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System Biology Analysis of the Role of DNA Repair in Cancer

Treatment Outcome

Abstract

by

MENGDI QIAN

Cancer is one of the most lethal and hard to cure diseases. The common treatments

for cancer include surgery, radiation therapy, chemotherapy, immunotherapy, and

hormone therapy. Ionizing radiation (IR) is one of the main clinical treatments for

cancer and it works by inducing DNA double strand breaks (DSBs), which are the

most toxic DNA lesions that can lead to cell death. The effectiveness of IR treatment

depends on the amount of induced damage and the DNA damage repair status of

the cancer cells. DSBs are repaired by multiple DNA repair pathways and this repair

reduces the effectiveness of the treatment leading to resistance to IR. It has been

shown in the literature that by targeting the DNA repair pathways the treatment

efficacy can be modulated.

In this work, a systems biology approach is used to quantitatively study the role of

DNA repair pathways in determining and improving the radiation treatment outcome.

Specifically, the mathematical models of DNA repair pathways, non-homologous end

joining (NHEJ) and homologous recombination (HR), are developed for analyzing

the role of DNA repair in enhancing the treatment sensitivity for prostate cancer

(PCa) when a combination of radiation and hormone deprivation therapies is used.

DSBs are repaired by one of the two DNA repair pathways: NHEJ and homologous

recombination (HR). NHEJ is the major pathway, whereas HR is restricted to S- or

G2-phases of the cell cycle after DNA replication has been completed. The cell cycle

specific contribution of the repair pathways are incorporated into the computational

models. A comprehensive identifiability analysis is carried out to determine the fac-

tors affecting parameter identifiability and strategies to increase identifiability are
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developed. In parallel to the NHEJ and HR models, a computational model of the

base excision repair (BER) pathway is developed to analyze its role in response to

chemotherapy under different treatment scenarios.

Combination treatment strategies that aim to inhibit the functional DNA repair

pathways for the cancer cells that are defective in other repair pathways achieve syn-

thetic lethality. One such strategy is the use of poly ADP ribose polymerase inhibitors

(PARPi) in addition to the combination treatment with IR and androgen depriva-

tion therapy (ADT). The experimental data in the literature show that AR promotes

both NHEJ and HR following IR, and inhibition of androgen receptor by ADT im-

pairs both of these pathways in PCa cells leading to either increased radiosensitivity

or sensitization to PARP inhibitors. The effect of using PARPi in this scenario has

been computationally analyzed in this work by extending the modeling efforts to

include the effect of PARP inhibitors on the treatment outcome. The inhibition of

BER by PARPi is also quantitatively studied. The models and findings in this work

can then be extended to other cancers, such as lung cancer and ovarian cancer that

benefit from similar synthetic lethality.
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Chapter 1

Introduction

1.1 Role of Damage Response in Cancer Treat-

ment

Cancer is one of the top leading causes of death. According to the global cancer statis-

tics in [1], only in 2018, there are approximately 18.1 million new cancer cases and 9.6

million cancer deaths. Lung cancer has been the most common and mortal cancer re-

gardless of gender with 18.4% of total cancer death and the second highest incidence of

cancer is prostate cancer for men and breast cancer for women. Traditional and novel

treatments have been developed to increase the overall survival of cancer patients.

At present, the common treatment approaches for cancers (tumors) include surgery,

chemotherapy, radiotherapy, biological immunotherapy, molecular targeted therapy,

and particularly, hormone therapy for specific cancers, such as breast cancer, ovar-

ian cancer and prostate cancer (PCa). The major treatment approaches in modern

cancer therapies are the first three types: surgery, chemotherapy, and radiotherapy.

Surgery is the preferred method for treating most early malignancies. For patients

with advanced cancer, surgery is only used as an adjunct treatment. Chemotherapy is

a systemic treatment, and its effect is rapid, but it also kills normal cells together with
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tumor cells. Radiation therapy is available for most cancer types and can be delivered

to patients as a single treatment or in combination with surgery or chemotherapy as

part of a comprehensive treatment to improve the effectiveness. Except for surgeries

which remove the tumor directly, radiation and chemotherapy work by inducing dam-

ages to the DNA and this damage leads to cell death. The DNA damages caused in

cancer treatment include the single strand break, the most common lesion; the dou-

ble strand breaks, the most lethal lesion; base mismatch, bulky adducts, nucleotide

mutations, and so on [2].

As summarized in Figure 1.1 [2, 3, 4], single strand breaks (SSBs) are repaired

by base excision repair (BER), which is the pathway for the repair of base damages

caused by ionizing radiation (IR) and cancer therapy drugs. Double strand breaks

(DSBs), known as the most lethal lesions that cause cell death are repaired through

the non-homologous end joining (NHEJ) and homologous recombination (HR) path-

ways. The combination of NHEJ and HR to DSB repair is cell cycle phase dependent

and their efficiencies also depend on the cell cycle phase [5]. DNA damage is the direct

cause of cell death, making the DNA damage response (DDR) a target for enhancing

treatment efficacy. The DDR mechanism is a complex process that includes the DNA

repair pathways mentioned above, but also damage tolerance process and cell cycle

checkpoints that safeguard genomic integrity [6].

DNA damage induced by different treatments are repaired by multiple pathways

and the amount of unrepaired damage determines treatment outcome. It has been

shown in the literature that by targeting the DNA repair pathways, the treatment effi-

cacy can be modulated [7, 8]. Therefore, the study of leading DNA repair mechanisms

is particularly important in the understanding of cancer treatment effects.

In addition to the direct effect of DNA damage repair pathways in the damage

response mechanisms of cell cycle checkpoint in the cell cycle play an important role as

well. When abnormal events such as DNA damage or DNA replication blocking occur

2



Figure 1.1: DNA Damage and DNA Damage Response in Cancer Treatment

during cell cycle progression, such regulatory mechanisms are activated to interrupt

the cell cycle in a timely manner. After the damage is repaired, cell cycle progression

can resume. Cell cycle checkpoints coordinate various functions in the cells with DNA

damage [9].

In this work, the focus will be on the role of DNA repair in the treatment outcome

for prostate cancer. Prostate cancer is selected as a model system, and the models

and findings in this work can be extended to other cancers. Prostate cancer, a most

frequently diagnosed cancer in men is generally treated with IR accompanied with

androgen deprivation therapy (ADT). ADT enhances the response to IR by hormone

suppression, which leads to reduced androgen receptor activities that then down-

regulate HR and NHEJ repair proteins [10, 11]. The down-regulation of the proteins

involved in the repair pathways result in reduced damage repair of DSBs.

3



In addition to ADT, it is also reported that when used in combination with IR and

ADT, poly (ADP-ribose) polymerase inhibitors (PARPi) increase the effectiveness of

IR and ADT for PCa patients due to synthetic lethality [11].

1.2 Problem Formation and Objectives

In this work, a systems biology approach is used to quantitatively study the role of

DNA repair pathways in determining and improving the radiation treatment outcome.

Specifically, the mathematical models of DNA repair pathways, non-homologous end

joining (NHEJ) and homologous recombination (HR), are developed for analyzing

the role of DNA repair in enhancing the treatment sensitivity for prostate cancer

(PCa) when a combination of radiation and hormone deprivation therapies is used.

DSBs are repaired by one of the two DNA repair pathways: NHEJ and homologous

recombination (HR). NHEJ is the major pathway, whereas HR is restricted to S- or

G2-phases of the cell cycle after DNA replication has been completed. The cell cycle

specific contribution of the repair pathways are incorporated into the computational

models. A comprehensive identifiability analysis is carried out to determine the fac-

tors affecting parameter identifiability and strategies to increase identifiability are

developed. In parallel to the NHEJ and HR models, a computational model of the

base excision repair (BER) pathway is developed to analyze its role in response to

chemotherapy under different treatment scenarios.

Combination treatment strategies that aim to inhibit the functional DNA repair

pathways for the cancer cells that are defective in other repair pathways achieve syn-

thetic lethality. One such strategy is the use of poly ADP ribose polymerase inhibitors

(PARPi) in addition to the combination treatment with IR and androgen depriva-

tion therapy (ADT). The experimental data in the literature show that AR promotes

both NHEJ and HR following IR, and inhibition of androgen receptor by ADT im-
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pairs both of these pathways in PCa cells leading to either increased radiosensitivity

or sensitization to PARP inhibitors. The effect of using PARPi in this scenario has

been computationally analyzed in this work by extending the modeling efforts to

include the effect of PARP inhibitors on the treatment outcome. The inhibition of

BER by PARPi is also quantitatively studied. The models and findings in this work

can then be extended to other cancers, such as lung cancer and ovarian cancer that

benefit from similar synthetic lethality.

Mathematical models of NHEJ have been developed in the literature using both

deterministic and stochastic approaches [12, 13, 14, 15, 16, 17]. Biochemical kinetics

of NHEJ is modeled using deterministic nonlinear ordinary differential equations in

[12] and repair dynamics after exposure to low-energy transfer (LET) radiation is

analyzed for fibroblast cells. In [15], the model developed in [14] is modified to study

the effect of protein recruitment order on the DNA repair outcome. The models in

[16, 17] employ a stochastic Monte Carlo approach using first order reaction kinetics

to simulate the DSB repair after low- and high-linear energy transfer irradiation in

human fibroblast cells. Mathematical models of HR and HR sub-pathways have

been developed in [18, 19, 20] by applying law of mass action for individual proteins

mathematically using ordinary differential equations (ODE). It is also important to

study the relationship between BRCA, PARP and HR and BER. For this purpose,

BER models are developed in this work. In the literature, BER models have been

developed in [21, 22, 23, 24, 25] using Michealis-Menten kinetics.

Most of the current research as reviewed above is focused on modeling a single

DNA repair pathway. However, the repair pathways do not function independent

of each other. The analysis of the overall repair efficiency of DNA damage requires

the combination of these models, especially considering the important role of the cell

cycle. In DSB repair, the efficiency of NHEJ and HR determines the remaining DSB

amount that leads to cell cycle arrest and ultimately cell death. In [18], although

5



multiple repair pathways are combined, only the cell cycle employs cell cycle distri-

bution at the beginning for allocation for DSBs in each pathway as starting points

is considered. The quantitative model in [18] is developed for human skin fibroblast

cells before and after LET.

The repair kinetics are different in each cell type and DNA repair models for PCa

cells were not developed before in the literature. There is experimental data on the

DSB repair kinetics for PCa, but there are no prior modeling efforts. The experimental

data in the literature for PCa includes the repair kinetics after treatment with IR,

combination treatment with IR+ADT as well as combining IR+ADT with PARPi.

The research on the role of DNA repair in treatment outcome has lead to devel-

opment of treatment strategies that target cancers with DNA repair defects [7]. The

research also shows the variability among patients in their responses to combination

treatment with IR+ADT [26].

One important step in the model development is the identifiability analysis in ad-

dition to sensitivity analysis. Even though the model outcome is in good agreement

with the experimental data, not all the model parameters might be identifiable. In

order to be able to drive conclusions from the modeling effort, it is important to

determine the identifiable parameters. The non-identifiability of the parameters may

be due to the structure of the model [27], where some parameters are multiplied to-

gether making them structurally non-identifiable. Apart from non-identifiability, the

parameters need to be examined for their identifiability to be able to drive biologically

relevant conclusions.

To overcome the limitations stated above, a modeling framework is proposed in

this work with the integration of the major pathways in DNA damage repair after

IR treatment in a cell cycle dependent manner. Specifically, HR and NHEJ path-

ways are combined in a cell cycle dependent manner to study the treatment outcome

of radiation treatment for prostate cancer. BER models are developed in parallel

6



to study chemotherapy outcome. Both modeling efforts are extended to incorporate

synthetic lethality treatment approaches. There are three novel aspects to be ex-

amined in this work. Based on the developed modeling framework, analysis will be

carried out to quantify the role of DNA damage repair pathways in determining and

improving IR treatment outcome; to analyze the role of DNA repair in enhancing

treatment sensitivity; and to study the benefits of combination treatment strategies

quantitatively.

This dissertation aims at developing computational models of NHEJ, HR, and

BER pathways, respectively for DNA damage repair regarding different damage types

and integrating these on a cell phase dependent manner to quantitatively study the

DDR in cancer therapies. Specifically, the models of DNA double strand repair are

developed for PCa under IR and ADT, where the changes in the dynamics due to

enhancement or inhibition of the pathways are represented by kinetics changes in

repair proteins. Double strand break repair models developed in this work take into

account the NHEJ and HR efficiency variation through the cell cycle. The model

application uses PCa experimental data, therefore all the parameters need to be

estimated optimally for the cells lines that are used for the data collection. In order

to make the biological relevance of optimized parameters, the sensitivity test together

with the identifiability test need to be conducted in this study.

The models are to be quantitatively studied for the following scenarios that were

observed in literature: ADT enhance the effect of IR by down regulating Ku and DNA-

PKcs in NHEJ and MRE11 and Rad51 proteins in HR through inhibiting androgen

receptor (AR) activities; PARPi is another combination treatment that is studied

here and PARPi increases IR or chemotherapy toxicity to cancer cells; variable patient

response to chemotherapy or IR.
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1.3 Dissertation Contributions and Organization

In this dissertation, a comprehensive computational model of DNA double strand

break repair is developed in a cell cycle phase dependent manner which allows exam-

ining the repair dynamics in detail for G1, S, and G2 phases. As the major pathways

for DNA double strand break repair, mathematical models of non-homologous end

joining and homologous recombination repair pathways are developed using nonlinear

ordinary differential equations and the models are parameterized using experimental

and clinical data from the literature. The specific values of some of these parameters

are hard to measure in the experiments while our model performs parameter esti-

mation and optimization, which provides a reliable data range for these parameters

for PCa. The DSB repair models based on cell cycle dynamics for prostate cancer

develop in this work form a novel modeling framework to study the effectiveness if

IR and combination treatments for PCa.

A cancer cell proliferation model is developed for the cancer treatment combining

IR and ADT. Repair pathways selections are based on the cell cycle phase and for

cell cycle dependent accuracy. The integration of modeling of NHEJ, HR, and cell

cycle is performed to obtain a full picture of DSB repair. This is an important step to

obtain a comprehensive perspective on the therapeutic efficacy of radiation treatment

for PCa quantitatively.

Base damage is a common DNA damage in cancer treatment. We also study the

base excision repair in the base damage repair mechanism and specifically its role in

enhancing the sensitivity to the chemotherapy.

The computational models developed in this work successfully capture the fol-

lowing: radiation therapy enhancement by ADT through AR signaling by down reg-

ulating key proteins in both non-homologous end joining pathway and homologous

recombination pathway; PARPi as an adjuvant treatment strengthening the outcome

for IR and chemotherapy; how to untilize a special gene mutation that lead to defi-
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ciency in DNA damage repair to enhance treatment outcome; cell cycle arrest; profiles

for repair efficiency based on patient to patient variability.

The mathematical models forms the basis for an approach to quantitatively opti-

mize dose and timing for radiation and chemotherapy.

The dissertation is organized as follows:

Chapter 2 provides an review on existing DSB repair pathway modeling method

and experimental and clinical research findings on both NHEJ and HR. Mathematical

models are developed and parameterized under the scenario of IR combined with ADT

in PCa. A detailed identifiability analysis is also conducted in this chapter.

Chapter 3 describes a detailed study for NHEJ efficiency variation of different cell

cycle phases, and an integrated model that contains HR, NHEJ, and cell cycle to

quantitatively analyze cell proliferation after radiation treatment.

In Chapter 4, a computational model of base excision repair is built and validated

using multiple data sets.

A conclusion of this dissertation is made in Chapter 5.

Finally, Chapter 6 provides a discussion on possible future work based on this

dissertation.
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Chapter 2

Modeling and Quantitative

Analysis of Major DNA Double

Strand Break Repair Pathways

2.1 Introduction

Cancer has long been the most fatal and hard to cure disease. Ionizing radiation (IR)

is one of the major treatment approaches for cancer patients. IR induces double strand

breaks (DSBs), which are known as the most lethal DNA lesion that causes cell death

leading to slower tumor growth[7]. The effectiveness of IR treatment depends on the

amount of induced damage and the DNA damage repair status of the cancer cells.

DSB can be repaired by multiple DNA repair pathways that reduce the effectiveness

of the treatment leading to resistance to IR. It has been shown in the literature

that by targeting the DNA repair pathways the treatment efficacy can be modulated

(see [7] for review). DSBs are repaired by one of the two DNA repair pathways:

non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is

always active through the whole cell cycle, while HR is active during S- or G2-phases

10



of the cell cycle, which makes NHEJ the dominant pathway for DSB repair. A brief

description of the mechanisms of both pathways are shown in Figure 2.1 [28]. The

figure shows a simplified process of the DSB repair where the major proteins that are

involved in the pathways attach to the broken DSB end successively after DSB end

recognition. The components in the NHEJ pathway are the Ku70-80 heterodimer,

DNA-PK catalytic subunit (DNA-PKcs), XRCC4, Ligase IV, and certain accessory

factors such as 53BP1 [14]. Like Ku and DNA-PKcs in NHEJ, Rad51 is the key

protein indicating HR activation. HR process is summarized as a repair process

that includes end-resection step, strand invasion step and ligation step mediated by

proteins such as MRN complex, RPA, BRCA and Rad51. The difference between

NHEJ repair and HR is that, HR requires a template DNA to complete the repair

whereas NHEJ does not.[29]. This is why HR is restricted to cell cycle phases after

DNA replication, but compared to NHEJ, it is error free. Although NHEJ and

HR are distinct repair pathways for DNA DSBs, it is shown in the literature that

these two pathways might influence each other [30]. When NHEJ is impaired by

inhibiting NHEJ repair proteins, Rad51 is also affected in the process, which means

HR activity can be influenced by NHEJ. In the same study [30], it is shown that

when HR is restricted, NHEJ effectiveness is also influenced. IR dose is also a factor

that influences repair pathway efficiency on some scale. Therefore, it is important to

develop a comprehensive modeling framework that simulate the DSB repair by both

NHEJ and HR pathways to analyze the dynamics under different treatment scenarios.

Mathematical models of NHEJ have been developed in the literature using both

deterministic and stochastic approaches. Biochemical kinetics of NHEJ is modeled

using deterministic nonlinear ordinary differential equations in [14] to analyze repair

dynamics after exposure to LET radiation in fibroblast cells. It is also reported on

NHEJ modeling in [15] for the repair of DSB caused by ultrasoft X-ray and low-

energy electrons instead of IR. In [16], the authors develop a Monte Carlo simulation
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Figure 2.1: Major DSB Repair Mechanisms: the major proteins such as Ku, DNA-
PKcs, Artemis and ligase in NHEJ and MRN complex, RPA, BRCA and Rad551 in
HR that are involved in the pathways attach to the broken DSB end successively after
DSB end recognition.

model for NHEJ. They estimate several parameters like Ku attachment kinetics to

predict system dynamics post IR treatment. Following [16], Friedland also uses the

same model in [17] to estimate kinetics for differential radiation types. In [31], an
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integrated model that combines NHEJ and DNA signaling is created to fulfill the

completeness required for combining separate simulations on DNA NHEJ repair and

DNA signaling together. The model is used to predict cellular senescence after IR

treatment.

Modeling approach in [12] compares the differences between a sequential model

and a two phase model when simulating NHEJ. Sequential model is a widely used

model for NHEJ since in this model actions are taken step by step according to

the order in which proteins bind to the DSB end. On the other hand, in a two

phase model, protein order is not a determinant. These two models share the same

modeling framework using the law of mass action and the only differences are in the

definitions of intermediates. It is also shown that the results from these two models

are the same when there are sufficient repair proteins in the substrates. The same

group also studied how NHEJ depends on damage complexity in [13] using ODEs that

correspond to the biological reactions in NHEJ. It is shown that there are different

repair efficiencies due to DSB complexity that a simple DSB can be repaired quicker

without DNA-PKcs than a complex DSB.

In [29], a mechanism of HR is reviewed. A classic model called Holliday Model

identifies four major steps of HR recombination: two homologous chromosomes are

arranged in order; a strand of DNA breaks and links with another DNA to form a Hol-

liday intermediate; a heterologous double stranded DNA is produced by branching;

Holliday intermediates are cut and repaired to form two double strand recombinants.

There are varieties of proteins that involved in HR such as MRN complex, BRCA1/2,

Rad52, Rad59, Rad54, Rad51, XRCC. Due to the complexity of this biological mech-

anism, HR repair is studied in most cases indirectly by evaluating Rad51 activities.

Biochemical kinetics of HR is modeled using deterministic nonlinear ordinary dif-

ferential equations in [18] and repair dynamics after exposure to both high and low

energy transfer radiation is analyzed for human fibroblast and Chinese hamster lung
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fibroblast cells. In [19], a mathematical model using differential equations that con-

tains a simplified HR mechanism in G1 and early S phase is developed to study DSB

repair in the specified cell cycle phases. The model of single strand annealing (SSA)

is developed in [20] as a compensation for NHEJ and HR pathways. Instead of Rad51

binding, Rad52 conducts annealing function for DSB resolution. SSA and HR share

the same initial steps but SSA is non conservative compared to HR [32]. In [33], it is

pointed out that Rad51, the protein that is used as a marker protein for HR activities,

inhibits SSA process mediated by Rad52. It is discussed that the modulation of HR

by inhibiting Rad51 promotes Rad52 for mediating SSA, which is a compensating

DSB repair pathway.

NHEJ and HR are separate DNA repair pathways but they both contribute to DSB

repair post IR treatment in a cell cycle dependent manner. NHEJ is active through the

whole cell cycle, and HR is only active in S/G2/M phase. While NHEJ repairs about

75% of cells faster and more efficiently, HR repairs the rest about 25% more accurately

[34]. In this chapter, mathematical models of NHEJ and HR are developed and the

experimental data for PCa is used to estimate the model parameters. Because of the

close relationship of NHEJ, HR, and their cell cycle dependent efficiencies, approaches

to combine these dynamics are described in Chapter 3. It is necessary to complete

the DSB repair model including dose-related DSB formation; NHEJ modeling; HR

modeling and cell cycle modeling to study DSB repair efficiencies under different

scenarios. The long-term goal is to develop IR treatment plans (dosing and timing)

that are optimized for an individual cancer patient to maximize treatment efficacy.
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2.2 In Silico NHEJ Models of Radiotherapy for

Prostate Cancer

One of the most commonly used cancer treatments is radiotherapy. Its effectiveness

depends on the capacity of the cells to repair the DNA damage caused by the ionizing

radiation (IR). Majority of the IR induced damage is repaired by non-homologous end

joining (NHEJ) repair pathway. It is shown that impaired NHEJ improves the thera-

peutic outcome of radiotherapy. In this section, the role of NHEJ in the improved ra-

diosensitivity is computationally studied. The focus is on the prostate cancer because

of the availability of both experimental and clinical data on the repair dynamics and

the variability in patient response to treatment. The presented methods can be gen-

eralized to other cancer types and treatments. The mathematical model of NHEJ is

developed to study the interaction between the androgen deprivation therapy (ADT)

and improved radiosensitivity for PCa. Sensitivity and identifiability analyses are

applied to determine the reliably estimated parameters. A strategy is developed to

increase the identifiability of the initially unidentifiable parameters. The model is used

to study the effect of conventional, fractionated radiation treatment among patients

with different levels of radiosensitivity. The model presented here is the first step

to develop treatment scenarios to find the optimal strategies using the combination

treatment with NHEJ inhibitors and IR.

It has been shown in the literature that the increased levels of NHEJ components

result in poor treatment response to IR and cancer has progressed even after the IR

treatment [10]. For PCa, the hormone level is also a key element that influences the

treatment effectiveness. Generally, in most clinical treatment approaches, a combi-

nation of ADT and IR is widely used in order to improve patients overall survival

probability and it is proved to have positive results for PCa patients [26]. The studies

in literature [10, 26] show that androgen receptor (AR) is activated by IR and that
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Figure 2.2: NHEJ Mechanism: NHEJ is initiated by Ku70-80 and DNA-PKcs is
recruited after Ku; DNA-PKcs phosphorylates several substrates, including XRCC4
and Ligase IV; XRCC4 forms a complex with Ligase IV; other proteins involved in
the pathway are Artemis, Polymerase λ, and Polymerase µ
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increased AR activity promotes NHEJ repair and increases the radioresistance of the

cancer cells.

In this section, we study the effect of AR in promoting DNA repair by developing a

quantitative model of the NHEJ using the experimental data from [10]. Understand-

ing this mechanism is important for possible enhancement of the treatment of PCa

where the tumor growth and progression is AR activity dependent. Here, we quantify

the effect of AR on the NHEJ pathway. This is an important step in quantitatively

analyzing possible treatment scenarios to find the optimal treatment strategies for

PCa using the combination treatment with ADT, NHEJ inhibitors, and IR.

2.2.1 NHEJ Pathway Mechanism

As presented in Figure 2.2 [14], the mechanism of NHEJ is described as follows:

NHEJ is initiated by Ku70-80 heterodimers that bind to the free ends of DSBs [35] and

they recruit DNA-PKcs [36]. DNA-PKcs phosphorylates several substrates, including

XRCC4 and Ligase IV [37]. Ku70-Ku80 and DNA-PKcs promote synapsis of the

broken DNA ends and act as a molecular scaffold for the recruitment of other NHEJ

proteins. When activated, DNA-PKcs undergoes autophosphorylation, which results

in loss of its kinase activity and disassembly from the DNA repair complex [38].

XRCC4 forms a complex with Ligase IV [39, 40] and Ligase IV is the essential enzyme

that completes the last step in the NHEJ pathway. The other proteins involved in

the pathway are Artemis, Polymerase λ, and Polymerase µ [14].

2.2.2 Mathematical Model of NHEJ

IR Dose Dependent DSB Induction

There are various reasons that could lead to DSBs in human cells. The reasons include

endogenous DNA damage and exogenous agents causing DSBs where IR is the most
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direct and effective way for generating DSBs during cancer treatment [41]. The base

damages that are repaired by base excision repair and DNA mismatch repair could end

up with improperly repaired intermediates. The intermediates could become SSBs

and finally become DSBs. Besides IR dose variations, the number of radiation induced

DSBs also depends on cell cycle phases. In [42], it is shown that G2 cells have more

DSBs than G1 cells because they have double amount of DNA. It is also reported in

[43] that there is a high level of γH2AX foci in S phase cells as a background. In [44],

a more detailed model is developed studying simple and complex DSB as components

for DNA damages with nonlinear dose validations. In the experiments that were

designed for DSB related studies, measurements of histone H2AX phosphorylation as

the DNA damage marker is widely used as it closely correlates with DSB [45, 46].

The DSB generation has been modeled in [41, 47, 48] stochastically and determin-

istically. In these studies, the formation of initial DSB is summarized in the following

equation:

dDSB

dt
= α

dDose

dt
(2.1)

and with DSB detected, RIF is calculated as:

Cc(t) = α ∗D(1 − e−kt) (2.2)

where C is RIF formed by DSB, α is a factor that relates to the IR dose D. In

[49, 50, 51], the number of DSBs is considered proportional to dose thus α has values

corresponding to dose intensity. k is the rate of discovering a single DSB. As expected,

with the increase in IR intensity, there will be more DSBs detected. However, the

DSB formation process takes only minutes but the DNA repair process takes more

than 20 hours. Comparing the time scales, we model the DSB formation mechanism

as an impulse function, and use the maximum value of DSBs as the initial value in

model simulations.
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Mathematical Model of NHEJ

Every reaction in the NHEJ pathway is modeled using mass-action kinetics as in

[14, 52]. DSBs form very rapidly within minutes after IR exposure [48], however the

NHEJ repair takes place in hours. Because of this time scale difference, the DSB

formation is not explicitly modeled but assumed to be an impulse at time zero and

the number of DSBs are used as the initial condition in the simulations. The model

consists of ODEs for each reaction as follows:

dY1
dt

= α
dDose

dt
− k1eKu[Y1] (2.3)

dY2
dt

= k1eKu[Y1] − k2eDNA−Pkcs[Y2] (2.4)

dY3
dt

= k2eDNA−Pkcs[Y2] − k3[Y3] (2.5)

dY4
dt

= k3[Y3] − k4[Y4] (2.6)

dY5
dt

= k4[Y4] − k5eXLF,XRCC4,LIGIV [Y5] − k7eArtemis[Y5] (2.7)

dY6
dt

= k5eXLF,XRCC4,LIGIV [Y5] − k6[Y6] (2.8)

dY7
dt

= k7eArtemis[Y5] − k8epolymeraseλ−µ[Y7] (2.9)

dY8
dt

= k8epolymeraseλ−µ[Y7] − k9eXLF,XRCC4,LIGIV [Y8] (2.10)

dY9
dt

= k9eXLF,XRCC4,LIGIV [Y8] − k10[Y9] (2.11)

dY10
dt

= k10[Y9] + k6[Y6] (2.12)

In the above equations, Yi represents the protein and DSB complex, ki is the re-

action rate constant, and e represents the concentration of the protein. Y1 is the

concentration of the DSBs and Y10 is the amount of repaired DSBs. The model has
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the protein concentrations and the rate constants as the parameters to be estimated.

The form of the model only allows estimating either the protein concentrations or

the rate constants for some of the proteins such as Ku70/80 in equation 2.3 because

the rate constants and the protein concentrations are multiplied with each other.

Only the product terms in such cases are structurally identifiable, but the individual

parameters are not [53]. Because of this structural non-identifiability, the protein

concentrations are assumed constant and only the rate constants are estimated. The

protein Ku70-Ku80 is abundant in the cell with 4×105 molecules per cell [35]. NHEJ

protein concentrations are shown to be similar to Ku70-Ku80 in [54] and based on this

reference, all concentrations are assumed to be equal to each other in the simulations.

The least squares parameter estimation is used to identify the rate constants of

the model. The initial values for the rate constants are chosen from the literature

to have a biologically relevant starting point. Table 2.1 summarizes the values used

as an initial point. The units for k1, k2, k5, k7, k8, k9 are molecule−1s−1, for k3, k4,

k6, k10, units are s−1 in Table 2.1. The parameters are constrained in the estimation

such that they all have positive values. The error function in equation 2.13 is used

as the objective function for parameter estimation where Ym is the model output and

Ye is the experimental measurement at a particular experimental time point and the

squared errors are summed over all the time points:

Error =
∑
k

(Ym(k) − Ye(k))2 (2.13)

The experimental data on the time course of repair dynamics measured in the form

of γH2AX foci are from [10]. The formation of DSBs in response to IR leads to the

phosphorylation of histone H2A variant H2AX (γH2AX), which is the most sensitive

marker used to measure the amount of DNA damage produced and the subsequent

repair time course [46].
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Table 2.1: Experimental Measurements for NHEJ Proteins Kinetic Constants

Name Description Value
k1 attachment of Ku 2.985 ∗ 10−6 [16]
k2 attachment of DNA-PKcs 5.572 ∗ 10−5 [16]
k3 autophosphorylation 0.5 [55]
k4 autophosphorylation 0.3 [55]
k5 XLF/XRCC4/Ligase IV end ligation 2 ∗ 10−4 [56, 57]
k6 repaired DNA release 6 ∗ 10−4 [58]
k7 artemis end processing 2.8 ∗ 10−14 [13]
k8 gap synthesis 6.94 ∗ 10−5 [13]
k9 XLF/XRCC4/Ligase IV end ligation 2 ∗ 10−4 [56, 57]
k10 gap synthesis 8 ∗ 10−4 [59]

Two repair time course data sets corresponding to two different treatment sce-

narios from [10] are used in the model development. In both set of experiments,

AR-positive, castrate-resistant C4-2 prostate cancer cells were used. The cells were

first exposed to IR (2 Gy) and the induced DSBs and the repair time course were mea-

sured by enumerating γH2AX foci. The second data set was the repair time course

for the combination treatment of IR and ADT. In [10], the authors have evaluated

the proficiency of castration resistant PCa cells (C4-2) in repairing DSBs in the pres-

ence and absence of androgen. They have observed rapid induction of γH2AX foci

(about 11.5 foci/cell) at 2 hrs post IR treatment. The DSBs were repaired by 22 hrs

post-treatment for hormone proficient conditions (IR without ADT) and the DSBs

persisted up to 72 hrs for cells that were deprived of androgen. By combining these

results with the other experimental results in their paper, they have concluded that

AR promotes DSB repair through NHEJ. It should be noted that these experimental

data show the repair dynamics of the combined DSB repair by NHEJ and HR. In

order to take into account the percentage of the DSBs repaired by NHEJ only, the

data were scaled by 80% based on the data presented in [60]. The experimental data

used in the parameter estimations are given in Table 2.2. Two sets of models are
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Table 2.2: Experimental Data on γH2AX Foci per Cell

Time(Hr) 0 2 8 22 48
IR only x 9.2 4.14 3 x

IR+ ADT x 9.2 5.75 5.06 4.14

developed corresponding to each treatment scenario, namely for the IR only case and

for the IR combined with ADT (IR + ADT).

There are two different but closely related mechanisms of interaction between

AR and NHEJ presented in the literature. The authors in [10] hypothesize that

the mechanism is through the enhanced expression and activity of DNA-PKcs by

androgen, and AR reduction by ADT inhibits NHEJ repair through reducing DNA-

PKcs activity. The other hypothesis presented in [26] is based on the patient data

collected after castration therapy combined with IR that show that AR inhibition by

ADT reduces the Ku70 protein levels and as a result improves the radiosensitivity of

the PCa cells. The Ku70 protein levels were reduced by two-fold on average among 14

patient samples. This fact is used in the models developed in this work for IR+ADT

case by keeping the rate constant k1 at a fixed value as half of the k1 value that is

estimated for IR only case and the rest of the parameters are estimated for this second

model. The models developed in this work are used to test the plausibility of both

mechanisms and provide recommendations for further experiments to understand this

mechanism better.

2.2.3 Sensitivity and Identifiability Test

Sensitivity Analysis

In order to be able to analyze the mechanism of the interaction between AR and

NHEJ, it is important to determine the rate constants in the model that the model is

sensitive to. If the model is not sensitive to a particular rate constant, its change from
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IR model to IR + ADT model will not be conclusive. The hypothesized mechanisms

would cause k1 or k2 (rate constants for Ku and DNA-PKcs) to change, when ADT

is added to the treatment. The changes in the parameters in response to different

treatments can be considered biologically relevant only for those parameters for which

the model is sensitive. The sensitivity gain is calculated using the following equation

[61]:

SMP =
∂M
M
∂P
P

(2.14)

In equation 2.14, M is the system output and P is the parameter to be analyzed for

its sensitivity. In the analysis for this work, the numerator is the percent change in

error function and the denominator is the percent change for the parameter itself. All

the rate constants are both increased and decreased by 20 percent and the average

value of percentage change in M is calculated to determine the sensitivity gain S for

a particular rate constant.

Identifiability Analysis

An identifiability analysis is conducted as described in [62] for all the parameters to

determine whether the parameters are identifiable in the model. In order to check the

identifiability of a specific rate constant, the estimated value of this parameter is kept

constant and all the rest of the parameters are re-estimated by changing the chosen

parameter by 15 percent up or down. If the objective function becomes greater, the

parameter is said to be identifiable, otherwise, the parameter is non-identifiable when

the objective function remains the same.

2.2.4 Results for Mechanism of Radiosensitization

Two different models are developed in this work. The first model represents the repair

kinetics for the androgen proficient PCa cells with fully functional NHEJ that were
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Figure 2.3: Modeling Result Compared to Experimental Data: the modeling results
are in good agreements with he experimental data under both IR and IR+ADT cases.

only treated with IR. The second model has impaired NHEJ following ADT and IR

treatment. Both models successfully captured the repair dynamics as seen in Figure

2.3. The estimated model parameters corresponding to these two models are given in

Table 2.3.

In order to be able to understand the parameters that are affected by ADT, it is

important to determine to which of the rate constants the model is sensitive as well

as which of these constants are identifiable. The sensitivity gains for each parameter

are presented in Table 2.4 together with identifiability results.

The parameters that are sensitive are k1, k2, k5, and k7 in both models. The

parameters k6 is sensitive in IR model and can be considered marginally sensitive

for IR+ADT case. k8 is only sensitive for IR only model In terms of identifiability,

there is a similar trend to sensitivity with the parameters k1, k2, k5, k6, and k7 being

identifiable in both models. When sensitivity and identifiability results are compared
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Table 2.3: NHEJ Parameter Optimization for PCa

Name Description Value (IR) Value (IR+ADT)
k1 attachment of Ku 7.24 ∗ 10−10 3.62 ∗ 10−10

k2 attachment of DNA-PKcs 4.72 ∗ 10−10 4.19 ∗ 10−10

k3 DNA-PKcs autophosphorylation 0.077 0.085
k4 DNA-PKcs autophosphorylation 0.38 2.99
k5 XLF/XRCC4/Ligase IV end ligation 0.05 0.07
k6 repaired DNA release 3.41 ∗ 10−6 1.75 ∗ 10−6

k7 artemis end processing 0.07 0.05
k8 gap synthesis 5.95 ∗ 10−10 5.95 ∗ 10−7

k9 XLF/XRCC4/Ligase IV end ligation 0.01 3.21 ∗ 10−8

k10 gap synthesis 0.69 1.65

Table 2.4: Sensitivity Analysis and Identifiability Test Results for NHEJ Parameters
for PCa Models

IR IR+ADT
Name Sensitivity Gain Identifiability Sensitivity Gain Identifiability
k1 11.01 + 3.55 +
k2 20.80 + 2.54 +
k3 0.0 - 0.0 -
k4 0.0 - 0.0 -
k5 31.13 + 44.22 +
k6 5.64 + 0.33 +
k7 73.46 + 19.48 +
k8 13.65 + 0.0 -
k9 0.0 - 0.0 -
k10 0.0 - 0.0 -
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for both models, it can be concluded that the reactions that are affected by ADT are

the binding of Ku70-Ku80 (k1) to the DSB to initiate the NHEJ repair, binding of

DNA-PKcs (k2)the ligation by XLF/XRCC4/Ligase IV complex (k5), repaired DNA

release (k6) and Artemis end processing (k7).

The mechanisms presented in the literature focus on the decrease in Ku70-Ku80

protein level or the reduced activity for DNA-PKcs following ADT. In the presented

models, the effect of protein concentration change or kinetic constant change results

in the same effect, because they appear in the form of k1eKu, so a two-fold change in k1

between the two models can also be considered as a change in protein concentration of

the same ratio. This change in k1 can be used to explain the mechanism of interaction

between NHEJ and AR, because k1 is both a sensitive and identifiable parameter in

both models. The modeling results show that the hypothesized effect of ADT on the

NHEJ dynamics through Ku70 is a plausible mechanism. It should be noted that k5,

k6 and k7 are also identifiable and especially k5 (XLF/XRCC4/Ligase IV end ligation)

and k7 (Artemis end processing) have very different values in both models, so they

require further experimental investigation to understand their role in AR and NHEJ

interaction.

In the models, the parameter for DNA-PKcs binding, k2, is also an identifiable

parameter in both treatment scenarios. The experimental results show that DNA-

PKcs activity is reduced by half after ADT, however the modeling results show no

significant difference for this parameter. The identifiability analysis has revealed

that the parameters k5, k6 and k7 are also identifiable. There is around a 2-fold

difference for k6 and 1.5 fold difference for k7 between the two models, where the

dynamics are faster in IR only case. However, k5 is 1.4 fold slower in IR only case.

Further experiments will be required to validate these computational observations

and to determine the role of the change of the dynamics of the end ligation by the

protein complex XLF/XRCC4/Ligase IV, the release of the repaired DNA and the
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Figure 2.4: Weekly IR Treatment Plan

end processing by Artemis in improved radiosensitivity after ADT.

2.2.5 Quantitative Analysis of the Treatment Outcome

Conventional Fractionated Radiation Treatment Outcome

In [10], in addition to measuring DSB repair kinetics using γH2AX foci, percentage

of Sub-G1 cells were also measured post IR+ADT treatment. It is observed that the

accumulation of DSBs following an impaired NHEJ repair leads to more Sub-G1 cells.

The IR treatment in a clinical setting will be delivered as smaller doses over a

period of multiple days. To simulate the fractional IR treatment with ADT, we use

our model with the optimized parameters to simulate the effect of multiple doses of

IR that are delivered every 24 hours during a treatment period of one week to mimic

the conventional, fractional radiation treatment. We consider the patients receiving

IR treatment with the same dose of 2 Gy on the first four days of a week with no

treatment for the rest of the week. Since DSB formation process takes much less

time than the repair process, we assume that the DSB forms at the time when IR is

applied as an impulse function with the absolute value relates to dose density.

We have simulated multiple dose of IR of 2 Gy and use our model to study the

repair dynamics of such treatment. Referring to Figure 2.5a, each time IR is applied

the DSB will increase instantaneously. We observe that for a one week treatment

delivery, the DSBs accumulate more for IR+ADT treatment scenario compared to IR

only case. By the end of one week, there are more DSBs remaining for the combination
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(a) model simulation of averaged DSB
amount per cell in a weekly treatment
schedule

(b) IR induces identical damage amount
each day, the remaining damage amount
after repair is greater in IR+ADT

Figure 2.5: Averaged DSB per Cell in the Weekly Schedule Treatment Plan

treatment of IR and ADT, showing that cell radiosensitization is increased by adding

ADT to IR that leads to inhibition of NHEJ repair pathway.

Variability in Patients Response to Identical Treatment Plans

According to the data in [26], individuals react differently to ADT because of vari-

ations in age, tumor size, prostate volume, etc. The measurements using patient

samples have shown that castration therapy can lead to decrease of Ku70 and the

data is as shown in Figure 2.6. Ku70/80 is the first protein that attaches to the

DSB ends, which is also a signal that initiates the NHEJ repair process. Therefore,

a decrease in the Ku70 expression can directly slow down the repair process. Tis-

sue samples from 14 patients were analyzed and the data obtained indicating that

the levels of Ku70 before and after the castration therapy were different by an av-

erage of two fold. It was observed that while the treatment was successful in most

of the patients, there were some patients who were unresponsive to castration with

unchanged Ku70 levels. For majority of the patients, Ku70 levels dropped resulting in
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Figure 2.6: Individual Patient Response to ADT: the Y axis represent relative Ku
levels and the X axis indicate patients numbering, different patients have different
responses to ADT and the differences are reflected in changes of Ku levels

impaired NHEJ and better radiosensitization. Ku70 intensity levels are implemented

as protein level change in our models. It is observed that variations in Ku70 by ADT

due to different patients profiles have a positive enhancement on IR treatment. It is

also shown in [10] that when ADT is added to IR treatment, the relative number of

C4-2 cells are dramatically decreased. Also, the doubling time for C4-2 is twice when

having ADT+IR compared to IR treatment. In the meantime, relative Sub-G1 phase

cells also show an increased value with ADT treatment together with IR at 24 hours

post treatment. Therefore, combining ADT with IR leads to more cell death.

Based on the data in [60], we group the patients described above into three cat-

egories by their reaction to ADT with respect to Ku70 levels: very sensitive group,

sensitive group, and not sensitive group. All the parameters except Ku are constants

in both cases, only changing Ku70/80 protein levels, which corresponds to Ku70 level

change after castration. The results are listed in Figure 2.7, Figure 2.8 and Figure 2.9.

The variations in ADT responses result in variable radiosensitization improvement.

The group that is sensitive to ADT have a significant decrease in Ku70 levels, and

as a result, this group has a better outcome for the combination treatment of IR and

ADT.

29



Figure 2.7: Patients Group Sensitive to ADT

2.3 In Silico HR Models of Radiotherapy for Prostate

Cancer

The purpose of this section is to computationally analyze how the interactions between

androgen receptor (AR) and homologous recombination (HR) affect the treatment

outcome for ionizing radiation (IR) combined with androgen deprivation therapy

(ADT) for prostate cancer (PCa). Combination treatment with radiation and ADT

is currently a standard treatment for PCa as demonstrated in previous section. The

effectiveness of radiation treatment alone depends on the cells capacity to repair

the damage that is mostly in the form of double-strand breaks (DSBs). Two major

pathways that repair DSBs are NHEJ and HR. The experimental data in the literature

show that AR promotes both NHEJ and HR following IR, and inhibition of AR

by ADT impairs both of these pathways in PCa cells leading to either increased
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Figure 2.8: Patients Group Less Sensitive to ADT

radiosensitivity or sensitization to PARP inhibitors. In the previous section in this

chapter, we developed mathematical models of the NHEJ pathway and in this section,

we have developed such models for HR to comprehensively analyze the response of

PCa cells to IR combined with ADT. We have modeled HR using a series of ordinary

differential equations. The parameters that needed to be estimated are the kinetic

rate constants, and we have used the least square estimation to obtain these model

parameters. The data sets used in the parameter estimation were obtained from the

literature [11] and they were from both in vitro experiments as well as clinical data

from PCa patients. The experimental data show that AR influences the DNA end
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Figure 2.9: Patients Group not Sensitive to ADT

resection that is required for proficient HR and we have computationally included

this effect in the kinetics of the models. We have developed models for IR treatment

alone or in combination with ADT. We have carried out sensitivity analysis and

identifiability tests on all the parameters from both models in order to determine the

parameters that are reliably estimated. The outputs from both NHEJ and HR models

show that the suppression of AR activity through ADT has the potential to enhance

the IR treatment outcomes for PCa patients. The impairment of HR by ADT also

opens up an avenue for achieving synthetic lethality using PARP inhibitors as shown

in the literature; the HR model is extended for simulating efforts to include the effect

of PARP inhibitors on the treatment outcome.

32



2.3.1 HR Pathway Mechanism

The effectiveness of IR treatment depends on the amount of induced damages and

the repair status of the cancer cells. DSBs are the major DNA damages following IR

and are repaired by multiple repair pathways. This repair reduces the effectiveness

of the treatment leading to resistance to IR. DSBs are repaired by one of the two

pathways: NHEJ and HR. NHEJ is the major pathway through the whole cell cycle

whereas HR is restricted to S and G2 phases of the cell cycle after DNA replication

has been completed. Targeting the DNA repair pathways is effective in modulating

the repair efficacy. In the previous section, we have quantitatively studied the role

of NHEJ in enhancing the outcome of the combination treatment with ADT and IR

for PCa. We analyze the role of HR for the same combination therapy with radiation

plus ADT in this section.

The major proteins that are involved in the HR pathway in human cells are: MRN

complex, BRCA, Rad51, Rad52, Rad54, RPA, ATM, CtIP and polymerase. [29, 63].

The mechanism of HR is summarized as follows:

i) DSBs detection [64, 65]:

MRE11-Rad50-NBS1 (MRN complex) interacts with each free end of DSB.

MRN interacts with ATM (a kinase) and activates it through autophosphorylation.

ATM phosphorylates H2AX on the serine residue to become γH2AX.

γH2AX recruits checkpoint kinase ChK2 and activates it.

Both ATM and ChK2 phosphorylate p53, p53 further induces expression of pro-

teins involved in repair.

ii) Two-step extended DNA end resection (3-5 by MRN and 5-3 by Exo1 or DNA2)

[66, 67]:

MRN component NBS1 then interacts with CtIP.

MRN conformational change activates MRE11 endonuclease activity so that MRE11

is accessible to DNA; then this whole complex will move backwards 5′ to 3′ about 100-
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200bp (MRE11 endonuclease activity cut at 100-200bp site, and then move forward

as exonuclease to trim the DNA from 3′ to 5′).

Exo1 or DNA2 continue to resect DNA from 5′ to 3′ resulting in about 1000bp

overhang.

iii) Formation of Rad51 single stranded DNA nucleofilament [68, 69]:

RPA binds to the single stranded DNA (3 overhang about 1000bp), RPA functions

to protect the single stranded DNA, and RPA will be replaced by Rad51.

BRCA2 binds to Rad51 preventing it from binding to double stranded DNA, serves

as a nucleation point of Rad51 filament and facilitating the exchange of RPA off and

addition of Rad51 to the single strand overhang. This structure is called Rad51 single

stranded DNA nucleofilament.

Rad51, ssDNA, ATP form ternary complex.

iv) Strand invasion (homology search) [70, 71]:

Filament invades the template sister chromatid.

Rad54 associates with and stabilizes the Rad51 filament, which targets Rad54 to

the pairing site.

D-loop is formed which is stabilized by RPA.

Rad54 also helps to dissociate Rad51 which allows DNA synthesis mainly by DNA

polymerase δ or polymerase ε.

v) Choice of downstream sub-pathway (depends on D loop stability) [72]:

The downstream sub-pathway includes synthesis-dependent strand annealing (SDSA)

(non-crossover repaired DNA) and double strand break repair (DSBR) crossover re-

paired DNA), and most D loops are repaired by SDSA.

The increased level of HR components result in poor treatment response to IR.

For PCa, the hormone level is also a key element that influences the treatment ef-

fectiveness. Generally, in most clinical treatment approaches, a combination of ADT

and IR is widely used in order to improve patients overall survival probability. AR ac-
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Figure 2.10: Homologous Recombination Mechanism [73]: MRN complex interacts
with DSB ends and initiates end resection; RPA binds to DNA damage ends for pro-
tection; BRCA binding for facilitating the exchange of RPA off and addition of Rad51
to the single strand overhang; Rad51 filament invades the sister chromatid and starts
strand invasion; Rad54 binds, D-loop formation and end capturing; DSBR path-
way: second end capturing,Holliday junction formation and resolution, and crossover
repaired DNA; and SDSA pathway: dissociation, DNA synthesis, ligation, and non-
crossover repaired DNA.

tivities mediate androgen, which is the key factor of prostate cancer progression [74].

Therefore, targeting AR activities is a potential approach to limit tumor growth. AR

inhibition by ADT impairs HR and as a result, IR treatment outcome is enhanced

[75]. It is demonstrated in [11] that reduced AR signaling activities inhibits HR by

down regulating HR proteins including MRE11 (MRN) and Rad51. ADT further

35



promotes PARP activities in PCa. In addition, PARP inhibitor traps PARP and

enhances IR treatment outcome in cells with deficient HR. It is also shown that HR

deficiency leads to increased activities of PARP [76]. As reviewed in [77], BRCA mu-

tation results in HR pathway deficiency and in such cancers, base excision repair is

entitled as the alternative repair pathway. In this scenario, the use of PARP inhibitor

(PARPi) opens up an avenue for synthetic lethality because PARPi inhibits BER

leading to DNA damage accumulation. It is shown in [78] that PARPi cause lethal

damage to cells with gene mutations of BRCA, ATM and some other HR proteins.

It is proposed that PARP inhibitor treatment combined with ADT can have better

outcome for cancer patients [11].

In this section, the effect of AR in promoting DNA repair is studied by developing

a quantitative model of the HR using the experimental data from [10]. Understanding

this mechanism is important for possible enhancement of the treatment of PCa where

the growth and progression is AR activity dependent. Here, we quantify the effect

of AR and PARPi on the HR pathway. This is an important step in quantitatively

analyzing possible treatment scenarios to find the optimal treatment strategies for

PCa using the combination treatment of ADT, PARP inhibitors, and IR. HR model

is developed in this section for PCa and this model is used to study the effect of AR

and PARPi on the repair dynamics after the IR treatment with ADT.

2.3.2 Mathematical Model of HR

The mechanism of HR is simplified with the following steps in the model development

as shown in Figure. 2.10:

a) MRN complex interacts with DSB ends and initiates end resection;

b) RPA binds to DNA damage ends for protection;

c) BRCA binds for facilitating the exchange of RPA off and addition of Rad51 to

the single strand overhang;
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d) Rad51 filament invades the sister chromatid and starts strand invasion;

e) Rad54 binding, D-loop formation and end capturing;

f) DSBR: second end capturing;

g) DSBR: Holliday junction formation and resolution;

h) DSBR: crossover repaired DNA;

i) SDSA: dissociation;

j) SDSA: DNA synthesis, ligation;

k) SDSA: non-crossover repaired DNA.

We have modeled the above activities using the law of mass-action kinetics and

the resultant model is given below where Yi represents the intermediates produced by

DSB and enzyme reaction complex; ei represents the enzyme concentrations which

are multiplied with ki, the enzyme kinetic rate constants, respectively. We assume all

concentrations to be equal to each other in the simulations. kis are the parameters

to be estimated in this simulation. Due to the structure of this model from law

of mass action, enzymes concentrations and kinetic constants cannot be estimated

independently from each other as they are multiplied to each other. The observed

affact on rate constants can be considered as a similar effect on the corresponding

concentration.

dY1
dt

= −k1eMRN [Y1] (2.15)

dY2
dt

= k1eMRN [Y1] − k2eRPA[Y2] (2.16)

dY3
dt

= k2eRPA[Y2] − k3eBRCA[Y3] (2.17)

dY4
dt

= k3eBRCA[Y3] − k4eRad51[Y4] (2.18)

dY5
dt

= k4eRad51[Y4] − k5eRad54[Y5] (2.19)
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dY6
dt

= k5eRad54[Y5] − k6eSDSA[Y6] − k9eDSBR[Y6] (2.20)

dY7
dt

= k6eSDSA[Y6] − k7eligation[Y7] (2.21)

dY8
dt

= k7eligation[Y7] − k8[Y8] (2.22)

dY9
dt

= k9eDSBR[Y6] − k10eres[Y9] (2.23)

dY10
dt

= k10eres[Y9] − k11[Y10] (2.24)

dY11
dt

= k8[Y8] + k11[Y10] (2.25)

The data in [60] show that around 80 percent of DSBs are repaired by NHEJ and the

rest (20 percent) are repaired by HR. We have scaled the experimental data in [10]

on γH2AX foci by a factor of 0.2 in order to capture the portion of the DSBs that

are repaired by HR. The units for k1-k7, k9 and k10 are molecule−1s−1, for k8 and k11,

units are s−1 in Table 2.5. In the optimization, equation 2.13 is used as the objective

function of ”fmincon” in Matlab (The MathWorks, Inc, Natick, MA) that we used

to calculate the optimal results. The parameters are constrained to be all positive as

they are the rate constants.

2.3.3 Sensitivity and Identifiability Analysis

Sensitivity Analysis

We investigated how the parameters change, especially how kinetics for MRN complex

and Rad51 change, when ADT is added to the treatment. In order to determine

if the changes we observe are biologically significant, we have conducted parameter

sensitivity analysis. The changes in the parameters in response to different treatments

can be considered biologically relevant only for those parameters for which the model

is sensitive. We have calculated the sensitivity gain using the equation 2.14.
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Identifiability Analysis

An identifiability analysis for HR protein rate constants is performed using the same

method as mentioned in NHEJ modeling. The results are presented together with

sensitivity gains calculated for all the parameters in Table. 2.6.

2.3.4 Quantitative Analysis of the Role of HR in Response

to IR for Prostate Cancer

We have used the data in [10] to estimate the HR model parameters. The experimental

data we have used in the parameter estimations are scaled with the factor 20% which

is overall HR efficiency for DSB repair.

Modeling Results

We have modeled the experimental observations of AR effect on MRN and Rad51

quantitatively by using the HR models. We have first developed the model for the

cells with proficient androgen and estimated the model parameters for the treatment

with IR. We have then used the experimental data for the IR combined with ADT

treatment case to estimate the model parameters. We have used our original model

parameters estimated for the IR only case as our initial parameter set for parameter

estimation in the case of IR+ADT treatment. The aim of this approach is to identify

which parameters will be affected most after androgen deprivation. Experimentally

it is observed that MRN and Rad51 activity is affected from androgen deprivation

[11] and in our models this effect is captured as the difference in the rate constants

for MRN and Rad51 before and after androgen deprivation. The hypothesized effect

is that the expressions of MRN and Rad51 are changing due to androgen deprivation,

which would ultimately affect the protein concentrations of MRN and Rad51. In our

model, the effect of protein concentration change or kinetic constant change result in
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Figure 2.11: HR Model Results with Optimized Parameters for IR and IR+ADT
Treatment

the same system output, because they appear in the form of k1eMRN and k4eRad51.

So, any changes we observe in k1 can also be considered as a change in protein

concentration of the same ratio. The model parameters are given in Table 2.5. The

modeling results are also given in Figure 2.11 together with the experimental data.

The models are successful in capturing the experimentally observed repair dynamics.

Comparing the last two columns in Table 2.5, it is found that k1 and k4 values

are decreased when ADT is combined with IR. Since k1 and k4 are both sensitive

and identifiable as tested below, the parameter changes in k1 and k4 are biologically

significant results. k1 is the kinetic rate constant for MRN, which is the first protein

binds to DSB in HR pathway as an initiator; and k4 is the kinetic rate constant for

Rad51, which is treated as the marker of HR pathway that mediates HR instead of

other compensation pathways such as SSA. The interaction of AR with MRN and

Rad51 influence DSB repair by HR. When ADT is combined with IR, the suppression
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Table 2.5: HR Model Parameters

Name Description Value (IR) Value (IR+ADT)
k1 MRN 3.92 ∗ 10−9 2.0 ∗ 10−9

k2 RPA 3.48 ∗ 10−10 3.48 ∗ 10−9

k3 BRCA1/2 3.37 ∗ 10−8 1.16 ∗ 10−8

k4 Rad51 3.68 ∗ 10−8 2.15 ∗ 10−8

k5 Rad54 end capture 1.38 ∗ 10−4 1.38 ∗ 10−4

k6 polymerase 8.7232 1.9555
k7 gap synthesis 1.55 ∗ 10−3 3.18 ∗ 10−10

k8 ligation 1.28 ∗ 10−4 1.89 ∗ 10−4

k9 second end capture 4.3554 3.0105
k10 Holliday junction resolution 0.11 0.11
k11 ligation 3.05 ∗ 10−8 1.76 ∗ 10−6

of AR results in a decrease of the reaction rate of MRN and Rad51, and leads to HR

deficiency.

The models developed for IR and IR+ADT are extended to include PARPi effects.

The PARPi trapping on DNA results in inhibition of both BER and HR resulting

in a large number of unrepaired DSB in HR defective cells. This activity reveals

the potential of PARPi in promoting cell death and suppressing tumor growth for

patients with a BRCA mutation. Due to this characteristic, it is proposed to have

PARPi treatment combined with ADT and IR for enhancing the treatment outcome.

PARPi impacts BER activities and the effects and its modeling are to be further

discussed in Chapter 4.

Parameter Sensitivity and Identifiability Analyses Results

Referring to Table 2.6, through the calculation of sensitivity gain, it is observed that

k1-k4, k6, k8, k9 and k11 are sensitive parameters under both treatment scenarios,

while the models are not sensitive to k5 and k10 regardless of treatment approaches.

The model is sensitive to k7, however it is not a sensitive parameter in the IR model.

The identifiability results are presented in Table 2.6 as well, where + represents
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Figure 2.12: HR Efficiency for varying BRCA Protein Concentrations

error increased when the parameters are re-estimated, meaning that the parameter is

identifiable. On the contrary, − shows that error remained the same, thus the param-

eter is non-identifiable. The identifiability test has a similar result as the sensitivity

test, k1-k4, k6, k8, k9 and k11 are not only sensitive parameters but also identifiable

under both conditions. It is observed that k6, the polymerase; k8, the ligase and

k9, the second end capture in DSBR pathway rates show strong sensitivities in both

models while k1-k4 are only marginally sensitive. The parameters k5 and k10 are

neither sensitive nor identifiable for both treatment scenarios. k7 is neither sensitive

nor identifiable in HR model for IR, however it is highly sensitive and identifiable

in the HR model for combination treatment of IR and ADT. A 0.5 fold decrease is

observed in MRN enzymes levels and a 0.4 fold decrease is observed for Rad51 under

the combination treatment scenario.
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Table 2.6: Sensitivity Analysis and Identifiability Test Result for Parameters of HR
Gene

IR IR+ADT
Name Sensitivity Gain Identifiability Sensitivity Gain Identifiability
k1 0.58 + 1.26 +
k2 10.71 + 0.70 +
k3 0.06 + 0.20 +
k4 0.05 + 0.11 +
k5 0.00 - 0.00 -
k6 16.97 + 13.44 +
k7 0.00 - 6.70 +
k8 11.59 + 4.91 +
k9 9.37 + 2.95 +
k10 0.00 - 0.00 -
k11 0.002 + 1.88 +

2.4 Detailed Identifiability Analysis

2.4.1 Strategy I: Data Sampling Technique

In order to analyze the effects of experimental data sampling frequency on parameter

estimation and identifiability, a synthetic data generation scheme is developed. A new

data sets is generated and the model is rebuilt with the new data set to study the

effect of sampling on identifiability. This study tests a potential experimental data

measurement method for computational model construction that results in improved

identifiability.

Synthetic ”experimental” data is generated using the NHEJ model constructed

for prostate cancer cells in previous sections.

Improving the identifiability of the parameters is important to be able to use the

models to test different mechanistic observations about the interaction between the

AR and NHEJ dynamics. In [79], it is recommended to measure additional time

points to increase the amount of data used in the parameter estimation. It is also
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Figure 2.13: Two Sampling Strategies: Panel one has samples every hour, panel two
has only six samples. Modeling results show that sampling frequency did not effect
model results.

Figure 2.14: Data Sampling Strategies: Sampling with every half hour for IR and
IR+ADT models

recommended to measure additional molecular species to overcome the structural

non-identifiability.

In order to test the effect of data sampling rate on improving the identifiability
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of the rate constants, an experimental strategy is developed. Because of the models

ability to capture the experimental repair dynamics successfully as shown in Figure

2.3, these models are assumed to be the underlying experimental models and they are

used as toy models to understand the influence of different data sampling schemes on

the parameter identifiability. The model outputs are sampled using different scenarios

to understand the role of increasing the amount of data on identifiability. In Figure

2.13, the output from original model is sampled every hour and also sparsely, and

uniform noise is added. The model outputs taken every half hour are then assumed

to be the experimental data and white noise with a signal to noise ratio of 15 is

added to the model outputs in order to mimic the experimental variability in Figure.

2.14. These model outputs are then assumed to be the experimental data and the

parameter estimation and identifiability analysis are carried out using this data.

The scenarios tested include sampling different number of data points uniformly

along the entire time interval during which the original experiments were conducted.

In all the different sampling scenarios it is observed that more data points on the

final outcome, which is the amount of repaired DSBs, did not improve the identifi-

ability of the parameters. The identifiable parameters remained identifiable with no

improvement for the non-identifiable ones. These observations lead to the conclusion

that as long as there are data points that capture the entire trend in the outcome,

having more points on the same time course does not improve the identifiability.

2.4.2 Strategy II : Model Re-structure Technique

The second strategy that is tested here is to include the intermediate repair product

dynamics in the error function for the parameter estimation or alternatively inhibiting

the pathway at different reactions and measuring the outcome as the output of an

intermediate reaction that becomes the final reaction in the pathway. The following

model with the parameters given in Table 2.3 is used to generate the experimental
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data on the intermediate product, which in this case is Y5 representing the amount of

DSB bound by DNA-PKcs that has already gone through two auto-phosphorylations.

dY1
dt

= α
dDose

dt
− k1eKu[Y1] (2.26)

dY2
dt

= k1eKu[Y1] − k2eDNA−Pkcs[Y2] (2.27)

dY3
dt

= k2eDNA−Pkcs[Y2] − k3[Y3] (2.28)

dY4
dt

= k3[Y3] − k4[Y4] (2.29)

dY5
dt

= k4[Y4] (2.30)

This strategy has not improved the identifiability of the unidentifiable parameters. It

is concluded that in order to estimate the unidentifiable parameters, an experimental

design that includes measuring all the NHEJ repair protein binding time courses using

chromatin recruitment assays as presented in [80] would be required to study each

protein interaction independently.

2.5 Conclusion

Computational models for the NHEJ repair dynamics in prostate cancer cells are

developed in parallel with HR repair modeling to analyze the mechanism of the in-

teraction between AR and NHEJ or between AR and HR, and the role of these

interactions in enhancing or reducing the effectiveness of IR treatment. The com-

putational results show that the inhibition of AR activity through ADT inhibits the

NHEJ activity by changing the dynamics of the first protein Ku in NHEJ pathway.

The radiosensitivity also increases when IR is combined with ADT through inhibi-

tion of HR, and this is captured as the changes in Ku and MRN protein dynamics

in the models. The sensitivity and identifiability analysis results show the biological
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relevance of the observed changes in parameters. The computational results also ex-

plain both the experimental and clinical observations presented in the literature. The

models and the analysis form the first steps toward developing a combined treatment

strategy for better prostate cancer patient outcomes.

Due to variability in patients responses to ADT, there are different Ku70/80 level

changes before and after the treatment. Our simulations show that most patients ex-

hibit better radiosensitization due lower Ku70/80 levels after combination treatment.

The dose of IR can be adjusted with respect to the level of radiosensitization after

ADT on a patient specific level to achieve a desired level of DSBs that will lead to

maximum cell death; determining the optimal dose quantitatively will form the basis

of the future work.
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Chapter 3

Cell Cycle Dependent Modeling of

DSB Repair

The effectiveness of IR treatment depends on the amount of induced damages and the

DNA damage repair status of the cancer cells. DSBs are repaired by multiple DNA

repair pathways and this repair reduces the effectiveness of the treatment, which leads

to resistance to IR. Non-homologous end joining (NHEJ) and homologous recombi-

nation (HR) are the two pathways that repair DSBs. NHEJ is the major pathway

that works throughout the cell cycle, whereas HR is restricted to S or G2/M phases

of the cell cycle after DNA replication has been completed.

It has been shown in the literature that the increased levels of NHEJ components

result in poor treatment response to IR and cancer has progressed even after the IR

treatment [10], and the effectiveness of treatment is often measured by the efficiency

of DNA repair pathways. In response to IR induced DSBs, repair pathways are

activated. In the meantime, the cell cycle arrest in G1, S and G2 phases are triggered.

Our goal is to mathematically model the DSB repair pathways in order to study their

role in resistance to IR [81]. The contributions of HR and NHEJ to the repair of

DSBs are cell cycle phase dependent, so there is a necessity to identify the differences
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in the kinetics of these pathways in different cell cycle phases.

3.1 Cell Cycle Dependent Mathematical Modeling

of DSB Repair

3.1.1 Cell Cycle Modeling Background Review

Data driven modeling approaches for the cell cycle focused on using ODEs to model

cell cycle protein kinetics have been developed in the literature [82, 83, 84]. In [62],

the authors proposed asynchronous probabilistic cell cycle models to quantitatively

analyze the relationship between cell cycle dynamics and mismatch repair status

during up to two cell population doubling following single agent (IUdR or IR) and

combined (IUdR+IR) treatments. Considering the cell cycle system a finite state

dynamic system, the states are defined as cell cycle phases (G1, S, G2 and M).

The details of the model are described as follows: n1, n2, and n3 are the cells that

progress into G1, S, G2/M phases per unit time, f is a probability density function

which represents the duration of time of transition from one phase to another, and

the states are expressed as below:

n1(t) = 2
∫ t

−∞
n3(λ)f3(t− λ)dλ = 2n3(t) ∗ f3(t) (3.1)

n2(t) =
∫ t

−∞
n1(λ)f1(t− λ)dλ = n1(t) ∗ f1(t) (3.2)

n3(t) =
∫ t

−∞
n2(λ)f2(t− λ)dλ = n2(t) ∗ f2(t) (3.3)

Taking the integration of all the transition per unit time equations, the cell numbers

in the three stages are:

N1(t) =
∫ t

−∞
[n1(λ) − n2(λ)]dλ (3.4)

49



N2(t) =
∫ t

−∞
[n2(λ) − n3(λ)]dλ (3.5)

N3(t) =
∫ t

−∞
[n3(λ) − 0.5n1(λ)]dλ (3.6)

writing in percentages:

G1% =
N1

N1 +N2 +N3

∗ 100% (3.7)

G1% =
N2

N1 +N2 +N3

∗ 100% (3.8)

G1% =
N3

N1 +N2 +N3

∗ 100% (3.9)

Parameters of the probability density functions of transition between each stage need

to be estimated every time when there are changes to the system such as a new

treatment approach.

In this chapter, we combine the NHEJ pathway and HR pathway models in a cell

cycle dependent way to develop comprehensive DSB repair model. The output of

this model is represented by cell number or percentages of cells in different stages.

Acknowledging that NHEJ is the major pathway through all the phases of cell cycle,

and HR is only active during S and G2/M phases, we can use the information on cell

cycle phase to determine the accurate repair pathway for DSB repair. A more precise

cumulative DSB number after applying IR treatment will be obtained by combining

cell cycle model and NHEJ and HR repair models. Parameter estimation for the

comprehensive model is performed using experimental data.

It has been shown in the literature that the increased levels of NHEJ components

result in poor treatment response to IR and cancer has progressed even after the IR

treatment [10]. For PCa, the hormone level is also a key element that influences the

treatment effectiveness. Generally, in most clinical treatment approaches, a combi-

nation of ADT and IR is widely used in order to improve patients overall survival

probability and it is proved to have positive results for PCa patients [26]. The stud-

50



ies in literature [10, 26] show that AR is activated through IR and that increased

AR activity promotes NHEJ repair and increases the radio resistance of the cancer

cells. On the contrary, when ADT is applied, there will be less AR activated. There-

fore, the tumor cells present less radioresistance, and more DSBs remain compared

to IR treatment only. In [26], four human prostate cancer cell lines are under test for

studying the phenomenon of AR regulation caused by IR treatment. It shows that

with increasing IR dose, there are more AR signaling activities in vitro and in vivo.

Increased AR expression after IR relates to DNA repair pathways through the inter-

actions of DNA repair proteins such as Ku70/80 and DNA-PKcs with AR. Thus the

suppression of AR, such as by ADT treatment is a positive approach on enhancing

IR treatment to have a better outcome.

In [26], in order to investigate how castration therapy affects NHEJ repair pathway,

14 patient samples are analyzed after castration, Ku 70 and γH2AX foci are tracked

for recording. They observed that after castration, Ku70 level is decreased. Ku70, as

the first protein that attaches to the DSB end that initiate NHEJ has a key role on the

DNA process. The decrease in Ku levels, which increase cancer cells radiosensitivity

and IR effectiveness is thus enhanced. [85] also reviews that AR signaling promotes

DNA repair and radioresistance in PCa. The treatment option on how to combine IR

and ADT for better outcomes is discussed. Other NHEJ targeting drugs are examined

for a potential radiosensitization effect

The models for NHEJ and HR are developed in the previous chapter, and the

changes in these pathway dynamics after IR/ADT treatment regimens were also cap-

tured. In the next section, we will discuss how to apply the model to more specific

calculations under the influence of the cell cycle. In particular, the time course and

rate of cancer cell proliferation under different treatment plans is examined by com-

bining NHEJ and HR models with the cell cycle model.
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Figure 3.1: DSB Repair Flow in Separate Cell Cycle Phases (G1, S and G2/M)

3.1.2 Modeling Cell Cycle Progression after IR Treatment

The cells in a population are cycling in the asynchronous state under normal condi-

tions. As analysed in [62], G1 phase cells, S phase cells and G2/M phase cells have

changes in the dynamics when treated with IR or drugs. After a transition period,

the cells reach steady state following the external disturbance. In this work, the

changes to the dynamics are analyzed after IR and IR+ADT treatment. The initial

assumption is that the average IR induced DSBs are N/M , where N is the number of

DSBs and M is the number of cells. G1 phase cells react differently to the same IR

dose from S phase cells. The difference also exists in G2/M phase cells. According to

[86], there are about 2 fold increase in γH2AX foci detected in average in 40 human
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cells for G2 phase cells compared to G1 phase cells under the same condition (15 min

post 2Gy IR). The DSBs generated in S phases cells are taken to be around 1.5 fold

higher than that of G1 phase cells [30]. A cancer cells population under treatment is

grouped into G1, S and G2 phase cells. Using our assumption that the average DSB

per cell is N/M , and under steady state conditions where the cell phase distribution

is expressed as G1%, S% and G2/M%, then the initial conditions of averaged DNA

damage per cell for each group are calculated by the following equations:

avgG1 =
N/M

G1% + 1.5 ∗ S% + 2 ∗G2/M%
(3.10)

avgS =
1.5 ∗N/M

G1% + 1.5 ∗ S% + 2 ∗G2/M%
(3.11)

avgG2/M =
2 ∗N/M

G1% + 1.5 ∗ S% + 2 ∗G2/M%
(3.12)

When abnormal events occur during cell cycle progression, such as excessive DNA

damage or DNA replication blocks, such regulatory mechanisms are activated to

interrupt the cell cycle in a timely manner. After the damage is repaired, the cell

cycle progression can resume. In the PCa treatment, when IR or other treatment is

introduced, cell cycle arrest occurs in response to checkpoints signaling in G1, S, and

G2/M phases. As mentioned in [5], the checkpoints arrest cells with damage in the

current cell cycle phase until the DNA lesions are repaired or if the damage remains

unrepaired, it finally leads to cell death. Cell cycle arrest period length depends on

the repair efficiencies. The arrest period is defined from the time of detection of DNA

damage accompanied by the onset of cell cycle arrest, to the time when the final

repair is completed the cells either continue with cell cycle or die. The duration of

this period is determined by many factors, such as damage complexity, repair protein

concentration and kinetics, dose intensity, etc. Typically, a total of 24 hours is divided

by about 11 hours in G1 phase, 8 hours in S phase and 5 hours in G2/M phase [87].
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Table 3.1: C4-2 PCa Cell Doubling Time

control 1 24h
2Gy IR 1.249 30h

2Gy IR + ADT 3.979 95.5h

Because of the wide range of factors that determine cell cycle arrest duration, here we

make assumptions about cells that successfully go through DNA damage repairing:

the G1 group has the average cell cycle arrest duration about 60 hours under IR

combined with ADT and 15 hours with IR;

the S group has the average cell cycle arrest duration about 44 hours under IR

combined with ADT and 11 hours with IR;

the G2/M group has the average cell cycle arrest duration about 28 hours under

IR combined with ADT and 7 hours with IR.

In the current model, we preset the cell cycle duration and calculate the number

of PCa cells over time. According to [10], the doubling time for C4-2 cells is recorded

as listed in Table 3.1, where the first column is the doubling time given as a relative

number, and if control is taken 24 hours as a general case, then the doubling time for

each treatment is calculated as 30 hours and 95.5 hours. This information provides

the constraints for the cell cycle duration time in our model.

The repair pathways involved in DSB repair are NHEJ and HR, which are modeled

and parameterized in Chapter 2 for PCa under IR and IR+ADT. In the computa-

tional models, because the original experimental data is based on averaged values

considering all cell cycle phases and is not measured for individual cell cycle phases,

the contributions of NHEJ and HR were not considered in a cell cycle dependent

manner. They were modeled separately. Here, we combine both models taking cell

cycle phases into account. According to [60], while HR is absent is G1 phase, the

efficiencies of the NHEJ and HR are measured as below:
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Figure 3.2: Cell Cycle Arrest and Cell Proliferation Timeline

NHEJ efficiency in S phase is 0.686;

NHEJ efficiency in G2/M phase is 0.9275;

HR efficiency in S phase is 0.3145;

HR efficiency in G2/M phase is 0.0625.

Combining all the information above, a survival rate for G1 cells is defined by the

formula:

ratioG1 =
DSBNHEJ−repaired

avgG1

(3.13)

where the repaired DSB number is obtained from the solution of ODEs for NHEJ

using a time interval as long as the assumed arrest time for G1. The avgG1 is given

by equation 3.10. The ratio of repaired DSBs to initial DSBs calculated here is used

as a surrogate for the survival rate in G1 phase cells. Similarly, for S and G2/M

group, the following ratios are obtained, noting that HR is active for both these cell
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Figure 3.3: Rate of Cell Survival in Cell Cycle

cycle phases:

ratioS =
DSBNHEJ−repaired +DSBHR−repaired

avgS
(3.14)

ratioG2/M =
DSBNHEJ−repaired +DSBHR−repaired

avgG2/M

(3.15)

As for the overall cell population, the cell survival rare is calculated as:

Psurvival = G1% ∗ ratioG1 + S% ∗ ratioS +G2/M% ∗ ratioG2/M (3.16)

During the duration of cell cycle arrest, the probability of cell survival is increasing

as damage repair progresses as shown in Figure 3.3. In all cell cycle phases, the

survival rate of cancer cells is relatively low in the presence of both IR and ADT. A

proliferation scheme that is presented in Figure 3.2 is used to study how the damage
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(a)

(b)

Figure 3.4: PCa Cell Proliferation

quantity and arrest times will affect cell proliferation and survival.

Proliferation of prostate cancer cells has been significantly inhibited by IR treat-

ment compared with normal cell proliferation rates, and this inhibition is more pro-

nounced under the combined treatment regimen of IR and ADT as shown in Figure

3.4a. Specifically, in the early stages, about 62.1% of the cells survived after the

completion of the repair after IR treatment. Compared with the theoretical 24-hour

cell doubling, the doubling of the cells is extended to around 40 hours; and under the

simultaneous treatment with IR and ADT, the inhibition of cell proliferation is more

significant, where about 55.7% PCa cells survive in the early stages together with

57



Table 3.2: Parameter Used in Cell Proliferation Models

initial conditions treatment strategy IR IR+ADT
DSBs induction 11 G1 Arrest Duration 15h 60h

G1 % 0.46 S Arrest Duration 11h 44h
S % 0.33 G2 Arrest Duration 7h 28h

G2/M % 0.21 dead cell % in G1 grp 0.3574 0.4098
normal G1 duration 11h dead cell % in S grp 0.3715 0.4548
normal S duration 8h dead cell % in G2/M grp 0.4361 0.5008

normal G2/M duration 5h surv cell % from G1 grp 0.2956 0.2719
avg-ini-dsb/G1 7.4 surv cell % from S grp 0.2074 0.1799
avg-ini-dsb/S 11.1 surv cell % from G2M grp 0.1184 0.1048

avg-ini-dsb/G2M 14.8 Total Sur% 0.6214 0.5567
Total death % 0.3786 0.4433

doubling time (experimental) 30h 95.5h
doubling time (computational) 35-45h 85-95h

a longer doubling time about 90 hours. As given in Table 3.2, the doubling times

calculated from the models is in good agreement with the experimentally measured

times.

Based on the simulation results as presented in Figure 3.4b, it can be concluded

that another dose of IR can be delivered might before the cell doubling.

3.2 Detailed Study of DSB Repair by NHEJ Dur-

ing Cell Cycle Post IR

It is the goal of this section to develop the mathematical models of NHEJ pathway in a

cell cycle dependent manner using the data from [30]. Specifically, data from [30] show

the dynamics of DSB repair for different cell cycle phases for two different IR doses.

NHEJ repair models that were developed in Chapter 2 for each cell cycle phase in a

data driven way for both IR doses. In the model development, the repair pathway(s)

that is / are active for that particular cell cycle phase are taken into account. For
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the phases that both pathways are active, we accounted for the contribution of each

individual repair pathway. For each model, the sensitivity test and identifiability

analysis are performed. For the identifiable parameters, comparison is made between

the values of these parameters among the models and a discussion is given on how

parameters dynamics determine the performance in different cell cycle phases.

3.2.1 Model Setup and Data Processing

As presented in Chapter 2, biochemical kinetics of NHEJ is modeled using determin-

istic nonlinear ODE set described in equations 2.3−2.12. In the experimental data,

γH2AX foci measurements are used as a marker for repair dynamics. The parameters

of the model to be estimated are the rate constants and all the initial conditions are

set to be the same as listed in Table 2.1 before parameter estimation as stated in

previous chapter in order to have the biologically relevant starting points.

In the literature [30], γH2AX foci in normal human neonatal CCD-34Lu fibrob-

lasts cell are measured in three cell cycle phases for both 0.5Gy and 5Gy; and this

IR doses data are used in model development. The remaining DSBs after 5Gy IR

are measured in percentages corresponding to G1 and G2 phases under 3 conditions:

normal condition, inhibiting HR, inhibiting NHEJ. When calculating γH2AX foci

that are repaired by NHEJ, we can take the percentage change under the condition

with inhibited HR for different cell cycle phases for each dose accordingly. In order

to study the dynamics of NHEJ or HR alone, the other pathways was inhibited. The

inhibitor Nu7026 inhibits DNA-PKcs in NHEJ and RI-1 inhibits Rad51 of HR. How-

ever, the chemical inhibitors only slow down the reactions but not completely stop

the reactions. The inhibition effects are investigated in [30] only during G1 and G2

phases. However, as [60] mentions, the proportion of NHEJ in S is larger than that

of G2 phase. On the basis of the existing data, the effect of HR inhibition on S phase

could be more significant (about 5 fold) than that of the same inhibition on the G2
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Table 3.3: γH2AX Foci With/Without HR Inhibition under 0.5/5Gy IR

γH2AX foci 0.5 Gy 5 Gy
0.5h 2h 6h 24h 0.5h 2h 6h 24h

G1 (Control) 145 98 55 5 1400 910 490 210
G1 (-HR) x x x x 1400 910 570 280

S (Control) 180 145 105 40 1650 1150 700 100
S (-HR) x x x x 1650 1360 1155 720

G2 (Control) 290 185 125 25 2000 1550 800 250
G2 (-HR) x x x x 2000 1600 1200 400

phase. Original data discussed above have been shown in Table 3.3 together with the

resulting γH2AX foci that are repaired by NHEJ. The numbers are corresponding to

G1, G2 and S phases under 5Gy IR. The data described above are used as the exper-

imental data to estimate the kinetic constants of the active proteins. The parameters

under each dose corresponding to the cell cycle phase are estimated separately.

In order to determine if the changes we observe are biologically significant, we

have conducted parameter sensitivity analysis. The changes in the parameters in re-

sponse to different treatments can be considered biologically relevant only for those

parameters for which the model is sensitive. We have calculated the sensitivity gain

using equation 2.14. In our case, the numerator is the percent change in error function

and the denominator is the percent change for the parameter itself. We have both in-

creased and decreased the parameters by 10 percent. We calculated the average value

of percentage change in M to calculate S. We have also conducted an identifiability

analysis as described in Chapter 2 for all the parameters to determine whether the

parameters are identifiable in the model. As for a specific parameter that we want to

check its identifiability, we kept the estimated result of this parameter as a constant,

and estimated all the rest of the parameters by changing the chosen parameter by

10 percent up or down. If the objective function becomes greater, the parameter is

identifiable, otherwise, the parameter is non-identifiable when the objective function
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Table 3.4: Estimated Protein Kinetics for NHEJ When HR Inhibited

0.5Gy G1 5Gy G1 5Gy G1(-HR) 5Gy S(-HR) 5Gy G2(-HR)
k1 2.69∗E−8 5.32∗E−8 2.42∗E−8 1.86∗E−8 2.07∗E−8
k2 7.16∗E−8 9.5∗E−8 4.41∗E−8 2.74∗E−8 4.22∗E−8
k3 0.0105 0.4984 0.0069 0.0024 0.0084
k4 0.0004 0.5709 0.0002 0.1751 0.2286
k5 0.0118 0.2357 0.0091 0.0940 0.1769
k6 0.0035 0.0001 1.05∗E−5 7.27∗E−6 1.69∗E−5
k7 0.0288 0.1538 0.0106 0.0227 0.0345
k8 0.0587 0.0563 0.1019 0.0437 0.0748
k9 1.38∗E−8 0.0014 0.0157 6.37∗E−9 4.33∗E−9
k10 3.7∗E−5 1.14∗E−5 0.0068 0.0003 0.0003

remains the same. The results are presented in Table. 3.5

3.2.2 NHEJ Model Parameters for Different Cell Cycle Phases

The kinetics of proteins that are involved in NHEJ under different cell cycle phases

are estimated and presented in this section. Resulting values are presented together

with the sensitivity test and identifiability test to identify the parameters that are

biologically relevant under these circumstances. It is observed from the values on the

kinetic rate constants that a potential protein activity change with cell cycle phase

change takes place is stated for NHEJ pathway. NHEJ as the major DSB repair

pathway, repairs most of the most DSBs through the whole cell cycle. However,

proteins behave differently with various doses applied as well as in separate phases

during cell cycle.

Parameter Estimation Results

The results for the parameters estimated under each case is listed in Table 3.4 and

model outputs together with experimental data are plotted in Figure 3.5. It is shown

in the figures that the estimated results are in good agreement with the experimental
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Figure 3.5: Curve Fitting for NHEJ When Inhibiting HR in G1, S and G2 Phase

data. When exposed to 5Gy IR, there are more DSBs generated. G1 phase cells have

the greatest overall repaired DSBs in percentage under both low and high IR dose

when taking into account the NHEJ and HR pathways. When cells are in G1 phase,

only NHEJ is the effective pathway for DSB repair; while in S and G2, NHEJ and

HR are both active. Comparing the columns and rows of the Table 3.3 and Table 3.4:
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i) G1 phase under 0.5Gy IR vs. G1 phase under 5Gy IR: 32% of the damage is

repaired within the first 6 hours post 0.5Gy IR. When IR dose is increased, the overall

damage amount raises almost 10 fold which is proportional to the fold change in IR

dose. However, the repair rate is not influenced much in upstream reactions. The

resulting unrepaired damage is higher under 5Gy IR of 15% compared to 5% under

0.5Gy IR. Looking at the experimental data in the first 6 hours post IR, reaction rate

is faster to a smaller extent 3% under 5Gy. Faster rate is captured with increase in

parameters k1 (Ku) and k2 (DNA-PKcs), k5 and k7 for ligation and end processing.

From 6 hours to 24 hours post IR, G1 phase cells after 0.5Gy are faster in NHEJ rate

of repair, the downstream dynamics change with the value of synthesis protein k10

dropping with increasing dose.

ii) Normal G1 phase cells vs. G1 phase cells with HR inhibition: it is considered

that in G1 phase, NHEJ is the only effective pathway for DSB repair. Theoretically,

inhibiting Rad51 (HR defect) will not influence outcome for G1 phase cells. However,

the experimental data show a slight decrease in the efficiency of NHEJ when an HR

inhibitor is applied in G1 phase cells. The overall remaining DSB is about 5% higher

under HR restricted condition. This effect suggests that lack of HR repair proteins

may also down regulate NHEJ activities and lead to less effective repair. All the

significantly sensitive parameters for both cases have decreased values in the current

simulation. The comparison here points out to the potential of a Rad51 inhibitor in

limiting NHEJ in G1 phase cells to a small extent, but the specific mechanism is not

clear.

iii) HR inhibition in G1, S and G2 phase: HR has the largest effect on S phase

cells, so inhibiting Rad51 has the greatest impact on S phase, which is reflected in

the most unrepaired DSB of about 44% compared to G1 and G2 phase cells of about

20% remaining DSB. Although the change in NHEJ repair rate is not consistent in

different cell cycle phases in the case of HR inhibition, overall, HR defect has the
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greatest impact on S phase NHEJ DSB repair, followed by G2. Specifically, for the

parameters optimally estimated under each scenario, first attached proteins k1 (Ku)

and k2 (DNA-PKcs) decreases is in G1, G2, and S respectively, a significant decrease

of k5 ligation, k6 complex releasing and k7 end processing are observed in S phase

cells with HR deficiency.

Sensitivity Test and Identifiability Analysis Results

The analysis of the results shows that k8 is not sensitive under any scenarios that have

been tested. k5, k6, and k7 are parameters that are the most sensitive under all the

5 conditions. k1, k2, and k3 show sensitivities but not as significant as k5-k7. For the

rest of the parameters, they present different sensitivities under different scenarios.

k4 is a sensitive parameter in 0.5Gy G1 phase cells and 5Gy S phase cells with HR

inhibition. k9 shows insensitivity in 5 Gy G1 phase cell with/without HR inhibition,

but is sensitive in the rest simulations. k10 is only less sensitive in HR defective G1

phase cells and sensitive to the model in the other simulations especially for normal

G1 phase cells. According to the dynamics that the k’s represented, a conclusion is

drawn from the current model that: end ligation, Artemis end processing and complex

release have an important role in the dynamics of NHEJ activities in different cell

cycle phases. k1 and k2 show biological relevance of Ku and DNA-PKcs activities.

The result of identifiability test is in consistent with sensitivity test. The non-sensitive

parameters are not identifiable either. The parameters discussed in the results above

for comparisons have been tested to be both sensitive and identifiable.
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Table 3.5: NHEJ Parameter Sensitivity and Identifiability Results in G1, S, G2
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Chapter 4

Computational Modeling of Base

Excision Repair

The purpose of this work is to computationally analyze the effect of inhibition of base

excision repair (BER) on improving the response to treatment with 5-fluorodeoxy-

uridine. 5-fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (5-FdU) are

standard treatments for different solid tumors and especially for colon cancer. In the

literature, it is shown that the depletion of uracil DNA glycosylase (UDG), one of the

enzymes that initiate the BER pathway, enhanced the cytotoxicity of 5-FdU, making

DNA glycosylase a potential target to enhance efficacy of chemotherapeutic agents.

It is also shown that the activity of DNA glycosylase is significantly higher in colon

cancer cells compared to normal tissues. We have developed a computational model of

the BER pathway to capture the BER dynamics in colon cancer cell lines after treat-

ment with 5-FdU. The model is composed of a series of ordinary differential equations

where the parameters are the kinetic rate constants and the enzyme concentrations.

The data from the literature is used to initially parameterize the models. Then the

least square estimation method is used to find the parameters that could capture the

BER time course for colon cancer cells after 5-FU treatment using the experimental
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data from the literature. We have performed sensitivity and identifiability analyses

to determine the parameters that are reliably estimated. The experimental data from

the literature show that the depletion of UDG resulted in incorporation of uracil and

5-FU in the DNA. We have computationally replicated this effect by decreasing the

protein concentration of UDG in the models and simulating the amount of remaining

DNA damages after BER with reduced activity has taken place. We have studied

the depletion effect for different protein concentrations of UDG and the results have

shown that the accumulation of 5-FU in these colon cancer cells correlate with the

level of UDG. The suppression of UDG activity has the potential to enhance the

outcome of treatment with 5FdU. It is also shown in literature that poly ADP ribose

polymerase inhibitor (PARPi) could enhance the toxicity of 5FU. We also successfully

replicated this effect in our model. We incorporate the effect of the lack of adeno-

matous polyposis coli (APC) that leads to 5-FU treatment failure in our model. The

results from the model are in agreement with the experimental results from the liter-

ature. The computational models developed can be used to quantitatively optimize

the 5FU treatment in the future work.

4.1 Introduction

In this section, we will examine the role of BER in enhancing the chemotherapy. 5-FU

and its metabolite 5-FdU are common and standard chemotherapy and are widely

used in various solid tumor treatments especially for colon cancer [88]. Referring to

Figure 4.1 [89, 90], the mechanism of 5-FU metabolism and how it induces DNA tox-

icity can be summarized as: 5-FU and 5-FdUrd metabolism results in accumulation

of 5-FdUMP. The target of 5-FU and 5-FdUrd is thymidylate synthase (TS), which

is the enzyme that converts dUMP to dTMP, Therefore, the suppression of TS pre-

vents dUMP from becoming dTMP and the ratio of dUMP and dTMP is increased
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and resulting in incorporation of the false base uracil(U) and 5-FU into DNA dur-

ing DNA replication. The DNA damage that is caused by the incorporation of an

incorrect base is repaired by DNA repair pathways and BER is the major pathway

that deals with this kind of DNA lesions. Referring to Figure 4.2 [90, 21, 91], BER is

initiated by DNA glycosylase removing the incorrect base. There are different types

of DNA glycosylases depending on the specific damages detected[92, 93]. Monofunc-

tional DNA glycosylase targets the damaged base and N-glycosidic bond hydrolysis

generates apurinic/apyrimidinic (AP) sites[94]. Then, the DNA with AP sites reacts

with the enzyme APE1, which results in gaped DNA with 5dRP [95]. 5dRP is re-

moved by the activities of the polymerase, and downstream BER includes short-patch

and long-patch BER which is decided by the 5dRP terminus status[96, 97, 98]. In

the short-patch pathway, polymerase β removes dRP and the final step is ligation

by Ligase3α/XRCC1 for the damage to be finally repaired; while in the long-patch

pathway, dRP is removed and DNA is repaired by polymerase δ, FEN1, and ligase I

to complete the DNA repair[99, 100, 101].

It is demonstrated in [102] that incorporation of 5-FU into DNA leads to FU

paring with A or G and these lesions are mainly targeted by uracil-Nglycosylase

1(UNG1) and uracil-Nglycosylase 2 (UNG2) both in vitro and in vivo. This sug-

gests that knockdown of DNA glycosylase as the initiator would influence the BER

process, which makes DNA glycosylase a potential target to enhance drug effect in

cancer treatment. Different lesions caused by 5-FU and U incorporation into DNA

are studied in [89] in vitro and the kinetics of different DNA glycosylases (including

UNG, SMUG and TDG) are measured and compared. UNG is the major DNA glyco-

sylase that works for all lesions regardless of substrate types. The experimental data

shows that down regulating or inhibiting UNG, BER could be slowed down leading

to DNA damage accumulation. In [103], two different DNA glycosylases were studied

and the results show that the sensitivity to 5-FU increased by 2 fold if SMUG was in-
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Figure 4.1: 5-FU Cytotoxicity to DNA

hibited instead of UNG, which also suggest a specific DNA glycosylase as a potential

target to increase drug toxicity. DNA glycosylase depletion causes cell cycle arrest in

G1 and S phase of the cell cycle and sub G1 cells are accumulating which indicates

increasing cell death. It is shown in the experiments that UDG depletion enhance

5-FdU cytotoxicity [104].

The treatment outcome of 5-FU can also be influenced by factors other than inhib-

ited UDG. 5-FU, as the major treatment for colorectal cancer, loses its cytotoxicity

when APC is muted, because APC has interactions with polymerase β and FEN1,

which are key proteins involved in long-patch BER [105]. It is shown in [106] that

a combination treatment with 5-FU and PARP inhibitor enhances the outcome of

5-FU. PARP inhibitor is known to enhance cancer treatment outcome when DNA

double strand break proteins are deficient including BRCA1/2 and PTEN in homol-
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ogous recombination [107], but the mechanism in PARPi for increasing toxicity of

5-FU and BER need further investigation. The results in [108] show the evidence

that PARP is actively involved in BER by interacting with polymerase β, and the

efficiency of especially short-patch pathway, which is considered the major BER path-

way, is down regulated by about half fold and long-patch is severely influenced when

PARP is inhibited. In recent years, studies also suggest that PARP is not directly

involved in BER, but rather has impact on this repair pathway when PARPi is used.

PARPi arrests PARP on the repair intermediates during BER thus disturbing the

repair process by preventing the intermediates from proceeding to ligation step [109].

In this section, we study the effect of 5-FU induced DNA damages repaired by BER

by developing a quantitative model of the pathway including short-patch pathway and

long-patch pathway using data of SW480 and HeLa cell lines from [91]. The BER

models will be used to analyze the possible enhancement of 5-FU treatment through

inhibition of BER pathway quantitatively.The computational model makes it possible

to analyze different scenarios for the optimal treatment strategies when chemotherapy

is combined with other adjuvant treatments such as PARP inhibitors [106].

Mathematical modeling of BER have been developed in [21, 22, 23, 24, 25] using

stochastic method or deterministic modeling approaches. The process of BER post

chemotherapy is modeled by using nonlinear differential equations deterministically

as in [21]. We use the data on FU:G measurements on SW480 and HeLa cell line

[91] to quantitatively analyze DNA glycosylase activities and kinetics of the rest of

the BER enzymes. By determining the relative enzyme levels, we are able to study

the effects that are caused by mutation or down regulation of certain enzymes on the

BER efficiency.
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4.2 Quantitative Base Excision Repair Model

4.2.1 Mathematical Model of BER

As illustrated in Figure 4.2 [90, 21, 91], the pathway can be described according

to the following steps: initial lesion is targeted by UDG followed by APE1 reac-

tion before branching into short-patch and long patch pathway. Gapped DNA with

dRP reacts with polymerase β and the product either reacts with polymerase β and

ligase3α/XRCC1 to have the repair completed or reacts with polymerase δ, FEN1

and ligase1 for the final steps in BER [110]. We have modeled the BER pathway

actions step by step using a set of nonlinear differential equations that is similar

to [21]. The equations follow Michealis-Menten kinetics and the resultant model is

given below. In this model, Yi denotes to the concentration of the initial amount

of damaged bases, all repair intermediates and the repaired base damages as results.

The enzyme concentrations are denoted by e’s, the catalytic rate constants (kcat) are

denoted by ki’s (s−1) and the Michaelis constants (Km) are denoted by Ki’s (nM):

dY1
dt

= − k1eu[Y1]

K1 + [Y1]
(4.1)

dY2
dt

=
k1eu[Y1]

K1 + [Y1]
− k2ea[Y2]

K2 + [Y2]
(4.2)

dY3
dt

=
k2ea[Y2]

K2 + [Y2]
− k3epbg[Y3]

K3 + [Y3]
(4.3)

dY4
dt

=
k3epbg[Y3]

K3 + [Y3]
− k4epbl[Y4]

K4 + [Y4]
− k6epd[Y4]

K6 + [Y4]
(4.4)

dY5
dt

=
k4epbl[Y4]

K4 + [Y4]
− k5el3[Y5]

K5 + [Y5]
(4.5)

dY6
dt

=
k5el3[Y5]

K5 + [Y5]
(4.6)

dY7
dt

=
k6epd[Y 4]

K6 + [Y 4]
− k7ef [Y 7]

K7 + [Y 7]
(4.7)
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dY8
dt

=
k7ef [Y 7]

K7 + [Y 7]
− k8el1[Y 8]

K8 + [Y 8]
(4.8)

dY9
dt

=
k8el1[Y 8]

K8 + [Y 8]
(4.9)

The repair time course data from [91] is given in Table 4.1 and is used in parameter

estimation. The data is measured from SW480 and HeLa cell lines and are presented

as the percentage of the repaired F:G lesions over time. In the simulations, in order

to be in consistence with the enzyme concentrations that are predefined with unit

nM, we set the total lesion number to be 100 nM as initial conditions for calculations.

We defined all the enzyme concentrations according to the literature [21] and the

values are listed in Table 4.2. Note that the system output through short-patch

pathway is calculated by Y6 and Y9 is the result of repaired damaged bases through

long-patch pathway which enable to quantitatively analyze the efficiencies of the two

sub-pathways under various scenarios. The final repair outcome is the summation of

Y6 and Y9 that will be compared with the experimental data during the parameter

estimation. We have used fmincon function of Matlab (The MathWorks, Inc, Natick,

MA) for parameter optimization for the kinetics constants and ”ode15s” for solving

the ordinary differential equation set. The parameters are constrained such that they

are all positive to avoid negative reaction rates. We have used the following cost

objective function where Ym is the model output, in our case is Y6 + Y9 and Ye is

the experimental data at a particular experimental time point and we sum all the

squared errors over all the time points:

Err =
∑

(Y6 + Y9 − Ye)
2 (4.10)

In [105], it is shown that APC mutation can lead to 5-FU insensitivity and the

mechanism for this treatment failure is explained through the interaction of APC with

FEN1 and polymerase β. If APC is muted, FEN1 and polymerase β us up-regulated

72



Figure 4.2: BER Pathway Mechanism

making BER more effective thus decreasing the cytotoxicity of 5-FU. The observations

in [105] are summarized in Table 4.4. We use our BER models developed above for

the simulation of the APC mutation effects on BER in colon cancer cell lines. The

fold changes observed experimentally for FEN1 and polymerase β are incorporated in

our model to study BER outcome. We also use this model to simulate the effects of

PARPi blocking ligation step of the BER intermediates by trapping PARP using the

data provided in [109]. The data is converted to relative numbers for the accumulating

intermediates when ligation step in inhibited after PARPi is involved as listed in Table

4.5. The deficiency in ligase is studied individually as well as its combination with
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Table 4.1: Number of Repaired FU:G Lesions in Percentage

Time(min) 0 15 30 45 60
SW480 0 75% 88% 90% 90%
Hela 0 65% 75% 83% 85%

Table 4.2: Enzyme Concentrations Used in the Model

eu DNA glycosylase 70.6nM
ea APE1 117.7nM
epbg polymerase β gap filling 19.8nM
epbl polymerase β dRP remove 19.8nM
epd polymerase δ 19.8nM
el3 ligase3α 11.9nM
ef FEN1 19.8nM
el1 ligase1 1.98nM

PARPi to obtain the combined effect on BER dynamics.

4.2.2 Sensitivity Analysis

One important goal of our studies is to observe how the parameters react under dif-

ferent treatment scenarios, particularly, those parameters which are sensitive in this

model making the corresponding enzymes potential targets to inhibit BER repair

and enhance the treatment effect, such as drug toxicity for chemotherapy with 5-FU.

Therefore, we conduct sensitivity analysis to investigate biological relevance of the

parameters in the mathematical model to experimental phenomena. DNA glycosy-

lase, as the initiator of the BER process, is a potential target and the efficiency of

short and long patch pathways can also be determined individually from the compu-

tational models. Sensitivity gain indicates whether the model is sensitive to a certain

parameter and the degree of the sensitivity. The sensitivity gain is calculated using

the same method as described in equation 2.14, where M is the BER system output.
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The results are presented in the next section.

4.2.3 Identifiability Analysis

We have conducted an identifiability analysis for all the parameters to determine

whether the parameters are identifiable in the BER model parameterized for 5-FU

treatment in colon cancer cell lines. Due to the structure of the model where the

catalytic rate constants are multiplied with the enzyme concentrations, we only take

the catalytic rate constants into account and we set the enzyme concentrations to

be constants. The identifiability test is generated for all the parameters one by one

applying previously stated method for NHEJ modeling and HR modeling as described

in [62]. The results are presented in the next section.

4.3 Role of Base Excision Repair in Sensitization

of Cancer Cells to Chemotherapy

4.3.1 BER Parameters in the Modeling Results

We use the data from experimental measurements and estimate the parameters kcat

and KM for all the enzymes that are involved in the BER process. The results are

listed in Table 4.3, and when these parameters are used in the model, the model

output is in good agreement with the experimental data as shown in Figure 4.3.

We observe that it takes about 60 minutes to complete BER when base damage is

detected, in our case the damage is FU:G lesions. The overall repair efficiency is

dependent on the cell type and the enzyme kinetics for the different cell types. In

the experimental data, SW480 cells present a better repair rate as well as total repair

percentage compared to HeLa cells. In both cell types, BER goes on fast for the first

30 minutes and becomes gradually steady at 40 minute post exposure to chemical
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Figure 4.3: BER Model Results compared with Experimental Data for SW480 and
HeLa Cell Lines

intervention. In HeLa cells, it takes longer to reach a steady state and these cells

are more sensitive to 5-FU. SW480 cells have less 5-FU toxicity. Starting with the

same amount of base damage, SW480 cells have a faster overall repair rate and better

efficiency than HeLa cells. When the resultant parameters for these two cell lines

are compared, we find that the parameters show very different enzyme kinetics for

different cell lines.

4.3.2 DNA Glycosylase Depletion Enhances 5-FU Effect

We have used the model for HeLa cells to study the effect of DNA glycosylase depletion

on 5-FU treatment outcome and BER efficiency. In Figure 4.4, the model for HeLa

cells as shown in Figure 4.3 is used as the control set, for which the parameters are

as listed in the last column of Table 4.3. In this model, we decrease DNA glycosylase

concentration by 0.8 fold, 0.5 fold, 0.1 fold and 0.01 fold. We observe that, with

decreasing DNA glycosylase concentrations, the repaired damage amount is decreased
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Table 4.3: Parameters Fitted in Experimental Data: the unit of ki is s−1 and the unit
of Km is nM

Name in Eqn description SW480 Hela
k1 DNA glycosylase kcat 0.6 0.0325
K1 DNA glycosylase Km 41.4 1000
k2 APE1 kcat 37.1 861.2
K2 APE1 Km 24.0 97.6
k3 polymerase β gap filling kcat 1.8 604.3
K3 polymerase β gap filling Km 78.2 790
k4 polymerase β dRP remove kcat 31.5 367.5
K4 polymerase β dRP remove Km 41.1 927.4
k5 ligase3α kcat 4.8E−5 0.015
K5 ligase3α Km 165.1 1000
k6 polymerase δ kcat 36.3 832.9
K6 polymerase δ Km 5.3 805.0
k7 FEN1 kcat 0.03 916.9
K7 FEN1 Km 208.7 716.1
k8 ligase1 kcat 41.1 932.6
K8 ligase1 Km 70.0 137.3

over time. The overall efficiency within a certain time range has a considerable drop.

The repair percentages are 82.5%, 81%, 42% and 8% corresponding to the decreasing

DNA glycosylase concentrations. Especially when DNA glycosylase concentration

is decreased to 0.01 fold, only about 8% of damaged is repaired within 60 minutes

compared to around 83% when there is no DNA glycosylase depletion.

Suppression of DNA glycosylase concentration leads to not only a slower BER

rate but also a drop in overall repaired damage amount. When BER is suppressed by

down regulating DNA glycosylase, 5-FU caused base damages are repaired less thus

5-FU toxicity is enhanced. In this simulation, we successfully capture the dynamics

of depletion of DNA glycosylase as a potential approach to enhancing 5-FU treatment

outcome.
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Figure 4.4: DNA Glycosylase Depletion and BER Outcome

4.3.3 APC Mutation Decreases 5-FU Cytotoxicity

We have used the model for SW480 cells to study BER dynamics for treatment

scenarios with different levels of APC expression, as the experimental data is on

colon cancer cells and SW480 is also another colon colon cancer cell line. As given in

Table 4.4, there are three types of colon cancer cells to be examined: HCT-116 cells

with high APC expression; HT-29 cells with medium APC expression; and LOVO

cells with low APC expression (APC mutation). APC’s interaction with FEN1 and

polymerase β is displayed as fold change in the enzyme concentrations. With respect

to each cell line, the fold changes in FEN1 and polymerase β levels are measured from

low to high dose of 5-FU for dose levels 2.5µM, 5µM and 10µM. The fold change is

implemented as multiplying the original model enzyme concentrations with the fold

change to simulate the effects.

For both high APC and medium APC expressing cells, with increasing 5-FU dose,

FEN1 decreased significantly and the decrease in medium APC cells is more significant
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Table 4.4: APC Mutation’s Effect on Enzymes

cell type HCT-116 HT-29 LOVO
APC expression High Medium Low
No 5-FU FEN1 1 1 1

No 5-FU polymerase β 1 1 1
2.5µM 5-FU FEN1 0.55 0.5 NA

2.5µM 5-FU polymerase β 0.97 0.83 NA
5µM 5-FU FEN1 0.33 0.02 NA

5µM 5-FU polymerase β 0.93 0.9 NA
10µM 5-FU FEN1 0.08 0.0 1.04

10µM polymerase β 0.85 0.9 1.04

than high APC cells. While there is also a slight decrease in polymerase β it is not as

significant as in FEN1. Low APC cells don’t show changes in enzymes concentrations

with varying 5-FU doses. For 5-FU dose at 10µM, APC mutated cells have higher

levels of FEN1 and polymerase β compared to high and medium APC expressing

cells. As shown in Figure 4.5, APC mutated cells (LOVO) have the most damage

repaired because FEN1 and polymerase β concentrations are the highest compared to

non APC mutated cells. Figure 4.6 shows damage repair dynamics for different cell

types under varying 5-FU doses. HT-29 cells are more sensitive to the dose change

compared to HCT-116 cells. As for the same cell line, when there is a higher 5-FU

dose applied, less FEN1 concentration is detected, and regarding the same level of

damage concentration, BER is slower in rate and repaired number of damages are

lower. In both HCT-116 and HT-29 cells, 10µM 5FU scenario has the lowest BER

efficiency, and the scenario with 5-FU at 2.5µM has the most damaged DNA repaired.

Higher levels of 5-FU are more toxic due to BER suppression.

4.3.4 PARPi and Ligase Enzyme Deficiency Inhibit BER

In Table 4.5, the experimental data from [109] in term of the number of SSB accumu-

lation fold change with time is shown up to 60 minutes post PARPi treatment. PARPi
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Figure 4.5: Repaired Damage for Different APC Expression Cells

Figure 4.6: Repair in Cells with Different APC Levels for Varying 5-Fu Doses

traps PARP, which is not directly involved in BER, onto the BER intermediates one

step before the final ligation step. Therefore, the ligation step is inhibited,which
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Table 4.5: Intermediates Accumulating +PARPi

Time(min) 0 10 20 40 60
EM9-V cell 1 1 1 1 1

EM9-V cell +PARPi 1.2 1.2 1.9 1.5 1.4

leads to failure of BER repair of the damage induced by 5-FU. The averaged fold

change is used to generate the experimental data for PARPi effects by multiplying

the repair kinetics data with the corresponding fold change. The parameter esti-

mation is performed using this new repair kinetics data set. Figure 4.7 a shows an

increase in number of accumulation of base damage when there is PARPi added to

the simulation. Table 4.6 lists the parameter kinetics that have changed after PARPi

treatment.

The remaining damage is calculated in our model for different treatment scenarios.

As shown in Figure 4.7 b and c. The control in this case is normal BER dynamics when

repair is not inhibited by PARPi or ligase deficiency. We study the effect of PARPi

on BER kinetics and the results are given in Figure 4.7 b and Table 4.6 Among the

parameters that are re-estimated for BER with PARPi, DNA glycosylase and ligase

show decreases in value as shown in Table 4.6. To simulate the case when there is ligase

deficiency, we decreased the enzyme concentration of ligase in the model simulations

and this results in similar increase in remaining DNA damages for both cell lines.

In Figure 4.7 d, the increasing amount of remaining damages are displayed after

individual application of PARPi and ligase deficiency. The combination of PARPi and

ligase deficiency shows an enhancement compared to individual intervention by either

PARPi or ligase in terms of remaining unrepaired damages. Due to the synthetic

lethality of PARPi and BRCA mutation, the results analyzed for adding PARPi into

treatment leads to damage enhancement only when the DSB formed by replication

fork collapse cannot be resolved by HR due to BRCA mutation. Otherwise, the
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Figure 4.7: a. Experimental data without PARPi and the data set generated from this
experimental data with PARPi effects included; b.BER kinetics change after PARPi;
c. BER kinetics change after inhibition of ligase; d. PARPi and ligase inhibition on
BER kinetics.

damages can be repaired by HR.

4.3.5 Sensitivity Analysis Results

We calculate the sensitivity gain using the method as described in equation 2.14

for the parameters estimated in Table 4.3 and the results are presented in Table

4.7. We predefined the enzyme concentrations to be constants in our model and

we don’t estimate the enzyme concentrations in our parameter estimation. Enzyme

concentration changes under the various scenarios created for 5-FU treatment and

BER can similarly be considered as the changes on enzyme rate constants because of
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Table 4.6: Altered Parameters in BER with PARPi (I: identifiable SGain: Sensitivity
Gain)

description -PARPi SGain I +PARPi SGain I
DNA glycosylase kcat 0.0325 10.95 + 0.0194 28.13 +

ligase3α kcat 0.015 4.19 + 0.004 4.63 +

the structure of the model. The enzyme concentration e is multiplied with kcat, if kcat

is tested to be sensitive then the model is sensitive to the corresponding multiplier e.

The sensitivity analysis results for the model parameters that are estimated for

SW480 cells can be summarized as follows: the model is most sensitive to k7, k8,

and k11-k14 for the kinetics of to polymerase β for dRP removal, polymerase δ and

FEN1, correspondingly. The model shows less sensitivity to the rest of the parameters

with low sensitivity gains. Varying levels of APC expression has different degrees of

regulation on FEN1 and polymerase β and FEN1 is tested to be a sensitive parameter

of this model. We successfully captured loss of 5-FU toxicity when APC is mutated

by tuning the parameters for polymerase β and FEN1 according to the fold changes

of enzyme kinetics in the literature.

We also perform sensitivity analysis for HeLa cell model, which has a distinct

parameter set: sensitivity results show that k1, k2, and k7-k10 are most sensitive

parameters for this model and the rest are less sensitive with a very low sensitivity

gain. The sensitive parameters correspond to DNA glycosylase, polymerase β for

dRP removal, ligase 3α/XRCC1 and polymerase δ kinetics respectively. We use this

model to study DNA glycosylase depletion, PARPi and ligase inhibition effects on

BER kinetics. As for the former, we down regulated DNA glycosylase concentration

and obtained lower repair by BER; for the later, PARPi cause accumulation of SSB

and ligase enzyme concentration decrease further enhances this effect on inhibition of

BER kinetics. It is observed that PARPi effect is further enhanced by the action of

ligase regulation. The sensitivity test provide biological relevance of the parameters
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Table 4.7: Sensitivity and Identifiability Test Results

description SW480 Hela
SGain Iden SGain Iden

DNA glycosylase kcat 0.92 + 10.95 +
DNA glycosylase Km 0.30 + 7.02 +

APE1 kcat 0.32 + 0.006 +
APE1 Km 0.23 + 0.006 +

Polymerase β gap filling kcat 0.19 + 0.006 +
Polymerase β gap filling Km 0.28 + 0.007 +

Polymerase β dRP remove kcat 821.5 + 15.0 +
Polymerase β dRP remove Km 662.3 + 17.3 +

ligase3α kcat 0.29 + 4.19 +
ligase3α Km 0.14 + 4.68 +

Polymerase δ kcat 678.9 + 17.31 +
Polymerase δ Km 814.1 + 15.0 +

FEN1 kcat 1688 + 0.006 +
FEN1 Km 1515 + 0.007 +
ligase1 kcat 0.19 + 0.007 +
ligase1 Km 0.48 + 0.006 +

we estimated in these studies.

4.3.6 Identifiability Test Results

The identifiability results for both SW480 cells and HeLa cells are presented together

with sensitivity results in Table 4.7. In the table, + indicates that the parameter is

identifiable. If the parameter is not identifiable, it is indicated with a − sign as listed

in the table.

There are some parameters which show low sensitivity gain, however, in the iden-

tifiability test, all the parameters are tested and are found to be identifiable. In the

case of SW480 cells, k7, k8, and k11-k14 have high sensitivity gains, and the rest of the

parameters show low sensitivity gains; in the identifiability test, all the parameters are

found to be identifiable. For HeLa cells, k1, k2 and k7-k10 have high sensitivity gains,

and the rest parameters show low sensitivity gains; in the identifiability test, all the
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parameters are found to be identifiable parameters. The identifiability results show

that the observed effects in our model are in consistent with the experimental data

under various scenarios created for enhancement and inhibition of 5-FU treatment

outcome.

4.4 Conclusion on BER and 5-FU Chemotoxicity

We have successfully constructed a mathematical model for BER and conducted pa-

rameter estimation for the model. We found that the quantitative model is in a

good agreement with the experimental data with sensitive and identifiable parame-

ters. Thus our parameters optimized in the model are considered to be biologically

relevant. By decreasing DNA glycosylase concentrations, we generate a set of models

that mimic the repair kinetics after various levels of depletion of DNA glycosylase.

With decreasing values of DNA glycosylase concentration, BER process slows down

leading to accumulation of 5-FU in cancer cells. Therefore, the suppression of DNA

glycosylase has a potential to enhance the outcome of treatment with 5-FdU. We

successfully simulated the negative impact of APC mutation on the effectiveness of

5-FU treatment by leading to increases in FEN1 and polymerase β concentrations.

The simulation is developed for varying doses of 5FU among distinct cell lines with

high, medium and low APC expressions. In our model, cells with low APC expression

shows most drug resistance to 5-FU. We have also performed simulations using our

model of PARPi effects on accumulating BER intermediates and successfully captured

the enhanced effect on treatment toxicity by combining ligation enzyme deficiencies

and PARPi. 5-FU leads to incorporation of U and FU into DNA therefore causes base

damages. BER is the major pathway for the repair of these damages. Many factors

can have a positive or negative impact on the repair process. In our case we simu-

late the enhancement of 5-FU outcome by DNA glycosylase depletion, 5-FU failure
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by APC mutation and the effect of combining PARP inhibitor and ligase deficiency

on BER kinetics. In future work, this model can be further used to quantitatively

optimize these effects as well as other potential factors for better treatment outcome

or combination treatment in cancer therapy.
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Chapter 5

Conclusions

In this work, DNA damage induced by cancer treatment and the corresponding DDR

have been studied. Specifically, novel computational models of NHEJ, HR, and BER

are developed to quantitatively analyze the role of DNA repair in the treatment out-

come for PCa. A computational model of NHEJ has been successfully parameterized

for PCa under IR treatment and a combination treatment of IR and ADT. The sup-

pression of AR signaling activities through ADT which then leads to inhibition of

NHEJ through Ku down regulation is successfully captured in the model dynamics.

NHEJ models were used to capture the individual differences to ADT toxicity among

patient profiles, which indicate patients responsiveness to ADT through Ku depletion.

On the other hand, AR activities not only impact NHEJ proteins but also regulate

HR proteins including MRN and Rad51. Computational HR model is also built for

PCa using the same experimental data as NHEJ for consistency. Suppression of AR

activities through ADT also impairs HR, thus contributing further to IR outcome

enhancement. Kinetics of MRN, the HR initiator; Rad51, the HR marker; and how

BRCA mutation effect HR are validated in this model.

In SSB repair, BER and HR are compensating repair pathways and possible tar-

gets for synthetic lethality through PARPi in cancer that have deficient HR due to
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BRCA mutations. BER modeling of damage repair after 5-FU treatment is devel-

oped. The quantitative analysis shows that DNA glycosylase is a potential target for

BER inhibition that will enhance 5-FU treatment outcome. Gene mutation of APC

in some patients results in drug resistance to 5-FU due to BER kinetics changes. In

addition, PARPi trapping PARP leads to ligation failure and accumulation of SSB

thus enhancing the treatment outcome, especially for the defective cancers due to

synthetic lethality.

The computational models are developed using ordinary differential equations

that model reaction steps in the repair pathways and least squares method is used for

parameter estimation. Model reliability is determined by sensitivity and identifiabil-

ity analysis. The model results are considered biologically relevant when the model

parameters are found to be sensitive and identifiable. Different methods were intro-

duced such as data sampling enhancement or using repair intermediates in the error

function to improve identifiability. The results did not improve with these methods.

As a result, it is suggested to deal with non-identifiable parameters with independent

experimental design that measures individual reaction kinetics.

NHEJ efficiencies in different cell cycle phases have been. The consistency between

the results in the computational model and the experimental data are reflected in the

drop in protein kinetics during the cell cycle phases when NHEJ is less efficient. The

integration of the cell cycle with NHEJ and HR shows the cell proliferation under IR

treatment and combination treatment of IR and ADT for PCa patients. The overall

cancer cell survival rate and cell propagation are computationally studied for PCa

after IR and IR+ADT. The models show that IR limits the PCa cell proliferation,

and this effect is more significant when combined with ADT.

A framework of major DNA damage repair pathways, especially a framework for

DSB repair pathways are developed by taking into account cell cycle efficiencies for

PCa under different treatment plans (IR, ADT, and drugs in chemotherapy). It is
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displayed quantitatively in this dissertation that IR therapy is enhanced by ADT.

In addition to ADT enhancement on IR, PARPi mechanism is integrated in the

computation models for BER to analyze the ability of PARPi in improving treat-

ment efficacy. This dissertation systematically summarizes the basic framework of

DDR and describes and simulates the determinate mechanisms. For more compre-

hensive analysis, the individual repair pathway models are combined in a cell cycle

dependent manners. The models make computational experiments possible and thee

computational analysis allow for detailed study of DDR that might not be feasible

through lab experiments. The presented integration of models are the initial steps in

quantitatively analyzing possible scenarios to find the optimal personalized treatment

strategies for PCa patients using IR, hormone therapy, and chemotherapy. Further-

more, the models developed in this dissertation and the model construction methods

can be applied to other cancer types treatments for quantitative analysis.
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Chapter 6

Suggested Future Work

In the current model, although the role of cell cycle for repair efficiency is fully con-

sidered, the role of checkpoint activities is only macroscopically quantified. In fact,

checkpoints’ mechanism is a very complex process that triggers cell cycle arrest to

allow for DNA repair. It is suggested to add checkpoints signaling mechanism into

the current computational model, that will allow a more detailed analysis of the re-

lationship between cell death and DNA damage repair in a quantitative manner for

PCa. The major lesions studied in this work were DSBs after IR and SB after 5-FU

incorporation into DNA. In the future, other lesion types and the corresponding repair

pathways can be added to obtain more comprehensive DDR models. As [111] and

[112] mentions, PARPi clinical trials have been designed for PCa patients together

with chemotherapy, IR, ADT, targeted agents and immunotherapy. The combination

treatment with chemotherapy and PARPi shows some positive results especially for

BRCA mutation patients. But the potential mechanisms of PARP-1 (the most abun-

dant member in PARP family) in DDR remains unclear. PARP-1 is reported to be

actively involved in BER for promoting BER genes. Therefore, the role of PARPi in

treatment enhancement is most likely through increasing DSB by SSBR/BER inhi-

bition. In addition to PARPi inhibiting PARP-mediated recruitment of proteins in
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Figure 6.1: Synthetic Lethality of PARPi and BRCA Mutation

BER, PARPi is also reported to trap PARP onto SSB ends and to accumulate DSB

due to replication fork collapse. Besides, due to the compensating character of BER

and HR as shown in Figure 6.1, the most lethal role of PARPi is on the synthetic

lethality with BRCA mutation. PARP activities and PARPi activities with the DDR

proteins dynamics will be studied in the future and incorporated into the models.

In addition, more scenarios will be created and compared for PCa patients for an

optimized treatment plan. In designing a treatment plan, there are multiple opti-

mization objectives such as IR dose calculations, IR dose timing, surgery and drug

decision. This current model enables quantitative study of multiple treatment sce-

narios and makes predictions about overall treatment outcomes.
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