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A Comparison Of Deep Learning And Conventional Algorithms  

in Narrow Space Navigation 

 

Abstract 

 

By 

MINGXIN LIU 

 

This research explores the implementation of mobile-robot navigation using a neural           

network. A wall-following (bug) algorithm is implemented both conventionally and through           

network training. Using simulations in Gazebo, extensive labelled, virtual experience is           

obtained. This virtual experience is used to train networks that interpret 3-D point-cloud data to               

predict the consequences of controller options. The neural-net implementation is compared and            

contrasted with a more conventional, algorithmic implementation of a corresponding bug           

algorithm. Results indicate that the neural-net training approach is effective for robot            

navigation, and suggests advantages over explicit implementation. 
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1 Introduction 
 

The recent resurgence of neural networks, with the successes of “deep learning”,            

motivates reexamining algorithmic approaches to intelligent behaviors. One area of great interest            

is autonomous navigation, including autonomous vehicles on roads, off-road navigation, and           

navigation of mobile robots within buildings. The present work was motivated by earlier             

successes, by T.J. Pech, in training a simulated mobile robot to navigate intelligently in              

challenging terrain [24]. In this prior work, a robot navigated through complex environments             

while avoiding endangering the robot, e.g. through collisions, tipping, or falling off cliffs. This              

prior work showed that a neural-net system could learn from simulated successes and mistakes              

and embed that experience as part of making good choices. A limitation of the prior research is                 

that the robot would successfully “wander,” but it did not purposefully navigate to a specified               

goal.  

The present research extends this prior effort by introducing neural-net based navigation            

that is goal oriented. Specifically, a “bug” algorithm [41] is explored for neural-net             

implementation. In contrast to [24], the present research assumes a simpler terrain (indoor             

navigation on smooth floors), but it introduces more challenging passageways and the pursuit of              

specific goals.  

The use of a neural network for implementing navigation may seem an odd fit for a                

problem that has been treated with algorithms such as tree searching, wall following, visibility              

graphs, and other conventional, hard-coded approaches. A motivation for a neural-net approach            

is the deceptive complexity of implementing a “bug” algorithm.  
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Heuristically, the bug algorithm seems simple; essentially, follow a wall (and a virtual             

wall representing a default straight-line path to the goal). If a child is asked to draw a                 

wall-following path, with only meager instruction, one would typically get the desired result: a              

tracing of the boundary of obstacles. This thus seems like a policy that should be simple to                 

implement as an algorithm. In practice, however, one finds that such implementation is not as               

well defined as it would seem.  

One typically approaches this problem by representing the perception of the environment            

as a configuration-space (C-space) equivalent, to account for the diameter of the robot.             

Subsequently, planning consists of motion of a dimensionless point within a 2-D map. However,              

if the robot is not circular, the “diameter” of the robot is not defined. If one chooses the diameter                   

of an enclosing circle, this conservative approximation can result in precluding the robot from              

essential motions, such as passing through a doorway.  

The specific robot considered in the present work is based on a mobile robot at Case                

Western Reserve University. This robot has a rectangular outline. It can navigate through             

doorways, but a bounding circle for this robot would not be capable of passing through a                

doorway. Similarly, obstacles in hallways (including people) should be manageable, but not            

with the conservative circular-robot approximation. 

Since orientation of the robot matters, a more formal planning approach would be to              

consider orientation as a third dimension and construct a 3-D C-space. However, the bug              

algorithm, which traces boundaries of 2-D regions, is undefined for 3-D maps. 

Nonetheless, if a volunteer were asked to drive the robot with a joystick to execute a                

wall-following algorithm, an experienced driver would be able to execute the intent without             
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further instructions, without collisions, without getting stuck, and ultimately with successful goal            

attainment (for attainable goals). This thought experiment suggests that implementation of a bug             

algorithm is intuitive, even though it is not mathematically well defined for non-circular mobile              

robots.  This thesis investigates such implementation with a neural network. 

The present research builds on a key notion of Pech’s research [24]: that intelligent              

navigation can be achieved through virtual experience. Current autonomous vehicle developers           

are acquiring network training data from recordings of actual vehicle navigation (whether            

autonomous or by a human driver). However, such experience is lacking in “bad” cases--e.g.              

involving collisions. In contrast, simulations of vehicle driving with a realistic physics model             

offer the ability to experience virtual collisions. By this means, one can build up virtual               

experiences that are both bad and good, which is essential for neural-net training. 

This thesis presents implementations and results of a wall-following “bug” algorithm,           

comparing and contrasting an algorithmic implementation vs. a neural-net implementation. The           

algorithms are evaluated in simulation using Gazebo. The simulation includes modeling the            

environment, the vehicle controls, the vehicle sensors, and the vehicle dynamics. The robot             

model was based on a physical mobile robot at CWRU and its sensors. The environment models                

included hallways in a CWRU building. The implementation, using ROS and TensorFlow, was             

built to be immediately portable from the simulated robot to the physical robot.  

1.1  System Overview 

ROS (Robot Operating System) is the most current standard programming platform for            

modern robots. ​The robot operating system was initiated at the Stanford University Artificial             
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Intelligence Lab as early as 2007, and now ROS is widely used around the world in academia,                 

government and industry [25]. ROS provides a framework to design software that is distributed              

among asynchronous “nodes” and which is easily implemented across a network of computers.             

A key foundation of ROS is its means for communication among nodes, which includes both a                

publish-subscribe mechanism and a client/service mechanism. ROS also provides extensive tools           

and libraries and helps with debugging, visualizing, logging and testing [25]. Sensor interfacing,             

sensory interpretation, motion control, planning, simulation and human interfaces can all be            

programmed using ROS nodes. The nodes are usually written in either Python or C++ executing               

individually and asynchronously. Nodes can provide services for other nodes and publish            

messages on topics for sensory input, sensory interpretation, planning, and motion control [25].             

The tools ROS has for simulation and visualization are: Gazebo and RViz [24]. Gazebo is a 3D                 

simulator that allows users to generate models such as robots and obstacles. Gazebo runs a               

physics engine that simulates illumination, gravity, collision and other physics properties to            

emulate the physical world. With Gazebo, much testing that would be costly and dangerous in               

hardware can be carried out with zero cost and liability in simulation [27]. Hence, low level                

testing in simulation could show a proof of concept before physical testing.  
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Figure 1.1 Fetch view of Gazebo(right) and RViz(left) [39] 
 

RViz is a ROS visualizing interface for sensor output. Figure 1.1 shows a combined              

image of RViz and Gazebo visualization. RViz publishes the sensor outputs from the Gazebo              

simulation. In other words, once a sensor is created in Gazebo, the sensor output can be                

published as “message” on a “topic” through ROS. ROS nodes can subscribe to such topics and                

receive the published messages. Rviz is able to display sensor information by subscribing to              

such topics.  

1.2 The advantage of simulation 

The primary purpose of simulation is to provide instant feedback. Gazebo simulation has             

a powerful interface that has visual and analytical data. The simulation testing can be easily               

designed and modified to fulfill the needs of a research topic. It is an excellent tool for proof of                   

concept. Candidate algorithms, which might only approximately correspond to mathematical          

models and assumptions, may be carried out in Gazebo to test the viability of an idea before                 

pursuing it further.  
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Another primary advantage of simulation is its cheap implementation. Gazebo and ROS            

are both free to download and utilize. Furthermore, for research that involves collision and risky               

experiments, running tests in simulation is far cheaper and easier. In particular, acquiring training              

data for neural networks using physical hardware may be impractical, due to both time and               

risk--particularly if training examples must include examples of “bad” behavior. In contrast, a             

large array of experiences can be obtained automatically through simulation, including both safe             

and catastrophic examples. Specifically, collecting training data for a mobile robot is challenging             

if the intent of the training data is to predict collisions. It would be necessary to acquire enough                  

examples of actual collisions to be included in the training set. With Gazebo and Rviz, such                

explorations are practical [32].  

The results generated from the simulation alone, however, do at some level vary from the               

ones generated with physical sensors and physical dynamics. But for a proof of concept, the               

simulation is still very helpful. It is also noteworthy that simulation provides a simple means to                

debug and illustrate results. The results obtained from simulation can be visually demonstrated to              

peers and students who are not technically trained with an engineering background.  

The present research builds on and benefits from the prior work of [32], including many               

of the concepts and some of the actual code. Building on prior efforts enabled rapid progress.  
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Figure 1.2 Physical robot(left) and simulated model counterpart (right) [24] 

 

Figure 1.2 shows the physical robot in the Glennen lab on the left and the simulation                

counterpart of it on the right. The simulated robot assumes four Kinect sensors as well as a 3D                  

Light Detection and Ranging (LIDAR) sensor.  
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Precursor research: 

 

Figure 1.3 Terrain maps from Pech’s research [24] 
 

Pech’s prior research [24 Pech] focused mainly on outdoor navigation and navigation            

strategies for driving on various terrain conditions such as bumps, slopes, hills and edges. A               

neural network was trained to predict failure modes such as tilting, colliding and flipping over.               

While his results were promising, physical validation would be difficult to accomplish, as it              

would require testing in odd environments as well as incurring substantial risk to the robot.  

The present research focuses on indoor navigation. Indoor scenarios are easy to test, and              

the hazards are easier for a human to oversee and protect against, making experimental testing               

less risky. The present research also extends Pech’s research to incorporate intelligent            

navigation, rather than simple wandering. 
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1.3 Creating Models and Maps in Gazebo 

The Gazebo interface can be launched with the command line ‘roslaunch gazebo_ros            

empty_world.launch’. This command launches the Gazebo interface with only a ground plane in             

the world. Models can be launched from a pre-existing Gazebo models library, or can be created                

through 3D model generation software such as Meshlab. Models can also be recorded with a 3D                

scanner and be created with the generated STL file from the scanner.  

The components required to describe a model are: Link, Collision, Visual, Inertial,            

Sensor, Light, Joint and Plugin [29]. A link is the physical property that connects a physical                

model to another physical model. This link could exist on a physical joint, but it could also be                  

two links without any joints. An object without a link does not possess any physical properties in                 

simulation, so the link is the most important property that defines the object in simulations.               

“Collision” is the element that defines a surface geometry that can be used to compute collision                

checking. This is determined by its sub-elements of contact coefficients: Mu(friction coefficient),            

Kp(Stiffness coefficient) and Kd(Damping coefficient)[30]. The “visual” specifies how to render           

a link graphically.. “Inertial” is the element that gives the link dynamic properties, including              

mass, rotational inertia, and friction. Joints define child/parent relations between links, often with             

an actuator that allows motion between the connected links [29]. A sensor is a device that                

collects data (e.g. camera data, LIDAR, IMU, joint angles, joint velocities, force/torque, etc.) and              

outputs the data via messages on a ROS topic. While sensors are not needed to perform dynamic                 

simulations, they are essential for implementing perception and intelligent behaviors. 
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Building a model has multiple steps. First, a real world model can be scanned and               

exported as an STL or OBJ file and this file can be launched in Gazebo after scaling to the right                    

size. Other than exporting data from a real model, the models can also be created with Blender                 

[31]. The traffic cones for example were created from the real cones in the Glennen lab. Cones                 

were brought to the ThinkBox located in the veale center at CWRU and scanned with the 3D                 

scan arm. The 3D scanned model was generated with Autodesk Fusion 360 [48]. The generated               

files are usually saved in STL format. This step is foremost important since creating models for                

simulation constructs the simulation world for training.  

To finally launch the model, the exported STL or OBJ file has to be written as a model                  

description in the SDF file which is readable for Gazebo. As mentioned above, the scaling of the                 

imported model is critical as well. Since the models generated in simulation are to duplicate their                

real world counterparts, the dimension of the generated models has to be in the correct               

proportion to the real model.  

One essential step of creating a model is defining its collision properties with a collision               

model. Collision models are defined with the physical property of the model that includes mass,               

inertia and acceleration. Most of the parameters are calculated with a high estimation from the               

actual robot, but these numbers can be measured with higher accuracy with more engineering              

labor. Lastly, all the launch files can be collectively launched with a .WORLD file.  
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For testing purposes, two maps were created: a relatively simple map in a building 

hallway, and a less structured, more complex maze-like map. 

 

Figure 1.4 Simple testing environment (left), complex testing environment (right) 

Figure 1.4 shows the simulated environment with a simple map on the left and complex               

map on the right. The simple map serves the purpose of testing the progression of the algorithm.                 

In other words, issues can be more obvious with testing in a simple setup. Solving these issues                 

can help to build up a working result that can be further tested with a more complex                 

environment. The variation of obstacle placement, wall shapes and different width of pathways             

can demonstrate the effectiveness of the algorithms.  

The end-goal is to compare the performance of the bug algorithm approach vs a network               

training approach, as evaluated by running both algorithms in the test environments. .  
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2 Conventional Bug algorithm 
 

2.1 Wall Following Algorithm 

Wall Following navigation refers to driving parallel to a wall or an obstacle while              

keeping a safe distance from the wall (or other obstacle). This algorithm is extensively              

implemented for mobile robot navigation [46]. Wall Following can effectively perform obstacle            

avoidance with an effective controller. When the environment is unknown (but can be sensed, at               

least myopically), the bug algorithm is the simplest way to navigate while avoiding collisions.              

While following walls, the robot may try to reach a goal, or it can perform environment                

mapping. Commonly, a laser scanner is used for detecting distances between the mobile robot              

and obstacles. The scanned pings can be interpreted as distance from a wall (or other obstacle).                

The wall-following algorithm should try to maintain a near, but safe distance from the wall (e.g.,                

arbitrarily chosen to be the distance from the robot’s left side, resulting in counter-clockwise              

circulation around obstacles). Controller should act on the perceived distance from the wall to              

behave appropriately to make progress while maintaining the desired wall-following distance.  

The controller must perceive and act on a defined safety range.  To visualize the safety 

region, imagine a thick cover attached to the robot. A threshold to the distance is added so that 

the robot stays within some tolerance of the safety distance from the wall. For example, if the 

safety distance was defined as 0.3 meters and the tolerance was  0.05 meters, the robot’s distance 

from the wall can be characterized as: 0.3-0.05 < distance < 0.3+0.5 is “safe”, distance< 0.3-0.05 
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is “(too) close” and distance> 0.3+0.05 is “(too far) away.” 

 

Figure 2.1 Wall following example [40] 

Figure 2.1 shows an example execution of the wall following algorithm. The red line              

draws a pathway the robot should follow to navigate along the walls, and the sensor is constantly                 

checking the distance between the robot and the wall on the left hand side.  

2.2 Naive wall-following implementation  

The first algorithm was having the robot moving forward and rotating when it sees an               

obstacle in the front. The laser sensor placed at the front bumper publishes the distance from the                 

scanned pings. Subscribing to the ping that directly looks ahead gives us the perpendicular              

distance from the front of the robot to the obstacle in the front. The robot would rotate when the                   

front distance is less than 0.3 meters and stop rotating when the front distance is larger than 0.3                  

meters. The first execution of results can be viewed in the YouTube link [47].  

However, this algorithm has issues where the robot hits the wall on the left or right side                 

bumper since seeing only the distance in the front is not sufficient to navigate through the walls.  

2.2.1 improved naive wall-following implementation 
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A step forward is to implement an algorithm that lets the robot follow a wall.  

 

Figure 2.2 Zigzag motion of the robot 

Setting a “safe distance” lets the robot keep at a constant distance between its left side to                 

the left side wall. This improved algorithm has the robot move forward until the front sensor sees                 

an obstacle within 0.3 meter. Then the robot rotates until the front sensor clears. An added sensor                 

is overlooking the left front bumper at a 45 degrees angle. This sensor is checking the distance                 

from the left front bumper to the wall and keeps a 0.3 meters from the wall. The distance from                   

the left front bumper to the wall is called df. If df is less than 0.3 meters, the robot rotates                    

clockwise 20 degrees and moves forward. If df is more than 0.3 meters, the robot rotates                

counter-clockwise 20 degrees and moves forward. The forward velocity is 0.1 m/s. This results              

in a zigzag motion shown in figure 2.2. To improve the continuity of the navigation, a wall                 

following controller is implemented.  
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2.3 Improved Wall Following Controller 

A controller is integrated with the driver node that estimates the turning angle to keep the                

robot at a constant parallel offset from the left wall given the front wall state is always available.  

L is the distance between two wheels. is the angular position of the robot with respect to x and       �             

using , the offset of x and y can be calculated from equation (1) and (2).�  

  cos(�)xof fset =  2
γ + γdes (1) 

 
  sin(�)yof fset =  2

γ + γdes (2) 
 

 γ γγerr =  −  des       (3) 
 

     ψerr =  L
d  − dr f (4) 

  
 

Equation 1 and 2 shows the wall offset and offset angle from the robot to the wall.  

 

 
Figure 2.3 Offset angle and offset distance [33] 
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onstantvcmd = c (3) 

of fset f f set error ngle errorωcmd = K  · o + Kψ · a (5) 

ωcmd = Kγ · γerr + Kψ · ψerr (6) 

− γ γ ) in( ) K) vωcmd = ( Kγ · ( −  des − Kψ · s L
d  − dr f +  (7) 

 

The variables and are the rear left-side distance and front left-side distance from  dr   df            

the robot to the left wall, respectively. is the offset angle that needs to be adjusted to zero as       ψerr             

well as the offset distance. In equation 4, K is a control parameter that is intended to incorporate                  

using knowledge of the desired path curvature. However, this parameter can also be used to bias                

the robot to try to curve to the left, which can be helpful when trying to do wall following with                    

the wall on the left. [33]. The result can be viewed in the YouTube Link[43]. 

2.4 Adjustment from the controller 

The controller showed a steady and constant wall following execution. However, it            

lacked the intelligence to navigate through narrow passages. The first testing did not include any               

traffic cones in the map. But, once the cone was introduced to the environment, the robot                

behaved as illustrated  in figure 2.4.  
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Figure 2.4 Unsuccessful passing the obstacle 

At instances, the robot sees the cone as a new wall then spins around until it directly faces                  

the “East” wall. Then the robot resets its ‘Found_wall’ boolean as 1 again and considers this wall                 

as the wall to be followed. The robot then continues to rotate to orient itself such that the new                   

wall is on the robot’s left hand side. This results in the robot heading in the opposite direction,                  

then ultimately spinning around the lower boundary of the wall, then following this wall on its                

opposite side. With testing and tuning of the parameters, when curvature K is set to be at 3 and                   

forward speed set to 0.2 meters per second, the robot can successfully bypass the cone.  

 

2.5 Wall Following Controller Integrated Results 

The Wall Following Controller results can be viewed on YouTube Link [43]. Figure 2.5 

shows the robot successfully navigating past the cone placed near  the left wall.  
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  (1)     (2) 

 
  (3)     (4) 

Figure 2.5 Wall following controller results in still images 

 

 
Figure 2.6 Parameter output of cone bypass [33] 

 

Figure 2.6 shows the parameter adjusted corresponding to the bypass of a cone on the left                

hand side of the wall. The term turning value is the omega command, offset is from equation               γerr   

(1) and offset angle is from equation (2). From the graph, the offset drops from 1 to 0.15     ψerr              
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and keeps a continuous wall following. The omega shows the robot is gradually turning left and                

with a constant offset at 0.3 meters, the robot is following the wall on the left hand side.  

 

3 Neural Network Approach 
 

3.1 Convolutional neural network 

   
Figure 3.1 The structure of a convolution neural network LeNet-5 [24] 

 

As early as the year of 1943, neurophysiologist Warren McCulloch and mathematician            

Walter Pitts created a neuron model that became the foundation for future neural networks [34].               

In 1958, Frank Rosenblatt designed his first neural network called the Perceptron. This network              

was to perform simple classifications with decision boundaries. Over the years, new realizations,             

models and variations were introduced to artificial neural networks, and interest grew, waned,             

and ultimately rebounded. Artificial neural networks, particularly “deep” networks, are now           

mainstream in machine learning and of great interest in robotics [34].  
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A “deep” network has many layers of neurons. ​A “convolutional” network uses a pattern               

of weights that is replicated within the network, thus allowing a large number of synaptic               

connections with a relatively small number of free parameters. The repeated patterns of weights              

are “kernels”, and these kernels can be “trained” (assigned specific parameter values) such that              

the kernels instantiate feature detectors [24]. Multiple kernels are defined as operations between             

successive layers of neurons. Discovery of what constitutes good kernel values is the essence of               

“learning” or “training” in a convolutional neural network. Each layer of the network receives              

stimuli from kernels acting on lower, more primitive layers, yielding higher levels of abstraction              

in ascending layers. Additional operations that have been found useful include nonlinear            

activation functions and “pooling”. In theory, more layers constructed could result in a more              

intelligent network. However, this is at the cost of requiring more training data, potentially much               

longer training times, and slower execution of deployed networks. For this research, there are              

six layers and the architecture of the network used for this research is LeNet-5 developed by                

Yann Lecun, Yoshua Bengio, Leon Bottou, and Patrick Haffner [24].  

3.2 Perceptrons 

Perceptron is an algorithm that constructs learning for neurons just as their biological             

counterparts. This is a breakdown of the neural network in terms of a single spiked neuron with                 

respect to the inputs x1,x2, xn and weights  where ‘i’ indicates which layer the weights are in.ωi   
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wef 

Figure 3.2 Single-layer perceptron [18] 

In terms of formula expression, the graph can be written as [18],  

 f (∑  ϴ)  y =  ii −   

f​(⋅) is the activation function and is the i’th input to the perceptron, which is weighted      i           

with gain [18]. The inputs are independent variables, so the output is mostly decided by the  i                

weights that are trained from the network. “Training” is conducted by altering the weights to               

attempt to have the network become a function that correctly maps input patterns (values of )               i  

onto target values of y. This requires a potentially large set of examples of input patterns with                 

corresponding output values. This also requires a strategy to alter the weights to achieve              

improved success rates in having the perceptron map inputs into outputs. A simple method for               

updating weights is as follows [24]:: 

(50) 

is the weight to be updated, is the learning rate, dE/d is the target value, y is theω′i       η     ωi         

output value from the most recent iteration with candidate weights, and as the element of the           i   ith    

input pattern. This updating process ceases when the linear regression comes to a sufficiently              

small error (or ceases to improve) [20]. This approach, using a single perceptron, can be               
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successful in categorizing input patterns, provided the input patterns are linearly separable.            

 

Figure 3.3 Structure of perceptron [19] 

3.3 Back propagation 

 
Figure 3.4 Fully connected feedforward neural network [15] 
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Figure 3.4 shows the layout of a feedforward artificial neural network. In this network,              

the outputs of each layer become the inputs of the next layer. While all the neurons are                 

interconnected, this is done in a structured, feedforward organization. Any of the layers between              

the first input layer and the last output layer is called a hidden layer. The goal of the network is                    

to yield a useful output for any given input pattern, and the hope is that the network succeeds in                   

generalizing from examples. The approach to attempting this is to minimize the errors             

associated with a “training set” of examples for which the correct mapping is known, where               

minimization is achieved by varying the synaptic weights. This constitutes an optimization            

problem, where the weights are the parameters to be optimized and the network output errors for                

the training set are to be minimized. This is commonly performed through a gradient descent               

algorithm known as back propagation [35]. The error metric used for optimization is sometimes              

referred to as the “loss”. 

The training algorithm updates the weights between connected neurons in order to reach             

the minimum loss. For this research, the input patterns considered are images, deliberately             

cropped and downsampled to a 32 by 32 pixel pixel array. Typically, pixel values represent               

intensity of gray-scale images, or RGB values of color channels. With respect to collision              

sensing, however, color is irrelevant. Instead, to represent the depth information, the pixel values              

are used to encode depth. In this manner, networks designed for 2-D images can be applied to                 

3-D data.  

While Fig 3.4 represents a generic feedforward network, Fig 3.2 illustrates a specific             

pattern to the weights. When a 2-D image is vectorized, the spatial relationships in the 2-D                

27 



 
 

structure may get lost. However, by using convolution kernels, these spatial relationships are             

preserved, and the output of each convolution can be treated as the input to another 2-D image. 

This process is repeated for each layer, with a different set of convolution kernels              

between successive layers. For each candidate set of weights, each of the training-data input              

patterns is imposed on the network, and the corresponding computed output values are compared              

to the “correct” answer. To train the network, the weights are adjusted, seeking to reduce the                

overall network error over the complete training set. Backpropagation is commonly used to             

perform such training [16]. If it is known that the input patterns are related temporally, it can be                  

useful for the network to include some short-term memory, e.g. as below [17]: 

3.5 Network & ROS communication 

Network and ROS communication is key for deploying neural networks with           

ROS-controlled robots. The method of this communication is through TCPROS [36]. TCPROS            

is a layer for ROS ‘messages’ and ‘service’ communication. ROS ‘messages’ are published             

without regard to which other nodes might “subscribe” to these messages [37]. In contrast,              

client/server communications are peer-to-peer with guarantees on receipt of client requests. This            

infrastructure helps with the design of complex systems by establishing simple interfaces.  

Neural Networks were not originally envisioned as part of ROS. To integrate a network              

with ROS, it can be structured as follows. The network can be encapsulated within a ROS                

wrapper and instantiated as a service. A client of the service can send an input pattern to the                  

service (network), and the service can perform network computations and return the computed             

result. Alternatively, the network could be instantiated as a “listener”, which receives input             
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patterns and publishes computed outputs. In the present research, a node called ‘Driver.cpp’             

subscribes to the topic published from the network’s output, and the driver node uses this output                

to control navigation. This is the general communication based on this service and client pair               

nodes.  

Multi-path TCP deployment is the method that sets up the connection between networks             

and the navigation node [38]. The networks are connected to the node through TCP socket               

proxies while subscribing to the sensor output simultaneously. This socket path bridges between             

TensorFlow are written in Python and ROS nodes are written in C++. Currently there are more                

methods for network deployment with more updated TensorFlow available. A TCP connection            

requires a unique ‘HOST’ and ‘PORT’ for client and server to set up a connection. If the network                  

tries to subscribe to a certain topic, the server ID from the publisher needs to set its IP address                   

the same as the HOST. Since there are more than one network, the server ID has to be set up                    

with a floating string based on whichever network is called back at the moment. The data format                 

of the processed point cloud snapshot was chosen as the 2D matrix where the z dimension is                 

representing the pixel values of the snapshot.  
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Figure 3.5 .data file in collected data folder 

 
Since the goal of pursuing a neural network application is to achieve robotic navigation              

with the feedback from the networks alone, the conventional and the network-based algorithm             

share the same driving controller. Essentially, the conventional algorithm listens to pings of the              

robot’s position from the laser scanner, and uses these parameters to adjust the robot's behavior               

for wall following navigation. Similarly, the networks compute these parameters with the input             

images from the sensors based on the pre-trained weights. The PC on which this research was                

carried out had 16Gs of RAM, AMD Ryzen eight-core processor with a GeForce RTX 2070               

graphics card. With such computational power, the computational time between the network            

powered by TensorFlow and the ROS bridge takes about 1.5 seconds. The sensor built on the                

robot is a Kinect sensor that publishes 640 x 480 = 1,228,800 points at each batch [24]. In order                   

to pre-process the points, a voxel grid filter was used to divide the 3D published cloud into cubes                  

to record a more uniform format of data. When the resolution of the recorded images gets cut                 
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down, the computational time and training period go down as well. The prediction rate could be                

high as 1,800 images per second with a computational time of 0.75 seconds [24]. 

The network is constructed and written in Python with TensorFlow, and the driving             

controller is written in C++ with ROS. As mentioned before, the network and ROS communicate               

over TCPROS client-server architecture.  

3.6 Training setup and data collection 

 Constructing a well trained neural network requires proper data collection and labelling.            

The amount of data needed to be collected is too large for manual collection. The data generation                 

is fully automated for this research through the use of simulation.. Acquiring a large set of data is                  

time consuming. Further, the training data must be sufficiently rich, experiencing a variety of              

environments and experiencing both safe and unsafe scenarios. A Gazebo simulation was            

created in which the robot could sense the environment and experience collisions (or no              

collisions), providing a means to label the sensory data. 

One challenge is the imbalanced number of training data from each labeled folder. The              

positive set will contain much more batches of images compared with the images in the negative                

labelled set. This is because only a few images are recorded as negative right before the collision,                 

and the rest of the images would be positive. On average, this would result in a high accuracy for                   

classifying positive inputs and causing the classifier to ignore the negative inputs with a low               

network sensitivity. Thereafter, the training would not be effective if the network only             

recognizes the positive labelled images. The drop-out ratio was later calculated in this thesis              
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showing how the data was artificially manipulated to reach a balanced ratio between the positive               

and negative labelled sets.  

 

Figure 3.6 Outline of data generation and labelling 

 

Figure 3.6 shows the outline of the data collection process. The linear steering arrow on               

the right of the diagram represents the collection process taking place while the robot is moving                

forward, rotating or stationary. The sensors used on the robot were simulated Kinects. A raw 3D                

point cloud was published by each Kinect sensor on a respective ROS topic, and the data                

included listing x,y and z coordinates of each point pinging in the environment. In order to utilize                 

an existing 2D image-based network architecture, the 3-D point cloud was pre-processed to             

represent it such that the gray-scale intensity was proportional to depth. In this way, depth               

information was preserved, at the expense of losing color information. However, color should             

not be relevant in the context of evaluating potential collisions. 
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After a week-long automated data collection process, roughly 67,887 images of positive            

labelled and 68,738 negative labelled images were collected. This is after manually omitting the              

majority of repeated and positive labelled images. The positive labelled images (i.e. those for              

which an impending collision was to be predicted) were collected at 0.15 meters prior to               

collision.  

 

Figure 3.7 pseudocode of data generation [24] 

More specifically the collector code ran as follows. Once the robot was spawned at a               

random location with random orientation, a linear steering controller was called that commanded             

the robot to move forward. Data was collected with each processed snapshot saved in short-term               

memory. The robot kept driving forward until the robot experienced a failure mode. A failure               

mode was defined as falling off the map, colliding with a wall or flipping over. The machine                 

state was monitored to detect a failure mode and once triggered, all sensor data in short-term                
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memory was interpreted as predictors of “safe” or “unsafe” conditions. The linear command             

velocity was set at 0.5 meters per second. Images were acquired every 30 cm of distance                

travelled. These snapshots are cropped, reduced to a lower resolution, and saved in a short-term               

memory for temporary storage. Once a collision or failure was detected, the saved images were               

interpreted. Images associated with a “far” distance from collision were labelled “safe” (or             

“negative”), and images associated with a “near” distance to failure were labelled as “unsafe” (or               

“positive”), where “near” and “far” were defined by an arbitrary safety-distance threshold. This             

process was repeated automatically. After each failure, and subsequent classification of recalled            

images, the robot would respawn at another location on the map with a random position and                

orientation. This process was repeated continuously for a week-long collection period.  

The data collection process can be viewed from the YouTube Link [42]. This video              

shows the robot spawned at a random position on the map with random orientation and running                

forward until a bumper detected a collision.  

4 Training Results 
 

4.1 Sensor Adjustment 

The initial design of the robot had only one Kinect sensor on the front top of the robot.                  

This sensor alone was enough to achieve many functionalities including navigation and obstacle             

detection. However, the conditions of an indoor environment can be more challenging than that              

of an outdoor one, particularly when making progress requires navigating through a narrow             
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passage. Imagine the left map from figure 1.2 If the robot were asked to navigate through such                 

open environments, a front bumper sensor would be sufficient. The terrain is open enough that,               

when the robot detects forward motion is dangerous, it could respond by rotating to another               

heading. However, when considering narrow passages, the robot must tolerate skirting danger            

and it must avoid excessive rotations. This motivates using wall-following as a navigation             

strategy. However, wall following also requires consideration of both distance from a wall and              

relative angle to the wall. Thus, side sensors are required in addition to a forward sensor.  

4.2 Network structure 
 

 

Figure 4.1 region for wall following with network controller  

 

Figure 4.2 shows the region of the ‘safe distance’ predicted from the network sensor. The               

network was trained based on labelled data of ‘safe’ and ‘unsafe’, and in this case the ‘safe’ is all                   
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the images taken further than 0.15 meters prior to collision and ‘unsafe’ images are those               

acquired within 0.15 meters of collision.  

While there are many variations of strategy one could use for network-based wall             

following, in the present work, a particularly simple approach was considered. The trained             

network for the forward sensor was capable of predicting impending collision in the forward              

direction, with binary outputs of “safe” or “unsafe”.  

The side sensors were intended to achieve a desired offset from a wall and heading               

parallel to a wall. These were implemented, though, as exact replicas of the forward sensor. A                

rationalization for this is as follows. From the viewpoint of a side sensor, the network could                

predict that, if the robot reoriented to the viewing angle of that sensor, it would be dangerously                 

close to hitting a wall or not close to hitting a wall. In essence, then, the side sensor’s network                   

indicates if the robot’s side is close or not close to a wall. With two such side sensors--front and                   

back--the close/not-close (i.e. safe/unsafe) network interpretations can be combined to estimate if            

the robot is both desirably close to a wall and roughly parallel to the wall. Thus, it seems                  

plausible that the single trained network could be used for interpretation of all three sensor               

streams. 
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Figure 4.2 Pseudocode of wall following controller with analogue network callback  
 

Figure 4.2 shows the pseudocode of the network controller that uses the three network              

outputs to achieve wall following. The hierarchy is as follows. First, the front network sensor is                

checked. If The front sensor indicates “unsafe”, then the robot spins clockwise until the front               

sensor indicates “safe.” If the front sensor indicates “safe” to move forward, then the side sensors                

are consulted. These sensors are used to modify the robot’s heading to try to maintain a                

desirable distance from an obstacle to the left, as well as achieve a robot heading that is tangent                  

to the obstacle on the left. This is determined by a combination of “safe” and “unsafe”                

evaluations by the two side sensors.  Behaviors under the various cases are listed in Fig 4.2.1. 

Note that to move tangent to an obstacle, both side sensors should be on the borderline                

between “safe” and “unsafe”. The safe distance trained from the data collection is 0.15 meters               

prior to collision, and with this information, the robot toggles between safe and unsafe to keep a                 

nearly constant distance from the wall. Instead of calculating offset angle and distance, wall              

following is directed by the ‘safe’ and ‘unsafe’ outputs. In the present implementation, the robot               
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can “chatter” between safe and unsafe evaluations, which can lead to unsmooth motion.             

However, that is tolerated in the present work for the simplicity of using a single trained network                 

with a binary output.  Smoother implementations are left to future work.  

4.3 Network controller results  

 

 
Figure 4.3 Network controller results 

 
A precursor approach with the network controller used side sensors on both sides of the               

robot. The proposition was to get the outputs from all sensors and whichever one reported               

negatively, the robot would spin the opposite way. This way, with a full safety contour               

surrounding the robot, the robot could always be kept at the center between walls. However, this                

approach had two issues. The first issue was that this implementation did not conform to a bug                 

algorithm, since it would follow a wall on either side. As a consequence, the behavior lost the                 

assurances of maze-solving capabilities of a simple bug algorithm. Nonetheless, the robot            
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exhibited useful behavior. If subgoals could be placed intelligently, the robot was capable of              

navigating through narrow passages. A second issue with this implementation was that the robot              

would ignore turns and corners. Figure 4.3 shows a sharp left turning corner. If the controller                

followed both walls, then it would go all the way up to the end of the tunnel and spin back                    

around then drive back to the starting position.  

To solve these issues, the network controller was designed to follow contours only on the               

robot’s left. With this version, the robot successfully passed the sharp left corner as shown in                

figure 4.3, as can be seen via YouTube Link here [49]. The video link shows the robot was able                   

to pass through a narrow, irregular hallway with broken walls, avoiding obstacles like cones on               

the way and turning at the left corner.  

4.4 Training results interpretation 

Given the equation of calculating the training accuracy as 
 

Accuracy = (number of positive labelled + number of negative labelled) / (number of              
positive labelled + number of negative labelled + number of dropped out positive + number of                
dropped out negative) [24] 

 

After preprocessing each depth image, the output was condensed to a 32x32 gray-scale             

image, with intensity representing distance. In the convolutional network, each kernel had a size              

of 2 by 2. It should be noted that the ratio of “safe” to “unsafe” labelled data acquired during the                    

data collection phase was 90/10. With such unbalanced training sets, the network would be              

biased to label images as “safe”, and thus it would err on the side of failing to recognize                  

impending collisions. To counteract this, the “safe” set was reduced to balance it with a               

comparable number of “unsafe” examples. The training was performed with a set of 6,000,000              
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images that contained a balanced set of “safe” and “unsafe” labels. Training was done              

incrementally (i.e. batch size of 1), which took almost 17 hours to complete. Loading the input                

images and training from the loaded CSV file was the chief bottleneck.  

 

 

Figure 4.4 training accuracy and validation accuracy set  

Figure 4.4 shows the progression of training accuracy and validation accuracy. Pinning            

down an exact point at which to cease training is not obvious. Overtraining could occur if the                 

training does not stop appropriately.. This problem is avoided by use of a validation set. The                

validation data set is taken separately from the training data set. If the validation accuracy starts                

to decrease then it indicates the network is encountering overtraining, and the training should              

stop at where the training accuracy and validation accuracy diverge. In figure 4.4 the vertical               
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black line shows the point of divergence at 3,400,000 images, at which point the network had                

achieved a 97.85 % accuracy.  

5 Results and analysis 
 

Using network-based interpretation of depth-camera data in the algorithm of Fig ​xxx​, the             

robot was tested navigating in complex environments. As will be discussed in Chapter 6,              

completion of the Bug algorithm for maze solving requires addition of an “M-line” (a default               

initial straight-line path from start to goal), and this line can be treated as a virtual obstacle.                 

However, bug algorithms assume no prior information of the environment. Often, much can be              

known about the environment, e.g. from building floor plans. At the same time, a robot cannot                

operate safely on the basis of a priori information. Obstacles will be present that are not part of a                   

floorplan, including pedestrians, furniture, open or closed doors, etc. It is thus necessary that the               

robot can react appropriately to its sensors while navigating. Wall following can be combined              

with coarse planning to achieve effective navigation. For example, based on a floor plan, one               

could specify a sequence of nominal subgoals. The robot could attempt to achieve these subgoals               

while navigating around perceived obstacles. 
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Figure 5.1 wall following with subgoals  

The sub-goals implementation can be seen in figure 5.1 where the sub-goals are indicated              

by the red crosses. In a complex setup such as the one in figure 5.1, the robot would have a tough                     

time navigating to a single end goal. Therefore, having sub-goals further helps the robot to               

navigate by a pre-planned pathway. The neural network controller helps to avoid obstacles, walls              

and even moving subjects. So, the use of a neural network controller is still very meaningful in                 

terms of indoor navigation.  
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Both the conventional wall-following algorithm implementation and the CNN-based         

wall-following implementation behaved well in simple environments. Compared to the          

conventional implementation, the network implementation was computationally demanding,        

including CPU, GPU and network bandwidth. 

However, the network-based controller showed some promise of improvement over the           

explicit algorithmic wall-following implementation in complex environments. Some examples         

are shown via YouTube here [49].  

 

 
      (1) (2) 

 
      (3) (4) 

Figure 5.2 Stills of the Conventional results in the complex setup 
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An example in which the conventional algorithm struggled is shown in Figure 5.2. In this               

case, the walls had narrow gaps where the robot could get stuck. The conventional              

wall-following algorithm struggled with getting stuck, or giving up on viable narrow passages, or              

spinning around inappropriately. This issue was not obvious with the network controller. The             

network output gave a much more generalized prediction of safe or unsafe motions from the               

input images. While much improvement could still be made, the network-based controller            

indicated capability of making good choices in novel, complex scenarios. 

The present results are suggestive, not definitive. Nonetheless, observations suggest that           

a neural-net based controller shows potential for making intelligent decisions in navigation based             

on depth-camera data. The trained network indicates a high accuracy in predicting impending             

collisions. Such training has the potential to avoid collisions that might not otherwise be              

recognized by an explicit algorithm. Using training based on full 3D imaging, the robot would               

not be fooled by desks, saw-horses, clotheslines, and other obstacles that can give the illusion of                

safe passage if only a fixed-height horizontal scan were used. Also, low obstacles, such as bricks                

or blocks that should not be driven over, can be interpreted from 3D images but may be missed                  

by simple LIDAR-scan interpretations. Narrow passage that can and should be traversed, such as              

doorways, might get rejected by a conventional image interpretation but accepted by a             

network-based interpretation. Consideration of collisions when rotating a non-circular robot are           

difficult to incorporate explicitly without resorting to a higher-dimensional configuration-space          

mapping, which increases complexity and potential additional programming errors. In contrast,           

the network-based approach makes its evaluations from experience. 
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Figure 5.3 Successful navigation via network-based wall following 

 

6 Conclusion and Future Work 
 

This research compared the performances between a conventional bug algorithm          

approach and a network approach to indoor navigation. For the conventional bug algorithm, a              

controller was created to compute the parameters that enable the robot to successfully navigate in               

a complex environment based on the sensation of walls and other obstacles while keeping a safe                

distance from them. The deep learning approach taken here is a variation on the bug               

wall-following technique. However, instead of composing an explicit algorithm that interprets           

depth-camera data, a Convolutional Neural Network was trained to interpret camera data and             

perform navigation. A motivation for this is that it can be very difficult to compose explicit code                 

that correctly interprets depth-camera information in terms of what is and what is not navigable               

for a non-circular robot. In contrast to writing explicit code for such sensory interpretation, the               

CNN is trained based on examples. Specifically, stored images from dynamic simulation were             

acquired and labelled as “safe” or “unsafe” based on whether a collision did occur a short time                 

later. These examples provided associations that were found to be true, whether or not the               

programmer understood how to interpret the 3D images.  

45 



 
 

The labelled data was automatically generated for 8 days straight. More than 90,000,000             

images were collected for all the labelled data. The trained network achieved an accuracy of               

roughly 98%. The network was deployed in simulation, and the same network processed images              

from three cameras: one forward camera and a left-front and a left-rear camera. Images from               

these three cameras were interpreted simply as “safe” or “unsafe”. An algorithm acted on these               

values to keep the robot following alongside walls and other obstacles, keeping the barriers to the                

left side of the robot.  The algorithm was shown to be effective in complex environments. 

In future work, many extensions and improvements could be performed. Notably, the            

present work did not complete implementation of the “bug 2” algorithm [41]. The premise of               

this algorithm is that a robot is to navigate from point A to point B using the equivalent of GPS                    

and ranging sensor with no a priori information of its environment. To do so, the robot can                 

construct a default path--a straight line in GPS coordinates. As the robot progresses, if it               

encounters an obstacle in its way, it can circulate about the perimeter of the obstacle until it                 

rejoins its original default path, as illustrated in Fig 6.1. 

 

Fig 6.1: bug2 algorithm with M-line 
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Including the M-line in the present work could be accomplished by providing virtual             

“safe” and “unsafe” signals that correspond to treating the M-line as a virtual barrier. With this                

addition, the present navigation algorithm would inherit the maze-solving guarantees of bug            

algorithms. 

In future work, alternative network architectures could be considered as well. For            

example, Long Short-Term Memory might be useful in interpreting sequences of images to             

achieve higher reliability. An important extension would be to test the present results in a               

physical implementation. Prior work has shown that training based on synthetic images can             

perform poorly when operating on real sensory data. However, it has also been shown that               

training data from physical sensors can be augmented with virtual data to achieve good              

performance in practice while dramatically reducing the amount of physical training data            

required.  This should be explored in the present context. 

Another improvement would be simplification of the integration of ROS and           

TensorFlow. Last year TensorFlow created a library in ROS. This feature can be used in ROS                

Kinect where the convolutional network can be invoked and trained in C++ code with the               

built-in TensorFlow library.  
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Figure 6.2 sample code of the integrated TensorFlow function in ROS [26] 

 
The write up remains the same style, but this integration has greatly reduced computation 

time from using TCP portal for network and ROS bridge.  

Finally, as noted earlier, it may be desirable or necessary to modify the steering controller               

to operate more smoothly than switching based on safe/unsafe sensor interpretations. The            

network controller was based on two analogue outputs from the network: ‘safe’ and ‘unsafe’. In               

a sense, ‘safe’ indicates that the sensor image predicts there will be no collision within 0.15                

meters, and ‘unsafe’ indicates a prediction that there will be a collision within 0.15 meters of                

forward travel. However, this information does not provide any context of how far the input               

image is. As a future work, if the network could give three outputs ‘far’, ‘medium’ and ‘near’,                 

then the robot could better adjust its behavior when following the wall. ‘Near’ can be defined as                 

following the wall or getting too close to the wall. ‘Medium’ can be defined as getting away                 

from the wall but still following the wall. ‘Far’ can be defined as either the wall disappearing on                  

the left or the robot is encountering a sharp turning corner. The network setup would be more                 
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complex with the ability of giving three outputs, but this could improve the performance of the                

navigation.  
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