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Degradation & Partial Shading Study of Photovoltaic Modules in the

Field: Enabled by Time-series Current-Voltage & Power Analysis

Abstract

by

JIQI LIU

0.2 Abstract

The time-series power (P ) and current-voltage (I-V ) curve datastreams of photo-

voltaic modules exposed in the field for long times are very useful for studying degra-

dation behavior and fault detection of photovoltaic modules. In this study, over two

million I-V curves were processed using the data-driven I-V feature extraction al-

gorithm. A statistical analysis method was developed and applied to detect partial

shading by returning shading profiles, the relative orientation of the shading object,

detailed information on shading scenarios, and the duration of partial shading based

on multistep I-V curves. Three out of eight PV modules studied exhibit partial shad-

ing which is consistent across a number of years in the shading profile. The extracted

I-V features are processed by the outdoor Isc-Voc and power loss calculation method

to obtain the power losses due to four degradation modes including uniform current

loss, recombination loss, series resistance loss and current mismatch loss. Then the

month-by-month regression method is applied to the four types of time-series power

loss to obtain the rate of change of each degradation mode of each module. The

xi



degradation results from both I-V and Pmp analysis are compared across module

brands, architectures and their climate zone locations. In addition, the performance

loss rates (PLR) was determined from the power time-series and show that the BWh

and BSh Köppen-Geiger climate zones cause similar performance loss rates, which

are larger than those in the ET climate for brand F (glass-backsheet architecture)

modules. For Brand G (double glass architecture) modules, BSh causes more aggres-

sive degradation than BWh and both are more aggressive than ET. Brand G (double

glass) has significantly better performance than brand F (glass-backsheet) ones espe-

cially in BWh. From the outdoor Isc-Voc analysis, the dominant degradation mode is

obtained for each brand (architecture) PV modules under exposure in each climate

zone. These I-V ,Pmp time-series datastream analyses represent a new approach to

remotely identify degradation rates and mechanisms, and partial shading problems

of real-world PV power plants.

xii
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1 Introduction

Solar energy is a kind of clean and renewable energy, and its market share has

continued to increase for many years. In order to reduce the levelized cost of electricity

produced and make solar energy more competitive in the energy market, modules with

higher efficiency were developed and research was conducted to study the degradation

of photovoltaic modules to reduce the power loss rate in long term degradation by

improving in manufacturing. For studies of degradation, various indoor accelerated

exposures and characterization techniques are most commonly used because exposure

condition variables are more easily controlled in the lab. However, the real working

environment of a PV module is much more complex and in most cases, there are a lot

of environmental factors acting together. These factors also change over time, and

they can form different combinations due to the local weather conditions. In order to

overcome this gap, sequential indoor exposures have been developed to understand

the degradation behavior of PV modules or related materials under multiple stressors,

and thanks to the rapid growing application of photovoltaic modules, more and more

time-series data recording the performance of solar panels in the field have become

available for research and many of these are long enough for degradation studies1.
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This provides new opportunities for studying the degradation of solar panels in

practical applications, which will bring insights into the degradation of solar panels

under exposure to real world conditions. There are two types of time-series data

measuring the electrical performance of solar panels: maximum power (Pmp) and

current-voltage (I-V ) curves. Pmp time-series datasets are more common and accessi-

ble compared with time-series current-voltage datastreams since they can be obtained

through the AC/DC inverter, and can be used to evaluate the degradation of the gen-

eral performance of solar panels. A lot of studies have been proposed on methods

to obtain the performance loss rate (PLR) of PV power plants using time-series Pmp

datastreams.

However, Pmp time-series data have limited ability to reveal the causes of perfor-

mance loss, on the another hand, time-series I-V curves have advantages for this,

the change in I-V curves can be closely related to the specific physical or chemical

changes of the modules. However, compared with studies using Pmp, degradation

studies using long term time-series I-V are very limited. Usually, some features are

extracted from the I-V curves, and processed in a similar way to time-series Pmp to

obtain the percentage of change or a rate of change for each feature2. This is helpful

to understand the changes that happens in the module, but these percentages won’t

be able to be directly compared with each other considering their contribution to

power loss. The outdoor Isc-Voc and power loss method can obtain the power loss

due to different changes in some I-V features which make these changes comparable

regarding their contribution in power loss3. Moreover, outdoor field studies usually
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involve different modules located at a single location, and there is a lack of stud-

ies using the same method to analyze modules under completely different weather

conditions at multiple locations.

In addition, considering the safety and influence on degradation of commercial

and research PV systems, it is also crucial to ensure the normal operation of solar

panels. Partial shading, as one kind of power loss or fault condition, not only reduces

the power generation but can also lead to hot spots and reverse bias conditions which

can cause permanent damage to the PV cells and aging of the PV module. It could

be caused by lots of common things around the module such as trees, snow, grass, or

bird dung. In order to avoid and detect these abnormal operation situations, there

are lots of studies about fault detection taking advantages of the Pmp time-series

data from the PV module under study and another time-series data from a reference

object, and the methods developed can already be applied to real systems4.

However, the partial shading studies by I-V curves still mainly link the shape of

I-V curves to specific shading examples, and there is a lack of research on methods

using time-series I-V curves to detect shading, even the I-V data itself when applied

to actual PV systems, have advantages as a signal in partial shading detection5.

In this research, the structure of which is shown in Fig. 1.1, millions of time-

series I-V curves are processed, using a data-driven approach for detecting steps and

extracting I-V features. A partial shading detection method is developed by taking

multistep I-V curves and returning the shading profile, obstacle orientation, and

more detailed information regarding duration and shading scenarios. Three of eight

studied modules are identified as experiencing partial shading, which impacts power.

Extracted time-series I-V features are processed using the outdoor Isc-Voc method
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Figure 1.1. Flow chart of study process enabled by time-series I-V
curves and Pmp.

to obtain the power loss due to four types of degradation modes, which are further

processed by a regression method to obtain the dominant degradation mode for each

module. The time-series Pmp is then processed to obtain the performance loss rate.

The comparison of degradation results reveals the climate-zone dependent and brand

dependent degradation behaviors of these eight modules including both their general

performance and the dominant degradation mode.
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2 Literature Review

In this chapter, published research on degradation of photovoltaic (PV) modules

using time-series electrical data obtained from modules installed in the field is re-

viewed. The degradation behavior of both double glass (DG) and glass backsheet

(GB) PV modules and PV module degradation across Köppen-Geiger climate zones

is summarized. And power fault detection, and partial shading of PV modules as

studied using time-series data are reviewed.

2.1 Time-series Datastreams & Related PV Degradation Studies

Due to the rapid growth of solar energy6,7 and development of inverters and low-cost

I-V tracing instruments in the past few years, more and more time-series data have

became accessible and many studies are of sufficient duration for PV degradation

studies. Time-series electrical data for PV modules installed in the field are mainly

divided in two categories, maximum power tracking (Pmp)
8 and current-voltage (I-

V ) curves2. The former can be AC or DC power, usually measured at the inverter,

and sometimes with voltage and current at maximum power (Vmp and Imp) and the

later studies require additional I-V tracing equipment. These time-series datastreams

can be used to study operational status of the system, for fault detection and for
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degradation studies of solar panels, in the following we mainly focus on degradation

studies.

Time-series Pmp data are usually analyzed to calculate the performance loss rate

(PLR)9. First the data is filtered by an irradiance cutoff to remove low irradiance

data, sometimes combined with a clear sky filter, then processed to produce a stan-

dardized performance metric so that different systems located in different climate

zones can be compared to each other9,10. There are several common performance

metrics used, which include correction to standard test conditions11, empirical met-

rics such as PVUSA12, 6k-values performance model13 and Sandia models14, and

performance ratio15. After this conversion, a statistical modeling method such as

regression is used to obtain the rate of change. However, due to seasonality and the

inherent noise present in the time-series data, different methods are also used instead

of simple linear regression for PLR determination, such as classical seasonal decom-

position16, auto-regressive integrated moving average (ARIMA)15, Year-on-year re-

gression17,18 and so on. PLR values obtained by the same method can be compared

across different types of modules for degradation study1,19.

Contrasting with Pmp, which indicates the general performance, I-V curves are

able to provide more insight on PV module degradation behavior1. The time-series

I-V curves are usually not obtained from the AC/DC inverter but instead recorded

by special I-V tracing systems20. In total, there are eight I-V features defined,

which can be extracted from the curve, even though these are not all independent

features. They are maximum power (Pmp), voltage at maximum power (Vmp), current

at maximum power (Imp), short-circuit current (Isc), open-circuit voltage (Voc), series

resistance (Rs), shunting resistance (Rsh) and fill factor (FF ). FF is equal to Pmp
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divided by the product of Isc and Voc
21. These I-V features are important parameters

for evaluating the specific changes in the PV modules2.

There are mainly two types of approaches that are developed for extracting these

I-V features, and these methods use either physical models or data-driven models.

The former one includes the single diode22–24 and the two diode25 models which are

based on the equivalent electrical circuit of the PV module, the later one focuses on

using the definition of each feature26 and extracting the features as fitted parameters

using partial data of the curve. These features need to be corrected23 or predicted27 to

be at some reference conditions for module degradation studies. The change of each

feature over time is related to different degradation modes and mechanisms of the

photovoltaic modules under the specific exposure conditions. For example, yellowing

of the encapsulant layer can cause Isc to decrease28, and corrosion may cause Rs to

increase29. In additional, there are studies using the extracted Isc and Voc to construct

Suns-Voc
30 or Isc-Voc curve31 for degradation studies, and M. Wang proposes a power

loss calculation method3 that can convert the change in some I-V features to be the

change in power for a more direct comparison using the outdoor Isc-Voc curves.

It is worth mentioning here that there is a very recent study32 by Xingshu Sun

that focuses on reconstructing I-V curves using time-series Pmp, Vmp, and weather

variables and then extracting features from them for other later study. These data

are potentially more abundant and easier to obtain than time-series I-V curves.
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2.2 Degradation Behavior Dependencies of PV Modules

The degradation of PV modules is influenced by solar cells’ material, such as monocrys-

talline silicon (mono-Si) or multicrystalline silicon (multi-Si) or CdTe thin films33, the

cell type such as Passivated Emitter and Rear Contact (PERC) or Aluminum Back

Surface Field (Al-BSF)29. In addition the packaging materials and strategies used

play a critical role in degradation. These include the encapsulants34, the module

architecture such as double glass or glass-backsheet1 and the exposure conditions

including both indoor accelerated35 and outdoor real-world1 conditions.

According to Jordan33, who studied reported degradation rates over a 40 year

period, the median degradation rate of modules and systems made of silicon type

cells and thin-film technology is the same. In addition, module-level data show that

the degradation rate of mono-Si type is lower than multi-Si, and is further lower than

amorphous-Si.

The standard solar cell structure that has been in use for decades and also occu-

pies the majority of the solar cell market is Al-BSF which stands for Aluminum Back

Surface Field cell. In recent years, a new cell structure, first proposed in the 198936,37

and now becoming the dominant cell type in the market, is PERC which stands for

Passivated Emitter and Rear Contact cell38. This new cell technology39 increases the

efficiency of solar cell by adding a rear side dielectric passivization layer. However,

studies have shown that p-type PERC cells are more sensitive to the LeTID degrada-

tion mode40,41 (LeTID is light and elevated temperature induced degradation). This

may cause p-type PERC cells have a higher degradation rate when the operating

temperature is relatively high.
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The choice of packaging materials for the PV module, such as encapsulants34 and

backside materials such as the backsheet, and the type of backsheet42 or glass also

affects the modules’ degradation behavior. Study of Yingbin, Zhang43 shows that

double glass modules have higher durability over four kinds of indoor accelerated

exposures including 600 temperature cycles, 4000 hours of damp-heat exposure, 600

hours potential induced degradation and 50 cycles humidity freeze. These exposure

conditions are defined in the IEC 61215 standard35. But the chemical composition of

the multilayer polymer laminate backsheet in this study was not defined in the paper.

Their results showed that this backsheet cracked after 3000 hours damp heat, indi-

cating that this backsheet has quite low durability since the cracks in the backsheet

usually should be activated by sequential exposure44.

Analogous to how various indoor exposure conditions could cause different degra-

dation modes to be activated in the PV modules45, the outdoor environment, de-

pending on the location, can be vary widely, which can activate different degradation

modes and mechanisms even for PV modules of the same brand46.

2.3 Partial Shading Detection

A power fault, if not be detected and corrected will not only cause a loss in perfor-

mance of the PV array but also threaten the security, safety and reliability of the

whole PV power plant47. Shading, which is a kind of fault operation scenario, should

be detected and eliminated. Depending on the scenario including partial (or non-

uniform) shading and uniform shading of a PV module as Fig. 2.1, can also affect

the power plant differently.
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(a) Uniform shading

(b) Partial shading

Figure 2.1. Schematic diagram of uniform shading and partial shad-
ing (the blue square represents not shaded cell and the purple square
represents shaded cell).

Partial shading is the condition of nearby objects casting shade onto part of a

photovoltaic module, causing the PV module to receive spatially non-uniform irra-

diance48. Uniform shading, on another hand, means the PV modules has uniform

irradiance under shadow. Especially, in the case of several PV modules connected

in series to form a string of a PV array, they can be treated as a large PV module

as a whole and partial shading is a similar issue for a string of modules48. First,

both of them cause a reduction in power generation49, but partial shading generates

more concerns including local hot spots, which can lead to lower module efficiency5,

overheating50, non-uniform severe degradation of packaging material especially for
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polymer, safety issue, and reverse bias which could bring the risk of permanent de-

struction to the cell and cause the whole string to be open-circuit in later operation51.

For commercial PV modules and most modules studied in research, one solar cell

is connected in series with others. If one, or some, cells but not all cells connected in

series are shaded, the shaded cells will be forced into reverse bias, consuming power

and generating heat51. In the worst case, the voltage applied to the shaded cell reaches

the breakdown voltage, and the cell can be permanently damaged. Thanks to the use

of by-pass diodes in commercial PV modules, which are connected in anti-parallel,

each with typically 20 cells in a string (for a 60 cell PV module) to guarantee the

maximum negative voltage would not exceed the breakdown voltage52. The presence

of by-pass diodes also can reduce the dissipation power53. However, even in this kind

of module configuration, studies with both experiment54 and simulation50 shows that,

under 1 sun illumination level, the temperature increase in the completed shaded cell

can have an increase of 183 ◦C in one thousand seconds.

Many studies use time-series data generated by power plants to monitor opera-

tions and detect shadows, rather than relying on on-site inspections by maintenance

personnel. Studies for shading detection, based on the data used, can be divided

in two categories, using time-series Pmp or I-V curves, the former one sometimes

take the voltage at maximum power (Vmp) and current at maximum power (Imp) into

also47,55.

Since shading can cause a reduction in Pmp
56,57, comparing the Pmp of the studied

PV module or the module string (composed of modules connected in series) with

a reference PV module4 or pyranometer58,59 that is guaranteed not be shaded, or
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with simulation data60, when shading occurs can be detected to the studied mod-

ule. Studies using time-series Pmp to detect shading are already quite mature and

can be applied to time-series data obtained from the real operating systems53,61 and

obtain the shading profile which has information of when shading happens to the

module4. Because time-series Pmp is abundant and easy to obtain now due to the

fast development of PV in the electricity market in recent years6, the application for

this branch of study could be very wide. But it has two main disadvantages, first, it

does not distinguish partial shading and uniform shading cases, second, it requires a

guaranteed reference object.

However, partial shading in most cases will cause distortion in I-V curves47,62,

which looks like a ”step” in the I-V curves, while uniform shading won’t cause ”step”.

This phenomena provides an opportunity to distinguish the partial shading cases from

uniform ones and detect the partial shading problem without a reference system. A

lot of studies using I-V curve for shading detection focus on using simulation and

experiments to link the different shading cases with different changes in the I-V

curve5,47,51,55,63,64 but there is a lack of studies that have analysis of real time-series

I-V datastreams. The main shortcoming of these methods is the I-V data itself.

Time-series I-V curves of PV modules in the field are much less common than Pmp

and they are usually owned by research facilities, who buy the commercial PV modules

and install them in the field with I-V monitoring for degradation study. In addition,

an I-V curve compared to a single value is more difficult to process and the significant

increase in data in time-series I-V also increases the requirement of computation.

Last but not least, the time-series I-V curves contain more operational diagnostic

information than Pmp, Vmp , and Imp , which are usually already monitored in the
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commercial PV inverter. Studies show that, from the hardware perspective, the

PV inverter has the necessary ability to measure the I-V curve but it’s not been

introduced by most PV inverter manufacturers at this time65.
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3 Dataset Description

This chapter provides a description of the dataset used in this study, which was

provided by our collaborators Michael Köhl and Erdmut Schnabel at Fraunhofer-ISE

in Freiburg Germany.

3.1 Time-series Datastreams

The Fraunhoer-ISE dataset comes from a long-term study of photovoltaic modules

by Fraunhofer-ISE. It consists of time-series data of eight PV modules installed out-

doors, including current-voltage (I-V ) curves data, I-V features reported (by the I-V

tracer equipment’s own fitting of the I-V curves using an undisclosed and unknown

algorithm), Pmp data and weather data of air mass, angle of incident (aoi), zenith

angle, delta irradiance, which is irradiance fluctuation in percentage, effective irradi-

ance measured by a reference cell, global irradiance in the plane of array (POA) and

ambient temperature. In addition, the module temperature and the temperature of

the reference cell are also recorded.

The I-V curves are measured at a time interval of approximately 5 minutes by an

I-V curve tracer instrument, the Electronic Load ESL-Solar 50066. Each I-V curve

usually contains 40 to 70 data points. Air mass, aoi, delta irradiance, POA, effective
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irradiance and temperature of studied module and reference cell, ambient temperature

all are measured by local sensors at the same time interval. The maximum power

is measured by the same instrument with a time interval about 1 to 2 minutes time

interval together with ambient temperature, module temperature, POA, zenith angle,

and aoi.

In this thesis, the datastreams of time-series I-V curves, maximum power Pmp,

irradiance POA ,and module temperature are used.

3.2 Meta Data for Observed Modules

The acquired time-series data is from eight commercial PV modules located at three

different sites that belong to three different Köppen-Geiger climatic zones67: two

modules are on Mount Zugspitze in the Bavarian Alps (ET climate zone), three are

in Gran Canaria (the Canary Islands of Spain) (BWh climate zone), and the other

three are in the Negev desert (BSh climate zone), the climate zone is identified by the

kgc package68 using the longitude and latitude provided. The latitude for the three

sites in BWh, BSh, and ET are 27.82 ◦, 30.86 ◦, 47.42 ◦ respectively. The longitude

for them are -15.42 ◦, 34.78 ◦, 10.89 ◦ respectively.

The Köppen climate classification divides climates into 5 main groups indicates by

the first letter: A (tropical), B (dry), C (temperate), D (continental), and E (polar).

The second letter in all groups except for group E is for the seasonal precipitation. The

second letter in group E and the third letter in all other groups is for a temperature

subgroup.
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BWh, BSh, and ET climate stand for hot desert climate, hot semi-arid climate,

and tundra climate respectively. Group B climates are defined by little precipitation,

but there is a difference between the BWh and BSh climates, the BSh climate has

more precipitation. In comparison, ET is quite different from BWh and BSh, because

of the very low temperature with the average temperature of every month in a year

is lower than 10 ◦C 69.

The eight modules belong to two commercial brands, the brand F module has a

glass backsheet (GB) module architecture, while the brand G module has a double

glass (DG) module architecture. There are four brand F: GB modules which are

glass-backsheet (GB) ones with 60 cells in total and three by-pass diodes and four

brand G modules, which are double glass (DG) modules, three of these four have 80

cells and four by-pass diodes and another one has 72 cells and three by-pass diodes.

Depending on each specific module, the system ages vary from three to nine years of

outdoor exposure. Table 3.1 has more detailed description of these eight PV modules.

Table 3.1. Start and end dates, brand (architecture), num-
ber of cells and by-pass diode information of each module

ID Start End System Age Climate Brand Cells By-pass Diode
(Year) Zone Number Number

1 2010-10-19 2018-10-31 8.03 BWh G:DG 80 4
2 2010-02-05 2018-10-31 8.74 BWh G:DG 72 3
3 2010-09-28 2016-11-24 6.16 BWh F:GB 60 3
4 2012-06-11 2018-10-31 6.39 BSh G:DG 80 4
5 2012-06-11 2015-05-17 2.93 BSh F:GB 60 3
6 2012-06-11 2018-10-31 6.39 BSh F:GB 60 3
7 2010-06-16 2013-01-31 2.63 ET G:DG 80 4
8 2010-06-16 2015-02-18 4.69 ET F:GB 60 3
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4 Analytical Methods

This chapter introduces several analytical methods used in the study represented

in Fig. 1.1. These include performance loss rate (PLR) determination, I-V curve

quality detection, data-driven I-V features extraction (ddiv), partial shading detec-

tion based on time-series multistep I-V curves, and outdoor Isc Voc power loss factor

calculation. The methods of PLR calculation9, ddiv 70, outdoor Isc Voc loss factor3

are published work developed by Solar Durability and Lifetime Extension (SDLE) Re-

search Center. While the I-V curve quality detection method and the partial shading

detection method are developed in this thesis research.

4.1 Performance Loss Rate (PLR) Calculation

The maximum power (Pmp) of PV modules in the field varies with the environmental

conditions such as temperature and irradiance. In order to study the power loss due to

degradation, Pmp under certain environmental conditions is the basis for comparison.

First, the power and irradiance data is filtered such that the POA irradiance should

be higher than 200 W/m2 so as to remove night time and low irradiance observations.

In order to maximize the utilization of the data, instead of simply filtering, we obtain

the Pmp at certain conditions in two steps.
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The first step is temperature correction of Pmp, then the day-by-day predictive

method is applied to get the daily predicted Pmp at a certain irradiance value (900

W/m2) for each day from the linear model fitted by time-series Pmp and POA of

each day with Pmp as response variable and POA as predictor variable as Eq. 4.2.

The temperature correction coefficient is obtained from a simple linear model of Pmp

versus module temperature in the subset with POA in the range of 890 W/m2 to 910

W/m2. Then, the Pmp is corrected to 40 ◦C module temperature by the Eq. 4.1,

where γT is the module temperature correction coefficient.

Pmp,corrected =
Pmp

1 + γT (Tobs − Tref )× (POA
900

)
(4.1)

Next, using the data of each day, we fit the model as Eq. 4.2 and input POA as

900 W/m2, we get the predicted Pmp under the reference condition, which are 900

W/m2 of POA and 40 ◦C of module temperature for each day.

Pmp,corrected = β0 + β1 × POA (4.2)

Then, year-on-year method17,18,71 is applied to the daily predicted Pmp and re-

turns the distribution of PLR. Each PLR is the slope of the linear model fitted by

the corrected Pmp of one day and another day that is one year after and then divided

by the initial predicted Pmp, which is obtained by taking the intercept of the y-axis

from the linear model regression on all daily predicted Pmp versus time. Because

this method gets each PLR value from points separated by exactly one year, the

final result can form a distribution of PLR, from which we could get a median PLR

and standard error for each module to describe the module performance loss. For
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more detailed information about the PLR calculation method and comparison with

other similar methods using the same outdoor data set, please see the paper of PLR

Consistency and Uncertainty in Methods and Filtering Standards9 and the PV plr R

package72.

4.2 Current-Voltage Curve Quality Detection

The single diode model, also called the five parameter model as shown in Eq. 4.3, is

the simplest physical model for describing the PV module’s operation under working

conditions. I and V are current and voltage of the module, Iph is the photo-current

which is strongly correlated with irradiance with a coefficient influenced by cell tem-

perature, I0 is the inverse saturation current depending on temperature also, Rs and

Rsh are the series resistance and shunt resistance of the cell, q is the charge of the

electron, k is the Boltzmann’s constant, γ is the diode quality factor, normally be-

tween 1 and 2, Ncs is the number of cells in series, and Tc is the effective temperature

of the cells in units of Kelvin73. The five parameters for the model are Iph, I0, Rs,

Rsh, and γ.

The equivalent electrical circuit is shown in Fig. 4.1, where the RL is the load

resistance connected to the module. During an I-V tracer voltage sweep, the mea-

surement can be understood as the process of adjusting the load resistance from zero

to an extremely large value compared to the Rs of the module itself. Since the dura-

tion of sweep is in seconds, it is assumed that Iph, Rs, Rsh, Tc, and all other variables,

except I and V , remain unchanged. Then from Eq. 4.3, we arrive at the conclusion

that ∂I/∂V would be negative as Eq. 4.4, which indicates that with the increasing
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voltage, the current of every point in an I-V curve should decrease. And this con-

straint on an I-V curve, that is the first derivative must be negative to be physically

meaningful, is the first consideration for the method derived in this thesis to detect

the ”quality” of measured I-V curves.

I = Iph − I0[exp(q · (V + I ·Rs)Ncs · γ · k · Tc)− 1]− (V + I ·Rs)/Rsh (4.3)

∂I

∂V
= −

a1 + a4
a3−a4·V−a5·I

a2 + a5
a3−a4·V−a5·I

a1 =
q

Ncs · γ · k · Tc
> 0

a2 = a1 ·Rs > 0

a3 =
Iph
Isc
− 1 > 0

a4 =
I0

Rsh

> 0

a5 =
Rsh +Rs

I0 ·Rsh

> 0

a3 − a4 · V − a5 · I = exp(
q · V + q ·Rs · I

NcsγkTc
) > 0

(4.4)

However, the measurement of current has an finite uncertainty determined by the

I-V tracer instrument, so comparing one point on an I-V curve, with it’s lower voltage

neighbor datapoint, the difference in the current should be negative, but many not

be, due to the inherent measurement uncertainty. The curve has data points that can

not be explained even by taking the current measurement accuracy into consideration
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Figure 4.1. Single diode model equivalent electrical circuit for PV module.

is a mistake occurrence during a sweep. This is the second consideration we have for

quality detection.

A third criteria is dependent on subsequent analysis steps, and is the number

of abnormal points or outliers we can tolerant in an I-V curve. This parameter

should vary from zero to a small positive integer considering the case that too many

curves are filtered out and create problems for further study due to too fewer, or an

inadequate number of observations. This is the third consideration for our testing of

the quality of I-V curve.

The overall process of I-V curve quality detection is in Fig. 4.2. P1 is the limi-

tation of measured current accuracy, P2 is the number of tolerant abnormal points.

As an example of the P1 criteria, consider the specific case of the electronic load

ESL-Solar 500 I-V tracer used to measure I-V curves of PV modules in this study.

Its current accuracy is 0.2% of its full scale, and full scale for this instrument is 10

A, so the maximum positive offset we can reliably read is 0.02 A, which is the value

for P1. And for the P2 criteria, we decide that we have no tolerance for outliers in

an I-V curve analyzed in this study, so P2 = 0.
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Figure 4.2. Flow chart for I-V curve quality detection (P1 is the lim-
itation of measured current accuracy, P2 is the number of tolerant
abnormal points).

4.3 Data-driven I-V Features Extraction Algorithm

The data-driven I-V features extraction algorithm (ddiv) is an R package developed at

the Solar Durability and Lifetime Extension (SDLE) Research Center and published

in the comprehensive R package archive (CRAN)70. The ddiv algorithm has two

hyperparameters that can be adjusted for detecting steps in the I-V curves: the

maximum number of change points (k) and the critical value of slope difference (ma
∆).

The ddiv algorithm first fits the points using a 500 point smoothing spline model

describing the curve continuously by a model with voltage as the predictor variable

and current as the response variable. Five hundred points are evenly generated from

the fitted model, then a change-point model, using the segmented R package74,75, is

applied to the generated points with the maximum change points number controlled
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by the input parameter k. Next, for each change point, they are two linear models

before and after the change point. If the slope of linear model to the left of the change

point is negative and the absolute value is larger than that of the linear model to the

right of the change point, where the difference is larger than the input ma
∆ 4.5, then

the change point will be counted as a ”step” in the curve and the voltage value of its

position is recorded as the voltage of the ”step”. ma
1 is the left slope of step a and

ma
2 is the right slope of step a. Using the red curve in Fig. 4.3 as an example, at V =

21.1, m1 is the slope to the left of 21.1 V and m2 is the slope to the right of 21.1 V .

ma
∆ = |ma

1 −ma
2| (4.5)

Finally, for each step, a moving window is applied for detecting when the region

close to Isc is flat enough to extract Isc and Rsh then the linear model is built for

some region in the curve partially and I-V features are extracted for each ”step”

based on the definition which include maximum power (Pmp), current at maximum

power (Imp), voltage at maximum power (Vmp), short-circuit current (Isc), open circuit

voltage (Voc), series resistance (Rs), shunt resistance (Rsh) and fill factor (FF ). More

detailed information about how the algorithm works can be found in the document

for the package and corresponding paper26.

Table 4.1 shows the result of two curves by the default setting in the package, one

is a single step I-V curve, another is a multiple steps’ one, and points of the curves

are present in Fig. 4.3 and connected by straight lines.

From how the algorithm works, we know that the I-V step detection results will

be dependent on how we choose the values of k and ma
∆.
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Table 4.1. Extracted I-V features result for single step
and multistep I-V curves

Step Isc Rsh Voc Rs Pmp Imp Vmp FF Cutoff
3 2.915 477.963 43.919 10.389 50.184 2.674 18.767 39.2 21.111

3.636 14.661 81.756 27.06 55.823 1.979 28.21 18.78 28.27
2.869 31.698 46.87 1.408 82.129 1.96 41.896 61.08 NA

1 3.109 852.741 47.076 1.24 111.422 2.853 39.059 76.13 NA

Figure 4.3. multistep and single step I-V curves.

If most of the observations in a dataset are single step I-V curves, a smaller k value

and larger ma
∆ value gives higher detection accuracy. And when there is an increasing

percentage of multistep curves in the dataset, a larger k value and proper ma
∆ value

will increase the accuracy. The way we set the values of these hyperparameters is

using a supervised training and testing method, where one manually labels some I-V

curves as single step curves or multistep curves and then partition the labeled data

set into a training and testing dataset. By balancing the accuracy of detecting single

step and multistep I-V curves in the training data set, and checking the performance
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in testing, we determine the optimal values for the two hyperparameters. In addition,

in order to avoid the situation where the determined parameter values would limit

the physical possible cases, the minimum choice of k should be equal to two times

the by-pass diode number minus one. Since in our dataset, the maximum number of

by-pass diodes (in Brand G: DG PV module) is four, we choose the minimum k to

be seven.

4.4 Partial Shading Detection with Time-series Multistep I-V

Curves

Partial shading on the PV module would cause the I-V curves to have multiple

steps because of the activation of the by-pass diodes62 in most cases. Therefore,

using the time-series multistep I-V curves, we can detect the occurrence of partial

shading during the system lifetime. Studying protocol of partial shading detection

includes several aspects: the time dependence, solar angle dependence of occurrence

of multistep I-V curves, classification of shading scenarios, and duration of multistep

I-V curves.

First, from the ddiv result, the percentage of multistep I-V curves (MS ) is calcu-

lated for each module, and because of the limitation of accuracy in the ddiv algorithm,

only a module with MS larger than 20% can be reasonably considered to have a par-

tial shading problem during operation. The values of the criteria depend on specific

dataset. Next, we study the time dependence of multistep I-V curves occurrence.

For each year, the MS of each time point in a day is calculated based on Eq. 4.6, in

which n is the number of I-V curves. The point with a local maximum in a spline



Analytical Methods 26

model of MS versus time is extracted by a peak finding function ”findpeaks” in the

pracma R package76 to derive the shading profile which indicates the most probable

time to see partial shading happening on a specific PV module.

MSt =
Nms,t

Ntotal,t

(4.6)

Next we study the solar angle dependence of multistep I-V curve to obtain in-

formation on the relative orientation of the shading obstacles, i.e. the object causing

shadows on the PV module22. The solar angle is obtained by using ”getSunlight-

Position” function in suncalc R package77 with the date and time, longitude, and

latitude of the module’s location. Both the PV module and the obstruction are sta-

tionary, but the solar angle, which includes both elevation angle and azimuth angles

are changing over time. The angle with the highest MS corresponds to the situation

where the sun, the obstacle ,and the PV module most often fall in the same line, so

the sun angle with high MS will indicate the relative position of the obstacle and the

observed module. In this study, the solar azimuth angle that has local maximum MS ,

calculated in each azimuth degree interval, is used to represent the relative orientation

of the obstacle.

Then, using the Cutoff column from the ddiv result, we build the voltage cluster

of steps’ location expect Voc for all multistep I-V curves. Previous research shows

that the voltage of steps in I-V curves corresponds to different shading scenarios,

so based on how the steps voltages vary, we can classify the multistep I-V curves

into three cases for a three by-pass diode PV module51. If there are two steps in the

I-V curves, labeled as a and b at increasing voltage, the step a falls into the higher

voltage cluster (close to Voc), it is classified into the case where only one of three
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by-pass diode is activated, which is case 1. If the step a falls into the lower voltage

cluster (close to 0 V ), it is classified as a case where two by-pass diodes are activated

with the shading scenario cause similar change in current in the corresponding two

strings, which is case 2. If there are three steps in the I-V curve, labeled as a to c

at increasing voltage, the step a falls into the lower voltage cluster, the step b falls

into the higher voltage cluster, then the I-V curve is classified into the case where

two by-pass diodes are activated with quite different shading scenario that causes

different current change in the corresponding two strings, which is case 3. To find

the dominant shading scenario for the observed module, the percentage of each case

is calculated.

In addition multistep I-V curves, are further classified as being persistent or

transient, based on whether at least one time-series neighbor is also multistep. The

transient multistep curve case can be caused by a very short-lived obstacle such as

a person walking by. While the persistent multistep curve case is more likely to be

caused by some stable objects and the time duration of it is meaningful. The results

of this classification can indicate whether the measurement interval is long enough to

capture the duration of partial shading.

4.5 Outdoor Isc-Voc Loss Factor

The Isc (short circuit current) and Voc (open circuit voltage) curve is determined

from Isc and Voc measured at each illumination level. Note that series resistance

(Rs) has no effect on Voc since there is no current drawn from the solar cell, and

also has no influence on Isc when Rs is less than 10 Ω/cm2 since the I-V curve is
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flat around Isc. The Pseudo I-V curve composed from Isc-Voc curve shows the I-V

curve of the measured cell without the series resistance (Rs) influence78. Another

measurement that is very similar is the Suns-Voc curve, which uses a separate solar

cell to monitor the illumination intensity instead of the Isc of the measured cell to

simplify the measurement. The Isc-Voc and Suns-Voc curves are usually measured

indoors to track contact formation, shunting, materials quality, surface passivation,

and minority carrier lifetime.

The outdoor Isc-Voc method developed by M. Wang3, and released as an R package

on CRAN79, uses extracted Isc and Voc from time-series I-V curves measured outdoors

over a time period to construct the Isc-Voc curve80. The time interval is usually

one or two weeks depending on the time interval between the measured I-V curves.

Temperature correction is then applied to the Isc- Voc curve based on Eq. 4.7, Tm is

the module temperature in Celsius, the curve is corrected to module temperature at

40 ◦C.

Voc(Isc, Tm) = α0 + α1 · (Tm + 273.15) · ln(Isc) + α2 · (Tm + 273.15) + ε (4.7)

Then Pseudo I-V curve is obtained using Eq. 4.8. I0
sc is the Isc predicted at 1 sun

irradiance and 40 ◦C module temperature. The Pseudo I-V curve obtained from the

I-V curves measured in the first time period (first one or two weeks) is referred to

as the initial Pseudo I-V curve, and the Pseudo I-V curves obtained from the I-V

curves measured in any other time periods are referred to as degraded Pseudo I-V

curves.
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Ipsd(Vpsd) = I0
sc − Isc(Voc) (4.8)

By comparing the initial Pseudo I-V curve and degraded Pseudo I-V curve, the

difference between Isc, Voc can be calculated based on the one diode model equation,

Eq. 4.3. Then the Isc, Isc and Voc corrected Pseudo I-V curve can be calculated.

Compared with the initial Pseudo I-V curve, the differences in Pmp due to the change

in Isc and Voc when module is degrading are obtained, they are the power loss due to

uniform current loss and recombination respectively. Next, Rs is extracted from I-V

curves measured in each time period, can then be predicted at the reference condition,

which is 40 ◦C of module temperature and one sun irradiance based on Eq. 4.9.

Rs(Isc, Tm) = ζ0 + ζ1
Tm + 273.15

Isc
+ ε (4.9)

Compared with the one extracted from the degraded Pseudo I-V curve, there is

a Rs difference for the predicted Rs. The Pmp difference caused by this Rs difference

correction to the degraded Pseudo I-V curve is the power loss due to series resistance

(Rs). Finally, the Pmp difference between the Pmp calculated from Imp and Vmp

extracted and predicted from degraded real I-V curve and the one extracted from

the degraded Pseudo I-V curve after correction for Rs difference is the power loss

caused by current mismatch, which is the short circuit current difference in the cells

connected in series. Fig. 4.4 shows the process for obtaining the power loss of each

loss mode for each degraded period.

In short, the outdoor Isc - Voc curve contains information from a large number

of I-V curves measured at varying irradiance, so it reduces the dimension of the
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Figure 4.4. Flow chart of power loss calculation for each power loss
mode from outdoor Isc-Voc analysis of time-series I-V curves.

data from three to two, and the result is the time-series power loss of four types. In

addition, the calculation of power loss modes has the advantages that changes caused

by I-V features can be directly comparable on power basis. In the outdoor Isc-Voc

study, the power loss due to the difference in Isc is called uniform current loss (∆PIsc),

the power loss due to the difference in Voc is called recombination loss (∆Prec) and the

power loss due to difference in Rs is called Rs loss (∆PRs), and other Pmp difference

is called current mismatch loss (∆PImis). Other previous research also discussed in

detail determination of composing the outdoor Isc-Voc curve and various power loss

calculation methods31. To compare systems with different total power outputs, the

percentage change in power is calculated by using the power loss divided by the initial
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predicted power under the same reference conditions. And this is obtained from a

linear model fit to the predicted Pmp versus time, the predicted Pmp is also provided

in the process of the Isc-Voc analysis demonstrated in Fig. 4.4.
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5 Results

This chapter is divided into two parts. The first part (5.1) focuses on the ap-

plication of these methods to obtain the results of analyzing time-series data, using

a small dataset of a single PV module as an example. We illustrate the results of

I-V curve quality detection, showing several unqualified I-V curves, and also the

way to determine the optimal hyperparameters’ values k and ma
∆ for ddiv using the

labeled training and testing dataset, partial shading detection using data of module

3 (GB: DG), and the rate of change in power loss of each degradation mode from

power loss obtained from outdoor Isc-Voc analysis using module 2 (BWh: DG). The

second section (5.2) presents the complete results of analyzing time-series data of all

eight modules in the Fraunhofer-ISE dataset, which include PLR, I-V curves quality

detection, rates of change of degradation modes, and partial shading detection.

5.1 Illustration of Analytical Methods

5.1.1 I-V Curve Quality Detection

Fig. 5.1 shows some randomly selected I-V curves identified as unqualified ones in

the setting of the error range P1 = 0.02 A and the number of tolerable abnormal
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points P2 = 0. In the figure the red points are the ones identified as abnormal points

by the quality detection algorithm, which means they have a current difference larger

than 0.02 A compared with the adjacent higher voltage datapoint. The I-V curves

that are identified as unqualified have a region of increasing current with increasing

voltage and the I-V curves have regions of positive radius of curvature.

(a) a (b) b

(c) c (d) d

(e) e (f) f

Figure 5.1. Examples of I-V curves identified as unqualified with P1 =
0.02A and P2 = 0, red points are abnormal points demonstrating the
anomolous areas of the curve, and blue are normal datapoints.
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If setting the number of tolerable abnormal points as 0 in the quality detection

algorithm removes too many observations in a particular dataset cause a problem for

further studies then it is reasonable to consider increasing the P2 value. From Fig.

5.1, if we set the value of P2 to 5 instead of 0, then Fig. 5.1a and Fig. 5.1c will be

identified as qualified I-V curves and they do look more normal than the others.

5.1.2 Determination of Input Hyperparameters k and ma
∆ for ddiv

k and ma
∆ are two important input hyperparameters for the ddiv algorithm to detect

steps in the I-V curves, and determining their values is important to arrive at mean-

ingful results. Therefore to determine these hyperparameters, we take ten thousand

I-V curves randomly selected from all two million I-V curves of the eight modules in

the Fraunhofer-ISE dataset (about 0.5%) and manually label them as single step I-V

curves or multistep I-V curves. One thousand single steps and another one thousand

multistep I-V curves are randomly selected from these ten thousand labeled obser-

vations. Next, we divided each type of the I-V curves into a training and testing

datasets with 80% and 20% partitioning, so in each dataset, it has the same number

of single step and multistep observations. Then, we perform a grid search to deter-

mine the optimal hyperparameter values of k and ma
∆ with the range of k from five

to 14 by one and the range of ma
∆ from 0.005 to 0.030 by 0.001.

For the training data set, we calculate the accuracy of predicting the single step I-

V curves and the multistep I-V curves as shown in Fig. 5.2 and the overall accuracy.

The accuracy of detecting single steps is defined as the number of I-V curves predicted

to be single step that are labeled as single step divided by the total number of single

step I-V curves. The accuracy of detecting multistep is defined as the number of I-V
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curves predicted as multistep, also labeled as multistep, divided by the total number

of multistep I-V curves. The accuracy of the dataset is defined as the number of

curves predicted the same as the label divided by the total number of curves.

(a) Single step accuracy

(b) Multiple steps accuracy

Figure 5.2. Accuracy of detecting single step and multistep I-V curves
in the training dataset as a function of the two ddiv hyperparameters
k and ma

∆.
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From Fig. 5.2a, we can see that the accuracy of the detection of single step I-

V curves increases as k decreases and ma
∆ increases, which is consistent with the

design of ddiv algorithm. We also find that, with increasing ma
∆, k has less influence

on the accuracy of detecting single-step observations. From Fig. 5.2b, the trend

for detecting multistep I-V curve is the converse, and it is in competition with the

accuracy of detecting single step I-V curves. However the ma
∆ seems to have less

influence on the importance of k to the accuracy of detecting multistep observations.

Since detection of single step and multistep curves are in competition, the k and

ma
∆ hyperparameters should be choosen to maximize the overall accuracy, with the

secondary condition that the two types of accuracy be balanced. In addition, due to

the number of by-pass diodes in the eight modules we studied, in order to include

all possible physical cases, the minimum value of k for processing our dataset is

determined to be seven. Based on these three considerations, there are two sets

of hyperparameters, shown in Table 5.1 that performed similarly and very well in

training and testing.

Table 5.1. Performance in training and testing dataset for
the best two set of hyperparameters

k ma
∆ Training Training Training Accuracy Testing Testing Testing Accuracy

AS (%) AM (%) (%) AS (%) AM (%) (%)
7 0.018 79.3 77.7 78.5 94.2 71.1 82.7
8 0.018 77.8 78.9 78.4 91.2 74.7 83.0

The performance difference between these two sets of hyperparameters is small,

and seven is the limitation we set for k. In testing, k is equal to eight has better bal-

ance between the accuracy of detecting single-step I-V curve (AS) and the accuracy

of detecting multistep I-V curves (AM) while also achieving higher overall accuracy.
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Finally, k = 8, and ma
∆ = 0.018 are choosen as the optimal hyperparameter values

for processing the complete time-series I-V curves dataset for all eight modules.

5.1.3 Partial Shading Study Process

Due to the accuracy limitations in detecting single step and multistep I-V curves,

we set a criteria for selecting modules which have the partial shading problem that

is likely to be caused by a stationary object. Assuming the accuracy of detecting

single step I-V curves is ASi and that of multistep ones is AMi, the percentage of

multistep I-V curves for module i is MSReal,i, and the percentage of multistep I-V

curves calculated from ddiv result(MS ) would be as Eq. 5.1.

From Eq. 5.1, we can see that if ASi and AMi are both 100%, then the MS

will be equal to MSReal. However, according to the result of the training data set in

Table 5.1, AS and AM are competitive. In the training data set, they are 77.8% and

78.9%. From Eq. 5.1, we can see that when there is no multistep I-V curves in the

dataset, we would still get a MS equal to 22.2% because of the accuracy limitation

of the algorithm. This 22.2% is considered as an average estimation across all the

studied modules. For our dataset, only in the case of MS of one module being higher

than 20%, we are confident that the module has an amount of true multistep I-V

curves that are not detecting error. The MS for each module is possibly to be lower

than 22.2% because the ASi and AMi for each module could be different from the

estimate obtained through the training dataset which contains I-V curves randomly

selected out from the whole dataset.

MSi = (1− ASi)× (1−MSReal,i) + AMi ×MSReal,i (5.1)
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The MS of each module is shown in Table 5.12. Using 20% as a criterion, module

3 (BWh: GB), module 5 (BSh: GB) and module 6 (BSh: GB) are very likely to have

severe partial shading. In this section, we use module 3 (BWh: GB) as an example to

illustrate the partial shading detection result including the shading profile, obstacle

orientation, shading scenarios classification, and duration of partial shading.

A partial shading diagram, with time of day as the x-axis, and date in a year as

the y-axis, Fig. 5.3 shows the occurrence of multistep I-V curves in each year for

module 3 (BWh: GB). The red points are for single step observations and the green

points are for multistep ones, with the datapoints having transparency, so that the

color intensity is also shows the density of observations.

Figure 5.3. A partial shading diagram visualizes the occurrence of mul-
tistep I-V curves for module 3(BWh: GB).

The gaps along the y-axis of the partial shading diagram indicate the I-V tracer

was offline. In addition the the pear shaped border of the partial shading diagram
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arises from the seasonal time change of sunrise and sunset, and arises due to the the

irradiance cutoff of 5 W/m2, which we used for removing nighttime. The occurrence

of multistep I-V curves is strongly dependent on the time of day, for module 3 (BWh:

GB), most of them showed up in the morning and afternoon, which indicates there

are shading obstructions around the module and the afternoon one usually persists

for longer times.

Next, we want to quantify when the partial shading happens most often. For

each year, we will determine the shading profile, using a natural spline model fitted

using MS as the response variable and time of day as the predictor81. Fig. 5.4 is

an example for 2011. The red dashed line is the shading profile spline model. There

are two peaks in the shading profile for MS in the year of 2011, one peak is located

at about 8:00 am and another is located at about 16:00 pm. Using the ”findpeaks”

function in pracma packages76, we can extract the exact peak position and create a

shading profile of each year, the result of module 3 (BWh: GB) is in Table 5.2. If

one year has observations of less than 100 days, we think the number of observations

is too low to evaluate the module for that year, and the shading profile will not be

created for it. The peak location is the time most likely to correspond to a partial

shading condition if someone comes to do on-site inspection. The value of 100 days

can be modified, but the number of observation will directly influence the resolution

in MS , when it’s too small, the curve in Fig. 5.4 will show high fluctuation instead

of a smooth change.
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Figure 5.4. Partial shading profile of MS vs. time in a day for module
3 (BWh: GB) in the year of 2011.

Table 5.2. Shading profile for module 3 (BWh: GB)

Time in a Day MS (%) Year
08:10:00 35.1 2011
15:30:00 65.1 2011
07:10:00 46.9 2012
14:46:00 57.1 2012
08:10:00 55.7 2013
15:20:00 61.9 2013
08:40:00 58.9 2014
15:45:00 78.0 2014
07:55:00 32.1 2015
16:10:00 52.1 2015
07:50:00 40.0 2016
15:15:00 64.0 2016

We can also visualize the relative orientation of the Sun, the PV module and

the stationary shading obstacle, using what we will call a Shading Poynting Vector

diagram in honor of John Henry Poynting82. After converting date and time into solar
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Figure 5.5. A shading Poynting vector diagram shoing the occurrence
of multistep I-V curves for module 3(BWh: GB) with solar angles as
coordination.

elevation and azimuth angles using the information of the longitude and latitude of

the module, we plot the occurrence of multistep I-V curves in Fig. 5.5. Fig. 5.5 uses

all observations of module 3 (BWh: GB) as an example. Since both the solar panel

and the shading obstacle are stationary, the two angles corresponding to the green

points’ cluster indicate the relative position of the obstacle which can cause shadow

on the module.

From Fig. 5.5, the obstacle on the east of module 3 (BWh: GB) usually shades

the module when the solar elevation angle is in the range of 0 ◦ to 30 ◦, which is

quite low, but the obstacle on west of the module shades the module in a much wider

range of higher solar elevation angle. In contrast to the solar elevation angle, the solar

azimuth angle is more helpful to locate where the obstacle is located. We calculate
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Figure 5.6. MS vs. solar azimuth angle.

the MS of each degree of the solar azimuth angle by Eq. 5.2, in which N is the number

of I-V curves.

MSa =
Nms,[a,a+1)

Ntotal,[a,a+1)

(5.2)

Fig. 5.6 shows how the MS changes with solar azimuth angle, using the similar

method to get the shading profile, we can extract the solar azimuth localized peak

location, but this time we directly do this to all observations at once instead of group

by each year. They are -99 ◦, 35 ◦, 87 ◦ for module 3 (BWh: GB).

A previous study51 showed that, for a module with three by-pass diodes, the I-V

curve has two steps and the first step’s location is closer to Voc when one by-pass

diode is activated. And that it will be move closer to 0 volts when two by-pass diode

are activated if the corresponding two strings have similar shading scenarios that

cause similar change in current. If there are a total of three steps in the I-V curves,
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Figure 5.7. MS versus solar azimuth angle.

it indicates that two by-pass diodes are activated and the shading scenarios on the

corresponding two strings cause quite different current changes. Fig. 5.7 shows the

density of steps’ location in voltage, which is saved in the ”cutoff” column of ddiv

result for two and three steps I-V curves of module 3 (BWh: GB). There are only

0.1973% multistep I-V curves which have more than three steps.

Similar to the way we created the shading profile, we can calculate the percentage

of observations with steps located at each 0.1 voltage interval and then extract the

voltages corresponding to the start, end ,and maximum density value for each peak.

For the module 3 (BWh: GB), the density distribution shows three clusters, the

first one is generated by the 500 points generated from ddiv algorithm because the

shortage in stability of the region that is very close to Isc due to tracking systems, and

the other two peaks are the clusters of step location that correspond to the by-pass

diodes status. The result of voltage clusters is in Table 5.3 for module 3 (BWh: GB).
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Table 5.3. Voltage clusters for module 3 (BWh: GB)

Cluster No. Start (V ) End (V ) Peak (V )
1 3.9 11.1 7.6
2 11.1 23.9 18.1

Using the start and end voltages of each cluster, we sort the multistep I-V curves

into three different shading scenarios, which are one by-pass diode activation (case

1), two by-pass diodes activated with the same (case 2) or different shading scenarios

(case 3). The classification result of module 3 (BWh: GB) is listed in Table 5.17.

For module 3 (BWh: GB), case 1 counts for 22.86%, case 2 counts for 61.19% and

case 3 counts for 15.95%. So it’s more common to have two by-pass diodes activated

roughly equal in module 3 (BWh: GB).

Figure 5.8. Duration of persistent multistep I-V curves for module 3
(BWh: GB).

Next, according to whether there is at least one adjacent observation that is also

multi-steps’, the multistep I-V curves are classified into persistent or transient curves.
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For all multistep I-V curves of module 3 (BWh: GB), persistent ones are 89.91% and

transient ones are 10.09%. This finding indicates that the by-pass diode activation

duration usually is long enough to be captured by our time resolution. Fig. 5.8 shows

density distribution of duration of persistent multistep I-V curves. The peak is at 12

minutes.

5.1.4 Outdoor Isc-Voc & Power Loss Factors Calculation

Fig. 5.9 shows the percentage change in power caused by four degradation modes

including uniform current loss (∆PIsc), recombination (∆Prec), power loss due to Rs

increase (∆PRs)and non-uniform current loss (∆PImis) for module 2 (BWh: DG) from

outdoor Isc-Voc analysis. A negative value indicates the module has loss in power. The

lines in Fig. 5.9 are simple linear models fitted for each degradation mode.

Figure 5.9. Time-series power change from outdoor Isc-Voc analysis for
module 2 (BWh: DG).
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In the next step, we use Eq.5.3 to remove outliers with β is equal to 1.5, Q1 and

Q3 are the lower and upper quartiles respectively83.

[Q1 − β(Q3 −Q1), Q3 + β(Q3 −Q1)] (5.3)

In order to handle the seasonality that may exist in different degrees for different

modes and modules, we apply a month-by-month linear regression. The specific

implementation is as follows: first, fit a simple linear model using data in each month

from all years, for example January across all years, and then get 12 slopes of each

power loss mode of each module, which are the slopes from models of each month.

Next, we remove the slopes which are estimated from the data of the month that miss

observations of the beginning and the ending year or more than two years. Using the

rest of the slopes, we calculate the average and the standard deviation to get the 95%

confidence interval of the rate of change in unit of %/a.

Fig. 5.10 shows the month-by-month simple linear regression on the uniform

current loss in module 2 (BWh: DG). The slopes of each month is recorded in Table

5.4. Age is the difference between the ending year and the beginning year and count

is the number of years have observations. The system age of module 2 (BWh: DG)

is 8.73 years, so it had observations in 8 complete years. The linear slopes of July

and August are removed because they are missing more than 2 years and the age

for August is 3 years shorter, which indicates that it missed both beginning and

ending years. Using the remaining 10 slopes, we calculate the average and standard

deviation. They are 0.1049 %/a and 0.3439 %/a respectively for uniform current loss

of module 2 (BWh: DG).
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Figure 5.10. month-by-month simple linear regression on the uniform
current loss (∆PIsc) in module 2 (BWh: DG).

Table 5.4. rate of change from month-by-month simple linear
model of uniform current loss of module 2 (BWh: DG)

Month Rate of Change (%/a) Age(year) Count
01 0.3009 7 8
02 0.0164 8 9
03 0.1897 8 9
04 0.2383 8 7
05 -0.6586 7 6
06 0.6697 7 6
07 1.4678 7 4
08 -0.0157 5 4
09 0.1870 8 7
10 -0.1697 8 6
11 0.1979 7 7
12 0.0771 7 8
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5.2 Time-series Result of All Eight Modules

This sections contains the results of all eight modules including PLR, pre-processing

I-V curves by quality detection and ddiv, outdoor Isc-Voc analysis with month-by-

month linear regression, and partial shading detection.

5.2.1 Performance Loss Rate (PLR) Result

For each module, the PLR calculated using year-on-year method could form a dis-

tribution, and the median PLR are listed in Table 5.5.

Table 5.5. Median PLR for all eight module

Module ID Climate Zone Brand Median PLR (%/a)
1 BWh G:DG -0.039
2 BWh G:DG -0.085
3 BWh F:GB -0.473
4 BSh G:DG -0.465
5 BSh F:GB -0.286
6 BSh F:GB -0.600
7 ET G:DG 0.292
8 ET F:GB 0.321

Fig. 5.11 shows the median PLR and the 95% confidence interval colored by

located climate zones and in different shapes by the module architectures.
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Figure 5.11. Median PLR and 95% confidence interval for all eight modules.

5.2.2 Preprocessing of Time-series I-V Curves

The time-series I-V curves are first preprocessed using the I-V curves quality detec-

tion and then using ddiv algorithm70 for the I-V features extraction followed by the

outdoor Isc-Voc analysis and partial shading studies. The time-series I-V features are

used in the outdoor Isc-Voc and power loss factor calculation to study the degrada-

tion mechanisms leading to the power loss using both qualified and unqualified I-V

curves. Using the I-V curves quality detection method, with the error range (P1) set

as 0.02 A and the number of tolerable wrong points (P2) in an I-V curve set as 0,

the percentage of unqualified I-V curves among all I-V curves for each module are

listed in Table 5.6. The value varies from 1.2% to 11.7%, and the average is 4.65%.

The I-V curves labeled as unqualified are removed for partial shading study.



Results 50

Table 5.6. Percentage of Unqualified I-V curves for each
module

ID System Age (Year) Climate Zone Brand Unqualified (%)
1 8.03 BWh G:DG 3.8
2 8.74 BWh G:DG 3.1
3 6.16 BWh F:GB 11.4
4 6.39 BSh G:DG 1.2
5 2.93 BSh F:GB 3.2
6 6.39 BSh F:GB 1.3
7 2.63 ET G:DG 11.7
8 4.80 ET F:GB 1.5

Using the ddiv hyperparameters k as 8, and ma
∆ as 0.018, the time-series I-V

curves of all eight modules were processed. And only a few of I-V curves can not be

analyzed by ddiv, and the percentage of them for each module is listed in Table 5.7.

Table 5.7. Percentage of I-V curves that can not be ana-
lyzed by ddiv

ID System Age (Year) Climate Zone Brand NA in ddiv (%)
1 8.03 BWh G:DG 0.401
2 8.74 BWh G:DG 0.771
3 6.16 BWh F:GB 1.826
4 6.39 BSh G:DG 0.063
5 2.93 BSh F:GB 0.739
6 6.39 BSh F:GB 0.079
7 2.63 ET G:DG 0.015
8 4.80 ET F:GB 0.168

We randomly selected out four I-V curves from module 1 (BWh: DG) that could

not be analyzed using ddiv. They are shown in Fig. 5.12. The message returned

from ddiv is an error in smooth.spline(V, I): ” smoothing parameter value too small”,

so the algorithm stopped when it fit smooth.spline model to the points of the curve.

Because there are very few observations that are unable to get ddiv results, only



Results 51

about 1.8% to 0.02% for different modules, the number of observations that could

not be used in future study is in an acceptable range.

(a) a (b) b

(c) c (d) d

Figure 5.12. Examples of I-V curves failed in ddiv.

5.2.3 Outdoor Isc Voc & Loss Factor Result for All Eight Modules

By performing linear regression on the predicted Pmp under a reference condition,

which is irradiance at 1 sun and module temperature at 40 ◦C, we obtained the

intercept of the y-axis as the initial predicted Pmp for each module from the fitted

linear model. This value is used to normalize the change in power from the unit of

W to % in the next step. The initial predicted Pmp of each module is listed in Table

5.8. The p value for all of them are smaller than 1× 10−24.
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Table 5.8. Initial predicted Pmp for all eight modules

Module ID Climate Zone Brand Initial predicted Pmp std error
1 BWh G:DG 264.39 1.716
2 BWh G:DG 138.73 2.062
3 BWh F:GB 239.90 7.015
4 BSh G:DG 224.20 0.552
5 BSh F:GB 275.96 19.311
6 BSh F:GB 234.91 1.064
7 ET G:DG 250.26 10.835
8 ET F:GB 237.69 18.395

Then apply our Month-by-Month linear regression to calculate the average and

standard deviation for each mode of each module, and further based on Eq. 5.4 to

calculate the 95% confidence interval (CI) with z is equal to 1.96 and n is the number

of observations. The results of the average rate of change are in Table 5.9 and the

standard deviation results are in Table 5.10. The results of the rate of change and

their confidence interval for each power loss mode in each module are present in Fig.

5.13.

(x̄− z × σ√
n
, x̄+ z × σ√

n
) (5.4)

Table 5.9. Average rate of change of each power loss mech-
anism for each module

ID ∆PIsc ∆Prec ∆PRs ∆PImis

(%/a) (%/a) (%/a) (%/a)
1 -0.2039 0.0082 -0.0039 -0.1732
2 0.1049 0.0835 -0.1280 -0.1851
3 -0.7469 -0.0532 0.1224 -0.2497
4 -0.5648 0.0278 -0.0308 0.0560
5 -1.6676 0.1275 0.7762 -0.0411
6 -0.7502 -0.0325 -0.0042 -0.0825
7 0.1426 -0.0107 0.2752 0.1266
8 0.1261 0.0792 -0.1272 0.4289
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Table 5.10. Standard deviation of rate of change of each
power loss mechanism for each module

ID ∆PIsc ∆Prec ∆PRs ∆PImis

(%/a) (%/a) (%/a) (%/a)
1 0.1223 0.1217 0.1314 0.1829
2 0.3439 0.0953 0.1854 0.1195
3 0.2864 0.1984 0.0927 0.3658
4 0.2288 0.0329 0.0698 0.0974
5 3.0167 0.1939 1.0475 1.0536
6 0.2835 0.0625 0.0939 0.2895
7 3.4289 1.2730 0.9448 2.1629
8 1.0015 0.1036 0.1349 0.3369

Figure 5.13. Rate of change result of each power loss mechanisms from
outdoor Isc-Voc analysis.

Module 5 (BSh: GB) and module 7 (ET: DG) have relatively large standard

deviations compared with that of others due to the very short system age that lasts

less than 3 years. Removing module 5 (BSh: GB) and module 7 (ET: DG) from

further comparison, Fig. 5.14 shows the rate of change result of each power loss
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mechanisms for the rest modules, and the result is more likely to relate to long term

degradation behavior. Then, we take an average of the rate of change for module 1

(BWh: DG) and 2 (BWh: DG) and compare the values across modules’ architecture

and climate zones, the result is in Table 5.11. The one has most negative value across

four types of degradation mode is in bold.

Figure 5.14. Rate of change result of each power loss mechanisms from
outdoor Isc-Voc analysis after removing module 5 and 7.

Table 5.11. Average rate of change of each power loss
mechanism across climate zones and module architectures

Climate Brand ∆PIsc ∆Prec ∆PRs ∆PImis Sum of four rates
Zone (%/a) (%/a) (%/a) (%/a) (%/a)
BWh G:DG -0.0495 0.0458 -0.0660 -0.179 -0.2487
BWh F:GB -0.747 -0.0532 0.1220 -0.250 -0.9282
BSh G:DG -0.565 0.0278 -0.0308 0.0560 -0.5120
BSh F:GB -0.750 -0.0325 0.0042 -0.0825 -0.8608
ET F:GB 0.1261 0.0792 -0.1272 0.4289 0.5210
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5.2.4 Partial Shading Detection

After getting the result from ddiv, the MS of each module is calculated and listed in

Table 5.12. Module 3 (BWh: GB), module 5 (BSh: GB) and module 6 (BSh: GB)

have MS higher than 20% and are identified as the ones that have the partial shading

problem. We have done the partial shading study process illustration using module

3 (BWh: GB) as an example in previous section 5.1.3.

Table 5.12. MS of all eight modules

ID System Age (Year) Climate Zone Brand MS (%)
1 8.03 BWh G:DG 2.97
2 8.74 BWh G:DG 4.44
3 6.16 BWh F:GB 36.38
4 6.39 BSh G:DG 5.42
5 2.93 BSh F:GB 50.31
6 6.39 BSh F:GB 50.65
7 2.63 ET G:DG 4.55
8 4.80 ET F:GB 14.55

The shading profile of module 5 (BSh: GB) is in Table 5.13 and module 6 (BSh:

GB) is in Table 5.14.

Table 5.13. Shading profile for module 5 (BSh: GB)

Time in a Day MS (%) Year
09:00:00 76.4 2012
12:35:00 65.3 2012
09:10:00 84.1 2013
12:00:00 65.9 2013
07:05:00 37.8 2014
08:45:00 54.8 2014
12:25:00 66.0 2014
12:35:00 86.6 2015

The solar azimuth angles have peak MS for all three modules covering all their

system age are listed in Table 5.15.
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Table 5.14. Shading profile for module 6 (BSh: GB)

Time in a Day MS (%) Year
06:10:00 39.7 2012
08:55:00 82.0 2012
14:00:00 60.3 2012
09:10:00 75.0 2013
13:50:00 53.7 2013
06:25:00 45.9 2014
12:25:00 81.7 2014
07:55:00 64.9 2015
10:40:00 69.3 2015
06:30:00 42.7 2016
08:10:00 67.2 2016
17:15:00 52.3 2016
06:35:00 34.0 2017
09:55:00 87.8 2017
17:25:00 44.7 2017
10:35:00 93.4 2018
17:35:00 26.4 2018

Table 5.15. solar azimuth angle with peak MS for all three
module identified to have partial shading problem

Module ID solar azimuth angle (◦) MS (%)

3
-99 34.9
35 53.5
87 52.7

5
-84 60.1
-11 72.7

6
-88 67.4
-34 71.6
81 42.3

The begining, ending and peak voltages for clusters of steps’ location in voltage are

listed in Table 5.16. All three modules have two voltage clusters, which is consistent

with the physical diode model.

Based on the voltage clusters of the steps’ voltage locations, the multistep I-V

curves are classified into three shading scenarios, the result is in Table 5.17. The
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Table 5.16. Voltage clusters for module 3 (BWh: GB)

Module ID Cluster No. Begin (V ) End (V ) Peak (V )

3
1 3.9 11.1 7.6
2 11.1 23.9 18.1

5
1 4.5 10.8 7.9
2 10.8 21.7 16.5

6
1 4.2 10.1 7.1
2 10.1 26.8 15.7

number of multistep I-V curve with the number of steps as two or three but can

not be classified into the three cases accounts 3.43%, 3.12% and 0.25% for module 3

(BWh: GB), module 5 (BSh: GB) and module 6 (BSh: GB) respectively.

Table 5.17. Classification of shading scenarios based on
voltage clusters of steps’ location

Module ID Case 1(%) Case 2(%) Case 3(%)
3 22.86 61.19 15.95
5 26.54 59.93 13.52
6 25.19 36.67 38.13

The classification result of persistent and transient multistep I-V curves for all

three modules is in Table 5.18.

Table 5.18. Classification of persistent and transient mul-
tistep I-V curves

Module ID Persistent (%) Transient(%)
3 89.9 10.1
5 92.0 8.0
6 95.2 4.8

Fig. 5.15 shows the density distribution of the duration of persistent multistep

I-V curves for module 5 (BSh: GB) and module 6 (BSh: GB). From Fig. 5.8 and

Fig. 5.15, we can see that both module 3 (BWh: GB) and module 6 (BSh: GB) have

peak at 12 minutes and module 5 (BSh: GB) has peak at 11 minutes.
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(a) Module 5 (BSh: GB) (b) Module 6 (BSh: GB)

Figure 5.15. Density of duration of persistent multistep I-V curves.
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6 Discussion

The study protocol and analysis is summarized in Fig. 1.1 of the introduction

chapter. The green boxes are the input data, which is composed of time-series data

and metadata. The time-series data we used in the analysis are composed of time-

series datastreams of I-V curves, Pmp, module temperature, and POA irradiance

values. The blue boxes indicate the analysis process and the red boxes are results

from analyzing the time-series data. The I-V curves first are processed by I-V curve

quality detection, which is based on equipment accuracy limitations and physical

models. Next, ddiv is applied to extract the information of steps and I-V features.

The information of steps is processed for the partial shading study and result is the

percentage of multistep I-V curves (MS ) to identify modules that can confidently be

assessed as have partial shading conditions and this is summarized with the partial

shading diagram, the shading profile, and the shading Poynting vector diagram, which

summarize the obstacle orientation, shading scenarios and duration of partial shading.

I-V features are the used for the outdoor Isc-Voc analysis and are converted to power

loss modes or factors for each degradation mode. The rate of power loss in each

power loss mode is calculated using a month-by-month linear regression, and the

final result is the changing rate of each loss mechanism for each module. Time-series
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Pmp are then processed to obtain the performance loss rate(PLR) and the process

contains temperature correction, day-by-day predictive method and Y ear-on-Y ear

regression9.

In summary, from the input time-series data of Pmp, I-V curves, POA, and module

temperature, we obtain the results of partial shading information, PLR, and the

changing rate of power loss due to each degradation mechanism. Then we compare

the time-series results across module architectures and Köppen-Geiger climate zones

where the modules are deployed, which are included as metadata of the PV modules

studied. What’s more, the boxes with border in red are completed by other colleagues,

the results are directly taken for further analysis of my part. So the focuses of

my study is the pre-processing of I-V curves for quality detection, partial shading

analysis, further processing of outdoor Isc-Voc results and comparisons across module

brands (architectures) and climate zones.

This chapter focuses on the time-series results for each module and compares the

partial shading and degradation behavior of modules with different module architec-

tures and deployed in different climate zones.

6.1 Partial Shading and the Local Environment

The PV modules that are considered to have the partial shading problem are modules

3 (BWh: GB), 5 (BSh: GB) and 6 (BSh: GB), as summarized in Table 5.12. All three

have MS significantly higher than the criteria of the accuracy of the ddiv algorithm

and also significantly higher than the MS of other modules. All three modules selected

are brand F modules, and they all have glass backsheet (GB) module architectures.
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However, based on the physical causes of multiple steps in I-V curves, the huge

difference in MS between these three modules and the rest is unlikely to arise due

to the module architecture and the by-pass diode components in the junction boxes

of the modules. This is because the by-pass diodes in commercial PV modules are

supposed to work when modules are under partial shading and partial shading is most

relevant to the specific local surroundings of the module or system84,85.

Therefore, the most likely reason for differences in the percentage of MS is the local

surrounding of the specific installation location of each module. Even for modules

located in the same climate zone and installed in the same solar farm, it’s very

possible that one module experiences partial shading and another one doesn’t, such

as a module installed on the first row won’t be shaded but the ones installed on the

frame behind it could experience row-to-row shading86.

The time dependence of the occurrence of multistep I-V curves for module 3

(BWh: GB) is shown in Fig. 5.3. The points in red are for single steps I-V curves,

and the points in green are for multistep I-V curves. The data points are plotted with

transparency, so that the color intensity in each sub-graph also indicates increasing

density of observations. Each sub-figure is for one year, and the x-axis is time of day,

which varies from 0 to 24, and the y-axis is the date in unit of months, which varies

from January to December. The pear shape is caused by the POA cutoff, so we can

see in the summer observations covers a longer time in a day, while in the winter it is

the opposite, which is consistent with human experience. The same phenomenon can

be found in another study61, which used sunrise and sunset times as cutoffs. From

Fig. 5.3, we can see the green points can be clustered into two parts based on the

time, morning or afternoon, and the afternoon time lasts longer. There is variation
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seen from year to year, with the most severe occurrences happened in 2014. There

is more area in deep green and it shows some degree of continuation across time and

month. This finding is also reflected in the shading profile of module 3 (BWh: GB)

as Table 5.2. The MS corresponding to the 2014 morning and afternoon peaks is

higher than that in other years.

The partial shading diagram shown in Fig. 5.3 is very useful for showing the

partial shading occurrence of the studied module. However, for system diagnosis,

quantitative and specific information is preferred. For this purpose, we generate the

shading profile as Table 5.2 for each module to show the time that has a local peak in

percentage of multistep I-V curves. If someone chooses to visit the site, the shading

profile provides information on when they would be most likely to see the partial

shading phenomena on the PV modules.

From the shading profile of module 3 (BWh: GB) as Table 5.2, module 5(BSh:

GB) as Table 5.13, and module 6 (BSh: GB) as Table 5.14, we find consistency in

time across different years for each module. For module 3 (BWh: GB), for every

year, there is one peak in the morning located around 8 am and another peak in the

afternoon located around 3:30 pm. For module 5 (BWh: GB), all four years have one

morning peak around 9:00 am and another peak at noon. Module 6 (BWh: GB) is

more complex, but we are still able to see some consistency, in 2012 and 2013 there

were two peaks that happened at very similar times around 9:00 am and 14:00 pm.

The first and third peaks in 2016 are similar to the two in 2017 and the second and

third peaks in 2017 are similar to the ones in 2018.

If the maintenance staff checks on-site according to the time in the shadow outline,

it is easy to distinguish which object caused the shadow on the module under study.
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But, if no staff is available for site inspection, it would be nice to obtain the relative

position of the shading object so as locate the obstacle on a site map. For this reason,

we converted the date and time to the solar elevation angle and the solar azimuth

angle. The shading Poynting vector diagram, Fig. 5.5, shows the multistep I-V

curve occurrence for module 3 (BWh: GB). The space at high solar elevation angles

is caused by the five minute constant measurement time interval, which will have a

low resolution in angle at noon because the solar elevation angle changes faster when

it’s higher.

Similar as generating a shading profile, we report the solar azimuth angle has a

local peak MS for each module, which indicates the relative orientation of the shading

object to the study module. In this study, we apply this to the PV module using

the complete time-series instead for each year, even though it can be evaluated for

shorter time periods. The decision depends on the timeframe we want to focus on,

which relate to purpose for the analysis, whether it’s for monitoring or studying of

modules’ history, general overview, or a more detailed study. Like for the shading

profile, the method of detecting the obstacle’s orientation can be applied to different

time periods. Since we analyze the shading profile for each year, we compute the

azimuth angle using the complete time-series dataset, with the result summarized in

Table 5.15.

An obstacle with the absolute value of the azimuth angle close to 90◦, corresponds

to times very early in the morning or very late in the afternoon, when the solar

elevation is quite small and the irradiance is weak, the object’s shadow won’t cause

much current mismatch in the PV module. However, an object with an azimuth angle

close to 0 corresponds to an object that needs to be removed, because it shades the
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module most of the time and corresponding to time around noon which has strong

irradiance. According to Table 5.15, this happens to module 5 (BSh: GB) with a

peak MS at -11◦ azimuth.

The multistep I-V curves provide more detailed information of shading scenarios

by the number of steps they have and the locations of these steps, with these results

summarized in Table 5.17. Here we see that module 3 (BSh: GB) and module 5

(BWh: GB) have similar percentages for different shading cases, so compared with

module 6 (BWh: GB), their shadowing are more similar to each other.

In order to run this classification, we first obtain the voltage range of the cluster

of steps’ positions in the multistep I-V curves, Fig. 5.7 shows an example for module

3 (GB: BWh). We see three clustering peaks, the left-most one we believe is not a

real step but instead is induced due to the fluctuation of measurements close to the

Isc region and has later been generated in the spline model used in ddiv algorithm.

Since we only have around 40 to 70 points in each I-V curve with this ESL tracer,

we find that there are only 3 or 4 datapoints lower than 1 V , and with this step

detection is difficult. The voltage range of the steps’ location cluster for module 3

(GB: BWh), module 5 (GB: BSh), and module 6 (GB: BSh) is listed in Table 5.16,

let us compare the location of peaks, the lower voltage clusters are very similar for

all three modules. However, for the one with a higher voltage cluster, module 5

(BWh: GB) and module 6 (BWh: GB) are more similar to each other compared

with module 3 (BSh: GB). This is likely caused by similar weather conditions, such

as similar temperature distributions, causing the voltage of a curve to have similar

amount of temperature influenced shift.
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We further ran classification on multistep I-V curves into a persistent steps class

and a transient steps class based on whether they have at least one time-series neigh-

bor that is also a multistep curve, the result is shown in Table 5.18. The percentage

of persistent step curves is in the range of 89.9% to 95.3%, which indicates our mea-

surement time interval is long enough to capture the duration of partial shading. The

distribution on the time period for persistent multistep I-V curves have also been

studied, the peaks are at 12 minutes as Fig. 5.15, 11 minutes as Fig. 5.15a and 12

minutes Fig. 5.15b and the distributions are skewed to the right significantly and

there are plenty of observations could last over half an hour. Most multistep I-V

curves last only 2 to 3 measurement intervals, so 10 to 15 minute duration, and this

observation is relatively shorter than an impression of a stable object continuously

shading the module, which could be caused by unstable weather condition and error

in steps detection to make long period be cut into short pieces of a time period.

The partial shading detection algorithm developed initially for PV module studies,

but it has the potential to also being applied in large-scale power plants, if timeseries

I-V curves relatively complete and good enough for detecting steps in it. In large

power plants, the I-V curve will miss data points Isc due to effect of wire resistance

and high current65. In our study, we relate the steps in I-V curves with shading

scenarios on PV module by the study of M.Bressan5, in which these two are linked

by experiments. The study of M.Bennet48 can simulate I-V curves from the shading

scenarios on a large PV array with series and parallel connection, which means the

time-series statistical analysis on multistep I-V curves can be linked with shading

scenarios happening in large power plants also.
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Compared with studies only using time-series power output with a reference sys-

tem for obtaining shading profiles4 and obstacle’s orientation61. Our partial shading

detection algorithm is able to realize this information using time-series I-V curves

only without needing comparison to a reference systems such as a reference cell, pyra-

nometer, or simulated reference result. Since it’s based on multiple steps arising in

I-V curves, our approach excludes uniform shading cases from being reported. As

mentioned before, uniform shading means a PV module under a shadow with uniform

irradiance, will reduce the power output the same as partial shading, which has non-

uniform irradiance, but uniform shading doesn’t cause degradation of the module nor

serious safety issues such as local hot spots.

The realization of partial shading detection using the time-series I-V curves also

expands the research significance of studies linking the shape of I-V curves with

shading scenarios. This is the research focus of partial shading detection with I-V

curves in many studies5,47,51,55,63,64, and now these cases dependent studies can find

a way to be applied in the field.

However, partial shading is not necessary to activate the by-pass diode, and the

by-pass diode activation is the basis of multiple steps in the I-V curve. If there were no

by-pass diodes installed in a PV module, partial shading won’t cause multiple steps

in the I-V curve5. The by-pass diode is connected in parallel, but with opposite

polarity, to a solar cell as shown in Fig. 6.1. The diode outside the blue box is the

by-pass diode, the diode and current source within the blue box is the equivalent

circuit for a piece solar cell. When under normal operation, as in Fig. 6.1a the cells

are in forward bias, and the by-pass diodes are in reverse biased and have no effect.

When one of the cells is shaded as Fig. 6.1b, there is a current mismatch between
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the two cells, which means Isc,1 and Isc,2 have a difference, then the by-pass diode of

the good (unshaded) cell is reverse biased and has no effect and the diode of the good

PV cell is forward biased, but the by-pass diode of the shaded cell is forward biased

and conduct current, the shaded cell diode is reverse biased but only to a single diode

drop (about 0.6 to 0.7 V).

(a) Normal operation (b) Partial shaded operation

Figure 6.1. Illustration of by-pass diodes status of normal operation
and partial shaded operation, the part inside the blue dash box is for
solar cells and the diodes outside the blue dash box are by-pass diodes,
the diodes that are reversed biased are highlight in red.

In commercial PV modules, it is too expensive to install a by-pass diode for each

PV cell, so one installs a by-pass diode in parallel with about 20 cells connected in

series string. So from the diode activation discussed above, if the by-pass diode is

broken for a module5, or partial shading happens without current mismatch across

different strings, such as the same shading scenario happens on each string at the

same time as Fig. 6.2, then the I-V curve won’t have multiple steps and this partial

shading occurrence won’t be detected by our method.
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Figure 6.2. Example of shading scenario happens the exactly the same
on each string, the cells in purple are shaded cell.

6.2 Long Term Degradation Study of PV Modules

In this section, we compare the PLR and rate of change of each degradation mode

from outdoor Isc-Voc analysis and power loss calculation across modules of different

brands (module architecture) and located climate zones.

6.2.1 Comparison of Performance Loss Rate

The BWh Köppen-Geiger climate zone is a hot desert climate, while BSh is a hot

semi-arid climate, with the latter climate zone having more precipitation than the

former one, and the precipitation for both is less than any tropical climates. ET

corresponds to a tundra climate, which has an average temperature below 10◦C of

every month, which is much lower than that of BWh or BSh climate zones. From the

PLR result as Fig. 5.11, we can see these different environmental conditions cause a

difference in the degradation of the general performance of modules in the two brands.

BWh and BSh climates cause more significant performance loss than the ET climate
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zone for brand F: GB modules because the PLR values for the first two are more

negative than that observed in the ET climate zone. For brand G: DG modules, BSh

cause more aggressive degradation than BWh, and both are more aggressive than

ET. In summary, the degree of aggressiveness of the three climate zones studied here

show that for brand F: GB is BSh ≈ BWh > ET, and for brand G: DG is BSh >

BSh > ET.

The brand G: DG modules have better performance in BWh climate compared

with brand F: GB modules, while for the other two climate zones, the performance

of these two brands are similar. This suggests that brand G: DG module exhibits

better weather resistance considering its better performance in BWh.

What’s more, from the PLR results, compared with a larger population of com-

mercial PV modules, the modules we studied have better quality33. The average PLR

of all eight modules is -0.103 %/a, and the smallest value is -0.473%/a. From the

NREL report published in 201233, using 1,920 reported cases of silicon-based photo-

voltaic systems, the median PLR is about -0.5%/a and the average is about -0.8%/a.

Comparing the PLR values in a more recent study87, the PLR value for 14 different

commercial crystalline silicon-based module is in the range from -0.3%/a to -2.9%/a.

From another outdoor study of degradation in PV modules, several brands of modules

are installed in Nicosia, Cyprus, which belongs to BSh Köppen climates69, for five

years88. We are able to find the same brands as the PV modules studied but different

specific models. The PLR is obtained by using the performance ratio metric, and

then two regression methods are applied to get two versions of results. The first is a

simple linear model regression, and the second is do a classical seasonal decomposi-

tion then fit the linear model. Both results showed brand G (DG) modules has better
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performance than brand F (GB) modules. The brand F modules also experienced

shading problems during outdoor exposure, which is the same situation as our brand

F module in BSh climate88. A climate dependent PV degradation study with pre-

dicted result shows that polar climates have a slower PLR (lower degradation rate)

than the desert climate. For a specific model of a mono-Si PV module, the polar

climate exhibited a degradation rate of -0.18 %/a which is much lower than that in

a desert climate, which varied from -0.41 %/a to -0.61 %/a based on the irradiance

intensity89.

6.2.2 Dominant Degradation Power Loss Modes

The outdoor Isc-Voc analysis provides us more information on what happens to the

module, based on Table 5.11. First, for each brand and architecture (GB or DG) of

modules, using the rate of change for each degradation mode results, we can define

the one that has the fastest degradation rate, i.e. the most negative value as the

degradation mode, which means this degradation mode has largest contribution to

the overall power loss of the module. For the BWh climate, the dominant degradation

mode is uniform current loss and current mismatch loss for brand F: GB modules and

G: DG modules respectively. For the BSh climate, the dominant degradation mode for

both is uniform current loss, and for the ET climate zone, the dominant degradation

mode is series resistance loss for brand F: GB. However, we also found that for

brand F: GB modules, BWh and BSh emphasize the same dominant degradation

mode, which is uniform current loss, but it is different for brand G: DG. From the

qualitative field observation, which is mainly built on glass backsheet modules, desert
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and steppe climates are more easy to trigger the encapsulant discoloration89, which

will cause a decrease in Isc
90.

The four degradation or power loss modes determined from the outdoor time-

series Isc-Voc analysis are related to specific degradation or power loss mechanisms

activated in the module arising from changes in the PV module packaging materials

(encapsulants and polymeric backsheets), changes in the PV cells or causes that are

external to the module such as soiling. The Isc of a solar cell is directly dependent

on the light intensity so the uniform current loss (∆PIsc) which is calculated based

on the Isc difference is most likely caused by a decline in the irradiance on the PV

cell, which could be caused by decreased transmittance of the packaging material

such as encapsulant yellowing, or soiling of the modules frontsheet glass. The current

mismatch mode (∆PImis) happens on the module when the cell connected in series

have different Isc, and Isc is equal to short circuit current density times the solar cell

area, so the current mismatch usually happens to the module when the module is

partly shaded. In addition, the current mismatch power loss (∆PImis) obtained from

outdoor Isc-Voc analysis includes the shunting resistance(Rsh) contribution also.

The negative value in the rate of change of series resistance (∆PRs) usually is

related to an increase of series resistance due to corrosion of the metal interconnect

and metalization. It’s a common phenomenon when the module is under the in-

door accelerated damp-heat exposure29, that the series resistance is seen to increase

strongly, and this has been quantitatively tracked using machine learning on electro-

luminescent imaging and I-V analysis91,92 . However, for the brand F: GB module in

the ET climate zone, the reason they are experiencing series resistance power loss is

unlikely to be an increase in series resistance considering that the climate zone is so
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Figure 6.3. Current mismatch for Brand G:DG module in ET climate

cold. Instead, it may be due to an increase in current since power consumed by series

resistance is equal to the square of current times resistance. The increasing current

can be verified by the positive value in the uniform current loss (∆PIsc). In fact, the

uniform current loss rate plus that of the series resistance loss is very close to zero

for brand F: GB module in ET climate. The positive rate of the current mismatch is

because of the positive trend happens in the summertime in Fig. 6.3.

If we do the same average across modules for the PLR results in Table 5.5: -0.062

%/a (BWh: DG), -0.473 %/a (BWh: GB), -0.465 %/a (BSh: DG), -0.60 %/a (BSh:

GB) and 0.321 %/a (ET: GB), and compare these with the sum of the rate of change

in the four power loss mechanisms listed in Table 5.11, the correlation between them is

0.96 and the root mean squared error (RMSE) is 0.2654%/a. This demonstrates that
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the four power loss modes determined from time-series I-V analysis, are components

of the total PLR.

However, the power loss modes have relatively small rates of change over time,

and they exhibit noise compared with the trend, such that their rates of change

are relatively more uncertain. So we do the similar comparison between PLR result

and the rate of change in the dominant degradation or power loss mode. Brand F:

GB module has a more negative rate of change in uniform current loss than that

of brand G: DG in the current mismatch. And brand F: GB module has a more

negative rate of change than that of G: DG module in BSh climate zone, and the

module of brand F: GB in ET climate are more positive than the values of dominant

degradation mode for all others. This finding from outdoor Isc-Voc analysis agrees

with the PLR result of the same modules in Fig. 5.11. In addition, PLR results

shows that brand F: GB module shows similar value for BWh and BSh climates

and their dominant degradation modes from outdoor Isc-Voc analysis are the same,

which are ∆PIsc uniform current loss, and brand G: DG module has a quite different

PLR value for BWh and BSh, and their returned dominant degradation modes are

also different. Quantitative results shows the correlation is 0.934 and the RMSE is

0.2538%/a. The high correlation and relatively large RMSE from these two kinds

of comparison all suggest that outdoor Isc-Voc and power loss calculation method is

acceptable for relative comparisons of degradation across PV modules but not yet

accurate enough for obtaining a degradation rate. This has not been the focus of our

research since, we also can determine the PLR from the power timeseries.

PV degradation science studies using outdoor Isc-Voc analysis and loss factor anal-

ysis, compared with other published research using time-series I-V features for studies
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of module degradation2, realize direct comparison of changing in I-V features with

respect to their contribution in the change of Pmp. Further analysis identifies the

dominant degradation mode, which is very helpful for future research on reducing the

module degradation rates.
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7 Conclusion

In this research, the data-driven I-V feature extraction algorith, ddiv, was suc-

cessfully applied to millions of time series I-V curves of eight modules with system

ages vary from 3 to 9 years. And this analysis not only permits extraction of the single

and mulitiple I-V ”step” information that enables new and more detained temporal

partial shading detection, but also identifies the I-V features and four distinct power

loss modes of the PV modules. The I-V curve multistep analysis method devel-

oped in this research enables partial shading detection while returning the partial

shading diagram, the shading profile, the shading Poynting vector diagram, obstacle

orientation, and detailed information on shading scenarios and duration of partial

shading throughout the year, and over many years. This approach incorporates a

new method for quality detection of current-voltage curves, and ways to establish

the optimal hyperparameter values for data-driven I-V features extraction (ddiv) to

obtain the number of ”step” in I-V curves.

This approach was successfully applied to multiyear time-series datasets obtained

from outdoor PV modules of two brands and module architectures (glass-backhseet

(GB) and double glass (DG)) in three distinct Köppen-Geiger climate zones. Three

out of eight modules included in our study were detected to have the partial shading
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problems, they are, module 3 (BWh: GB), module 5 (BSh: GB), and module 6 (BSh:

GB). These module’s shading profile is consistent across multiple years, there were

often times where more than one by-pass diode had been activated and the peak of,

and the duration of, partial shading is longer than the 5 minute time interval between

I-V curve measurement.

Analysis of the time-series I-V curves using the Isc-Voc analysis method enables

the determination of the Suns-Voc curve of these fielded modules and also the identifi-

cation of four degradation modes or power loss factors. These include ∆PImis, ∆PIsc,

∆PRec and ∆PRs corresponding to power losses arising from Current Mismatch, Short

Circuit Current, Recombination and Series Resistance respectively. These power loss

modes are compared to the Performance Loss Rate (PLR) determined from analysis

of the Pmp datastreams using the month-by-month linear regression method. The

PLR is obtained for each module using the XbX with UTC predictive method, where

X = 1 day, and the universal temperature correction (UTC) is used, followed by

year-on-year regression. Comparing the degradation results of various brands and

module architectures and different located climates, our brand G, double glass mod-

ules showed higher weather resistance and durability. In addition the BWh and BSh

climate zone caused more severe degradation than the ET climate zone. The domi-

nant degradation mode for brand F: GB module are the uniform current loss for both

BWh and BSh climate zone, and series resistance loss due to increasing current for EL

climates, and for brand G: DG module, the dominant degradation modes are current

mismatch loss, uniform current loss for the BWh and BSh climate zone respectively.

The relative value of the rate of change in dominant degradation modes agree with

the PLR result.
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Appendix A

Preparation of this document

This document was prepared using pdfLATEX and other open source tools. The

(free) programs implemented are as follows:

• LATEX implementation:

MiKTEX http://www.miktex.org/

TEXLive https://www.tug.org/texlive/

• TEX-oriented editing environments:

TexStudio https://www.texstudio.org/

• Bibliographical:

BibTEX http://www.bibtex.org/

Biber http://biblatex-biber.sourceforge.net/

Zotero https://www.zotero.org/

Better BibTEX For Zotero https://retorque.re/zotero-better-bibtex/

http://www.miktex.org/
https://www.tug.org/texlive/
https://www.texstudio.org/
http://www.bibtex.org/
http://biblatex-biber.sourceforge.net/
https://www.zotero.org/
https://retorque.re/zotero-better-bibtex/
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