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Abstract

SmartMon: Monitoring Smart Device Status through Network Traffic

Abstract

by

PENGFEI PENG

The rapid expansion of Internet of Things (IoT) has brought unprecedented changes

to our daily life. Among all, smart home technologies are the most widely adopted. They

leverage various devices in home environment to build a connected network, over which

automation is implemented for enhancing device interoperability. Such automations

usually execute on platforms that are provided by device vendors, such as Samgsung,

Google and Amazon. However, back-end cloud may not always be trustworthy due to

malware, unknown third-party applications and possible side-channel attacks. Specifi-

cally for the IoT platforms, we identify two security threats that may gain unauthorized

control of smart home devices: over privilege issue and spooking events. In this the-

sis, we presents SmartMon, a framework that is designed to detect such security viola-

tions by statically analyzing automation application (SmartApp) control logic and com-

paring them with dynamic execution patterns. Through evaluations, we demonstrate

that SmartMon could achieve high precision (> 95%) in detecting both violations. We

also evaluate its detection capability in more complex settings, where multiple Smar-

tApps execute simultaneously, resulting in potential dependencies. The evaluation re-

sults show that SmartMon remains high accuracy in this scenario as well.
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1 Introduction

The rapid expansion of development of Internet of Things (IoT) benefits people’s

daily lives in recent years, especially help people simplify their lives and create a more

efficient living style through smart home. Smart home, or home automation is the tech-

nique that enable user control their own home appliance (e.g dryers, oven, washer),

lighting, temperature control (heater, air conditioner), sound (music player), security

(alarm sensor, smoke detector) systems. Nowadays smart home has been a indispens-

able and considerable part of the world economy, According to the report1, the Smart

home market is expected to grow from USD 76.6 billion in 2018 to USD 151.4 billion by

2024. A survey from statista2 claims that the revenue in smart home of United States

has reached USD 27649 millions in 2020, and Revenue is expected to show an annual

growth rate from 2020 to 2024) of 14.3 percents, resulting in a market volume of USD

47, 119 millions by 2024, and Household penetration is 32.4 percents in 2020 and is ex-

pected to hit 52.4 percents by 2024. As the concept of smart home spreads, world-class

commercials step in and develop their smart home platforms, such as Samsung’s Smart-

Things3, Apple’s HomeKit4, Wink5, Vera Control’s Vera36, and Google Android Things7.
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These mentioned platforms allow users control their home appliance through a con-

nected gateway (normally a hub) by their mobile phone or cloud server. Devices are al-

lowed to connect to hub through different communication tools (wifi, zigbee) and users

are even allow to write their own recipes to control and monitor their devices. Report

from securitytoday8 presents that the number of active IoT devices has reached 26.66

billion till 2019, and by 2025, more than 75 IoT devices billion will be connected to the

web. With such a great amount of connected device, the number of installed applica-

tions or recipes which are used for controlling devices is also considerable. In early

20159, it is reported that nearly 20 million recipes are being executed daily on IFTTT,

which is one of the largest third party cloud recipe provider, and approximately 600 mil-

lion each month. Consider the significance of smart home in the market of economy,

and the huge quantity of the connected device and installed apps, smart home security

would be a important research topic for us.

As the popularity of the Iot platform spreads and the quantity of installed Iot Smar-

tApps raises, the safety of IoT smart home system has become a widely concerned and

important issue. The first obvious threat is malicious SmartApps resulting from logic

flaw or malicious code. Some researchers have already revealed security and privacy is-

sues on different part of IoT smar thome system. Potential integrity and secrecy problem

of Smart application is reported in recent research10, 50 percents of 19323 IFTTT recipes

are considered as unsafe recipes, while other researchers11 mention that 30 percents of

279828 applets, plus more than 400 services have privacy leak threat. Some of them

have the risk of being exploited by attackers through denial-of-service attacks to leak

private information, and other recipes with logic conflict cause unpredictable threat to

users. In addition, the design flaw of platform or cloud interfaces could be exploited
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and attacked by attackers. Another paper12 claims the web-based attack possibility to-

wards smart home scenario, the author presents two different ways to circumvent the

same-origin policy attacks: one is making use of certain flaws of interfaces of platform

by applying malicious script, the other is using DNS rebinding attacks to exploit server.

Both attacks reveal the safety issues between platform cloud and user, and the possibil-

ity of implementing such attacks. Not only the flaw of SmartApps or cloud interfaces can

be exploited by attackers, device communication tool could be another break point for

attackers. Researchers from13 has found specific signal transferring pattern of a certain

device using Zigbee as communication tool and imitate the pattern through a Zigbee

signal generator from same provider to control the device, and this reveals the possi-

bility of compromising smart home through device communication tools. Apart from

these, devices and SmartApps, which work on different IoT platform may cause con-

flicts and then they are not able to fulfill there functionality or even becoming safety

threat to users. Such threats are named as cross-app interfaces threat in the paper14,

which means that unexpected automation, security and privacy issues may be caused

by different automation from different apps and platforms.

With considerable researchers concerns about the safety issues towards IoT smart

home system, recent research has provided practical solutions to improve security is-

sues in IoT environment. In our design, we consider improving app-level security is-

sues, and other researchers also provide various solutions towards this problem. Profes-

sor Ding presents15 a framework called IotMon, which discovers any possible physical

interactions and generates all potential interaction chains from applications after us-

ing NLP to analyze application source code and description, monitors the IoT environ-

ment using log provided by IoT cloud, and finds the misbehavior according to the result
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of pairing the interaction chains. But using log file restrict the framework with a high

overhead, and the accuracy of interaction chains are highly relied on the descriptions

due to NLP features. Researchers from University of Illinois at Urbana-Champaign16

design ProvThings, a platform-centralized approach to centralized auditing in the In-

ternet of Things. ProvThings collects data provenance through an API and code instru-

mentation to SmartApp, transferring such data to backend server and apply real-time

device behavior authentication with 5 percents overheads, which is a obvious improve-

ment compared to IotMon. However the load of code instrumentation to every single

app is heavy and not elegant, and the result is still only depended on the pair result of

interaction chain generated by static analysis and collected data from platform API. An-

other research17 claims HoMonit, to monitor SmartApps from encrypted wireless traffic.

HoMonit gains device expected behavior through analyzing application source code and

UI interface, which is similar to previous research, and it obtain pair data through Zig-

bee sniffer, which is able to sniff all the device using Zigbee as communication tools in

a 10 feet range. The design reaches a high accuracy of discovering malicious behaviors,

but such system can only handle Zigbee devices in Sumsung SmartThings environment

and it has physical restrictions with the authentication range.

Problem Scope: Our goal is to validate whether the status of smart device is valid,

whether the event happened as the app functionality describes, and further apply ma-

chine learning model to predict device and device status based on collected data, which

could help the design gain a better performance with the decision make validation sys-

tem together. Since this paper concentrates on clarifying and handling application-level
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issues on smart home environment, we assume other components of our model are un-

compromising. Thus other type of attack such as attacks towards SmartThings hard-

ware, for example, the DNS rebinding attacks on the browser level mentioned in this pa-

per18, from which attackers apply a large scale of DNS rebind attack to exploit browser

and plug-ins. Another case not include is mentioned in this paper13, attackers apply de-

vice based attack sending request and read the leaked data from a distance of about 100

meters using only cheap available equipment. Web based attack towards smart cloud or

specific platform is also not include in our design.

Contributions:

Smar t Mon: We develop SmartMon, a validation system for validating IoT devices

status and detecting misbehavior. We ensure our system is both effective and minimal

designed, less invasive compared to prior research. And the validation and prediction of

our design is relied on multiple source instead of single source, which provides a more

reliable result.

Novel Techni que: We apply machine-learning based prediction module, build LSTM

(long short time memory ) RNN (recurrent neural network) to solve a multi label status

real-time prediction problem, integrate it to our system and gain a solid result.
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2 Related Works

In this Section, we display the main IoT security issues from different aspects, pos-

sible solutions towards them. Internet of things has brought considerable benefit and

convenience to human’s lives and works from every aspect. However, the security threat

from different part of IoT architecture become gradually larger due to the wide deploy-

ment of IoT devices, massive amount of IoT applications, incomplete defense strategy

of IoT platforms, and the unconsciousness of users.

2.1 IoT System Architecture

The IoT architecture is primarily composed by 4 layers as shown in figure: Application

layer, Support layer, Network layer and Perceptual Layer. They are the most common

and primary layers among various IoT systems.

Application layer provides specific IoT service to IoT users. Normally users are per-

mitted to access those services through certain application layer interface after authen-

tication. For example, users can access weather report, stock notification after installed

the recipes on IFTTT platform and get authorization. People can manage their smart

home devices such as light and heater through installing SmartApp on Sumsung Smart-

Things platform.
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Figure 2.1. IoT Architecture

Support layer consists of those platforms that enable the functionality of applica-

tions. They allocate memory storage and computing ability to different resource re-

stricted devices and make applications work properly and effectively. The policy and

provided content vary between different platforms. For instance, Sumsung SmartThings

allow user writing code to build application using groovy and provide numerous helpful

API which cover most of the functions needed, while IFTTT provides the selections of

third party services which allow users design their own recipes.

Perceptual layer is composed by devices such as wireless sensors and detectors which

obtain real world data like temperature, weather, objects’ movement. And such devices

sense and transfer obtained data via their specific communication tools. For example,

Zigbee and Zwave are supported for SmartThings sensors and bluetooth are enabled for

android things. Due to the physical restriction of those sensors, they are prone to be the

targets of cyber-attacks.
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Network layer represents the network where obtained data, user commands, cloud

notifications are transferred. It contains mobile network which allow communication

between mobile phone and cloud, and for some city range IoT applications, satellite

network are needed. However, the network layer of IoT system still face the core network

security issues, such as Dos attacks, eavesdropping attack, man in the middle attack.

traffic19.

2.2 Security Issues on Access Control

The architecture of IoT environment claim similar layers compared to traditional web

or mobile network and application environment, which also determines that IoT sys-

tem still face various types of attack just like reported network security issues. Since

most of IoT platforms are performing the function of access control, which help users

monitor smart devices, it become a major attack scenario for attackers. As the IoT archi-

tecture describe, the command go through network layer, application layer and then fi-

nally perceptual layer. At network layer, attackers can apply Dos attacks, eavesdropping

attack, man in the middle attack to compromise the process of access control. Attack-

ers can temporarily hijack more than 100000 IP address to construct the bot-network,

circumvent the firewall, attack the cloud browser and disable the service20 of all access

control SmartThings. The adversary can also change or recreate the routing information

and distribute it in the network to create routing loops, advertising false routes, sending

error messages or dropping network traffic19 to cause a long latency when an access

control command is sending. Attackers could also compromise access control in appli-

cation layer. For example, the adversary can send malicious script to users via internet,

the malware is going to compromise the application and run the command they acquire
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such as open the door or close the security system after user open and run the script21.

Apart from above attacks, attacker can also apply malware to steal users’ data or disable

service22 in application layer. For example, Trojan horses, is one of the most dangerous

malware used by adversaries to exploit a system. Besides application layer and network

layer, attacker is capable of compromising access control in the perceptual layer, which

is the destination of access control process. If attack have physical access to the actual

devices, they can physically damage the device. Or they could apply side channel attack

using information of power consumption and electromagnetic radiation from senor to

attack encryption mechanisms to attack encryption mechanisms23. And attackers are

possible to manipulate the device and sending fake command or device status if they

know the mechanisms of receiving and sending data13.

Possible Solutions The permission based access control is one of the most com-

mon and effective solution for IoT security problems such as misbehavior and over priv-

ilege and has received a lot of attention from research community16,17,24,25. Permission-

based security models provide controlled access to various system resources. The ex-

pressiveness of the permission set plays an important role in providing the right level

of granularity in access control26. An example of a permission-based security model is

Google’s Android OS for mobile devices. In Android platform, users must declare their

permissions as a list in the manifest of the application to let the application know the ex-

act access. Such strategy restrict access to dangerous resources and advanced functions

and user can decide whether or not apply such permission based model on their appli-

cation when install a new application27. The most common permission based model

are also widely applied on IoT environment for restrict the available resources or func-

tions. ContexIoT provide contextual integrity to the IoT platforms to fulfill a permission
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based access control form both control and data flow levels25. ContexIoT collect data

from application through code instrumenting and send those data to backend match

module. The match module use the permission list which is generated from analyzing

application source code to evaluate the risk of events and then apply control demand to

actual devices. Compared to previous systems for the smartphone platforms, this sys-

tem is more fine-grained since it’s defined at both control and data flow levels, but it still

face the problem of code instrumentation on every application and challenge on handle

complicated application static analysis. we would fix such problem in our design and it

would be discussed in system design part.

2.3 Security Issues on Authentication Risks

Due to the complexity of IoT system and various demands and requirement for users,

IoT system is usually required to combine content and service provider, control of actual

SmartDevices, cloud platform with strong computing capability, and such combination

demands authentications on each transaction, which could be obvious attack point for

adversary. Most of IoT platform apply Oauth authentication mechanism to ensure the

safety of user login and require source. In a specific SmartApp, once users are authenti-

cated, they are given a very powerful Oauth token which enable them use all the capa-

bilities of all the SmartDevices installed in the application. Such powerful token is too

centralize that nearly include permission of all kind of resource in the application, and

is obvious to draw attackers attention and there’s numerous reported attack about it.

Yang et al.28 showed that 41 percents of top 600 Android mobile applications, which use

Oauth, are susceptible to remote hijacking, and the recent Google Docs Oauth-based

phishing attack compromised one million users. And once attackers compromise the
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platform, they will be able to leak Oauth tokens for all users. Possible Solutions To

solve the security issues like malware and hijack attack, and ameliorate the authenti-

cation problem for IoT platform, some researchers focus on the Oauth authentication

mode. Most of IoT platforms are centralized system, that enable users to create automa-

tion rules by combining together online services and physical resources using Oauth

tokens. Once the token is compromised by attackers, attackers are able to complete any

kind of misuse of SmartDeviecs such as manipulate devices and leak data. To ameliorate

this centralized system, a Decentralized Action Integrity platform (DTAP) is presented29.

Such DTAP splits currently monolithic platform designs into an untrusted cloud service,

and a set of user clients (each user only trusts their client). DTAP introduces the con-

cept of Transfer Tokens (X-Tokens) to practically use fine-grained rule-specific tokens

without increasing the number of Oauth permission prompts compared to current plat-

forms. In this way, each token performs their own function and decentralize the original

IoT authentication mechanism.

2.4 Machine Learning Based Classification and prediction

As the development of machine learning technique, plenty of research community has

applied it on IoT security problems and it does have good performance on prediction

and classification problems. Recently IotSpot presents a new Machine Learning based

unsupervised approach that can accurately identify IoT devices using only very limited

network traffic data30. IotSpot constructs its dataset using the network traffic data and

build random forest model to identify SmartDevice types. The network traffic data is

as few as 40 minutes long. And Iotspot select feature such as packets number, packets
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bytes from flow which is network traffic short period of time. The model is able to rec-

ognize around 15 different SmartDevices under its testbed with around ninety percent

accuracy. Other more complex model such as Conventional Neural Networks (CNN) is

also applied on prediction of IoT Devices. For instance, recent work31, deploy Conven-

tional Neural Networks (CNN) and Recurrent Neural Network to predict the unlabeled

devices. However, training a model like CNN and RNN demands huge amount of data,

which is a significant restriction for those models and it’s difficult to find a balance be-

tween training the model with a smaller dataset or ensuring the accuracy with a larger

dataset.
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3 Background

In this section we will go over necessary background about IoT platform and Sum-

sung SmartThings, details of specific smart applications inside SmartThings cloud and

third party services supported by SmartThings.

3.1 IoT Platforms

As the trend of IoT spread world widely, numerous new IoT cloud platform are created to

satisfy the demands of completing computations and running huge amount of devices

and applications. As reported recently, there are more than 450 available IoT platforms

in the marketplace32. Typically, the main functions of IoT platform is to fulfill the inte-

gration of devices from different manufacturers, provide tools or API making user design

their own application, and combine more third party services. Many of them, such as

SmartThings and AWS IoT16, integrate a comprehensive set of devices and enable cus-

tom IoT applications.

As IoT is a sprawling and diverse ecosystem, in this work we focus on home automa-

tion platforms, which have the largest market share of IoT consumer products. Smart

home platforms automatically manage the home environments and enable the users

to remotely monitor and control their homes. Generally, in a smart home, a hub is a
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centralized gateway to connect all the devices; a cloud synchronizes devices states and

provide interfaces for remote monitoring and control; an app is a program that man-

ages devices to create home automation. At present, a variety of platforms compete

within the smart home landscape such as Sumsung SmartThings, Amazon echo, An-

droidThings.

There are two typical IoT platform architectures: cloud-centralized architectures in

which apps execute on a cloud backend, and hub-centralized architectures where apps

run locally within the home. Currently, the cloud-centralized architecture is the most

popular architecture since it utilize the powerful computing ability of cloud to boost

the efficiency of the system and its more decentralized architecture compared to hub-

centralized architecture. Across all platforms, a central point of mediation exists (i.e.,

hub or cloud) for control of connected devices.

Figure 3.1. An Example of Trigger Action SmartApp

Finally, while not all products feature an app market, the logic of both appified and

unappified platforms is largely specified in terms of a trigger-action programming par-

adigm. As the figure shows, trigger of an application represents an specific event that
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cause the execution of action, usually trigger is the status of sensors and the value of

mode, for example motion sensor detects object movement. And once the event of trig-

ger is happening, action event would be executed, action events are usually actuation of

devices such as turn on the light. Such trigger action logic pattern is the most popular

mechanism among IoT application and widely used in most of IoT platforms including

SmartThings, IFTTT, Google Home.

3.2 Sumsung SmartThings Platform

Among numerous IoT platforms, Sumsung SmartThings is one of the biggest platform

and with the most users and integrating third party services. SmartThings are composed

by three major components: the SmartThings cloud backend, SmartThings mobile app

and SmartThings hub. The IoT apps are called SmartApps in the SmartThings platform

and they are built by groovy in SmartThings IDE. Those SmartApps allow users custom

their own application to manage and monitor their home devices according to their

needs. Due to the restricted computing ability of IoT devices, IoT app cannot run di-

rectly on devices. Instead, SmartApps are running on the SmartThing cloud platform.

The iot smart app is executed in a sandbox environment which guarantees the safety

of the execution of SmartApp. For safety issues, some of the functions of the object-

oriented language is disabled under under the groovy sandbox environment. For exam-

ple, users cannot initialize a new class or library, but they are allowed to write their own

function, define their own variables. The SmartApp also provide some API to respond

to HTTP request from from external application, which is protected by Oauth-based
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authentication. SmartApps support dynamic method invocation (using the GString fea-

ture), which is similar to other programming languages such as Java, a method can be

invoked by providing its name as a string parameter.

Figure 3.2. SmartThings Architecture

Most of Sumsung SmartThings devices are connected directly to SmartThings hub

through z-wave and Zigbee. Communication protocol such as z-wave and Zigbee is

extremely low cost and require less computation ability, which is perfectly fit IoT de-

vices considered their small physical size and poor computation ability. For those hub

connected devices, when specific event is triggered, hub would perform the function

of bridge. For example, if motion sensor detect object’s movement, the collected data

would be sent to hub first, and then transferred to cloud platform through Zwave and

Zigbee. However, for some third party devices such as Yale smart lock, they are not

connected to hub through Zigbee and Zwave, instead they are connected through other

communication tools such as wifi. A SmartApp and a SmartDevice communicate in two

ways, SmartApp can either control the SmartDevice via provide method such as turn

on the light, or trigger the SmartDevice through subscribed method when certain sub-

scribed event is happening. Besides these, users can also control SmartDevice directly
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such as open the door through SmartApp. However, the communication and control

bewteen SmartApp and SmartDevice are restricted by limited capabilities. SmartThings

provides a capability model for monitoring SmartDevice. This model is a coarse-grained

model that defines the available functions of various SmartDevice and a set of com-

mands for controlling them. For example, the capability switch.on and switch.off make

SmartDevice outlet could be turned on and off.

All the SmartDevice in the Sumsung Smartthings platform are fulfilled their func-

tions by SmartApps. The SmartApps are consisted of four parts: Definition, Preference,

Predefined Callbacks(installed method, update method), and Event Handlers. Defini-

tion determines how the app is described. Preference specifies what kinds of devices

and other information is needed in order for the application to run. Predefined Call-

backs are functions called during the installation, updating and deletion of applications.

Event handlers takes single argument subscription and handle the action logic, and the

action could be command of controlling devices, or third platform service. The details

of how the application runs and operate will be discussed in following Sumgsung Smart-

Things SmartApp part.

3.3 Sumsung Smartthings SmartApp

In Sumsung SmartThings Platform, the events of SmartDevices are defined by Smar-

tApps. Inside the SmartApps, specific trigger and actions are handled by capability per-

mission list, which is a fine-grained restricted mechanism designed by SmartThings. As

the figure shows, capability permission list are shaped by attributes and commands.

Commands are methods for SmartApps to control the SmartDevices while attributes

defines the characteristics of the SmartDevices. One SmartDevice may have more than
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Figure 3.3. Relationship between SmartDevices and Capabilities

one capabilities, for example, SmartThings motion sensor has 6 capabilities, among

those capabilities motion is used for detect the object movement while attribute power

is used for reporting the device’s power consumption. Under the capability permission

list, SmartDevices are fulfilled restricted actions, which also secure the safety of Smart-

Devices and smart home environment.

As the example of Sumsung SmartThings SmartApp is shown on Listing 3.1, this is

a SmartApp called Brighthen My Path, which performs the function of automatically

open the light when owners coming home. specifically in one Event-Handlers Smar-

tApp, SmartApp is composed of Definition, Preference, Predefined Callbacks, and Event

Handlers. Predefined Callbacks usually include installed method, update method.

1 definition(
2 name: "Brighten My Path",
3 namespace: "SmartThings",
4 author: "SmartThings",
5 description: "Turn your lights on when motion is detected.",
6 category: "Convenience",
7 iconUrl: "https ://s3.amazonaws.com/smartapp -icons
8 iconX2Url: "https ://s3.amazonaws.com/smartapp -icons
9 )

10

11 preferences {
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12 section ("When there ’s movement ...") {
13 input "motion1", "capability.motionSensor", title: "Where?",

multiple: true
14 }
15 section ("Turn on a light ...") {
16 input "switch1", "capability.switch", multiple: true
17 }
18 }
19

20 def installed ()
21 {
22 subscribe(motion1 , "motion.active", motionActiveHandler)
23 }
24

25 def updated ()
26 {
27 unsubscribe ()
28 subscribe(motion1 , "motion.active", motionActiveHandler)
29 }
30

31 def motionActiveHandler(evt) {
32 switch1.on()
33 }

Listing 3.1. An Example of Sumsung SmartThings SmartApp

Definition determines how the app is described in mobile or cloud UI, and usually

contains basic information of the application such as application name, author, names-

pace, description and application category. Preference specifies what kinds of devices

and other information is needed in order for the application to run. It is composed of

sections of input, which would contains devices’ name and their capabilities, in this

case, it announce used SmartDevices motion sensor and light, and their capability mo-

tionSensor and switch. Predefined Callbacks are functions called during the installation,

updating and deletion of applications. Both installed and updated method are com-

monly found in all smartapps. Installed methods are called when a SmartApp is first

installed while updated methods are called when the preferences of the app is updated.

For SmartApp Brighten My Path, the eventhandler motionActiveHandler is subscribed
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while installation phase and update phase. Event handlers takes single argument sub-

scription and handle the action logic, and the action could be command of controlling

devices, sending http request or third platform service. Once the event motion.active is

happening, subscribe method would trigger motionActiveHandler to execute command

switch1.on to turn on the light.

3.4 Sumsung Smartthings Third Party Service

The available SmartDevices and services provided by a single IoT platform is considered

restricted and may not satisfy demands for users daily lives, and Sumsung SmartThings

also face the same problem. To copy with such demands, Sumsung SmartThings claims

“Works With SmartThings” (WWST) program, which provides available interfaces for

the integration third party services and support them work simultaneously with ex-

isting SmartThings IoT devices. Among those integrated third party services available

in SmartThings, IFTTT and Amazon are two of the most popular third party service

providers.

Figure 3.4. An Example of Trigger Action on IFTTT

IFTTT is a cloud-centralized platform which allow users create their own recipes to

connect web services. The main content provided by IFTTT is online web services such

as weather report and email notification. Recipes are shaped by trigger and action which

is similar to SmartThings, and users are able to set their trigger via provided field. Users
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are not allowed to define web service functions in a recipe due to the coarse-refined

trigger action field mechanism, which is similar to SmartThings capability permission

list mechanism. IFTTT can be directly linked to SmartThings through provided action

field by IFTTT or available API by SmartThings, and it largely increases the variety of

the SmartThings platform architecture. Differently compared to IFTTT, Amazon smart

home are mainly provided services about actual devices. Amazon have one of the largest

IoT device manufacture industry and own nearly all kind of SmartDevices from various

sensors to functional devices. The existence of Amazon AWS cloud platform also enable

Amazon smart home running complex application with machine learning model. The

integration of Amazon Smart Devices allow SmartThings gain a more completed Smart-

Devices options and possibility for building complex smart application.
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4 System Design

In this section, we present the details of our system design and implementation. All

of the devices and sensors are connected to sumsung smartthings hub and running on

the smartthings cloud. The monitoring application is running on the smartthings cloud,

collecting and sending device data to device raspberry pi, while in the meantime, event

validation application are running on device raspberry pi, processing data and analyzing

the security issues. We have another raspberry pi as a programmable router, collecting

network traffic of smartthings hub, which would be used as the source of machine learn-

ing dataset. And the trained model would provide prediction of the device status, which

would help validation application gain a better performance.

To serve as a effective and minimal framework for the validation and prediction of

smart devices’ behavior in smart home environment, a set of challenges should be con-

cerned, including: 1.How to extract DFA(Control Logic) automatically and properly from

various smartapps? 2.How to capture smart devices’ wireless traffic in iot environment

and how to process validation when data is collected? 3.How to obtain trainning data

and select appropriate attributes for construction of dataset for trainning? 4.How to

choose appropriate and effective machine learning algorithm for prediction? 5.How to

evaluate the prediction and validation accuracy in our testbed?
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4.1 Threat Model

In this paper, we consider application level IoT attacks on IoT platform. These application-

level attacks comes from either malware or vulnerable apps. To gain control’s access

without permission, attackers can apply malicious logic during installation of the appli-

cation. And attackers can also exploited the design flaw to trigger unexpected device. In

our paper, two specific attacks towards above vulnerabilities is mainly considered: (1)

Over privileged misbehavior: attackers embedded malicious logic into apps to obtain

the control of smart devices which is not mentioned in the description of SmartApp.

For example, attackers can control the status of smart light in Unlock When Presence

through inserting malicious code into handler method and then pass the wrong com-

mand through the unpermitted device capabilities, which may cause security issues like

data leakage. (2) Event spoofing misbehavior: Attackers can lauch fake event to trigger

smart device in SmartApps to impair the security of smart home. For example33, at-

tacker can apply a fake alarm attack on specific smart apps which include device con-

trol commands such us open heater, open the door, which may cause physical security

issues like fire and robbery.

4.2 System Overview

We present a IoT Event detector to detect misbehavior and malware under Sumsung

SmartThings environment and tackle over privilege and fake event situation. The IoT

Event detector is consist of three components: DFA building module, Traffic Collection

module, Misbehavior Detection Module. Each module performs their functions sepa-

rately and works well as a united system with high accuracy and efficiency.
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Figure 4.1. System Design FlowChart

The DFA building module performs the functions of analyzing SmartApps source

code using static analysis, extract DFA(Control logic) from SmartAppps, and generate

the permission white list for further match module. The Traffic Collection module is in

charge of collecting SmartDevice data real-timely. Traffic Collection module is a Smar-

tApp written in groovy and it enables all the installed SmartDevices, monitor their status

and send their status via provided API when a specific event is happening. Misbehavior

Detection Module is running on gateway(Raspberry pi) and it receive SmartDevices data

from our Traffic Collection module and cloud server simultaneously, validate them with

permission list and generate the validation result.
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4.3 DFA Building Module

To validate when the device is triggered, and whether the device’s status is correct, the

behavior of related SmartApp is required to be learned at first. Researchers apply static

analysis to extract key components they need for further processing. There are several

practical method to process static analysis from different source. For example, in this

paper25, researcher extracts control logic from application code logic. While other re-

searchers10 extract and classify trigger and action using machine learning model NLP

from IFTTT recipes’ dataset, in which information such as device and capabilities are

represented in a tuple. Also, researchers15can generate DFA from open source appli-

cations code and application description using NLP and feature extraction tools. In

our design, those key components such as trigger, action, device, SmartApp name are

extracted from open source SmartApps as a tuple using Abstract Syntax Tree via static

analysis. And we write our groovy code to process those tuples, build DFA logic for all

the SmartApps in our testbed automatically. Compared to projects mentioned above,

our code consider more possible situations even when the application logic is complex,

we could still obtain the needed DFA from them.

The analysis source of our static analysis is application source code from Smart-

Things open source library. According to the devices we have and capabilities of those

devices, as the figure shows, we select 20 applications including all the possible trigger

actions our testbed could handle among total more than 100 SmartApps in the library.

SmartThings applications are written by groovy, a Java-syntax-compatible object-

oriented programming language. Generally speaking, there are three different kinds of

SmartApps: Event-Handlers, Solution Modules, and Service Managers. In our design,

we mainly focus on testing Event-Handlers application since they are the most common
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apps developed by SmartThings community directly related to smart devices and pro-

vide various recipes for users. Specifically in one Event-Handlers SmartApp, SmartApp

takes the form of a single Groovy script, which is composed of Definition, Preference,

Predefined Callbacks (installed method, update method), and Event Handlers. And we

mention the features of SmartApp in Background section. Event handlers takes single

argument subscription and handle the action logic, and the action could be command

of controlling devices, sending http request or third platform service.

As we mentioned in the previous part 4.1.1 Analysis Source, a typical SmartApp is

constructed by several components and each component have its unique function and

information. Our goal of the static analysis is finding the trigger action and specific in-

formation related to trigger action out of the application source code logic.

To achieve such goal, we must know where we could obtain information about trig-

ger and action and what kind of information form is expected. In SmartThings platform,

each device has its own capabilities, which actually means the functionality of this de-

vice. For example, motion sensor has there capabilities: motion, temperature. Capa-

bility motion allow the device detect the movement status while capability temperature

allow the device detect environment temperature. To enable the functionality of a device

in SmartApp, user should first announce device name and capability in the preference

section, and then claim the event handler once the device event is triggered in the sub-

scribe method in the Predefined Callbacks(installed method, update method) section.

Subscribe method takes three variables: device name, device capability, event handler

name. Thus, we are able to extract trigger information from subscribe method and the

related event handler where usually action lies. Knowing the exact position to extract

SmartApp logic, we still need to formalize the logic in a standard and understandable
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Figure 4.2. An Example of SmartApp DFA

way. Since logic inside SmartApp is usually not complex and with finite devices and de-

vices status, We utilize the Deterministic Finite Automaton (DFA) to represent the logic

of SmartApps. As the figure shows, one trigger action usually has three state, S0, S1, and

S2. S0 is the initial state, S1 is the transferred state when trigger event happened, S2

is the final state after action event is executed by event handler. In the case of Smar-

tApp Brighten My Path mentioned in Section 2 Backeground, DFA is in S0 when nothing

happens, transferred to S1 when motion is active, and reach final state S2 when light is

turned on. Compared to recent works, our design are applied to handle some complex

logic which may contains more than one DFA and chain DFA. In chain DFA, the final

state of one DFA could be the initial state of the other, which make number of states

increase. specifically, we formalize the SmartApp DFA as a 4-tuple, (D, S, T, I) where D

represents the set of smart devices in SmartApp, S represents the possible states, T rep-

resents transition function from one state to another, and I represents extra information

about one state such as delay information.

After analyzing the structure of SmartApp, knowing where we could extract informa-

tion about trigger and action, now we should find how to deal with it. In our design,



System Design 37

Abstract Syntax tree tool is applied to extract the information about trigger and action.

an Abstract Syntax Tree (AST), is a tree representation of the abstract syntactic structure

of source code written in a programming language. Each node of the tree denotes a con-

struct occurring in the source code15. The details of the implementation and structure of

Ast may vary towards different language. Since SmartApp are written by groovy, the Ast is

a m-ary tree which means each node may have more than two children nodes and exact

one parent node, each node could be a section, a method, a function or a a line of execu-

tion code. And the information of the app become more specific as the tree is traversed

from top to bottom. In a specific SmartApp, from top to bottom, the first layer composed

of two nodes: Blockstatement, Method. And the Blockstatement has two children: Defi-

nition, Preference, which are the main components of SmartApp mentioned in previous

section. The children of Method are methond in Predefined Callbacks(installed method,

update method), and method in event handlers. As shown in figure, we implement the

dfa extractor in groovy. For each SmartApp in our dataset, we first initialize a Compila-

tionUnit object and then get the Absrtact Syntax Tree first through method getAST. The

AST would be traversed in preorder from top to bottom layer by layer. Next we apply get-

Modules method on ast object, which returns nodes Blockstatement and Method. Then

we apply getStatement method on Blockstatement and Method to obtain nodes of Def-

inition, Preference, Predifined Callbacks and Event Handlers. After that we could visit

those nodes separately in preorder using visit method. During the process of travers-

ing the AST, trigger information we extract from subscribe method in Preference would

be put into a trigger dictionary using event handler’s name as the key, and action infor-

mation we extract from event handlers would be put in another dictionary also using
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event handler’s name as the key. After traversal, we could generate trigger action chain

through pairing these two dictionaries using the event handler’s name key.

In addition, while static analysis in other mentioned papers15 only consider the trig-

ger action under the simplest logic, our design is able to handle complicated trigger

action logic. Since we use event handlers’ name as the key to pair trigger dictionary and

action dictionary, we are able to extract more than one trigger action chain in a single

SmartApp. For example, in the SmartApp Flood Alert, there are two subscribe methods:

one is handled by waterWetHandler and the other is handled by Swithch event handler.

In this situation, we can extract two trigger action chain through different event handler

key. Sometimes such multiple trigger actions in one SmartApp happens with only one

subscribe method. That’s because users can add if else logic in the event handlers. For

example, in the SmartApp Let There Be Light, there is only one subscribe method and

the capability is motion. But in event handler, user apply if statement to trigger when

smart light when motion is active and turn off light when motion is inactive. To solve this

problem, we can obtain the information of if statement while traversing the AST through

applying method getBooleanExpression().getText() on Ast node. And then trigger action

chain can be generated according to different if conditions.

4.4 Traffic Collection Module

After analyzing the logic of SmartApps source code and knowing the trigger action chain

of them, now we focus on acquiring and transferring device data simultaniously as the

device status changes. In this part, the monitor application is running on the Smart-

Things cloud and to enable the functionality of this application, the device type configu-

ration of raspberry pi should be constructed first. In the sumsung SmartThing platform,
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each device has own device type handler which define its capabilities and functionali-

ties. we discover that SmartThings cloud provide API to send command to specific IP

address through get or put http request in other device type handlers. However, rasp-

berry pi is not officially supported by SmartThings cloud, the device type handler of

raspberry pi is not available. Then we write our own raspberry pi device type handlers

in 252 Locs in groovy according to the basic logic of device type handler and fulfill the

needed sending http request function. In this device type handlers, we enable capability

Switch Level, Color Control, Color Temperature, Switch, Refresh for raspberry pi. Among

those capabilities Switch Level and Switch are capabilities for controlling the open and

close status, Color Temperature is the capability we apply for sending device data since

it would send a http put request which contains all the information define in the mon-

itor application to raspberry pi through SetColor method. Inside the SetColor method,

we initialize a HubAction object, which is a object handling various data and command

transferring of SmartThings hub, defines the sending method Put, Path and data body.

Through this HubAction object, we are able to send data from SmartThings platform to

raspberry pi.

After implementing the device type handler of raspberry pi, it comes to the imple-

mentation of monitor application. The functionality of this SmartApp is monitoring all

the device status in our testbed and sending device data to raspberry pi when there’s a

device status change. The construction of monitor application is same as other groovy

SmartApp which has been clarified in 4.1.1. To fulfill the function, all the capabilities

that devices of our testbed owns are required to be covered in the monitor application at

first. In our monitor application, we include all devices capabilities in Preference section

and it allow us acquire all the device during installation phase of monitor application.
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Figure 4.3. Flow Chart of Data collector

Triggering action while the device status change requires the subscribe function in in-

stall method and update method, which has been mentioned in 4.1.1. We define a sub-

scribeToEvents() method in the installed method and updated method in Predefined

method section. The subscribeToEvents() contains multiple subscribe function that

cover all the possible device status variance. And all the subscribe functions in subscri-

beToEvents method are handler by one event handler for simplicity and efficiency of the

design. Therefore, once one of the installed device status is changing, it would trigger the

event handler. Event handler takes object event, which is trigger, the change of device

status. For example, if the switch is on, then event handler would take this event as vari-

able. The details of Event handler is shown as the figure. Inside the event handler, there

are two for loops, which secure that we could traverse all events inside all the install de-

vices. The device event is obtained by API device.event, and the information of the event

is obtained by event.time, event.source, event.descriptionText. The event.time records

the time that the event is put into the SmartThings cloud. Event.source claims the source
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of this event while event.descriptionText claims the description of the event. For ex-

ample, if this event is triggered by user or sensor, the source would be device, and the

event.description would be the switch.on is triggered by Device. If this switch.on is trig-

gered by SmartApp, the source would be the app command, and the event.description

would be the switch.on is triggered by AppName. Noted that there’s a subtle delay when

event history is updated compared to the actual time when event happens. To avoid

errors of obtaining device status data, instead of getting the most recent event of the

device, we compare the event.time and the time of 10 most recent event in event his-

tory, and get the one with the minimal difference. After considerable test, we find the

most appropriate time delay value for our testbed is 600ms. After we get the eventtime,

evensource and eventtext, we send them to validation match module.

4.5 Misbehavior Detection Module

As mentioned before, nowadays validation solution towards IoT environment are most

provenance or context based method, which concludes collecting data and process-

ing data, and there are several practical solutions to reach such goal. In this paper25,

researcher apply code instrumentation on every application to get update of devices’

data and then send to backend server for processing and validating. In another re-

search15, researcher exploit provided SmartThings API to send related devices’ log data

to their gateway and run several validation apps on the gateway for further processing.

Among the solutions mentioned above, plenty of adjustment are required on every sin-

gle app for accessing device data and sending them to server, which is laborious and

time-consuming. In our design, since we apply a raspberry pi as a gateway for data pro-

cessing and connect it directly to SmartThings cloud as a device, we are able to send
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Algorithm 1 Detection Module Pseudo Code

Input:
1: D , tuple of device status D(Devi ce,St atus, AppN ame,T i me...)
2: Sc, set of devices status collected by validate module from SmartThings cloud
3: Sa, set of devices status received from Monitor App
4: W White list of DFA, contains all the legal behaviors of SmartApps extracted from

DFA generator
Output:

5: Rs,set of status validation result
6: Rt ,set of trigger action validation result
7: Initialize V (s) = 0, for all s ∈S +
8: Thread 1
9: for each Di ∈ Sa do

10: for each D j ∈ Sc do
11: if Di == Dj then
12: Rs ← val i d
13: else
14: Rs ← f akeevent
15: if APP −Command t ag i n Di then
16: Rs ← an event spoo f i ng happened

Thread 2
17: sort(Sa) according to time info inside D
18: for each i ∈ Sa do
19: for each j ∈ Sa do
20: if TimeDif(Di , D j )<threshold then
21: if TA (Di , D j ) i n W then
22: Rt ← val i d
23: else
24: Rt ← an over pr i vi l eg e happened

Output: Rs,Rt

SmartThings device data direcetly to raspberry pi in a tuple form when devices’ status

changing via our monitoring SmartApp, which allow us circumvent doing code instru-

mentation or applying API on every SmartApp and thus keep our design simple but ef-

fective. Furthermore, since we connect raspberry pi as device to SmartThings cloud,
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authorization problem won’t happens. To be more specific, we have an application run-

ning on SmartThings cloud as a monitor app, collecting device data when there is a sta-

tus change and sending them back to raspberry pi. And we have a validation application

running on raspberry pi, which can simultaneously receive and process the data from

monitor app and query device data from SmartThings cloud server, and then validate

whether the device status is valid and whether the trigger action is truly happening. To

fulfill the requirement of SmartDevice status validation, match resource is needed and

it consists of three components in our design. The first component is SmartApp permis-

sion list generated by our permission list extractor, this SmartApp permission list per-

form the function of white list which provides the module valid SmartDevice behaviors.

The second component is data collected by SmartApp monitor App from our data collec-

tor. This component is sent to our backend server as a tuple form. The tuple consists of

all the device information with the form deviceName, sensorType, sensorStatus, Time,

TimeNumber, when an event is happening. The third component is the SmartDevice

status queried by our backend server. Sumsung Smartthings cloud platform provides

various API and interface for developers to get resources and create their own project,

in this component, we use SmartThings Switches CLI to acquire device status. First we

send request to cloud for SMARTTHINGS-CLI-TOKEN which authorizes us the permis-

sion to gain resource from cloud and run command on SmartDevice. And then we are

able to run sthelper status command to get all the device data directly from the cloud

database. The Switches CLI also allow us run command like turn switch on to control

SmartDevice if needed. After completing analysis on SmartApp and data collection, we

match the data mention above and evaluate the risk of each event in validation match

module. The match module is design in a multiple processes way to raise the efficiency
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and handle tasks simultaneously. The whole module is written in python with 951 locs.

The validation match module consist two processes: statuscheck and validate module.

Statuscheck The first process is the status check module which consistently check

all the installed SmartDevice status from cloud. Status Check process is constructed by

data query and data process. Data acquisition is implemented by SmartThings Switches

CLI tool which is mentioned above. Since the data update speed varies for the cloud

database and the data transferred by our data collector from SmartApp, the statuscheck

module request data in a certain and appropriate interval that it reduce the error and

latency caused by update speed from different source and raise accuracy. The data re-

turned by sthelper command is a string of all the device information which conclude its

capability, manufactory, current status and so on. We prepossess the returned string,

extract the SmartDevice status information needed in a tuple form and put them in the

status stack. Status stack ensure we could always obtain the most recent status for match

module, if needed, we could pop out the top tuple inside the stack, which is the most re-

cent SmartDevice status.

Detection Module The main function validate module is validate the collected Smart-

Device data real-timely and make classification to judge whether there’s a misbehavior.

There’s a real-time network sniffer inside the validate module collecting the network

packet sent from cloud to raspberry pi. Since we edit the SmartDevice status as a tu-

ple in Data Collector from SmartThings cloud, the sniffer is able to extract the tuple and

process them for later validation. As the logic of our monitor application inside Data col-

lector describes, the packet of SmartDevice status is sent to our validate module when
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an event of installed SmartDevice is happening. In the mean time, the validation mod-

ule start to validate whether the event is valid after receiving the packets. Since multi-

ple events from different SmartDevice may happen together and with very short time

interval, we implement a multiple thread design for our validate module to handle mul-

tiple events cases, eliminate events conflicts and increase the processing efficiency of

our design. For the fake event condition, for example if attacker apply malware to com-

promise SmartApp and plan to open the door through a fake event, the validate module

would acquire the recent actual SmartDevice status from status stack and judge whether

the event is truly happened, if not, this event would be labeled fake event. Fake event

produce incomplete trigger action chain, and it makes our data collector receive less

packets and the validate module would recognize this situation from the comparison

between the SmartDevice data extract from received packets and SmartDevice informa-

tion on the permission white list, then such attack would be detected as fake event. For

the over privilege condition, attackers may acquire unallowed capability or function. For

example, attackers may acquire capability of turn on heater in an application which is

supposed to handle turning off heater. Since under over privilege condition, the trig-

ger action chain is complete, validate module is able to match collected data with the

permission list and detect the over privilege event if it’s not on the permission list.

4.6 Machines Learning based Event Classification

Machine learning is probably the most popular research topic due to its capability of

handling different kinds of data and the generalization of its models. Security solutions

for various security issues under IoT environment have received a great deal of attention

in the recent years, researchers are attempting to apply technique of machine learning
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to solve prediction and classification problem of SmartDevices. Under our system de-

sign, we already implement a complete data collect and validate module and reach a

considerable efficiency and accuracy. Our system is able to normalize the inside logic of

SmartApps, collect and validate SmartDevices status real-timely and detect anomalies.

But one the major restriction is that the collected data used for validation is from one

source, which is the SmartThings cloud. Though we assume the cloud is uncompromis-

ing and in fact it would very difficult for attackers to compromise cloud platform, it’s still

a restriction. To ameliorate this, we design and integrate this machine learning based

prediction model, which use the source of previous knowledge of SmartDevices status

and provide real-time predictions for our system. And there are several researchers also

try to solve similar problems. Recently, a number of solutions have been proposed to

address the different security vulnerabilities in wireless medical devices34, researchers

collect network traffic, use it building dataset, and aim to build machine learning model

to recognize SmartDevices and detect anomalies. They select a period time of packets as

fundamental data unit and set a tuple of features of such data unit such as packets vol-

ume, packets size, interval. The model works well on recognizing medical smart devices

and perform a very solid accuracy. However, such model is not able to classify the actual

status of device and several identities feature like port number, mac address has been

added to the model, which are not generalized features for all circumstances and fur-

ther reduce the generalization of this model. There’s another paper17, using zigbee and

zwave traffics as dataset, finds the characteristics of packets length variance for different

device status, and predict device status according to such feature. But such prediction

mechanism relies on the environment setting heavily and could be affected by the vari-

ation of the IoT environment. Considering above works’ contributions and limitations,
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our machine learning based prediction module circumvent those limitations and pro-

vide a more comprehensive solution.

In this module, we collect network traffic between SmartThings cloud and hub and

build our dataset. As the Architecture figure shows, when a specific event is triggered,

the event handler inside SmartApp would send command to SmartThings hub trough

SmartThings cloud, and then hub would tranfer such command to connected IoT de-

vices using Zigbee or Zwave as communicate tools. We arrange OpenWRT on Rasp-

berry pi, which is is a linux based system that turn micro controller such as raspberry

pi to a programmable router. In this way, we can allocate traffic and of coarse we are

able to sniff and collect the traffic between cloud and hub. As mentioned before, re-

cent works concentrate more on traffic between device and hub, or the overall traffic in

the local network environment. But the communicate tools between hub and devices

is various which causes the design lack of generalization while sniffing the whole envi-

ronment traffic brings plenty of noises. Our design select collecting traffic between hub

and cloud, which allow us circumvent above limitations. The SmatThings hub would

be allocate a IP address when connected to network, and we run our sniff code on the

programmable router, sniffing and collecting the network traffic between router’s IP and

hub’s IP.

The machine learning module we apply is LSTM (long short time memory), a model

takes time series as data, and handle classification and prediction problem about prob-

lem related to time series. Since when a certain event is triggered, a series of network

traffic would be generated instead of several command packets, and those packets with

command information are usually encoded, it’s suitable to apply LSTM to solve such

time series packet level devices status classification problem. We take packets in 1 minute
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as a unit for building our dataset. The time series are in the form of packets information

tuple sorting according to time. Packet tuple contains the packet level feature we se-

lect for prediction such as packet size, packet type, packet direction, packet time, packet

cloud query respond feature. To collect data, we manually triggered SmartDevices one

time per minutes. And them we prepossess data, truncate the data flow to length 50 or

enlarge the data flow to 50 with 0. Finally we normalize the dataset, reshape all value

into range from 0 to 1. The basic unit of the model is 50 long time series which has a

label representing its device and status. The model consist of 4 layers: input layers,one

LSTM layer, one dropout layer and one output layer.
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5 Evaluation

In this section, we evaluate the performance of SmartMon system in 3 sections: the

performance of DFA extraction, the efficiency of detection of misbehavior, the accuracy

of LSTM prediction of device status. We evaluate different session on the same Smart-

Things testbed.

5.1 SmartThings Testbed

We deploy our IoT environment in a private apartment, and our test devices are mainly

from Samsumg SmartThings24, one of the largest SmartThings platform in the market,

which enable users edit their own recipes to monitor their devices and allow huge variety

of third party services such google and amazon. The environment is composed of one

SmartThings hub, 4 sumsung SmartThings sensors: motion sensor, multipurpose sen-

sor, waterleak sensor, arrival sensor, 4 SmartThings devices: Yale smart lock, SmartTings

outlet, philips hue light, raspberry pi, and a raspberry pi applied as a programmable

router. All the SmartThings sensors are connected to the SmartThings hub through Zig-

bee35, which is an IEEE 802.15.4-based specification with lower power and bandwith

compared to bluetooth and wifi. For the connection way of SmartThings devices, the

SmartThings outlet and Phillips hue light are connected through Zigbee, the Yale smart
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lock is connected through Zwave, Z-Wave36 is another popular low-power consumption

communication protocol, and the Raspberry pi is connected through wifi. To monitor

the network traffic and collect raw data from IoT environment, we set up a raspberry

pi 3 B model as programmable router, which is connected by the SmartThings hub to

sniff the network traffic of hub. And we apply another raspberry pi 3 B model as one of

the SmartThings device, connecting directly to SmartThings cloud through wifi, which

allow us gain the data from our monitoring app to raspberry pi. The whole testbed is set

in a local network environment.

5.2 Extraction of DFA

To evaluate the performance of our DFA extractor, we apply the open source SmartApp

source code from SmartThings Community github repository. Sumsung SmartThings

updates the SmartApp repository frequently and allow developers upload their own ap-

plication to the repository. We separate the dataset into three parts: developers apps,

SmartThings apps, SmartApps in my testbed. Among those SmartApps bulit by develop-

ers, the basic logic may not be same as SmartApp built by SmartThings due to personal

designed constructions and functions. And some of those SmartApps are even consist

of multiple trigger actions, delayed actions and third party service, which makes the ap-

plication become difficult to analyze. SmartApps built by SmartThings are based on the

logic on groovy SmartThings documentation and most of those apps have single func-

tion which means they only have one trigger actions. Smart apps in our testbed cover

all the possible situation we need to evaluate such as multiple trigger actions, complex

logic, delayed actions and it’s important to secure the accuracy of this part. In our exper-

iment, We totally test 169 SmartApps from Sumsung SmartThings SmartApp repository,
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Table 5.1. Performance of DFA Building Module

SmartApps Source Total Number Analyzed Number Correct Number Analyzed Rate Acc
SmartThings 82 66 58 0.81 0.88
Developers 63 41 34 0.65 0.83
Apps in Our Testbed 24 22 20 0.91 0.92
Overall 169 131 112 0.78 0.86

and our DFA extractor performs a solid accuracy, extracting 131 SmartApps DFA logic

and achieving a 0.86 accuracy. The analyzed rate and accuracy of apps in our testbed are

0.91 and 0.92 separately, which clarify the DFA extractor is able to handle different types

of situations and secure the reliability of our testbed on further validation experiment.

The analyzed rate and accuracy of apps for the apps from SmartThings are 0.81 and 0.88

separately, which clarify our design gain a good performance on standard SmartApp

which follow the basic groovy SmartApp architecture. The analyzed rate and accuracy of

apps in our testbed are 0.65 and 0.83 separately, which prove that our design is capable

of handling SmartApps with complex logic even if developer don’t built their SmartApps

in a basic and formal way. The relatively low analyzed rate compared to SmartApps from

SmartThings and our testbed is because nearly one thirds of developers SmartApps de-

signed for integrate informal third party service to SmartThings platform, which makes

the SmartApps contains lots of http request, authentication logic, and some of them per-

form the function of connection only instead of access control. Since then, our design

gain a relatively low analyzed rate. But once the SmartApp contains any access control

logic and is able to be analyzed, the accuracy is over 0.83, which is solid. Overall, the

DFA extractor gain a good performance under our experiments and clarify its ability of

handling various types of SmartApps from different source with high accuracy.
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5.3 Detection of Misbehaviors towards Single SmartApps

We run the experiment of Detection of Misbehavior under our network testbed, which

is declared in 5.1. To evaluate the performance of our validation system towards over

privilege and event spoofing, we would randomly and manually trigger SmartApps in

a period of time and evaluate the result. The experiment would also test single Smar-

tApp and multiple SmartApps separately to observe the performance of our validation

system towards multiple trigger action in short time period. Our experiment would also

evaluate the time interval threshold influence on SmartApps misbehaviors validations.

The time threshold is separated in two parts: one is the time threshold on capturing

trigger action, which affects the performace of validating over-privileged behavior, the

other is time threshold on validating SmartDevices’ status, which affect the performance

of event spoofing misbehavior. For over-privileged misbehavior detection, since we are

doing validation while sniffing the network traffic, the incoming packets pairs are di-

vided to trigger action according to the DFA information and the event triggered time

interval, which is time interval threshold. This value could influence the probability of

capturing correct trigger action, which further affect the accuracy of our model. For the

validation of SmartDevices’ status, due to updating speed of cloud, different reaction

time for SmartDevices, time threshold here may further affects the performance of de-

tecting event spoofing misbehavior.

we first deploy the over-privileged experiment by adding malicious code to the orig-

inal SmartApps. For example, in the SmartApp Brighten My Path, the original trigger

action is switch.on when motion.active, and we could manipulate the app, insert logic

to turn off then light when motion sensor is active. And we could also add other device

and capabilities to allow more trigger action happen. So in such way, edited Brighten My
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Path become a over-privilege SmartApp for its violation of sending command switch.off

and its illegal use of other devices capabilities. We have total 20 SmartApps in our test

bed which represents different categories and include various kinds of SmartDevices

such as Philips hue light, Yale lock, outlet, SmartThings sensors. For each SmartApp, we

manually triggered the event 10 times randomly in each minute during total 10 minutes

test period. During the experiment period, the SmartMon is real-timely sniffing the in-

coming traffic and detect misbehavior of SmartApps, the result is shown by the figure

5.1 and 5.2. Then we deploy event-spoofing misbehavior test by adding malicious logic

to the original SmartApps. We install virtual device while the installation phase of Smar-

tApp and trigger SmartApp through change the status of virtual devices. Since virtual

devices are not on the DFA permission list and are not allowed to trigger the action of

certain SmartApps, when such situation happens, it becomes event spoofing misbehav-

ior. we manually triggered the event 10 times randomly in each minute during total 10

minutes test period. During the experiment period. The following two figures 5.1 and

5.2 describe precision and recall of our experiment. To define the precision and recall

of our experiment, we must first declare the definition of TP (True Positive), FP (False

Positive), TN (True Negative), and FN (False Negative) in our experiment. TP represents

the correctly labeled misbehavior of SmartApp; a TN is a correctly labeled benign trig-

ger action; a FP is incorrectly labeled benign trigger action; a FN is a incorrectly labeled

misbehavior of SmartApp.

pr eci si on = T P/(T P +F P ) (5.1)

Recal l = T P/(T P +F N ) (5.2)
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The way to calculate precision and recall is described in equation 5.1 and 5.2. Pre-

cision represents the accuracy of positive labeled events among all positive predicted

events while recall describes the accuracy of detected misbehavior among all actual

happened misbehavior. As the following two figures shows, the overall precision of over

privilege is all over 0.93 and could be as high as 0.97, which clarify that our validation

system has a very high accuracy on label misbehavior when such event is happening.

The overall recall is all over 0.83 and could be as high as 0.99, which means our vali-

dation system has a very high accuracy on recognizing misbehavior and seldom omits

misbehavior when it’s happening. On the other hand, the performance of event spoof-

ing presents a similar pattern compared to over privilege. The overall precision is all

over 0.88 but the recall value could be low as 0.65. Such performance shows that our

validation system has a very high accuracy on recognized event spoofing misbehavior

but omits some event spoofing misbehavior when it’s happening.

Figure 5.1. Precision on Different Time Interval
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Figure 5.2. Recall on Different Time Interval

We make the experiments with the variance time interval threshold while other vari-

ables remain unchanged. We select 2 seconds, 3 seconds and 5 seconds as time interval

threshold value to do separate experiments due to the features of communication be-

tween SmartThings cloud platform and hub. trigger and action are supposed to happen

in the same time, but due to time used by computing and sending command, and de-

lay of network or cloud platform, sometimes there’s 1 or 2seconds delay between trigger

event and action event. For some specific third party services or devices, such time in-

terval may be longer, which makes the experiments of performance over different time

interval threshold meaningful. As the figure 5.1 shows, the overall precision is all above

0.93 which means time interval threshold has few impact on the accuracy of recognized

over-privilege misbehavior. However, there’s a obvious difference on recall performance

over-privilege misbehavior. The recall of time threshold 2 seconds is 0.83 while the recall

of time threshold 5 seconds is 0.95. This result shows that though difference on time in-

terval threshold would not affect the accuracy of recognized over-privilege misbehavior,
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but it does affect the detect rate of over-privilege misbehavior. Some of the trigger action

may not be captured due to the short time threshold and cause a loss of recall. On the

other hand, The recall of event spoofing on time threshold 2 seconds is 0.65 while the

recall of event spoofing on time threshold 5 seconds is 0.87. This claim that short time

threshold does affect the possibility of detecting a event spoofing a lot. Since our system

query the most recent status of SmartDevices from cloud for several time and validate

with real-time data. Thus if the time threshold here is too short, the validation result

would be poor for some specific SmartDevies with a longer reaction time. For example,

for Yale Smart Lock, usually it take more than 3 seconds to react commands, and for

waterleak sensor, the delay is around 2 seconds. That’s the reason why the recall value

is low when the time threshold is short. To ameliorate such condition, we can choose a

longer threshold, as the figure 5.2 shows, when threshold is 5s, the recall value would be

0.87. On the other hand, we set delay value for specific SmartDevice such as Yale lock,

which could solve such problem and increase the accuracy of our system. And since the

validation module is designed in a multiple process and multi thread way, such revise

won’t affect the efficiency of our system, and the we would clarify the improvement in

figure 5.3 and 5.4.

The following table describe the precision, recall value and devices’ capabilities for

each SmartApp when the time threshold is 5 seconds in our testbed. Overall we can see

our validation module gain a high performance for each SmartApp, most of precision

and recall value are over 0.9 and nearly 1.0 and the lowest precision value and recall

value are 0.76 and 0.9, which is still solid performance.
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Table 5.2. Performance of Detection Module on Each SmartApp

SmartApps Devices Capabilities Pre Rec
Brighten Dark Places Philips Hue Light, Multipurpose Sensor switch, multipurposeSensor 1.00 .1.00
Brighten My Path Outlet, Motion Sensor switch, motionSensor 0.87 1.00
Flood Alert Outlet, Waterleak Sensor switch, waterleakSensor 0.76 0.95
It Moves Outlet, Multipurpose Sensor switch, multipurposeSensor 0.95 1.0
Let There Be Dark Outlet, Multipurpose Sensor switch, multipurposeSensor 1.0 1.0
Light Follows Me Motion Sensor, Outlet switch, motionSensor 0.8 0.95
Lights Off When Closed Outlet, Multipurpose Sensor switch, multipurposeSensor 0.85 1.0
Lock It When I Leave Yale Lock, Arrival Sensor lock, presenceSensor 0.93 0.93
Monitor On Sense Outlet, Multipurpose Sensor switch, accelerateSensor 0.95 1.0
My Light Toggle outlet, Motion Sensor, Philips Hue Light switch, motionSensor 1.0 1.0
Turn It On For 5 Min Outlet switch, cloud 1.0 1.0
Turn It On When It Opens Philips Hue Light, Multipurpose Sensor switch, multipurposeSensor 0.95 1.0
Turn Off With Motion Outlet,Motion Sensor switch, motionSensor 0.87 1.0
Unlock It When I Arrive Yale Lock,Arrival Sensor lock, presenceSensor 0.95 0.9
When Present Turn On Outlet, Arrival Sensor switch, presenceSensor 0.95 1.0
Turn It On every 1 Min Philips Hue Light switch, cloud 1.0 1.0
Left It Open Philips Hue Light, Arrival Sensor switch, presenceSensor 0.9 0.95
The Gun Case Moves Outlet, Multipurpose Sensor switch, accelarationSensor 0.85 0.9
When Presence Open The Light Philips Hue Light, Arrival Sensor switch, presenceSensor 1.0 1.0
Smart Turn It On Philips Hue Light switch, cloud 0.9 1.0

5.4 Detection of Misbehavior towards Multiple SmartApps

For the detection of misbehavior on multiple SmartApps, we apply similar test method

as the single SmartApp test. We install two or three SmartApps and test them simultane-

ously. We randomly trigger multiple SmartApps in 10 minute for 10 times. To evaluate

the ability of handling multiple trigger action validation in short time, we trigger mul-

tiple trigger action in the same time. Figure 5.3 and 5.4 shows the precision and recall

value of performance of our system respectively. As the figure 5.3 and 5.4 shows, the

recall value are around 0.9 for event spoofing, which prove that the system doesn’t omit

happened event-spoofing misbehavior after adding delay option for specific SmartDe-

vices. The overall precision value is all above 0.88 for detection of both over-privilege

and event spoofing misbehavior, which clarify that our validate module is able to han-

dle high volume trigger action in short time and retains a high performance. The highest

recall value happens when the time threshold is 5 seconds and it means with longer time
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threshold, more trigger action and devices status are able to be validated. However, the

highest precision happens when time interval was 3 seconds instead of 5 seconds, which

clarify that though short time threshold omit some trigger action, it produce less false

positive compared to longer time threshold.

Figure 5.3. Precision on Different Time Interval (multiple App)

Figure 5.4. Recall on Different Time Interval (multiple App)
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Table 5.3. Performance of Event Classification

SmartDevices Accuracy
Outlet 0.85
Philips Hue Light 0.85
Yale Smart Lock 0.7
Motion Sensor 0.8
Multipurpose Sensor 0.6
Waterleak Sensor 0.6
Overall 0.74

5.5 Event Classification of Device Status

To fulfill the evaluation of event classification, we find the appropriate variable setting

for our model through tuning the value of epoch and batch size. We select softmax as

activation function since its popularity on multi-label classification problems. The test

method is the same as method we apply in misbehavior detection module. We randomly

trigger Smart devices 10 times in 10 minutes and validate whether the classification re-

sult is correct. As the figure shows, The overall classification accuracy is 0.74, which

is solid. And the accuracy of outlet, Philips light and Yale lock is higher than sensors,

which mean this module performs better on classifying Smart devices than sensor sta-

tus. Sensors have lower accuracy which is because they are more similar. They are all

from SmartThings, follow the same communication mechanism.
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6 Conclusions

In this paper, we present SmartMon, a misbehavior detection system for Sumsung

SmartThings platform to detect misbehavior such as event spoofing and over privilege in

SmartApps. Our SmartMon are able to infer and validate smart devices status and ana-

lyze them real-timely. The key components of SmartMon includes DFA building module,

traffic collection module, misbehavior detection module and event prediction module.

DFA building module can successfully extract SmartApp logic from source code through

static analysis with a solid accuracy. Traffic collection module sniffs smart devices sta-

tus via monitor SmartApp and real-timely transfer data to misbehavior detection mod-

ule. Misbehavior module is able to validate device status from multiple source traffic

collector and events prediction module with high performance. Events prediction mod-

ule provides prediction based on LSTM RNN model training by net work traffic data,

presents a solid prediction result and provides validation source for misbehavior detec-

tion module. Overall the system work well together and provides a novel and complete

security plan for IoT environment.
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7 Future Work

Though we design a complete system with high performance and efficiency, there’s

still further work could improve and advance our design. The data collection is fulfilled

by traffic collection module, inside the module we have a monitor app which is able

to monitor all the smart devices and we integrate raspberry pi to SmartThings which

make it perform the function of smart device and gateway simultaneously. However,

not all of the IoT platform support such integration idea, and it would be difficult for

some platform with restricted support for third party device integration such as IfTTT.

To compensate such limitations and generalize the design, we need to further concen-

trating on how we could find a way overcoming data collection problems with restricted

platform. Another improvement we could apply is in the events prediction module. Due

to the scale of our manually designed and made dataset, lack of smart devices and selec-

tion of model, the performance of this part is expected to have a possibility to be further

improved. We could wait official smart devices status dataset or attempt to apply trans-

ferring learning on our design. And we could construct the module with other machine

learning model to see the performance.
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