn’t very interesting). Let τ represent the torsion

and {T,N,B} be the orthonormal Frenet frame along γ.

We begin by stating a lemma:

Lemma 4.3.1 Let M be an n-dimensional Riemannian manifold and γ(w, t) be a

variation of γ. Then the following formulas hold:

(i) [W,V ] = 0

(ii) W (v) = 〈∇TW,T 〉v = −gv, where g = −〈∇TW,T 〉

(iii) [W,T ] = gT

(iv) R(W,T )T = ∇W∇TT−∇T∇WT−∇[W,T ]T , where R is the Riemann curvature

tensor

(v) ∇WT = ∇TW + [W,T ]

(vi) W (k2) = 2k〈∇2
TW,N〉+ 2k〈R(W,T )T,N〉+ 4gk2

Many of these we can show by direct computation. We can see that

0 = [W,V ] = [W, vT ] = W (v)T + v[W,T ]

by the product rule of Lie Brackets, i.e. [X, fY ] = X(f)Y +f [X, Y ], given a smooth

real-valued function f defined on a manifold M with given vector fields X and Y .

And so, we can use algebraic manipulation to show that

[W,T ] = −W (v)

v
T = gT, where g = −W (v)

v
.
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Furthermore, we can show that

2vW (v) = W (v2) = W 〈V, V 〉

= 2〈∇WV, V 〉 = 2〈∇VW,V 〉

= 2〈∇vTW, vT 〉 = 2v2〈∇TW,T 〉.

So by the last two derivations, we can see that g = −〈∇TW,T 〉. But recall from

the Frenet frame that ∇TT = kN since ∇TT is the derivative of the tangent vector

T in the direction of the tangent vector. So we can see that k2 = 〈kN, kN〉 =

〈∇TT,∇TT 〉 (since 〈N,N〉 = 1). Using that knowledge, we can show that:

∂k2

∂z
= W (k2) = 2〈∇W∇TT,∇TT 〉

= 2〈∇T∇WT +∇[W,T ]T +R(W,T )T,∇TT 〉

= 2〈∇T (∇TW + [W,T ]) +∇[W,T ]T +R(W,T )T,∇TT 〉

= 2〈∇2
TW +∇T (gT ) + g∇TT +R(W,T )T,∇TT 〉

= 2〈∇2
TW,∇TT 〉+ 2g〈∇TT,∇TT 〉+ 2〈R(W,T )T,∇TT 〉+ 2g〈∇TT,∇TT 〉

= 2〈∇2
TW,∇TT 〉+ 2〈R(W,T )T,∇TT 〉+ 4g〈∇TT,∇TT 〉

= 2k〈∇2
TW,N〉+ 2k〈R(W,T )T,N〉+ 4gk2 since ∇TT = kN

We know that

∂k2

∂z
= 2k

∂k

∂z
,

which implies (from the work above) that

∂k

∂z
= W (k) = 〈∇2

TW,N〉+ 〈R(W,T )T,N〉+ 2gk.
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In what follows γ : [0, 1] → M will be a curve of length L. For a fixed constant λ,

consider the functional

Fλ(γ) =
1

2

∫ L

0

(k2 + λ) ds.

We want to find the critical values of this functional. Recall, in the beginning of the

section, that v(t) = ds
dt

. By substitution, we can rewrite the functional as

Fλ(γ) =
1

2

∫ L

0

(k2 + λ) ds =
1

2

∫ 1

0

(k2 + λ)v(t)dt.

The calculation involved is heavy and will not be included here. For the full

calculation, please refer to [75]. The minimization of this functional depends on

E, where

E =
2kss + k3 − λk + 2Gk

2
N.

Using the Frenet equations, the curve γ is an elastica provided that E = 0. In other

words, γ is an elastica if and only if the following differential equation holds:

2kss + k3 − λk + 2Gk = 0.

By integrating, we get

k2
s +

k4

4
+ (G− λ

2
)k2 = A.

Letting u = k2, this becomes

u2
s + u3 + 4(G− λ

2
)u2 − 4Au = 0,

which has the following solutions:
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1. u = k2 = constant, τ = 0 which form only the circle and the straight line.

2. k = k0sech( k0
2w
s), τ = 0 which form borderline elastica.

3. k = k0cn( k0
2w
s, p), τ = 0 which form orbitlike elastica.

4. k = k0dn( k0
2w
s, p), τ = 0 which form wavelike elastica.

5. k2 = k2
0(1− p2

w2 sn2( k0
2w
s, p)), where 4G− 2λ =

k20(1+p2−3w2

w2 and 0 ≤ p ≤ w ≤ 1.

4.4 The Minimum Variation Curve

The Minimum Variation Curve (MVC) is defined as the curve minimizing the

arc-length integral of the variation of curvature,

∫ l

0

k̇2 ds.

Introduced by Henry Moreton in 1992, he argued that the four-parameter MVC

spline is a better alternative to the two-parameter MEC spline due to its limitations.

For one, the MEC fails the roundness property. But because the MVC forms circular

arcs naturally, a circular arc has zero curvature variation. Trivially, it is the curve

that minimizes the MVC cost functional when the input points are co-circular [57],

[64]. Second, the MVC is extensional, along with obtaining locality. Third, while

the MEC tries to find the curve that bends the least, the MVC bends as smoothly

(uniformly) as possible and is more stable to changes in shape [16]. Fourth, it is

naturally convex preserving since it is guaranteed not to have any extraneous points

of inflection [64]. Despite these advantages that the MVC has over the MEC, fairness

is not captured by the minimization of the variation of curvature either.
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Just like the MEC functional, the MVC functional can be explored via similar

variational techniques. By using similar techniques, we arrive at the Euler-Lagrange

equation of

E =
....
k + k2k̈ +

1

2
kk̇2 = 0.

Since solving fourth-order nonlinear differential equations are difficult (and perhaps

impossible) to solve analytically, most presentations of this curve use a numerical

approach to minimize the cost functional.
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Chapter 5

A Proposed Energy Functional and Its Special

Solutions

Note that in this chapter, we will use formulas from Byrd and Friedman’s Handbook

of Elliptic Integrals for Scientists and Engineers. We will refer to the appropriate

formulas used in the calculations by “Byrd-Friedman”, followed by the formula

number as listed in the book.

5.1 The Derivation of the Euler-Lagrange Equation

Using similar techniques with the geometric approach to elastic curves in a previous

chapter, we will need to find W (k2), W (k4) and W (k̇2). We already know the

formula for W (k2):

W (k2) = 2k〈∇2
TW,N〉+ 2k〈R(W,T )T,N〉+ 4gk2.
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But since we are looking at this curve in R2, the curvature tensor R(W,T )T = 0, so

this can be simplified to

W (k2) = 2k〈∇2
TW,N〉+ 4gk2

which is equivalent to

W (k2) = 2〈∇2
TW,kN〉+ 4gk2.

The derivation of W (k4) follows similarly

W (k4) = W (k2 · k2)

= k2W (k2) + k2W (k2)

= 2k2W (k2)

= 2k2(2〈∇2
TW,kN〉+ 4gk2)

= 4k2〈∇2
TW,kN〉+ 8gk4

= 〈∇2
TW, 4k

3N〉+ 8gk4.

The derivation of W (k̇2) is exhaustive and for the purpose of this paper, will not be

shown. All we need to know is that

W (k̇2) = 2〈∇3
TW,∇2

TT 〉 − 〈∇2
TW, 4k

3N〉 − 2g̈k2 + 6ġkk̇ + 6gk̇2 − 2gk4

where g = −〈∇TW,T 〉.

Next, we compute d
dw

∫
1
2
k̇2 − 1

8
k4 ds
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d

dw

∫
1

2
k̇2 − 1

8
k4 ds =

∫
1

2
W (k̇2)− 1

8
W (k4) ds

=

∫
〈∇TW,J〉

where J = (3
8
k4− 1

2
k̇2 + kk̈)T + (

...
k + 3

2
k2k̇)N . And so, the Euler-Lagrange equation

for k is:

E =
....
k +

5

2
k2k̈ +

5

2
kk̇2 +

3

8
k5 = 0.

Note that this equation actually looks worse than the MVC equation! However, it

happens to be a completely integrable Hamiltonian equation (though that does not

make it necessarily easy to integrate!) But we can at least reduce this Euler-Lagrange

equation down to a third-order nonlinear differential equation by multiplying the

entire equation by −k̇ and doing the integration, i.e.

H = −k̇E = −
...
k k̇ +

1

2
k̈2 − 5

4
k2k̇2 − 1

16
k6.

As mentioned back in Chapter 1, three special solutions of this functional are two

elliptic curves of the form:

k = Acn(αs, p) where A = 2αp

where the elliptic modulus is

p2 =
3−
√

3

6
or p2 =

3 +
√

3

6
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and

k =
1

℘(s; 0, 1
4
)
,

the Kiepert trefoil. We will now examine each solution separately.

5.2 The Elliptic Curve k = Acn(αs, p)

Since we know some special solutions, we would like to know what their corresponding

energies are. We do this by substituting each solution back into the functional

F =
∫

1
2
k̇2− 1

8
k4 ds and evaluate the integral. First we will look at the solution k =

Acn(αs, p) where A = 2αp where the elliptic modulus is p2 = 3−
√

3
6

or p2 = 3+
√

3
6

.

k̇ = −Aα sn(αs, p)dn(αs, p)

k̇2 = A2α2 sn2(αs, p)dn2(αs, p)

= (2αp)2α2 sn2(αs, p)dn2(αs, p)

= 4α4p2 sn2(αs, p)dn2(αs, p)

and

k4 = A4 cn4(αs, p)

= (2αp)4 cn4(αs, p)

= 16α4p4 cn4(αs, p).

Thus,
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∫
1

2
k̇2 − 1

8
k4 ds =

∫
1

2
[4α4p2 sn2(αs, p)dn2(αs, p)]− 1

8
[16α4p4 cn4(αs, p)] ds

= 2α4p2 sn2(αs, p)dn2(αs, p)− 2α4p4 cn4(αs, p) ds

= 2α4p2

∫
sn2(αs, p)dn2(αs, p) ds− 2α4p4

∫
cn4(αs, p)ds

From Byrd and Friedman (312.04) and (361.01), we know that

∫
cn4u du =

1

3k4
[(2− 3k2)k′2u+ 2(k2 − 1)E(u) + k2snu cnu dnu]∫

sn2u dn2u du =
1

3k2
[(2k2 − 1)E(u) + k′2u− k2snu cnu dnu]

where

k = modulus of the Jacobian elliptic functions and integrals

E(u) = E(φ, k) = Legendre’s incomplete elliptic integral of the second kind, φ = amu

k′ = the complementary modulus =
√

1− k2.

To alleviate confusion between the curvature and the elliptic modulus, we will replace

the elliptic modulus in the Byrd-Friedman definition k with p.

Using variable substitution from elementary calculus with u = αs and 1
α
du = ds,

we get that
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∫
sn2(αs, p)dn2(αs, p) ds =

1

α

∫
sn2(u, p)dn2(u, p) ds

=
1

3αp2
[(2p2 − 1)E(αs) + p′2(αs)− p2sn(αs, p)cn(αs, p)dn(αs, p)]

∫
cn4(αs, p)ds =

1

α

∫
cn4(u, p)ds

=
1

3αp4
[(2− 3p2)p′2(αs) + 2(p2 − 1)E(αs) + p2sn(αs, p) cn(αs, p) dn(αs, p)]

where E(αs) = E(φ, p) =
∫ φ

0

√
1− p2 sin2 θ dθ.

Putting all of the above together, we get that

∫
1

2
k̇2 − 1

8
k4 ds =

2

3
α3[2p2 − 1)E(αs) + (1− p2)(αs)− p2sn(αs, p)cn(αs, p)dn(αs, p)]

− 2

3
α3[(2− 3p2)(1− p2)(αs) + 2(p2 − 1)E(αs) + p2sn(αs, p) cn(αs, p) dn(αs, p)]

= −2α3E(αs)− 4

3
α3p2sn(αs, p) cn(αs, p) dn(αs, p) + α4s

(
−2p4 +

8

3
p2 − 2

3

)

To find the total energy, we will need to evaluate the integral from s = 0 to s = K
α

.

This yields

−2α3E(p) + α3K(p)
(
−2p4 +

8

3
p2 − 2

3

)
.

We will focus on the derivation of the first portion of the total energy integral
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since that has a significant importance to the research. From properties of the

Jacobi elliptic integral and its special values at K and 0 discussed in Byrd-Friedman

(122.01) and (122.02), we get:

∫ K
α

0

1

2
k̇2 ds =

2

3
α3[(2p2 − 1)E(αs) + (1− p2)(αs)− p2sn(αs, p)cn(αs, p)dn(αs, p)]

∣∣∣Kα
0

=
2

3
α3[(2p2 − 1)E(K) + (1− p2)(K)− p2sn(K, p)cn(K, p)dn(K, p)]

− 2

3
α3[(2p2 − 1)E(0) + (1− p2)(0)− p2sn(0, p)cn(0, p)dn(0, p)

=
2

3
α3[(2p2 − 1)E(K) + (1− p2)(K)− p2 · 1 · 0 ·

√
1− p2

− 2

3
α3
[
(2p2 − 1) · π

2
+ 0− p2 · 0 · 1 · 1

]
=

2

3

[
(2p2 − 1)E(K) + (1− p2)(K)

]
− 2

3
α3
[π

2
(2p2 − 1)

]
=

2

3
α3
[
(2p2 − 1)E(K) + (1− p2)(K)− π

2

(
2p2 − 1

)]

We have two cases to consider since we have two moduli. For the case when p2 =

3−
√

3
6

, we have ∫ K
α

0

1

2
k̇2 ds ≈ 0.0643194 α3.

For the case when p2 = 3+
√

3
6

, we have

∫ K
α

0

1

2
k̇2 ds ≈ 0.608067 α3.

We can do the same with the other functional. Similarly from properties of the

Jacobi elliptic integral and its special values at K and 0 discussed in Byrd-Friedman

(122.01) and (122.02), we get:
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∫ K
α

0

1

8
k4 ds =

2

3
α3[(2− 3p2)(1− p2)(αs) + 2(p2 − 1)E(αs) + p2sn(αs, p)cn(αs, p)dn(αs, p)]

∣∣∣Kα
0

=
2

3
α3[(2− 3p2)(1− p2)(K) + 2(p2 − 1)E(K) + p2sn(K, p)cn(K, p)dn(K, p)]

− 2

3
α3[(2− 3p2)(1− p2)(0) + 2(p2 − 1)E(0) + p2sn(0, p)cn(0, p)dn(0, p)]

=
2

3
α3
[
(2− 3p2)(1− p2)(K) + 2(p2 − 1)E(K) + p2 · 1 · 0 ·

√
1− p2

]
− 2

3
α3
[
2(p2 − 1) · π

2
+ p2 · 0 · 1 · 1

]
=

2

3
α3[(2− 3p2)(1− p2)(K) + 2(p2 − 1)E(K)]− 2

3
α3[π(p2 − 1)]

=
2

3
α3[(2− 3p2)(1− p2)(K) + 2(p2 − 1)E(K)− π(p2 − 1)]

We will leave the details of the evaluation to the reader. By combining both results,

we achieve the total energy of the overall functional for both moduli. For p2 = 3−
√

3
6

,

we have ∫
1

2
k̇2 − 1

8
k4 ds ≈ 0.0619257 α3

and for p2 = 3+
√

3
6

, we have

∫
1

2
k̇2 − 1

8
k4 ds ≈ 0.111752 α3.

Based on these calculations, we can say that the functional will be minimized when

the modulus is p2 = 3−
√

3
6

.
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5.3 An Analysis of the Jacobi Elliptic Function

Solutions

While we know the values of the change in curvature and the total energy of the

Jacobi elliptic functions, we do not know what their corresponding curves look like.

In other words, we know the curvature of these special solutions but we do not know

what the actual curves corresponding to these solutions look like. We can find these

curves by appealing to the Fundamental Theorem of Curves.

The Fundamental Theorem of Curves states that a curve is completely determined

by the curvature and torsion, up to isometry. However, trying to solve the Frenet

frame system of differential equations is difficult in general. The good news is that

with planar curves (where the torsion is zero), is is possible to find an integral formula

for the curve coordinates in terms of the curvature. In turn, we can figure out that

the x- and y-coordinates of the curve parametrization will be. These formulas are

called the natural equations, which specifies a curve independent of any choice of

coordinates or parametrization. We will not bother with the minute details but all

we need to do is to solve for the following:

θ(s) =

∫
k ds x(s) =

∫
cos(θ) ds y(s) =

∫
sin(θ) ds.

For k = 2αp cn(αs, p), we find θ by integrating k:

θ(s) =

∫
k ds =

2p arccos(dn(αs, p)) sn(αs, p)√
1− dn(αs, p)2

.

But by Byrd-Friedman (121.00), θ(s) can be simplified by the identity p sn(αs, p) =
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√
1− dn(αs, p)2:

θ(s) =

∫
k ds =

2p arccos(dn(αs, p)) sn(αs, p)

p sn(αs, p)
= 2 arccos(dn(αs, p).

Since we now know θ, we can find the x- and y-coordinates of the curve parametrization:

x(s) =

∫
cos(2 arccos(dn(αs, p)) ds y(s) =

∫
sin(2 arccos(dn(αs, p)) ds.

While the formulas for the x- and y-coordinates are messy, there is a property

involving sine, cosine and inverse cosine inputs which will simplify it considerably:

cos(2 arccos(f(x)) = 2f(x)2 − 1

sin(2 arccos(f(x)) = 2f(x)
√

1− f(x)2.

With these identities, we can simplify x(s) and y(s) as

x(s) =

∫
cos(2 arccos(dn(αs, p)) ds =

∫
2dn(αs, p)2 − 1 ds

y(s) =

∫
sin(2 arccos(dn(αs, p)) ds =

∫
2dn(αs, p)

√
1− dn(αs, p)2 ds.

Now using the identity Byrd-Friedman (121.00) mentioned above and integrating

the functions by using Byrd-Friedman (121.00), (314.02) and (360.02), we get our

parametrized curve (x(s), y(s)) where

57



x(s) =

∫
2dn(αs, p)2 − 1 ds =

2E(am(αs, p), p)

αs
− s

y(s) =

∫
2dn(αs, p)

√
1− dn(αs, p)2 ds = −2p cn(αs, p)

α
.

5.4 The Trefoil k = 1
℘(
√

2s; 0, 18)

Another special to the minimization of our functional is the curve which has a

curvature of
1

℘(
√

2s; 0, 1
8
)
. The corresponding curve to this curvature is the Kiepert

trefoil, which is a sextic curve that can be represented in polar coordinates by

r3 = 2 cos(3θ)

and in Cartesian coordinates by

(x2 + y2)3 = 2x3 − 6xy2.

By using isotropic coordinates of R = x + iy and B = x − iy, the Cartesian form

can be rewritten as

R3B3 = R3 +B3.

As noted in various sources ([50], [53], [55]), the trefoil has a multitude of fascinating

properties. For one, in [53], the arc-length parametrization is given by rational

expressions in the elliptic function φ and its derivative, where φ is the solution of

the differential equation

(dφ
dt

)2

= 1− φ(t)3, where φ(0) = 0.
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The arc-length parametrization of the trefoil can be expressed in terms of Dixon

elliptic functions. This is unusual since for no other elliptic curve of low degree

(d < 8) can be so parametrized by elliptic functions [55].

By using the formulas in [53], the following facts can be derived:

Proposition 5.4.1

1. The curvature k of the trefoil satisfies the equation k = 2r2.

2. The curvature satisfies the differential equation

(dk
ds

)2

+
1

4
k4 = 8k.

3. k(s) = 1/℘(
√

2s; 0, 1/8), where ℘ is the Weierstrass ℘-function.

Proof . We will refrain from the whole proof and just provide a sketch of the

details. We will use the Dixon elliptic functions S = sm(is) and C = cm(is). Recall

that S3 + C3 = 1, S ′ = iC2 and C ′ = −iS2. The parametrized trefoil is given by

arc-length parametrization

x(s) =
S

2
− S

2C
, y(s) =

S

2i
+

S

2iC
.

By direct calculation, we find that

x2 + y2 = −S
2

C
and k = −2S2

C
.

The function−2S2

C
satisfies the differential equation, as does the Weierstrass function,
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and they both vanish at 0.

As with the Jacobi elliptic functions in the previous section, we would like to know

the corresponding energy to our Weierstrass elliptic function. We could use the same

technique as we did with the analysis with the Jacobi elliptic functions, substitute

k =
1

℘(
√

2s; 0, 1
8
)

into the functional and use Byrd-Friedman formulas to evaluate.

However, the derivation is extremely long and will not be included here. Instead,

we will utilize a few facts we know about the trefoil to derive a more compact and

elegant answer.

Since we know that the curvature k of the trefoil satisfies the differential equation(dk
ds

)2

+
1

4
k4 = 8k, we can derive the following facts:

k̇2 = 8k − 1

4
k4 and k̈ = 4− 1

2
k3.

This leads to

d(kk̇)

ds
= kk̈ + k̇2 = 12k − 3

4
k4.

Therefore, by putting these pieces together, we get

∫
1

2
k̇2 − 1

8
k4 ds =

∫
4k − 1

4
k4 ds =

∫
1

3

d(kk̇)

ds
ds =

1

3
kk̇ + C.

This result actually leads to a simple, yet elegant and remarkable discovery about

the trefoil:

Theorem 5.4.2

The total energy of the trefoil defined as
∫

1
2
k̇2 − 1

8
k4 ds over a half leaf (from the
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origin to the end of the leaf) is zero. In particular, the total energy of the entire

trefoil is zero.

Proof .

Take the polar equation of the trefoil r3 = 2 cos(3θ). We know this curve will

achieve its maximum when cos(3θ) = 1, i.e. θ = 2nπ
3

where n ∈ Z. This implies

that at maximum, r3 = 2 which corresponds to a polar radius r = 3
√

2. This can be

rewritten in Cartesian coordinates as r2 = x2 +y2 = 3
√

4. And so, at the intersection

of the trefoil with Cartesian form (x2 + y2)3 = 2x3 − 6xy2 and the circle where the

maxima occur, we get three points which all lie on the tip of each leaf (See Figure

5.1):

A =
(
− 1

3
√

4
,

√
3

3
√

4

)
, B =

(
− 1

3
√

4
,−
√

3
3
√

4

)
, and C = (

3
√

2, 0),

all of which have a polar radius of r = 3
√

2

Figure 5.1: Maxima on the trefoil
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We know that the total energy of the trefoil is given by

∫
1

2
k̇2 − 1

8
k4 ds =

1

3
kk̇ + C.

Since k = 2r2 and k̇ = 2r
√

4− r6, we know that at the origin (r = 0) and at the

end of the leaf (r = 3
√

2), kk̇ = 0. Thus, it follows that the energy of a half leaf is

zero. In particular, this means the energy of a whole leaf is also zero and so must

the energy of the entire trefoil as well.

Using Mathematica, the half-periods of the Weierstrass elliptic function ℘(
√

2s; 0; 1
8
)

that gives us the curvature of the trefoil are

ω1 =
e
iπ
3 Γ(1

3
)3

4π
and ω2 =

Γ(1
3
)3

4π
,

where Γ is the gamma function.

Since most of the literature involve minimizing the integral of the change of curvature,

we would like to evaluate for it over the real half-period. The real half-period exposes

a “linear system” relationship between the total energy integral and the individual

integrands:

∫ ω2

0

1

2
k̇2 ds−

∫ ω2

0

1

8
k4 ds = 0∫ ω2

0

1

2
k̇2 ds+

∫ ω2

0

1

8
k4 ds = 4

∫ ω2

0

k ds
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This implies that

1

2

∫ ω2

0

k̇2 ds = 2

∫ ω2

0

k ds.

Note the integral on the right hand side. This is actually the total curvature over

one-sixth of the length of the trefoil. The total curvature over a closed interval

measures the rotation of the unit tangent vector as the parameter s changes over

the interval. For a closed curve, the total curvature is always an integer multiple

of 2π and for the trefoil, its total curvature is 4π. But since we are only looking at

one-sixth of the curve based on the bounds, we get a value of 4π
6

. If we double this

value, we get the value of the change of curvature along the interval [0, ω2], which

is 4π
3

:

1

2

∫ ω2

0

k̇2 ds = 2

∫ ω2

0

k ds = 2 · 4π

6
=

4π

3
.

5.5 Scale-Invariant Minimization of Our Special

Solutions

So far, we have seen the numerical values of the total energy and the change

of curvature for each of the special solutions we have found for minimizing the

functional
∫

1
2
k̇2 − 1

8
k4 ds. We see that by looking at total energy, the trefoil

k =
1

℘(
√

2s; 0, 1
8
)

is the more attractive choice. But by looking at the change of

curvature, the Jacobi function k = Acn(αs, p) , where p2 = 3−
√

3
6

is the better one.

In the current literature about curve minimization, the proposed desirable metric

for fairness is the integral of the change of curvature (called the MVC). We would

like to see how the MVC compare to all the special solutions we have found.

However, the integral of the change of curvature (called the MVC) is not without
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its problems. While the shape of the curve is independent of scaling, the value of

its functional is decreased when its defining geometric constraints are scaled up [73].

There are cases where this integral can become unstable. This happens whenever the

curve in question has an inflection point between constraints and turns too large an

angle [65]. The instability is also caused by a reduction in the value of the functional

as the scaling of the curve increases. As the arc length of the curve grows linearly,

its derivative decreases reciprocally. For example, the MVC decreases in proportion

to the cube of the arc length [73]. To offset these run-away tendencies, Moreton and

Séquin proposed a scale-invariant version of the MVC (abbreviated as SI-MVC).

This is done by multiplying the minimizing integral by a factor that increases with

the scale factor, the arc length. For the case of the MVC, to counteract its growth

tendency, we multiply by the cube of the arc length. This tweak keeps the desirable

properties of the MVC and makes the integral more stable [65].

But why does this make sense? Let’s take a look at a simple example. Suppose

y = 1 − x2 and we would like to take to integral the change of curvature over the

arc length between the points (0, 1) and (1, 0). Then:

k =
−2

(1 + 4x2)3/2

k̇ =
dk

ds
=
dk

dx

dx

ds
where

dx

ds
=

1√
1 + y′2

=
24x

(4x2 + 1)5/2
· 1√

4x2 + 1

=
24x

(4x2 + 1)3

1

2
k̇2 =

288x2

(4x2 + 1)6
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With this information, we can start forming the integral

∫ 1

0

1

2
k̇2 ds =

∫ 1

0

288x2

(4x2 + 1)5/2
dx.

By letting x = 1
2

tan θ and dx = 1
2

sec2 θ,

∫ 1

0

1

2
k̇2 ds =

∫ arctan(2)

0

36 tan2 θ sec2 θ

(tan2 θ + 1)5/2
dθ.

But what would happen if we scale the endpoints of the arc length by t, i.e. (0, t)

and (t, 0)? The equation of our curve would then become y = t − x2

t
and we can

derive the following:

k =
−2t2

(t2 + 4x2)3/2

k̇ =
dk

ds
=
dk

dx
· dx
ds

=
24xt2

(4x2 + t2)5/2
· 1√

4x2

t2
+ 1

=
24xt3

(4x2 + t2)3

1

2
k̇2 =

288x2t6

(4x2 + t2)6

We construct the integral

∫ t

0

1

2
k̇2 ds =

∫ t

0

288x2t5

(4x2 + t2)5/2
dx.

By letting x = t
2

tan θ and dx = t
2

sec2 θ and with some clever algebraic manipulation,

we get ∫ t

0

1

2
k̇2 ds =

1

t3

∫ arctan(2)

0

36 tan2 θ sec2 θ

(tan2 θ + 1)5/2
dθ.

As we can see, by scaling the arc length by t, the MVC functional decreases in

proportion by a cube.
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We will begin by finding the arc length for each of the curves. For each of the

Jacobi functions, the y-coordinate −2p cn(αs,p)
α

will be zero at the points where the

graph meets the x-axis. Since the y-coordinate is the Jacobi cosine function scaled

by a constant, we will need to find where that Jacobi cosine function is zero. By

Byrd and Friedman, the y-coordinate will be zero whenever the argument is the

quarter-period K, where K is the complete elliptic integral of the first kind, i.e.

K = F (π
2
, p). Also, due to the doubly periodic behavior of the function, the Jacobi

cosine function will also be zero whenever the argument is (2n+ 1)K, where n is an

integer. In other words,

−2p cn(αs, p)

α
= 0 whenever s =

(2n+ 1)K

α
.

For each of the cases for the elliptic parameter p2, we will calculate the arc length

of the curve as we go from s = K
α

to 5K
α

since it appears to be periodic every 4K.

For p2 = 3−
√

3
6

, E ≈ 1.66538 and the arc length is approximately 6.66152
α

. Likewise,

for p2 = 3+
√

3
6

, E ≈ 2.23222 and the arc length is approximately 8.92888
α

. All of these

values were computed using Mathematica.

For the trefoil r3 = 2 cos(3θ), we will calculate the arc length of one-sixth of the

trefoil. We will integrate from θ = 0 to θ = α, where α is the smallest positive

number for which 2 cos(3θ) = 0. This gives α = π
6
. Since the equation for the trefoil

is in polar form, the arc length is given by

L =

∫ π
6

0

√
r2 +

(dr
dθ

)2

dθ.

Starting with r3 = 2 cos(3θ),
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3r2dr

dθ
= −6 sin(3θ)

dr

dθ
=
−2 sin(3θ)

(2 cos(3θ))2/3(dr
dθ

)2

=
3
√

4 sin2(3θ)

(cos(3θ))4/3

r2 +
(dr
dθ

)2

=
3
√

16 sin2(3θ)

(cos(3θ))2/3

And so,

L =

∫ π
6

0

√
3
√

16 sin2(3θ)

(cos(3θ))2/3
dθ =

3
√

4

2
≈ 0.793700526

Since we now calculated the arc lengths of these special solutions, we can compare

the values of the scale-invariant MVC of each one. These values are displayed on

the table below:

Table 5.1: Various Energies of the Special Solutions

Arc Length MVC SI-MVC Total Energy

Curve L 1
2

∫
k̇2 ds 1

2L
3
∫
k̇2 ds

∫
1
2 k̇

2 − 1
8k

4 ds

Jacobi, p2 = 3−
√

3
6 6.66152/α 0.0643194α3 19.01349666 0.0619257α3

Jacobi, p2 = 3+
√

3
6 8.92888/α 0.608067α3 432.8549552 0.111752α3

Trefoil 0.793700526 4.18879 2.094395102 0

But notice that when we calculate the SI-MVC for these special solutions, we get

that the trefoil is actually the more desirable curve since it has the lowest energy.

5.6 Other Analytical Solutions

A major problem with nonlinear differential equations is that they lack a superposition

principle. For linear differential equations, if we know two solutions f(x) and g(x),

then so is their linear combination af(x)± bg(x), where a, b are arbitrary constants.
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But this does not work when dealing with nonlinear terms. So in general, the

superposition is not a solution for nonlinear differential equations. A claim by

Khare and Saxena declares that if cn(x,m) and dn(x,m) are solutions to a nonlinear

differential equation, then so is their sum and difference, i.e. dn(x,m)±
√
mcn(x,m).

The authors do not provide a rigorous proof for this claim but by a number of

examples, they have shown that a form a superposition does hold in the nonlinear

case. They believe that this superposition principle holds possibly because both

cn(x,m) and dn(x,m) are similar. By similar, both are even functions and both

have identical derivatives when m = 1 since:

d

dx
cn(x, 1) =

d

dx
sech(x) = −tanh(x)sech(x) =

d

dx
sech(x) =

d

dx
dn(x, 1).

This is in contrast to the Jacobi elliptic sine function, which is an odd function and

when m = 1, sn(x,m) = sn(x, 1) = tanh(x). This is why the authors propose why

superpositions of the form cn(x,m)+sn(x,m) do not generally work in the examples

they presented [44].

In terms of the differential equation we are working on, it can be shown that our two

Jacobi cosine functions can also be expressed as Jacobi delta functions by means of

a transformation noted in Byrd and Friedman. With that, the proposition applies

and we can find additional solutions, if any exist. By supposing that there exists a

solution in the form k(s) = dn(s,m) ±
√
mcn(s,m) and substituting that into the

differential equation, we get:

1

8
(3 + 2m+ 3m2)(

√
mcn(s,m) + dn(s,m)) = 0.

By solving the quadratic factor, we get that the proposed solution will make our
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differential equation vanish when m = 1
3
(−1 ± 2i

√
2). The good news is that we

have four new solutions but they are all of complex moduli:

k(s) = dn(s,
1

3
(−1 + 2i

√
2))±

√
1

3
(−1 + 2i

√
2) cn(s,

1

3
(−1 + 2i

√
2))

and

k(s) = dn(s,
1

3
(−1− 2i

√
2))±

√
1

3
(−1− 2i

√
2) cn(s,

1

3
(−1− 2i

√
2)).

But are these truly “new” solutions? There exists transformations where the modulus

is purely imaginary in Byrd and Friedman. But according to the NIST Digital

Library of Mathematical Functions, all of the transformations for Jacobi ellitpic

functions are valid for all complex values of the moduli [66]. However, through

examination, it appears that no transformation used produces the other two real

solutions previously found. So, it is reasonable to believe that these four solutions,

while having complex moduli, are indeed new solutions.
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Chapter 6

The Trefoil as a Suitable Spline

6.1 A Comment on Aberrancy

Recall from Theorem 3.2.2 that a more geometric proof was presented as to how

and why the quantity k̇/k2 is key to Levien’s proof. The quantity k̇/k2 actually has

a geometric interpretation that has been known since the 1800s but has received

little to no attention. In fact, the last known textbook to discuss this concept was

published in the turn of the twentieth century [71]. But interest in the concept

re-emerged in 1978 by Schot’s analysis on the geometry of the third derivative. This

interpretation is called the déviation of a curve, or is better known as the aberrancy

of a curve. Geometrically, the aberrancy of a curve f(x) at a point P is the tangent

of the angle δ formed between the normal at P and the limiting position of a line

drawn from P to the midpoint of a chord parallel to the tangent line at P as the

chord approaches P [71].
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Figure 6.1: The aberrancy of a curve f(x) at point P . Reprinted from [14].

For example, the circle has its tangent lines perpendicular to all its radii and so the

parallel chords to a tangent line, at any given point, are also perpendicular to the

radius. Then it follows that all midpoints in the chords lie on a perpendicular line

to the tangent line since circles are curved away from a point equidistant to both

sides. Hence, the line formed by these midpoints goes to the center of the circle and

lies on the corresponding normal line. Therefore, the angle δ formed between the

normal to the circle and the limiting line at any point is 0, which implies tan 0 = 0.

And so the aberrancy of the circle at any given point is 0. Any deviation from a

circle will produce a non-zero aberrancy. With that, aberrancy can be thought of

as the measure of the noncircularity of a curve at a given point [34].

The aberrancy of a curve can be represented as a formula. Suppose that f(x) is a

thrice-differentiable plane curve on an open interval I. If c ∈ I and f ′′(c) 6= 0, then
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the aberrancy A(c) of f(x) at c is given by:

A(c) = f ′(c)− f ′′′(c)(1 + f ′(c)2)

3f ′′(c)2
=

1

3

dρ

ds
= −1

3

k̇

k2
,

where

ρ =
1

k
is the radius of curvature.

We will note a few remarks. Aberrancy is invariant under both translation and

rotation. The only curves with constant aberrancy are logarithmic spirals, where

its intrinsic equation is k =
1

bs
. By doing the computation work, we arrive at

A(c) = −
b

3
.

6.2 Candidates for Suitable Splines

As stated by Levien and rigorously shown in Theorem 3.2.2, the monotonicity of

the quantity k̇/k2 plays an important role in determine which curves make suitable

splines. This quantity represents the amount of curvature variation for a segment

of a set amount of curvature. Meaning, it is invariant of similarity transformations

including uniform scaling. So, for any given generator curve, it uniquely identifies

a point on the curve (modulo periodicity, if the curve is periodic as opposed to

monotone in curvature) [57]. Based on this condition Levien established, it can

be shown that the solution curves from the minimization of the energy function∫
1
2
k̇2 − 1

8
k4 ds are candidates in making suitable splines.

For the trefoil, we know that its curvature satisfies the condition k̇2 + 1
4
k4 = 8k.
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Thus

k̇2 = −1

4
k4 + 8k.

By taking the derivative with respect to s on both sides, we get

k̈ = −1

2
k3 + 4.

This implies

k2k̈ = −1

2
k5 + 4k2 and 2kk̇2 = −1

2
k5 + 16k2

which yields

k2k̈ − 2kk̇2 = −12k2 < 0.

Thus, for the trefoil, the quantity k̇/k2 is monotonic.

For the other two solution curves which are elastic curves that have a curvature

of k = Acn(αs, p) where A = 2αp and p2 =
3±
√

3

6
, it has a derivative of k̇ =

−Aαsn(αs, p)dn(αs, p) and a second derivative of k̈ = Aα2cn(αs, p)(psn(αs, p)2 −

dn(αs, p)2). And so, by substitution and simplification, we get

d

ds

( k̇
k2

)
=
k2k̈ − 2kk̇2

k4
=
α2[(2p− 1)sn(αs, p)2 − 1]

Acn(αs, p)3
.

We wish to know if the derivative of the aberrancy is nonzero. All we need to do is

to show that the numerator,

α2[(2p− 1)sn(αs, p)2 − 1]

is nonzero. Since α2 > 0, we are only concerned with the second factor. By using

the NSolve function in Mathematica, we see that the only solutions for the equation
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(2p−1)sn(αs, p)2−1 = 0 are nonreal. This fact, along with not allowing α to either

equal 0 or K/α, the numerator is nonzero and the derivative as a whole is nonzero.

And so, the quantity k̇/k2 for the two elliptic curves is also monotonic.

6.3 The Trefoil as a Spline, A Special Case

So why is the trefoil actually a good candidate for a spline? Recall that Theorem

3.2.2 gave a geometric reasoning behind Levien’s claim and the aberrancy quantity

k̇/k2 for general curves. However, the theorem is only true locally. The trefoil is

actually a fascinating curve since it satisfies the conditions in the theorem globally,

which is important for applications to splines. To show why the trefoil satisfies

Theorem 3.2.2 globally, we will need two propositions.

First, recall that the polar coordinates of the trefoil is r3 = 2 cos(3φ). Using φ as a

parameter, we have

X(φ) = (r cos(φ), r sin(φ)) = rU,

with U = (cos(φ), sin(φ)) and V = (− sin(φ), cos(φ)) being an orthonormal frame

along the curve. By implicit differentiation, we get

dr

dφ
= −2 sin(3φ)

r2
= −2r sin(3φ)

2 cos(3φ)
= −r tan(3φ).

This implies that

X ′(φ) = rV − r tan(3φ)U =
r

cos(3φ)
(cos(3φ)V − sin(3φ)U) =

r

cos(3φ)
T,

where
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T = (− cos(3φ) sin(φ)− sin(3φ) cos(φ), cos(3φ) cos(φ)− sin(3φ) sin(φ))

= (− sin(4φ), cos(4φ)).

With this preliminary, we have our first proposition:

Proposition 6.3.1 For the trefoil, the following formula holds:

θ0 + θ1 = 4(φ0 − φ1),

where θ0, θ1 are the secant angles at two distinct points and φ0, φ1 are the polar angles

of those corresponding points.

To see why this is true, suppose P = X(φ0) and Q = X(φ1) are two points on the

leaf of the trefoil. Consider the triangle ABC formed by the x-axis and the tangent

lines to the curve at P and Q. Call these tangent lines T0 = (− sin(4φ0), cos(4φ0))

and T1 = (− sin(4φ1), cos(4φ1)), respectively. Let ψ be the vertex angle at C, where

the two tangent lines intersect. Let θ0 and θ1 denote the angles between the secant

line PQ and the tangents at P and Q. Then ψ = π − θ0 − θ1. The base angles of

the triangle at A and B can be determined to be ]A = 4φ0− π
2

and ]B = π
2
− 4φ1.

See Figure 6.2. Comparing, the following formula holds:

θ0 + θ1 = 4(φ0 − φ1).
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Figure 6.2: Tangents to the leaf

This formula is remarkable since it gives us a relationship between the unknown

polar angles φ0, φ1 and the known angles between the secant lines θ0, θ1. The next

logical step would be to find another relationship between these angles to solve for

the polar angles, given any two secant angles. This relationship gives us our second

proposition:

Proposition 6.3.2 For the trefoil, the following formula holds:

cos3(3φ0 − θ0) cos(3φ0) = cos(3θ0 + 2θ1 − 3φ0) cos(3φ1),

where θ0, θ1 are the secant angles at two distinct points and φ0, φ1 are the polar angles

of those corresponding points.

The proposition follows from an argument using trigonometry with information from

Figure 6.2 above. With these two propositions, we have enough to state the theorem

which proves that our trefoil satisfies the global result of Theorem 3.2.2.
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Theorem 6.3.3 (T.A. Clark)

For the trefoil leaf, there is a one-to-one correspondence between pairs of distinct

points and pairs of angles θ0 and θ1 satisfying the constraints: 1.) 0 < θ0 +θ1 <
4π

3

and 2.)
1

3
≤
θ1

θ0

≤ 3.

Proof .

We will provide a sketch of the details. There are two ways to see that this is true.

The first way is the numerical approach: if the sum is constrained, then as the secant

line moves around the leaf preserving the sum, one can verify that θ0 is monotonic.

The second way is the theoretical approach: the domain is simply connected and

maps into the range, hitting all points on the boundary, so it is onto and it is a local

homeomorphism.

Pictorially, the theorem is telling us that the domain of the function that maps

the pairs of distinct points and pairs of angles θ0 and θ1 of the trefoil is the entire

rightmost leaf, where −
π

6
< φ0, φ1 <

π

6
. We also assume that φ0 > φ1 so that

φ0 − φ1 = c, where c is a positive constant. Our domain will produce lines, all

parallel to each other, all of slope 1. Using the relations θ0 + θ1 = 4(φ0 − φ1) and

φ0 − φ1 = c, we get that θ1 = −θ0 + 4c. So, our map sends lines of slope 1 to lines

of slope −1. See Figure 6.3.
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Figure 6.3: Pictorial reasoning behind Theorem 6.3.3

Now that we have a stronger statement about the trefoil, we would like to show

examples of how pieces of the trefoil can be used to construct suitable splines. First,

let us focus on the special instance where θ0 = θ1 and lie on opposite sides of the

x-axis so that φ1 = −φ0. We will use this notion to develop a spline from a segment

of the trefoil to fit a circle that circumscribes a regular polygon. For our examples,

we will look at the square, the regular pentagon and the regular hexagon.

Our first example will be fitting a spline that will circumscribe a square. Let

us assume that θ0 = θ1 = π
4
. Then we know that 4(φ0 − φ1) = θ0 + θ1 =

π
2
. But since the points will be symmetric along the x-axis (i.e. φ1 = −φ0),

this implies that φ0 = π
16

and φ1 = − π
16

. With this information, we can define

the two points A = ( 3
√

2 cos(3π/16) cos(π/16), 3
√

2 cos(3π/16) sin(π/16)) and B =

( 3
√

2 cos(3π/16) cos(π/16),− 3
√

2 cos(3π/16) sin(π/16)) on the trefoil that will correspond

to the angles θ0 and θ1 and use the maximum C = ( 3
√

2, 0) as an anchor point (See

Figure 6.4).
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Figure 6.4: Points on the trefoil leaf

We will use the line segment between points A and B as the edge to develop the

square. We find the Euclidean distance between the two points to find the length

of our square, which in this case is 2(2 cos(3π
16

))1/3 sin( π
16

). With this knowledge,

we can build the square so that the trefoil segment lines up corner to corner (or

node to node, in spline terminology). These segments compose a circle around the

square. The radius of the circle formed by these pieces can easily be calculated since

we know the length of each side. We need to know the distance between any side

and the maximum of the curve. First we pick one of the points on our initial side

(in this case, I will select point A), replace the y-coordinate with 0 and find the

distance between this and the maximum point C. In our case, this distance is equal

to 3
√

2− cos( π
16

)(2 cos(3π
16

))1/3. And so the radius of the circle that approximates this

square can be found by finding the sum of the Euclidean distance of a side and twice

the length of the side to the maximum of the curve segment. In this case, the radius

of our approximated circle is 0.329072. However, for regular polygons, the radius of
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the actual circumscribed circle is given by

radius =
1

2
s csc

(π
n

)
,where s = side length and n = number of sides.

We can use this fact to compare the radius of the circle created by our spline to the

true circle. In this case, the radius is equal is supposed to be 0.326871, which yields

a percent error of 0.673294. This tells us that our spline is fairly accurate. Refer to

Figure 6.5. The spline approximation is in blue while the true circle is red dotted.

As we can see, the spline is a good approximation for the circumscribed circle.

Figure 6.5: The Square with its true circumscribed circle (in red) and its trefoil
spline (in blue).

We can use the same process as noted above for the pentagon and the hexagon. It

should be noted that when one wants to find the radius of the approximating circle

for a regular n-gon of equal sides s, calculate the height of the polygon and then add

either the distance of the known side to the maximum of the trefoil (if the polygon

has an odd number of sides) or twice that said distance (if the polygon has an even

number of sides) where:
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height =


s

tan(π/n)
if n is even

s
2 tan(π/2n)

if n is odd.

With this, we can show that as the number of sides increase for the polygon, the

better the fit becomes since the percent error gets smaller when comparing the trefoil

spline radius to the true radius of the circumscribed circle. Refer to Figures 6.6 and

6.7 for a visual representation.

Figure 6.6: The Pentagon with its
true circumscribed circle (in red) and
its trefoil spline (in blue).

Figure 6.7: The Hexagon with its true
circumscribed circle (in red) and its
trefoil spline (in blue).

But we can go further in generalizing this special case. Define s as the Euclidean

distance of the two points of the secant line on the trefoil where s = 2 3
√

2 |cos(3π/4n)1/3 sin(π/4n)|.

We define r as the radius of the approximating circle where
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r =


3
√

2− 3
√

2 cos( π
4n

) cos(3π
4n

)1/3 + 3
√

2 cos(3π
4n

)1/3 cot(π
n
) sin( π

4n
) if n is even

1
2

(
3
√

2− 3
√

2 cos( π
4n

) cos(3π
4n

)1/3 + 3
√

2 cos(3π
4n

)1/3 cot( π
2n

) sin( π
4n

)
)

if n is odd.

We can create this table of values which compares how much better our trefoil spline

approximation gets as the number of sides of the polygon increases (Refer to Table

6.1).

Table 6.1: The Approximation of the Trefoil Spline vs. the True Circle

Square Pentagon Hexagon n-gon

Length of side 0.462265 0.379314 0.320339 s
Radius of Trefoil Spline 0.329072 0.323089 0.320735 r

Radius of True Circle 0.326871 0.322664 0.320339 1
2s csc

(
π
n

)
Percent Error 0.673294 0.131571 0.123837 200

s sin(πn)|s−
1
2s csc(

π
m)|

Based on the values of Table 6.1, we can see that numerically, the radius of the

trefoil spline approaches a certain value. In fact, we can show that

lim
n→∞

r = lim
n→∞

1

2
s csc

(π
n

)
=

3
√

2

4
,

which is exactly what we hoped for since the radii are approaching what the true

radius should be as the number of sides increase.
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Chapter 7

Numerical Computation of Trefoil Splines

7.1 Numerical Calculations

In this chapter, we want to observe the fact that the trefoil satisfies Theorem 3.2.2

globally based on Theorem 6.3.1. Recall from the previous chapter that we saw a

relationship between the unknown polar angles φ0, φ1 and the known angles between

the secant lines θ0, θ1 of any two points of the trefoil:

θ0 + θ1 = 4(φ0 − φ1).

It is worth noting that solving for a specific choice of angles θ0, θ1 can be done

numerically, which miraculously involves no difficult computations! Given the sum

of the two angles θ0 + θ1 and a polar angle φ0, we can find the unique φ1 which tells

us the measure of θ0. This gives us the angle coordinates of the two points of the

trefoil, where the resulting arc can then be explicitly generated by using the polar

coordinate formula for the trefoil.

This is done by taking what we know about the trefoil and the numerical calculations
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from Theorem 3.2.2. The idea is that we know θ0, which we call t, r(t) = 3
√

2 cos(3t)

and the difference between φ0 and φ1, which we call del. Note that we allow del to

vary in value. By defining X(t) = (r cos(t), r sin(t)), we can define the terms X10,

X(t−del) and ‖X10‖. This, along with the secant vector V , we can define a function

f [t, del] which is the dot product of the secant vector V and the normal vector at

the endpoint given by t, i.e.

f [t, del] = 〈V,N(t)〉 = cos
(
θ0 +

π

2

)
= − sin θ0.

By taking the arcsine of both sides, we get an expression for θ0.

Likewise, the inverse to this can be found numerically: Given the sum of the two

angles θ0 + θ1 and the measure of angle θ0, we can find the unique measure of φ0.

This is done simply finding the solution to the function

arcsin(f [t, del]) + θ0 = 0.

But this is actually very easy to do since we know θ0 and del because this reduces

down to a problem of root finding, which can use either Newton’s method or the

Bisection method. Recall from introductory calculus that Newton’s method does

converge at a faster rate than the Bisection method. However, Newton does have

limitations based on the initial seed value and the derivative of the function in

question. for instance, Newton’s method will fail if the seed value is at or near a

critical point. The Bisection method requires us an interval which contains the root

and the function needs to be continuous. While the Bisection method is slower, it

has no limitations and will converge to the same answer eventually.
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Mathematica codes for these problems will be provided in the appendix.

7.2 Examples of Nonlinear Splines

The good news about this numerical computation is that it provides a practical result

opposed to just a theoretical one! A practical use for splines is in the development

of fonts for computer word processors. This makes sense since the basis of all fonts

are lines and circles, with required smoothing and adjustments for the specifics of

certain letters, numerals and symbols.

One example would be the S-spline, which has three knots above the inflection,

three knots below and one at the inflection. When we compare this with the circle

spline back in Chapter 3, we see that our trefoil spline actually forms the letter “S”

surprisingly well.

Figure 7.1: The S-spline formed by the trefoil (far right), compared to the circle
spline failure.
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In addition to letters, we can use pieces of the trefoil to form symbols. For instance,

by using 10 knots and appropriate slices of the trefoil, we can form an ampersand

which closely resembles the one on the left.

Figure 7.2: An ampersand formed by the trefoil spline (right).

With 15 knots, we can form a rough (but decent) approximation of the at symbol.

Of course, with more knots, the spline will become more smooth. Regardless, even

with a small number of knots, we do get a nice picture.

Figure 7.3: The at symbol formed by the trefoil spline (right).
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Appendix A

Mathematica

In the appendix, we will provide the Mathematica code which gave us the proof

to the assertions that were stated in the previous chapter. First, we provide Code

Mathematica A.1 which answers the original problem stated in Chapter 7: Given

the sum of the two angles θ0 + θ1 and a polar angle φ0, find the measure of θ0.

Code Mathematica A.2 and Code Mathematica A.3 provides the inverse to the

problem above: Given the sum of the two angles θ0 + θ1 and the angle θ0, find the

measure of φ0. Code Mathematica A.2 provides the solution to the inverse problem

using the Bisection Method while Code Mathematica A.3 provides the solution via

Newton’s Method. We should note that the rate of convergence of Newton’s method

is typically better than the rate of convergence of the bisection method.
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Code Mathematica A.1: Code to find θ0, given φ0

(*We define the polar radius r in terms of phi0 , which we call t.*)

r[t_] = (2 Cos[3 t])^(1/3)

(*This is the parametrization of the trefoil in terms of polar coordinates.*)

X[t_] = {r[t] Cos[t], r[t] Sin[t]}

(*We define a value del which represents the difference between phi1 and phi0.*)

x10[t_] = X[t - del] - X[t]

len[t_] = Norm[x10[t]] // Simplify

nor[t_] = {Cos[4 t], Sin[4 t]} (*The normal vector at phi0*)

vec[t_] = 1/len[t] x10[t] (*The slope of the secant line*)

(*f[t,del] measures how the angle theta0 varies as we travel around the trefoil

leaf with fixed sum theta0+theta1=del.*)

f[t_ , del_] = nor[t].vec[t]

(*We define a function Ang which produces the angle formed between the normal

vector and the secant line , given a value phi0 and del*)

Ang[t_ , del_] = -ArcSin[f[t, del]]

(*The function deg is the analogue of Ang , just measured in degrees.*)

deg[t_ , del_] = 180 Ang[t, del]/Pi
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Code Mathematica A.2: The Bisection Method to find φ0, given θ0

(*We define the function b as the difference between Ang[t,del] and theta0.

Note that del and theta0 need to be defined as actual numerical values.*)

b[t_] := Ang[t, del] - (theta0)

(*The Bisection function accepts an interval and returns either the right half

or the left half of the interval , depending on whether the sign of b at the

midpoint agrees with the sign of b at the left endpoint.*)

Bisection [{lb_ , ub_}] :=

If[b[lb]*b[(lb + ub)/2] > 0, {(lb + ub)/2, ub}, {lb, (lb + ub)/2}]

(*By inputting an appropriate lower bound (lower) and upper bound (upper), along

with how many iterations n, we get a sequence of estimates to m decimal places.

Note that lower , upper , n and m need to be defined as actual numerical values.*)

NestList[Bisection , {lower , upper}, n] // N[#, m] & // TableForm

Code Mathematica A.3: Newton’s Method to find φ0, given θ0

(*We define the function n as the difference between Ang[t,del] and theta0.

Note that del and theta0 need to be defined as actual numerical values.*)

n[t_] := Ang[t, del] - (theta0)

(*The Newton function performs the Newton ’s method algorithm.*)

Newton[t_] := N[t - ComplexExpand [(n[t]/n’[t])]]

(*By inputting an appropriate seed value , along

with how many iterations n, we get a sequence of estimates to m decimal places.

Note that seed value , n and m need to be defined as actual numerical values.*)

NestList[Newton , seed value , n] // N[#, m] & // TableForm

89



To see this code used in practice, we will provide an example. Recall from Chapter 6

when we were calculating the necessary angles to fit a spline around the circle which

would circumscribe a square. With our calculations, we saw that θ0 = θ1 =
π

4
,

φ0 =
π

16
and φ1 = −

π

16
. We wish to verify these measurements as correct. Utilizing

Code Mathematica A.1 where t = φ0 =
π

16
and del = φ0 − φ1 =

π

8
, we get the value

of θ0:

Now, for the inverse. Suppose we only know one of the angles formed by the secant

line and tangent line of the trefoil, i.e. θ0 =
π

4
and we know del =

π

8
. Then by using

either the Bisection Method or Newton’s Method, we get the measure of φ0.

Using the Bisection Method (Code Mathematica A.2) with lower bound 0.1, upper

bound 0.5 and 20 iterations, we get:
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In 20 iterations, the Bisection Method tells us that we are approaching a φ0 value

of 0.19635 which is approximately
π

16
! Exactly what it should be! Likewise, using

Newton’s Method (Code Mathematica A.3) with seed value 0.4 and using 20 iterations,

we get:
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As we can see, in 20 iterations, Newton’s Method tells us that we are approaching

a φ0 value of 0.19635. We are reaching a value of approximately
π

16
at a faster rate

than the Bisection Method.

92



BIBLIOGRAPHY

[1] Abazari, Nemat, and Yusuf Yayli. “The Classical Elastic Curves in A

3-Dimensional Indefinite-Riemannian Manifold.” Journal of Applied Sciences 12

(2012): 1303-1307.

[2] Abramowitz, Milton, and Irene A. Stegun. “Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables.” US Department of

Commerce. National Bureau of Standards Applied Mathematics series 55, 1965.

[3] Andrews, Gillian, Camilla Hallinan, and Laura Sandford, eds. The Math Book:

Big Ideas Simply Explained. Dorling Kindersley Ltd, 2019.

[4] Armitage, John Vernon, and William Frederick Eberlein. Elliptic Functions. Vol.

67. Cambridge University Press, 2006.

[5] Arnol’d, Vladimir Igorevich. Mathematical Methods of Classical Mechanics. Vol.

60. Springer Science & Business Media, 2013.

[6] Beléndez, Augusto, et al. Exact Solution for the Nonlinear Pendulum. Revista

brasileira de ensino de f́ısica 29.4 (2007): 645-648.

93



[7] Birkhoff, G., H. Burchard, and D. Thomas. Nonlinear Interpolation by Splines,

Pseudosplines and Elastica. Research Laboratories, General Motors Corporation,

1965.

[8] Birkhoff, Garrett and Carl R. De Boor. Piecewise Polynomial Interpolation and

Approximation. 1964.

[9] Bor, Gil, Mark Levi, Ron Perline, and Sergei Tabachnikov. “Tire Tracks and

Integrable Curve Evolution.” arXiv preprint arXiv:1705.06314 (2017).

[10] Brook, Alexander, Alfred M. Bruckstein, and Ron Kimmel. “On

similarity-invariant fairness measures.” International Conference on Scale-Space

Theories in Computer Vision. Springer, Berlin, Heidelberg, 2005.

[11] Brunnett, Guido. The Curvature of Plane Elastic Curves. No. NPS-MA-93-013.

Naval Postgraduate School Monterey CA Department of Mathematics, 1993.

[12] Brunnett, Guido H. “Properties of minimal-energy splines.” Curve and Surface

Design. Society for Industrial and Applied Mathematics, 1992. 3-22.

[13] Burden, R. L., and J. Douglas Faires. “Numerical Analysis 8th Edition.”

Thompson Brooks/Cole (2005).

[14] Byerley, Cameron, and Russell A. Gordon. “Measures of Aberrancy.” Real

Analysis Exchange 32.1 (2007): 233-266.

[15] Byrd, P. F., and M. D. Friedman. Handbook of Elliptic Integrals for

Scientists and Engineers. Grundlehren der Mathematische Wissenschaften, LXVII

(Springer-Verlag, Berlin, 1954) (1971).

[16] Cassel, Kevin W. Variational Methods with Applications in Science and

Engineering. Cambridge University Press, 2013.

94



[17] Chapling, Richard. “Elliptic Functions.” Complex Methods, University of

Cambridge. Received 3 March 2016. Handout.

[18] Chapling, Richard. “Summary of Concepts in Variational Principles.” Complex

Methods, University of Cambridge. Received 14 October 2018. Handout.

[19] Coope, Ian D. “Curve Interpolation with Nonlinear Spiral Splines.” IMA

Journal of numerical analysis 13.3 (1993): 327-341.

[20] Cooper, Fred, Avinash Khare, and Uday Sukhatme. “Periodic solutions of

nonlinear equations obtained by linear superposition.” Journal of Physics A:

Mathematical and General 35.47 (2002): 10085-10100.

[21] Cox, Steven James, et al. Six Themes on Variation. Vol. 26. American

Mathematical Soc., 2004, pp. 1–11.

[22] Culham, J.R. “Elliptic Functions.” ME755 Special Functions, University of

Waterloo. Received 1 March 2004. Lecture Notes.

[23] Dalle, Derek. “Comparison of Numerical Techniques for Euclidean Curvature.”

Rose-Hulman Undergraduate Mathematics Journal 7.1 (2006): 12.

[24] Do Carmo, Manfredo P. Differential Geometry of Curves and Surfaces: Revised

and Updated Second Edition. Courier Dover Publications, 2016.

[25] Edwards, John A. “Exact Equations of the Nonlinear Spline.” ACM

Transactions on Mathematical Software (TOMS) 18.2 (1992): 174-192.

[26] Elsgolts, Lev Ernestovich, and George Yankovsky. Differential Equations and

the Calculus of Variations. Moscow: Mir, 1973.

[27] Faber, Richard L. Differential Geometry and Relativity Theory: An

Introduction. Routledge, 2017.

95



[28] Farin, Gerald, and Dianne Hansford. Mathematical Principles for Scientific

Computing and Visualization. AK Peters/CRC Press, 2008.

[29] Ferrández, Angel. “Some Variational Problems on Curves and Applications.”

Topics in Modern Differential Geometry. Atlantis Press, Paris, 2017. 199-222.

[30] Finch, Steven R. Mathematical Constants. Cambridge University Press, 2003.

[31] Gelfand, Izrail Moiseevitch, and Richard A. Silverman. Calculus of Variations.

Courier Corporation, 2000.

[32] George, Raju K. “Calculus of Variations.” Applied Mathematics, Indian

Institute of Space Science and Technology. Received Fall 2017. Course Lecture

Notes.

[33] Gibson, Christopher G. Elementary Geometry of Differentiable Curves: An

Undergraduate Introduction. Cambridge University Press, 2001.

[34] Gordon, Russell A. “The Aberrancy of Plane Curves.” The Mathematical

Gazette 89.516 (2004): 424-436.

[35] Hahn, Liang-shin, and Bernard Epstein. Classical Complex Analysis. Royal

Society of Chemistry, 1996.

[36] Hall, Leon M. “Special Functions.” Available in: http://web.mst.edu/

~lmhall/SPFNS/spfns.pdf (1995).

[37] Hermann, Martin, and Masoud Saravi. “A Brief Review of Elementary

Analytical Methods for Solving Nonlinear ODEs.” Nonlinear Ordinary

Differential Equations. Springer, New Delhi, 2016.

[38] Hicks, Noel J. Notes on Differential Geometry. Vol. 3. Princeton: van Nostrand,

1965.

96

http://web. mst. edu/~ lmhall/SPFNS/spfns.pdf
http://web. mst. edu/~ lmhall/SPFNS/spfns.pdf


[39] House, Donald H. “Computer Graphics.” CPSC 4050/6050, Clemson

University. Received 15 October 2015. Course handout.

[40] Ibrayev, Rinat, and Yan-Bin Jia. “Semidifferential Invariants for Tactile

Recognition of Algebraic Curves.” The International Journal of Robotics Research

24.11 (2005): 951-969.
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Curves: Fair and Robust Design Implements.” Computer Graphics Forum. Vol.

12. No. 3. Edinburgh, UK: Blackwell Science Ltd, 1993.

[66] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,

Release 1.0.23 of 2019-06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier,

B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders,

eds.
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