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Abstract

Differential Expression Analysis between Microarray and RNA-seq over

Analytical Methods across Statistical Models

Abstract

by

YUHAO WU

0.2 Abstract

Microarray and RNA-seq are two transcriptomics data types. Comparison between mi-

croarray and RNA-seq was popular in recent research fields. But few works analyzed

both data types on the same sample groups and fewer have discussed whether different

analytical methods or statistical models will impact on the results. To get an insight of

what role analytical method and statistical model play, and also to eliminate variances

that might be caused by data types, we applied microarray and RNA-seq data into 5 an-

alytical methods across 4 statistical models to contrast the similarities and differences.

In this thesis, we processed and transformed raw microarray and RNA-seq data to fit

in 5 different analytical methods across 4 statistical models. We did differential expres-

sion analysis on both data for all methods and evaluated the results. Both data types

showed high consistency in those two methods applying the same model. All statisti-

cal models gave similar detected differentially expressed genes, the extent of similarity

varied basing on specific pairs chosen to be compared. Among all analytical methods,

xi



NBPSeq and NOIseq are the most consistent for microarray while DESeq and baySeq

are the most consistent for RNA-seq. Between data types, RNA-seq gives more detected

differentially expressed genes. Overall, statistical models and data types both impact

greatly on differential analysis results while analytical method seems trivial.

xii
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1 Introduction

1.1 Transcriptomics Data: Microarray and RNA-seq

Among all analyses of genes, gene expression analysis has the potential to be the very

impactful one of them. Gene expression is the process where genetic information is

transcribed from DNA to mRNA then translated to proteins. Transcriptomics, the abil-

ity to measure the sum of the molecules from DNA to mRNA, is growing in the recent

field of bioinformatics. RNA expression data, the most typical data for transcriptomics,

has been widely applied across several research areas. For years, microarray data was

the dominant form of transcriptomics data available for researchers. This changed in

2009 when technological advances made RNA-seq an alternative for microarray data.1

As highlighted in the Literature Review section, several papers have discussed similar

and different features of these two kinds of data types.2 Both data types have pros and

cons.

A microarray is a laboratory tool used to detect the expression of thousands of genes

at the same time. DNA microarrays are microscope slides printed with thousands of tiny

spots in defined positions, where each spot contains a known DNA sequence or gene.3

Therefore microarrays can only detect pre-assigned printed sequences available from
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commercial companies. Additional issues with microarray also include cross-hybridization

artifacts and poor quantification of lowly and highly expressed genes.4

RNA-sequencing, short for RNA-seq, is a technique that can examine the quantity

and sequences of RNA in a sample using next generation sequencing.5 Typically this

technique detects short segments of RNA, which may not be informative or cause errors,

so it requires quality control, which can be complicated. Since most of the sequences

have fairly low counts, dealing with them is a difficult task. Furthermore, different ap-

proaches applied to read mapping or alignment may show different detected gene types

and expression levels.6 Nookaew et al7 compared de novo assembly and reference map-

ping in many aspects. Their conclusion was that in general they are in good agreement.

The advantage is that RNA-seq is not limited to pre-assigned genes, however the expense

of RNA-seq limits its full utility.

Cost is the primary reason researchers are limited from obtaining both microarray

data and RNA-seq data, not to mention the redundancy and inefficiency, so one is al-

ways enough.8 However, some results can be driven by the technology. For example,

unlike microarray, RNA-Seq technique does not require species- or transcript-specific

probes, so it can detect novel transcripts. This can lead to differences but how signifi-

cant these differences can be are still unknown to us. Few papers have clearly discussed

the differences in performance when both data types are used in one experiment.

1.2 Statistical Methods for Transcriptomics

Apart from different kinds of data types multiple statistical approaches, including the

underlying model and the method, have emerged during the last decade.9 Many re-

searchers have proposed analytical approaches with varying underlying models, and
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methods, to analyze expression data for purposes like finding differentially expressed

genes. However, those approaches sometimes give different outcomes. Determining

which method gives better results would be very helpful for future studies of gene ex-

pression. The statistical methods involved in this thesis will be further explained in the

Methods section.

Yet detailed difference analysis on both microarray and RNA-seq data using different

analytical methods is absent. Filling this scientific gap can give direction choosing on a

method and data type for further research projects of gene expression analysis. In the

Literature Review section, we will simply introduce what other researchers have done in

the related scientific fields and why these works are valuable to our research. According

to the literature review, microarray and RNA-seq had been compared in many aspects:

mechanics, advantages and disadvantages and accuracy in assessing expression levels.

However, their consistency in differential expression analysis has never been consid-

ered. Therefore, our aim is to reveal the consistency between microarray and RNA-seq

data by conducting experiments using different methods.

In the Method chapter, we will briefly introduce the mechanics of each method we

use in the experiments. Since our focus is not how each method works, but how mi-

croarray and RNA-seq data perform on different methods, we won’t explain the methods

across all details.

1.3 Following Experiments

In the Experimental chapter and Results chapter we will compare results across three

aspects: data types, underlying statistical model and between methods using the same
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model. Our aim is to prove that the comparison between data types will show that mi-

croarray and RNA-seq are consistent in highly differentially expressed genes, the com-

parison among models will give different levels of consistency and those two methods

in the same model will have a high consistency.

For the experimental designs, we utilize flow chart in Figure 1.1. The raw data was

generated by Trapnell et al10. The original experiment used lung fibroblasts and the

difference between two groups is the transcription factor HOXA1 knock-down. It was

designed for differential analysis of HOXA1 in adult cells at isoforms resolution by RNA-

seq. We use their microarray and RNA-seq data to do differential analysis on five differ-

ent methods, belonging to four statistical models. The three aspects of comparison we

focus on are shown in the flow chart.

RNA-seqMicroarray

DESeq NBPSeq DEGseq baySeq NOISeq

Negative 
Binomial

Poisson Bayes
Non-

parametric

Sample

Data types

Models

Methods

Experimental Flowchart

Figure 1.1. Experiment Flow Chart
Mainly focused differential analysis result comparisons in three aspects:
between data types microarray and RNA-seq; between 4 different statis-
tical models; between analytical methods using the same or different sta-
tistical models
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In general, we will first assess sample gene expression levels and do differential anal-

ysis on both microarray and RNA-seq and compare the results. Then we will apply 4

statistical models on both data types to see the similarities and differences. At last, con-

sistency between analytical methods using the same or different statistical models will

be measured. The detailed experimental design will be discussed in Experimental sec-

tion.
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2 Literature Review

Publications in related fields will always reveal research trends. Studying what other

scholars have achieved can help us understand what happened and determine the next

steps. In this chapter, we will discuss about what we can get from differential expression

analysis, what other researchers have achieved in comparing microarray and RNA-seq

and what statistical methods and normalization we could use to complete the compar-

ison.

2.1 Gene Differential Expression Analysis

Gene differential analysis has been widely used in transcriptomics studies. When two

groups of samples show different features, their genes will most likely be significantly

differentially expressed. In contrast to other analyses such as expression analysis or clus-

ter analysis, differential analysis studies those differentially expressed genes between

two conditions. The differentially expressed genes may solve the secret why the two

groups show different features. Review papers11 in the last decade talked about dif-

ferential expression analysis in both microarray and RNA-seq, while up-to-date review

papers12 focus more on RNA-seq.
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2.2 Microarray and RNA-seq

Mantione et al13 compared microarray and RNA-seq in the perspective of how both

techniques actually work. Their conclusion was that RNA-seq will eventually be used

more routinely than microarray, but right now the techniques can be complementary to

each other. Their work is an introduction and review of microarray and RNA-seq work-

flow and sample preparations. It focused on comparing the price and reliability but

lacks experiments to support their point of view. We can see that comparison between

microarray and RNA-seq has raised interest from researchers but solid experiments are

needed to obtain a better insight of the differences.

Some researchers noticed and have talked about differences between RNA-seq and

microarray when doing transcriptome profiling. For example, Zhao et al14 performed

both RNA-seq and microarray analyses on a sample taken in six different time points.

It claimed that microarray and RNA-seq showed a high correlation between gene ex-

pression profiles generated by the two platforms. RNA-seq was superior in detecting

low abundance transcripts, differentiating biologically critical isoforms, and allowing

the identification of genetic variants. What they have tested are only gene expression

level for six time-tags, it lacks comparison between sample groups, which might yield a

different result.

The work by Fu et al8 estimated accuracy of RNA-seq and microarrays with pro-

teomics. They first measured mRNA expression levels from both microarray and RNA-

seq data and observed agreement between them. Then they measured mRNA expres-

sion levels from protein data using 2D LC-MS/MS analysis. The results from protein

data were their “golden standard” to estimate microarray and RNA-seq absolute mRNA
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expression levels measurement accuracy. They brought a brilliant idea by using pro-

teomics data as the “golden standard” when comparing microarray and RNA-seq in

transcriptomics. It is novel to estimate accuracy using data from different sources. But

still, their choice of a “golden standard” makes the reliability controversial. Since pro-

teomics and transcriptomics provide data from different stages of gene transcription

and translation, the respective expression analysis result can be a kind of validation, but

using results from proteomics data as a golden standard for transcriptomics data seems

unconvincing.

As shown in Castillo et al15, microarray data can be integrated with RNA-seq data.

This work used heterogeneous data from microarrays and RNA-seq technologies and

implemented a new classification and diagnosis tool. This work gives credit to com-

bining microarray and RNA-seq data in differential expression analysis. However, this

integration needs preparation. According to Babu et al16 Chapter 11, An Introduction

to Microarray Data Analysis, the data from a microarray experiment requires transfor-

mation and normalization before analyses. Usually after the experiments we can get

signals and intensities for the predesigned probes. But the raw intensities for probes is

not exactly the same as the raw counts for genes, what we can get from RNA-sequencing.

Since the statistical methods we will use are all originally designed for RNA-seq, raw in-

tensities from microarray cannot be directly used. In order to get both data to work for

the same models, we will need quality control, specifically transformation and normal-

ization. This process can be considered as a preparation for microarray data. Babu et

al16 has detailed steps of converting signal into intensity and we can reverse those steps

to get "raw counts" for the probes. After all the transformation and normalization, mi-

croarray data can now fit into statistical models.
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Though microarray and RNA-seq data can be integrated, their data distributions are

different. Most of the time, intensity of microarray, especially after log fold change,

follows a normal distribution. While raw count from RNA-seq usually follows discrete

probability distributions like a binomial distribution, negative binomial distribution or

Poisson distribution. In most cases, these distributions have different features, but un-

der some certain circumstances they can be approximated. For example, normal ap-

proximation to a negative binomial distribution is valid when the number of required

successes, s, is large, and the probability of success, p, is neither very small nor very large.

The normal distribution can be used as an approximation to the binomial distribution

and Poisson distribution as well. Most of the time, the processed data may not strictly

follow the distributions the models assumed but this doesn’t influence model robust-

ness significantly. Work by Lu et al17 shows that an assumption of a negative binomial

distribution can be robust even if the data are not truly negative binomially distributed.

2.3 Statistical Models and Analytical Methods

The review paper by Huang et al6 listed the most up-to-date statistical models and an-

alytical methods and reviewed how each model fits RNA-seq data. This paper listed 5

different models, respectively Poisson, negative binomial, beta binomial, Bayesian and

empirical Bayesian and Non-parametric. Huang et al6 collected different tools that can

be used in differential expression analysis for RNA-seq.

In this study we will apply models using Poisson distribution and negative binomial

distribution. A Poisson distribution is a discrete probability distribution that expresses

the probability of a given number of events occurring in a fixed interval of time or space

if these events occur with a known constant rate and independently of the time since the
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last event18. A negative binomial distribution is a discrete probability distribution of the

number of successes in a sequence of independent and identically distributed Bernoulli

trials before a specified number of failures occurs.

2.4 Normalization

Normalization sometimes plays a significant role in differential expression analyses. As

mentioned above, normalization is required for microarray, it is also crucial for RNA-

seq. Normalization methods can remove bias, as Kreil et al19 demostrated by compar-

ing differential protein expression analysis results using different normalization meth-

ods. Work by Bullard et al20 evaluated various normalization techniques and found that

more general quantile-based procedures yield much better concordance with data and

are hopefully more robust than normalization by a single housekeeping gene. Further-

more, Maza et al21 revealed that bias due to the relative size of transcriptomes leads to

poor estimations of ratios of gene expressions, and consequently to biased differential

expression analysis. From those works we can tell that it’s necessary to normalize data

before making comparisons but normalization methods won’t make significant differ-

ence.
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3 Methods

Work by Trapnell et al10 provided the inspiration to investigate the differences and

similarities in all three aspects. Their work was to present Cuffdiff 2, an algorithm that

estimates expression at transcript-level resolution and controls for variability evident

across replicate libraries. The experiment they generated was designed for differential

analysis of HOXA1 in adult cells at isoform resolution. Their original purpose was to

prove that Cuffdiff 2 performs robust differential analysis in RNA-seq experiments at

transcript resolution, revealing a layer of regulation not readily observable with other

high-throughput technologies. Although their purpose was different from ours, their

raw data generated from the experiments can be directly used for differential analysis.

In the following part of this chapter, we will introduce the methods involved in accom-

plishing differential analysis.

All the experiment designs follow the flowchart in Figure 1.1. Our experiment fo-

cuses on comparisons across three aspects: data types, underlying statistical model and

between analytical methods using the same statistical model. The raw data was gen-

erated by Trapnell et al10. Their original experiment used lung fibroblasts and the dif-

ference between two groups is the transcription factor HOXA1 knock-down. It was de-

signed for differential analysis of HOXA1 in adult cells at isoform resolution by RNA-Seq.
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The whole experiment process is shown in Figure 3.1. The raw data from Illumina

and Agilent platforms are stored in NCBI databases. We extracted raw data and pro-

cessed into count matrices to fit into differential analyses methods. Green icons repre-

sent platforms, blue for databases, pink for aligning tools, cyan for intermediate data,

yellow for differential analyses methods and red for input and output data.

NCBI-Assembly GRch38.p12
Illumina Miseq

Illumina Hiseq

Short readsNCBI-SRA

HISAT2 Raw counts

Cufflinks

SAM tools

Count matrix

Cuffdiff

Mapping

DESeq

NBPSeq

DEGseq

baySeq

NOISeq

Differentially 
expressed genes

NCBI-GEO
Expression 

ratio
Agilent Transformation

Add 
annotation

Sort

Figure 3.1. Experiment Design Flow Chart
The flow chart demonstrated how raw data are extracted, processed into
count matrices and fit into analytical methods

3.1 Platforms

All biological experiments were conducted by Trapnell et al10, and we evaluated data

generated by those experiments. The platforms they use to generate data are briefly

introduced in the following sections.

3.1.1 Microarray Platform

The platform for assaying microarray gene expression data was Agilent. Agilent Gene

Expression Microarray Platform includes whole transcriptome gene expression for al-

most 30 different species, exon microarrays to analyze splicing variants and expression
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microarrays with comprehensive content. This platform also offers all reagents needed

to successfully process microarrays, delivering reliable and reproducible results. The

probe used is Agilent-028004 SurePrint G3 Human GE 8x60K Microarray. The result ma-

trix is a 164 by 384 array.

3.1.2 RNA-seq Platforms

There are several platforms for RNA-seq and the mostly used ones are Illumina. In this

thesis we will use RNA-seq data from both Illumina MiSeq and Illumina HiSeq. MiSeq

focused applications such as targeted resequencing, metagenomics, small genome se-

quencing, targeted gene expression profiling, and more. MiSeq reagents enable up to 15

Gb of output with 25 million sequencing reads and 2 × 300 bp read lengths. The HiSeq

2500 System is a powerful high-throughput sequencing system. High-quality data using

proven Illumina SBS chemistry has made it the instrument of choice for major genome

centers and research institutions throughout the world.

3.2 Quality Control

3.2.1 Transformation for Microarray

We can get access to raw intensities and expression levels from GEO. As mentioned

above in literature review, expression level is log2 of normalized signal intensity ratio:

Ek = log2(T ′
k )

where Ek is expression level of gene k and T ′
k is the normalized expression ratio Tk of

gene k, which is:

Tk = Rk

Gk
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where Rk represents the spot intensity metric for the test sample and Gk represent the

spot intensity metric for the reference sample. In order to eliminate the influence of

background intensity, the spot intensity is replaced by background subtracted median

value then the median expression ratio for a given spot is:

Tmedi an = R spot
medi an −Rbackg r ound

medi an

G spot
medi an −Gbackg r ound

medi an

where R spot
medi an and Rbackg r ound

medi an are the median intensity values for the spot and back-

ground respectively, for the test sample. The normalization factor can be calculated as:

Ntot al =
∑Ng ene−set

k=1 Rk∑Ng ene−set

k=1 Gk

so that the normalized expression ratio becomes:

T ′
k = Rk

Gk ×Ntot al
= Tk

Ntot al

In order to use absolute value of expression to fit models designed for count matrix from

RNA-seq data, we get:

Rspot = 2Ek ×Ntot al × (Gspot −Gbackg r ound )+Rbackg r ound

Since we know the starting amount of mRNA, we can make use of the absolute value.

3.2.2 Aligner for RNA-seq

HISAT222 is a fast and sensitive alignment program for mapping next-generation se-

quencing reads (both DNA and RNA) to a population of human genomes (as well as to

a single reference genome). Based on an extension of BWT, Burrows–Wheeler Trans-

form23, for graphs, it is a graph FM index.24 Although being mentioned a lot in many

previous publications, TopHat25, an efficient read-mapping algorithm designed to align



Methods 15

reads from an RNA-seq experiment to a reference genome, is almost replaced by HISAT2.

The reference genome is Genome Reference Consortium Human Build 38 patch release

12 (GRCh38.p12). HISAT2 has mapping quality control functions built in so what we

need to do is to set parameters and let the alignment tool to filter poorly mapped reads.

3.3 Differential Expression Analysis Methods

The methods designed to be used in the experiments are all for differential expression

analysis for RNA-seq originally6. They can be used for microarray data as well if proper

normalization techniques are applied. The normalization methods may vary according

to models. In the following sections we will get a general idea about the five statistical

methods and other methods used in the experiment.

3.3.1 Statistical Models and Analytical Methods

The models are: Poisson, negative binomial, beta binomial, Bayesian and empirical

Bayesian and non-parametric. We will use DEGseq 26, N BPSeq 27, BBSeq 28, baySeq 29

and NOI seq 24 respectively. BBSeq lacks maintenance and requires R version older than

3.0, making it not suitable for comparison. Thus, we added DESeq 30, which uses nega-

tive binomial as a data distribution model, into comparison. Using two analytical meth-

ods in one statistical model can yield more comparison information within a statistical

model.

DEGseq. DEGseq is a R package for identifying differentially expressed genes from RNA-

seq data. It supports raw read counts or normalized gene expression values and assumes

a Poisson distribution. It uses Fisher’s exact test and likelihood ratio test to identify dif-

ferentially expressed genes.
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NBPSeq. NBPSeq uses RNA-seq data. It believes that commonly used probability distri-

butions, such as binomial or Poisson, cannot appropriately model the count variability

in RNA-seq data due to over-dispersion. It introduces an additional parameter to allow

the dispersion to depend on the mean. It uses an adapted exact test proposed by Robin-

son and Smyth31 to get differentially expressed genes and proved to be robust even when

data departs from model assumptions.

DESeq. DESeq is a pretty mature algorithm for detection of differentially expressed genes

using count data from RNA-seq. The algorithm detects differential expression by use of

the negative binomial distribution. The count data needs to be normalized according to

the effective library size. The tests it utilizes are exact test and likelihood ratio test.

baySeq. The algorithm baySeq assumes a negative binomial distribution for the data

and derives an empirically determined prior distribution from the entire dataset. Bay-

Seq uses an empirical Bayes approach to detect patterns of differential expression. The

testing strategy is to first estimate an empirical distribution on the parameters of the

negative binomial distribution, then evaluate posterior probability for inference.

NOIseq. NOISeq is a non-parametric approach for the differential expression analysis

of RNA-seq data. NOISeq creates a null or noise distribution of count changes by com-

paring the number of reads of each gene in samples within the same condition. This

reference distribution is then used to assess whether the change in count number be-

tween two conditions for a given gene is likely to be part of the noise or represents a true

differential expression.

3.3.2 Gene Clustering

There are plenty of novel machine learning methods we can choose for clustering the

detected differentially expressed genes.32 Since we care more about correlations among
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those genes, PCA, principal component analysis33, will be used to do the clustering.

PCA is a statistical procedure that uses an orthogonal transformation which converts a

set of correlated variables to a set of uncorrelated variables. PCA is a widely used tool in

exploratory data analysis and in machine learning for predictive models. Using PCA for

gene clustering is reliable34, and the results can be further interpreted to find biological

meanings.

3.3.3 Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) (also functional enrichment analysis) is a method

to identify classes of genes or proteins that are over-represented in a large set of genes

or proteins, and may have an association with disease phenotypes. The method uses

statistical approaches to identify significantly enriched or depleted groups of genes.

Transcriptomics technologies and proteomics results often identify thousands of genes

which are used for the analysis.35 The tool we used in the thesis is PANTHER36 on Gene

Ontology.

3.4 Evaluation

When comparing performances between two methods, we will use both Pearson cor-

relation coefficient and Spearman’s rank correlation coefficient. The Pearson correla-

tion coefficient is a measure of the linear correlation between two variables. Spear-

man’s rank correlation coefficient can be used to assess monotonic relationships. When

p-values from two methods are compared, Pearson correlation coefficient is the best
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choice. When p-values are compared to likelihoods, Spearman’s rank correlation coef-

ficient would be a better choice. To evaluate the performances of clustering, mutual

information will be calculated.37
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4 Experimental

In this chapter we perform differential expression analysis for both microarray and

RNA-seq data applying 5 different analytical methods: DESeq 30, N BPSeq 27, DEGseq 26,

baySeq 29, and NOI Seq 24. In order to standardize our comparison of analytical meth-

ods we processed publicly available microarray and RNA-seq expression data.

4.1 Data description

The microarray and RNA-seq expression data is from GSE3770410 and is publicly avail-

able. Briefly, the primary objective of the original study was to assess the impact of a

transcription factor HOXA1 knock-down in lung fibroblasts. The lung fibroblasts were

transfected with either a HOXA1 directed siRNA pool or a scramble non-targeting siRNA

control. The samples were divided into two groups according to the treatment after

HOXA1 knockdown. One is named HOX and the other SCR for the HOXA1 directed

siRNA or the scramble non-targeting siRNA that transfected to the cells. RNA was col-

lected 48 hours after transfection and changes in gene expression were assayed using

Agilent microarrays and high throughput RNA sequencing.
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The datasets are open source enabling access to raw data from GEO and SRA. The

probe used is Agilent-028004 SurePrint G3 Human GE 8x60K microarray. High through-

put RNA sequencing was performed on Illumina MiSeq and HiSeq. The following anal-

ysis details are described in the following paragraphs.

For each knockdown/control 200 ng of total RNA was amplified and labeled with

CY3 using the Agilent Low Input Quick Amp Labeling One Color Kits and hybridized to

Agilent SurePrint G3 Gene Expression Microarrays as per manufacturer’s specifications.

Probe intensities were extracted using the Feature Extraction Software (GE1 Sep09 pro-

tocol).

For each RNA sample, they prepared Illumina mRNA-seq libraries using the TruSeq

RNA kit (version 1, rev A), using 1 µg of total RNA and prepared according to manu-

facturer’s instruction. For HiSeq 2000 sequencing, eight libraries were pooled per se-

quencing lane (including libraries not described in this manuscript). One anti-HOXA1

siRNA library and one scrambled control library were pooled in each of three sequenc-

ing lanes, resulting in each of the six libraries discussed here being sequenced with 30

million reads. Human lung fibroblast reads are available at GEO accession GSE37704.

4.2 Data Pre-procession

In order to fairly compare microarray and RNA-seq, the same statistical model will be

applied to each dataset thus eliminating variance caused by data distribution assump-

tions. As discussed above, models initially designed for RNA-seq will be applied to both

datasets. Most of the software designed for RNA-seq require input format as gene-count
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matrices. Since microarrays fail to provide raw matrix equivalents of gene-count ma-

trices in RNA-seq, reasonable transformation is required for the raw data. As for RNA-

seq data, we mapped the reads using alignment tools and underwent counting applying

counting tools.

4.2.1 Microarray data transformation

The microarray raw data from GEO includes raw intensities and normalized expression

levels. In general, gene differential expression analysis first transfers raw intensities to

an expression ratio, then into a normalized expression ratio. Since models designed for

RNA-seq will be applied to the microarray data, and these models typically use gene-

count matrices, our aim is to transfer the raw intensities into absolute expression levels.

This approach has been discussed in the Methods chapter and the whole process is im-

plemented in R.

4.2.2 RNA-seq Alignment and Counting

The RNA-seq raw data is from SRA. We used H I S AT 222 as the alignment tool and Cu f f l i nks 38

as the counting tool. H I S AT 2 is computationally fast and sensitive aligning program for

RNA-seq and it has nearly replaced the mapping tool TopH at , which previously was the

dominant aligner. H I S AT 2 supports SRA accession thus removing the need to directly

download raw data. We used Genome Reference Consortium Human Build 38 patch re-

lease 12 (GRCh38.p12) as the reference genome. The output file was a sam file so we

used Sam tools39 to sort the mapped reads and then applied Cufflinks to count mapped

reads. Annotations were added to the results using Cu f f di f f 40, a method from Cuf-

flinks.
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4.3 Differential Expression Analysis

Since a major objective is to assess performance by different models applying five meth-

ods, a differential expression analysis for both data types will be performed. All five

methods are implemented in the statistical program R. Common quality control and

data normalization functions have been applied. The quality control and normalization

skills include but not limited to: quantile normalization, low-count filtering, library size

factor normalization, batch size normalization and gene length normalization. To min-

imize variability arising from differing normalization skills applied to the data, we opted

to only normalize library sizes which can be implemented by all methods.

The two sample groups HOX and SCR were divided according to the treatment after

HOXA1 knockdown. The detailed differences between them has been discussed. To se-

lect differentially expressed genes, we set p-value and q-value thresholds both smaller

than 0.05. A smaller p-value threshold will limit false positive discoveries, thus detecting

differentially expressed genes with higher proportion of true positives, but in the mean-

while giving more false negatives. While a smaller q-value threshold will provide a small

number of false negatives and ensure a smaller false positive rate. DESeq also provides

adjusted p-value, p-adj value, where the threshold was set to 0.05 as well. For Bayesian

models using the likelihood to identify differentially expressed genes, we chose a cut-off

probability value of 0.9.

4.4 Unify Annotations

Following the completion of the differential expression analysis, the microarray results

were annotated using probe IDs while RNA-seq utilized Ensembl IDs. Unfortunately,
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the annotated IDs across the two data types are neither in the same category system nor

directly comparable. The microarray chips used in the experiment was Agilent-028004

SurePrint G3 Human GE 8x60K, where every probe is capable of detecting unique se-

quences consisting of 60 nucleotides. However, the size of a gene is commonly over

1,000 base pairs long. Thus, a certain sequence on a probe may be mapped to several

isoforms, and a gene can occasionally contain sequences that can be found on multi-

ple probes. Most of the time, one probe can be mapped to several isoforms but will fi-

nally be mapped to a certain gene. For example, as shown in Figure 4.1, we can see that

A_33_P3212630 can be mapped to many Ensembl genes, but all of them are members

from FAM90 family.

Figure 4.1. Probe ID mapping to Ensembl ID example screenshot

To interpret the detected differentially expressed genes from microarray and RNA-

seq and make comparisons in the following studies, unifying annotations is essential.

Mapping probe IDs to Gene IDs is one way of unifying annotations. The BiomaRt41
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package provides function mapping probe IDs to Ensembl IDs. After the mapping pro-

cess, probe IDs will be mapped and converted to Ensembl gene IDs, all using annota-

tions from the same system. Until that can we analyze results from different data types.
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5 Results

Differential expression analysis generates a list of differentially expressed genes and

their statistical significance contrasting groups defined by treatment, exposure, or cell

type, just to name a few. This chapter provides an overview of the analytical results and

the consistency between each statistical method applying the same model across data

types.

5.1 Differentially Expressed Genes

All the differentially expressed genes detected are listed according to the order of p-value

or likelihood in a supplementary file. In statistical hypothesis testing, the probability

value (p-value) is the probability of obtaining test results at least as extreme as the results

actually observed during the test, assuming the null hypothesis is correct. In general,

applying a p-value threshold of 0.05 indicates statistical significance.

The Human Genome Project estimated that humans have between 20,000 and 25,000

genes.42 In this section, we quantify the number of differentially expressed genes identi-

fied by several methodological approaches. The counts of differentially expressed genes

by statistical models and analytical methods are presented in Table 5.1 (p<0.05). It is ob-

vious that by data type, more differently expressed genes were detected using RNA-seq
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than microarray assays. Specifically, for RNA-seq, 9.1%, 5,517 from a total of 60,658 dif-

ferent Ensembl gene/transcripts were detected differentially expressed by HOXA1 knock-

down. On the other hand, microarray data detected about 1.6% from all probes. How-

ever different probes can map to the same gene. In the original experiment, the microar-

ray chips used was Agilent-028004 SurePrint G3 Human GE 8x60K, where every probe is

capable of detecting unique sequences with 60 nucleotides. The sequence on one probe

can be mapped to multiple isoforms and one gene can occasionally contain multiple se-

quences on different probes. Although we detected more than 1000 probes, a portion of

the probes map to the same gene yielding 845 distinct genes. From Table 5.1 we also

can see that, across analytical methods, DEGseq gives the most detected genes (534) for

microarray and baySeq (4845) for RNA-seq while NOIseq gives the least detected genes

for both data types (187 and 523).

Table 5.1. Differentially expressed gene (p-value < 0.05) counts and per-
centages for all statistical models and analytical methods. The union and
overlapping portion between data types are also included.

Statistical
Model

Analytical
Method

Differentially Expressed
Gene Count

Sum
(Union)

Overlap/Percentage
(Intersection)

Microarray RNA-seq
Negative
Binomial

DESeq 210 4631 4662 179 / 3.8%
NBPSeq 528 1414 1654 288 / 17.4%

Poisson DEGseq 534 3122 3357 299 / 8.9%
Bayesian and
Empirical Bayesian

baySeq 495 4705 4845 355 / 7.3%

Non-parametric NOIseq 187 523 581 129 / 22.2%
Sum (Union) 845 5517 5845 517 / 8.8%

The overlapping genes between data types are included in supplementary files. Over-

lapping genes across statistical models are presented in Venn diagrams in Figure 5.1.

The figure highlights that across statistical models, most detected differentially expressed

genes can be found in at least two models. The negative binomial and Bayesian models
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detected the most genes and shared most of their findings. Non-parametric detected

the least but most of its findings can be found in other models. All models show con-

sistency to others to some extent, exact consistency levels are discussed in details in the

following sections.
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Figure 5.1. Intersection Venn diagrams: (a) DEG counts for Microarray in
all statistical models (b) DEG counts for RNA-seq in all statistical models

5.2 Consistency of Analytical Methods across a Statistical Model

In order to understand how two analytical methods applying the same statistical model

either differ or remain consistent, we compared the results from DESeq and NBPSeq.

Both analytical methods assume a negative binomial model. As shown in Table 5.2,

37.0% and 27.6% of the genes were found by both approaches in the microarray and

RNA-seq data. For those differentially expressed genes detected by one but not both

analytical methods, NBPSeq detected a greater portion of them (61.5%) for microarray

compared to DESeq (47%). The reverse was observed for RNA-seq data where NBPSeq

only detected 0.5% significant genes compared to 72.0% by DESeq. From Table 5.2, we

observed that for both data types, the detected differentially expressed genes from one
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analytical method is almost a subset of the results from the other analytical method.

Specifically, for microarray, DESeq shares 96.2% of its findings with NBPSeq; for RNA-

seq, NBPSeq shares 98.3% of its findings with DESeq. Therefore, we can draw a con-

clusion that two analytical methods in one statistical model basically yields consistent

results, yet with different resolutions.

Table 5.2. Differentially expressed gene counts and percentage for DESeq
and NBPSeq, both analytical methods using negative binomial distribu-
tion as statistical model

Model Method
DEG count/percentage
Microarray RNA-seq

Negative Binomial
DESeq only 8 3348
both 202 1283
NBPSeq only 336 22

Sum 546 4653

The dispersion of the average gene count (after thinning) and the estimated disper-

sion is plotted in Figure 5.2 and Figure 5.3. The figure panels include data types mi-

croarray and RNA-seq each analyzed with the analytical methods DESeq and NBPSeq.

For NBPSeq, the results are divided into groups HOX and SCR. A fitted line (red) of the

dispersion values is presented.

According to Figure 5.2, we can see that both analytical methods show similar dis-

persion, comparing figure panels (a) vs (c) and (b) vs (d), while the differences between

data types, microarray and RNA-seq, are very apparent comparing figure panels (a) vs

(b) and (c) vs (d). Specifically, fitted average dispersion for microarray are all in the range

of 0.1 to 1, regardless of analytical methods. For RNA-seq, the fitted dispersion (red line)

ranges from 0.001 to 1, having a greater inclination than microarray.

Similarly, according to Figure 5.3, variances are similar between the HOX and SCR

groups, comparing figure panels (a) vs (b) and (c) vs (d), but different between data
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(a) Microarray DESeq (b) RNA-seq DESeq

(c) Microarray NBPSeq HOX (d) RNA-seq NBPSeq HOX

(e) Microarray NBPSeq SCR (f) RNA-seq NBPSeq SCR

Figure 5.2. Empirical(dots) and fitted(line) dispersion values plotted
against mean of normalized counts for combination of analytical meth-
ods, data types and groups: (a)DESeq Microarray (b)DESeq RNA-seq
(c) NBPSeq Microarray group HOX (d) NBPSeq RNA-seq group HOX (e)
NBPSeq Microarray group SCR (f) NBPSeq RNA-seq group SCR
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(a) (b)

(c) (d)

Figure 5.3. NBPSeq mean variance plotted against average gene count:
(a) Microarray group HOX (b) Microarray group SCR (c) RNA-seq group
HOX (d) RNA-seq group SCR

types, comparing figure panels (a) vs (c) and (b) vs (d). Overall, gene counts from RNA-

seq are less dispersed than microarray.

Figure 5.4 highlights that microarray expression levels are normally distributed in

both DESeq and NBPSeq. The x coordinate of the qq-plot is the theoretical distribution

of the normal distribution and the y coordinate represents the observed distribution.

In addition, we plotted the p-value histogram in Figure 5.5 to show the p-value fre-

quency by data type for DESeq. The x-axis is the p-values from microarray (panel a)

and RNA-seq (panel b) and the y-axis is respective frequency. Both plots show high
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(a) DESeq (b) NBPSeq

Figure 5.4. Normality check for microarray expression levels. X coordi-
nate is for theoretical distribution and y coordinate is for observed distri-
bution.

frequency where p-value equals 1 and close to 0, representing totally insignificant and

highly significant genes. The p-value distribution also has similar middle parts between

data types. This pattern indicates that differential analyses usually determine the ma-

jority of the genes either totally insignificant or highly significant.

(a) Microarray (b) RNA-seq

Figure 5.5. Histogram of p-value for DESeq. The frequency are obviously
not normally distributed.
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In order to contrast the consistency between DESeq and NBPSeq when expression

levels are normally distributed, the Pearson correlation was applied. The Pearson cor-

relation coefficient of expression level between method NBPSeq and DESeq for both

microarray and RNA-seq are plotted. In Figure 5.6, DEseq’s expression level was plotted

against NBPSeq’s expression level. We should notice that the scales between both plots

are different. The Pearson correlations for p-values are 0.82 for microarray and 0.54 for

RNA-seq (See Table 5.3 and 5.5).

(a) Microarray (b) RNA-seq

Figure 5.6. NBPSeq vs DESeq expression level Pearson correlation. The
coefficient between NBPSeq and DESeq for microarray is 0.98, for RNA-
seq is 1.0. Should we notice that the scales between plots are different.

The Pearson correlation coefficient for p-value after log transformation has similar

results, being 0.67 and 0.79 respectively. It should be noted that Pearson correlation

coefficient measures correlation between two sets of values, so it will change after log

transformation. All normality checking plots and Pearson correlation plots are included

in the supplementary files. According to the results, DESeq and NBPSeq gave highly

correlated gene expression levels and p-values, indicating that they are showing high

consistency in measuring expression levels.
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Similarly, we plotted minus log of p-values from NBPSeq against DESeq in Figure 5.7.

For a better view, we removed top 20 statistically significant findings, the original plots

can be seen in the supplementary files. The Spearman’s rank correlation between them

is 0.81 for microarray, 0.53 for RNA-seq (See Table 5.3 and 5.5). Using minus log trans-

formation gives the same correlation from using p-value, because this transformation

will not change ranks. The figures show that for both microarray and RNA-seq, NBPSeq

and DESeq are highly consistent in assessing p-values.

(a) Microarray (b) RNA-seq

Figure 5.7. NBPSeq vs DESeq minus log of p-value Spearman’s correla-
tion (removing top 20 findings). The coefficient between NBPSeq and
DESeq for microarray is 0.81, for RNA-seq is 0.53.

We care more about those statistically significant differentially expressed genes, so

we set p-value cut-off as 0.1, the p-values from DESeq and NBPSeq are plotted in Fig-

ure 5.8. The gene counts for microarray is 3984 in the upper left, 3853 in the bottom

left and 425 in the bottom right. This indicates most detected genes from DESeq can

be found in NBPSeq while only half of the genes detected by NBPSeq can be found in

DESeq. Conversely, the results for RNA-seq indicate the opposite. There are 165 genes
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in the upper left area, 3525 in the bottom left and 3280 in the bottom right. We are un-

able to determine which analytical method is better without a “golden standard”, but it

is clear that DESeq and NBPSeq are showing high consistency in both data types.

(a) Microarray (b) RNA-seq

Figure 5.8. NBPSeq vs DESeq p-value < 0.1 Spearman’s correlation.
Gene counts: (a) 3984 upper left, 3853 bottom left, 425bottom right (b)
165 upper left, 3525 bottom left, 3280 bottom right

However, for RNA-seq we removed points where their p-values are 1 in one method

but smaller than 0.1 in another. This quality control removes 580 points in the upper

left area and 11 points in the bottom right, thus changing the correlation from 0.65 to

0.77 (See supplementary files). This partially explains the observed Spearman rank cor-

relation difference between microarray and RNA-seq (0.81 and 0.53), that DESeq and

NBPSeq consistently detect significant genes but are not consistent in assessing those

insignificant genes, while microarray is consistent all the time.
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5.3 Consistency among Statistical Models

5.3.1 Microarray

We presented MA plots from all analytical methods for microarray in Figure 5.9. MA

plots visualize the differential expression of genes by comparing the mean of normalized

counts (x-axis) and the log fold change(y-axis). By comparing log ratio (M) and mean

average (A), we have a general idea of the impact and the statistical significance of the

data. The red dots are those differentially expressed and statistically significant genes,

threshold being smaller than 0.05 for p-values and greater than 0.9 for likelihood. As

indicated in the figures, different methods yield different results, in both expression level

assessment and differentially expressed genes detected.

But revealing how different their results are relying on further analysis. Here, be-

sides Pearson correlation coefficient, we applied Spearman’s rank correlation coefficient

which assess monotonic relationships.

See Table 5.3. Pearson correlation coefficients and Spearman’s rank correlations

were calculated between methods. DESeq, NBPSeq and DEGseq use p-value, baySeq

and NOIseq use likelihood. Since some methods use p-value as criteria for selecting dif-

ferentially expressed genes while some use likelihood, Pearson correlation coefficient

may not work well to show consistency between models using different criteria. In case

Pearson correlation coefficient performs poorly, we applied Spearman’s rank correlation

to assess correlations between analytical methods. From the table we can see similar re-

sults from both correlation coefficients. For comparison between models using different

selection criteria, mutual information in Table 5.4 would be more precise.
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(a) DESeq (b) NBPSeq

(c) DEGseq (d) baySeq

(e) NOIseq

Figure 5.9. M(log ratio)A(mean average)plots for microarray from analyt-
ical methods: (a) DESeq (b)NBPSeq (c) DEGseq (d) baySeq (e) NOIseq.
Red dots are those detected differentially expressed genes. Threshold for
p-value <0.05, likelihood > 0.9



Results 37

Table 5.3. Microarray Pearson correlation coefficient / Spearman’s rank
correlation between analytical methods.

NBPSeq DEGseq baySeq NOIseq
DESeq 0.82/0.81 0.76/0.75 0.55/0.59 0.84/0.86
NBPSeq 0.65/0.64 0.46/0.46 0.85/0.86
DEGseq 0.42/0.58 0.73/0.69
baySeq 0.33/0.51

Table 5.4. Microarray mutual information between statistical models

Poisson Bayes Non-parametric
Negative Binomial 0.34 0.32 0.35

Poisson 0.57 0.27
Bayes 0.21

5.3.2 RNA-seq

We demonstrated MA plots from all analytical methods for RNA-seq in Figure 5.10. The

results show similar patterns to microarray, that DESeq is highly similar to NBPSeq while

baySeq and NOIseq show a somehow different distribution of differentially expressed

genes.

In Table 5.5 we show the Pearson correlation coefficients and Spearman’s rank corre-

lations between analytical methods. In Table 5.6 we list the mutual information between

statistical models. From the tables we can see similar correlation patterns from microar-

ray.

Table 5.5. RNA-seq Pearson correlation coefficient / Spearman’s rank cor-
relation between analytical methods.

NBPSeq DEGseq baySeq NOIseq
DESeq 0.54/0.53 0.86/0.82 0.88/0.85 0.91/0.93
NBPSeq 0.79/0.68 0.57/0.48 0.56/0.55
DEGseq 0.79/0.63 0.72/0.72
baySeq 0.79/0.74
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(a) DESeq (b) NBPSeq

(c) DEGseq (d) baySeq

(e) NOIseq

Figure 5.10. M(log ratio)A(mean average)plots for RNA-seq from analyt-
ical methods: (a) DESeq (b)NBPSeq (c) DEGseq (d) baySeq (e) NOIseq.
Red dots are detected differentially expressed genes. Threshold for p-
value <0.05, likelihood > 0.9
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Table 5.6. RNA-seq mutual information between statistical models

Poisson Bayes Non-parametric
Negative Binomial 0.46 0.75 0.11

Poisson 0.55 0.15
Bayes 0.10

5.4 Consistency between Data Types

Pearson correlation coefficient and Spearman’s rank correlation should be the most ideal

tools to measure correlation and check consistency between data types. But as men-

tioned before, probes in microarray can sometimes be mapped to multiple genes. When

performing correlation analysis, there will be duplicates if those pairs are not elimi-

nated; otherwise there will be lost information if those pairs are removed. So we only

show mutual information between microarray and RNA-seq for all analytical methods

in Table 5.7. From the table we can see that, similar from Table 5.1, microarray and RNA-

seq show highest consistency in NOIseq and lowest in DESeq. The reason why DESeq

is the worst is that DESeq detects much more genes for RNA-seq than for microarray,

making the intersection proportion too small.

Table 5.7. Mutual information between data types

DESeq NBPSeq DEGseq baySeq NOIseq Sum
Mutual information 0.04 0.19 0.09 0.07 0.22 0.09

We also did gene set enrichment analysis on the detected differentially expressed

genes using PANTHER on GO. We hope to see biological meaning revealed from the

results. Here we present protein classes hit by microarray and RNA-seq results from

analytical method DESeq in Figure 5.11 and results from all analytical methods in Fig-

ure 5.12. The figure panels (a) are protein class hit by microarray, panels (c) are protein

class hit by RNA-seq and panels (b) and (d) are their category annotations. For both
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data types, both protein classes "Nucleic acid binding" and "Hydrolase" have high hit

numbers, protein classes "Cytoskeletal protein", "Enzyme modulator", "Transcription

factor" and "Transferase" have hit numbers outstand others. One huge difference is the

hit number for "Signaling molecule", the hit number detected is large for microarray but

only above average for RNA-seq. It’s obvious that despite some differences, microarray

and RNA-seq are consistent in this aspect.

In Figure 5.13, we also compared the percentage of genes hitting each protein classes

from microarray and RNA-seq for all analytical methods. Other than plotting hit num-

bers directly, we plotted the percentages. This figure demonstrated additional informa-

tion of proportions rather than absolute values. Clearly, in both aspects, microarray and

RNA-seq showed fair consistency. If we look into the results, we can see highly consis-

tent results from Figure 5.12, that protein classes "Nucleic acid binding" and "Hydro-

lase" have rather high hit percentage and protein classes "Cytoskeletal protein", "En-

zyme modulator", "Transcription factor" and "Transferase" have hit percentage higher

than average. Notably, the huge difference mentioned before in protein class "Signaling

molecule" remains in every analytical method except NOISeq. Possible reason is that

NOISeq detects few differentially expressed genes, making the difference in percentage

not that obvious between data types.

The total enrichment score was calculated and the most significant groups are plot-

ted in Figure 5.14. The enrichment analysis has similar findings to genes hit per protein

class, that "Nucleic acid binding" and "Signaling molecule" are still significant groups.

Therefore, enrichment analysis is showing consistent results. Other results from other

analytical methods are listed in the supplementary files.
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(a) (b)

(c) (d)

Figure 5.11. Protein class hit by microarray and RNA-seq results from DE-
Seq package (a) Microarray results (b) categories (c) RNA-seq results (d)
categories
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(a) (b)

(c) (d)

Figure 5.12. Protein class hit by microarray and RNA-seq results from all
package (a) Microarray results (b) categories (c) RNA-seq results (d) cate-
gories
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13. Protein class hit percent comparison of microarray and RNA-
seq (a) DESeq (b) DEGseq (c) NBPSeq (d) NOISeq (e) baySeq (f) all pack-
ages
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Figure 5.14. Enrichment score for the most significant groups
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6 Discussion

In this chapter we will thoroughly discuss the results outlined in the previous chapter

from the comparison of several statistical approaches, data methods and a combination

of these factors. The discussion will include potential reasons for the observed results,

the strengths and weaknesses of our approach and the future directions.

6.1 Discussion over Results

6.1.1 Consistency of Analytical Methods across a Statistical Model

Briefly, from the results we can see that, analytical methods applying the same statisti-

cal model show high consistency for both data types. Both DESeq and NBPSeq methods

use negative binomial distribution model. From what we can see in chapter Results,

DESeq and NBPseq show similar patterns in data distribution, data dispersion and vari-

ation (See Figure 5.2). Their measured gene expression levels and p-values are highly

correlated (See Figure 5.6). To further interpret the similarity, we calculated and plotted

Pearson and Spearman’s correlation between DESeq and NBPSeq. The correlation co-

efficients are pretty high which means the results from the two analytical methods are

highly correlated, or say consistent (See Figure 5.7). Microarray and RNA-seq share all

these findings above, so overall, high performance consistency can be found in DESeq
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and NBPSeq for both microarray and RNA-seq. It’s probably because that both DESeq

and NBPSeq use a negative binomial distribution model, results from these two analyt-

ical methods are very similar in every aspect.

6.1.2 Consistency among Statistical Models

Consistency across statistical models or analytical methods both depends on which two

models or methods are compared. Some pairs show high consistency while others don’t.

Specifically, see Table 5.1, DEGseq gives the most detected genes (534) for microarray

and baySeq (4845) for RNA-seq while NOIseq gives the least detected genes for both data

types (187 and 523). In general, RNA-seq detects more differentially expressed genes

than microarray. Work by Bullard et al20 has evaluated various statistics for differential

expression and find that the main difference between test statistics is their ability to

handle low counts. So, we assume RNA-seq has stronger ability than microarray in this

aspect.

Negative binomial model has very high consistency with Bayesian model, they de-

tect the most differentially expressed genes and share most of their findings. The po-

tential reason is that baySeq, the method applying Bayesian model, runs a binomial

test, which may lead to similar results to methods applying negative binomial distri-

butions. NOIseq, method using non-parametric model, detected the least differentially

expressed genes but most of its findings can be found in other models. This indicates

that all methods are consistent to others to some extent regardless of the models they

are applied to.
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6.1.3 Consistency between Data Types

Between data types, the results are generally consistent despite RNA-seq detects more

differentially expressed genes than microarray assays. All statistical models for both data

types give a similar set of detected differentially expressed genes. Analytical methods

NBPSeq and NOIseq are the most consistent for microarray while DESeq and baySeq

are the most consistent for RNA-seq. Microarray and RNA-seq have the best consis-

tency in NOIseq and the worst in DESeq. Potential reason one is that although non-

parametric model yields the least detected differentially expressed genes, the detected

ones are so significantly differentially expressed that they can hardly be missed by any

data type. Potential reason two is that non-parametric model depends the least on data

distribution, since using specific distribution in the statistical model will reduce degrees

of freedom. Overall, RNA-seq gives more detected differentially expressed genes. As

mentioned above, it’s probably because RNA-seq does a better job when dealing with

low counts genes.

Analyzing the differential expression results, the detected differentially expressed

genes, shows biological meaning. For both microarray and RNA-seq, genes from pro-

tein classes Nucleic acid binding and Hydrolase are significantly differentially expressed,

genes from protein classes Cytoskeletal protein, Enzyme modulator, Transcription fac-

tor and Transferase are highly differentially expressed. One huge difference is that genes

from Signaling molecule protein class is detected much more differentially expressed

by microarray than by RNA-seq (See Figure 5.12). This could due to microarray probe

design, RNA-seq read mapping process or other molecular level differences caused by

different treatments.
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6.2 Study Design

Our experiment design aims at studies at three levels: analytical methods, statistical

models and data types, all results are based on differential expression analysis. Evalu-

ating consistency across three aspects is the biggest strength of our study design. This

study reveals what role analytical method, statistical model and data type plays in dif-

ferential analyses.

The weakness of our study design is that we lack a “golden standard”. Without a

golden standard, we cannot calculate accuracy or false discovery rate for any analytical

method, which could have provided more information on differential analysis perfor-

mance. We are limited to consistency between analytical methods or statistical models

since we cannot identify how many findings are accurate, but only how many are in

common.

6.3 Future Directions

There are many potential ways to improve performances in many aspects. For example,

since we see that RNA-seq may have stronger ability in handling low count genes, to

improve microarray’s performance, studies could focus on low count genes.

Despite the consistency observed in previous experiments, different statistical mod-

els give different analytical results. A better fitting model for both data types may im-

prove differential expression analysis performance. With strong statistical skills, propos-

ing a new statistical model that better fits data distribution may better serve this pur-

pose.
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Biological experiments can be conducted to verify whether the detected differen-

tially expressed genes are truly meaningful. Furthermore, those truly differentially ex-

pressed genes can serve as a golden standard to assess accuracy for each analytical

method and statistical model.



50

7 Conclusions

From the experiments we can draw the following conclusions. First, analytical meth-

ods applying the same statistical model are highly consistent in every inspected aspect.

Second, all statistical models are consistent to others to some extent, varying based on

specific pairs chosen to be compared. Lastly, differential expression analysis results are

generally consistent despite RNA-seq detects more genes and there are some differences

in gene set enrichment analysis. Overall, the statistical model and data type both impact

greatly on differential analysis results while analytical method seems trivial.
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