
BIAS MITIGATION TECHNIQUES AND A COST-AWARE FRAMEWORK FOR

BOOSTED RANKING ALGORITHMS

by

SOPHIE SALOMON

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

Department of Computer and Data Science

CASE WESTERN RESERVE UNIVERSITY

May, 2020

Bias Mitigation Techniques and a Cost-Aware Framework for Boosted

Ranking Algorithms

Case Western Reserve University

Case School of Graduate Studies

We hereby approve the thesis1 of

SOPHIE SALOMON

for the degree of

Master of Science

Dr. Harold Connamacher

Committee Chair, Adviser April 02, 2020
Department of Computer and Data Science

Dr. Soumya Ray

Committee Member April 02, 2020
Department of Computer and Data Science

Dr. Mehmet Koyuturk

Committee Member April 02, 2020
Department of Computer and Data Science

1We certify that written approval has been obtained for any proprietary material contained therein.

Dedicated to the friends, professors, and caffeine that made this happen

Table of Contents

List of Tables vi

List of Figures vii

Acknowledgements viii

Abstract ix

Chapter 1. Introduction 1

The Ranking Problem 3

Overview of Bias 9

Asymmetric Machine Learning 20

Chapter 2. Bias Mitigation for Ranking 23

Need for Fair Ranking 25

Shortcomings of Classification Theory 27

Bias Mitigation for Multiclass Classification 44

Chapter 3. Cost-Sensitivity for Ranking 47

Cost-Sensitive Boosted Classification Algorithms 47

Cost-Sensitive RankBoost 52

Properties of Cost-Sensitive RankBoost 66

Chapter 4. Experiments 76

Cost-Sensitive Datasets 76

Performance Metrics for Cost-Sensitive Ranking 77

Experimental Results 81

Chapter 5. Discussion 91

Future Work 91

iv

Conclusion 92

Appendix. Complete References 94

v

List of Tables

2.1 An Example of Rank Equality Error: both A and B have Req = 1
6 A and B are two

classes defined by some protected characteristic such that their treatment is

expected to be similar according to the fairness criteria used. The subscripts

on each element denote the correct position of that element. This table gives

the pairs which compare an element of A to an element of B; X means that the

element of B is incorrectly ranked above the element of A and Y means that the

element of A is incorrectly ranked above the element of B. 39

2.2 An Example of Rank Parity Error: both A and B have perfect Rpar = 1
2 A and

B are two classes defined by some protected characteristic such that their

treatment is expected to be similar according to the fairness criteria used. The

subscripts on each element denote the correct position of that element and X

means that the model ranks the pair such that A > B . 41

4.1 Overview of Experimental Datasets with Properties 77

4.2 Summary of Empirical Results on 5-Fold Cross Validation Tests for Each

Cost-Sensitive Experiment (MovieLens results come from discrete cost

implementation, and reported CSDCG is normalized) Accuracy is the

unweighted proportion of correctly labeled elements. 84

vi

List of Figures

1.1 Visualization of Boosting for Classification 7

1.2 Properties of Basic Fairness Metrics 17

1.3 Asymmetric Confusion Matrix 20

2.1 Visualizations of Tokenization and Bimodal Ranking 30

2.2 Four Rankings of Protected Class with Same Statistical Independence Score 34

2.3 Undetected Clustering, Noisy Ranking, and Tokenization Examples 37

3.1 Cost-Sensitive AdaBoost Variations Analyzed by Nikolaou1 50

4.1 Rank Loss Convergence During Training with Continuous Costs 82

4.2 Rank Loss Convergence During Training with Discrete Costs 83

4.3 Rank Loss Convergence During Training for Multiclass Classification 85

4.4 Rank Loss Convergence During Training for Recidivism Classification 88

vii

Acknowledgements

I would like to express my sincere gratitude to the following individuals who have directly

contributed to my understanding of and work with researching the Machine Learning rank-

ing problem. First and foremost, I thank my advisor, Professor Harold Connamacher, for ini-

tially involving me with this topic, and for his wisdom, patience, and occasional enforcement of

deadlines throughout this process. I would also like to thank Professor Soumya Ray, from whose

classes I have learned much of what I know about Artificial Intelligence today, and whose insight

into Machine Learning research and datasets helped me while I was developing empirical tests

for this work. For their work on our group project on ranking in Machine Learning (EECS 440),

I also appreciate the efforts of Nicklaus Roach, Bingwen Ma, and I-Kung Hsu. And of course,

thank you to Clarinda Ho and Seohyun Jung for being the best “totally coincidental" group I

could have hoped for in that class, brilliant academics, and excellent friends besides.

viii

Abstract

Bias Mitigation Techniques and a Cost-Aware Framework for Boosted Ranking

Algorithms

Abstract

by

SOPHIE SALOMON

Recent work in bias mitigation has introduced new strategies and metrics for training fairer

machine learning classification models. Current research has focused on the problem of binary

classification, which has strongly influenced the techniques developed to prevent elements

from the protected class from being characterized accordingly. However, extending these

approaches to the ranking problem introduces additional nuance. Accordingly, this paper

presents a framework for evaluating the efficacy of ranking fairness metrics which shows

existing approaches to be inadequate. Furthermore, this paper demonstrates the properties

of a flexible cost-aware paradigm for boosted ranking algorithms and discusses the potential

extensions for bias mitigation in the ranking problem. The two problems are fundamentally

linked by their shared purpose of reducing risk of either costly or unfair decisions by the

trained ranker. Included are the experimental results of the cost-aware versions of RankBoost

for ranking and multilabel classification datasets, and exploratory experimentation with using

cost-sensitive ranking for bias mitigation.

Keywords: Asymmetric Machine Learning, Cost-Awareness, Bias, Fairness, Ranking, Rank-

Boost, Boosting

ix

1

1 Introduction

As machine learning techniques achieve widespread usage across sensitive applications, work

on bias mitigation and cost-aware training is increasingly urgent. Algorithms will learn patterns

available in the training data, which can result in undesirable or even discriminatory behavior.

Even using unbiased data to train the model does not completely preclude bias from appearing.

A fair model should not reflect membership in a protected class, i.e. some characteristic such

as race or gender which should not influence individual outcomes for a given problem, in its

labeling of the data. However, defining fairness metrics is still an ongoing process for binary

classification. This chapter includes discussion (1.2.2) of many of the basic considerations for

fair classification to provide background for the challenges of achieving fair ranking.

With many different applications for fair machine learning models, it is appropriate to have

a spectrum of robust bias mitigation techniques. Though classification theory is often con-

sidered sufficient to establish the state-of-the-art for the analogous theory in different areas of

machine learning, this paper explicates the specific challenges associated with extending this

work to algorithms that solve the ranking problem. The added complexity of completely or-

dering the set of elements introduces additional risks and constraints which may lead to unfair

rankers without specific research into bias mitigation for machine learning ranking algorithms.

This desire to train unbiased rankers is inherently linked to the need for theoretically sound

cost-sensitive ranking because both fairness and cost are linked through the need to mitigate

Introduction 2

risk. Although there is not yet a technique specifically using cost-sensitive ranking to elicit fair

ranking (in part because the research on both problems is very sparse so far), cost-sensitivity

works to lower the risk of “expensive” mistakes which is analogous to the need to mitigate the

risk of systematic unfair treatment of members of a protected class of elements.

This chapter provides the necessary background, with an accompanying literature review, to

understand the original work described in the subsequent chapters on biased ranking and

cost-sensitive variants of boosted ranking algorithms. First, 1.1 provides an introduction to the

ranking problem and explains basic terminology for ranking, including an overview of boost-

ing. Then, 1.2 gives a survey of work done in bias and fairness for classification, including an

overview of fairness metrics and approaches in 1.2.2. This introduction to current work in fair

ML for classification is the foundation for Chapter 2, which challenges recent attempts to apply

these metrics to fair ranking problems and provides a framework for evaluating new metrics. Fi-

nally, this introduction concludes with a section on asymmetric machine learning (1.3) which

is essential to understand the work on cost-sensitive ranking in Chapter 3. The original contri-

butions of this paper are to

• Introduce a framework by which to evaluate bias metrics for ranking by defining desir-

able properties for such metrics.

• Demonstrate that existing extensions of classification bias metrics, used for current

research in the area, have vital shortcomings according to this framework.

• Create a cost-sensitive approach for boosted ranking algorithms and prove how apply-

ing cost before, during, and after training results in the same loss function.

• Prove the properties of the resulting cost-sensitive RankBoost and RankBoost+ vari-

ants, including a generalization bound.

• Discuss how existing performance metrics can reflect cost-sensitive ranking problems

and suggest a new cost-sensitive discounting metric CSDCG.

Introduction 3

• Provide experimental results which give a proof-of-concept for cost-sensitive Rank-

Boost and RankBoost+ by investigating how cost-sensitivity changes the trained model.

1.1 The Ranking Problem

The ranking problem encompasses many different applications where the goal is to train a

model that orders elements based on their features. As opposed to classification, which seeks

to label elements into distinct sets, ranking gives each element a relative position2. Ranking

algorithms train on elements with labeled ranks to create a model that can then order new

elements according to the learned patterns. In some cases this can be thought of as n-label

multiclass classification, though work in multiclass classification does not always effectively

extend to this limit with full stratification. The essential difference between ranking and n-label

multiclass classification is that ranking provides an ordering of elements as opposed to simply

distinguishing them as in an n-label classification problem.

Research into the ranking problem for Machine Learning originated with the challenge of in-

formation retrieval2,3, but has extended to general purpose ranking algorithms which apply a

variety of established Machine Learning techniques to the unique challenges of ranking4. Con-

sidering ranking to solve the problem of learning preference, the many modern applications

become clear. Some examples include ordering job applicants and providing more personal-

ized suggestions for anything from restaurants to video games5,6.

The ubiquity of data provides many opportunities to apply machine learning ranking tech-

niques, but also raises a number of risks relating to unfair models leading to deleterious ef-

fects. With these algorithms becoming more established in everyday applications, it is impor-

tant to remain cognizant of their limitations, as well as actively research methods to improve

Introduction 4

performance outcomes for sensitive scenarios. Though this paper specifically focuses on pair-

wise boosting algorithms, many other strategies for ranking exist, including Support Vector Ma-

chines (SVM)2, listwise boosting7, graph-based algorithms8, and neural networks9.

1.1.1 Formal Ranking Nomenclature

The domain space of the ranking problem is the set X of items to be ranked, where each ele-

ment xi is referred to as an instance. The characteristic or quality that the ranking establishes

is called the ranking feature 4. For example, a search for nearby restaurants would consider a

variety of characteristics to suggest a preferential ordering based on the available data, and the

ranking feature can be abstracted as, “given the available information, which restaurant is the

best choice?”

The goal of the ranking problem is to learn a model which uses a set of m element features,

f1 to fm , to assign rankings to unlabeled sets of elements given their feature values4. Focusing

on supervised learning, we train the model on a ranked set of elements which should have a

representative distribution of the feature values which comprise the domain space. The model

will ultimately use the feature values of the new data to determine how it should be ordered

based on what patterns were compiled by the learning algorithm through the training process.

Therefore, each feature can be viewed as an individual, primitive ranking function that con-

tributes to the overall ranking of the set of elements.

We can describe each primitive ranking function as fi where fi (xa) > fi (xb) means that instance

xa is preferred over xb by feature fi
4. Unlike the overall ranking function, primitive ranking

functions can abstain from ranking particular instances; therefore fi (x j) = ⊥ indicates that in-

stance x j was not given a ranking for feature fi . Each primitive ranking function is summarized

as fi : X with the additional element ⊥. The overall ranking function can then be formalized as

Introduction 5

H : X without the additional element ⊥ since all instances must have an overall ranking. For

ranking function H , H(xa) > H(xb) means that instance xa is preferred over xb .

1.1.2 Information Retrieval

Early applications of the ranking problem arose due to the nascent Internet and the need to re-

turn ordered responses to a query, which falls into the category of information retrieval. Google’s

PageRank algorithm can be thought of as an unsupervised learning algorithm which used back-

links between pages and could incorporate user preferences to recursively assign a value, then

translated to a rank, to different sites in response to a query3. From there, ranking has devel-

oped into a full-fledged subfield of machine learning problems, but often retrains this initial

association. Since the ranking problem is often framed as a corollary of the information re-

trieval problem, it is important to address the assumptions made in many information retrieval

applications which do not necessarily hold for the general ranking problem.

In particular, information retrieval problems generally prioritize the accuracy of the most pre-

ferred elements, which can be referred to as “Top-K” accuracy10. Consider searching for a web-

site out of millions of possibilities – the first page of results is what matters, and to a much

lesser extent the second page of results, but how much does the 200th page of possibilities actu-

ally matter? With the corresponding introduction of discounted accuracy and reward metrics,

especially Normalized Discounted Cumulative Gain (NDCG), the ranking problem has been

aligned in this paradigm which weights misranks based on their overall position. However, in

the general ranking problem this is not necessarily the case, especially in pairwise algorithms.

For example, consider a ranking of the best colleges in the United States; while the top slots

connote the most prestige, many applicants will actually want to gauge the relative quality of

schools further down the list. In this case, to provide useful information to users, a pairwise

ranking algorithm might outperform a Top-K algorithm. Therefore, although Top-K ranking is

Introduction 6

a very important application, it solves a specialized problem distinct from the cost-sensitive

framework for ranking introduced in this paper.

1.1.3 Use of Boosting for Ranking

Boosting algorithms were an unexpected breakthrough in classification, with their seemingly

miraculous empirical success being well-supported by extensive theoretical justification. The

extension of boosting to ranking mostly leans on the classification theory, with a few seminal

papers supporting the application of the technique to ranking. The iconic boosting algorithm

for ranking is the appropriately named RankBoost4, which has a discrete and a continuous

variant. Its cousin, AdaRank, is more closely aligned by design with the classification boost-

ing algorithm AdaBoost from which the inspiration for both is derived7. Boosting is a popu-

lar technique for ranking, but the learning problem introduces many complexities beyond the

challenges for classification. Recent work has suggested that there are unaddressed differences

in theory between boosting for classification and boosting for ranking that undermine the the-

oretical dominance of RankBoost. One of the primary criticisms is the uneven weighting of ties

by RankBoost, which introduces a dimension of error not analogous to anything in the classifi-

cation learning problem11.

Boosting algorithms work by creating weighted ensemble classifiers1. Often, this is done with

weak learners, such as decision stumps. Boosting theory asserts that classifiers with error less

than chance can be combined using this technique into powerful classifiers with very complex

decision surfaces. As opposed to bagging, another ensemble learning technique which using

bootstrapping to assemble a quorum of voting classifiers, boosting works by reweighting the

importance of the training data examples based on the results of the most recently added (weak)

learner in the case of RankBoost, and the entire ensemble so far in the case of AdaRank4,7. For

the ranking learning problem, training is usually done pairwise by testing if a classifier orders

Introduction 7

Figure 1.1. Visualization of Boosting for Classification

a pair of examples correctly. If the examples are ranked correctly by the newest learner to be

incorporated into the ensemble, the pair’s importance for the next iteration is decreased. Con-

versely, if a pair of examples is ranked incorrectly by this classifier, the weight of the pair will be

increased. By this mechanism, boosting increases focus on pairs that are challenging to weight

correctly and ensures that classifiers with diverse ranking priority are included in the ensemble.

The different in approach which distinguishes versions of boosting for ranking is how to reas-

sign the weight of pairs which are tied by a given learner. Ties are especially prevalent for binary

weak rankers, often used for ranking with boosting algorithms, which measure quality as either

a 1 or a 0. Therefore, the method for adjusting the weights of training example pairs after adding

a new classifier to the ensemble makes a significant difference in the resulting boosted classifier.

RankBoost gives a variety of options for, and some empirical arguments to justify, its treatment

Introduction 8

of ties but does not provide theoretical rationale to support the impact on training efficacy. The

algorithm furthermore uses multiple error functions which treat ties in different ways, with the

discrete version treating ties as errors and the continuous version giving ties a weight of 1. The

discrete version is more closely tied to AdaBoost theory for classification4, as it allows ties to

be incorporated into the error, but empirical studies have shown that the continuous version of

RankBoost outperforms the discrete version11. New research into how to reconcile the two has

resulted in RankBoost+, which standardizes the treatment of ties to be the average reweighting

applied to correct and incorrect pair outcomes11.

Boosting is a flexible technique, and other research has combined it with existing ranking al-

gorithms in order to enhance performance. Some examples, only partially based on the en-

tertainment value of the names, are described below. McRank attempts to rank using classifi-

cation boosting, with surprising success but atrocious time complexity12. The LambdaSMART

algorithm combines boosting with the LambdaRank information retrieval training algorithm9.

LambdaRank works by training a neural net on the gradient of the cost of the current model’s

ranking after the sort at each iteration. By combining this technique with the boosted regression

tree modeling employed by MART, LambdaSMART achieves comparable accuracy to its pro-

genitor algorithms with improved time complexity by tacking boosting onto a more powerful

performance metric. However, as described above, these algorithms lack theoretical justifica-

tion specific to ranking as preference learning cannot be perfectly converted to a classification

problem, no matter how good their empirical results may be.

1.1.4 Differences from Ranking for Classification

Ranking for classification shares a number of properties with the ranking problem, especially

for multiclass classification where elements must be stratified into more than two groups and

therefore have stricter margin requirements13. However, ranking for classification is often used

Introduction 9

for horizontal separation between groups that have no implicit ordering. Therefore, the ranked

clusters which correspond to the class labels may not share the notions of quality and prefer-

ence which are central to the ranking problem. Nonetheless, because of structural similarities

between the problems and the availability of cost-sensitive datasets for multiclass classifica-

tion, it is worth comparing work in cost-sensitive ranking algorithms to applications for multi-

class classification14–18. A brief analysis on multiclass bias can be found in 2.3, and experimen-

tal results for cost-sensitive multiclass classification using ranking algorithms are described in

4.3.2.

1.2 Overview of Bias

Bias is an overloaded term for the abstract concept of some sort of inequity. Unfortunately, the

definition of bias within ML is similarly fluid, which makes attempting to remove bias from ML

algorithms or models an evolving challenge. Bias has been referred to by many different names

in the literature, including disparate impact, indirect discrimination, redlining, statistical par-

ity, disparate mistreatment, and equality of opportunity19. These terms have slightly different

implications, and many include politically charged language which helps to draw necessary at-

tention to this topic but may also serve as a distraction. In some situations, bias in the model

may be glaring, but there is no guarantee, especially with more subtle models, that users will

“know it when they see it.” The more optimistic descriptors of this line of work are variants on

Fairness for Machine Learning20, but fairness is similarly nebulous and is generally defined as

a lack of bias in its various forms anyway21. As with most machine learning problems, how the

objective is framed can have a significant impact on the outcomes. As such, understanding the

different causes of bias – and what bias even means in each context – is imperative in order

to understand the implications of different bias-detection and mitigation techniques. Further-

more, each approach will necessarily have some tradeoff which will result in the standard ap-

proach likely beating the bias-reducing approach in certain performance metrics, e.g. accuracy

Introduction 10

and recall20. Choosing the appropriate balance between fairness and model performance is an

ongoing area of research which will often be specific to each scenario. However, finding perfor-

mance bounds and evaluating the mathematical properties of different approaches can bolster

the art of machine learning with a healthy dose of science.

1.2.1 Biased Datasets

Machine Learning works by recognizing and amplifying feature patterns in data in pursuit of

some end, say, classification of previously unseen elements. The associated risk is that the

models will encode problematic patterns that are systemic in the data, leading to results with

embedded bias. Being cognizant of bias while training models, and performing model and

dataset evaluation to detect this potential bias, is imperative in sensitive ML applications which

could enforce existing or introduce new discriminatory structures with biased models. The

Machine Learning community came under heavy public criticism in 2016 after Pro Publica re-

vealed problematic trends in the COMPAS recidivism model, which according to some defini-

tions of fairness learned patterns which disproportionately penalized black prisoners as com-

pared to white prisoners eligible for parole22,23. The COMPAS team defended their model based

on equality in a different error metric, highlighting how interpretation of results from different

lenses can significantly alter perception about outcomes24. A few researchers had worked in

fair ML before this negative publicity, but work in the research area sharply increased after this

attention. Observing the citations on Dwork’s seminal 2011 “Fairness through Awareness” pa-

per21, this change is exemplified. The paper was cited by 32 research papers in 2016, and 203 in

2019. This increase in interest draws vital focus to this area, but also risks fragmenting the con-

sensus about appropriate methodology and drowning revolutionary improvements in flawed

conventions. Understanding the foundations of this research is important, as is a fluency in the

pros and cons of the most common approaches to bias mitigation currently in vogue.

Introduction 11

1.2.2 Proposed Fairness Metrics

Many fairness metrics have been proposed for training ML classifiers, which are essentially

ways of quantifying bias in the treatment of a certain group of elements. This bias must be de-

tected or minimized depending on the context, and is done through pre-processing, modifica-

tions to the algorithm, or post-processing20. Pre-processing generally refers to the modification

of the dataset to eliminate bias so that the training will not institute patterns of the bias from

the data into the model. Algorithmic modifications change the process of training to either pick

better models in terms of fairness to expand upon, like a genetic evolution process, or to actu-

ally train models with bias mitigated. Post-processing can be used to audit, and in some cases

adjust, a model for fairness. These techniques can be combined and are not always clear-cut.

For example, the dataset may be modified in a way which is compatible with changes to the

algorithm, and then the resulting model could be audited and tweaked after training is com-

plete. Friedler, et al. provide a comparative survey of several classification algorithms which

raises concerns about preprocessing and data encoding, stability to dataset changes, and the

proliferation of similar techniques20. However, regardless of which technique to detect and re-

move bias is used, the way bias is defined will fundamentally affect the outcome of the training.

Many different options for quantifying bias exist, and more are being explored by current re-

search being done in the field, but even a basic foundation of classification theory will provide

vital background for the exploration of bias mitigation for ranking to come in a subsequent sec-

tion.

There are several overlapping subcategories of bias metrics for training fair classification mod-

els. One of the most fundamental is blind versus aware training, also known as treatment versus

impact parity25. In the blind training, the protected characteristic is completely expunged from

the data, and these differences are not taken into account at all in training the model. The name

Introduction 12

treatment parity arises because all elements are being treated in the same way. This can be use-

ful when no implicit indicators or biases exist between the protected and non-protected class.

For example, to fairly audition musicians for an orchestra a screen is used to make process blind

so a candidate’s race, gender, etc. cannot impact the decision, which should be based solely on

the quality of their musical talent26. When discrimination is shallow and based on concealable

external factors, this approach is valid. However, in many cases the opposite is true, and the

model should be aware of the protected class in order to actively avoid deeper institutional-

ized disparity27. In these cases, the treatment of the protected class versus non-protected class

is explicitly evaluated and adjusted to achieve the appropriate fairness technique, in order to

equalize impact. In most cases where ML is being used for a sensitive application, this category

will be more relevant based on extant patterns which could be learned as proxies for the pro-

tected class.

Another dimension of bias metrics is whether they are preference-based versus parity-based, as

shown in Figure 1.2. Because parity-based is more popular, and has more variations, it is use-

ful to first consider preference-based techniques. These strategies are based on Game Theory

and Economics, and rely on the intuition that fairness can be introduced without necessarily

striving for complete equity19. In Economics, competing parties can rarely attain exactly the

same utility, but will nonetheless choose the best outcome for their constituency regardless of

the effects on outside groups. Essentially, a group is incentivized to support an intervention

as long as that group derives relative benefit from the change compared to its own alternative

outcome, even if that intervention benefits another group more. Zafar, et al. define utility dif-

ferently, where utility is the performance of the classifierEx,y [I(h(x) == y)] and group benefit is

how shared attribute groups optimize their outcomes Ex|y [I(h(x) == 1)] where 1 is the prefer-

able classification and y is the correct label for each element19. Here, I is an indicator function

which returns if classifier h correctly labeled element x. The total utility of the models is the

Introduction 13

aggregated accuracy across all groups.

According to Zafar, et al., preference-based fairness has several benefits, as it is more flexi-

ble to biased datasets and in general has a less severe impact on the accuracy or recall of a

model’s performance19. Essentially, different models are trained to accomplish the same task

for the protected and non-protected groups. Each group is judged or classified according to

the preferred model for that group. In the limit, this could be extended to increasingly precise

subgroups or even to individuals, though this would quickly become prohibitively computa-

tionally expensive. This technique is also known as group envy-freeness, which means that no

group would collectively benefit by evaluation using a different classifier. Therefore, the pro-

tected class is being treated, if not equitably, better than would otherwise have been the case

if its elements were being evaluated by a different feasible model. The models for each group

can be selected using linear programming using a disciplined convex-concave program (DCCP)

approximation, meaning this non-convex problem is represented as the sum of a convex and a

concave term with a general solution19.

minimize
hz

1

N

∑
(x,y,z)

lhz (x, y)+ ∑
z∈Z

λzΩ(hz)

subject to
∑

x∈Dz

max
(
0,hT

z x
)≥ ∑

x∈Dz

max
(
0,h′T x

)
for all z ∈Z

Here, the loss lhz (x, y) is a convex function under the constraint that the chosen classifier hz

for each class z ∈ Z outperforms the impact parity classifier h′, where the classifiers are linear

functions in the feature space. Ω(hz) is a convex-regularizer to make this problem consistent

with the requirements for DCCP approximation.

Parity-based bias metrics are more stringent about eliminating their respective unfair aspects,

and therefore may have a bigger tradeoff with the general performance metrics of the model.

Introduction 14

There are many options available, but this background overview will only cover the most well-

known and relevant ones. In general, parity-based metrics advance more intuitive approaches

to equality, but the specifics of each approach can still lead to wildly different outcomes. Re-

call the controversy over the COMPAS model of recidivism which was criticized for perceived

inequality between its treatment of black and white convicts22. The researchers defended it by

saying it was fair by predictive parity, which means that a label should result in the same true

positive rate and false positive rate between groups, i.e. the probability of the label being correct

should be the same for the protected class as everyone else28. However, false positive rates may

differ due to class asymmetry, as in the case of the COMPAS model which overrepresented black

prisoners and therefore was much less likely to offer parole when appropriate than it would be

to parole a comparable white prisoner24. This example, and the justified resulting controversy,

should highlight the potential problems with using an intuitive metric inappropriate to the cir-

cumstance or dataset available.

Next, consider conditional independence, also called equalized odds29. Conditional indepen-

dence means that conditioned on the correct label and the protected class, the expected model

output should be the same as when it is just conditioned on the correct label.

E [h(x)|A = a,Y = y] = E [h(x)|Y = y]

Therefore, all elements x in each classification are expected to receive the same treatment from

the classifier h given their status as members of the protected class a and their correct label

y , where A is the set of protected and non-protected class as determined by some protected

characteristic and Y is the set of classifications. However, similarly to predictive parity, contro-

versy over outcomes may arise if the protected class is not distributed between classifications

in the same way as the other elements are, since differences in the performance of the model

Introduction 15

for different labels could then disproportionately affect one class. Observe the following toy ex-

ample. There are 12 people who like spicy food, 8 of whom are women and 4 of whom are men,

and 12 people who like sweet food, 8 of whom are men and 4 of whom are women. Consider

a model that correctly labels someone who likes spicy food 75% of the time, and someone who

likes sweet food 50% of the time, without difference based on gender within each label. 4 men

who like sweet food will get their preference, and 1 man who likes spicy food will get sweet food.

2 women who like sweet food will get their preference, and 2 women who like spicy food will

get sweet food. Of the 7 men who get spicy food, 4 will have wanted sweet food, but of the 8

women who get spicy food, only 2 would have preferred sweet food. 5 men will be denied their

preference, versus 4 women. If spicy food is considered a positive label, the FPR for women

is 25%, versus about 57% for men. Conversely, the FNR is 50% for women and 20% for men.

Although the stakes are low in this toy example, real life applications can imply much more se-

rious consequences for these treatment differences in the face of asymmetric data, which will

not be detected by conditional independence.

Another popular and intuitive parity-based bias metric is statistical independence, which can

also be called group fairness or demographic parity29. It states that statistically, having the pro-

tected characteristic should have no impact on the treatment of an element as compared to the

rest of the elements in the dataset. That is to say, the protected class gets the same treatment as

the average element according to the equation

E [h(X)|A = a] = E [h(X)]

where h is the classifier and A = a denotes membership in the protected class. However, as

with equalized odds, there are a number of potent criticisms of using statistical independence

to determine fairness. Consider the following three major pitfalls described by Dwork, et al.

in “Fairness through Awareness”21. One, there may be suboptimal equilibria selected by this

Introduction 16

fairness metric in which all groups are mistreated equally. Two, self-fulfilling prophecy is where

elements of the protected class are treated in ways that set them up to fail rather than being clas-

sified fairly by the model. Three, subgroup targeting, which is analogous to gerrymandering of

subgroups, means the system can be rigged while still appearing fair according to this metric30.

These criticisms highlight the shortcomings of using group fairness metrics which may eclipse

the qualities and appropriate sorting of individual elements, even to the extent that the efforts

to increase fairness end up being universally counterproductive.

Calibration is another fairness metric which has been explored for classification. It uses the

confidence of the model to evaluate whether the sorting is effective and reflective of the quality

of the decision. In this case, the probability of correctness should actually match the probabil-

ity or confidence assigned by the model31. Therefore, if the model expresses 75% confidence

about 400 elements, 300 of them should be classified correctly. Calibration can draw attention

to models which are less well-suited to treatment of the protected class if the confidence or

calibration quality significantly differ between elements with the protected characteristic and

those without it. However, it is more difficult to use calibration for training and correction, so its

primary utility is as a tool for auditing the processes of a potentially biased model by essentially

breaking into the black box.

Several of the problems introduced for the group fairness metrics explored above can be mit-

igated to some extent by using subgroup fairness metrics. These metrics extend the notion

of fairness from the entirety of the protected class to smaller subsets which can improve out-

comes. In the limit, infinitely precise subgroups are computationally intractable, but research

has shown that performance improves significantly with even a few layers of subgroup analy-

sis32. Intersectionality has also been a focus of some research efforts. By using subgroups it

is possible to reduce disparate impacts between members of each protected class, particularly

Introduction 17

Figure 1.2. Properties of Basic Fairness Metrics

when there is overlap between multiple protected characteristics32. For example, consider a set

of colored shapes, equally distributed between circles and squares. Each shape comes in blue or

green, with exactly half of each color. If square and blue are the protected classes, without con-

sidering subgroup fairness or intersectionality, selecting all the green squares and all the blue

circles would be considered fair by group fairness metrics33. However, this would not equally

represent the four different subcategories considered when both shape and color are taken into

account. The number of different subgroups in consideration can grow combinatorically, but

research into classification subgroup fairness heuristics has shown reasonable success in iden-

tifying tractable approaches.

Rather than computing fairness across subgroups, in some cases it may be more appropriate

Introduction 18

to guarantee individual fairness. In 2011 Dwork et. al proposed that “similar individuals should

be treated similarly.”21 This does leave ambiguity to define what constitutes similarity of ele-

ments and treatment, especially when a protected characteristic is involved and needs to be

taken into consideration. In that original paper, a new fairness metric must be devised for each

classification task, making it difficult to generalize. Additionally, even with an appropriate met-

ric at hand, individual fairness is difficult to compute at the limit. Overcoming these challenges

seems worthwhile for some sensitive applications where using group or subgroup fairness cri-

teria may lead to problematic externalities and conceal injustice within the treatment of a given

group or subgroup. One proposal is to pursue average individual fairness, in which individuals

undergo a series of similar classifications, which as a whole do not systematically disadvantage

them33. Therefore, even though each specific classification task may not satisfy the require-

ments for fairness of all individuals, in the limit of sufficient classification tasks applied, every-

one has on average been treated equitably according to their individual qualifications, making

bias into random rather than systematic unfairness. Refer to Figure 1.2 to see where various

fairness metrics fall on this spectrum between group and individual fairness.

There is a vast corpus of recent research into fairness for ML classification, and providing a

comprehensive literature review is becoming increasingly infeasible. However, the broad cat-

egorizations and explorations of the different dimensions of a fairness metric should provide

adequate insight to approach the problem of bias mitigation for ranking. There are a few papers

currently published on this topic, which will be introduced formally in Chapter2, all of which

rely heavily on the avenues of defining bias for classification explained above. For the most part,

the metrics for classification go unchallenged in this handful of papers, so the following section

presents a number of of the shortcomings which call into question whether these classification

metrics and techniques should be applied to fair ranking attempts.

Introduction 19

1.2.3 Reductions Approach to Training Fair Classifiers

Agarwal, et al. propose a method to train a fair classifier applicable to a variety of bias metrics

using cost-sensitive intermediate classifiers29. The bias criteria must be expressible as a set of

linear constraints, and the problem is solved by selecting the classifier with the lowest empirical

error that satisfies the fairness requirement.

min êr r (Q)
Q exist on ∆ subject to M µ̂(Q) ≤ ĉ

Here, using the training data the goal is to minimize the empirical error of the randomized clas-

sifier Q from ∆, the set of all distributions of classifiers. The real matrix M multiplies the vector

of moments µ̂ defined by the classifier on each element, subject to the linear constraint vector

ĉ. The data is assigned costs and treated as a weighted classification problem, for which sev-

eral efficient classification algorithms exist. The authors reconstruct their constraint equation

as a Langragian and solve the v-approximate saddlepoint problem (where v is a precision hy-

perparameter selected by the user) to pick the best classifier which satisfies the given fairness

constraints. The cost-sensitive classification algorithm is used to compute the best response

function to minimize L(Q,λ). Here, L is the Lagrangian function, λ is the vector of Lagrange

multipliers corresponding to the fairness constraints imposed upon the problem, and Q is the

randomized classifier being evaluated. This connection between cost-sensitivity and bias con-

structed as a linear program to select the best classifier suggests renewed utility for research

into asymmetric machine learning. Furthermore, the potential use of cost-sensitive algorithm

variants to optimize fair results drives the focus on cost-sensitive ranking described in Chapter

3. Ultimately, using cost-sensitive machine learning is a reasonable approach to fair machine

learning because both pursue the mitigation of risk, which implies that a similar transforma-

tion of ranking bias to cost could provide a more robust solution for fair ranking than extending

group statistical metrics from classification.

Introduction 20

Figure 1.3. Asymmetric Confusion Matrix

1.3 Asymmetric Machine Learning

Machine learning captures patterns in the data, but datasets are rarely equally distributed.

Cost- and class-imbalance may impact the desired model structure, which needs to be built

into the training of the model1. Many algorithms that do not specifically account for dataset

asymmetry may train models favoring the dominant class in the dataset. Erring on the side of

probability by selecting the more common label for a given class for elements on the margin

weakens the model, which is supposed to be capturing the distinguishing features, not guess-

ing the more common outcome17. In cases with cost asymmetry, where false positives and false

negatives may have significantly different consequences, it is similarly important to focus the

model according to the cost structure22. For example, with medical testing, a false negative is

often much more severe than a false positive, which can be resolved with further evaluation.

Cost can dictate how the model should behave when faced with edge cases, and the degree of

caution with which close calls should be treated.

The computation to incorporate cost and the one to deal with class asymmetry differ, but they

can be transformed in either direction to the other with relative ease1. This interchangeability

Introduction 21

can be extended to multiclass problems as well. Therefore, mathematically cost- and class-

asymmetry can be considered equivalent and proofs about one can be trivially extended to

demonstrate properties of both. This interchangeability also implies that cost can be applied

to compensate for class asymmetry when training a model. Because class asymmetry is often a

central cause of bias in a model, its consideration during training may be integral to preventing

biased treatment of the less populous class. The use of cost to strengthen the focus of the model

being trained on the class asymmetry may lead to better definition along the margin. Addition-

ally, based on the findings of Agarwal, et al. described above, this work may be extensible to

bias mitigation and fairness problems29.

1.3.1 Rank Agnostic Cost

In some cases, the quality of the ordering at the bottom of a ranking of elements is much less

important than the quality at the top of the ranking. For example, when querying millions of

websites in a search engine, only the results on the first page or two really matter. Page 150

and page 1500 could be swapped without any impact on the user because those results are not

being used. As a result, a “Top-K” approach is taken in many ranking applications6. The asso-

ciated metrics disregard any results that come after a threshold, the first K results. Discounting

quality metrics, especially NDCG, also reflect this paradigm by weighting the correctness of the

highest ranked elements much more than the correctness of the last elements10. However, this

means that the treatment of the elements that are rated near the bottom is much more haphaz-

ard, especially when metrics such as NDCG are actually used to train the model. LambdaRank

actually uses the cost-gradient from NDCG to develop the cost-aware ranking model, but this

heavily focuses on only the top elements due to the rapid discounting of importance as rank

index increases9. While appropriate in certain circumstances, in other situations a position-

agnostic method of specifying importance is required.

Introduction 22

Some rankings require precision of placement for certain elements which do not all fall at the

top of the list. Top-K approaches and discounted efforts actively neglect the bottom of the or-

dering, while unweighted strategies may fail to prioritize these pivotal elements. When a sub-

set of elements is prioritized for correct ranking which does not coincide with just the highest

ranked elements in the list, a different cost structure is useful. This approach can be thought of

as “rank agnostic cost” since it does not depend on the position of an element in the ordering

when determining its importance. Having this cost-structure can be useful in many scenar-

ios, including potentially in bias-reduction for ranking. The cost will focus the training of the

model on specific pairs or individual elements which will have to be distinguished. Similar to

a support-vector machine, this approach will force the training process to correctly rank very

important elements or to focus on correctly ranking elements along the margin.

23

2 Bias Mitigation for Ranking

Although the machine learning literature is dominated by discussion of classification, with bias

and fairness theory following the same trend, there has been recent interest in achieving fair

ranking models. Though more challenging to quantify and train than fair classification models,

bias-mitigated rankers are imperative based on the widespread proliferation of sensitive ML

ranking applications. With an unprecedented availability of data, there is incredible opportu-

nity to create more efficient and equitable systems, but only if the models themselves do not

incorporate systematic biases. Several papers have been published within the last year related

to this topic, meriting an overview in this section. These papers do explore some interesting

points and approaches, but in general the proposals over-rely on classification theory and lack

mathematical justification for intuitive but inadequate fairness metrics. This chapter proposes

a framework to evaluate metrics for fair ranking in 2.2.1 and demonstrates how each of the ex-

isting methods in use for fair ranking falls short according to this framework. Specifically, this

section of the paper investigates the pitfalls of statistical independence (2.2.2), conditional in-

dependence (2.2.3), calibration (2.2.4), and preference-based fairness (2.2.5), for fair ranking

problems. Additionally, 2.2.6 considers subgroup and individual fairness for ranking, and 2.3

goes into the similarities and differences with reducing bias for multiclass classification. Al-

though this paper critiques the methodology of current work in this area, those contributions

to this fledgling research area are an important first step in getting ranking fairness the research

focus it deserves.

Bias Mitigation for Ranking 24

Several papers provide tools for bias mitigation which require the user to define a fairness met-

ric which the described algorithm will then optimize. The Mithra webtool calls this the “good-

ness criterion,” then provides a framework which uses that criterion to rank data34. Asudeh, et

al. take a similar approach, determining the closest satisfying function given the user-provided

definition of bias35. Providing post-processing algorithms to optimize some fairness criterion

is important, but insufficient while the research on appropriate bias metrics is so underdevel-

oped. Other papers employ classification metrics without modification for ranking. Castillo

gives a concise overview of fairness for information retrieval which incorporates several useful

ideas for that problem space, but relies on “sufficient presence” (statistical parity), “consistent

treatment” (equalized odds), and “proper representation” (dataset quality)6. The suggestions

for fairness metrics in information retrieval, namely attention-based and probability-based,

are interesting, but outside the scope of this paper which is focused on the general ranking

problem rather than information retrieval. Similarly, the work by Zehlike, et al. resembles the

information retrieval problem as they create a top-K fair ranking algorithm, where the ranking

of the top elements should reflect quality but also meet a minimum proportion of the protected

class and produce a consistent ordering within the top-K elements36. Their approach, dubbed

FA*IR, is useful in many scenarios since it has relatively low detriment to the utility of the top-K

selection versus ranking algorithms without fairness intervention, but more limited than the

general fair ranking problem explored here. LinkedIn has also been considering the fairness

of its ranking algorithms, but the paper focuses on describing a greedy search technique that

aims to achieve basic classification parity metrics without considering the nuances of ranking5.

Most relevant to this work is FARE, which provided ranking modifications of three of the basic

classification metrics31. Though the work to prove the properties of these metrics was lack-

ing in the paper, the authors’ attention to the differences between ranking and classification

Bias Mitigation for Ranking 25

is commendable. They introduce a pairwise evaluation scheme which includes rank equal-

ity (analogous to statistical parity), rank calibration (considering inverted pairs containing an

element of the protected class), and rank parity (similar to conditional parity, ideally around

1
2). This approach allows auditing of a ranker, but does not incorporate these metrics into the

training process. Additionally, it assumes an unbiased labeled dataset for the first two metrics,

which are based on inversions of pairs according to the expected outcome. The technique also

requires a well-distributed, unbiased dataset to accomplish rank parity, which is vulnerable to

tokenization, clustering, and randomized treatment of the protected class (see 2.2.4). While

considering the inadequacies of classification theory for various ranking scenarios, FARE’s new

definitions will run into many of the same challenges which are demonstrated in the following

section.

2.1 Need for Fair Ranking

The exact metric for fairness in ranking may not be self-evident, but the obvious applications

are myriad. Machine learning techniques are useful in many applications which require at-

tention to sensitive considerations. In fact, use of algorithms to replace arbitrary processes and

automate simple, tedious tasks can improve performance outcomes and allow humans to focus

on more complicated tasks. The problem of fairness arises when the task at hand touches on

some protected characteristic of some of the elements being ranked, which are called members

of the protected class. Many natural examples will touch on politically-charged topics, particu-

larly discrimination based on race or gender, but it is important to remember that the need for

fairness in machine learning extends beyond social issues and the controversy they may engen-

der. For example, information retrieval tasks may incorporate a very different notion of fairness

which should still be compatible with any conclusions reached about the more intuitive social

implications of using ML for ranking.

Bias Mitigation for Ranking 26

The need for fairness is exemplified in the job application process, where race, gender, criminal

record, and status as a parent may all become relevant protected characteristics37. The issue

of affirmative action is related, and connects to higher education as well. In order to maintain

focus on the breadth of this issue, rather than the social issues that may come into play, for the

purposes of a recurring example of fairness consider a slightly different college admission sce-

nario. Disregard all other potential protected class groupings and concentrate on whether an

applicant attended a public high school or a private high school. While this characteristic of an

applicant is correlated with other factors, such as socioeconomic status and geographical loca-

tion, for the purpose of conceptualization it is a sufficiently neutral example which may help to

elucidate some of the nuance in determining a fairness metric.

2.1.1 Tokenization

Many challenges for fair ranking exist, but tokenization, where a subset of the protected class

is systematically misranked in an extreme way, is both particularly difficult to overcome and

problematic in its impact. Before delving into potential bias metrics which can be minimized,

highlighting tokenization can introduce the potential pitfalls for a flawed metric. Avoiding tok-

enization is related to subgroup fairness for ranking, since members of the protected class need

to be ranked appropriately by the trained model. Simply reducing some bias construct in no

way guarantees satisfactory outcomes, especially if the algorithm just trains a differently biased

ranker which optimizes the fairness metric in some counterproductive pattern. For example,

consider the problems with weighting a few “token” elements very highly while discriminating

against others of the protected class. A couple of elements may be lifted up in rank to balance

out the biased pattern, but the underlying structure of bias could easily prevail in this scenario,

which can be connected to the “model minority” problem and the “glass ceiling.” Furthermore,

even within this potentially fraught tokenization system, there is a clear need to avoid treating

Bias Mitigation for Ranking 27

members of the protected class randomly. Minimizing the bias metric should not significantly

reduce the efficacy of the preference ordering for elements with protected characteristics.

2.2 Shortcomings of Classification Theory

Because ranking separates each element into a separate preference level with respect to all

other elements, the relationship between elements of different broad groups becomes much

more complex. In classification applications, unfairness in the model can be obfuscated due to

the prioritization of impact (i.e. what label the model gives to each element is more important

than how the model determines that label). The effect of stratification due to ranking is that

there is no longer a grouping of elements under a label which mitigates impact unfairness in

the model. To illustrate this, consider a pass-fail grading scheme versus a numerical score out of

100. The introduction of higher precision feedback means that, for example, a model that gives

all passing elements of the protected class scores between 60-70 versus passing non-protected

class elements all receiving 90-100 could achieve impact parity for binary classification but not

for ranking. In other words, for classification there is more leeway for model bias that does not

result in disparate impact because only elements that are not clearly in one category are subject

to this discrimination for a high-performing model. Even if the model systematically under- or

overrates elements of the protected class, as long as they are still classified correctly this will

not be detected as bias. However, with ranking every element is substantially distinguished,

so these hidden biases that can exist in classification are much more problematic for a ranker.

Mathematically, this means that the use of broad group statistics common for bias mitigation in

classification is inadequate for ranking due to the added nuance resulting from the goal of pro-

viding a complete ordering of all elements. In summary, the existing classification bias metrics

for group fairness and current customizations for ranking fail to detect certain behavioral differ-

ences between rankings that cannot be considered equally fair (see Observations 1, 2, and 3). In

the following sections, the weaknesses of a number of approaches are explained in more detail,

Bias Mitigation for Ranking 28

with ranking scenarios and characteristics that clearly demonstrate the need for improved bias

metrics. Statistical and conditional independence are specifically chosen due to their usage in

the limited fair ranking literature5,31,36,38, which demonstrates the urgent need to challenge the

shortcomings of these metrics before they become normative for fair ranking.

2.2.1 Terminology to Evaluate Unfairness in Ranking

Due to the limited research in this area and the lack of extant theory for evaluating the quality of

a ranking fairness metric, before going through the prominent candidates it is important to de-

velop a common vocabulary to describe performance. Without having a fixed candidate for fair

ranking, rather than capturing positive aspects of the ranking fairness possibilities these heuris-

tics will describe potential failures of fairness. Considering the best, worst, and average cases

will demonstrate the extent to which these metrics satisfy these necessary properties, or fail to

do so. Because of the complete stratification of elements into a preferential ordering, many of

the biases which can be hidden or disregarded in a binary classification setting come into play.

Depending on the context, these may not prevent these existing classification-turned-ranking

fairness metrics from being appropriate. However, it is important to be aware of how they break

down in order to avoid misuse of flawed bias metrics in sensitive ranking situations.

For the purposes of evaluation, these heuristics will be defined based on the codification of

relatively intuitive notions of fairness, i.e. what would apply in a societal context. They are not

intended to be a universal, sufficient framework for what is considered fair or unfair, but rather

a starting place from which to understand the limitations of existing bias metrics. With those

caveats, the following terms will be applied to the assessment of several bias metrics based on

their immediate applicability and current usage for the problem of fair ranking. Note that de-

tection of a property applies if scenarios with significantly different behavior related to that

Bias Mitigation for Ranking 29

property result in different scores by a given bias metric.

Property 1: A smooth (uniform) distribution of protected class elements should be detectable.

Formally, for otherwise equivalent rankers according to the bias metric, the metric with the

more uniform distribution should be rated as less biased.

While a smooth distribution of protected elements may not always be context-appropriate, a

generic fairness metric for ranking should be able to detect and optimize for this property. If

the protected characteristic plays no role in the ordering of the elements, the protected class

can be expected to be randomly distributed throughout the ranking, which in the average case

will manifest as an approximately even spread. For any position in the final ranking, the expec-

tation that it be a member of the protected class should be equal to the proportion of the pop-

ulation included in the protected class. Consider again the example about assigning numerical

grades to students versus pass/fail binary classification. If, for a sufficiently large sample size,

no students from the specified category (which should not correlate with ranking performance)

receive a grade within a certain range, this might raise a red flag. More concretely, in a large lec-

ture class of hundreds of students with an 80/20 male/female ratio where the majority of stu-

dents get scores between 70-90, if the ranker predicts that no female students received a grade

between 75-85, this pattern might raise concerns even if some bias metric indicates that overall

female students are not underperforming compared to male students. Here, H(x) is the final

rank an individual element x receives from the ensemble ranker, i is each possible rank for the

set of elements X , A refers to the set of elements in the protected class, N is the total number of

elements being ranked, and xA = 1 if x is a member of the protected class A.

E[H(x) = i , xA = 1] = |xA|
N

Definition 1: Tokenization occurs when the exaggerated high ranking of some elements of

the protected class cancels out the exaggerated low ranking of the majority of such elements.

Bias Mitigation for Ranking 30

Figure 2.1. Visualizations of Tokenization and Bimodal Ranking

Note that exaggerated misranking refers to systematic incorrect ranking which is disproportion-

ate to the general performance of the model across all elements being ranked.

Group fairness rarely refers to the potentially excessive elevation of some member(s) at the ex-

pense of all other members of that group. Therefore, bias metrics for ranking should be able to

detect this type of pattern where some elements are “chosen” to satisfy the fairness metric to

the detriment of other elements in the protected class.

Definition 2: Bimodal rankings are a special case of tokenization where elements of the pro-

tected class are ranked either very highly or very lowly.

A bias metric should be able to detect this type of behavior which in many contexts will indi-

cate inconsistent treatment of the protected class. Bimodal rankings of the protected class may

appear due to training a model that is too rigid in its ranking of the protected class, leading to

Bias Mitigation for Ranking 31

an artificial dichotomy.

Definition 3: Noisy ranking refers to a model which disproportionately incorrectly ranks el-

ements of the protected class compared to elements lacking the protected characteristic.

This problem is especially likely in problems with high class asymmetry. The performance met-

ric, i.e. some type of rank loss, may be optimized on the non-protected class elements, while

the bias metric is optimized on the protected class elements. If the ranker can systematically

misrank elements of the protected class without negatively impacting the bias metric, this will

be referred to as permitting noisy ranking.

Definition 4: Arbitrary treatment is a type of error which occurs within the protected class

where elements are treated as interchangable.

This is similar to both the issues of tokenization and noisy ranking discussed above, but specif-

ically refers to failing to distinguish protected class elements from each other based on their

respective qualities, leading to unfairness within the protected class.

Proposition 1. Sensitivity to class asymmetry and dataset bias is a threat to the generalization

of certain bias metrics.

Recall the COMPAS dataset and the claim of predictive parity. Some fairness applications can

rely on having balanced datasets, or achieve this prerequisite through preprocessing. Many

real-world datasets cannot be assumed to avoid systemic biases, so class asymmetry is a reality

which impacts ranking fairness problems.

Proposition 2. If the objective is treatment parity, where membership in the protected class

does not impact the final ranking of an element, non-correlation between rank and protected

class, i.e. arbitrary distribution of protected elements, is desirable. However, this distribution

Bias Mitigation for Ranking 32

cannot consistently satisfy the goal of impact parity for an individual ranker, where the pro-

tected class receives the same treatment according to some standard as the population at large,

since many such non-correlated distributions will fail according to group fairness metrics.

Statistical tests such as the runs test of randomness can be used to determine if distributions

match within a certain degree of probability with respect to mean and variance39. If unbiased

algorithms are trained on fair datasets then treatment parity could be sufficient; however, due

to real-world concerns about the shortcomings of both algorithms and training data, impact

parity is the priority for practical ML ranking problems. Detecting a random distribution of

protected elements can show that the protected class is broadly not impacting its individual

elements compared to their peers, but based on the logic described in Proposition 1 true ran-

domness is not desired for most sensitive applications which require some degree of monitor-

ing or intervention to ensure a balanced model with respect to impact on the protected class.

Consider legal restrictions such as the federal 80% rule (four/fifths rule) for hiring, which deter-

mines that no minority group can be represented too disproportionately compared to any other

group40. The cultural understanding of group fairness in this way contradicts ideas of individ-

ual fairness (i.e. treatment parity) because group representation, which cannot be guaranteed

by random processes, is key.

The vocabulary introduced in this section will be used in the subsequent analyses of several

potential bias metrics for ranking due to their applicability to the problem or reference in the

existing literature explored above. More work should be done to create a comprehensive suite

of heuristics which can apply to the many sensitive contexts where the fair ranking problem is

applicable. However, for the purposes of an initial survey of attempts at fair ranking, these terms

are sufficient to raise a number of potent concerns and hopefully motivate the development of

more robust fairness metrics.

Bias Mitigation for Ranking 33

2.2.2 Statistical Independence

Extending statistical independence from classification to ranking evaluates whether member-

ship in the protected class impacts the expected rank of an element5,36.

E[H(x)|A(x)] = E[H(X)]

Essentially, this means the average rank should be the same for members of the protected class

and members of the non-protected class, which would result in each class having an average

rank of n
2 where n is the number of elements being ranked. While this approach can arguably

provide important (albeit incomplete) insights for classification, since it means the separation

of elements does not reflect their status as members of the protected class, use of expected val-

ues means that this metric cannot capture the specific importance of ordering in the ranking

problem. There are many different distributions which share the same mean, so to guarantee

that elements of each class have as their mean the midway point of the rank gives very little

meaningful information.

Observation 1. Statistical independence does not detect a smooth distribution, tokenization,

or arbitrary treatment of the protected class for ranking.

Proof: Consider a ranking of 100 elements, where 10 elements are members of the protected

class. To guarantee statistical independence of their final rank, the average of their ranks should

be 50. The following ranking results for the elements of the protected class all exactly fulfill this

requirement.

• Mean: 45,46,47,48,49,51,52,53,54,55

• Bimodal: 1,2,3,4,5,95,96,97,98,99

• Bimodal: 2,3,5,67,68,69,70,71,72,73

• Uniform: 5,15,25,35,45,55,65,75,85,95

Bias Mitigation for Ranking 34

Figure 2.2. Four Rankings of Protected Class with Same Statistical Independence Score

Forcing a model to optimize for statistical independence can push it to these local “statistical

bias minima” which are equivalent from the perspective of statistical independence. Depend-

ing on the context of the scenario, each of these may perpetuate systematic unfairness instead.

For reflection on the fundamental challenges for use of statistical independence which also ap-

ply to classification, refer to 1.2.2, i.e. for the discussion of the potentially arbitrary treatment

within the protected class.

2.2.3 Conditional Independence

Conditional independence for ranking can either be interpreted as the expected rank of an ele-

ment being the same when given the true rank and the protected characteristic as when given

just the true rank,

E[H(x)|R(X), A(x)] = E[H(x)|R(x)]

Bias Mitigation for Ranking 35

or as the pairwise classification by the weak rankers being conditionally independent of the

protected characteristic5,

E[h(x)|y(x), A(x)] = E[h(x)|y(x)]

Each of these approaches raises concerns about the ramifications for the fairness of the final

ranking. The former possibility necessitates considering a distribution or error bar around the

true rank which should not systematically overrank or underrank members of the protected

class. The second approach of guaranteeing conditional independence on the weak rankers

exerts very little influence over the final fairness of the ranking since the metric will not be

coordinated between weak rankers and ties are not considered. Similar to statistical indepen-

dence, above, this can lead to clustering or bimodal rankings due to tokenization or arbitrary

treatment.

A variant of this approach, used in the research effort to make LinkedIn more fair, is to change

the conditional independence so that it works as a “top-K” sort of approach where the equal-

ized opportunity (another term for conditional independence) metric only evaluates the results

that come up first5. This information retrieval approach somewhat matches the problem space

since recruiters and LinkedIn users are probably only looking at the top few search results. How-

ever, the objections below still apply when the search space is shrunk to just those ranked at

the top, since that can be considered a ranking subproblem. Without ensuring some degree of

fine-grained fairness beyond just receiving a high rank, conditional independence will still have

many shortcomings regarding ordering, error, and tokenization as described below. Notably,

this model of group fairness also fails to account for intersectionality and subgroup fairness.

Observation 2. Conditional independence cannot detect tokenization and noisy ranking.

Proof: Consider the elements of the protected class described in the proof of Observation 1. For

the first approach, determining conditional independence on the final ranking, observe three

Bias Mitigation for Ranking 36

critical scenarios which would satisfy this metric but confound the intent of ensuring fairness.

Assume for this purpose that the fair rank is the uniform distribution. In Figure 2.3 these three

scenarios are depicted side-by-side with the true (uniform) rank of the protected class on the

left of each bipartite graph, one for each scenario, and the undesirable rank from some ranker

on the right. The movement of the elements is shown using an edge, which provides the visual

representation of the counterexamples described in the following propositions.

Proposition 3. Conditional Independence will not detect clustering, i.e. fail to distinguish be-

tween elements of the protected class in a “balanced” way, such that the negative impact is

“canceled” by the positive impact, a type of systematic misranking of the protected class. Refer

to column 1 of Figure 2.3.

5 −→ 14,15 −→ 15,25 −→ 16,35 −→ 44,45 −→ 45,55 −→ 46,65 −→ 79,75 −→ 80,85 −→ 81,95 −→ 82

Proposition 4. Conditional Independence cannot detect noisy ranking, i.e. arbitrary ranking

of the class with fewer elements. Refer to column 2 of Figure 2.3.

5 −→ 15,15 −→ 4,25 −→ 33,35 −→ 22,45 −→ 54,55 −→ 70,65 −→ 49,75 −→ 81,85 −→ 90,95 −→ 82

Proposition 5. Conditional Independence cannot detect tokenization, i.e. systematically fa-

voring the higher rated elements of the protected class and discriminating against the lower

rated ones, another type of systematic misranking of the protected class. Refer to column 3 of

Figure 2.3.

5 −→ 1,15 −→ 8,25 −→ 16,35 −→ 22,45 −→ 31,55 −→ 72,65 −→ 79,75 −→ 83,85 −→ 92,95 −→ 100

These fairness concerns also highlight the problems with using conditional independence to

determine bias for the weak rankers. Because it is a group fairness method, and weak rankers

can have relatively low accuracy, to satisfy this metric only the proportion correctly ranked mat-

ters. This can lead to tokenization, where a few protected class elements are overranked and the

rest are underranked; oscillation, where the protected class ends up in clusters due to the weak

Bias Mitigation for Ranking 37

Figure 2.3. Undetected Clustering, Noisy Ranking, and Tokenization Examples

rankers labeling these elements inconsistently; or noisy ranking, where the weak rankers ig-

nore the correct ordering of these elements, for example by causing too many ties to stratify

these elements effectively.

2.2.4 FARE ranking metrics

This section will evaluate the three ranking specific fairness metrics proposed by Kuhlman, et

al. since they are specifically intended to be applied to ranking problems31. In fact, since these

were the only truly ranking specific metrics uncovered in the literature review for this section,

it is imperative to test them before they become the de facto metrics. Although the FARE paper

does provide some helpful background information and some similar rationale to this paper

for creating metrics for ranking that are different from those used for classification, it unfortu-

nately goes into very limited mathematical detail about the robustness of these metrics. All are

Bias Mitigation for Ranking 38

group parity metrics, and can be checked against the desirable qualities for fairness metrics ex-

plained in the previous section. It is interesting to note that the three metrics described are all

computed pairwise, which is the main innovation distinguishing them from the original clas-

sification fairness metrics. This design is therefore easily incorporated into pairwise boosting

algorithms for ranking such as RankBoost.

The first fairness metric proposed by the paper is called Rank Equality Error, which they de-

fine according to the following equation, where H is the ensemble ranker working on pairs xi

which have correct pairwise ordering yi . The indicator function in the numerator is 1 when an

element from group A1 is incorrectly ranked above an element from a different group, whereas

the normalizing factor in the denominator counts instances where the pairs have elements from

different groups.

Req (H(x), y) =
∑

i |H(xi)− yi | I(A1 > A2)∑
m I(A1 6= A2)

Essentially, this metric counts and normalizes the number of incorrect pairs where the specified

group is ranked more highly than elements of different groups. According to the FARE authors

this approach is based on equalized odds or conditional parity. As the authors of the paper

point out, the efficacy of this metric is dependent on the true rank given by the dataset being

fair, so it will not detect a smooth, uniform distribution. Metrics based on incorrect pairings will

be blind to biases originating in the data. Similar to the basic version of conditional parity, this

metric cannot effectively detect tokenization, although the extreme case of bimodal rankings

will result in a relatively poor score for this metric. Because this metric detects the proportion

of overrankings out of the total misrankings, some severe overrankings can be “balanced” by

many underrankings (see Table 2.1). This metric will detect arbitrary treatment of the protected

class though, since each individual element in the protected class is evaluated against all pairs

against members of other classes.

Bias Mitigation for Ranking 39

Rank Equality Error on Ranking B9 A0 A2B1B3 A5B4 A8B6B7

A0 A2 A5 A8

B1 Y
B3

B4 Y
B6 Y
B7 Y
B9 X X X X

Table 2.1. An Example of Rank Equality Error: both A and B have Req = 1
6

A and B are two classes defined by some protected characteristic such that their
treatment is expected to be similar according to the fairness criteria used.
The subscripts on each element denote the correct position of that element.
This table gives the pairs which compare an element of A to an element of B; X
means that the element of B is incorrectly ranked above the element of A and Y
means that the element of A is incorrectly ranked above the element of B.

The second proposal from the paper is called Rank Calibration Error which is the proportion of

incorrect pairwise rankings that impact the protected class.

Rcal (H(x), y) =
∑

i |H(xi)− yi | I(A1)∑
m I(6= A1)

Rank calibration is based on calibration for classification which indicates the correctness of the

model’s prediction for each group. Both overranking and underranking elements of the pro-

tected class reduce the rank calibration, and the two types of discordance are not recorded sep-

arately. Similarly to Rank Equality Error, this metric will be heavily dependent on the fairness of

the original dataset and its true rankings, so it will not detect uniform distribution of elements

of the protected class. Its main utility is to evaluate whether the protected class is being con-

sistently ranked less precisely than other elements, which is somewhat related to the notion of

cost explored in the following chapter. Because it does not distinguish between underranking

and overranking, Rank Calibration Error will not detect tokenization, clustering, or other forms

of systematic error as opposed to noisy rankings of the protected elements. However, it will

detect severe arbitrary treatment of the protected class, since this will significantly impact the

proportion of misranked pairs.

Bias Mitigation for Ranking 40

The final metric Kuhlman, et al. propose is Rank Parity Error, calculated using the following

equation,

Rpar (H(x), y) =
∑
I(A1 > A2)∑

m I(A1 6= A2)

which is based on statistical independence since it has appeared in several of the other papers

exploring fairness for ranking5,36,38. Rank Parity Error describes the number of pairs where an

element of the protected class is ranked higher than an element outside of the protected class,

regardless of whether the rank is correctly ordered. The goal of this metric is to detect the dis-

tribution of elements of the protected class across the rank. Ideally, the rank parity value will be

about 1
2 for a relatively uniform spread. While the goal of this approach aligns with the desirable

characteristic of being able to detect a uniform spread as described in the previous section, in a

number of vital scenarios it will not be able to detect failures to achieve this fairness objective.

Fundamentally it does not solve the issue of tokenization or clustering and even is unlikely to

detect an extreme bimodal ranking, as shown in the example given in Table 2.2. The number of

pairs where the protected class elements are ranked higher than non-protected class elements

can be “fair” according to this metric through systematic underranking and overranking. There-

fore, in the important benchmark scenarios laid out in this paper, this metric will be inadequate

in its paper’s stated goal of detecting uniform distributions.

Although the premise of introducing ranking specific versions of fairness metrics is worthy,

these metrics still fall short in many ways. They provide a convenient framework for calculat-

ing properties that very closely align with those which are prevalent for fair classification tasks.

However, the metrics do not do enough to improve their representativeness to the fair ranking

problem. They still fail in most of the same ways which negatively impact the classification

fairness metrics applied to the fair ranking problem, which demonstrates that Rank Equality

Bias Mitigation for Ranking 41

Rank Parity Error on Ranking A0 A2B1B3B4B6B7B9 A5 A8

A0 A2 A5 A8

B1 X X
B3 X X
B4 X X
B6 X X
B7 X X
B9 X X

Table 2.2. An Example of Rank Parity Error: both A and B have perfect Rpar = 1
2

A and B are two classes defined by some protected characteristic such that their
treatment is expected to be similar according to the fairness criteria used.
The subscripts on each element denote the correct position of that element and
X means that the model ranks the pair such that A > B .

Error, Rank Calibration Error, and Rank Parity Error for the most part merely extend the overly-

simple-for-ranking classification fairness metrics. With failure to detect even basic problematic

scenarios, as one would desire for a robust, generalizable fair ranking metric, the work done by

the FARE paper does not substantially improve upon the flaws present in the bias metrics for

classification when applied to ranking.

2.2.5 Preference-based Fairness

Preference-based fairness for classification is intended to improve or maintain the impact of a

trained model for all groups as compared with parity-based fairness by relaxing the strict par-

ity requirement19. Error is minimized by using classifiers for each group that provide more

desirable outcomes than the parity achieving options would. Recall the linear program for clas-

sification, where lhz is the loss function on the classifier hz preferred by class z over the impact

parity classifier h′.

minimize
hz

1

N

∑
(x,y,z)

lhz (x, y)+ ∑
z∈Z

λzΩ(hz)

subject to
∑

x∈D

max
(
0,hT

z x
)≥ ∑

x∈Dz

max
(
0,h′T x

)
for all z ∈Z

Bias Mitigation for Ranking 42

This concept is appealing for ranking fairness due to its higher flexibility which could make the

simultaneous optimization of performance and fairness result in a smaller tradeoff. Conceptu-

alizing a preferred ranking scheme requires a single metric to determine which ranking models

are more desirable for a group, but can be approximated by allowing each group to “choose”

weak rankers to add to the ensemble for a boosted ranking algorithm.

minimize
h|z|∈H

Ê2(h|z|,x, y)

subject to
∑

xa∈Dz ,xb∉Dz

hT (xa)−hT (xb) ≥ ∑
xa∈Dz ,xb∉Dz

h′T (xa)−h′T (xb) for each z ∈Z

Here, the performance optimization takes the exponential rank loss across the newly selected

binary weak rankers from each group, and the group benefit constraint considers the treatment

of the individual members rather than the pairs by the candidate weak rankers. Given the pos-

sibilities, each group will select the weak ranker that elicits the most substantial benefit for their

group as compared to the other groups. However, integrating multiply rankers for each class in-

troduces new challenges and the need to weight the weak rankers mean this approach is fraught

with potential for exploitation. For the proposal above, each set of |z| weak rankers would have

to be weighted evenly together according to the aggregate error of their mini-ensemble.

Observation 3. Preference-based techniques are sensitive to class asymmetry in the training

data and moreover require a reliable parity based metric against which to compare perfor-

mance to rate the quality of rankers.

Proof: Assume there exists an established parity metric for weak rankers, and that groups have

a success metric which deterministically selects a weak ranker that most benefits the group as

a whole. Consider an ensemble ranker composed of weak rankers selected by three different

groups, Tories (T), Labour (L), and Lib-Dems (D), each acting in its own interest to maximize

its ranking success. Assume the true ranking of the candidates is T1,L2,D3,T4,T5,T6,D7,L8,T9.

Labour and the Lib-Dems each select a weak ranker hL and hD that values their respective

Bias Mitigation for Ranking 43

members as 1 and all other candidates as 0. Meanwhile, the Tories pick a weak ranker hT that

assigns a 1 to T1, T4, T5, and T6, and values every other candidate as 0. Each of these weak

rankers performs better for the group that selected it than a parity-based metric would, which

incentivizes its selection. However, when these weak rankers have to be weighted for the final

ensemble, this most benefits the Tories, since they are the group with plurality which can mini-

mize loss by correctly ordering their own members with a weak ranker. Both hL and hT misrank

7 pairs, whereas hT misranks only 6. Therefore, hT will be receive the highest weight among

the three rankers, which means that T4, T5, and T6 will receive more of the vote share than

either L2 or D3, which each receive one vote from a lower weighted weak ranker. This exam-

ple helps to illustrate the potential for “gerrymandering” when transforming preference-based

classification to preference based ranking30. Ultimately, the groups will have chosen mutually

contradictory weak rankers to benefit their own members, so the most influence will default to

the group whose majority population allows the greatest degree of self-promotion compliant

with the canonical rank of the training data.

2.2.6 Sub-group Fairness and Individual Fairness

Subgroup fairness for ranking is also dependent on having a robust group parity metric, which

is currently lacking as demonstrated above. To determine subgroup treatment is to recursively

compute group treatment parity on intersectional or increasingly precise subgroups. Without a

meaningful comparison method, these attempts will be rendered futile. Unfortunately, individ-

ual fairness, which is currently making significant headway in fair classification research, is also

very difficult to extend to ranking. The fundamental notion that “similar individuals should be

treated similarly” becomes much harder with the full preferential ordering required for ranking

as compared to the binary separation involved in classification. The entire point of ranking is

that there should be an objective way to form a quality gradient, so wanting similar individuals

to get similar treatment is circular. Consider inviting job applicants from the same school for

Bias Mitigation for Ranking 44

interviews; even if they have similar qualifications, and both can get invited for an interview,

there is some preferential ordering which implies dissimilarity. Since the purpose of ranking is

to differentiate between all elements, the degree of similarity of treatment is inherently limited.

Ranked individuals can never get the same treatment, so at best every element can get its de-

served position in the hierarchy, since that is what is most fair. This objective implies ranking

fairness for individuals is based on the implicit quality of the trained ranker rather than an ex-

ternal fairness quantifier. In order to make progress in this area, work in preprocessing datasets

and adjusting ranking algorithms to be more aware of the consistent ranking treatment of indi-

viduals in the protected class may be necessary. In the following chapter, adjustments to make

RankBoost cost-sensitive could be a step forward in this direction, as giving a weighted sense of

the importance of precise ranking to certain elements may be able to improve the performance

of the trained model on the protected class elements.

2.3 Bias Mitigation for Multiclass Classification

Bias mitigation for multiclass classification is a different problem from fair ranking, even at the

limit, because there is not an explicit assignment of preference, meaning it can be thought of

a horizontal rather than vertical stratification of elements. However, multiclass classification

exists in the space between binary classification and ranking due to the increased complexity

when the mutual relationships between more than two group labels must be considered. In

particular, this makes class asymmetry a central consideration for many multiclass classifica-

tion problems. There has been some work in weighted (cost-aware) algorithms for multiclass

classification which provides a useful point of comparison in the following chapter14,18.

Multiclass classification also raises the issue of one-vs-all and all-vs-all approaches, which has

been compared to fairness problems in binary classification20. One-to-all approaches choose

a class, generally the class with plurality, and perform pairwise comparisons between that class

Bias Mitigation for Ranking 45

and each of the other classes41. Effectively, this technique relies on turning the multiclass prob-

lem into a centralized separator with the smaller classes being spokes out from the biggest class.

This strategy naturally leads to asymmetric classification challenges where separation between

non-majority classes is systematically biased towards the features of the majority class, which

is also likely to be overrepresented in the results42. As a result, other techniques have been ex-

plored with complete pairwise comparison between all classes. While fairness is not explicitly

the aim, improving performance by targeting systematic bias in a more complex system than

binary classification can help to inform the goals for both fair multiclass classification and fair

ranking.

2.3.1 Fair Multiclass Classification

Although most specific research on fairness for multiclass classification relates to creating ex-

plainable neural networks43–45, because of the connection between n-label multiclass classi-

fication and ranking it is worth exploring how the fair binary classification metrics can be ex-

tended to the fair multiclass classification problem. Statistical independence can be immedi-

ately applied to k-multiclass classification problems, where k << n, without needing to distin-

guish between one-vs-all or all-vs-all comparison. Its requirement is simply that being a mem-

ber of the protected class does not statistically impact what classification an element receives

from the model, so all the labels would need to share the same proportion of members of the

protected class. This proportionality can be established from the majority class and applied in

pairwise comparisons to the minority classes without necessitating complete pairwise interac-

tion. Other approaches involve increased nuance due to the multifaceted connections between

different classification groups. However, it is important to note that as the groups become in-

creasingly fine-grained, i.e. as the multi-class classification approaches n-label separation, the

approach described above ceases to have meaning since their is no proportion in a one-element

group. At this limit, statistical independence runs into the challenges described in 2.2.2 where

Bias Mitigation for Ranking 46

the expectation is insufficient to detect the spread of the elements across the n-labels.

Consider conditional independence for a multiclass classification problem, which depends on

symmetry in the binary classification problem. Should the expected label of misclassified ele-

ments of the protected class be proportionately distributed across all incorrect groups? Or can

all misclassifications be considered equal? Does similarity between the groups matter when

considering the penalty or degree of unfairness for misclassification? Ensuring misclassifica-

tions are identically distributed for protected and non-protected class elements is arguably

counterproductive, but the potential for bias is clear. This challenge is exacerbated for sub-

group fairness due to the increased fragmentation from the binary classification problem.

One possibility is to weight the multiclass labels pairwise based on their problem-specific “dis-

tance” from each other, and distribute misclassifications according to this mapping. This idea

extends naturally from an intuitive notion of individual fairness for a multiclass problem, where

each element can be considered to be in hyperdimensional space which should be separated

equitably for all individual elements. A misclassification in a related or nearby group would

in this case be considered less severe than a more grevious misclassification, while allowing

a less rigid system for evaluating the fairness of misclassifications. However, the problem spe-

cific constraints make it difficult to meaningfully extend this approach to the analogous ranking

problem.

47

3 Cost-Sensitivity for Ranking

This chapter begins with 3.1, which describes Nikolaou’s dissertation work to unify the many

cost-sensitive versions of AdaBoost and gives a framework for evaluating the theoretical proper-

ties of their loss functions1. In the subsequent section, 3.2, the paper introduces a cost-sensitive

RankBoost variant which can be extended to similar algorithms such as RankBoost+ (3.2.1)11,46.

This section also includes proofs about the loss functions and weighting for weak rankers for

both cost-sensitive variants. 3.3 provides proofs about further theoretical properties, includ-

ing the cost-sensitive generalization bound (3.3.2). This research effort to create a robust cost-

sensitive approach for boosted ranking algorithms is based on the potential applications to bias

mitigation for ranking, such as the use of cost-sensitive algorithms to create fair classifiers29 and

the work from 2.2.1 and 2.2.6 which imply that more precise ranking of the protected class given

preprocessed training data can improve a number of measures for fairness outcomes. Since

cost is a way to express average risk, and bias is inherently a risk of unfairness that needs to be

mitigated, having a framework for cost-sensitive ranking provides the necessary foundation to

transform fairness problems in ranking to cost-sensitive ranking.

3.1 Cost-Sensitive Boosted Classification Algorithms

In many machine learning problems, different mistakes have consequences of different magni-

tudes. Barring a perfect model, there will be some tradeoff between the model’s ability to clas-

sify or rank elements along the margin or within a protected or rare class. In these asymmetric

Cost-Sensitivity for Ranking 48

scenarios, where one class has fewer instances than the other or where the cost of mislabeling

differs, leading to an asymmetric confusion matrix, algorithm modifications can train models

that better capture the consequences of asymmetry1. In classification, this cost or class asym-

metry generally reflects the difficulty of assigning a relatively less common label or the risk of

a false positive or false negative in a sensitive scenario such as medical testing. For classifica-

tion, many cost-sensitive algorithms and variants have been proposed to address this need. For

the purposes of this paper, the focus will be on boosting algorithms, which either explicitly or

implicitly modify the loss function of the algorithm in order to better capture the asymmetry

of the problem in the model. Using transformations between cost and class asymmetry, it can

be shown that the two problem categories are mathematically equivalent and can be addressed

using the same algorithmic techniques.

3.1.1 AdaBoost and its Cost-Sensitive Variants

AdaBoost46, short for “Adaptive Boost,” helped to originate the use of weighted voting systems

for ML classification problems. By aggregating weak learners, ht , as long as they perform bet-

ter than guessing, it is possible to combine relatively poorly performing classifiers into a much

more powerful ensemble. Weak rankers are incorporated into the weighted voting model ac-

cording to the combination of voters which minimizes some loss metric on the training data.

Based on computability concerns, the process of picking weak learners is done iteratively in-

stead of by optimizing to the true minimum, but both empirical results and theoretical analysis

have affirmed the success of this strategy. The final weighting, αt , of each weak learner ht is

calculated according to its weighted error, εt .

αt = 1

2
log

(
1−εt

εt

)

Cost-Sensitivity for Ranking 49

The distribution of the N labeled training examples (xi , yi) is initially assigned uniform weight,

D0
i =

1

N
,

where D is the normalized weight distribution, in this case for pair i at iteration 0. The weight

distribution of all the pairs is adjusted at each step according to the performance of the current

ensemble with the newly incorporated weak learner using the update step below, where Zt is

the normalization constant for the reweighted distribution.

D t+1
i = D t

i ×e−yiαt ht (xi)

Zt

The cost-sensitive variants of AdaBoost have used a variety of approaches to incorporate a no-

tion of cost into the boosting algorithm, as seen in Figure 3.1.

Nikolaou provides a thorough analysis of the properties and relative merits of these cost-sensitive

AdaBoost variants according to the loss-function properties outlined in the following section1.

He groups these algorithms into those that modify the training step, those that adjust D0, and

those that calibrate the classification differently in post-processing. According to his analysis,

which calculated the effective loss functions of even the ad-hoc approaches, the theoretically

most sound versions applied cost as a coefficient to the loss function. The three algorithms that

utilized this approach did so using the initial distribution (CGAda), during the weight update

rule (AsymAda)47, and through post-processing the normal AdaBoost algorithm, respectively.

These distinctions led to slightly different empirical results, but resulted in the minimization of

the same loss function, c(y)e−yFt (x), where c gives the pairwise cost and Ft is the classifier at

iteration t . The differences in results are due to the effects of boosting differing between the

versions due to when the cost is applied, but theoretically these three approaches are identical

and the starting point for the work on cost-sensitive ranking described in this chapter.

Cost-Sensitivity for Ranking 50

Figure 3.1. Cost-Sensitive AdaBoost Variations Analyzed by Nikolaou1

3.1.2 Evaluating Loss-Functions

Nikolaou introduces four metrics by which to consider the properties of loss-functions pre-

sented by cost-sensitive variants of AdaBoost1. The behaviors of the resulting models reflect

the extent to which each variant obeys the requirements of functional gradient-descent, deci-

sion theory, margin theory, and probability theory.

• Functional gradient-descent minimizes the loss on the training data incrementally by

incorporating new weak learners that progressively lower the error of the model ac-

cording to the functional derivative. The weight update rule, which determines the

Cost-Sensitivity for Ranking 51

new weight distribution of the elements in the training data, depends on the nature

of the loss function and its functional derivative. Picking the best weak learner means

taking the greedily optimal loss minimizing step according to ∂L(yF (x))
∂y H(x) , where L is the

loss function on the correct label y and the label chosen by the model F (x). Modifica-

tions to the weight update rule are evaluated based on whether this loss optimization

step is still locally optimal.

• The decision-theoretic approach builds on the functional gradient-descent premise

from above but focuses on the construction of the minimizer H. The minimizer should

be optimal by the final round of boosting according to the cost assigned to each type of

mistake. Nikolaou uses the label “cost-consistent” for algorithms that apply their mini-

mizier model to classify elements according to the costs and the label “cost-inconsistent”

for those that classify at a threshold other than costs. This property may seem obvious,

but was rendered necessary due to the large number of heuristic-based cost-sensitive

AdaBoost variants that were found to be cost-inconsistent.

• Margin theory can be applied to cost-sensitive boosting by introducting the concept of

“asymmetry preservation.” For a given margin, elements that have higher cost should

always be prioritized, i.e. by having higher penalty for misclassification, than the ele-

ments with the same margin but from the lower cost class. This strategy is based on

research that indicates that increasing margins in the model leads to better generaliza-

tion48,49.

• The probabilistic view as described by Nikolaou points out that the confidence values

produced by boosting cannot immediately be used as probability estimates. The ex-

tremity of division by boosting necessitates post-processing calibration in all explored

cost-sensitive AdaBoost variants in order to turn the output for elements into a cali-

brated probability score. This property potentially connects to the use of calibration

Cost-Sensitivity for Ranking 52

as a fairness metric discussed earlier, since post-processing output to generate proper

probabilities can stabilize or smooth the behavior of the model.

Unfortunately, these metrics cannot all immediately be translated to apply to cost-sensitive

ranking. They nonetheless provide a useful starting point to consider the priorities for the

properties of a cost-sensitive variant of a boosting algorithm for ranking, and help to highlight

the similarities and differences between the problems of cost-sensitive classification and cost-

sensitive ranking.

3.2 Cost-Sensitive RankBoost

RankBoost is similar to AdaBoost in many ways, but differs in the computation of the loss func-

tion during training. AdaBoost’s rank loss function is based on misclassifications as shown be-

low, with h(x) being the classifier h’s label for element x, y being the correct label for x, and D t

being the weighting distribution on the elements at the iteration t ,

R̂ =
n∑

i=1
h(xi) 6= yi D t

i

In contrast, the RankBoost rank loss function uses pairwise comparisons between elements to

determine which pairs are correctly ordered and penalizes those that are swapped4. The pairs

that were ranked incorrectly are reweighted for the next round of boosting so that future weak

rankers will be incorporated to enforce the correct ordering between those pairs. Therefore, to

incorporate cost-sensitivity into RankBoost, the costs must either be assigned to the pairs, or

be assigned to the elements in such a way that the pairwise cost can be meaningfully computed

for each pair of elements. The cost-structure for this RankBoost variant is based on Nikolaou’s

conclusions about the performance of cost-sensitive AdaBoost variants, which indicated that

only the algorithms that applied cost as a coefficient achieved all of the desirable theoretical

properties described above1. Hence, this cost-sensitive RankBoost variant also applies cost as

Cost-Sensitivity for Ranking 53

a coefficient such that the new Rank Loss function is

R̂2 =
m∑

i=1
c̃(i)e(i)

where the loss is summed over m pairs, c̃(i) is the normalized cost of the i th pair, and e(i)

is an indicator function that denotes if the result was incorrect with value 1
2 assigned to ties.

Note that in this paper, the cost sensitive loss functions are bolded to distinguish them from the

loss functions of the original algorithms. The same coefficient appears in the exponential loss

function that is used to optimize the ranking model during training, as shown in the following

equation.

Ê1

(
N∑

s=1
ηs fs

)
= 1

m

m∑
i=1

c̃(i)e
∑N

s=1 lnω0
s (i , fs ,ηs)

Note that because the “decision rule” (final ordering of the ranking) of the loss minimizer is a

function of the ensemble ranker’s error and the cost function, this incorporation of cost into

the ranking algorithm is cost-consistent. This cost function can be incorporated as the initial

distribution instead of starting with uniform weight, applied evenly across each iteration of the

training where pairs are reweighted by c(xi)1/M for each of M iterations, or as a post-processing

step where the output of the model is adjusted by the cost. Because of the theoretical equiva-

lence of these techniques, disregarding small empirical differences, these approaches are effec-

tively identical. For the purpose of simplicity, cost will be incorporated in the initial distribution

in the following sections.

Cost-sensitive RankBoost should still satisfy the first three quality metrics described in the pre-

vious section for cost-sensitive classification. Probabilistic calibration is not immediately useful

but could be an interesting area of future work. The ensemble ranker is constructed by greedily

optimizing a loss function with the incorporation of predictive weak rankers. This can be struc-

tured as the construction of a loss minimizer according to the decision theoretic perspective.

Margin theory is slightly more complicated due to the full ordering of the elements rather than

Cost-Sensitivity for Ranking 54

their binary separation, but ranking margins can also impact the generalization quality of the

model. The notion of asymmetry preservation is particularly apt for the ordering of elements,

as correct ordering should be prioritized for higher cost elements given the same degree of sep-

aration as lower cost elements. With the computation of the loss function for cost-sensitive

RankBoost in later sections, revisiting these concepts will provide further insight into the effi-

cacy of this cost structure for boosted ranking algorithms.

3.2.1 RankBoost+

RankBoost+ challenges the treatment of ties in the original RankBoost algorithm, asserting that

ties should be reweighted by the mean of the reweighting for correctly and incorrectly ordered

pairs11. Because in RankBoost ties are treated as incorrect in R̂1 but weighted as 1 in Ê1,

R̂1(h) = 1

m

m∑
i=1
I(yi (h(x

′
i)−h(xi)) ≤ 0)

Ê1(h) = 1

m

m∑
i=1

e−yi (h(x
′
i)−h(xi))

the rank loss and the exponential loss functions produce different orderings and weighting of

rankers. Therefore, using Ê1 as an optimizing approximation of the rank loss may be detrimen-

tal to the model being trained in terms of ability to minimize R̂1. Furthermore, the exponen-

tial loss function weights ties in such a way that they are not penalized proportionately to the

reweighting of correct versus incorrect pairs. RankBoost+ suggests an intervention to adjust the

reweighting function to

ω∗
2 (i , fs ,ηs) =

e−ηs if pair i correctly ranked by fs

e−ηs if pair i is incorrectly ranked by fs

cosh(ηs) if pair i is tied by fs

which results in minimizing the exponential loss function Ê2, based on the rank loss function

R̂2 used to evaluate performance in the original RankBoost paper4. With ties weighted halfway

Cost-Sensitivity for Ranking 55

in between an incorrect and a correct pairwise ranking, for binary weak rankers incorporated

iteratively there is no longer any reversal of ranker ordering between rank loss and its exponen-

tial approximation. The exponential loss function on the ensemble, with αs as the weight of hs ,

up to the current iteration t where the ranker ht is incorporated with weight ht , is

Ê2

(t∑
s=1

αshs

)
= 1

m

m∑
i=1

e
∑N

s=1 logω∗
2 (i , fs ,η′s)

where η′s is the vector which describes the weighting of the weak rankers at the time step being

computed. Ultimately, the new αt value best encapsulates the impact of this adjustment to the

reweighting scheme during optimizations,

αt = 1

2
log

ε+1
t +ε0

t
e−α

′
t

2cosh(α′
t)

ε−1
t +ε0

t
eα

′
t

2cosh(α′
t)

which uses the exponential expansion of the hyperbolic cosine function to balance the weight-

ing of rankers according to the new policy towards tied pairs. Here,

ετt =
∑

i
D t

i I([ht (x
′
i)−ht (xi)] == τ)

where τ ∈ {−1,0,+1} indicates the pairs which are reversed, tied, and correct. The cost-sensitivity

approach described in the previous section can naturally be extended to RankBoost+ without

changing its desirable properties. Both versions will be used going forward and their perfor-

mances will be compared in the experimental sections; however proofs which are interchange-

able between the versions will not be duplicated.

3.2.2 Loss Functions

Proving the basic properties of Cost-sensitive RankBoost and RankBoost+ demonstrates the

similarities and differences between the two variations as well as their distinguishing features

as compared to the standard (non-cost aware) versions of the algorithms. The performance and

optimization criterion are based on the new loss functions for each version, and the character-

istics of those loss functions are proved throughout this section as necessary.

Cost-Sensitivity for Ranking 56

Algorithm 1 Pseudocode for Cost-Sensitive RankBoost and RankBoost+

1: function COST-SENSITIVE RANKBOOST((x1, x ′
1, y1, c̃1), ..., (xm , x ′

m , ym , c̃m))
2: for i = 1 to m do
3: D0(i) = c̃i

4: for t = 1 to T do
5: ht = argmin

h∈H ′
|δ(h)| for RankBoost or ht = argmax

h∈H ′
|δ(h)| for RankBoost+

6: αt = 1
2 log

ε+t
ε−t

for RankBoost or αt = 1
2 log

 ε+1
t +ε0

t
e
−α′t

2cosh(α′t)

ε−1
t +ε0

t
e
α′t

2cosh(α′t)

 for RankBoost+

7: for i = 1 to m do
8: D t+1(i) = D t (i)ω+

t (i)
Zt

9: g =∑T
t=1αt ht

10: return g

Theorem 1. The cost-sensitive exponential loss function Ê2 is the same whether cost is applied

before, after, or during training.

ÊN
2 = ci

N∏
t=1

bt =
N∏

t=1
bt c1/N

i

Call the error vector incorporated at each step bt , where t is the current step. The cost function

for each pair i is c(i), and the cost vector for all pairs is written here as ci . N is the total number

of rankers currently incorporated into the ensemble.

In other words, Ê2 can be modeled as distributing the cost across every weak ranker incor-

porated into the ensemble when the cost is introduced completely at the first step or after the

ranker has been trained (see Lemma 1). The loss function equivalence for introducing cost

in the initial distribution versus at each iteration versus during post-processing means that the

theoretical properties of all three approaches will be the same, although empirical performance

may differ between the implementations.

Cost-Sensitivity for Ranking 57

PROOF.

This proof uses an induction argument. First, assume EN
2 is of the form

EN
2 = 1

m

m∑
i=1

e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N)

after adding the N th weak ranker by averaging the error across all pairs with a cost coefficient.

Next, consider the value of E2 once the N +1th ranker is added to the ensemble.

EN+1
2 = 1

m

m∑
i=1

e
∑N+1

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N+1)

This equation gives the product of EN
2 and the distribution update rule.

EN∗x
2 = EN+1

2

To isolate the distribution update rule, solve for the quotient x.

1

m

m∑
i=1

xe
∑N

s=1 lnω∗
2 (i , fs ,ηs)c(i)

1
N = EN+1

2

1

m

m∑
i=1

xe
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N) = 1

m

m∑
i=1

e
∑N+1

s=1 lnω∗
2 (i , fs ,ηs)c(i)

1
N+1

Because cost is applied to each pair, consider w.l.o.g. some pair and its cost between iterations.

xe
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N) = e

∑N+1
s=1 ln(ω∗

2 (i , fs ,ηs)c(i)
1

N+1)

Isolate the last step of the summation on the right-hand-side of the equation.

xe
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N) = e

∑N
s=1 ln(ω∗

2 (i , fs ,ηs)c(i)
1

N+1)e ln(ω∗
2 (i , fN+1,ηN+1)c(i)

1
N+1)

= e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N

N
N+1)e ln(ω∗

2 (i , fN+1,ηN+1)c(i)
1

N+1)

Cost-Sensitivity for Ranking 58

Separate out the constant term in the log-exponent.

= e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N)+lnc(i)

1
N

−1
N+1 e ln(ω∗

2 (i , fN+1,ηN+1)c(i)
1

N+1)

= e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs)c(i)

1
N)

e lnc(i)
−1

N+1 e ln(ω∗
2 (i , fN+1,ηN+1)c(i)

1
N+1)

Divide out the identical terms on both sides to solve for x.

x = e lnc(i)
−1

N+1 e ln(ω∗
2 (i , fN+1,ηN+1)c(i)

1
N+1)

= e lnc(i)
−1

N+1 +ln(ω∗
2 (i , fN+1,ηN+1)c(i)

1
N+1)

= e ln(ω∗
2 (i , fN+1,ηN+1))

�

Lemma 1. Incorporating the cost during the initial distribution results in the same loss func-

tion as reweighting by cost as a post-processing step.

PROOF.

Consider the final exponential loss function of a fully trained ranker without cost incorporated.

E2 = 1

m

m∑
i=1

e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs))

Compare this to the final exponential loss function of a model where the initial distribution was

the cost function.

EPRE
2 = 1

m

m∑
i=1

c(i) e
∑N

s=1 ln(ω∗
2 (i , fs ,ηs))

Note that the only difference between these loss functions is the cost coefficient. Therefore,

this cost function can be incorporated through a post-processing step. Multiply the exponential

loss by the cost-function, then reweight the vote of each weak ranker by the modified

exponential loss with cost-function.

EPOST
2 = c(i) E2 = EPRE

2

Cost-Sensitivity for Ranking 59

Although empirically the final weighted ensembles may differ based on which weak rankers

were selected, the pre-processed and post-processed loss functions now match.

�

This proof, although it uses the RankBoost+ equations for the cost-sensitive algorithm, can be

applied to the Cost-Sensitive RankBoost algorithm in the exact same way. The result of this

property is that applying cost in the initial distribution, across each training iteration, or as

a post-processing step leads to an identical loss function. Although there may be differences

between the empirical results of these approaches, as suggested by Nikolaou1, their theoretical

properties will be identical. Therefore, changing the initial distribution to the cost-function for

the purposes of this paper does not preclude using this model in the other two ways during

implementation as the theoretical results will be consistent. In both proofs,

ε+1
t = {D t (i)}cor r ect

ε−1
t = {D t (i)}i ncor r ect

ε0
t = {D t (i)}t i ed

will be used to serve as an identity function to group pairs by how the weak ranker orders them.

If both have the same score, they are tied and in ε0. The treatment of this set of ties is the

main distinguishing factor between theαt values for RankBoost versus RankBoost+. The proofs

below start with RankBoost because it is simpler with relation to ties, and then demonstrate that

cost-sensitive RankBoost+ will also have the same αt equation as its parent algorithm.

Theorem 2. Let αt be the weight given by the ensemble ranker to weak ranker ht at iteration t .

For cost-sensitive RankBoost,

αt = 1

2
log

ε−1
t

ε−1
t

Cost-Sensitivity for Ranking 60

and for cost-sensitive RankBoost+,

αt = 1

2
log

ε+1
t +ε0

t
e−α

′
t

2cosh(α′
t)

ε−1
t +ε0

t
eα

′
t

2cosh(α′
t)

Note that this result shows that each cost-sensitive algorithm variant weights weak rankers the

same way as its non-cost sensitive parent algorithm.

Lemma 2. Let E1 be the error function minimized by cost-sensitive RankBoost, then the weight

given to ranker ht in iteration t is αt = 1
2 log

ε−1
t

ε−1
t

.

Note that this matches the definition of αt used in the original RankBoost algorithm.

PROOF.

Start with assigning costs to the initial distribution.

D0 =
{

c(i)

c

}
= {c̃(i)}

Define the reweighting rules and the weight update step, with normalizing constant.

ω0
t (i) =

eαt

e−αt

1

The relationship between the updated distribution and the initial distribution can be computed

using the product of the normalization factors Zs .

D t+1 =
D t (i)ω0

t (i)

Zt

Zt =
∑

i
D t (i)ω0

t (i) = ε+1
t e−αt +ε−1

t eαt +ε0
t

Cost-Sensitivity for Ranking 61

D t+1(i)
t∏

s=0
Zt = D0(i)

t∏
s=0

ω0
s (i)

m∑
i=1

D t+1(i)
t∏

s=0
Zt =

m∑
i=1

D0(i)
t∏

s=0
ω0

s (i)

t∏
s=0

Zt =
m∑

i=1
D0(i)

t∏
s=0

ω0
s (i)

The normalized costs can be summed out.

t∏
s=0

Zt =
m∑

i=1
c̃(i)

t∏
s=0

ω0
s (i)

Consider the weighted ensemble at time t .

g t =
t∑

s=0
αshs

g t−1 =
t−1∑
s=0

αshs

Ê1

(
N∑

s=1
ηs fs

)
= 1

m

m∑
i=1

c̃(i)e
∑N

s=1 lnω0
s (i , fs ,ηs)

Ê1

(t∑
s=1

αshs

)
=

t∏
s=0

Zs

Take the derivative of both sides in at time t in order to solve for α.

d(Ê1(g t−1 +αt ht))

dαt
= d Zt

dαt

t−1∏
s

Zs

= (−ε+1
t e−αt +ε−1

t eαt +ε0
t)

t−1∏
s=0

Zs

d(Ê1(g t−1 +αt ht))

dαt
|αt=0 = (−ε+1

t +ε−1
t +ε0

t)
t−1∏
s=0

Zs

Cost-Sensitivity for Ranking 62

This is how the next weak ranker is selected.

ht = argmax
hεH

(−ε+1
t +ε−1

t

)
Set to 0 and solve for αt

d(Ê1(g t−1 +αt ht))

dαt
= 0

0 =−ε+1
t e−αt +ε−1

t eαt

ε+1
t e−αt = ε−1

t eαt

Now take the log of both sides to get rid of the exponent to solve for αt .

logε+1
t −αt = logε−1

t +αt

logε+1
t − logε−1

t = 2αt

αt = 1

2
log

ε−1
t

ε−1
t

�

Lemma 3. Let E2 be the error function minimized by cost-sensitive RankBoost+, then the weight

given to ranker ht in iteration t is αt = 1
2 log

 ε+1
t +ε0

t
e
−α′t

2cosh(α′t)

ε−1
t +ε0

t
e
α′t

2cosh(α′t)

.

Note that this matches the definition of αt used in the original RankBoost+ algorithm.

PROOF.

Start with assigning costs to the initial distribution.

D0 =
{

c(i)

c

}
= {c̃(i)}

Cost-Sensitivity for Ranking 63

Define the reweighting rules and the weight update step, with normalizing constant.

ω+
t (i) =

eαt

e−αt

cosh(αt+α′
t)

cosh(α′
t)

The relationship between the updated distribution and the initial distribution can be computed

using the product of the normalization factors Zs .

D t+1 =
D t (i)ω+

t (i)

Zt

Zt =
∑

i
D t (i)ω+

t (i) = ε+1
t e−αt +ε−1

t eαt +ε0
t

cosh(αt +α′
t)

cosh(α′
t)

D t+1(i)
t∏

s=0
Zt = D0(i)

t∏
s=0

ω+
s (i)

m∑
i=1

D t+1(i)
t∏

s=0
Zt =

m∑
i=1

D0(i)
t∏

s=0
ω+

s (i)

t∏
s=0

Zt =
m∑

i=1
D0(i)

t∏
s=0

ω+
s (i)

The normalized costs can be summed out.

t∏
s=0

Zt =
m∑

i=1
c̃(i)

t∏
s=0

ω+
s (i)

Consider the weighted ensemble at time t .

g t =
t∑

s=0
αshs

g t−1 =
t−1∑
s=0

αshs

Cost-Sensitivity for Ranking 64

Ê2(η) =
m∑
i

c̃(i)e
∑N

s=0 lnω+
s (i , fs ,ηs)

Ê2

(t∑
s=1

αshs

)
=

t∏
s=0

Zs

Take the derivative of both sides in at time t in order to solve for α.

d(Ê2(g t−1 +αt ht))

dαt
= d Zt

dαt

t−1∏
s

Zs

=
(
−ε+1

t e−αt +ε−1
t eαt +ε0

t
si nh(αt +α′

t)

cosh(α′
t)

) t−1∏
s=0

Zs

d(Ê2(g t−1 +αt ht))

dαt
|αt=0 =

(
−ε+1

t +ε−1
t +ε0

t
si nh(α′

t)

cosh(α′
t)

) t−1∏
s=0

Zs

This is how the next weak ranker is selected.

ht = argmax
hεH

(
−ε+1

t +ε−1
t +ε0

t
si nh(α′

t)

cosh(α′
t)

)

Set to 0 and solve for αt

d(Ê2(g t−1 +αt ht))

dαt
= 0

0 =−ε+1
t e−αt +ε−1

t eαt +ε0
t

si nh(αt +α′
t)

cosh(α′
t)

Use the definitions of the hyperbolic trig functions to expand in order to cancel out terms.

0 =−ε+1
t e−αt +ε−1

t eαt +ε0
t

1
2

(
e(αt+α′

t) −e(−αt−α′
t)
)

cosh(α′
t)

=−ε+1
t e−αt +ε0

t

1
2

(
−e(−αt−α′

t)
)

cosh(α′
t)

+ε−1
t eαt +ε0

t

1
2

(
e(αt+α′

t)
)

cosh(α′
t)

=−ε+1
t e−αt +ε0

t
−e−αt e−α′

t

2cosh(α′
t)

+ε−1
t eαt +ε0

t
eαt eα

′
t

2cosh(α′
t)

Cost-Sensitivity for Ranking 65

= e−αt

(
−ε+1

t −ε0
t

e−α′
t

2cosh(α′
t)

)
+eαt

(
ε−1

t +ε0
t

eα
′
t

2cosh(α′
t)

)

e−αt

(
ε+1

t +ε0
t

e−α′
t

2cosh(α′
t)

)
= eαt

(
ε−1

t +ε0
t

eα
′
t

2cosh(α′
t)

)

Take the natural logarithm of both sides in order to cancel out the exponent.

log

(
e−αt

(
ε+1

t +ε0
t

e−α′
t

2cosh(α′
t)

))
= log

(
eαt

(
ε−1

t +ε0
t

eα
′
t

2cosh(α′
t)

))

−αt + log

(
ε+1

t +ε0
t

e−α′
t

2cosh(α′
t)

)
=αt + log

(
ε−1

t +ε0
t

eα
′
t

2cosh(α′
t)

)

log

ε+1
t +ε0

t
e−α

′
t

2cosh(α′
t)

ε−1
t +ε0

t
eα

′
t

2cosh(α′
t)

= 2αt

1

2
log

ε+1
t +ε0

t
e−α

′
t

2cosh(α′
t)

ε−1
t +ε0

t
eα

′
t

2cosh(α′
t)

=αt

�

Explainability is important, especially when implementation may deviate from the theoretical

properties due to computability concerns such as when training a ranking model. Demonstrat-

ing that the weighting process is the same for the cost-sensitive variants supports the assertion

that the cost paradigm introduced in this paper works by modifying the weak ranker selection.

The premise of the cost-sensitive variants is to provide different prioritization to element pairs

based on the relative importance of their being ranked correctly. This should not impact how

rankers are weighted with respect to their performance, demonstrating that the cost-sensitive

variants very closely follow the properties of the original algorithms.

Cost-Sensitivity for Ranking 66

3.3 Properties of Cost-Sensitive RankBoost

This section will introduce properties of cost-sensitive RankBoost and RankBoost+ and prove

their consistency with the original versions of the algorithms given the inclusion of cost. The

empirical tests will provide an opportunity to evaluate the performance of the cost-sensitive

modifications as compared to the original versions of the algorithms according to these proper-

ties. The differences in theoretical behavior can be observed through a variety of cost-sensitive

experiments which push different facets of this technique. Using random cost, ranking for mul-

ticlass classification, and existing cost-analogous datasets will demonstrate the comparative

performance across a swath of different applications which supports the theoretical differences

and intended functionality of the algorithm variants.

3.3.1 Consistent Ordering between Ê2 and R̂2 for Cost-Sensitive RankBoost+

Connamacher, et al. suggest that consistent ordering between Ê2 and R̂2 is a desirable property

for boosting algorithms for ranking11. This property applies when the exponential loss and the

rank loss always induce the same ordering on the rankers given the initial distribution of the el-

ements. Standard RankBoost, and its cost-sensitive variant, do not abide by this property in all

cases, leading to the potential of some reversed pairs between the rank loss and the exponen-

tial loss functions. The proof that the exponential loss function orders weak rankers the same

as the rank loss function for cost-sensitive RankBoost+ demonstrates that the cost-sensitivity

intervention preservers this intuitively beneficial property.

Theorem 3. For any pair of weak rankers h1,h2, if R̂2(h1) > R̂2(h2), then Ê2(h1) > Ê2(h2).

Cost-Sensitivity for Ranking 67

PROOF.

Assume we are working with binary weak rankers hx , such that the rankers “succeed”

at ranking the elements more than half of the time, leading to R̂2(hx) < ĉ(i)
2 . Otherwise,

flip the ranker to achieve this, since the opposite ranking will result in ĉ − R̂2(hx).

R̂2(i) =

c̃(i) if incorrect
c̃(i)

2 if tied

0 else

e(i) =

1 incorrect
1
2 tied

0 correct

R̂2(hi) =
m∑

i=1
c̃(i)e(i)

Ê2(hi) =
m∑

i=1
c̃(i)ω∗(i)

ω∗(α) =

e−αt correct

eαt incorrect

cosh(αt) tied

R̂2(αt ht) =
m∑

i=1
c̃(i)

(
ω∗(i)−e−αt

eαt −e−αt

)

= Ê2(αt ht)−∑m
i=1 e−αt c̃(i)

eαt −e−αt

R̂2(α1h1) = Ê2(α1h1)−∑m
i=1 e−α1 c̃(i)

eα1 −e−α1

R̂2(α2h2) = Ê2(α2h2)−∑m
i=1 e−α2 c̃(i)

eα2 −e−α2

Assume R̂2(α1h1) < R̂2(α2h2).

Ê2(α1h1)−∑m
i=1 e−α1 c̃(i)

eα1 −e−α1
< Ê2(α2h2)−∑m

i=1 e−α2 c̃(i)

eα2 −e−α2

First consider α1 =α2 = 1. In this case:

R̂2(h1) < R̂2(h2) =⇒ Ê2(h1) < Ê2(h2)

Cost-Sensitivity for Ranking 68

Now consider the weight αh1 assigned to ranker h1 at the first stage, with distribution D1:

αh1 =
1

2
log

ε+1 + 1
2ε

0
1

ε−1 + 1
2ε

0
1

This equivalency holds because at the first iteration, there is no previous weight α′ to take into
account.

ε+t +ε−t +ε0
t = ĉ

Therefore, the linear rank loss function can be represented in terms of epsilon.

Below, rewrite alpha in terms of R̂2.

R2(ht) = ε−t + 1

2
ε0

t

αh1 =
1

2
log

(
ĉ − R̂2

R̂2

)

Assume R̂2(h1) < ĉ
2 . (This holds because otherwise we would just use the inversion of the weak

ranker, or throw it out if it were exactly ĉ
2 .)

NOTE: Ignore the case where R̂2 = 0 since that would already be a perfect ranker.

Therefore, αh1 > 0, meaning the error associated with the weighted weak ranker is the same as

its base error, i.e. R̂2(αh1 h1) = R̂(h1). Now, consider the above equations in terms of Ê2(αh1 h1).

Ê2(αh1 h1) = R̂2(αh1 h1)(eαh1 −e−αh1)+ ĉe−αh1

Cost-Sensitivity for Ranking 69

Substitute in the values of R̂2(αh1 h1) and αh1 in terms of R̂2.

= R̂2(h1)

(
e

(
1
2 log

ĉ−R̂2(h1)

R̂2(h1)

)
−e

−
(

1
2 log

ĉ−R̂2(h1)

R̂2(h1)

))
+ ĉe

−
(

1
2 log

ĉ−R̂2(h1)

R̂2(h1)

)

= R̂2(h1)(

√
ĉ − R̂2(h1)

R̂2(h1)
−

√
R̂2(h1)

ĉ − R̂2(h1)
)+ ĉ

√
R̂2(h1)

ĉ − R̂2(h1)

= R̂2(h1)

 ĉ − R̂2(h1)√
(R̂2(h1))(ĉ − R̂2(h1))

− R̂2(h1)√
(R̂2(h1))(ĉ − R̂2(h1))

+ ĉR̂2(h1)√

(R̂2(h1))(ĉ − R̂2(h1))

= 2ĉR̂2(h1)−2R̂2(h1)2√
(R̂2(h1))(ĉ − R̂2(h1))

= 2R̂2(h1)(ĉ − R̂2(h1))√
(R̂2(h1))(ĉ − R̂2(h1))

= 2
√

(R̂2(h1))(ĉ − R̂2(h1))

Consider R̂2(h1) < R̂2(h2) < ĉ
2 .

2
√

R̂2(h1)(1− R̂2(h1) < 2
√

R̂2(h2)(1− R̂2(h2)

Ê2(αh1 h1) < Ê2(αh2 h2)

�

The introduction of cost does not impact this property of RankBoost+, which maintains this

distinguishing feature between the RankBoost versions as the Cost-Sensitive RankBoost algo-

rithm, like standard RankBoost, not be guaranteed to abide by this property.

3.3.2 Generalization Bounds

In order to evaluate the predictive quality of the model, the generalization bounds describe

the expected performance difference between the training data and the testing/unknown data.

Some of these issues may arise from model instability, meaning that slight variations in the

Cost-Sensitivity for Ranking 70

training data lead to significant differences in the model. Others are due to overfitting where

the model is too tightly fixed to its specific training data and therefore fails to generalize to fu-

ture applications on new data from the same distribution. Freund, et al. proved the generaliza-

tion bounds for the original RankBoost algorithm using VC-dimension analysis4, which will be

the foundation of the following proofs about the cost-sensitive RankBoost variant introduced

above. The proof would be similar for RankBoost+, since the generalization bound considers

the expected value of the rank loss and ties are all broken randomly leading to an expected value

of 50% correct results from ties. Although the final results will differ slightly between these algo-

rithm variants, their reaction to the incorporation of cost is very similar and therefore one proof

is sufficient to demonstrate the effect of creating a cost-sensitive variant on the generalization

behavior.

Providing generalization bounds for ranking requires some assumptions, which differ slightly

from those necessary for classification. This proof specifically reflects bipartite feedback pro-

vided by binary weak rankers, so first assume that there are two underlying distributions of data

which are fixed and unknown from which the elements to be ranked are drawn independently.

Each pair of elements to be ranked is drawn from this pair of distributions, each of which is i.i.d.

Second, restrict the weak rankers to be binary classifiers, which matches existing implementa-

tions of the standard and cost-sensitive variants of the RankBoost algorithms and simplifies the

proof. To facilitate the proof, consider a basic cost structure with a binary structure of high cost

and low cost elements. This will lead to three types of pairs, namely, high-high, low-low, and

low-high cost match-ups. However, this clearly generalizes to higher finite cost precision for

a more complicated cost model by simply increasing the number of pair categories up to an

arbitrary constant. To gain a general understanding about the generalization behavior in the

presence of cost, this simplified model is sufficient.

Cost-Sensitivity for Ranking 71

The goal of proving generalization bounds is to ensure that with a high degree of certainty,

the difference between the test error and the training error will not exceed some error value

ε. Essentially, the training error for any model will be sufficiently reflective of the quality of the

model on new test data in almost all cases. Freund, et al. showed that the generalization bound

for the original RankBoost algorithm is4

|ε̂(H)−ε(H)| ≤ 2

√
d ′(ln(2m/d ′)+1)+ ln(18/δ)

m
+2

√
d ′(ln(2n/d ′)+1)+ ln(18/δ)

n

where d ′ = 2(d +1)(T +1)log2(e(T +1)) given the weak rankers ht comprising ensemble ranker

H belong to class H of VC-dimension d . m and n are the sizes of the samples from the two

distributions of testing data, and T is the number of weak rankers that are incorporated into

the ensemble. This generalization bound states that with probability 1−δ RankBoost-trained

rankers will perform within this precision between the training and the testing datasets. This

indicates, as matches intuition, that growing the sample size shrinks the generalization error

bound and increasing the confidence in the bound by lowering δ naturally increases the range

of the bound. Additionally, the number of weak rankers incorporated as denoted by T will also

impact the generalization bound though this is mitigated to an extent by the log term. This

bound can provide a useful base point to make guarantees with certain levels of confidence

about the performance of a model on novel testing data based on its training loss values.

Now, in order to extend this to the cost-sensitive variant of RankBoost described in this the-

sis, replicate the proof for the original algorithm on the three separate cases described above.

This causes the cost values to be a constant that can be factored out of the respective loss equa-

tions so that it will essentially emulate binary performance in three separate cases. Recall that

this limited proof can be extended to further cost differentiation for some constant number

of different pairwise costs by expanding the number of generalization cases considered or by

Cost-Sensitivity for Ranking 72

bounding by the largest cost terms depending on the degree of precision needed for the spe-

cific application. This proof will prove a useful starting point for incorporating cost into the

generalization bound from the original algorithm. The ensemble ranker, like in standard Rank-

Boost, is constructed as

H(x) =
T∑

t=1
αt ht (x)

where the difference is based on how the optimal weak rankers are selected at each iteration

due to optimizing a modified loss function. Since error is calculated pairwise, simply consider

the relative position of the two elements in the pair in the ultimate ranking, assigning the pairs

values {−1,0,1} based on this ordering (note that with sufficiently large training sample, ties

should occur increasingly rarely between distinct elements as the model becomes more pre-

cise). Randomly assign ties and assume they occur with nearly negligible frequency with ade-

quately trained models. From this, the error is computed as

ε(H) = Prx∼D0,y∼D1 [H(x, y) 6= 1]

= ED0,D1 [�H(x, y) 6= 1�]

For proof that this matches the error expressed by the loss function see the original RankBoost

paper. The testing error is expressed similarly but is a sum over all pairs normalized by the

sampling sizes instead of the expected value, and the expected maximum difference between

these values, i.e. |ε(H)− ε̂(H)| is the desired generalization bound. Mathematically, Freund, et

al. expressed this objective as

PrS0∼Dm
0 ,S1∼Dn

1

[
∃H ∈C :

∣∣∣∣∣ 1

mn

∑
i , j

�H(xi , y j) 6= 1�−Ex,y [�H(x, y) 6= 1�]

∣∣∣∣∣> ε
]
≤ δ

As mentioned before, in order to extend this proof to cost-sensitive Rankbook it is necessary to

consider at least three cases due to differing costs for different pair rankings depending on the

relative cost of the elements involved in that pair. Assume without loss of generality that the cost

being consider is q , where q ∈ {low-low, low-high, high-high}. Following along the proof for the

Cost-Sensitivity for Ranking 73

standard RankBoost generalization bound, separately consider the probabilities over sample S0

and sample S1, which can each reduce to classification generalization problems. By the princi-

ple of triangulation, the net error from both of these components will be bounded by their sum.

At this point, the necessary value/properties of ε are not clear and are exposed during the proof

process. In order to turn the ranking model H into a binary function, consider only pairs with

one element drawn from each starting distribution, ignoring S0−S0 pairs and S1−S1 pairs, and

assign each pair a value 0 if it is correctly ordered by H and a value q otherwise using function

F : X ×Y −→ {0, q}. Note: replace the error value 1 with q to keep track of cost in contrast with the

original algorithm. Use this indicator function F to rewrite the error difference term described

above with the modification to F to accommodate for cost added from the original proof. With

each term separated out by its pairwise cost, the error difference term can be rewritten as

1

mn

∑
i , j

F (xi , y j)−Ex,y [F (x, y)]

This can be rewritten by adding and subtracting an identical term, moving expectation and

coefficients out, and splitting up summation steps as

1

m

∑
i

(
1

n

∑
j

F (xi , y j)−Ey [F (xi , y)]

)
+Ey

[
1

m

∑
i

F (xi , y j)−Ex[F (x, y)]

]

Having these separate terms enables bounding each subproblem with error values ε0 and ε1 re-

spectively, where the two error values sum to the desired maximum error difference ε, which

when achieved with probability ≥ δ
2 each guarantees with high probability that the desired

bound will be achieved for a model on a randomly selected test sample from the underlying

distributions. This step is slightly complicated by the splitting of the error components based

on differing cost values for the pairs, but since the different cost subproblems are disjoint they

can be considered separately, and each component can similarly be reduced to its respective

share of the model error on testing data, which will then symmetrically transpose to the gen-

eralization for classification as used by Freund, et al. From there, consider the
⋃

Fy where Fy

describes the relationship of each y value to all x values. Using VC-dimension properties from

Cost-Sensitivity for Ranking 74

Vapnik50, for any δ> 0,

PrS0∼Dm
0

[
∃F ∈⋃

Fy :

∣∣∣∣∣ 1

m

∑
i

F (xi , y)−Ex[F (x, y)]

∣∣∣∣∣> ε0(m,δ,d ′)

]
< δ

where d ′ is the complexity of the different Fy functions and

ε0(m,δ,d ′) = 2

√
d ′(ln(2m/d ′)+1)+ ln(9/δ)

m

Since the sample size m and the probability boundδ are both known, only d ′, the VC-dimension

of the y-functions, must be calculated. Start by expanding the generic binary error mapping

function F as laid out below.

F (x, y) = q

�
T∑

t=1
αt ht (x)−b ≥ 0

�

where q is the cost being considered by the current subproblem and b =∑T
t=1αt ht (y) is fixed for

each Fy . Earlier work by Freund and Schapire46 bounds this error in terms of the VC-dimension

d ≥ 2 of the distribution of weak rankers H where

d ′ ≤ 2q(d +1)(T +1)log2(e(T +1))

These differing values based on the q cost value for each d ′ will henceforth be notated as d ′
q

for a given cost value. Following along the proof for RankBoost’s generalization bound and

performing the symmetrical operation for all values of x being considered by the ranker, gives

a final generalization bound of

|ε̂(H)−ε(H)| ≤
3∑

q=1

2

√√√√d ′
q (ln(2mq /d ′

q)+1)+ ln(18/δq)

mq
+2

√√√√d ′
q (ln(2nq /d ′

q)+1)+ ln(18/δq)

nq

for this cost-sensitive RankBoost variant, where mq and nq denote the disjoint subsets of those

samples which are assigned these cost values and δq is normalized to account for the pro-

portion of pairs which are assigned cost q . Although similar to the generalization bound de-

termined by Freund, et al. for the original version of the algorithm, the pairwise costs are

Cost-Sensitivity for Ranking 75

featured in the bound, emphasizing the performance differences due to the addition of cost-

sensitivity to the algorithm. This indicates that for a given dataset drawn from some two distri-

butions, models which have the same cost-blind performance will have tighter error general-

ization bounds given relative emphasis placed on correctly ranking higher cost pairs.

3.3.3 Other Boosting Algorithms

Using a pairwise cost metric with options for discrete or continuous value assignment is easily

extensible to other boosting algorithms, whether they are to be used for ranking or another

application. Introducing a cost in a way that intuitively emphasizes the relative importance of

correctly training a model to characterize certain vital elements is a simple procedure. However,

it is important to ensure that the cost is consistently represented in the loss function optimized

to train the specific model. Furthermore, this cost sensitive paradigm could also be extended

to listwise boosting algorithms such as Adarank7. Either pariwise or individual costs would be

appropriate for such algorithms, and these costs could similarly be introduced at any stage of

the training process (i.e. the initial distribution, per training iteration, or as a post-processing

alteration). The vital property is that cost should be separated from the label or rank that is

being assigned, since cost should represent non-redundant information about which elements

deserve prioritization and will need special emphasis during training to ensure their correct

treatment by the model.

76

4 Experiments

The experiments for this thesis use Rankboost, Rankboost+, and their cost-sensitive variants

coded in Python 3.7. The weak learners are decision stumps, and the tests are run with 5-fold

cross validation. Due to concerns with computability, full linear independence is not proven

for the weak rankers chosen by Rankboost+ and cost-sensitive Rankboost+. However, heuris-

tics to reduce redundancy, which in the limit results in linear independence, approximate this

property11. First, this section will introduce the datasets used and the metrics which allow per-

formance comparisons between the different algorithm variants. Then, all of the experiments

are described, leading to some general observations and integrative analysis on how the differ-

ent focus areas of the experiments reflect the overall properties of the algorithms.

4.1 Cost-Sensitive Datasets

Although many ranking datasets are publicly available, there are not labeled cost-sensitive datasets

for this problem yet. However, there are a number of different experimental approaches de-

scribed here which can provide insight into the performance differences elicited by applying

cost to Rankboost and Rankboost+. Some ranking datasets have a built-in sense of “cost,” such

as the salary of football players. In that example, the cost will already be correlated with the

ultimate ranking though, and therefore will not give a position agnostic sense of importance

that characterizes the general version of the problem. Based on the Rankboost+ paper11, which

used the MovieLens dataset51, the first experiment is a modification of that ranking problem

Experiments 77

with randomized costs assigned in two trials, with a binary individual cost structure (low vs.

high) and a smoother random distribution of costs. Second, for the experiment for multiclass

cost-sensitive classification uses the UCI LIBRAS dataset based on the work by Beijbom, et al13.

To compare cost-sensitivity to bias, the third experiment uses the COMPAS dataset for recidi-

vism released by Pro Publica which elicited so much outcry about reducing bias in ML22. This

experiment was based on the work done by other researchers working in reducing ranking bias

for ML who also used the COMPAS dataset34–36. Each of these experiments investigates a dif-

ferent aspect of the cost-sensitive ranking problem, and by close analysis of the results it is pos-

sible to establish how the performance is distinguished between the original and cost-sensitive

versions of the algorithms.

Datasets and their Properties
Dataset MovieLens LIBRAS COMPAS
Cost Random SVM-like Bias
Ranking Yes Multiclass No
Features 1128 91 11
Classes n 15 2

Table 4.1. Overview of Experimental Datasets with Properties

4.2 Performance Metrics for Cost-Sensitive Ranking

In order to compare the performance of the different variants, particularly between the cost-

sensitive and original versions of the algorithms, outside metrics are necessary. However, there

are no extant cost-sensitive ranking metrics available. Some suggestions follow, and discus-

sions of their properties and shortcomings will inform their usage to compare the experimental

results across algorithms. However, these metrics will not be extensively evaluated in this pa-

per, and determining the properties of cost-sensitive ranking metrics would be an interesting

avenue for future work.

Experiments 78

4.2.1 Rank Loss

In some ranking problems, there may be a tradeoff between uniform rank loss and cost-sensitive

rank loss. However, this is not necessarily the case, as the cost-sensitive algorithm ideally will

still achieve comparable performance across all pairs, but with greater emphasis on correctly

ranking certain “high-cost” pairs. If multiple models with the same performance quality are

available, the cost-sensitive variant of an algorithm will train a model which prioritizes cer-

tain pairs based on their relative importance, whereas the standard version will not distinguish

between the models during training in this way since all pairs will be considered equally impor-

tant. With complete “oracle” optimization to train an entire model, for the original Rankboost

algorithms, the uniform rank loss should never be lower than the uniform rank loss achieved

by their respective cost-sensitive variants. The opposite should be true for cost-sensitive rank

loss, where cost-sensitive variants of the algorithms should perform at least as well as the orig-

inal versions. In general, this should apply empirically; however, these suppositions may fail

in certain edge cases due to the greedy, iterative training of these boosting algorithms. For the

purposes of this paper, observing the differences between rank loss and cost-sensitive rank loss

performance between the different algorithm variants to be tested will be useful to develop

intuition about performance. Computing more rigorous mathematical comparisons between

cost-sensitive performance and uniform cost performance of different algorithms is a potential

area for future research.

4.2.2 NDCG

One of the most common metrics applied to evaluate the efficacy of a ranker is Discounted

Cumulative Gain (DCG), which is often normalized (NDCG). NDCG works by weighting the dis-

tance from the correct rank according to the true rank, so there is a higher penalty for mis-

takes in the top of the rank10. This approach reflects the ethos of information retrieval, where

Experiments 79

only the ranks at the top matter. Many different discounting factors have been tried, includ-

ing “top-K” approaches and the Zipfan discount (r−1), but the generally accepted standard is

to use log(1+ r)−1, logarithmic decay10. Here, D is the choice of discounting factor, D(r) is the

discounted rank of the current element, f is the ranking function, and y is the magnitude of the

difference of rank assigned to the element by the model and its true rank. The denominator is a

normalizing factor computed as the optimal value of NDCG for any ranker on the given dataset,

the Ideal Discounted Cumulative Gain (IDCG).

N DCGD (f ,Sn) =
∑n

r=1 y f
(r)D(r)

max f ′
∑n

r=1 y f
(r)D(r)

Very limited work has been done evaluating the theoretical properties of NDCG, but its wide-

spread usage makes it an important metric to consider when working with ranking. According

to Wang, et al., NDCG does achieve some provable guarantees in the limit, which seems to be

the most extensive work evaluating the metric’s properties10. Their paper introduces “consis-

tent distinguishability,” meaning that with sufficiently large testing samples from the same dis-

tribution, the better performing model will be “distinguished” as having a better NDCG value.

An interesting point introduced by this research is that this property does not hold for all dis-

count factors, with r−1 being the limit of rapid discounting where the NDCG values result in

consistent distinguishability. Additionally, it only works for continuous evaluation, so the top-K

models also do not qualify. The conclusion reached by Wang, et al. is that while a range of dis-

counting factors are valid according to this property, the logarithmic discount is validated as a

mathematically robust choice.

Unfortunately, using basic NDCG does not extend well to the problem of cost-sensitive rank-

ing since the discounting contradicts the notion of position-agnostic cost functions. The point

of having high cost on pairs that include lower ranked elements is to prioritize correctly ranking

Experiments 80

those pairs, so if they are less relevant to the metric that will not sufficiently reflect the perfor-

mance of the cost-sensitive model. This thesis proposes the following variation which accom-

modates for cost-sensitivity, although its non-continuity means it will not necessarily fit the

property of consistent distinguishability explained above.

C SDCGp =
p∑

j=1

2r el j −1

log2 (i +1)
η1(j)− 2r el j −1

log2 (i +1)
η2(j)

η1(j) =

c∗j if j is supposed to be in the top half of all results

0 otherwise

η2(j) =

0 if j is supposed to be in the top half of all results

c∗j otherwise

c∗j = 1

m −1

m∑
j=1

c̃(i , j); c̃(x, x) = 0

In order to retain the importance of high-cost but low ranked elements, this modified DCG

separately evaluates results in the top half and the bottom half of the true rank. Each result is

weighted by its cost factor, which is computed using the average of its pairwise costs. The score

associated with items in the bottom half of the rank is subtracted, so correctly scoring important

low-rank, high-cost elements still has a significant impact on the score. The top part of the rank

is similar, so there will be greater penalties for misranking a high-cost element than a lower cost

one. This still uses discounting rather than considering every rank position equally, so with

normalization it will be comparable to standard NDCG. However, an extreme cost structure

can severely impact this score, so it will be more difficult to compare between datasets with

significantly differing cost assignments. As a rule-of-thumb, the cost values should be within

Experiments 81

an order of magnitude of each other in order to prevent heavyweight elements from dominating

the CSDCG result. Without a clearer imperative to use this metric, it too serves to provide insight

into behavior without strictly proving comparative properties between the algorithm variants

for each experiment.

4.3 Experimental Results

In this section, several different experiments are described to illustrate and explore various

properties of the cost-sensitive Rankboost variants introduced in this paper. Although there

are not canonical ranking datasets with cost-sensitivity, interesting insights arise from observ-

ing a variety of relevant ranking and cost-sensitive scenarios, especially contrasting the specific

behavior of the cost-sensitive variants compared to the original Rankboost algorithms on ele-

ments and pairs where cost plays a role.

4.3.1 Randomized Cost

In order to directly compare the performance of the cost-sensitive versions of Rankboost and

Rankboost+, this experiment uses the MovieLens dataset and follows a similar experimental

procedure to the RankBoost+ paper11,51,52. Since the MovieLens dataset is not cost-sensitive,

the comparison is by nature somewhat contrived, but it provides valuable insight into the be-

havior of the cost-sensitive variants compared to the standard approach. Two approaches to

randomizing costs were applied in separate experiments to analyze the impact on performance.

In one, shown in Table 4.2 as 3-MovieLens, ternary weights were assigned to each element with

values 1 1
2 , 1, and 1

2 (see Figure 4.2). The second experiment assigned real values within the range

0 to 2 to each element (see Figure 4.1). The MovieLens dataset provides a dense feature matrics

with 1128 features given as affinity probabilities; these features condense reviews into a score

and a wide-range of tags which can indicate movie theme and potentially correlate with audi-

ence enthusiasm. This experiment used 1000 of those features and randomly sampled from the

Experiments 82

corpus of movies for training and testing sets.

The Cost-Sensitive Rankboost+ performance was similar to Rankboost+ in both the cost-sensitive

Figure 4.1. Rank Loss Convergence During Training with Continuous Costs

and standard exponential and rank loss metrics, but performed slightly worse in NDCG (see Ta-

ble 4.2). A similar pattern was evident for Cost-Sensitive Rankboost, but to a lesser extent due

to the overfitting displayed by both versions (which led to lower rank loss akin to memorization

on the training data). Accordingly, there appeared to be a slight improvement in the generaliza-

tion of Rankboost+ compared to Rankboost for both the original and cost-sensitive versions, re-

spectively. The normalized CSDCG results for each algorithm are included for completeness, al-

though the lack of implicit cost in the MovieLens dataset makes this value difficult to meaning-

fully interpret. Because the cost for the testing dataset does not reflect specific properties that

align with the training dataset, the cost does not imply true importance differences between

the pairs as it would for a canonically cost-sensitive ranking dataset, which would make the

CSDCG results more interesting to analyze. Running Rankboost+ on the cost-sensitive dataset,

Experiments 83

Figure 4.2. Rank Loss Convergence During Training with Discrete Costs

this cost-sensitive version had a marginal advantage in the cost-sensitive values of the metrics

with the discrete cost assignments, Figure 4.2, but actually performed worse on the continu-

ous cost assignments, Figure 4.1. This result is likely due to some pairs receiving too low a cost

to be considered in time to correctly rank them as compared to the cost-blind version of the

algorithm. These differences in performance coincide with reasonable expectations, since the

cost-sensitivity is focusing on the performance of the rankers on high-priority, costly elements,

which is not considered in the basic version of the algorithm.

A qualitative analysis of the ranking results from the basic and cost-sensitive versions of the

algorithm reinforced the intuition about prioritization described above. Cost-sensitive Rank-

boost+ performed slightly worse on low cost elements, about the same on average cost ele-

ments, and slightly better on high-cost elements. Over 10 trials of the experiment seeded with

different random values, the ensemble ranker trained by RankBoost+ correctly ranked 84.3%

Experiments 84

of high cost pairs, 87.1% of medium cost pairs, and 83.1% of low cost pairs, while on the same

training data the ensemble trained by RankBoost+ correctly ranked 88.0% of high cost pairs,

84.4% of medium cost pairs, and 79.2% of low cost pairs. This performance difference appeared

consistent with respect to position in the final ranking, so this investigation seems to support

the goal of achieving similar performance to cost-blind ranking algorithms, while directing the

focus to specific high priority elements. Because cost was randomly assigned, improvements

in standard performance metrics would be anomalous, as the costs do not in this case reflect a

meaningful subset of elements along the margin to direct the attention of the algorithm like an

SVM. It is interesting to note that randomly assigned continuous costs detracted from the per-

formance of the cost-sensitive versions of the algorithm, though, since this indicates a potential

challenge of using this model if cost becomes too noisy.

Empirical Performance of Each Algorithm
Dataset and Metric Rankboost Rankboost+ Cost-Sensitive

RBD
Cost-Sensitive
RB+

3-MovieLens R̂2 0.443 0.412 0.467 0.398
3-MovieLens NDCG 0.75 0.78 0.71 0.78
3-MovieLens CSDCG 0.65 0.70 0.70 0.68
Multiclass R̂2 0.079 0.084 0.071 0.082
Multiclass Accuracy 0.87 0.93 0.88 0.93
COMPAS R̂2 0.044 0.054 0.039 0.063
COMPAS Accuracy 0.68 0.67 0.69 0.68

Table 4.2. Summary of Empirical Results on 5-Fold Cross Validation Tests for
Each Cost-Sensitive Experiment (MovieLens results come from discrete cost im-
plementation, and reported CSDCG is normalized)
Accuracy is the unweighted proportion of correctly labeled elements.

4.3.2 Ranking to Multiclassify with Cost

Cost-sensitivity can provide important insight into margin enforcement for multiclass classi-

fication algorithms. Though multiclass classification is not an equivalent problem to ranking,

Experiments 85

it is interesting to see how the cost-sensitive ranking algorithm versions perform on the cost-

sensitive multiclass classification datasets. In this case, assigning costs to pairs instead of com-

puting it as a function of individual costs provides the most utility. Pairs of similar elements that

need to be classified differently are assigned the most weight, analogous to the support vector

elements of an SVM along the margin. This experiment involved running the cost-sensitive

versions of RankBoost and RankBoost+ on the dataset and comparing the performance both

to the performance of the standard RankBoost algorithms and the cost-sensitive multiclassifi-

cation results achieved by Beijbom et al13. The dataset used was UCI LIBRAS (Brazilian Sign

Language), which has 15 classes and 91 attributes. Cost was assigned by recreating the process

described in Beijbom, et al. which assigns symmetric, real-valued costs pairwise between each

of the different classifications13.

Figure 4.3. Rank Loss Convergence During Training for Multiclass Classification

Experiments 86

Interestingly, although the Ê2 values were even more significantly different here than in the

previous experiment as seen in Figure 4.3, the performance on the testing data was similar

(see Table 4.2). For both RankBoost and RankBoost+ the cost-sensitive variants had slight de-

viations from the standard version in terms of exponential loss, but converged to the same

value. However, in contrast to the result from the previous experiment, the RankBoost and cost-

sensitive RankBoost algorithms outperformed the RankBoost+ and cost-sensitive RankBoost+

algorithms by a consistent and notable amount (though both variations performed fairly well

on this multiclass classification task). However, this difference in performance is not directly

related to the high disparity between the Ê2 values. Instead, the pattern implies that the re-

quirement in RankBoost+ for linear independence (low-redundancy) between weak rankers

does not improve performance for multiclass classification tasks. Whereas in the ranking ex-

periment on the MovieLens dataset above, RankBoost appeared to overfit to the training data,

this behavior does not appear in separating the 15 LIBRAS classes. Perhaps because this class is

more of a classification task than a full ranking task, the interventions to prevent ties in Rank-

Boost+, and the requirement of linear independence, actually slightly depress performance.

Here, ties are an important and necessary part of the ranker’s job in order to group elements

into the correct class label, so increasing the focus and penalty on ties loses utility compared

to the ranking task. Although the results are not conclusive in this area, it is also worth not-

ing that both cost-sensitive variants outperformed their parent algorithms in the rank loss for

the testing data. Despite this experiment not being a true ranking problem, it provides more

insight into the performance of these cost-sensitive algorithm variants on a cost-sensitive ap-

plication and builds understanding about the range of capabilities and limitations for all four

implementations tested.

Experiments 87

4.3.3 COMPAS

The COMPAS recidivism dataset is not just a symbolic justification for the focus on bias-free

and cost-sensitive machine learning. While it is useful to highlight the potential shortcom-

ings of using ML for sensitive applications such as determining which prisoners get parole, it

also has several interesting properties which make it relevant to work with cost-sensitive ML.

In particular, the class asymmetry between the representation of black and white prisoners can

be transposed into a cost-sensitive problem by shifting the threshold for marginalized demo-

graphics of prisoners who are unfairly overrespresented in the dataset. These initial forays into

using cost-sensitive Rankboost for this task are by no means sophisticated enough to achieve

the bias mitigation objectives discussed in Chapter 2, but nonetheless provide some insight into

how cost-sensitivity can be used to shift a model to cost-sensitive version with similar perfor-

mance. Since COMPAS is a classification dataset, the ranking has little real-world capital since

it does not even correspond to a calibration probability of recidivism. However, the values spit

out provide a preferential ordering of inmates for parole which can reflect biases in the dataset

and help to explain what factors correctly and erroneously (from a social perspective) influence

the outcome of the model training.

This experiment was based on the choices made by Asudeh, et al. for what features to use and

how to evaluate the output35. Accordingly, this model was trained on the output from COMPAS,

timing of the arrest, the count of non-felony juvenile offenses, the total count of prior offenses,

and demographic information such as sex, age, and race. All the categorical variables were en-

coded as integers. Because ProPublica provided a “fair” outcome for this data, that served as

the correct label for each element. In order to discern the impact of cost on the fairness of the

outcome, the cost structure placed more weight on training pairs with the protected class; in

this case, the protected class was non-white prisoners. Although the behavior varied slightly

Experiments 88

Figure 4.4. Rank Loss Convergence During Training for Recidivism Classification

between the cost-sensitive and original variants of the algorithms, due to the binary classifica-

tion nature of the problem and the difference in objective from fair ranking experimentation on

this dataset, making broad conclusions is difficult. For example, Asudeh, et al. ran thousands

of experimental iterations and used statistical fairness metrics to determine which proportion

produced a fair classification outcome with regard to the protected class35. Overall, the per-

formance, and the models themselves, were very similar due to the limited number of features

available (see Figure 4.4 and Table 4.2). That said, a qualitative assessment across several itera-

tions of this experiment indicated some promise to this approach, since the models constructed

with cost appeared to select rankers which placed a stronger emphasis on correctly ranking the

protected class. However, in the absence of a fair ranking metric or a dataset with more than

binary separation, these speculations remain an important area for future, more systematic in-

vestigation.

Experiments 89

4.3.4 Performance

Overall, the experiments were not the central focus of this research, and instead should be taken

as explorations of different aspects of this work in cost-sensitive ranking. In particular, the third

experiment on the COMPAS dataset was intended to investigate the work done by other re-

searchers into fair ranking rather than to seriously propose a robust fair solution to that problem

using cost-sensitive ranking. Although the problems of fair ranking and cost-sensitive ranking

are closely intertwined, without a more structured interplay to incorporate cost in a way that

promotes fairness (by some metric), cost-sensitive algorithms cannot solve the problem of bias

in machine learning on their own.

Although the dataset was not specifically intended for cost-sensitivity, the most interesting ex-

periment from a ranking perspective was the MovieLens random-cost one. Because the final

ranking was fully stratified, unlike the other two experiments which used ranking for classi-

fication, this experiment elicited the most significant performance difference during training

between the algorithms. Here, cost played the most significant role in changing the models

that were trained by each implementation, even between cost-sensitive and standard Rank-

Boost. Overall, the cost-sensitive variants throughout these three experiments achieved similar

performance as their base algorithms (see Table 4.2), but trained different models specifically

due to the changes in cost. This section therefore provides a basic proof-of-concept that this

cost-sensitive approach is a workable way to incorporate cost into ML ranking algorithms.

Due to the shortcomings of the datasets in terms of having well-formulated costs assigned to

Experiments 90

each pair, it is difficult to extensively assess the differences in performance between the cost-

sensitive versions of RankBoost and RankBoost+ versus their parent algorithms. However, be-

cause the performance remained similar between each algorithm and its cost-sensitive deriv-

ative, these tests empirically support a significant point upon qualitative examination. Par-

ticularly in the MovieLens tests, since those actually elicited a full ranking, the cost-sensitive

variants prioritized correctly ordering high cost pairs as compared to the standard versions of

the algorithms. These changes resulted in very similar NDCG and RankLoss scores during test-

ing, which seems to indicate that the cost-sensitive variants found similarly performing models

which achieved their cost-sensitive objectives. This result is promising for the application of

cost-sensitive ranking algorithms to fair ranking problems, since it shows that the algorithms

can be adjusted to asymmetric datasets.

91

5 Discussion

This chapter wraps up the thesis with a discussion of potential areas for future work into the

topics herein, and a conclusion which summarizes the contributions made to this research area.

5.1 Future Work

Machine learning fairness is attracting a lot of research attention right now, and will likely con-

tinue to grow for some time. This is positive in that the amount of interest and effort will lead

to higher standards of quality and better solutions, but may also lead to confusion and frag-

mentation if no clear set of solutions is able to dominate common practice. There is also likely

to be more work done on individual and subgroup fairness due to the relative stability of the

metrics used to evaluate group fairness, and their situational shortcomings. A related issue is

fairness for deep learning, which right now is concentrating heavily on explainability for neu-

ral networks. There is still a long way to go before clear theory can be introduced to guarantee

fairness for neural networks, though the work on evaluating the underlying semantics of a net-

work’s decisions is an important step of the process.

A driving external factor which is most likely to majorly impact the work in fair ML is legal regu-

lation. Although technology is famously underregulated due to its quick evolution and seeming

impunity from legal responsibility, as ML begins to play a role in increasingly sensitive appli-

cations, eventually regulation must try to catch up. Legal interventions requiring explainability

Discussion 92

and even fair treatment according to some metric will drive development in this field and also

bring a much higher degree of outside scrutiny. Having theoretically robust fair algorithms will

play an important role in this eventuality, especially due to the widespread perception that al-

gorithms are racist, sexist, etc. which will lead to pushback against their spreading usage for

official or otherwise important functions. If legal regulations cement certain approaches as

the best for sensitive applications, ideally those choices will reflect the state-of-the-art and will

actually promote fairness or detect unfairness in a way that is consistent, explainable, and effi-

cient.

One obvious avenue for continued research is figuring out how to extend fairness and cost-

sensitivity to non-boosting ranking algorithms, or even variants that differ from the Rankboost

algorithms explored in this paper. Another important area of future theory work for cost-sensitive

ranking is proving performance bounds on the metrics used to compare and evaluate the differ-

ent algorithms’ experimental behavior. There is also room for new cost-sensitive ranking met-

rics or improvements to existing ones, for example modifying NDCG to evaluate cost-sensitive

performance in a way that is less brittle. Ultimately, one of the biggest open questions from this

paper is how to integrate the work on cost-sensitivity into fair ranking in a theoretically sound

way. The work done in classification and the inherent connections between the problem spaces

provide an interesting grounds for further research.

5.2 Conclusion

This thesis provided several important theoretical results that expand the understanding of the

fair and cost-sensitive ranking problems. The first chapter provided a literature review on an

overview of the ranking problem, efforts towards fair ML and reducing bias, and class asym-

metry including cost. The second chapter introduced new standards by which to evaluate bias

mitigation strategies for ranking and demonstrated the shortcomings of the metrics currently in

Discussion 93

use. In particular, metrics that suffice for fair classification problems fail to capture the nuance

of the full ordering required for ranking. As a result, many metrics are susceptible to funda-

mental challenges such as detecting tokenization, which can deeply undermine the success

of attempts to create fair models. Although there has been some recent work in this area, the

literature lacks a robust investigation of the additional complications in fair ranking over fair

classification.

The third chapter introduces a position-agnostic cost mechanism to indicate objective impor-

tance of pairs for boosted ranking algorithms, and provided proofs of several properties of this

approach to cost including generalization bounds. As alluded to in the two previous chapters,

having cost-sensitive algorithms can aid in the development of fair models through a reduc-

tions approach29 or by improving individual fairness outcomes and model precision on a pre-

processed or audited dataset. The fourth chapter provides the accompanying cost-sensitive ex-

perimental results with analysis and a brief analysis of metrics for cost-sensitive ranking. Over-

all, this thesis provides a foundation to approach fair and cost-sensitive ranking problems from

a robust theoretical perspective, challenges the current usage of classification approaches with

insufficient modification to the fair ranking problem, and introduces a general cost mechanism

for boosted ranking algorithms. With the many sensitive applications for ML ranking, it is im-

perative to get the theory right from the beginning.

Bibliography 94

Complete References

[1] Nikolaos Nikolaou. Cost-sensitive boosting: a unified approach. 2016.

[2] Hang LI. A short introduction to learning to rank. IEICE Transactions on Information and
Systems, E94.D(10):1854–1862, 2011.

[3] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line page importance
computation. In Proceedings of the 12th International Conference on World Wide Web,
WWW ’03, page 280–290, New York, NY, USA, 2003. Association for Computing Machinery.

[4] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algo-
rithm for combining preferences. J. Mach. Learn. Res., 4:933–969, December 2003.

[5] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware rank-
ing in search & recommendation systems with application to linkedin talent search. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’19, page 2221–2231, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[6] Carlos Castillo. Fairness and transparency in ranking. SIGIR Forum, 52(2):64–71, January
2019.

[7] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In
Proceedings of the 30th annual international ACM SIGIR conference on research and
development in information retrieval, pages 391–398, 07 2007.

[8] Bita Shams and Saman Haratizadeh. Graph-based collaborative ranking. CoRR,
abs/1604.03147, 2016.

[9] Chris J.C. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical
Report MSR-TR-2010-82, Microsoft, June 2010.

[10] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Tie-Yan Liu, and Wei Chen. A Theoretical
Analysis of NDCG Type Ranking Measures. arXiv e-prints, page arXiv:1304.6480, Apr 2013.

[11] Harold Connamacher, Nikil Pancha, Rui Liu, and Soumya Ray. Rankboost+: an improve-
ment to rankboost. Machine Learning, Aug 2019.

[12] Ping Li, Christopher J. C. Burges, and Qiang Wu. Mcrank: Learning to rank using multiple
classification and gradient boosting. In Proceedings of the 20th International Conference
on Neural Information Processing Systems, NIPS’07, page 897–904, Red Hook, NY, USA,
2007. Curran Associates Inc.

[13] Oscar Beijbom, Mohammad Saberian, David Kriegman, and Nuno Vasconcelos. Guess-
averse loss functions for cost-sensitive multiclass boosting. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, volume 32

Bibliography 95

of Proceedings of Machine Learning Research, pages 586–594, Bejing, China, 22–24 Jun
2014. PMLR.

[14] Bernardo Ávila Pires, Mohammad Ghavamzadeh, and Csaba Szepesvári. Cost-sensitive
multiclass classification risk bounds. In Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ICML’13, page
III–1391–III–1399. JMLR.org, 2013.

[15] Po-Lung Chen and Hsuan-Tien Lin. Active learning for multiclass cost-sensitive classifi-
cation using probabilistic models. In Proceedings of the 2013 Conference on Technologies
and Applications of Artificial Intelligence, TAAI ’13, page 13–18, USA, 2013. IEEE Computer
Society.

[16] Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning. In Proceedings of
the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06, page 567–572.
AAAI Press, 2006.

[17] Ron Appel, Xavier Burgos-Artizzu, and Pietro Perona. Improved multi-class cost-sensitive
boosting via estimation of the minimum-risk class. arXiv e-prints, 07 2016.

[18] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri. Cost-sensitive learn-
ing of deep feature representations from imbalanced data. IEEE Transactions on Neural
Networks and Learning Systems, 29(8):3573–3587, Aug 2018.

[19] Muhammad Bilal Zafar, Isabel Valera, Manuel Rodriguez, Krishna Gummadi, and Adrian
Weller. From parity to preference-based notions of fairness in classification. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 229–239. Curran Associates,
Inc., 2017.

[20] Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary,
Evan P. Hamilton, and Derek Roth. A comparative study of fairness-enhancing interven-
tions in machine learning. In Proceedings of the Conference on Fairness, Accountability,
and Transparency, FAT* ’19, page 329–338, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[21] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference on - ITCS ’12, 2012.

[22] Surya Mattu Julia Angwin, Jeff Larson and Lauren Kirchner. Machine bias. ProPublica,
2016.

[23] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gum-
madi. Fairness beyond disparate treatment & disparate impact: Learning classification
without disparate mistreatment. In Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, pages 1171–1180, Republic and Canton of Geneva, Switzer-
land, 2017. International World Wide Web Conferences Steering Committee.

Bibliography 96

[24] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big Data, 5(2):153–163, Jun 2017.

[25] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi.
Learning fair classifiers. In Proceedings of Machine Learning Research, 2015.

[26] Claudia Goldin and Cecilia Rouse. Orchestrating impartiality: The impact of "blind" audi-
tions on female musicians. American Economic Review, 90(4):715–741, September 2000.

[27] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. Certifying and removing disparate impact. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’15, pages 259–268, New York, NY, USA, 2015. ACM.

[28] William Dieterich, Christina Mendoza, and Tim Brennan. Compas risk scales : Demon-
strating accuracy equity and predictive parity performance of the compas risk scales in
broward county. Northpointe Inc. Research Department, 2016.

[29] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In FATML’17. Association for Computing Ma-
chinery, March 2018.

[30] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerry-
mandering: Auditing and learning for subgroup fairness, 2017.

[31] Caitlin Kuhlman, MaryAnn VanValkenburg, and Elke Rundensteiner. Fare: Diagnostics for
fair ranking using pairwise error metrics. In The World Wide Web Conference, WWW ’19,
page 2936–2942, New York, NY, USA, 2019. Association for Computing Machinery.

[32] Michael P. Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-
processing for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference
on AI, Ethics, and Society, AIES ’19, pages 247–254, New York, NY, USA, 2019. ACM.

[33] Michael Kearns, Aaron Roth, and Saeed Sharifi-Malvajerdi. Average individual fairness: Al-
gorithms, generalization and experiments, 2019.

[34] Yifan Guan, Abolfazl Asudeh, Pranav Mayuram, H. V. Jagadish, Julia Stoyanovich, Gerome
Miklau, and Gautam Das. Mithraranking: A system for responsible ranking design. In
Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19,
page 1913–1916, New York, NY, USA, 2019. Association for Computing Machinery.

[35] Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, and Gautam Das. Designing fair ranking
schemes. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, page 1259–1276, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

Bibliography 97

[36] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and
Ricardo Baeza-Yates. Fa*ir. Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management - CIKM ’17, 2017.

[37] Le Chen, Ruijun Ma, Anikó Hannák, and Christo Wilson. Investigating the impact of gender
on rank in resume search engines. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18, New York, NY, USA, 2018. Association for Comput-
ing Machinery.

[38] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings of the
29th International Conference on Scientific and Statistical Database Management, SSDBM
’17, New York, NY, USA, 2017. Association for Computing Machinery.

[39] A. Wald and J. Wolfowitz. On a test whether two samples are from the same population.
Ann. Math. Statist., 11(2):147–162, 06 1940.

[40] Department of Labor Equal Employment Opportunity Commission. Part 1607—uniform
guidelines on employee selection procedures, 1978.

[41] Sariel Har-Peled, Dan Roth, and Dav Zimak. Constraint classification: A new approach to
multiclass classification. In Lecture Notes in Computer Science, volume 2533, pages 365–
379, 11 2002.

[42] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. J. Mach. Learn. Res., 1:113–141, September 2001.

[43] Feiyang Pan, Xiang Ao, Pingzhong Tang, Min Lu, Dapeng Liu, and Qing He. Towards reli-
able and fair probabilistic predictions: field-aware calibration with neural networks. CoRR,
abs/1905.10713, 2019.

[44] Anna Nguyen, Tobias Weller, and York Sure-Vetter. Making neural networks FAIR. CoRR,
abs/1907.11569, 2019.

[45] P. Manisha and Sujit Gujar. A neural network framework for fair classifier. CoRR,
abs/1811.00247, 2018.

[46] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119 – 139,
1997.

[47] Paul A. Viola and Michael J. Jones. Fast and robust classification using asymmetric ad-
aboost and a detector cascade. In NIPS, 2001.

[48] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

Bibliography 98

[49] Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou, and Jufu
Feng. A refined margin analysis for boosting algorithms via equilibrium margin. J. Mach.
Learn. Res., 12(null):1835–1863, July 2011.

[50] Vladimir Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data:
Empirical Inference Science (Information Science and Statistics). Springer-Verlag, Berlin,
Heidelberg, 2006.

[51] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

[52] Jesse Vig, Shilad Sen, and John Riedl. The tag genome: Encoding community knowledge to
support novel interaction. ACM Trans. Interact. Intell. Syst., 2(3), September 2012.

	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Chapter 1. Introduction
	The Ranking Problem
	Overview of Bias
	Asymmetric Machine Learning

	Chapter 2. Bias Mitigation for Ranking
	Need for Fair Ranking
	Shortcomings of Classification Theory
	Bias Mitigation for Multiclass Classification

	Chapter 3. Cost-Sensitivity for Ranking
	Cost-Sensitive Boosted Classification Algorithms
	Cost-Sensitive RankBoost
	Properties of Cost-Sensitive RankBoost

	Chapter 4. Experiments
	Cost-Sensitive Datasets
	Performance Metrics for Cost-Sensitive Ranking
	Experimental Results

	Chapter 5. Discussion
	Future Work
	Conclusion

	Complete References

