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Automated Facial Emotion Recognition: Development and

Application to Human-Robot Interaction

Abstract

by

XIAO LIU

This thesis presents two image processing algorithms for facial emotion recognition

(FER). The first method uses two pre-processing filters (pre-filters), i.e., brightness

and contrast filter and edge extraction filter, combined with Convolutional Neural

Network (CNN) and Support Vector Machine (SVM). By using optimal pre-filter pa-

rameters in the pre-processing of the training images, the classification of FER could

reach 98.19% accuracy using CNN with 3,500 epochs for 3,589 face images from the

FER2013 datasets. The second approach introduces two geometrical facial features

based on action units – landmark curvatures and vectorized landmarks. This method

first detects facial landmarks and extracts action unit (AU) features. The extracted

facial segments based on the action units are classified into five groups and input to

a SVM. The presented method show how individual parameters, including detected

landmarks, AU group selection, and parameters used in the SVM, can be examined

and systematically selected for the optimal performance in FER. The results after pa-

rameter optimization showed 98.38% test accuracy with training using 1,479 labeled

frames of Cohn-Kanade (CK+) database, and 98.11% test accuracy with training

using 1,710 labeled frames of Multimedia Understanding Group (MUG) database for

6-emotion classification. This technique also shows the real-time processing speed of

6.67 frames per second (fps) for images with a 640× 480 resolution.

The novelty of the first approach is combining image processing filters with CNN

to enhance CNN performance. As for the second approach, it systematically analyzed

the effectiveness of proposed geometric features and implemented FER in real-time.

The demonstrated algorithms have been applied on human-robot interaction (HRI)
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application platform - social robot “Woody” for testing. The presented algorithms

have been made publicly available.
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Chapter 1

Introduction

Modern technologies have offered exciting new ways to augment user experiences in

human-computer interaction (HCI) and human-robot interaction (HRI). However,

user engagement and preference towards such interactive technologies is difficult to

measure. It is not only related to the interaction time, frequency, and performance,

but also highly linked to how much they enjoy the interactions. It is well known

that emotions arise from cognitive appraisals and organize adaptive behavioral re-

sponses. A recent work pointed out that physiological results of participants are

mirrored in the subjective reports provided by the participants [1]; in another word,

psycho-physiological techniques for measuring users experience can provide valuable

information related to user engagement, satisfaction, and enjoyableness.

Game theory is a set of mathematical tools for modeling interactive decision-

making of users [2]. Social emotions involved in game theory can provide useful

parameters for setting up constructive game models [3] for human computer/robot

interaction. For instance, guilt and anger can be modeled with utility functions that

depend on both material and psychological payoffs, and their effect on behavior can

be mathematically described by game theory. Emotion in games is not only related

to cooperation of players, but also associated with neural activation consistent with
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positive or negative affective states. Therefore, objective and accurate assessment of

user emotions is important in game design and evaluation.

The capability of understanding a user’s emotion through facial expressions in

interactive technologies can play a significant role in understanding user experience

and establishing long-term engagement between the technology and the user. Fa-

cial expression is one of the fundamental social cues, thus often used to understand

social deficits or differences in individuals with certain health conditions, such as

autism spectrum disorder [4] and Alzheimer’s disease [5]. Facial expressions were also

reported as one unidimensional tool commonly used to determine the level of pain

intensity by visual analogue scales [6].

Automated facial emotion recognition (FER) aims for a computer with a vision

system to detect and classify the facial images into a finite number of emotion classes.

While common social understanding allows most of us to properly recognize others’

emotions through facial expressions, significant individual differences in perceptual

and expressive capabilities exist. In addition to individual differences, such vision-

based methods are often sensitive to external conditions, such as lighting, distortion,

and occlusion, also add complexity to FER [7]. When FER is intended for interactive

applications, such as human computer/robot social interaction designed to use FER

as user inputs, minimal latency is a key to realize natural, social engagement between

the two. Ideally, the processing speed for existing FER systems should at least range

from 0.4-8 frames per second (fps) [8]. However, research on interactive machine

learning raises one important technical challenge. The requirement for rapid model

updates often necessitates trading off accuracy with speed. The resulting models are

therefore suboptimal [9].

Some existing software for FER includes AFFDEX software development kit

(SDK) [10], EmotioNet [11], CERT [12], and OpenFace 2.0 [13]. AFFDEX SDK

provides an easy interface for processing multiple faces within a video or live stream

2



in real-time with 7 emotions in the speed of 10 fps [10]. EmotioNet was proposed

to annotate a “face in the wild” by calculating facial action units’ intensity at the

speed of 30 fps [11]. Although these methods presented a good real-time application,

the testing accuracy of those proposed methods was not publicly available. CERT

showed 90.10% accuracy for classifying 7 emotions [12] but lacking in the real-time

processing capability. OpenFace 2.0 [13] demonstrated state-of-the-art results in FER

task with open source but was still missing testing accuracy and detailed analysis.

In this thesis, two algorithms for automated FER are presented. The first is based

on two pre-processing filters (prefilters) (i.e., brightness and contrast filter and edge

extraction filter) combined with Convolutional Neural Network (CNN) based learning

and classification by a Support Vector Machine (SVM). This method achieved 98.19%

accuracy using CNN with 3,500 epochs for given 3,589 face images FER2013 datasets.

The second method based on geometric feature extraction and parameter optimization

achieved a testing accuracy of 98.38% for static frames of CK+ and 98.11 % for MUG

database. It runs at a speed of 6.67 fps with resolution 640 × 480 pixels for online

processing.

1.1 Related Work

More than ten thousand different expressions can be shown on a face and each person

has a unique way of expressing their emotions through facial expression [14]. Even

people from different backgrounds and cultures share many common expressive fea-

tures, which can be divided into six emotions: happiness, anger, sadness, disgust,

surprise, and fear [14]. Most prior research focuses on accurate classification of these

six emotions or seven emotions including “neutral”.
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1.1.1 FER with Neural networks

Skin color detection, Haar features extraction, Gabor wavelet algorithm, and Local

Binary Pattern detection are commonly used techniques for FER [15]. Local Binary

Patterns (LBP) not only represent the shape and texture information of the faces but

also form an LBP feature vector in an efficient way. The LBP-based algorithm can

be combined with other approaches, such as principle component analysis (PCA),

to achieve improved performance [16]. Admittedly, advanced algorithms can achieve

high recognition rates in some ways, but with the advent of Neural Networks and Deep

Learning, facial expression recognition training accuracy can reach up to 98% [17].

Complicated algorithms such as image pre-processing steps are no longer considered

efficient for solving facial expression recognition problems.

With recent advancement in machine learning, CNN and Deep Belief Networks

(DBN) have been used for feature extraction, classification and recognition tasks.

CNN has achieved state-of-the-art results in various applications, including object

recognition, face recognition [18], and scene understanding [19]. A multi-path CNN

approach integrated with the complementary information from multi-scale perspec-

tives [20] showed a competitive performance when compared with the most mod-

ern CNNs on specific datasets, such as the Chalearn Challenge Dataset [21]. An-

other method based on a novel Multi-Angle Optimal Pattern-based Deep Learning

(MAOPDL) method could rectify the problem of sudden illumination changes and

find a proper alignment of a feature set by using Multi-Angle-Based optimal configura-

tions [17]. A modern structure of Deep Neural Network includes five major processes:

Extended Boundary Background Subtraction (EBBS) [22], Multi-Angle Texture Pat-

ter+ Scanning Tunneling Microscopy (STM), Densely Extracted SURF+Local Occu-

pancy Pattern (LOP), Priority Particle Cuckoo Search Optimization (PPCSO) [17]

and Long Short-Term Memory Convolutional Neural Network (LSTM-CNN) [23].

The complexity of neural networks results in a high accuracy of training and valida-
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tion, requiring repeated tuning of coefficients and modification in parameters within

the network as well as outside the network in pre-processing filters. Achieving high

accuracy and efficiency at the same time is challenging.

1.1.2 FER with Geometric feature

Performance of automatic FER largely depends on accurate representation of facial

features. Facial Action Coding System (FACS) systematically associated facial ex-

pressions with observable facial movements in terms of Action Units (AUs), which

provided the descriptive requirement for FER [24]. Among 44 AUs specified by FACS,

30 of them are considered anatomically related to specific facial muscles with more

than 7,000 different AU combinations [25]. Key geometric points associated with

these AUs can be defined and localized for automatic detection of AUs [26].

Geometry-based features focus on describing the shape of the face and its compo-

nents especially its movements and shape transformation. Classification are typically

based on the locations of the facial landmarks and distances among them. Tradi-

tional Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform

(SIFT) can also extract similar information from a face image, but it is time consum-

ing and not comprehensive [27]. In [28], Salient Facial Patches were extracted from key

areas of human faces by marking coarse region of interest (ROI) as geometric features.

Another recent algorithm combined the Delaunay triangulation with the Gabor filter

for classifying AUs and capturing intensity of each AU [29]. The method used points,

lines, and triangle shapes extracted from the facial key points. In this research, selec-

tive multi-class AdaBoost combined with the extreme learning machine (ELM) based

classification was applied, achieving 95.05% accuracy in 6-emotion classification. An-

other geometric feature-based technique used 18 critical candidates/landmarks with

16 significant distance data selected by applying correlation-based feature subset se-

lection (CFS) method [30].
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Geometry-based features can also be integrated for FER in 3D space. The active

appearance model (AAM) is widely used as the geometric feature-based approach.

AAM variations are also considered for tracking a dense set of facial key points. In

[31], various AAM-based algorithms were compared and evaluated for FER appli-

cations. Facial geometric features can also be extracted from 3D faces. Exploiting

3D texture and geometric scattering features between frames of 3D facial geometry

sequences is also a dynamic method for FER [32]. In [33], onset and offset segments

of 3D sequence of facial expressions were all included, and the geometric facial motion

projected in vector field were captured and then trained by GentleBoost classifiers.

Once facial features are extracted, the data are provided to a classification module.

Widely used methods include hidden Markov model (HMM), Gaussian mixture mod-

els (GMM), dynamic Bayesian networks (DBN), and support vector machine (SVM).

HMM is common in handling sequential data and thus also not applicable [29]. GMM

is sensitive to noise and cannot be used to model fast variation in consecutive frames

[34]. Therefore, it is not suitable for real-time applications. A drawback of DBN is

that network structure depends on variable order. If the order is chosen carelessly, the

resulting network structure may fail to reveal conditional independencies [35]. SVM is

a discriminating classifier which maps a feature vector to a higher dimensional plane.

Since SVM can classify static geometrical features and obtain an accurate recognition

rate, it is selected for this system.

1.2 Research Objectives

Despite the recent advancement and promising results of FER, there is a lack of

open-source, real-time FER system readily available for a broad range of HRI and

HCI applications. Three research objectives of this thesis project are:

1. Develop reliable FER algorithms for broad range of HCI and HRI applications.
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2. Achieve improved FER performance compared to existing methods in terms of

accuracy and speed.

3. Validate the algorithms using two publicly available databases which are com-

monly used for FER research.
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Chapter 2

FER using CNN

The first method for FER uses an image pre-processing technique, systematically in-

tegrating two machine learning algorithms, CNN and SVM. As illustrated in Fig. 2.1.

The presented method optimizes parameters used in image pre-processing filters based

on the learning outcomes from the CNN and thus achieves improved performance in

facial image classification.

2.1 Image Pre-processing Filters

The presented algorithm is based on a CNN-SVM classifier, which has been already

used for various pattern recognition applications, recently [36, 37, 38]. The difference

in our method is in the image pre-processing techniques that tune the parameters

used in the pre-filters in order to achieve optimal performance in the CNN-SVM

classifier. Face images often involve different lighting distortions and illumination,

which can significantly alter the appearance of the faces [39]. To minimize the effect

of such external conditions and effectively extract features for emotion recognition,

brightness and contrasts are adjusted using the brightness and contrast filter (BCF)

and then edges are extracted by using the edge extraction filter (EEF) prior to the

CNN-based learning for pattern recognition.
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Figure 2.1: Overview of the presented optimization process: 1) use the processed
images generated by two pre-filters with varying sets of parameters; 2) analyze the
learning outcomes from the CNN; 3) select the best parameter set; and 4) apply the
SVM classifier.

2.1.1 Training & Test Datasets

For algorithm development and evaluation, the Facial Expression Recognition (FER

2013) dataset was used [40]. This dataset was created using Google image search

Application Programming Interface (API) with 184 emotion related keywords, such as

blissful, enraged, and heartening. These images were grouped into the corresponding

fine-grained emotion classes by rejecting incorrectly labeled frames and adjusting

cropped regions. The resulting data contains nearly 36,000 gray-scale images with

48 × 48 pixels, and are divided into 7 effective expressions, i.e., 0-angry, 1-disgust,

2-fear, 3-happy, 4-sad, 5-surprise and 6-neutral (See Fig. 2.2). From this dataset,

28,709 images were used for training, 3,589 were used for validation and 3,589 were

used for testing.
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Figure 2.2: Sample images from FER2013 datasets exhibiting the following emotions:
angry, disgust, fear, happy, sad, surprise, and neutral.

2.1.2 Adjusting Brightness & Contrast

BCF aims to manipulate the three channel values of Hue, Saturation and Value

(HSV) in each pixel within a color image to eliminate the effect of different lighting

conditions. For an input pixel, with its HSV values defined as ~g = [h, s, v]T , BCF

results in the output (~g′) given by

~g′ = Ω~g + ∆HSV (2.1)

where

Ω =


α 0 0

0 β 0

0 0 γ

 ; ∆HSV =


∆h

∆s

∆v


Ω is the coefficient matrix for scaling the original HSV values of the pixel, and ∆h,

∆s and ∆v are additional small increments added to the scaled values. For efficiency,

images are often converted into a gray scale and in this case Ω is a scalar value.

Fig. 2.3 shows how the image changes with gradually increasing (top) and decreasing

(bottom) brightness and contrast by changing Ω. However, which Ω would result in

better recognition performance cannot be determined.

2.1.3 Edge Extraction Filter

Edge Extraction Filter (EEF) is based on Canny edge detection [41]. It is a multi-

stage algorithm, which first smoothens the image using a Gaussian filter to eliminate

10



Figure 2.3: Implementing BCF to a face image: Gradually increasing brightness and
contrast (top) vs. gradually decreasing brightness and contrast (bottom).

the noise and then finds the image gradient using the edge detector, which highlights

the edge regions, followed by suppression of the pixels which are not at the maximum.

The edge detector calculates the magnitude of gradient changes along the horizontal

and vertical directions from the smoothened image, derivatives as Gx and Gy are

given by

∇I =
[
∂I
∂x
, ∂I
∂y

]T
= [Gx, Gy]

T (2.2)

where I represents the image, and x and y represent the horizontal and vertical direc-

tions. A full scanner selector checks whether the magnitude of the gradient (∇I) is

within a specific range. The selector is integrated with two threshold values minVal

and maxVal

I ′ =


I(i, j) = 255 minVal ≤| ∇I |≤ maxVal

I(i, j) = 0 else

(2.3)

where I’ is the output of EEF and the magnitude of∇I is given by | ∇I |=
√
G2
x +G2

y.

The boundary conditions for | ∇I |, i.e., minVal and maxVal, determine the range

of the gradient intensity. Only part of pixels of I can be stored with specific range

of magnitude and then highlighted (I(i, j) = 255). Fig. 2.4 shows the results from

applying EEF for two images produced by applying the BCF with different Ω values.

For both images, varying threshold values were used to demonstrate how they affect

the edge detection results. For facial expressions, EEF is a useful tool to extract
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desired features efficiently. However, as shown in Fig. 2.4, it may be hard to tell

what parameters are better because it can only be concluded after these filtered

images are fed into the CNN-based learning and by analyzing the results.

   

   

(a)

(b)

Figure 2.4: Applying BCF with two opposite values of Ω ((a) positive and (b) nega-
tive) and then applying EEF with gradually increasing minVal and maxVal from 20,
50, and 100.

2.2 Integration with Learning Algorithms

This section focuses how to obtain optimized solution for parameter selection in the

pre-filters. Fig. 2.1 shows the overall process. The original data set is first pre-

processed with pre-filters, and put into CNN for training, followed by the learning

evaluation. After evaluation, the best performance with higher learning accuracy is

determined and SVM classifies all collected pre-filter data. During this process a

large random number of pre-filter parameter sets are fed to SVM for obtaining the
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optimized solution of pre-filter parameters.

A classic feed-forward CNN has been implemented in our work[42] [43]. The archi-

tecture of CNN consists of 4 hidden layers. For convolution and pooling operations,

Vanilla Backpropagation [44] is selected. An input image is a 48× 48 matrix of pixel

values. Convolutions use a stride of one and are zero-padded to ensure that the

output maintains the same size as the input. The first convolutional layer is set for

computing 64 features in each 5 × 5 (5 pixels width and height) patch. Its weight

tensor has the volume size of 5 × 5 × 1 and 64 output channels to the subsequent

convolutional layer. Then, output feature of first convolution follows the process of

convolving training pattern with weight tensor, adding bias, applying a rectified linear

unit (ReLU) function [45], and max pooling, resulting in a 24× 24 matrix. The sec-

ond layer of convolution has 128 features for each 5× 5 patch. Therefore, the weight

tensor has the volume size of 5 × 5 × 64 with 128 output channels. After following

the same convolution and max pooling process, the image size is then reduced to a

12× 12 matrix.

After two layers of convolution, two fully-connected layers (‘local fully-connected

layer 3 (local 3)’ and ‘local fully-connected layer 4 (local 4)’ shown in Fig. 2.1) are

followed. Local 3 includes 3,072 inter neurons with a weight tensor size of 3072×1536

and local 4 has 1,536 inter neurons with a weight tensor size 1536× 7. Each of these

layers are also followed by a pooling layer. Intermediate input is multiplied by a

weight tensor, added by a bias, and then applied to a ReLU function. To avoid

overfitting, a dropout is implemented prior to the readout layer. The logistic loss

function is selected as a probabilistic and linear classifier. A gradient optimizer was

initially considered, but did not perform well for the training images. Instead, the

Adam optimizer was implemented.
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2.2.1 Learning Evaluation

Evaluation focuses on testing the effect of image pre-processing filters, i.e., BCF and

EEF, on CNN-based learning. Fig. 2.5 shows the learning curve using the images

produced by the two pre-processing filters with three different sets of parameters. The

parameters used for Fig. 2.5(a) shows the best learning performance, with the largest

value of I among the three, while Fig. 2.5(c) resulted in the smallest value of I.

To further analyze the results, a linear fitting was applied and shown on the graphs.

Linear fitting, however, cannot differentiate between (a) and (b) clearly. In each case,

the scale of accuracy during learning shows an ascending trend. Therefore, I in Eq 2.4

is used as a suitable measurement criterion. Thus, when labeling the learning curve

into good or bad, the shaded area (under curve) will generate a score for labeling

so that the datasets of learning results will be reachable for SVM. Trapezoidal rule

approximation used here to evaluate the areas (I), given by

I =

∫ b

a

f(x)dx ≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk (2.4)

Where f(x) describes the learning curve, xk is the trapezoidal approximation step

size.

2.2.2 Parameter Optimization for Pre-Filters

The primary novel contribution of this paper is in the optimization technique for

the parameters used in the two image pre-processing filters, i.e., BCF and EEF. The

pseudocode for this process is shown in Algorithm 1. In this algorithm, the criterion of

labeling good or bad learning results depends on how precise the CNN is required for

each application. Obtaining high standard training accuracy requires strict learning

evaluation, and therefore a larger area (desired area) is considered a better learning

outcome. Moreover, another useful property of Algorithm 1 is that the algorithm can
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Figure 2.5: CNN-based learning results shown in the training accuracy ([0,1]) over
iterations ([1, 3,500]) using the pre-filters with three different sets: (a) the first pa-
rameter set, showing I ≈ 2, 288; (b) the second data set with I ≈ 2, 101; (c) and the
third parameter set, resulting in I ≈ 1, 168.
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Algorithm 1: Get optimized pre-filter

input : datasets
output: optimized PF
for n ∈ {1, ...desired value} do

PF = random [χ1, χ2, χ3, · · · χn];
while PF iteration time ≤ desired value do

Ψ = random [ψ1, ψ2, ψ3, · · · ψn] ∗ ∆h;
PF = PF + Ψ;
perform BCF according to 2.1;
implement EEF according to 2.2 2.3;
proceed to CNN with 3500 epoch;
Compute learning curve areas according to 2.4;
if area ≥ desired area then

Update: append [label = 1] to labels;
Update: append area to areas;

else
Update: append [label = 0] to labels;
Update: append area to areas;

end
Update: append PF to PF n;

end
Update: horizontal stack PF n to PF final ;

end
for n ∈ {1, ...desired value} do

Plot 3D. scatter with PF n;
end
normalize PF final;
fit SVM classifier with PF final & labels using kernel = linear;
Plot 3D. scatter with PF final ;
for i ∈ {1, ...predictiontime} do

PF = random [χ1, χ2, χ3,· · · χn];
prediction = SVM classifier.predict(PF);
Update: append prediction to predictions;
if prediction == 1 then

Update: append PF to optimized PF;
end

end
print (optimized PF);
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be used for datasets other than faces, and produces an optimal set of parameters for

the pre-filters.

In Algorithm 1, two stochastic iterations are included to generate random values

of [χ1, χ2, χ3, · · · χn] (i.e., pre-filter parameters) and [ψ1, ψ2, ψ3, · · · ψn] ∗ ∆h (i.e.,

increments with step size ∆h = 1). Firstly, iterating increments with [χ1, χ2, χ3,

· · · χn] fixed. By implementing BCF, EEF, and CNN, each parameter set for the

pre-filters is labeled as either “good (label =1)” or “bad (label =0).” When setting

strict criteria for labeling, SVM can be very accurate as it only selects the best pre-

filter sets as its output. Using Algorithm 1, it can produce the best optimized set of

parameters for the pre-filters given the datasets.

2.3 Algorithm Evaluation

2.3.1 Learning Results Visualization

Learning results evaluation has been conducted in the following procedures shown in

Fig. 2.1. Ranges of BCF and EEF were being set to 0∼255 and -100∼100 based

on minimum and maximum of image features, in order to cover all situations with

various pre-filters. In this paper, we embedded pre-filter with three parameters (Ω

value for BCF, minVal and maxVal for EEF), thus for each iteration, pre-filter can

be visualized as a single dot in 3D space. For the first usage of Algorithm 1, with

[χ1, χ2, χ3] fixed, iterate [ψ1, ψ2, ψ3] ∗ ∆h (step size ∆h = 1) for 300 and 500 times,

I ≈ 2, 101, shown in Fig. 2.5(b) is chosen as the criteria for labeling, results shown

as Fig. 2.6(a-c).

Another trial conducted with both [χ1, χ2, χ3] and [ψ1, ψ2, ψ3] ∗ ∆h iterating.

We randomized pre-filter in the outer loop for five times and randomize Ψ in the

inner loop for 100 times, iteration adds up to 5× 100 times. The plotted 3D scatter

graph as Fig. 2.6(d-e) with color sequences (light tone = ‘good’, cold tone = ‘bad’)
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Figure 2.6: 3D Visualizations of pre-filter parameters after being conducted by CNN
and learning evaluation. X, Y and Z axes represent BCF, EEF (2 variable embedded)
parameters separately. With [χ1, χ2, χ3] fixed but various Ψ iteration, iterate for 300
times (a), 500 times (b) and supporting vectors in 3D space (c); stochastic iteration
of [χ1, χ2, χ3] and Ψ, 3D scatter graph for 5∗100 times iteration with color sequence
(d) and supporting vectors in 3D space (e)

is representing each pre-filter iteration. The result shows that a general optimized

solution within large range for pre-filter can still be found from the output although

the initial pre-filter is random.

2.3.2 Accuracy & Efficiency Evaluation

For testing accuracy and efficiency, five different cases were considered: (a) the pre-

sented optimized pre-filters + CNN-SVM, CNN with 3,500 epochs; (b) a fixed set of

parameters in the pre-filters + CNN-SVM, CNN with 3,500 epochs; (c) CNN-SVM

with no pre-filter, CNN with 3,500 epochs; (d) a fixed set of parameters in the pre-

filters + CNN-SVM, CNN with 7,800 epochs; and (e) CNN-SVM with no pre-filter,
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CNN with 9,600 epochs (See Table 2.1).

Table 2.1: Efficiency and accuracy comparison

Pre-filter CNN epoch Comp. Time FER Accuracy
(a) Optimized 3,500 70.32 sec 98.19%

(b) Fixed 3,500 70.37 sec 71.99%
(c) None 3,500 70.47 sec 50.68%
(d) Fixed 7,800 142.25 sec 96.43%
(e) None 9,600 172.23 sec 95.99%

GTX1080Ti, cudnn 7.0 and Cuda 9.1 toolkit was used for CNN training on GPU.

For (1) 5,000 randomized sets of pre-filter parameters were provided to SVM for

image classification and good pre-filter parameters were stored as output. A pre-filter

parameter set was selected arbitrarily from an optimized pool, and then BCF, EEF,

and CNN were performed. As shown in Table 2.1 (a-c), if the number of epochs for

CNN training is fixed at 3,500, the computational time remains the same, regardless

of the use of pre-filters, while the accuracy differs significantly. The optimized pre-

filters achieved 97.85% accuracy, while fixed pre-filters and no pre-filters resulted in

71.99% and 50.68%, respectively. For the system to achieve ≥ 95% accuracy with a

fixed parameter set in the pre-filters or without using pre-filters, it requires 7,800 and

9,700 epochs, respectively, in the CNN resulting in significantly higher computational

times (Table 2.1 (d-e)).

To visualize the performance of the pre-filter optimization, Table 2.2 & 2.3 show

the emotion classification results from (a) and (c).

The number of testing images was 3,589. The total number of correctly classified

images with the optimized pre-filters was 3,524, with accuracy of 98.19%; however, the

number of correctly classified images without pre-filters was only 1,819 with accuracy

of 50.68%.
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Table 2.2: Classification results with the proposed techniques for seven emotions
denoted as A (Angry), D (Disgust), F (Fear), H (Happy), S (Sad), Su (Surprise), and
N (Neutral) in %

Emotion A D F H S Su N
A 98.36 0.20 0.20 0.00 0.60 0.00 0.60
D 0.00 96.36 0.00 0.00 0.18 0.00 0.18
F 1.15 0.00 96.74 0.00 1.53 0.00 0.58
H 0.69 0.00 0.00 98.97 0.00 0.11 0.22
S 1.80 0.00 0.34 0.00 98.15 0.00 0.34
Su 0.72 0.00 0.24 0.72 0.00 98.31 0.00
N 1.13 0.00 0.00 0.00 0.97 0.00 98.23

Table 2.3: Classification results without pre-filter optimization in %

Emotion A D F H S Su N
A 39.22 0.82 10.27 10.27 14.58 3.49 17.25
D 20.00 43.64 10.91 9.09 7.27 1.82 9.09
F 12.67 0.19 31.48 9.40 17.66 8.64 15.16
H 6.18 0.00 3.32 67.28 7.44 3.32 14.87
S 16.16 0.67 10.44 16.33 41.92 3.37 21.04
Su 5.80 0.48 4.83 6.04 3.14 73.19 6.76
N 8.04 0.48 7.07 13.99 15.76 4.02 48.23

2.4 Conclusion

The presented algorithm, combining optimized pre-processing filters with a CNN-

SVM classifier, improved time and accuracy in facial emotion recognition. This

method serves as not only an optimization technique for achieving improved per-

formance of CNN for detecting facial emotions, but also a useful technique for com-

prehensive tuning of pre-filters for various images beyond human faces. Evaluation

results revealed that the presented algorithm is efficient and accurate, and therefore

suitable for embedded applications, such as human-computer, or even human-robot,

interaction.
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Chapter 3

AU-based FER

The second approach for FER using two types of geometrical facial features, i.e.,

Landmark Curvature (LC) and Vectorized Landmark (VL), extracted from facial

Action Units (AUs). This method follows five steps (Fig. 3.1):

1) 68 facial landmarks are detected using Ensemble of Regression Trees [46] through

a machine learning toolkit called Dlib [47].

2) Selected landmarks closely related to facial expressions are chosen for fitting

facial AUs.

3) Two geometrical features, LC and VL are extracted based on selected land-

marks.

4) LC and VL features are provided to SVM for classification.

5) Parameters associated with landmark selection, LC and VL feature extraction,

and SVM are tuned for improved FER performance.

In this section, we first present the FER algorithm for LC/VL-based emotion classi-

fication, (Step 1 - Step 4), and detailed methods for parameter optimization (Step 5)

are described in Section 4.
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Figure 3.1: Proposed method with 4 steps: (a) landmark detection; (b) Action Unit
extraction with landmark; (c) LC and VL feature extraction and improvements; and
(d) SVM training with improved parameters.

3.1 Algorithm

3.1.1 Facial Landmark Detection

For the first step, facial landmarks are detected using the Dlib tool kit, which provides

thoroughly documented implementation of face detection based on the HOG filter.

This filter is trained by Max-Margin Object Detection (MMOD) [47] and followed by

landmark detection using Ensemble of Regression Trees [46], which estimates facial

landmark positions from the cascade regressor derived from a sparse subset of pixel

values. This landmark detection produces 68 well-trained landmarks from Labeled

Face Parts in the Wild (LFPW) dataset in few milliseconds [48]. The detected land-

marks include corners of a mouth, eyebrows, eyes, and nose. The image is reorganized

to have (a) two images from landmark detection only (left ones from the two sets)

and (b) two right images. Fig. 3.2(a) shows one sample face image selected from the

extended Cohn-Kanade (CK+) dataset [49] with the detected face shown in a grey

rectangular box and 68 landmarks shown in yellow dots. Fig. 3.2(b) shows the re-

sults for an image selected from the Multimedia Understanding Group (MUG) Facial

Expression database [50].

3.1.2 Facial Action Units and Facial Segments

Facial Action Coding System (FACS) is a system developed for encoding facial move-

ments by distinctive momentary changes [24, 51]. FACS describes facial expressions
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Figure 3.2: (a) Landmark detection and Action Units group described with image
from CK+ dataset; (b) Landmark detection and Action Units group described with
image from MUG dataset;

based on AUs – distinctive units of facial actions driven by individual muscles or

groups of muscles. According to the FACS, 30 AUs (12 for upper face, 18 for lower

face) are considered anatomically related to contractions of a specific set of facial mus-

cles generating facial expressions [25]. Among these 30 AUs, 12 AUs can be described

using 59 out of 68 landmarks detected by the Dlib toolkit. To realize automatic FER,

our method focuses on these 12 AUs.

The 12 AUs are re-classified into 16 Facial Segments (FSs) and divided into five

groups as shown in Table 3.1. Group I with two AUs describes the left and right

eyebrows, reclassified into four segments (FS1-FS4). Group II includes two AUs, re-

classified as four segments (FS5-FS8), describing eyelid movements. Group III involves

FS9 associated with the nose wrinkler. Group IV contains 5 AUs associated with lip

movements, reclassified into four segments (FS10-FS13). Group V consists of two AUs

for the cheeks and chin (FS14-FS16). Fig. 3.2(a) and Fig. 3.2(b) illustrate these

12 AUs on a selected face image from each CK+ and MUG databases, respectively.

Five different colors are used for five distinctive AUs groups: Group I (red), Group

II (purple), Group III (green), Group IV (blue), and Group V (gray), according to

Table 3.1.
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Table 3.1: AUs, FSs with description, and associated landmarks for each FS grouped
into five categories.

Group AU FS Description Index of Landmarks

Group I
AU1

FS1 Left inner brow raiser 20-22
FS2 Right inner brow raiser 23-25

AU2
FS3 Left outer brow raiser 18-20
FS4 Right outer brow raiser 25-27

Group II
AU5

FS5 Left upper lid raiser 37-40
FS6 Right upper lid raiser 43-46

AU7
FS7 Left lid tightener 37, 40-42
FS8 Right lid tightener 43, 46-48

Group III AU9 FS9 Nose wrinkler 32-36

Group IV

AU10 FS10 Upper lip raiser 49-55

AU12;AU15
FS11 Left lip corner 49, 61, 68
FS12 Right lip corner 55, 65, 66

AU20;AU23 FS13 Lip stretched/tightener 49, 55-60

Group V
AU13

FS14 Left cheek puffer 1-6
FS15 Right cheek puffer 12-17

AU17 FS16 Chin raiser 7-11

3.1.3 Feature Extraction

SVM takes one or more types of vectorized data as inputs and classifies them into

distinctive classes. For SVM-based facial emotion classification, two types of geomet-

ric features, i.e., LC and VL, are extracted from the AU-related landmarks described

above. First, the set of all landmarks is defined as SL, such that

SL = {L1, L2 . . . LN |Li = (xi, yi), xi, yi ∈ R, i = 1 . . . N} (3.1)

where N is the number of landmarks and each Li = (xi, yi) indicates the pixel location

of the landmark with respect to (0, 0) located at the upper left corner of the image

frame. In our case, N = 59. As shown in Table 3.1, each FS is comprised of a unique

subset of SL. For example, FS1 describes the left inner brow raiser using 3 landmarks,

such that FS1 = {L20, L21, L22}.
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Figure 3.3: Feature extraction from given landmarks associated with FS1 and FS2:
LC feature (κi) at landmark (xi, yi), and VL feature ~gj = (dj, θj)

T at (xj, yj).

For each set of landmarks corresponding to individual FSi, the least squares regres-

sion was applied to fit a curve. To avoid poor fitting conditions, linear interpolation–

doubling the number of data points–were applied prior to fitting the points into a

polynomial function. For example, if FSi involves r landmarks, r−1 data points were

added via linear interpolation. Then, for 2r − 1 data points, polynomial filling using

least squares regression was applied, such that

fFSi(x) = w0 + w1x+ w2x
2 + · · ·+ wMx

M =
M∑
j=0

wjx
j (3.2)

where wj for j = 1, · · · ,M is calculated in order to minimize the squared error

between the y value of data points and fFSi . It is noted that the highest order M

determines the geometric shape of the curve, and therefore is expected to influence the

training results. The effect of M in training outcomes can be experimentally evaluated

and its value can be determined to optimize the performance. Such parameter tuning

process is described in detail in Section 3.2.
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After curve fitting, local curvatures at individual landmarks are calculated by

κ(xi) =
| f ′′FSi(xi) |{

1 +
(
f ′FSi(xi)

)2} 3
2

(3.3)

where f ′FSi(xi) and f ′′FSi(xi) are the first and second derivatives of the function with

respect to x, respectively. If FSi consists of r landmarks, Sκi is defined as the following

set:

Sκi = {κ(x1), κ(x2), κ(x3), . . . , κ(xr)} (3.4)

For a given n FSs, the entire set of landmark curvatures can be written as

SLC = ∪ni=1Sκi . (3.5)

Fig. 3.3 demonstrated LC feature, κ(xi), at landmark (xi, yi) for FS1, where the

red dots and purple curve illustrated linear interpolation and least square regression

curve fitting process. The dashed circle visualizes κ(xi). Algorithm 2 describes the

LC feature extraction process.

Algorithm 2: Extract LC features

input : Input image
output: SLC
if landmark not detected then

return: False;
else

AU ← Selected AU according to Table 3.1;
end
for i in range (number of FSs) do

fFSi← apply curve fitting from eq. (3.2);
κ(xi)← curvature from eq. (3.3);
Sκi← append curvature κ(xi) ;
SLC← append Sκi ;

end
SLC← normalization SLC ;
return SLC ;
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The set of the VL features is defined by the polar coordinates of the landmarks

described with respect to the geometric center of all landmarks calculated by

Lc =

 xc

yc

 =

 1
N

∑N
i=1 xi

1
N

∑N
i=1 yi

 .

where N is the total number of selected landmarks. First, the Euclidean distance of

each landmark measured from Lc is calculated by

di = ‖Li − Lc‖2. (3.6)

Second, the angle relative to the horizontal axis (i.e., 0◦) is then obtained for each

landmark by

θi = tan−1
yi − yc
xi − xc

(3.7)

These transformed polar coordinates of the landmarks, ~gi, are considered as the VL

features:

SV L = {~g1, ~g2, · · · , ~gN | ~gi = (di, θi)
T , i = 1, · · · , N} (3.8)

Fig. 3.3 illustrates ~gj = (dj, θj)
T for a selected landmark (xj, yj). Algorithm 3 shows

the VL extraction process. After executing Algorithm 1 and Algorithm 2, all LC and

VL features extracted from 59 landmarks and merged into a single row vector, called

the LC-VL vector.

3.1.4 SVM for FER

SVM is a powerful tool for both binary and multi-class classification and regression

and thus is suitable for our FER application. SVM is also robust against outliers

because it estimates optimal separating hyper-planes among different classes by max-

imizing the margin between the hyper-plane and closest points of the classes. This
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Algorithm 3: Extract VL features

input : Input image
output: SV L
if landmark not detected then

return: False;
else

Lc← geometric center of all landmarks;
end
for i in range (number of landmarks) do

di ← ‖Li − Lc‖2 from eq. (3.6);
θi ← tan−1 yi−yc

xi−xc from eq. (3.7) ;

SV L ← append ~gi = (di, θi)
T ;

end
SV L ← normalization SV L;
return SV L;

SVM optimization problem is formulated as [52]

min(~ω, b) =
1

2
~ωT~ω + C

n∑
i=1

max(1− ỹi(~ωT ~φ(~̃xi) + b), 0)2 (3.9)

where (~̃xi, ỹi) represents training pairs, normal vector ~ω and scalar b determine the

linear hyper-plane, ~φ(~̃xi) is the mapping function to map the training data into a

higher dimensional space. L2-loss function, max(1 − ỹi(~ω
T ~φ(~̃xi) + b), 0)2, is chosen

for better contributing to multi-classification problems [52]. C is the essential regu-

larization parameter, which controls the trade-off between achieving low error on the

training data and minimizing the norm of the weights. Obtaining a high-level train-

ing performance is determined by tuning C properly. To determine the attributes of

VL and LC features respectively in the training session, weight factor W1 and W2

are introduced prior to constructing training pairs (~̃xi, ỹi). Weight factor W1 and W2,

determine the portion of each feature in the training pairs, with the regularity term

C in SVM altogether determined the training result.
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3.2 Parameter Optimization

The presented FER algorithm in Section 3.1 involves the following four parameters:

• M : Order of curve fitting in Eq. (3.2)

• G: Different combinations of five groups

• W1 & W2: Weight factors for two sets of data in SVM

• C: Regularization parameter in Eq. (3.9)

This section presents the procedural method for selecting an optimal set of param-

eters for achieving the highest accuracy given a dataset. Although cross-validation

of parameter selection for different datasets would be ideal, such a process can be

highly time consuming with an excessive amount of data [53]. Instead, we selected

two commonly used facial expression datasets, i.e., CK+ and MUG, and experimen-

tally optimized the parameters. Note that both datasets are randomly shuffled and

divided into 80% for training and 20% for testing. The algorithm was performed on

Ubuntu 17.10 system, with intel i7-8700 CPU (3.20 GHz) and 16G RAM.

Figure 3.4: Overview of algorithm improvements by tuning parameters related to
feature extraction and SVM.
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3.2.1 Dataset Preparation

CK+ and MUG Facial Expression database mentioned in section 2.1 were used for

training and testing of the presented algorithm shown in Fig. 3.5. The CK+ database

consists of 593 sequences of face images taken from 123 subjects. Each sequence starts

with onset (neutral expression) and ends with a peak expression (last frame) which

shows the change of one’s facial expression from neutral to a certain emotion. From

327 selected labeled sequences, we extracted 6 frames from each sequence into the

organized sets. These 6 frames include the start frame (neutral) and the last five

frames (the labeled emotion). Based on this approach, 1,872 frames displaying anger

(225), disgust (295), fear (125), happiness (345), neutral (327), sadness (140), and

surprise (415) separately, were extracted.

MUG Facial Expression database contains 1,462 color image sequences from 86

subjects with different facial expressions. Similar to the CK+ dataset, frames repre-

senting the peak expression were extracted into organized sets from each sequence.

Processed MUG dataset contains 2,658 images in total, including anger (318), disgust

(366), fear (207), happiness (520), neutral (521), sadness (339), and surprise (380).

Fig. 3.5(a) shows seven face images arbitrarily selected from the CK+ dataset

(top) and the detected face shown in a rectangular box and 68 landmarks shown in

yellow dots for each image (middle). The bottom row displays cropped and enlarged

face images for better visualization of the detected landmarks. Fig. 3.5(b) shows the

same for the seven face images arbitrarily selected from the MUG Facial Expression

database.

3.2.2 Feature Type & Interpolating Order Determination

The first step in the parameter optimization is to determine whether using both VL

and LC results in a higher FER accuracy than using only VL or LC. Since the LC

features are determined by the order of curve fitting (M), each case was tested for

30



Figure 3.5: (a) Landmark detection with image cropping and re-sizing implemented
on CK+ dataset: examples of 7 labeled emotions (i.e., “anger”, “disgust”, “fear”,
“happy”, “neutral”, “sadness” and “surprise”) (row 1); after performing landmark
detection (row 2); and after cropping and re-sizing (row 3); (b) MUG dataset examples
organized the same way as (a).

different value of M = 2, 3, 4. At this stage, the SVM-related parameters were set to

C = W1 = W2 = 1.

Table 3.2 shows the results in terms of training time and recognition accuracy

using VL, LC, or both VL and LC for each database. In both datasets, using both

VL and LC with M = 3 resulted in the highest accuracy in FER (i.e., 88.01% for

CK+ and 88.83% for MUG). When only one of the features was used, the training

accuracy remained similar while VL required nearly twice the training time of LC.

Using both VL and LC has slightly increased the training time compared to the case
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Table 3.2: Analysis of LC and VL features and polynomial interpolation order

VL LC
M (curve
fitting)

CK+ Dataset MUG Dataset
time (sec) Accuracy time (sec) Accuracy

3 7 7 402.33 76.24% 1387.54 82.20%
7 3 2 214.17 72.27% 719.11 78.60%
7 3 3 213.38 76.57% 719.36 84.09%
7 3 4 215.49 74.82% 708.44 77.84%
3 3 2 415.48 84.62% 1421.70 88.02%
3 3 3 416.36 88.01% 1399.96 88.83%
3 3 4 416.74 85.98% 1406.76 87.48%

using VL only. We also found that M showed no or little effect on the training time.

A value of M > 4 lowered the accuracy due to over-fitting. The training time for

MUG was relatively larger due to the size of MUG dataset, while the same trend

appeared as in CK+.

3.2.3 FS Selection

The second step of parameter optimization is to determine what facial segments (FS)

to be used. More number of segments – more data – would directly result in increased

training time. In addition, more data does not guarantee better performance. To

evaluate the effect of the facial segments on recognition accuracy and speed, 16 facial

segments were divided into five groups, corresponding to facial elements, i.e., eyebrows

(Group I), eyelids (Group II), nose (Group III), lips (Group IV), and cheek/chin

(Group V), as listed in Table 3.1. For these five groups, all possible combinations

were examined for FER performance in terms of accuracy.

Tables 3.3 and 3.4 show the results. An interesting finding was that for both

datasets, using all five groups did not result in the highest accuracy. Instead, a

combination of four groups (G1234), excluding Group V showed the highest accuracy

in both cases (i.e., 91.88% in CK+; 91.10% in MUG). In MUG, G124 also resulted in
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the same highest accuracy of 91.10%. The results from both datasets were consistent

– for any three groups G124 results in the highest accuracy and for any two groups

G24 does. Increasing the number of landmarks did not have a significant effect on

trainint time. For example, it took about 416 seconds when all five groups were used,

while taking 405 seconds for G24.

Table 3.3: LC-VL Feature Improvements based on AU Combinations for CK+

Accuracy in Combined AU Group
All 5
Groups

G12345

88.01%
Any 4
Groups

G1234 G1235 G1245 G1345 G2345

91.88% 73.88% 87.84% 81.40% 83.54%

Any 3
Groups

G123 G124 G125 G134 G135

76.39% 88.55% 79.25% 85.69% 66.73%
G145 G234 G235 G245 G345

84.36% 87.30% 68.87% 81.22% 76.74%

Any 2
Groups

G12 G13 G14 G15 G23

72.09% 61.18% 86.58% 65.65% 73.35%
G24 G25 G34 G35 G45

87.67% 68.69% 80.08% 59.21% 74.42%

Table 3.4: LC-VL Feature Improvements based on AU Combinations for MUG

Accuracy in Combined AU Group
All 5
Groups

G12345

88.83%
Any 4
Groups

G1234 G1235 G1245 G1345 G2345

91.10% 77.84% 87.31% 81.09% 85.42%

Any 3
Groups

G123 G124 G125 G134 G135

78.79% 91.10% 69.51% 89.02% 68.94%
G145 G234 G235 G245 G345

86.74% 87.69% 71.78% 86.74% 81.06%

Any 2
Groups

G12 G13 G14 G15 G23

67.42% 60.98% 84.47% 66.10% 68.75%
G24 G25 G34 G35 G45

87.31% 66.86% 82.39% 58.90% 77.27%
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3.2.4 SVM Parameter Tuning

The third and final stage of parameter tuning targets the three SVM-related parame-

ters, i.e., W1, W2, and C. The input to the SVM is the merged LC-VL vector, which

is a non-standardized vector. Knowing that using both LC and VL significantly im-

proves FER performance, this process aims to determine their individual attributes.

To solve this multi-attribute problem, the optimization model in this case is presented

by

Aij = max
W1,W2,C

score(C(i), SV LW
(j)
1 , SLCW

(j)
2 ) (3.10)

where i = 1, 2, · · · , Q and j = 1, 2, · · · , P . Function score() returns the test accuracy

of SVM classifier with the ith regularity parameter C and different weight assignment

as input. Aij is the best alternative among all returned test accuracy, where W1, W2

are the weight of VL and LC feature, respectively. 5% is set as the step size of W
(j)
1

ranging from 5%∼95%, so P = 19 in this case, and W
(j)
2 is 1−W (j)

1 . Q is the number

of regularization parameter C, where

C = 10λ, λ ∈ R (3.11)

C(i) is obtained by changing λ in Eq.3.11. Therefore, once Aij is found, W1, W2

under ith penalty factor C can be found, the best tuned value of C and best weight

assignment for each feature (i.e., VC and VL) can be obtained.

All alternative results are shown in Fig. 3.6. Three axes represent the weight

of VL feature (W1) distributed in the range 0%∼100%, the value of parameter C

(10−1∼105), and the training accuracy of the model, respectively. Fig. 3.6(a-c) are

the results for CK+ and Fig. 3.6(d-f) are for MUG. For both datasets, we found that

the accuracy increases as C increases; however, after C reaches a certain threshold

value, the accuracy slightly dropped by 2%∼3% while elapsed training time continued
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Figure 3.6: Optimum weights and penalty parameter for CK+ datasets (a)∼(c) and
MUG datasets (d)∼(e).

to increase. For CK+, the optimal C was found at C = 102 and the optimal weight

distribution was found at W1 = 75% for VL features (i.e., W2 = 25% for LC features).

With these selected parameters in SVM, the classifier returned the testing accuracy

of 96.06% on 7 classes and 98.38% on 6 classes (without neutral), which exceeds the

performance of existing algorithms [28, 29, 54, 55]. Table 3.5 presented the results on

CK+ database by implementing proposed algorithm with fine-tuned parameters. As

shown in Fig. 3.6 (d-f), the highest accuracy for MUG was also found at W1 = 75%,

W2 = 25% and C = 102. The test accuracy resulted is 95.23% for 7 classes and with

6 classes (without the neutral emotion) reached 98.11%. The confusion matrix for

the MUG database is in Table 3.6.
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Table 3.5: CK+ dataset Classification results for seven and six emotions denoted as
A (Anger), D (Disgust), F (Fear), H (Happiness), Su (Surprise), S (Sadness) and N
(Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 92 2 0 0 4 0 2 100 0 0 0 0 0
D 2 98 0 0 0 0 0 0 100 0 0 0 0
F 0 0 96 0 0 0 4 0 0 92 0 0 8
H 0 0 0 100 0 0 0 0 0 0 100 0 0
S 0 0 4 0 94 0 2 0 0 0 0 100 0

Su 0 0 0 0 0 98 2 1 1 0 0 1 97
N 2 2 0 2 2 0 94

Table 3.6: MUG dataset Classification results for seven and six emotions denoted as
A (Anger), D (Disgust), F (Fear), H (Happiness), Su (Surprise), S (Sadness) and N
(Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 92 0 2 0 4 0 6 98 0 0 0 2 0
D 0 100 0 0 0 0 0 0 100 0 0 0 0
F 0 0 88 0 0 12 0 0 0 98 0 0 2
H 0 0 0 99 0 0 1 1 0 0 99 0 0
S 0 0 0 0 94 0 6 1 1 0 0 98 0

Su 0 1 8 0 0 91 0 0 0 3 0 1 96
N 0 0 0 0 0 0 100

3.3 Experimental Results

For a comprehensive experimental evaluation of the presented method and compar-

ison with other existing FER algorithms, CK+ and MUG datasets as well as the

combination of the two are considered. The cross-validation results on FER accuracy

are reported. The previous work reporting the highest FER accuracy based on the

CK+ and MUG datasets targets 6 facial emotions except for “neutral” among the 7

emotions we target in this paper. Therefore, our evaluation was conducted for both

6 and 7 emotion classes. In addition, short video clips provided by the MUG dataset
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were also tested for real-time FER performance.

3.3.1 Cross-Validation

In Section 3.2, the FER results using the optimized parameters for each CK+ and

MUG dataset were reported. Five additional experiments were conducted for cross-

validation between the two datasets and the performance of the merged dataset

(CK+/MUG), which means seven sets of experiments in total:

• CK+ for training and CK+ for testing (Section 3.2)

• MUG for training and MUG for testing (Section 3.2)

• CK+ for training and MUG for testing (Table 3.7)

• MUG for training and CK+ for testing (Table 3.8)

• CK+/MUG for training and CK+ for testing (Table 3.9)

• CK+/MUG for training and MUG for testing (Table 3.10)

• CK+/MUG for training and CK+/MUG for testing (Table 3.11)

The experiments were conducted for classifying 7 distinctive emotions (i.e., anger,

disgust, fear, happiness, sadness, surprise, and neutral) and repeated for 6 emotions

excluding the neutral emotion.

Each of the CK+, MUG and CK+/MUG datasets was divided into the training

set and testing set by random shuffling (80% for training; 20% for testing). Fig. 3.7

shows the results from all seven experimental scenarios listed above. When CK+ was

used for training, the accuracy reached up to 98.38% for the CK+ test set, 99.67%

for the MUG test set for 6-emotion classification and 96.6% for the CK+ test set and

95.99% for the MUG test set for 7-emotion classification. Using MUG for training,

the results show 98.11% for the MUG test set and 98.59% for the CK+ test set for
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Figure 3.7: Cross validation results among CK+, MUG and merged (CK+ & MUG)
dataset.

Table 3.7: Cross validation (CK+ for training and MUG for testing) results for seven
and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happiness), Su
(Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 93 0 0 0 0 0 7 98 2 0 0 0 0
D 0 97 0 0 0 0 3 0 100 0 0 0 0
F 0 0 92 0 0 0 8 0 0 100 0 0 0
H 0 0 0 100 0 0 0 0 0 0 100 0 0
S 0 0 0 0 100 0 0 0 0 0 0 100 0
Su 0 0 0 0 0 94 6 0 0 0 0 0 100
N 3 0 0 0 2 0 95

6-emotion classification. In 7-emotion classification, the accuracy was 95.23% for the

MUG test set and 97.35% for the CK+ set. The combined CK+/MUG set has more

amount of data but at the same time more diverse than individual datasets. While

the FER accuracy still remained relatively high in all three cases (>96% for 6-emotion

classification; >91% for 7-emotion classification), the results were not as accurate as

the case using either only CK+ or MUG for training. The best performance was found

when CK+ was used for training and MUG for testing in 6-emotion classification and
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Table 3.8: Cross validation (MUG for training and CK+ for testing)results for seven
and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happiness), Su
(Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 97 0 0 0 1 0 2 97 2 0 0 2 0
D 0 100 0 0 0 0 0 0 100 0 0 0 0
F 0 0 93 0 0 7 0 0 0 95 0 0 5
H 0 0 0 96 0 0 4 0 0 0 100 0 0
S 1 2 0 0 94 0 3 1 0 0 0 99 0

Su 0 0 0 0 0 100 0 0 0 1 0 0 99
N 0 0 0 0 1 0 99

Table 3.9: Cross validation (CK+/MUG for training and CK+ for testing) results for
seven and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happiness),
Su (Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 98 0 0 0 0 0 2 97 3 0 0 0 0
D 0 82 0 0 2 0 16 4 91 0 0 4 0
F 0 0 100 0 0 0 0 0 0 100 0 0 0
H 0 0 0 100 0 0 0 0 0 0 100 0 0
S 0 0 0 0 89 0 11 0 0 0 0 100 0

Su 0 0 0 0 0 95 5 0 1 1 0 2 95
N 0 9 0 0 6 0 85

when MUG was used for training and CK+ used for testing in 7-emotion classification.

Table 3.7 to Table 3.11 show all confusion matrices based on cross-dataset valida-

tion with 7 and 6 emotion classifications. For each facial emotion specifically, “hap-

piness” has the overall best average recognition rate at 98.80%, followed by “anger”

and “surprise” both at 95.80%. “Disgust”, “fear” and “normal” are slightly lower,

with recognition rates of 92.24%, 92.20% and 93.40%, respectively. “Sadness” has

the lowest recognition rate at 90.60%; However, though it is lower than any other

emotion class, the accuracy still remains at a high level (>90%).
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Table 3.10: Cross validation (CK+/MUG for training and MUG for testing) results for
seven and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happiness),
Su (Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 97 1 1 0 0 0 0 100 0 0 0 0 0
D 5 95 0 0 0 0 0 5 95 0 0 0 0
F 0 0 90 0 0 10 0 2 0 90 0 3 5
H 0 0 0 98 0 0 2 0 1 0 98 0 1
S 1 4 0 0 88 1 5 4 1 0 0 95 0

Su 0 0 5 0 0 94 1 0 1 1 0 0 98
N 0 0 0 0 0 0 100

Table 3.11: Cross validation (CK+/MUG for training and CK+/MUG for testing)
results for seven and six emotions denoted as A (Anger), D (Disgust), F (Fear), H
(Happiness), Su (Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 94 3 2 0 0 0 2 97 2 0 0 1 0
D 4 88 0 0 1 0 7 1 96 2 0 1 0
F 2 0 86 0 2 8 3 0 0 89 0 0 11
H 0 0 0 100 0 0 0 1 0 0 99 0 0
S 2 7 1 0 82 0 8 1 2 0 0 96 1
Su 0 0 3 0 0 96 1 0 0 2 0 1 97
N 2 6 1 0 3 1 88

3.3.2 Algorithm Efficiency Improvement

The size of data is directly related to the training and detection time. In an attempt

to further improve time efficiency, the number of selected FSs was reduced from 13 to

8. Considering symmetry in human faces, either the left or right side of FSs related

to the eyes, eyebrows, and lip, was used. Table 3.12 shows the selected eight FSs,

using the left side and common features.

Table 3.12 presents the selected FS with description by only keeping left facial

features in the experiments. The results show that with the CK+ dataset, FER
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Table 3.12: Selected FSs with description, and associated landmarks for algorithm
efficiency improvement.

FS Description Index of Landmarks

FS1 Left inner brow raiser 20-22
FS3 Left outer brow raiser 18-20
FS5 Left upper lid raiser 37-40
FS7 Left lid tightener 37, 40-42
FS9 Nose wrinkler 32-36
FS10 Upper lip raiser 49-55
FS11 Left lip corner 49, 61, 68
FS13 Lip stretched/tightener 49, 55-60

accuracy was 83.96% with 213.03 (sec) as training time for 7-emotion classification,

and 88.67% with 177.46 (sec) as training time for 6-emotion classification. For the

experiment on MUG dataset, 7-emotion classification resulted in 89.02% FER accu-

racy with 698.85 (sec) training time, and 6-emotion classification resulted in 89.88%

recognition accuracy with 659.95 (sec) training time.

Table 3.13: CK+ dataset Classification results with only keeping left facial features for
seven and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happiness),
Su (Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 82 0 2 0 11 0 4 82 9 2 2 4 0
D 8 83 0 0 0 0 8 10 85 0 0 5 0
F 4 0 88 0 0 0 8 8 0 88 4 0 0
H 3 1 1 93 0 0 1 0 1 0 99 0 0
S 39 4 0 0 36 0 21 21 11 0 0 68 0

Su 0 1 0 0 0 94 5 1 1 1 0 2 94
N 12 2 3 0 0 0 83

Table 3.13 and Table 3.14 show the confusion matrices of the classification results

by 7 and 6 emotion classes based on CK+ and MUG datasets. Table 3.15 presents

the results in recognition rate and training time based on different number of selected
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Table 3.14: MUG dataset Classification results with only keeping left facial features
for seven and six emotions denoted as A (Anger), D (Disgust), F (Fear), H (Happi-
ness), Su (Surprise), S (Sadness) and N (Neutral) with accuracy in %

Emo-
tion

7 Class with Neutral (N) 6 Class without Neutral (N)
A D F H S Su N A D F H S Su

A 78 3 0 0 8 0 11 84 2 2 5 8 0
D 3 92 0 3 1 0 1 5 95 0 0 0 0
F 0 0 80 2 0 12 5 2 2 76 5 2 12
H 0 1 0 98 0 0 1 1 3 1 95 0 0
S 4 0 4 1 81 0 9 3 0 4 1 91 0

Su 0 0 4 0 0 95 1 0 0 11 0 0 89
N 4 1 0 0 6 0 89

FSs. CK+ dataset has 1,872 images and MUG dataset has 2,658 images, therefore

the training process takes relatively longer for MUG dataset than CK+ dataset.

Compared to the experimental results not removing all right side FSs, the accuracy

was decreased from 95.23% to 89.02% for 7-emotion classification and from 98.11%

to 89.88% for 6-emotion classification of the MUG dataset. As for the CK+ dataset,

only keeping the left side FS resulted in a decrease of FER from 96.06% to 83.02%

with 7-emotion classification and from 98.38% to 89.88% with 6-emotion classification.

However, this can reduce the training time from 416 (sec) to 213 (sec) on the CK+

dataset, and 1400 (sec) to 714 (sec) on the MUG dataset. The detection speed

for images with a resolution of 640 × 480 pixels can also be increased from 6.67 to

12.06 fps. Consequently, this efficiency improvement method can be applied on some

scenarios which require a higher detection speed, but a lower recognition rate will be

reported.

3.3.3 Real-time FER Performance

To test the technical integrity of the entire FER system, short video clips available

from the MUG dataset were used for real-time performance. 18 videos clips in total
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Table 3.15: Comparison with different Number of Selected FSs

Dataset Number of FS Class Testing Accuracy Training Time (sec)
CK+ 13 6 98.38% 367.03
CK+ 13 7 96.06% 408.58
MUG 13 6 98.11% 1203.90
MUG 13 7 95.23% 1399.96
CK+ 8 6 88.67% 177.46
CK+ 8 7 83.96% 213.03
MUG 8 6 89.88% 569.95
MUG 8 7 89.02% 698.85

recorded by 3 persons–not included in the training sessions were selected for testing.

6 videos from each person present their faces dynamically changing from neutral to

6 emotion peak and back to neutral.

Fig. 3.8 shows a time lapse sequence of one of the video clips used in this evalua-

tion. For each person, 6 video clips were merged into a single video clip with exhibited

facial emotions changing in sequence of Angry→ Disgust→ Fear→ Happy→ Sad→

Surprise. We note that each clip starts with a neutral face, changes to one of the six

emotions, and returns to a neutral face. Each video clip lasted around 7 (sec) and

thus the merged video for each person lasted around 49 (sec). For this real-time test,

the SVM classifier for 7 emotion classes was trained using the MUG dataset.

Fig. 3.9(a) showed the real-time results when the presented FER system was

directly used for the videos. The x-axis represents time in seconds and the y-axis

shows the seven emotions. The results from the real-time data are noisy due to high

sensitivity of the SVM classifier and dynamic facial emotion changes in the videos.

Since facial images during the transition from one emotion to another are not included

in the training, the classification can be somewhat unreliable. In addition, some

emotions, such as “fear” and “surprise” can be naturally confusing. Furthermore,

human facial expressions in real time dynamically change and subtle differences can

be even difficult for humans to fully understand. The field of vision-based automatic
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Figure 3.8: Video clip sample from MUG dataset.

FER cannot replicate a human’s perception of facial emotions because of it is not a

discrete classification problem and also involves significant individual heterogeneity.

Automatic FER aims to capture at least “commonly” recognizable facial emotions as

accurately as possible.

For real-time FER applications, such as social robots or other types of interactive

systems, noisy FER results shown in Fig 3.9(a) may not be ideal. In such systems,

a user’s emotion status may be used as a part of control inputs which may lead to

highly unreliable behavior in the system’s response. Adding a finite impulse response
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Figure 3.9: Real-time result on video clips from MUG dataset; (a) before applying
FIR filter; (b) after applied FIR filter.

filter by introducing a small delay can reduce the noise during transition or between

somewhat confusing emotions:

Yi = argmax (count(Yi−3, Yi−2, · · · , Yi+3)) s.t i > 3 (3.12)

where count is a function which returns the occurrence of each elements in one set of

data, and Y is the SVM classifier resulting in predicted labels. For the ith frame in

real-time test, this filter captures three frames before and three frames after the ith

frame for stabilizing real-time response with small latency. Considering the system

speed of 6.67 fps, the latency is kept at around 0.4 second. The results after applying

the finite impulse response filter are shown in Fig 3.9(b).
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3.4 Discussion

Table 3.16: Recent FER Approaches Comparison.

Dataset Class Feature
Real Open

Method
Accuracy

time Source (%)

EmotioNet 6 AU intensity [11] 3 3 KSDA 80.90

CK+ 6
Discriminative
response map
fitting[28]

7 3 SVM 94.14

MUG 6 Triangle based
geometric feature [29]

7 3 SVM
95.50

CK+ 6 97.80
CK+ 6 Geometric 8 facial

points [54]
7 3 SVM

83.01
CK+ 7 73.63

CK+ 7
SFS Geometric
distance variation [55]

7 3 SVM 88.70

MUG 6 Facial manifold
structure [56]

7 3 SVM
92.76

CK+ 6 94.31
CK 6 Graph-preserving

sparse GSNMF [57]
7 3

Nearest-
neighbor

93.50
CK 7 94.30

MUG 6
Landmark Curvature
(LC) and Vectorized
Landmark (VL)

3 3 SVM

98.11
MUG 7 95.23
CK+ 6 98.38
CK+ 7 96.06

The presented method combining two geometric features followed by the param-

eter tuning process has achieved a higher accuracy in FER than recently developed

methods using the same datasets. Table 3.16 lists seven previously presented open-

source based works using similar, but different, facial geometric features to ours with

a selected classifier. Most of these methods, except for EmotioNet [11], are not ideal

for real-time applications because the facial features were obtained from computa-

tionally complex procedures while also exhibiting relatively lower recognition rates.

EmotioNet, on the other hand, can be used in real time; however, the FER accuracy

was still low – 80.90%. Recent work using triangle-based geometric features presented

in [29] showed improved accuracy for both CK+ and MUG datasets. This method
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uses 370 triangle features in total, where each triangle feature has 4 computational

components. While direct comparisons in terms of the processing speed have not

been performed, the amount of data required for training and testing is significantly

higher than our method. In our method, only 41 landmarks each with three calcu-

lated values (κ, d and θ) are used. More importantly, we have achieved the highest

accuracy among all algorithms compared in the table.

The main technical contribution of this paper is the comprehensive procedural

parameter optimization method. Experimental tuning process performed on the two

distinctive datasets confirmed that the results are consistent. This implies that these

selected parameters may be used for other datasets without repeating the parameter

tuning process. While the presented work focused on achieving high FER accuracy

while maintaining time efficiency for real-time applications, the method can be cus-

tomized for higher efficiency with slightly lower accuracy if fast processing is critical.

For example, considering largely symmetric facial geometric features, only left or right

sides of facial segments for the eyebrows, eyelids, or cheeks can be used. This can

reduce the training time from 416 to 213 (sec) with 89.30% recognition rate on CK+

dataset, 1400 to 714 (sec) with 86.74% recognition rate on MUG dataset. The detec-

tion speed for images with a resolution of 640× 480 pixels can also be increased from

6.67 to 12.06 fps. Real-time evaluation results shown in Fig. 3.9 also reveal that the

presented algorithm is efficient, accurate and relatively stable, and therefore suitable

for many embedded applications, particularly in human-computer/robot interaction.

Further evaluation of this method may involve additional datasets in order to con-

firm that the same set parameters also result in the highest performance and conduct

additional cross-validation.
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Chapter 4

FER for HRI application

Social robots feature unique technical functionalities that enable humans to commu-

nicate and interact with them using social cues, such as language, gestures, and facial

displays. Several hardware platforms have been developed and some are commercially

available; their application domains have been dramatically expanding from simple

entertainment to health care, education, and specialized services. Unlike the robots

developed for specific, often repetitive tasks, social robots use social cues provided

by human users as control inputs and aim to generate socially acceptable responses.

Many robots are designed not only to socially interact with users, but also to provide

assistance, service, and/or care through interaction. In this chapter, a low-cost robot

developed in the dirLAB is introduced and the technical feasibility on FER is demon-

strated. This section of the thesis is resulted from close collaboration with Daniel

Hayosh, a graduate student in the dirLAB.

4.1 Development of the Robot

“Woody” was developed as an open-source-based Do-It-Yourself (DIY) robotic hard-

ware platform that can be constructed by a few college or high school school students

with low-level engineering training within one or two days. The robot’s mechanical
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design is simple and modularized for easy construction, customization, and repair.

Unlike most of existing robots made of plastic and/or metal, Woody uses laser-cut

plywood for its mechanical structures which provides user-friendly appearance and

an environmentally friendly fabrication process.

Figure 4.1: CAD model of Woody (left) and fully assembled hardware prototype
(right).

4.1.1 Mechanical Design

Fig. 4.1 shows the fully assembled design of Woody in CAD and the physical pro-

totype. The robot has 14 degrees of freedom (DoF): two for its neck, two for the

eyebrows, four in each arm, and one in each gripper. The current prototype uses two

mini servo motors for the eyebrows and 12 Dynamixel AX-12A motors for the rest.

It is equipped with two cameras, a microphone, and a speaker. A Raspberry Pi or

computer can be used as the main processing board. Portable devices, i.e. raspberry

Pi, can be placed inside the torso. The speaker is mounted at the level of Woody’s

49



chest.

The head of Woody is mounted on a 2-DoF neck for generating pan and tilt

motions. Two cameras with built-in microphones are installed on the head in the lo-

cations of Woody’s eyes, and thus can make Woody more intuitive when implementing

vision algorithms. Positioned directly above the cameras are two small servos which

control the eyebrows. Mechanically generating facial emotions involves high-level

mechanical, electrical, and computational complexities. Moving eyebrows is a simple

yet effective way of generating facial emotions. Alternatively, an LCD screen may

be installed to display animated images. The head features slots for the ears and

mouth where different ear and mouth designs can be inserted, making Woody’s face

customizable.

Woody contains two 4-DoF arms. Two motors are installed at the shoulder and

another two at the elbow. An additional motor controls the gripper at the tip of each

arm. Links in each arm is made of two wooden pieces assembled and glued together.

4.1.2 Electrical Design

The electrical design is simple to assemble, Fig. 4.2 shows the circuit diagram with

all embedded electronic components in Woody. The robot itself is designed to be a

semi-autonomous system with basic embedded functions, such as data transmission

and motor control only. The portable control board (Raspberry Pi 3 model B) has

a relatively high computational capability compared to other processing boards for

embedded applications. It is sufficient to handle the basic image processing on board.

It also has a Wi-Fi module to communicate within a local area network (LAN).

Cameras, speaker, and microphone are also connected to this control board via serial

ports.

The system controls two types of motors: 12 Dynamixel AX-12A and 2 Tower

Pro SG90. The Dynamixel motors offer accurate motor position control and feed-

50



......

Motion Function 

Vision Function

Voice Function

Raspberry Pi  

+5V

Extended Action 
Function

USB 
Ports GPIO 

Ports

Power Supply

+12V

Figure 4.2: Circuit diagram (block diagram) of the embedded electronics in Woody.

back. They are used to generate the motion of the neck and two arms with grippers.

The Tower Pro motors are used for moving the eyebrows to generate simple facial

expressions. The robot can be battery powered or plugged into a continuous power

source. The control board has extra serial ports for potential extension in the func-

tionality.

4.1.3 Kinematic Analysis of the Arm

Forward Kinematics

Table 4.1: D-H parameters for 4-link Woody left arm

link θi di ai αi
1 0 0 0 -π/2
2 θ1 l1 0 π/2
3 θ2 0 l2 0
4 θ3 0 0 π/2
5 θ4 l3 + l4 0 0
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Figure 4.3: D-H coordinate frame assignment for the manipulators; Note the red
frames are auxiliary frame which illustrate the particular Woody’s arm installation.
(a) woody left arm frame assignment; (b) frame assignment from top view.

Each arm of Woody is a 4-DoF RRRR manipulator. Forward kinematics equa-

tions of the arm, from the shoulder to the end-effector, are derived using the Denavit-

Hartenberg (D-H) parameterization. For simplification, ci represents cos θi and cos(θ1+

θ2) represents c12. The two arms are mirror images, and therefore, the left arm of

Woody is used for both forward kinematics and inverse kinematics derivation. Table

4.1 lists the D-H parameters for the left arm, note that D-H parameters of the link 1

in table 4.1 only represents the rotation of base frame because of the hardware instal-

lation. Reference frames attached to the arm and the parameters are also illustrated

in Fig. 4.3.

Based on this parameterization, the rigid-body transformation from the frame {0}
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to the frame {5} is calculated as:

T 0
5 =

s1s4 + c4c1c23 c4s1 − c1s4c23 c1s23 dx

c4s23 s4s23 −c23 dy

c1s4 − s1c4c23 c1c4 + s1s4c23 −s1s23 dz

0 0 0 1


(4.1)

dx = c1s23(l3 + l4) + l2c1c2

dy = l1 − c23(l3 + l4) + l2s2

dz = −s1s23(l3 + l4)− l2c2s1

(4.2)

After frame transformation, dx, dy and dz showed the end-effector pose in the 3D

Cartesian space referring to the base frame. Note that dx, dy and dz are only de-

termined by joint angle θ1, θ2 and θ3, therefore, the workspace of robot arm can

be illustrated by plotting the trajectory of the end-effector within a particular angle

range of joint1, joint2 and joint3. For Woody’s left arm, the angle range for joint1,

joint2 and joint3 are -π/2 ∼ π/3, 0∼ π/2 and 0∼ π/2 based on specific mechanical

designing and assembling of the robot arm. Thus, the workspace for both Woody’s

left and right arm can be plotted in 3D simulation space. (see Fig. 4.4)

Inverse Kinematics

Equations for inverse kinematics of the arm are solved by geometric approaches. As

shown in Fig. 4.5, given the two frames {0} and {5}, the values of θ1, θ2, and θ3 can

be solved geometrically as illustrated in Fig. 4.5 (b), (c). Given end-effector pose,

[dx, dy, dz]
T ,

θ1 = tan−1(
−dz
dx

) (4.3)
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(a) (b)

(c) (d)

Figure 4.4: Workspace Shown by Forward Kinematics Trajectory of End-effector; (a)
side view; (b) front view; (c) top view; (d) axonometric drawing.

Then, consider seeing the robot arm along the direction of the arrow in Fig. 4.5 (b).

The left arm appears to be a typical two-link planar manipulator. Geometrically,

define d′x = dx
cosθ1

and d′y = dy − L1, θ3 is given by

θ3 = cos−1(
−d′x

2 − d′y
2 + L2

2 + (L3 + L4)
2

2L2(L3 + L4)
)− π

2
(4.4)

For deriving θ2, β should be firstly calculated by θ3

β = tan−1(
(L3 + L4)sin(π

2
− θ3)

(L3 + L4)sin(π
2
− θ3) + L2

) (4.5)
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Figure 4.5: Geometric model of Woody’s left arm (point downwards) with base frame
{0} and the end-effector frame {5}; (a) geometric model; (b) geometric model seen
from the view 1○ (side view); (c) seen from the view 2○.

Therefore, θ2 is given by

θ2 =


tan−1(

d′y
d′x

) + β dy ≥ 0

β − tan−1(d
′
y

d′x
) dy < 0

(4.6)

Note that Fig. 4.5 only includes the situation which dy is positive, when dy is a

negative value, d′y should be changed as d′y = −dy +L1, the joint angle θ2 should also

be updated according to eq. (4.6).

In the previous section, the range for each joint angle is fixed, and all different

poses of robot arm have been considered. The above solutions are the general form.
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4.2 Interactive Features

In the field of HRI, a majority of emotion-related work focuses on robots expressing

emotions across modalities like using non-anthropomorphic colored LEDs to com-

municate basic emotions [58] or producing multi-modal behaviors, like gestures that

accompany facial expressions, to better convey a robots emotional state [59]. There-

fore, Woody, as the low-cost HRI platform, must match the its emotions with hu-

mans emotions. Human emotions, especially facial emotions, can be categorized into

7 classes: anger, disgust, fear, happiness, neutral, sadness and surprise. Thus, Woody

is designed to demonstrate these emotions through its features as well.

4.2.1 Facial Features

Two small servos mounted inside of Woody’s head above two cameras serve as the

actuators of the eyebrow movements. The eyebrows can both point upwards, down-

wards and stay in the center. Combined with varied head features- ears, nose and

mouth, Woody can demonstrate different emotions along the spectrum from positive

emotional state (i.e., happiness) to negative emotional state (i.e., anger or sadness).

Fig. 4.6 shows the eyebrow movements of Woody with various head features.

Customizable head features, including eyebrows, nose/mouth, and ears, are designed

for Woody to interact with users among different ages or gender. In this way, users’

engagement/attention can be triggered in the manner of their own preference.

4.2.2 Gestures

In human-human collaboration and interaction, cooperative gestures play a key role

in helping to communicate intent, instruct, lead, and build rapport. Humans com-

municate cooperatively, to inform others and to share interests from as early as 14

months of age [60]. In HRI, robots capable of recognizing human gestural cues (i.e.,
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Figure 4.6: Woody’s head features with varied eyebrow movements. (a)∼(c) show
“cat” head feature with eyebrow movements from sadness to anger; (d)∼(f) show
“bear” head feature with corresponding eyebrow movements; (g)∼(i) show “rabbit”
head feature with corresponding eyebrow movements.

facial emotions) is important, however, an equally important area to successful HRI

is making robots capable of generating meaningful, recognizable gestural cues to hu-

mans [61]. Thus, Woody is designed as a humanoid robot to be capable of generating

recognizable gestural cues related to its emotion state.

Fig. 4.7 demonstrates some examples of recognizable gestures that Woody can

perform in its interaction with users. Fig. 4.7 (a) is Woody waving to the user by

performing a basic greeting gesture, Fig. 4.7 (b) is when Woody recognized the facial

emotion of human as “anger” or “sadness”, Woody is doing “nodding” as the gesture

of expressing compassion and feeling sorry. Fig. 4.7 (c) illustrated the gesture of

“weeping” once Woody detected the user’s emotion state is “sadness”, Fig. 4.7 (d)

showed Woody is lifting both of its arms to express its emotion state is “high” and

“excited” when the user has a happy facial expression. Truly, in real life scenarios,
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Figure 4.7: Woody’s recognizable gestural cues. (a) shows “wave” gesture; (b) shows
“nod” gesture; (c) shows “weep” gesture; (d) shows “excited” gesture.

these basic gestures are limited. Therefore, another functionality of this social robot

platform is developed for users to record their preferred gestures based on their own

perspective. For example, parents can record extra gestures on Woody and use those

gestural cues to interact with their kids for building trust between their kids and the

robot.
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4.3 Graphical User Interface

In order to offer an easy-to-use way for users to build this DIY social robot platform

and program it the way they want, a graphical user interface (GUI) was developed

using python GTK+ 3.0 graphic user interface library under Ubuntu system.

Figure 4.8: Woody GUI main menu.

The GUI’s main menu (in Fig. 4.8) has four buttons which contain the basic and

most important functions of this system. The buttons are designed using the “box

container” feature from GTK+ library and are vertically packed together. The “Read

Woody Instructions” button can guide users to a new page with text which contains

mechanical assembly procedure and electronic set-up process. The second button

“Test Your Woody” is designed for testing if the motor functions of the robot are

correctly set-up and whether cameras connections are normal. A dialogue is supposed
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to appear if something is not right for initialization. The third button “Record Woody

Gestures” is the main feature of this system which provides customizable gestures

recording function for users to make their own intuitive gestural cues of the robot,

name them and add the gestures to the interaction stage.

Figure 4.9: Real-time interaction function interface. Left: window shows real-time
FER results; Right: window with generated gesture buttons for interaction.

Fig. 4.9 shows the window that appears when a user clicks the button “Real-time

Interaction”. Two separate windows pop up next to each other. Window Fig. 4.9

(left) presented the result of real-time FER, window Fig. 4.9 (right) presented a series

of buttons named by user generated gestures. Two functions, the vision processing

and motor controlling can run at the same time by using the “threading” package

in python. Therefore, in the HRI scenarios, Woody can integrate FER with making

corresponding social gestural cues so that the user can sense the intuition of the

robot. Additionally, the GUI is easy to use. For example, this can benefit parents

monitoring their kids emotional states, as they can make the robot perform gestures

to improve human-robot social interactions. For another example, administrators of

clinical psychological trials can use this GUI and system to make participants get

more engaged during the tests.
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Chapter 5

Conclusion and Future Work

This thesis describes three significant contributions. First, it provides an optimization

method for CNN based FER by introducing pre-processing filters to adjust brightness

and contrast, and conducts edge detection on input batch of images. In this way, it

improves the CNN performance a great deal in terms of fixed epochs and training

time efficiency. Second, this thesis proposes a new set of combined geometric facial

features associated with AUs for further improving FER in terms of recognition rate

and training time. It also performs the real-time applications on proposed algorithms

and results in stable recognition performances using both the standard testing video

clip and a live video stream from a camera. Meanwhile, it includes a comparison to

the most recent FER technique based on geometric features, and proves to be effective

and suitable for real-time implementation among the recent work in FER. Third, this

thesis introduces a hardware and software FER application platform in HRI: the

social robot “Woody”. It describes clearly how FER can be integrated with other

HRI functionality for social robots, as well an easy-to-use GUI for demonstrating

robot embedded FER function. This thesis shows great potential in the FER and

HRI fields.

Future work for the first CNN-based FER method includes 1) addressing the use of
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CNN for FER, 2) finding other ways of optimizing parameters, and 3) comparing CNN

based on CK+ and MUG datasets with pre-processing filters results in the selection

of the same parameters. Additionally, the processing time for the pre-processing

procedure, especially for the two different pre-filters can be reported. The CNN

training process itself contains many parameters and different selections of training

and testing images may be repeated for thorough evaluation and analysis of the

results. In the second AU-based FER method, accurate detection of facial landmark

is a critical precondition to successful FER. This thesis uses an existing toolkit (i.e.,

Dlib) for landmark detection. Further research on evaluating reliability and accuracy

of landmark detection and investigating and comparing different techniques would

be required. Lastly, Woody can be further developed with fully implemented FER

capabilities.
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