
INTEGRATION OF NODE EMBEDDINGS FOR MULTIPLE VERSIONS OF

A NETWORK

by

MENGZHEN LI

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Department of Computer and Data Science

CASE WESTERN RESERVE UNIVERSITY

August, 2020



Integration of Node Embeddings for Multiple Versions of A Network

Case Western Reserve University

Case School of Graduate Studies

We hereby approve the thesis1 of

MENGZHEN LI

candidate for the degree of

Master of Science

Mehmet Koyutürk

Committee Chair, Advisor
Department of Computer and Data Science

Erman Ayday

Committee Member
Department of Computer and Data Science

Jing Li

Committee Member
Department of Computer and Data Science

Date of Defense

07/16/2020

1We certify that written approval has been obtained for any proprietary material contained therein.



Table of Contents

List of Tables iv

List of Figures v

Acknowledgements viii

Abstract ix

Chapter 1. Introduction 1

Chapter 2. Background and Related Work 5

Node Embedding 5

Dimensionality Reduction 8

Chapter 3. Methods 10

Problem Definition 10

Generating Embeddings for Separate Networks 11

Computing Consensus Embeddings 12

Fidelity 15

Chapter 4. Results and Discussions 17

Experimental Setup 17

Fidelity of Consensus Embeddings Computed Using SVD and Autoencoder 19

Fidelity of Consensus Embeddings Computed Using vec2net 20

Effect of overlap and density 22

The Performance of Link prediction 24

Chapter 5. Conclusions 27

References 29

iii



List of Tables

4.1 Number of nodes and edges before preprocessing 19

4.2 Number of nodes and edges after preprocessing 19

iv



List of Figures

3.1 The framework for the computation of consensus embeddings using

dimensionality reduction methods. The graphs labeled Version 1 and

Version 2 represent two versions of a network with a fixed node set and

different (possibly overlapping) edge sets. The objective is to compute

node embeddings for the network obtained by superposing these two

versions. At the absence of the superposed network, we compute

the consensus embedding by computing separate embeddings for

each version and then using dimensionality reduction to compute a

common reduced-dimensional space for the two embedding spaces.

Finally, we use the embeddings to assess the similarity between pairs of

nodes in the network. 10

3.2 An example of autoencoder used to integrate two embeddings 13

3.3 The main procedures of vec2net 14

4.1 Performance of dimensionality reduction methods in recovering

the node embeddings in the superposed network. The fidelity of the

embeddings reconstructred using the embeddings from individual

networks to the embeddings computed directly using the superposed

network is shown as a function of number of dimensions in the

embeddings. Results are shown for embedding methods (a) Node2vec,

(b) Role2vec for the protein-protein interaction (PPI) (upper panel) and

co-authorship networks (lower panel). 21

4.2 Performance of vec2net algorithm in recovering the node embeddings

in the superposed network. The fidelity of the embeddings

reconstructed using the networks constructed with cosine similarity to

v



the embeddings computed directly using the superposed network is

shown as a function of number of edges in the input of vec2net. Results

are shown for embedding methods (a) Node2vec, (b) Role2vec on the

protein-protein interaction (PPI) (upper panel) and co-authorship

networks networks (lower panel). The red dashed line is the best fidelity

of SVD for number of dimensions = 8, 16, or 32. 22

4.3 Influence of the overlap between networks G1 and G2 with different

densities in SVD. Node2vec(left) and role2vec(right). Number of

dimensions = 8. The sparse G1 and G2’s average degree is about 1.7, and

the dense networks’ number of edges are about 10 times of the sparse

ones. 24

4.4 Influence of the overlap between networks G1 and G2 with different

densities in autoencoder.Node2vec(left) and role2vec(right). Number

of dimensions = 8. The sparse G1 and G2’s average degree is about 1.7,

and the dense networks’ number of edges are about 10 times of the

sparse ones. 24

4.5 Influence of the overlap between networks G1 and G2 with different

densities in vec2net. Node2vec(left) and role2vec(right). Number of

dimensions = 8. The sparse G1 and G2’s average degree is about 1.7, and

the dense networks’ number of edges are about 10 times of the sparse

ones. 25

4.6 Performance of all consensus embeddings in link prediction. The

auc scores of consensus embeddings is shown as a function of number

of dimensions in the embeddings. Results are shown for embeddings

methods (a) Node2vec, (b) Role2vec for the protein-protein interaction

vi



(PPI) (upper panel) and co-authorship networks networks (lower

panel). 26

vii



Acknowledgements

I would like to thank my advisor Mehmet Koyuturk for his support and guidance. I

also wish to thank Tyler Cowman, Serhan Yilmaz , and Kaan Yorgancioğlu for giving me

valuable advice on my research.

viii



Integration of Node Embeddings for Multiple Versions of A Network

Abstract

by

MENGZHEN LI

Machine learning applications on large-scale network-structured data commonly

encode network information in the form of node embeddings. The general principle

of existing algorithms for computing network embeddings is to map the nodes into a

low-dimensional space such that the nodes that are “similar" with respect to network

topology are also close to each other in the embedding space. Many real-world net-

works that are used in machine learning have multiple versions that come from differ-

ent sources, are stored in different databases, or belong to different parties. Due to ef-

ficiency or privacy concerns, it may be desirable to compute consensus embeddings for

the superposed network directly from the node embeddings of individual versions, with-

out explicitly constructing the superposed network. We consider multiple approaches

to compute embeddings for the superposed network from the embeddings of individual

versions. To systematically assess the quality of the resulting consensus embeddings, we

define the notion of fidelity. We then test the performance of consensus embeddings on

link prediction. Our results show that predictions obtained with consensus embeddings

are almost as accurate as those that are obtained with embeddings computed using the

superposed network.

ix



1

1 Introduction

Large-scale information networks are becoming ubiquitous in the real world. Min-

ing knowledge from these information networks has become very popular in a broad

range of applications. Learning a representation of networks is useful for many network

analysis applications1,2, including social network analysis3,4 and bioinformatics5,6.

With the explosion in the scale and scope of machine learning applications, the no-

tion of node embedding is introduced to facilitate effective application of machine learn-

ing algorithms to large-scale networks. Node embedding aims to map each node in the

network to a low dimensional vector representation to extract features that represent the

topological characteristics of the network. Many techniques are developed for this pur-

pose7–10, and these techniques are shown to be effective in addressing problems such

as link prediction11,12 and node classification11,13.

With the increase in the quantity and variety of network datasets, effective extraction

of knowledge from different data sources is becoming a popular and challenging task for

researchers14. Many networks have multiple versions, as different data providers may

gather their data from different sources, some of the data may not be shared due to

privacy concerns15, or the data that is available may evolve over time. In many applica-

tions, it is desirable to integrate data from multiple sources and it is repeatedly shown

that data mining and machine learning algorithms are usually more effective on inte-

grated, more comprehensive network data16,17. A straightforward way of integrating



Introduction 2

network data from multiple sources is to compute a superposition of all versions by

taking the union of all edges (and/or assigning appropriate weights to the edges in the

union).

An important task in analyzing integrated networks is the computation of node em-

beddings, i.e. learning low-dimensional representation of superposed networks4,18. Dif-

ferent versions of a network have the same set of nodes and different sets of edges (with

identical semantics). In many settings, it may not be possible or desirable to superpose

multiple versions of a network. For example, in integrated querying of networks from

multiple databases, computation of embeddings for all possible combinations may not

be feasible or efficient19. In other settings, multiple parties may not be willing the share

their versions of the network due to privacy concerns, but may be willing to share the

node embeddings computed from their versions. In these settings, the problem be-

comes one of computing an embedding that represents the node embeddings in the

superposed network, using only the embeddings computed using the separate versions.

For efficiency concerns, users may not want to compute node embeddings at query

time. Using the node embeddings of the versions to learn the embedding of the super-

posed network would be more efficient than learning an embedding from the networks.

There are recently proposed methods for multiple network embedding. MNE20 is

a scalable multi-network embedding algorithm, which aims to encode multi-type re-

lations into a unified embedding space while maintaining their distinctive properties.

Mashup21 learns feature representations of genes from multiple networks by jointly

minimizing the difference between the observed diffusion states across all networks.

deepNF22 computes the probability of co-occurrence of nodes by RWR(Random Walk



Introduction 3

with Restart) for all networks and uses autoencoder to get the lower-dimensional rep-

resentation. Those methods use the networks instead of embeddings as input, or com-

puting the embedding at query time, so they are not able to avoid sharing networks and

be efficient in querying systems.

We here introduce the notion of "consensus embedding" as an embedding for the

superposed network that is computed from the embeddings of separate versions.

In this thesis, we propose multiple approaches to compute consensus embeddings:

(1) Linear dimensionality reduction via singular value decomposition23.

(2) Non-linear dimensionality reduction via variational autoencoders24,25.

(3) Construction and superposition of networks that represent node similarities

computed from individual embeddings.

In order to investigate how well consensus embeddings can reconstruct the embed-

ding of the superposed networks, we compare the consensus embeddings produced

by these methods with the node embeddings computed directly from the superposed

network. For this purpose we define a novel criterion, named "fidelity", which aims to

measure the consistency of two different embeddings (one computed directly from su-

perposed networks, one computed as a consensus embedding). Fidelity assesses con-

sistency based on the pairwise similarity of nodes as captured by each embbeding. Us-

ing fidelity as a performance criterion, we systematically investigate the quality of con-

sensus embeddings provided by different methods, as well as the reconstructability of

different embedding techniques. We also investigate the relationships the number di-

mensions in the node embeddings and fidelity.

In our experiments, we use protein-protein interaction26,27 and co-authorship net-

works28,29 derived from multiple resources. Our results show that (i) community-based

embedding techniques permit more accurate computation of consensus embeddings

as compared to role-based techniques, (ii) linear dimensionality reduction produces



Introduction 4

more accurate consensus embeddings as compared to non-linear dimensionality re-

duction, and (iii) similarity networks improve the fidelity of consensus embeddings for

role-based techniques.

We also assess the performance of consensus embeddings in the context of machine

learning applications. For this purpose, we focus on link prediction, an important prob-

lem in network analysis that is often addressed using node embeddings30,31. The low-

dimensional representations of networks preserve the structural information of graphs,

e.g. proximity or similarities, and thus can be used as features in building machine

learning models for link prediction32,33. In our work, we test the link prediction perfor-

mance of consensus embeddings and compare it with that of the superposed network

embeddings11.

The remainder of the thesis is organized as follows. We first discuss some important

concepts and existing approaches in Chapter 2. Then, we define consensus embeddings

and present our proposed solutions to the computation of consensus embeddings in

Chapter 3. We present systematic experimental results on protein interaction and social

network data in Chapter 4. We conclude our discussion in Chapter 5.



5

2 Background and Related Work

Our work is based on network embedding methods and dimensionality reduction. In

this section, we briefly introduce existing approaches to network embedding and some

important concepts in dimensionality reduction. We also introduce the link prediction

problem, which is also an application of node embedding.

2.1 Node Embedding

Node embedding aims to learn a low-dimensional representation of nodes in networks1.

Given a graph G = (V ,E), a node embedding is a function f : V −→ Rd that maps each

node v ∈ V to a vector in Rd where d ¿ |V |. A node embedding method computes a

vector for each node in the network such that the proximity in the embedding space

reflects the proximity/similarity in the network.

In the last few years, many methods have been developed to compute node em-

beddings in a given network. Methods usually differ in terms of how they formulate

the similarity between nodes (or the objective function that specifies the correspon-

dence between the embedding and network topology). Communities and roles are the

two important notions in studying the topology of networks1. Node embedding meth-

ods can also be roughly divided into community-based approaches and role-based ap-

proaches. As representatives of these different approaches, we here consider node2vec



Background and Related Work 6

and role2vec: node2vec is a community-based approach while role2vec is a role-based

approach.

2.1.1 Community-based node embedding

In a network, communities are defined by the connections among nodes. Nodes that

are highly connected to each other are considered community. Thus, community-based

embedding methods aim to map nodes that belong to the same community to closer

points in the embedding space. In other words, these methods, including node2vec7,

LINE9, and deepwalk10, measure node similarity by their proximity in the network.

Node2vec7 learns a representation of a network by optimizing a neighborhood pre-

serving objective function. It measures the distances of the node representations by

the random walk-based proximity of nodes. It runs short random walks starting from

each node in the network. It uses the information provided by these truncated ran-

dom walks with Skip-Gram to learn latent representations of vertices. The short random

walks are flexible, biased random walks that can trade-off local and global structures of

the network by exploring neighborhoods of nodes with both BFS(Breadth First Search)

and DFS(Depth First Search). The random walk paths result in a neighborhood set NS(u)

for every u ∈V .

Node2vec optimizes an objective function that maximizes the log-likelihood of ob-

serving a network neighborhood NS(u) for a node u given the embedding function f ,

i.e. it computes:

f ∗ = argmax f

∑
u∈V

logPr (NS(u)| f (u)) (2.1)

where NS(u) is a network neighborhood of node u.



Background and Related Work 7

2.1.2 Role-based node embedding

Roles are defined by structural features, e.g. the role of the hubs is to connect many

nodes to each other, while the role of the bridges is to serve as one of the few nodes

that connect different parts of the network. Role-based node embedding methods, e.g.

role2vec8, struc2vec34, node2bits35, make use of the structural features of nodes and

measure node similarities by their structural graph functions. Instead of using tradi-

tional random walk, role2vec8 uses the flexible notion of feature-based random walks.

Role2vec defines a matrix X of node features, where each row xi is the observed

node features of node vi , including observed attributes, topological features, and/or

node types for heterogeneous graphs. Role2vec maps vertices to vertex roles by learning

a functionΦ that maps all the vertices to a set of m vertex roles where m ¿|V |, i.e. Φ(xi )

is the vertex role of node vi . Each vertex role contains nodes that are structurally similar.

Then, it uses feature-based random walks to derive role-based embedding for the nodes

that capture structural properties. A feature-based random walk path is a sequence of

adjacent vertex-roles in a network. Role2vec learns the embedding by the proximity

relationships based on the feature-based random walks.

2.1.3 Applications of Node Embedding

The applications for node embeddings include network visualization, clustering, node

classification, and link prediction36.

Visualization: By mapping nodes into a low-dimensional space, we can visualize the

graph into a 2D or 3D interface. For example, t-SNE37 visualizes high-dimensional data

by giving each datapoint a location in a two or three-dimensional map.



Background and Related Work 8

Clustering: By applying clustering algorithms to node embedding, we are able to

cluster similar nodes and detect communities. For example, GEMSEC38 is a graph em-

bedding algorithm which learns a clustering of the nodes simultaneously with comput-

ing their embedding.

Node Classification: : Given a partially labeled network, node classification aims to

predict the label of unlabelled nodes. Neighboring nodes in node embeddings are more

likely to share the same label. For example, GraphSAGE39 uses inductive node classifi-

cation that leverages node feature information to efficiently generate node embeddings

for previously unseen data.

Link Prediction: : Link prediction is an important task in network analysis40. Given

a network G = (V ,E), link prediction aims to predict the potential edges that are likely

to appear in the network based on the topological relationships between pairs of nodes.

Link prediction can be supervised41 or unsupervised42. For supervised link prediction,

the known links serve as positive samples and disconnected pairs of nodes serve as neg-

ative samples. The embedding vectors of nodes are treated as feature vectors and used to

train the classifiers11,32. For unsupervised link prediction, the distances between pairs

of vectors can be used to predict the proximity between nodes in the network and thus

predicts the potential edges by ranking the distances12,33.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of dimensions in a fea-

ture set. Suppose we are given a feature set with dimensionality D , dimensionality re-

duction methods aim to reduce it into a feature set with dimensionality d where d < D .

Dimensionality reduction methods can be linear or non-linear.



Background and Related Work 9

• SVD (singular value decomposition)23 is a linear dimensionality reduction method.

It is an algorithm that factors an m×n matrix M into three component matrices,U ,

S, and V . The diagonal values of S are called singular values of M . Dimension-

ality reduction can be achieved by setting the smallest singular values to 0.

• Variational autoencoder24,25 is a kind of neural network that learns to recre-

ate the input features. With the nonlinear activation functions at each layer,

autoencoder is capable of learning nonlinear relationships.



10

3 Methods

Figure 3.1. The framework for the computation of consensus embed-
dings using dimensionality reduction methods. The graphs labeled Ver-
sion 1 and Version 2 represent two versions of a network with a fixed node
set and different (possibly overlapping) edge sets. The objective is to com-
pute node embeddings for the network obtained by superposing these
two versions. At the absence of the superposed network, we compute
the consensus embedding by computing separate embeddings for each
version and then using dimensionality reduction to compute a common
reduced-dimensional space for the two embedding spaces. Finally, we
use the embeddings to assess the similarity between pairs of nodes in the
network.

3.1 Problem Definition

In this section, we formalize the problem of integrating multiple networks and comput-

ing node embeddings. For simplicity, we assume that there are only two versions of the

network, but the framework we develop here directly applies to multiple networks as

well. Let G1 = (V ,E1), G2 = (V ,E2) be two versions of a graph with the same set of nodes



Methods 11

and different sets of edges. The superposition of G1 and G2 is G = (V ,E1 ∪E2). Assume

that d-dimensional node embeddings X1 and X2 for G1 and G2 are given, where X1 and

X2 are n×d matrices. Our objective is to use X1 and X2 to compute d-dimensional node

embeddings Xc for G , without using any other information on G1 and G2. We call Xc

the consensus embedding for X1 and X2. Our goal is to use the consensus embedding to

represent the proximity relationships of both networks, so we want it to be similar to the

embedding Xs of the superposed network G .

This framework is illustrated in Figure 3.1, in which node embeddi ng can be any

method for the computation of node embeddings (we here use node2vec and role2vec),

and di mensi onal i t y r educti on can be any dimensionality reduction method (we here

use SVD or variational autoencoder). We also use a third method for computing con-

sensus embedding, namely vec2net, which is not a standard dimensionality reduction

approach.

3.2 Generating Embeddings for Separate Networks

To compare the fidelities of community-based embeddings and role-based embeddings,

we use node2vec and role2vec to generate node embeddings X1 and X2 of two networks.

We will use these two node embeddings as the input of the methods in the next section

to get the consensus embeddings. This step is shown as node embeddi ng in figure 3.1.

We also compute the embedding Xs by node2vec and role2vec in order for the fidelity

scores in the following steps.



Methods 12

3.3 Computing Consensus Embeddings

By multiple network embedding methods explained earlier, we are able to get multiple

low-dimensional representations of G1 and G2. In this way, we are mapping the two net-

works into two different d-dimensional spaces. Then, by merging these two representa-

tions into the same d-dimensional space, we are able to integrate the two embeddings.

Before we implement the dimensionality reduction methods, we first create a n×2d ma-

trix by adding X2 to the right of X1. Here, we implemented two dimensionality reduction

approaches to address this problem. Our goal is to get a n ×d representation Xc of the

combined embedding X . Also, we developed vec2net algorithm that constructs a new

network maintaining the proximity relationships of both embeddings.

3.3.1 Singular Value Decomposition(SVD)

Singular Value Decomposition(SVD) is a matrix decomposition method for reducing a

matrix to its constituent parts. The singular value decomposition of an m ×n matrix M ,

whose rank is r , is a factorization of the form U SV , where U is an m × r unitary matrix,

S is an r ×r diagonal matrix, and V is an r ×n unitary matrix. S is a diagonal matrix and

the diagonal values of S are called the singular values of M .

If we need a d-dimensional matrix M ′, we set r −d smallest singular values to zero

and remove the corresponding rows or columns in U and V because they will multiply

with zero when calculating M = U SV . By doing this, we can drop the lowest singular

value from the decomposition of M and get three new matrices U ′, S′, and V ′. The

reduced matrix M ′ is calculated by only U ′ and S′, i.e. M ′ = U ′S′. M ′ will only have d

columns because it is the product of a m ×d matrix and a d ×d matrix.



Methods 13

3.3.2 Convolutional Autoencoder

An autoencoder is an unsupervised learning algorithm that applies backpropagation,

setting the target values to be equal to the inputs. Given a set of vectors{x(1), x(2), . . . , x(n)},

where x(i ) ∈ Rd where d is the number of dimensions, autoencoder learns a neural net-

work that returns a set of n vectors such that y (i ) ≈ x(i ). The loss function of autoencoder

is:

L(x, y) = ‖x − y‖2 (3.1)

By minimizing the loss function, we can reconstruct x with the neural network. Figure

3.2 shows the process of standard autoencoder.

Figure 3.2. An example of autoencoder used to integrate two embeddings

In our method, we use a 2D-convolutional autoencoder25. Same as standard au-

toencoder, convolutional autoencoder also aims to output the same vectors as input.

The convolutional autoencoder contains convolutional layers in the encoder part of the

autoencoder. In every convolutional layter, there is a filter that slides around the input

matrix to compute the next layer. Convolutional autoencoder also have pooling layers

after each convolutional layer. In the decoder part, there are deconvolutional layers and



Methods 14

unpooling layers that recovers the input matrix. After the training process, we get a d-

dimensional vector for every node by the encoding part of the autoencoder.

3.3.3 vec2net

We develop an algorithm,vec2net, that computes a new network from n vectors by their

proximity relationships. The n vectors represents n nodes in a network. Figure 3.3 shows

the main procedures of vec2net. Given n d-dimensional vectors, we can get a n ×n dis-

tance matrix by computing the pairwise cosine distance between every pair of vectors.

Here, the cosine distance between two vectors v1 and v2 is defined as 1−cos(v1, v2). The

distance matrix indicates the proximity between the vectors. Then, we can add edges to

the network by the rank of the distances.

In our problem, we are given two node embeddings X1 and X2, so the vec2net algo-

rithm should construct a new network that can maintain the proximity of both embed-

dings. Therefore, we have 2 sets of d-dimensional vectors, then 2 cosine distance matri-

ces can be generated from them. In order to maintain the proximity of both networks, we

compute the min distance of every pair of nodes. The pseudocode of multiple-network

vec2net is in Algorithm 1. In the output network, two nodes are connected by an edge if

they are close in at least G1 or G2. By computing the embedding of the new network, we

are able to get a new embedding which has the same number of dimensions as X1 and

X2. In this way, we can also get the similar n ×d matrix as the dimensionality reduction

approaches mentioned in the previous sections.

Figure 3.3. The main procedures of vec2net



Methods 15

Algorithm 1: Vec2net

Require: X1,X2: d-dimensional vectors for ∀v ∈V , k: number of edges in the resulting
network

Ensure: A network G = (V ,E) with n nodes
E ←;
D1 ← cosine_distances(X1, X1)
D2 ← cosine_distances(X2, X2)
D ← mi n{D1,D2}
for i = 1 to n do

c ← column index of minD[i , :]
E ← E ∪ (V [i ],V [c])

end for
sort all values in D
[i d xr , i d xc ] ← indices of the k minimum elements in D
E ← E ∪ (V [i d xr ],V [i d xc ])

In Algorithm 1, we add edges to the graph according to their proximity in the em-

bedding spaces. To guarantee that the new graph contains all the nodes, we should at

least add one edge to every node. Therefore, the first step of vec2net algorithm is to

find the closest neighbor of every node by cosine distances. Then, we rank all the cosine

distances and find the pairs of nodes with top k nearest distances. After we add top k

edges into the graph, we get a new graph with n nodes and approximately n +k edges.

3.4 Fidelity

To measure the fidelities of the methods, we aim to compare the resulting embedding

of every method with the embedding of the superposed network. Because it is hard to

compare two embedding matrices, we try to compare their cosine distance matrices.

The Mantel test43 compares two distance matrices by computing the correlation be-

tween the distances in the lower/upper triangular portions of the symmetric distance

matrices. Given two distance matrices A and B the Mantel test computes a test statistic



Methods 16

r as equation 3.2:

r = 1

d −1

n−1∑
i=1

n∑
j=i+1

Ai j − Ā

sA

Bi j − B̄

sB
(3.2)

where d = n(n−1)
2 and A,B are distance matrices, Ā, B̄ are the average distance of A and

B , and sA and sb are the standard deviation of the distances in A and B . The result r

falls in the range of -1 to 1. If r is close to -1 or 1, then the two distance matrices have

strong negative or positive correlations. If r is 0, then the two distance matrices have no

correlation.

In our experiments, we use the embedding of the superposed networks as the "stan-

dard" embedding, so their cosine-similarity matrices are the standard for us to measure

the fidelity. Then, one of the input matrices of the Mantel test is the cosine-similarity

matrix of the superposed network. The other input matrix should be the cosine-similarity

matrix of the embedding resulting from SVD/autoencoder/vec2net.



17

4 Results and Discussions

In this chapter, we present comprehensive experimental results on versioned net-

works in the context of two different applications and discuss the implications of the

results.

4.1 Experimental Setup

4.1.1 Datasets

In our experiments, we use two types of datasets: protein protein interaction(PPI) net-

works and co-authorship networks. Both of these two types of networks are undirected

and we treat them as unweighted networks. We use a pair of datasets for both types of

networks.

PPI Networks. Protein Protein Interaction networks express the physical interactions

and functional associations between proteins. The nodes in PPI networks represent

proteins and the edges connect pairs of interacting proteins. We use two human PPI

network datasets in our experiments:

• BioGRID26: This is an extensive repository of curated genetic and protein inter-

actions.

• STRING27: This is a protein interaction network with both physical and func-

tional interactions from diverse sources.



Results and Discussions 18

Co-authorship Networks. In co-authorship networks, each vertex represents an au-

thor and each edge represents a co-author relation, i.e., there is a undirected link if be-

tween two vertices if the two authors published at least one paper together. We use two

co-authorship networks, including the AMiner Computer Science (CS) dataset and the

DBLP computer science bibliography.

• Aminer CS dataset28: The Aminer dataset is comprised of the collaboration net-

work among the authors.

• The DBLP CS bibliography29: The DBLP computer science bibliography is the

on-line reference for bibliographic information on major computer science pub-

lications.

The two pairs of networks are two sets of test input. To avoid issues with data inconsis-

tency and the need for normalization, for each pair of networks, we identify the set of

nodes that appear in both versions of the network and use the networks induced by the

nodes at this intersection (i.e., we remove the nodes that do not appear in the other net-

work). Because the coauthorship networks are too large and thus hard to be processed

(especially for computing the pairwise distances), we only use a subnetwork of them.

4.1.2 Preprocessing

First, we extract data from the datasets. We get the edge lists from the datasets and then

represent the datasets as networks. We assign new IDs to the nodes to map the nodes

from one dataset to the other one. After that, we get a node set and an edge list of each

dataset with our own IDs.

In order to obtain two networks with the same set of nodes, we remove some of

the non-overlapping nodes the datasets. For both protein interaction networks and co-

authorship networks, if a node only exists in one of the datasets, we remove it from the

node set as well as the edges connected with it from the edge list. After the first step,



Results and Discussions 19

Dataset Biogrid String Aminer DBLP
Number of nodes 23268 15939 26692 25736
Number of edges 481338 1070938 133748 25355

Table 4.1. Number of nodes and edges before preprocessing

Dataset Biogrid String Aminer DBLP
Number of nodes 13936 13936 21757 21757
Number of edges 266202 920858 67954 20823

Table 4.2. Number of nodes and edges after preprocessing

some nodes may have no edge in one of the networks. Therefore, we remove them from

the node set together with their edges in the other network, too. Because new nodes

without an edge will appear again, so we should do this for multiple times. After remov-

ing the redundant nodes and edges for several times, we will get two smaller networks

with the same set of nodes.

4.2 Fidelity of Consensus Embeddings Computed Using SVD

and Autoencoder

To measure the fidelity of consensus embeddings computed using SVD or variational

autoencoder, the input includes the consensus embedding Xc resulting from both meth-

ods, and the integrated embedding Xi . We assess the fidelity of Xc to Xi as a function of

the number of dimensions in the embedding.

Figure 4.1 shows the fidelity provided by each dimensionality reduction method as

a function of number of dimensions. The four plots show different combinations of

datasets and node embedding methods. As seen in Figure 4.1, node2vec leads to con-

sensus embeddings with more fidelity as compared to role2vec in general. It is inter-

esting that the fidelity of consensus embeddings for node2vec increases with increasing



Results and Discussions 20

number of dimensions, while it decreases or stays constant with increased dimension-

ality for role2vec. This is not a surprising result as communities can be more robust

to subsampling of networks as compared to other topological characteristics (i.e., for a

densely connected group of nodes, the relative density can be preserved when edges are

subsampled).

We observe that consensus embeddings computed using SVD provide slightly higher

fidelity as compared to those computed using variational autoencoder for both node2vec

and role2vec. We also observe that the fidelity of consensus embeddings for co-authorship

networks is consistently less than that for PPI networks. We attribute this difference to

the fact that co-authorship networks are sparser than PPI networks and elaborate on

this finding further later in this chapter.

4.3 Fidelity of Consensus Embeddings Computed Using vec2net

From the two node embeddings X1 and X2, we compute a new network G ′ by vec2net.

After we compute the node embedding of the new network G ′, we obtain the consensus

embedding as a n×d matrix. Note that if the embedding method of vec2net is node2vec

(or role2vec), we still use node2vec(or role2vec) here. Because the number of edges k

in G ′ is an important parameter for vec2net, it may also have a significant effect on fi-

delity. For this reason, we assess fidelity as a function of the number of edges in the new

network G ′.

Figure 4.2 shows the fidelity of the consensus embeddings computed by the vec2net

algorithm. The four plots show different combinations of datasets and node embedding

methods. For all plots in figure 4.2,fidelity tends to increase with the number of edges k

in the reconstructed networks, and saturates when k reaches some point. In most cases,



Results and Discussions 21

Figure 4.1. Performance of dimensionality reduction methods in recov-
ering the node embeddings in the superposed network. The fidelity
of the embeddings reconstructred using the embeddings from individ-
ual networks to the embeddings computed directly using the superposed
network is shown as a function of number of dimensions in the em-
beddings. Results are shown for embedding methods (a) Node2vec, (b)
Role2vec for the protein-protein interaction (PPI) (upper panel) and co-
authorship networks (lower panel).

the maximum fidelity accomplished by lower-dimensional embeddings is better than

that of higher-dimensional embeddings.

The red dashed lines in the plots show the best performance of SVD in the same case.

We use SVD instead of autoencoder for comparison because SVD performs better than

autoencoder in most cases. Compared to the red dashed line in all plots, the best fidelity

of vec2net is always lower than the best fidelity of SVD, and the fidelity of vec2net is more

close to the fidelity of SVD for role2vec. This result suggests that the cosine similarity of

embeddings is informative of the similarity between nodes up to a certain point. After



Results and Discussions 22

that point, addition of more edges does not provide any additional information on the

relationships between the nodes.

Figure 4.2. Performance of vec2net algorithm in recovering the node
embeddings in the superposed network. The fidelity of the embed-
dings reconstructed using the networks constructed with cosine similar-
ity to the embeddings computed directly using the superposed network
is shown as a function of number of edges in the input of vec2net. Results
are shown for embedding methods (a) Node2vec, (b) Role2vec on the
protein-protein interaction (PPI) (upper panel) and co-authorship net-
works networks (lower panel). The red dashed line is the best fidelity of
SVD for number of dimensions = 8, 16, or 32.

4.4 Effect of overlap and density

The input of our method includes two network versions, G1 = (V ,E1) and G2 = (V ,E2), so

the similarity between the two versions might affect the fidelity.



Results and Discussions 23

From the experimental results, the density of G1 and G2 can also affect fidelity. There-

fore, in our experiment, we test different densities of G1 and G2. For these purposes, we

create our testing cases by the following steps:

• Choose a graph G: G is a graph with sufficiently high density.

• Creating G1 with k edges: Randomly extract k edges from G and make sure all

nodes are involved in G1.

• Creating G2 with the same density: We should control the percentages of over-

lap, i.e. |E1 ∩E2| = α%|E1| where o is a constant for every test case. To do this,

we remove E1 from G and randomly extract (1−α%)k edges from the leftover

edges. Then, randomly extract α%k edges from G1. At last, add all the k edges

to G2. We should also make sure that all nodes are involved.

• Repeat with different densities and percentages of overlap: The numbers of

edges in the dense networks are ten times of the numbers of edges in their cor-

responding sparse networks. The percentages of overlap loops through 0, 0.2,

0.4, 0.6, 0.8, and 1.

We use the new generated G1 and G2 as the input, and compare the output embed-

dings with the node embedding of G ′ = (V ,E1 ∪E2).

Figure 4.3 and figure 4.4 shows the fidelities of dimensionality reduction methods.

The results are shown as a function of the percentages of overlapping edges of G1 and G2.

The gray shaded part on each graph is the confidence interval of multiple experiments.

The red and blue lines are the average fidelities of sparse and dense networks.

For sparse networks, the fidelity increases when the percentages of overlap increases.

However, the fidelity of dense networks are higher and more stable, without an obvious

increase.

The results of Vec2net is shown in figure 4.5. For vec2net, the number of edges in the

newly constructed network is large enough to get the best fidelity of each testing case.



Results and Discussions 24

Figure 4.3. Influence of the overlap between networks G1 and G2 with
different densities in SVD. Node2vec(left) and role2vec(right). Number
of dimensions = 8. The sparse G1 and G2’s average degree is about 1.7,
and the dense networks’ number of edges are about 10 times of the sparse
ones.

Figure 4.4. Influence of the overlap between networks G1 and G2 with
different densities in autoencoder.Node2vec(left) and role2vec(right).
Number of dimensions = 8. The sparse G1 and G2’s average degree is
about 1.7, and the dense networks’ number of edges are about 10 times
of the sparse ones.

The overlap between G1 and G2 does not have a large impact on the fidelity of vec2net.

Instead, different densities of the graphs result in different levels of fidelities.

4.5 The Performance of Link prediction

To test the influence of fidelity on the applications of node embedding, we compare the

performance of link prediction of the node embeddings of superposed networks and



Results and Discussions 25

Figure 4.5. Influence of the overlap between networks G1 and G2 with
different densities in vec2net. Node2vec(left) and role2vec(right). Num-
ber of dimensions = 8. The sparse G1 and G2’s average degree is about 1.7,
and the dense networks’ number of edges are about 10 times of the sparse
ones.

consensus embeddings generated from different methods. BioNEV11 is an easy-to-use

Python package that can test multiple tasks of graph embedding. Given a network and

its node embedding, BioNEV can generate random training and testing sets to evaluate

the link prediction performance of the embedding. By using BioNEV, we can get the auc

scores of the node embeddings generated from different methods as well as those of the

superposed networks.

Figure 4.6 shows the performance of consensus embeddings in link prediction com-

pared with the performance of the superposed networks’ embeddings. In most cases,

dimensionality reduction methods perform as well as the embedding of superposed net-

work, and vec2net is a little worse than them.

For node2vec, the embeddings of superposed networks always have the highest auc

scores, the auc scores of dimensionality reduction methods are getting higher, and most

of the auc scores of vec2net are the worst. This result correlates well with the result in

figures 4.1 and 4.2, where the fidelity of dimensionality reduction methods increases

as the number of dimensions increases. By comparing the four lines, we can see that



Results and Discussions 26

SVD is a little better than autoencoder, and vec2net performs worse than dimensionality

reduction methods.

For role2vec, the auc scores of superposed network embeddings are not always the

best. However, when we compare the difference of blue lines and other lines in the

right panel of figure 4.6, we can see that SVD(orange) is a little closer to the superposed

network embedding(blue). For PPI networks, the auc scores are getting more and more

apart from each other, which correlates with figure 4.1 and figure 4.2 where fidelities

are decreasing with the increase of dimensions. For coauthorship networks, most of the

fidelities of SVD and autoencoder are close to the blue line, while vec2net are getting

more and more apart from others.

Figure 4.6. Performance of all consensus embeddings in link predic-
tion. The auc scores of consensus embeddings is shown as a function of
number of dimensions in the embeddings. Results are shown for embed-
dings methods (a) Node2vec, (b) Role2vec for the protein-protein inter-
action (PPI) (upper panel) and co-authorship networks networks (lower
panel).



27

5 Conclusions

In this work, we consider the problem of computing node embeddings for super-

posed networks derived from the multiple network versions. We define consensus em-

beddings as the node embeddings of the superposed network derived from the embed-

dings of individual versions. We consider multiple approaches to computing embed-

dings for the superposed network from the embeddings of individual versions: (i) linear

dimensionality reduction via singular value decomposition, (ii) non-linear dimension-

ality reduction via convolutional autoencoders, (iii) construction of new networks that

represent similarity of embeddings.

We use multiple ways to generate the consensus embeddings with different combi-

nations of node embedding methods and dimensionality reduction methods/vec2net.

We propose fidelity to assess the recoverability of consensus embeddings. Fidelity is

defined as the Mantel test result of the distance matrices of superposed network’s em-

beddings and the consensus embeddings. From the experimental results, node2vec per-

forms better than role2vec, and dimensionality reduction methods perform better than

vec2net.

An application of consensus embedding is link prediction. We test the performance

of link prediction of the consensus embeddings and found that most of the auc scores

of consensus embeddings are close to the auc scores of the superposed network embed-

dings.



Conclusions 28

An important future work might be exploring new applications of consensus embed-

dings. Besides link prediction, consensus embedding can be also useful in other fields

as long as multiple versions of a network are to be processed.

Another future work is to find out the potential relationships between fidelity and the

performance of consensus embedding in other applications like link prediction. This

helps us to estimate the performance of consensus embeddings on any applications

and thus make fidelity a more significant standard in assessing consensus embeddings.



Bibliography 29

References

[1] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen Ahmed, Danai Koutra, and John Boaz
Lee. From community to role-based graph embeddings. ACM Transactions on
Knowledge Discovery from Data (TKDD), 2019.

[2] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Network representation learning: A survey.
IEEE Transactions on Big Data, 6(1):3–28, 2020.

[3] J. Lin, L. Zhang, M. He, H. Zhang, G. Liu, X. Chen, and Z. Chen. Multi-path relation-
ship preserved social network embedding. IEEE Access, 7:26507–26518, 2019.

[4] J. Zhang, C. Xia, C. Zhang, L. Cui, Y. Fu, and P. S. Yu. Bl-mne: Emerging hetero-
geneous social network embedding through broad learning with aligned autoen-
coder. In 2017 IEEE International Conference on Data Mining (ICDM), pages 605–
614, 2017.

[5] Sezin Kircali Ata, Yuan Fang, Min Wu, Xiao-Li Li, and Xiaokui Xiao. Disease gene
classification with metagraph representations. Methods, 131:83 – 92, 2017. Systems
Approaches for Identifying Disease Genes and Drug Targets.

[6] Chang Su, Jie Tong, Yongjun Zhu, Peng Cui, and Fei Wang. Network embedding in
biomedical data science. Briefings in Bioinformatics, 21(1):182–197, 12 2018.

[7] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
CoRR, abs/1607.00653, 2016.

[8] Nesreen Ahmed, Ryan A. Rossi, John Boaz Lee, Xiangnan Kong, Theodore L. Willke,
Rong Zhou, and Hoda Eldardiry. Learning role-based graph embeddings. ArXiv,
abs/1802.02896, 2018.

[9] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th interna-
tional conference on world wide web, pages 1067–1077, 2015.

[10] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of so-
cial representations. CoRR, abs/1403.6652, 2014.

[11] Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil Moosav-
inasab, Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and Huan Sun.
Graph embedding on biomedical networks: methods, applications and evalua-
tions. Bioinformatics (Oxford, England), 36(4):1241—1251, February 2020.

[12] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embed-
ding of graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815, 2017.



Bibliography 30

[13] Sandro Cavallari, Vincent W. Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and
Erik Cambria. Learning community embedding with community detection and
node embedding on graphs. In Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, CIKM ’17, page 377–386, New York, NY, USA,
2017. Association for Computing Machinery.

[14] K. Shobha and S. Nickolas. Integration and rule-based pre-processing of scien-
tific publication records from multiple data sources. In Suresh Chandra Satapathy,
Vikrant Bhateja, J. R. Mohanty, and Siba K. Udgata, editors, Smart Intelligent Com-
puting and Applications, pages 647–655, Singapore, 2020. Springer Singapore.

[15] Zhuoran Ma, Jianfeng Ma, Yinbin Miao, and Ximeng Liu. Privacy-preserving and
high-accurate outsourced disease predictor on random forest. Information Sci-
ences, 496:225 – 241, 2019.

[16] P. Wijegunawardana, K. Mehrotra, and C. Mohan. Finding rising stars in heteroge-
neous social networks. In 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), pages 614–618, 2016.

[17] W. Zhang, Yanlin Chen, Shikui Tu, Feng Liu, and Qianlong Qu. Drug side effect pre-
diction through linear neighborhoods and multiple data source integration. In 2016
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages
427–434, 2016.

[18] X. Shen, Q. Dai, S. Mao, F. Chung, and K. Choi. Network together: Node classifi-
cation via cross-network deep network embedding. IEEE Transactions on Neural
Networks and Learning Systems, pages 1–14, 2020.

[19] Tyler Cowman, Mustafa Coşkun, Ananth Grama, and Mehmet Koyutürk. Integrated
querying and version control of context-specific biological networks. Database,
2020, 04 2020. baaa018.

[20] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. Scalable multiplex net-
work embedding. In IJCAI, volume 18, pages 3082–3088, 2018.

[21] Hyunghoon Cho, Bonnie Berger, and Jian Peng. Compact integration of multi-
network topology for functional analysis of genes. Cell Systems, 3(6):540 – 548.e5,
2016.

[22] Vladimir Gligorijević, Meet Barot, and Richard Bonneau. deepNF: deep network
fusion for protein function prediction. Bioinformatics, 34(22):3873–3881, 06 2018.

[23] Sudeep Tanwar, Tilak Ramani, and Sudhanshu Tyagi. Dimensionality reduction us-
ing pca and svd in big data: A comparative case study. In Zuber Patel and Shilpi
Gupta, editors, Future Internet Technologies and Trends, pages 116–125, Cham,
2018. Springer International Publishing.



Bibliography 31

[24] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality
reduction. Neurocomputing, 184:232 – 242, 2016. RoLoD: Robust Local Descriptors
for Computer Vision 2014.

[25] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked con-
volutional auto-encoders for hierarchical feature extraction. In Timo Honkela,
Włodzisław Duch, Mark Girolami, and Samuel Kaski, editors, Artificial Neural Net-
works and Machine Learning – ICANN 2011, pages 52–59, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[26] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre-
itkreutz, and Mike Tyers. BioGRID: a general repository for interaction datasets.
Nucleic Acids Research, 34(suppl_1):D535–D539, 01 2006.

[27] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder,
Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer
Bork, Lars J Jensen, and Christian von Mering. STRING v11: protein–protein as-
sociation networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613,
11 2018.

[28] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-
scale networks. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09, page 807–816, New York, NY,
USA, 2009. Association for Computing Machinery.

[29] The dblp team. dblp computer science bibliography. Monthly snapshot release of
April 2020. https://dblp.org/xml/release/dblp-2020-04-01.xml.gz.

[30] Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen,
and Xue Li. Pme: Projected metric embedding on heterogeneous networks for link
prediction. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’18, page 1177–1186, New York, NY, USA,
2018. Association for Computing Machinery.

[31] Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, and Qi Liu. Shine:
Signed heterogeneous information network embedding for sentiment link predic-
tion. In Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, WSDM ’18, page 592–600, New York, NY, USA, 2018. Association
for Computing Machinery.

[32] K. Mallick, S. Bandyopadhyay, S. Chakraborty, R. Choudhuri, and S. Bose.
Topo2vec: A novel node embedding generation based on network topology for link
prediction. IEEE Transactions on Computational Social Systems, 6(6):1306–1317,
2019.

[33] Zhitao Wang, Chengyao Chen, and Wenjie Li. Predictive network representation
learning for link prediction. In Proceedings of the 40th International ACM SIGIR



Bibliography 32

Conference on Research and Development in Information Retrieval, SIGIR ’17, page
969–972, New York, NY, USA, 2017. Association for Computing Machinery.

[34] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. Struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 385–394, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[35] Di Jin, Mark Heimann, Ryan A. Rossi, and Danai Koutra. node2bits: Compact time-
and attribute-aware node representations for user stitching. In Ulf Brefeld, Elisa
Fromont, Andreas Hotho, Arno Knobbe, Marloes Maathuis, and Céline Robardet,
editors, Machine Learning and Knowledge Discovery in Databases, pages 483–506,
Cham, 2020. Springer International Publishing.

[36] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. CoRR, abs/1709.05584, 2017.

[37] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

[38] Benedek Rozemberczki, Ryan Davies, Rik Sarkar, and Charles Sutton. Gemsec:
Graph embedding with self clustering. In Proceedings of the 2019 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining, ASONAM
’19, page 65–72, New York, NY, USA, 2019. Association for Computing Machinery.

[39] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. CoRR, abs/1706.02216, 2017.

[40] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link predic-
tion in complex networks. ACM Comput. Surv., 49(4), December 2016.

[41] H. R. de Sá and R. B. C. Prudêncio. Supervised link prediction in weighted networks.
In The 2011 International Joint Conference on Neural Networks, pages 2281–2288,
2011.

[42] Tsung-Ting Kuo, Rui Yan, Yu-Yang Huang, Perng-Hwa Kung, and Shou-De Lin. Un-
supervised link prediction using aggregative statistics on heterogeneous social net-
works. In Proceedings of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’13, page 775–783, New York, NY, USA, 2013.
Association for Computing Machinery.

[43] Nathan Mantel. The detection of disease clustering and a generalized regression
approach. Cancer Research, 27(2 Part 1):209–220, 1967.


	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Chapter 1. Introduction
	Chapter 2. Background and Related Work
	Node Embedding
	Dimensionality Reduction

	Chapter 3. Methods
	Problem Definition
	Generating Embeddings for Separate Networks
	Computing Consensus Embeddings
	Fidelity

	Chapter 4. Results and Discussions
	Experimental Setup
	Fidelity of Consensus Embeddings Computed Using SVD and Autoencoder
	Fidelity of Consensus Embeddings Computed Using vec2net
	Effect of overlap and density
	The Performance of Link prediction

	Chapter 5. Conclusions
	References

