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Preface 

 Cooperative behavior is widespread. Organisms as varied as humans, ants, 

dogs, and microbes are reliant on conspecifics throughout their lives. But 

understanding cooperation from an ecological and evolutionary perspective is 

challenging. Cooperation is often associated with population structures that 

facilitate interactions between individuals (e.g. groups). Although helpful for the 

cooperators, group structure provides one of the biggest challenges in studying the 

ecological and evolutionary impacts of cooperation. Nevertheless, understanding 

the role of groups is vital as this is the environment in which many cooperative 

behaviors are carried out. This thesis is dedicated to understanding the influences 

of group structure and intergroup dynamics on the ecology of cooperative 

behavior. 

 When considering the ecology and evolution of cooperation, it is easy to 

immediately consider the expansive theory of social evolution that has been 

developed over the preceding decades. This, however, is not the perspective I aim 

to take here. Rather, I will attempt to clarify ecological impacts of cooperation. 

Surprisingly, questions on the ecology of cooperative behavior are often neglected 

compared to their evolutionary counterparts. 

 As an example, consider the population dynamics of cooperative breeders. 

Cooperative breeders such as African wild dogs, meerkats, and Arabian babblers 

live in discrete, permanent groups. A result of this is that each group is an entity 

which is fairly distinct from the rest of the population. What are the implications 

of this for population dynamics? This question was not explicitly considered until 
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the 1990s. Even then, much work simply assumes that population dynamics will 

be an obvious sum of the individual group dynamics. Empirical work in the early 

2000s, however, failed to support this claim. Of particular interest is whether and 

how density dependence (e.g. Allee effects) scales up from the group level to the 

population level. In my first chapter (Why are demographic Allee effects so rarely 

seen in social species?), I develop and analyze a simple model of group-level 

density dependence to consider its role in population dynamics. I find that social 

structure typically acts as a buffer preventing within group dynamics from 

translating into population dynamics. I show that intergroup dynamics (e.g. 

dispersal, group formation, and group failure) mediate the relationship between 

group and population dynamics. 

 My first chapter shows the importance of group dynamics to the 

population as a whole, but it does not consider the mechanics of specific group 

decisions and behaviors. In my second chapter (Better baboon breakups: 

Collective decision theory of complex social network fissions), I zoom in to study 

individual decisions within a group. In particular, I consider the efficiency of 

various strategies at making the collective decision of a group fission. 

Cooperative behavior in groups often implies a social network. Individuals benefit 

from maintaining a strong social network. This leads to a challenge when a group 

must fission and split its social network. What strategies can individuals take to 

disturb their group’s social network as little as possible during a fission? I apply 

collective decision theory to this question to show that democratic decisions are 

required to best maintain a social network through a fission. The computational 
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model developed is then applied to data from baboon group fissions and supports 

the claim that baboons democratically decide how to split up their groups. 

 As hinted at above, understanding the way in which cooperation and group 

structure influences a system’s ecology is a challenging and grandiose goal. There 

exist many angles from which such questions may be considered. In this thesis, I 

specifically consider the role social population structures play in population 

dynamics and collective decisions. Despite the clear connection between these 

topics, further integration is necessary. In fact, this thesis may pose more 

questions than answers. Most notably, how do individual decisions influence 

group dynamics which ultimately produce population dynamics? Answering this 

question would truly provide a synthesis of the two chapters provided here. But 

there are many other exciting future directions to be considered. For example, 

how does the population dynamics of social structures feedback into the evolution 

of cooperation? Is group size heterogeneity necessary for the buffering nature of 

group structure? How can democratic decision making evolve? These are all 

questions I feel important to consider moving forward from what has been written 

here.  
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Theory of Social Group Dynamics 

 

 

Abstract 

 

by 

 

BRIAN LERCH 

 

 

 Group structure plays a vital role in understanding the ecology of 

cooperative behavior. Not only do groups provide the stage for cooperative 

behaviors to occur, but they also mediate the way in which these behaviors scale 

up to influence populations. In particular, intergroup dynamics are known to 

provide the means by which cooperation ultimately determines population 

dynamics. In this thesis, I consider intergroup dynamics from two perspectives. 

First, at the level of the population, I show that minimal intergroup interactions 

are sufficient to buffer the population against density dependence occurring at the 

group level. Second, I consider how individual decisions and various within group 

strategies can affect the efficiency of group fissions (a specific, important 

intergroup interaction). This thesis thus provides two perspectives on analyzing 

the importance and role of group structure in social species.  
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Why are demographic Allee effects so rarely seen in social animals? 

Brian A Lerch, Ben C Nolting, and Karen C Abbott 
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Abstract 

1. Allee effects in group-living species are common, but little is known about the 

way in which Allee effects at the group-level scale up to influence population 

dynamics. Most notably, it remains unclear whether component Allee effects 

within groups (where some component of fitness in small groups decreases with 

decreasing group size) will translate into a population-level demographic Allee 

effect (where per capita fitness in small populations decreases with decreasing 

overall population size).  

2. The African wild dog (Lycaon pictus) is an obligate cooperative breeder that 

lives in packs and has a multitude of group-level component Allee effects. With 

the African wild dog as a case study, we use models to determine the effect that 

group structure has on the population dynamics of social animals and, 

specifically, whether Allee effects operating at the group level lead to a 

demographic Allee effect at the population level.  

3. We developed a suite of models to analyze the population dynamics of group-

living species, as well as comparable “packless” models lacking group structure. 

By comparing these models we can identify how Allee effects within groups 

influence population-level dynamics. 

4. Our results show that group structure buffers populations against a demographic 

Allee effect, because mechanisms affecting birth and mortality are more strongly 

influenced by group size than population size. We find that interactions between 

groups is vital in determining the relationship between density-dependence 

within groups and density-dependence at the population level. 

5. Since sufficiently large groups provide protection against positive density 

dependence, even at low overall population sizes, our results have conservation 
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implications for group-living species, as they suggest group size is a necessary 

population feature to consider in efforts to manage population size. Furthermore, 

we provide novel insight regarding the role that dispersal and pack size variation 

plays in the buffering nature of social structure in groups subject to Allee effects. 
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Introduction 

The Allee effect, in which the average fitness of individuals in a small population 

decreases with decreasing population size (Allee, 1931), is considered a driving force 

behind the population dynamics of many species. Allee effects are of ecological concern 

because they can doom small populations to extinction (Courchamp et al., 1999a; 

Stephens & Sutherland, 1999). Allee effects at the population level are broken into two 

categories: component and demographic (Box 1.1). A population-level component Allee 

effect is the reduction of any single aspect of an individual’s fitness at low population 

sizes. Population-level component Allee effects can arise from the inability to find mates 

in small populations and beneficial conspecific interactions such as external fertilization 

and environmental conditioning (Courchamp et al., 1999a; Rinella et al., 2012). A 

population-level demographic Allee effect is the reduction in individuals’ average total 

fitness at low population sizes. If this is detrimental enough to cause a negative 

population growth rate, it is called a “strong Allee effect” (Berec et al., 2007; the type we 

explore in this paper). A strong demographic Allee effect results in a heightened 

extinction risk below a population’s Allee threshold – the population size below which 

the per capita population growth rate becomes negative (Courchamp et al., 1999a; 

Stephens & Sutherland, 1999; Berec et al., 2007). Importantly, population-level 

component Allee effects do not necessarily result in a population-level demographic 

Allee effect (Stephens et al., 1999). For example, decreased fecundity at low population 

sizes (a population-level component Allee effect) may be masked by decreased 

intraspecific competition, resulting in no net reduction in the growth of small populations 

and thus no population-level demographic Allee effect. 

Group-living animals have long served as textbook examples for illustrating 

component Allee effects (Courchamp et al., 1999a; Stephens et al., 1999; Courchamp & 
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MacDonald, 2001). However, recent work has questioned the logic of framing Allee 

effects as purely population-level phenomena (Bateman et al., 2012; Angulo et al., 2013). 

Angulo et al. (2017) defined group-level component and group-level demographic Allee 

effects to make explicit the level at which an Allee effect occurs. These group-level 

effects are largely analogous to the population-level effects, with group size rather than 

population size as the driving variable (Box 1.1). However, to complete the analogy, we 

must take care in how we measure the fitness, and its components, of individuals within a 

group. First, groups (unlike many populations) are not approximately closed: dispersal is 

common and vital in many group-living species. Thus, defining group-level demographic 

Allee effects through group growth rate may be problematic, as a group could produce 

many surviving offspring (fitness is high within the group) that disperse, causing the 

group to shrink (Bateman et al., 2013). Clearly, this should not be considered a group-

level demographic Allee effect. To avoid this problem, we define the group-level 

demographic Allee effect in terms of the group’s reproductive success (Box 1.1) rather 

than the group’s growth rate. We define a group-level demographic Allee effect, 

therefore, as a reduction in the average fitness of individuals in a group at low group 

sizes. Defining group-level Allee effects through average fitness of individuals within a 

group ensures that the definitions are consistent even if there is high reproductive skew 

within the group. It follows that a group-level component Allee effect is the reduction in 

a single aspect of average individual fitness at low group sizes (Box 1.1). Examples of 

group-level component Allee effects include beneficial social behaviors dependent upon 

group size, such as cooperative breeding, cooperative hunting, cooperative defense, etc. 

These definitions are broadly consistent with Angulo et al.’s (2017) definitions, but are 

more narrowly defined here to ensure that the effects are well-defined in open groups 

with non-breeding members.  
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While population-level demographic Allee effects are possible in group-living 

animals (supported by models (Courchamp et al., 2000) and seen in Arabian babblers 

(Turdoides squamiceps; Keynan & Ridley, 2016)), they appear to be rare. Most empirical 

studies have failed to detect population-level demographic Allee effects, including in 

social meerkats (Suricata suricatta; Bateman et al., 2011; Bateman et al., 2012) and other 

group-living species (Frank and Brickman, 2000; Gregory et al., 2010; Angulo et al., 

2017). It is unclear whether this lack of evidence is surprising, or whether instead we 

ought not to expect population-level demographic Allee effects to result from group-level 

behaviors (Courchamp et al., 1999a; Stephens et al., 1999; Berec et al., 2007). The 

distinction between group-level and population-level component Allee effects is needed 

to resolve this issue (Bateman et al., 2012). 

 The African wild dog (Lycaon pictus), a well-studied species for Allee effects, is 

an obligate social carnivore that breeds, rears young, and hunts in packs varying in size 

from 2 to 30 individuals (e.g. Creel et al., 2004; Buettner et al., 2007; Somers et al., 

2008). It is also a declining, endangered species with a badly fragmented habitat 

(IUCN/SSC, 2007; Woodroffe & Sillero-Zubiri, 2012; Tensen et al., 2016). There are 

numerous group-level component Allee effects affecting the African wild dog. For 

example, as pack size decreases, reproductive and hunting success decline while pup and 

yearling mortality increase (Malcolm & Marten, 1982; Creel & Creel, 1995; Courchamp 

& MacDonald, 2001). Due to the extent of preexisting research on their demography and 

the species’ many Allee effects, we will use the African wild dog as a case study. 

Empirical studies have consistently failed to detect a population-level 

demographic Allee effect in any population of African wild dog (Somers et al., 2008; 

Woodroffe, 2011; Angulo et al., 2013), possibly due to masking by competition in large 

groups (Bateman et al., 2011). However, Angulo et al. (2013) suggest intergroup 
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dynamics maintain healthy sized packs at low population sizes. Consequently, a 

population-level demographic Allee effect is not present despite group-level (component 

and demographic) Allee effects. Further, they suggest group size variation may be a key 

aspect mediating the relationship between group dynamics and population dynamics. In 

general, it is clear that group structure plays a vital role in shaping the population 

dynamics of social species (Bateman et al., 2012).  

In this study, we examine the effect of group formation, failure, and intergroup 

dispersal (i.e. group structure) on the dynamics of the population as a whole. Although 

empirical work has been conducted (Bateman et al., 2011; Bateman et al., 2012; Bateman 

et al., 2013; Angulo et al., 2013; Keynan & Ridley, 2016), there exists no theoretical 

framework for how Allee effects at the group level affect population dynamics. It is 

therefore somewhat unclear whether and how population-level demographic Allee effects 

may arise in populations with group structure and group-level component Allee 

effects. Clarifying the link between within-group interactions and population dynamics is 

the central goal of this study. Using a suite of mathematical models, we find that group 

structure is often sufficient to buffer the population from population-level demographic 

Allee effects, as pack size becomes decoupled from population size at all population 

sizes. This prevents group-level Allee effects from scaling up to the population level, as 

proposed by Bateman et al. (2011) and Angulo et al. (2013). Furthermore, we find that 

this result is extremely robust to the presence or absence of variability in pack sizes, and 

to assumptions about age structure, sex structure, and how packs form and fail. This 

suggests that the protective effect of group structure may be quite general across group-

living species and that the lack of empirical evidence for population-level demographic 

Allee effects in social species is unsurprising. 
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Methods 

Case Study 

African wild dogs reproduce once per year (Malcolm & Marten, 1982; Creel & 

Creel, 2002), with only one dominant, breeding pair per pack and breeding ability 

suppressed in all other adults (Creel & Creel, 2002; Rasmussen et al., 2008; Somers et al., 

2008). Although pack sizes vary, pack size is not correlated with population size 

(Woodroffe, 2011; Angulo et al., 2013). Group-level component Allee effects arise at 

several life stages. More pups are born and survive their first year in larger packs (Creel 

& Creel, 2002; Creel et al., 2004; McNutt & Silk, 2008; Woodroffe, 2011), because pups 

receive more protection and food with more adult helpers (Malcolm & Marten, 1982; 

Creel & Creel, 2002; Buettner et al., 2007; McNutt & Silk, 2008; Angulo et al., 2013). 

Yearlings also receive greater protection from larger packs, although they are not always 

given priority feeding at kills (Malcolm & Marten, 1982). As a result, yearling survival 

decreases in both small packs (due to loss of protection; a group-level component Allee 

effect) and in large packs (due to increased competition within the group). There are 

conflicting results about whether adult survival is density dependent (Somers et al., 2008; 

Woodroffe, 2011; Anuglo et al., 2013; Creel & Creel, 2015).  

Yearlings typically disperse among packs before adulthood (McNutt, 1996; Creel 

& Creel, 2002). New packs typically form when two opposite-sex cohorts of dispersing 

yearlings fuse together into a pack (McNutt, 1996; Courchamp et al., 2000; Somers et al., 

2008).  

 

General approach 
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We use the terminology of the African wild dog (e.g. pack, yearling, pup) 

throughout the explanation of our models, but we believe our models to be general in 

their description of group-living populations (although they may require different 

parameter values or functional forms to be applied to other systems). 

We formulated population-level models in pairs, where each model with pack 

structure was paired with a comparable model without pack structure (a “packless” 

model). We built three pairs of pack and packless models with varying levels of 

complexity: models lacking age and sex structure (“unstructured”), models with age 

structure, and models with both age and sex structure. Sex structure did not meaningfully 

extend our models’ conclusions, so the age- and sex-structured model pair can be found 

in Appendix 1A. Studying multiple model pairs at different levels of complexity balances 

a desire for realism with a desire to isolate the effect of groups. Age and sex structure can 

affect population dynamics (Boukal & Berec, 2002), so models that omit these factors 

may provide limited insight into real world dynamics. However, we wish to ensure that 

any effects we attribute to group structure are truly due to groups, and unstructured 

models provide a straightforward way to assess this. We use the comparison between the 

age-structured pack model and the age-structured packless model as a baseline, then 

check whether our conclusions change when the models are simpler (unstructured) or 

more complex (age- and sex-structured).  

In most pack models, pack structure is implicit: we write density dependence as a 

function of the average number of dogs per pack without modeling the individual packs 

themselves. To assess the importance of this simplifying assumption, we also built an 

age-structured model in which we explicitly tracked juveniles, yearlings, and adults in 

each individual pack. 
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This series of models (pack models with implicit pack structure and varying 

complexity, analogous packless models, and one model with explicit pack structure) are 

given in Table 1.1 and explained below. We model dynamics in discrete time with a time 

step of one year. All pack models have group-level component Allee effects in pup and 

yearling mortality rates. Packless models were built with comparable population-level 

component Allee effects. We iterated all models for 250 time steps using parameter 

values from Appendix 1B and a range of ten logarithmically spaced initial population 

sizes from 20 to 3000 and initial pack sizes 2 to 30 adults per pack (steps of 4). The initial 

number of packs in the implicit pack models was calculated as the population size 

divided by the number of adults per pack (and rounded to the nearest integer). The first 

four time points were dropped from our analyses to prevent initial-conditions from 

dominating our results.  

To determine whether the populations displayed a population-level demographic 

Allee effect, the realized per capita population growth rate was plotted against the 

population size in each time step.  A population-level demographic Allee effect is present 

if no small population sizes exhibit positive population growth. 

 

Models 

Age-structured models: 

At the start of year t, the total number of juvenile pups (age 0) in the population 

is Jt, the total number of yearlings (age 1) is Yt, and the total number of mature adults 

(ages ≥2) is Mt. In models with pack structure, there are pt packs during t and thus an 

average of At = Mt / pt adults per pack.  
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In our models, Rt is the number of reproductive units in the population and Ct is 

the number of caregivers in the pack (pack models) or population (packless models).  

Caregivers are adult members of the pack or population, as these are the individuals 

known to contribute to group hunting, defense, and rearing of young (Malcolm & Marten, 

1982; Creel & Creel, 2002; Buettner et al., 2007; McNutt & Silk, 2008; Angulo et al., 

2013). Rt and Ct are functions of the other state variables. The form of these functions, 

and the state variables they depend on, are different for models with differing social and 

age structure, thus we can use equations 1-6 to build both pack and packless models. In 

models with pack structure, we use the number of packs as the number of reproductive 

units (Rt = pt), representing cooperative breeders with one breeding pair per pack. Care of 

juvenile pups and yearlings is provided by all adults in the pack, so in implicit pack 

models the number of caregivers is equal to the average number of adults per pack (Ct = 

At). In packless models, as we intend to illuminate the differences between Allee effects 

at the group and population levels, all adults may reproduce and provide care, so Rt = Ct = 

Mt. The packless models are not based on any particular population, and are rather a 

theoretical construct providing a basis of comparison to help discover the fundamental 

differences between Allee effects at the group and population levels. 

 The birth rate in our models increases with number of caregivers. Reproducing 

adults give birth to juveniles at per capita rate, 

.      (1) 

The maximum birth rate is r. When there are Ct = L caregivers, reproducers achieve half 

this maximum (Fig. 1 A). Because f(Ct) is a per capita rate, the population-level 

reproductive rate is f(Ct)Rt.  

By the end of their first year, a fraction dJ(Ct) of the pups die, where 
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.     (2) 

Density-dependent deaths decrease with the number of caregivers from a maximum of d 

to a minimum of 0 with an inflection point at caregivers (Fig. 1 B). μJ is the 

density-independent juvenile death rate. We do not consider cases where d + μJ > 1 to 

ensure juvenile mortality never exceeds 100%. The total juvenile population at the start 

of year t+1 is thus, 

.    (3) 

 Accounting for the risks to yearlings of living in both under- and oversized 

groups, the fraction of individuals that die as yearlings is, 

    (4a) 

with 

,      (4b) 

where μY is the density-independent death rate and the polynomial in square brackets in 

(4a) is a piecewise quadratic function with a minimum death rate of c4 at Ct = s caregivers 

(Fig. 1 C). We always take the minimum of (4a) and 1 to ensure the death rate does not 

exceed 1. If c2 > c3, having fewer than s caregivers is more detrimental than having 

greater than s. Year t+1 yearlings are the previous year’s juveniles who have survived 

another year, 

.     (5) 
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Finally, the population of mature adults in t+1 consists of surviving adults and 

remaining yearlings from the previous year’s population. With a density-independent 

death rate of μM (see Appendix 1D for results with density dependence in adults), the 

mature adults at the start of t+1 are given by, 

.    (6) 

We model new pack formation by allowing yearlings to form new packs. We 

assume that pack formation rates scale linearly with the number of dispersing yearlings 

(i.e., with more dispersers, opposite-sex cohorts are more likely to encounter each other 

and initiate a new pack). Using the parameter k to describe how pack formation is 

triggered, we assume that 1 new pack will form when the number of yearlings in the 

population rounds to k (that is, round[Yt ] = k), and that n new packs will form when 

round[Yt ] = nk. To ensure an integer number of packs our pack models add round[Yt / k] 

packs after year t. Packs fail at a higher frequency if there are too few adults per pack. 

Using the parameter j to control pack failure we remove round[j / At] packs after t. This 

means that 1 pack is lost if the average number of adults per pack rounds to j (round[At ]= 

j), and no packs are lost as long as At > 2j. In years with high pack failure, there is an 

increase in juvenile and yearling mortality due to the group-level component Allee effects 

(see equations 2 and 4). This can be interpreted as the effects of pack failure being 

distributed across all packs in the population (another assumption that we will relax when 

we model packs explicitly), since death and pack failure occur simultaneously in our 

models. The number of packs at the start of year t+1 is then,  

  .   

 (7) 



 23 

However, we assume that the landscape can hold at most kp packs, and that there is 

always at least 1 pack when the population size is greater than 0. 

 

Unstructured models: 

In our models with neither age nor sex structure, the we assume the equations 

simplify to, 

,     (8) 

where Nt is the total population size (= Jt + Yt + Mt). Our use of the hump-shaped 

function dY(Ct) (Fig. 1 C), with density-independent death parameter μ in place of μY 

(Appendix 1B), allows us to consider detrimental effects of both small and large packs on 

survival. The number of reproductive units, Rt, is again pt in the pack model and is now Nt 

in the packless model. The number of caregivers is Nt / pt in the pack model and Nt in the 

packless model. In the unstructured pack model, 

,  

 (9) 

where we constrain pt to remain between 1 and kp as above. 

 

Modeling packs explicitly: 

All pack models above include the simplifying assumption that the dynamics of 

the whole population are insensitive to variability among packs in their sizes. That is, we 

modeled reproduction and caregiving within each pack as a function of the average pack 
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size without keeping track of the sizes of individual packs. In our final model, we relax 

this assumption. Within-pack dynamics are equivalent to the implicit-pack model with 

age structure, except that we use the individual pack sizes in place of average pack sizes 

(Table 1.1). We simulate the model with the same range of initial population and average 

pack sizes as before, but rather than initiate all packs at the exact same size, we draw 

initial pack sizes in this model from a normal distribution with variance 4 around the 

average.  

Each year, the surviving yearlings in each pack form a dispersing cohort. When 

the total number of dispersing yearlings is low (Yt < the pack formation parameter k), no 

new packs form. Instead, each dispersing cohort of yearlings is randomly assigned to 

another pack. If the conditions are met for pack formation (Yt > k), some cohorts become 

a new pack instead of joining existing packs. As in implicit pack models, we add Yt / k 

packs when the conditions for pack formation are met. We allow up to kp packs. 

As the number of adults in a pack decreases, pack reproductive success decreases 

and it becomes more likely to fail (defined as having fewer than 1 adult). Pack failure in 

the explicit pack model is thus contained to individual packs and has no effect on the rest 

of the population. This contrasts with the implicit pack models, where a pack failure 

implicitly increases the size of the remaining packs. The explicit pack model is more 

realistic for African wild dogs, so by considering both models, we can evaluate the 

implicit pack models’ simplifying assumptions. Considering both models also allows us 

to assess the generality of our conclusions for other group-living species, which may have 

different modes of group formation and failure (see also Sensitivity analysis).  

 

Parameter values 
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We drew on the results of many different studies to choose reasonable values for 

all parameters in the age-structured implicit pack model (Appendix 1B). Whenever 

possible, for consistency, parameter values were based on the African wild dog 

population in Selous Game Reserve, Tanzania (for a detailed account of this population, 

see Creel et al. (2004)). 

 Parameter values for all other models were chosen to make these models as 

comparable as possible to the age-structured implicit pack model. To illustrate why this is 

necessary, consider the maximum per capita birth rate, r: in pack models (Rt = pt), this is 

the maximum litter size per pack whereas in the packless models (Rt = Mt), it is a number 

per adult. Clearly, r should be adjusted to a lower value in the packless models to give 

comparable levels of overall population growth. In the same way, each parameter with 

units relating to the units of Rt or Ct must be rescaled to accommodate the addition or 

subtraction of pack or age structure. 

The procedure for determining appropriate parameter adjustments in the packless 

models starts with a function for a group-level component of fitness (e.g. 3rd row of Table 

1.1) and replaces group size on the x-axis with population size (e.g. 1st row of Table 1.1).  

Then, to determine the appropriate scaling of this new x-axis, we equated a pack size of 0 

with a population size of 0, and the equilibrium pack size with the equilibrium population 

size observed in our age-structured pack model (13.25 adults per pack and 927.5 total 

adults). In the unstructured models, parameters were adjusted based on the equilibrium 

pack composition ratios observed in the age-structured pack model (24% juvenile pups, 

18% yearlings, 58% adults; see results). All adjusted parameter values are shown in 

Appendix 1B. 
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Sensitivity analysis 

 To understand the range of situations for which we expect our qualitative 

conclusions to hold, we assessed the sensitivity of our models to three types of changes: 

different pack formation rules, different adult mortality functions, and changes to the 

parameter values. 

First, we explored a large number of parameter combinations (Appendix 1B) and 

rechecked our results to test their generality. Sensitivity analysis for the unstructured 

models involved three values of each of the ten parameters (the 2 values shown in square 

brackets in Appendix 1B and their midpoint, for a total of 310 = 59,049 parameter 

combinations). Analysis for the age-structured models involved 2 values for each of 

fourteen parameters (the 2 values shown in square brackets in Appendix 1B, for 214 = 

32,768 parameter combinations). These ranges are broad enough to capture a wide range 

of possibilities that may occur in nature.  

For every parameter combination, we recorded the smallest pack and population 

size that achieved a positive growth rate from the pack models, and the smallest 

population size with a positive growth rate from the packless models. Pack models do not 

exhibit a population-level demographic Allee effect if positive growth occurs at small 

population sizes. To better understand the role of the pack formation and failure 

parameters (k and j, respectively), we determined what combinations of k and j resulted in 

group structure buffering against a population-level demographic Allee effect, using 

values of 1 to 30 for each parameter. 

To understand the role dispersal and pack formation play in our models, we 

considered an alternative pack number equation (7), replacing Yt / k with Yt / (pt k) and 

adjusting the value of k accordingly (Appendix 1C).  In this formulation, pack formation 
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is a function of the number of yearlings per pack (i.e. dispersing cohort size) rather than 

the total number of yearlings (related to the number of dispersing cohorts). Because this 

model is less prone to add new groups, analyzing it provides a means of sensitivity 

analysis of our pack formation function.  

In the explicit pack model, we considered a version that distributed yearlings 

evenly amongst packs rather than keeping (different-sized) cohorts intact when assigning 

yearlings to new packs. Even distribution of yearlings homogenizes pack sizes. 

Comparing this model to the original explicit pack model allowed us to test the general 

importance of pack size variability. Lastly, we studied the sensitivity of our results to 

changes in the pack failure rule in the explicit pack model by allowing packs with fewer 

than j adults to attempt to fuse with another pack. Analyzing this model tests whether 

increasing connectedness between groups also increases the buffering nature of groups. 

Specific results from these models can be found in Appendix 1C. 

Finally, we modified the adult number equation (6) to include both positive and 

negative density dependence in adult mortality to determine whether or not this change 

qualitatively affects our results (Appendix 1D). We also assessed the influence of 

demographic stochasticity on our model using lognormally distributed perturbations 

(Appendix 1E).  All analyses were conducted using Mathematica (Wolfram Research, 

Inc., 2016). 

 

Results 

Effect of packs on population persistence 

 We iterated implicit pack and packless models through time using a range of 

parameters to determine which parameter values result in indefinite persistence. We 
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found longer persistence in the pack model at any given parameter set (not shown), as 

well as persistence under a wider range of parameters when packs are present (Table 1.2). 

These conclusions held across all model pairs, with weaker protective effects from packs 

in models without age structure (Table 1.2).  

 We evaluated the presence of population-level demographic Allee effects directly 

by examining the realized per capita population growth rates in the simulations. The 

packless models display a strong population-level demographic Allee effect – that is, no 

observed positive population growth rates when population sizes were below the Allee 

threshold of approximately 950 adults (black curve, column I, Fig. 2; always negative at 

small population sizes). In contrast, the pack models lack a population-level demographic 

Allee effect, showing a positive per capita population growth rate in some years when 

population sizes were very low (red dots at small population sizes, column I, Fig. 2; 

positive population growth is possible in small populations). This suggests that pack 

structure prevents the group-level component Allee effects in our pack models from 

translating into a population-level demographic Allee effect. However, the implicit and 

explicit pack models do display a group-level demographic Allee effect (which we 

measure using per capita population growth rate as a proxy in the implicit pack models, 

since individual packs are not modeled), with a group Allee threshold of around 8 adults 

per pack (average pack size at which per capita population growth rate becomes negative, 

column II, Fig. 2) in models with age structure. These results hold for all pairs of models 

(and their variations; Appendices A; C-E), as well as the explicit pack model, meaning 

that neither age structure nor the rules of pack formation and failure qualitatively affected 

the buffering nature of groups. The similarity between our implicit and explicit pack 

models suggests that our models with implicit pack structure reliably capture the 
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protective effect of pack structure. Additional sensitivity analysis revealed that these 

results are robust across the range of parameters considered (Table 1.2). 

 These results raised the question of whether a population-level demographic 

Allee effect can ever arise from group-level component Allee effects. To answer this, we 

explored the effect of the pack failure parameter (j) and pack formation parameter (k) in 

our implicit pack models more broadly and found that a demographic Allee effect can 

result at low values of both j and k (Fig. 3). That is, when packs are either extremely 

robust against failure (small j) or form quite easily (small k), intergroup dynamics are no 

longer sufficient to protect against a population-level demographic Allee effect. 

 The ability of Allee effects to exist at the group level but not the population level 

can be understood by plotting average pack size against population size. Column III in 

Fig. 2 shows a lack of correlation between pack size and population size in the pack 

models; rather, a specific average pack size tends to be favored across population sizes. 

The result is that healthy, stable average pack sizes can exist even in small populations. 

Such conditions will allow the population to grow even with relatively few individuals, 

preventing a population-level demographic Allee effect. 

 We also found that if dispersal is a function of the number of yearlings per pack, 

this can lead to a rescue effect from which the population can recover even if its average 

pack size drops below the group Allee threshold (Appendix 1C). This occurs in the 

modified model but not the primary model, as groups form more slowly when dispersal is 

a function of the number of yearlings per pack. The result is the number of failing groups 

is more likely to overwhelm the number of forming groups, bringing the average group 

size in the population back above the group Allee threshold. 
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Characteristics of packs 

 Our models tend toward a pack size of 13.25 adults per pack with the parameters 

given in Appendix 1B. The pack size that maximizes growth in our model was just over 

10 adults per pack. Further, our modeled packs have the age ratios of 24% pups, 18% 

yearlings, and 58% adults, again with the parameters from Appendix 1B. Although not 

central to our study question, we use these results as a way of assessing realism in our 

models’ predictions. 

 

Discussion 

 Our results show that a wide range of rules for group dynamics create more 

viable populations in social species by preventing group-level component Allee effects 

from translating into a population-level demographic Allee effect in most parameter 

combinations we explored. This occurs due to the independence of group size and 

population size that arises from dispersal and group failure allowing groups to approach 

the same size regardless of the population. Because per capita population growth is 

dependent upon average pack size, but not population size, the lack of correlation 

between average pack size and population size that arises in our models prevents the 

group-level component Allee effects from resulting in a population-level demographic 

Allee effect (Bateman et al., 2011; Angulo et al., 2013). That is, healthy-sized packs in a 

small population still result in positive population growth and thus no population-level 

demographic Allee effect. However, because group size and population size need not 

decouple, mechanisms that lead to a positive correlation between group size and 

population size would interfere with the buffering nature of group dynamics. Such a 

relationship between group structure and population dynamics is important for sustaining 
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small populations with healthy pack sizes, providing a plausible explanation for the 

unexpected recovery of the African wild dog population in Northern Kenya which 

persisted at very low numbers for a decade before expanding into a large population 

(Woodroffe, 2011).  

 Through our suite of models, we show that the way in which groups mediate the 

interaction between group Allee effects and population-level phenomena does not depend 

on age structure, sex structure, or pack size heterogeneity. Due to the robustness of our 

results to drastic changes in model structure and parameter values (Table 1.2; Appendices 

A; C-E), we believe them to be general to a wide range of social animals. 

 Our predictions about pack demography are consistent with naturally observed 

values. A pack size of 13.25 adults falls well within the range (2-30 adults) described by 

Creel et al. (2004), McNutt & Silk (2008), Angulo et al. (2013), and others. The pack size 

that maximizes group growth rate in our models (approximately 10) corresponds closely 

to the 10.25 adults per pack optimum found by Angulo et al. (2013). Additionally, our 

models predict packs to be 24% pups, with the census coming at the end of the pups’ first 

year. Creel et al. (2004) observed packs with 33% pups at their emergence from the den 

(Creel et al., 2004; McNutt & Silk, 2008); pup mortality thereafter could explain our 

somewhat lower estimate. Our models’ ability to predict realistic pack sizes and 

compositions (neither of which was considered in our choice of model equations or 

parameter values) demonstrates their consistency with known biology, and supports our 

use of these models to predict novel phenomena. 

 Variation in group size has been considered important for maintaining the lack of 

correlation between group dynamics and population dynamics that allows group structure 

to act as a buffer against detrimental dynamics at the population level (Bateman et al., 

2011; Angulo et al., 2013). Interestingly, even in our implicit pack models that lack 
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between-pack size variation, group dynamics create a strong buffer. In this way, we show 

just how fundamental the buffering nature of groups may be. Group size variation could 

lead to the rescue of populations whose average group size has dropped below the group 

Allee threshold (Appendix 1C), because when small groups fail, average group sizes rise; 

however, this is not a general requirement to prevent group Allee effects from scaling up 

to a demographic Allee effect. The key is not failure of small packs, but failure of some 

packs such that average group size can grow.  

 Dispersal between groups has been considered important for how group 

dynamics scale to population dynamics (Courchamp et al., 1999b; Bateman et al., 2011; 

Bateman et al., 2012; Bateman et al., 2013). Dispersal provides a way for group size to be 

maintained independent of population size. The movement of dispersing individuals 

throughout the population between generations can allow large groups to persist in small 

populations. Interestingly, the Arabian babbler is an example where dispersal was found 

to be insufficient to buffer group level Allee effects from becoming a demographic Allee 

effect (Keynan & Ridley 2016). This system has a much lower transfer of individuals 

among groups, implying that decreasing intergroup connectivity weakens the buffering 

nature of group structure. This conclusion is consistent with our implicit pack models 

producing a demographic Allee effect at very low values of the pack failure parameter (j), 

as small j indicates low transfer of individuals between groups. As an extreme example, 

the packless model is particularly prone to population extinction and population-level 

demographic Allee effects.  Conversely, low pack formation parameter (k) also produces 

a population-level demographic Allee effect. This shows that low group fidelity and a 

propensity to form new groups can lead to a population-level demographic Allee effect, 

as it will create a population of many small groups that cannot reproduce successfully. 
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Such insight requires a theoretical approach to uncover and could help explain the 

evolution of dispersal rates in social species.  

 In addition to Allee effects, demographic stochasticity can make small groups 

prone to extinction. Our implicit pack models assume that when the average pack size is 

small, the frequency of pack extinction increases. Although we cited this as a 

manifestation of a group-level demographic Allee effect, demographic stochasticity could 

add to this pattern of pack failure (Lande, 1998; Dennis, 2002; Appendix 1E). In general, 

however, we do not include stochasticity in our models and consider only average pack 

size. This has drawbacks, as we are interested in instances where averages may not fully 

capture population dynamics (when packs are small making variability and noise 

increasingly important). In this way, the simplicity of our implicit pack models may 

cloud their interpretation with respect to fundamental biological mechanisms. 

Nevertheless, they capture phenomena seen empirically (Somers et al., 2008; Bateman et 

al., 2011; Woodroffe, 2011; Angulo et al., 2013; Angulo et al. 2017) and produced in our 

explicit pack model that includes both stochastic effects and variability in pack size. The 

way in which we can build such a simple model that still captures the protective effect of 

packs justifies that it contains the important aspects of the system. 

 In summary, our results indicate that many social species seemingly prone to a 

demographic Allee effect have protection against such population-level phenomena. 

While many of our specific modeling choices were motivated by African wild dog 

populations, our results are also consistent with past findings on Arabian babbler and 

meerkat populations. Our conclusions are relevant not only for these species, but also any 

social species with Allee effects at the group level, intergroup interactions, and a lack of 

correlation between group size and population size. Future research analyzing the 

strength of intergroup interactions required to prevent group Allee effects from 
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translating into a demographic Allee effect would help determine more completely the 

species to which our results apply. The robustness of our core results to changes in 

population structure, the way pack failure is modeled, the representation of packs as 

implicit or explicit, and parameter values together suggest broad generality. Our results 

therefore have the potential to demystify the widespread failure to find population-level 

demographic Allee effects in group-living species prone to component Allee effects 

(Gregory et al., 2010; Angulo et al., 2017), and also to better the understanding of the 

population dynamics of a wide range of social species. Further, our results suggest that 

populations of social species with group level Allee effects may respond best to 

management efforts that promote healthy group sizes, perhaps with less emphasis on the 

size of the population as a whole.  
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Box 1.1. Glossary of terms for Allee effects in social species. For consistency, we use the 
terminology put forth by Angulo et al. (2017); however, we have made some alterations 
for conceptual clarity (see second introduction paragraph). The rightmost column 
displays an example graph to illustrate the various Allee effects and relevant thresholds. 
Our use of fecundity on the y-axes of some graphs is merely an example of a fitness 
component. 

Population-
level 
component 
Allee effect 

One aspect of an individual’s 
fitness (e.g. survival, 
fecundity) is reduced at low 
population sizes.  
 
Commonly referred to simply 
as a “component Allee effect” 
in the literature (Stephens & 
Sutherland, 1999); “population-
level” emphasizes that the 
driving variable is population 
size. 

 

Population-
level 
Demographic 
Allee effect 

A reduction in an individual’s 
overall fitness at low 
population sizes.  
 
Possible but not inevitable 
outcome of population-level 
component Allee effects. 
Results in reduced population 
growth rate (in a closed 
population) and heightened 
extinction risk at low 
population sizes. 

 

Group-level 
component 
Allee effect 

One aspect of average fitness 
of individuals within a group 
(e.g. survival, fecundity) is 
reduced at low group sizes.  
 
Analogous to a population-level 
component Allee effect, except 
with group size rather than 
population size as the driving 
variable. This level of Allee 
effect adds clarity, since the 
level of component Allee 
effects is not usually specified 
in the literature. 

 

Group-level 
demographic 
Allee effect 

A reduction in the average 
fitness of individuals within a 
group at low group sizes.  
 
Possible but not inevitable 
outcome of group-level 
component Allee effects. Can 
lead to reduced growth rate of 
the group and heightened risk 
of group failure at low group 
sizes.  
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Table 1.1. Summary of variables and models. 

 

VARIABLES USED IN MODELS 
Variable Meaning When used 

Nt total population size (sum over packs*) Unstructured models 
Jt total juveniles (sum over packs*) Age structured models 
Yt total yearlings (sum over packs*) Age structured models 
Mt total mature adults (sum over packs*) Age structured models 
pt number of packs Pack models, when 

packs modeled 
implicitly 

At = Mt/pt , mature adults per pack Pack models, when 
packs modeled 
implicitly 

Ji,t juveniles in pack i Pack model, when packs 
modeled explicitly 

Yi,t yearlings in pack i Pack model, when packs 
modeled explicitly 

Mi,t mature adults in pack i Pack model, when packs 
modeled explicitly 

* when packs are present; in packless models, these are simply the number of individuals (summed over age/sex as 
noted) in the population. 
 

MODEL EQUATIONS 
Model 

characteristics 
Pack model Packless model 

No population structure 
Reproducers Rt = pt Rt = Nt 
Caregivers Ct = Nt / pt Ct = Nt 
Equations 

 

 

Age structure 
Reproducers Rt = pt Rt = Mt 
Caregivers Ct = At Ct = Mt 
Equations 

 

 

Age structure, packs modeled explicitly 
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Reproducers 

 

n/a 

Caregivers Ci,t = Mi,t 
Equations 

 
see text for description of pack formation/failure 
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Table 1.2. Summary of sensitivity analyses comparing implicit pack and packless model 
pairs. For each model, we report the percentage of parameter combinations, across all 
combinations used in the sensitivity analyses (see text): (i) that resulted in population 
growth at some time step in the simulation (after an initial four time points) and (ii) for 
which the pack model had a lower minimum population size capable of positive 
population growth, compared to its corresponding packless model.  

 

 
 

(i) % with population 
growth 

(ii) % with smallest 
growing population 

size 
Model type Pack 

models 
Packless 
models 

Pack models  

Unstructured 65.4 % 57.1 % 81.2 % 
Age- 
structured 

74.1 % 29.0 % 99.4 % 
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(A)         (B) 

  
   

(C) 

    

 

Figure 1.1. Density dependence in (A) birth rate (equation (1)), (B) pup survival (1 – the 
first term in equation (2)), and (C) yearling survival (1 – the bracketed term in equation 
(4)). The top x-axes show or adult population size, corresponding to density dependence 
in the packless models. The bottom x-axes are pack size, corresponding to density 
dependence in the pack models. (B) and (C) show the component Allee effects in our 
models. All functions were plotted using the parameter values in Appendix 1B.  
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Figure 1.2. Model results with rows showing: (i) the unstructured models, (ii) the age-
structured models, (iii) the age and sex-structured models, and (iv) the explicit pack 
model. Column (I) shows per capita population growth rate in a single time step versus 
the number of adults in the population. All points are from models with packs, with 
positive growth rates colored red and negative growth rates colored light purple. Scatter 
in these points is due to differences not fully captured by the variate on the x-axis (e.g. in 
column (I), different mean pack sizes at the same total population size). The black line in 
column (I) shows the same relationship from the corresponding packless models; because 
population size fully determines growth rate in the packless models, there is no scatter in 
these points. These lines are never positive at small population sizes, showing the strong 
demographic Allee effect from packless models. Contrasting the packless models, the 
presence of positive growth rates at small population size (red points on the left of the 
figures in (I)) in the pack models show the lack of a demographic Allee effect: small 
populations do not necessarily shrink in our pack models. The column (II) shows the per 
capita population growth rate (population growth is analyzed in the explicit pack models 
simply for easier comparison with the implicit pack models) versus the average number 
of adults per pack for pack models, revealing the group-level demographic Allee effect 
(per capita population growth rate decreases when the average pack size is small). The 
column (III) plots average pack size versus population size during the course of the 
simulations, with points within each trajectory shifting from green (initial) to red (final) 
over time. This shows the lack of correlation between pack size and population size, and 
a strong trend toward a single pack size, appearing as a horizontal red stripe, across many 
population sizes.  
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Figure 1.3. j-k space and the occurrence of population-level demographic Allee effects. 
Red regions indicate that levels of group formation and failure are insufficient to buffer a 
population from population-level demographic Allee effects. Blue regions indicate the 
absence of a population-level demographic Allee effect. 
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Better baboon breakups: Collective decision theory of complex social 

network fissions 

 

Brian A Lerch, Karen C Abbott, and Susan C Alberts 

 

Abstract 

 

 Many social groups are made up of a complex social network in which 

each individual has a unique and non-overlapping set of others with which they 

tend to associate. Frequently groups that have grown too large must decide how to 

fission in order to release themselves from competition. Complex social networks 

make fissions much harder as both a multidimensional optimization problem and 

a collective decision. This is because it is advantageous for each individual to 

remain with their closest allies post fission, but doing so for every individual is 

clearly impossible. Here, we develop computational algorithms for group fissions 

in a network theoretic framework. We analyze three algorithms (democracy, 

community, and despotism) that fall on a spectrum between a democratic 

collective decision to a dictatorial decision. We parameterize our social networks 

with data from baboons (Papio cynocephalus) and compare our algorithms with 

actual baboon fission events. We find that democratic decisions are much better at 

splitting the group while disturbing the network structure as little as possible. 

Even with high information skew amongst individuals, allowing a single 

individual to dictate fission does not appear capable of maintaining the social 
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network. Finally, we find evidence that actual baboon fissions are most similar to 

democratic algorithms. 

 

Introduction 

 

 Across social species, an individual’s social position is crucial for its 

ability to successfully reproduce. This is obvious in species in which a single, 

dominant individual monopolizes reproduction, but equally true in species with 

many reproductive individuals (Cameron et al 2009; Stanton & Mann 2012; 

Lehmann et al 2015; Cheney et al 2016). Thus, there is strong reason to believe 

individuals gain fitness benefits from attempting to maintain their social network 

position. However, even in cooperative species, intragroup competition can be 

strong (Barton et al 1996; Majer et al 2018; Sheppard et al 2018), so groups must 

occasionally fission to release themselves from competition when they become 

too large (Malik 1985; Dittus 1988; Dunbar 1992; Henzi et al 1997). Deciding 

how to fission presents a challenge, as each individual has a unique set of social 

bonds that it would benefit from maintaining through the fission. However, it is 

impossible for every individual to accomplish this. What strategies can groups 

take to achieve this complicated collective decision of splitting up a social 

network? How can individuals attempt to retain their social ties, even when 

networks are complex? 

 Primates provide excellent case studies for understanding group fissions 

from a network perspective. A critical reason for this is that many primate fissions 
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are permanent (Cords & Rowell 1986; Okamoto & Matsumura 2001; Van Horn et 

al 2007; in contrast to a fission-fusion society), so the decision of which post-

fission group to join will influence an individual for the duration of its life. 

Primate fissions are also well studied. In particular, it is often considered that 

fissions in matrilineal societies (such as baboons) will be characterized by an 

attempt to remain with matrilineal kin (Chepko-Sade & Oliver 1979; Dittus 1988; 

Holekamp et al 1993; Archie et al 2005; Widdig 2006). However, there are many 

examples in fissions of matrilineal societies wherein individual decisions appear 

not to be driven by matrilineal kinship (Chepko-Sade & Oliver 1979; Armitage 

1987; Widdig 2006; Van Horn 2007). Decisions of how to fission may be 

influenced by individuals trying to improve their rank (abandon-your-superior 

hypothesis; Ron et al 1994), but again other fissions do not follow this pattern 

(Van Horn 2007). Thus, at the level of which bonds to maintain and which to 

break during a fission, there is much individual variation. However, at the level of 

the whole network, do group fissions follow a common pattern?  We believe that 

taking a global view of the social network is a simple and powerful means of 

understanding the way in which a fission proceeds. This is the first study to our 

knowledge to apply a global network theoretic approach to understand the 

collective decision of permanent fissions. 

 Network theoretic approaches have become a vital part of studying animal 

sociality (Krause et al 2009), and group fissions have been viewed through this 

lens. Network theoretic models have sought to understand how nutritional needs 

can interact with sociality to lead to both permanent fissions and fission-fusion 
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societies (Sueur & Maine 2014). Relatedly, empirical studies have shown fission-

fusion societies are shaped by resource availability (Sundaresan et al 2007; Sueur 

et al 2014). Network approaches have also been extended to understand how 

grooming relationships in primates influence group cohesion and ultimately 

whether a fission will be necessary (Sueur et al 2011). Still, such work tends to 

focus on the benefits of a fission-fusion society as well as the reasons for fission. 

Here, we intend to ask a different, albeit related, question: how does the fission 

proceed? 

 As mentioned above, group fissions are, by definition, a collective 

decision. As such, collective decision theory provides a means by which to 

understand fission dynamics. Much of collective decision theory focuses heavily 

on animal movement and considers democratic versus despotic decisions as well 

as information asymmetry (Conradt & Roper 2003; Conradt & Roper 2005; 

Couzin et al 2005; Miller et al 2013; Strandburg-Peshkin et al 2015). Once again, 

syntheses of fissions with collective decision theory have focused heavily on 

fission-fusion societies. For example, various authors discuss the ways in which 

groups may temporarily fission, so individuals in a given group may have options 

without abandoning their group (Kerth et al 2006; Sueur et al 2011; Merkle et al 

2015). But, because group fissions in fission-fusion societies are not permanent, 

individuals suffer less from separating from their allies. Further, permanent 

fissions are less likely the result of an immediate response to the spatial 

distribution of resources, which drives many temporary fission events 

(Sundaresan et al 2007; Sueur et al 2014). This means that existing theory on 
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fission-fusion dynamics cannot readily inform an understanding of permanent 

fissions. As such, we will extend a collective decision approach specifically to 

understanding permanent fissions. 

 Here, we provide a novel synthesis of network approaches with collective 

decision theory to understand possible outcomes of permanent fissions resulting 

from different collective decision strategies. We consider the question of why 

fissions occur (which has been addressed elsewhere) to be outside the scope of 

this study. We find that democratic decision making is necessary to disturb social 

networks as little as possible during a fission. We apply our model to observed 

savannah baboon (Papio cynocephalus) fissions and find evidence that fissions 

proceed democratically. 

 

Methods 

 

Case Study: Amboseli Baboons 

 

Baboon groups are subject to strong intragroup competition and must split 

when they have become too large (Dunbar 1992; Henzi et al 1997). Since its 

inception 1971, the Amboseli Baboon Research Project has observed and 

recorded data for seven events during which one group split into two daughter 

groups. We used grooming data from two years prior to the start of the fission 

event to parameterize social networks for each of these seven baboon groups. To 

do so, we tallied the number of grooming events between all pairs of individuals 
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in the group. We then normalized the number of grooming events to be between 0 

and 1, removing bonds from pairs that had groomed less than ten times as these 

were less reliable measures of a bond between individuals. The resulting value 

was used as the bond strength (edge weight) between individuals on the network. 

Our ultimate goal is to understand differences in fission strategies that 

collectively decide how to split up a group with a complex social network. To 

ensure that we are using realistic social networks, we will apply various strategies 

to the actual pre-fission baboon networks described above. We have developed 

five hypothetical algorithms for fission strategies (figure 2.1). Note that the first 

four algorithms are stochastic, as described below. 

 

Random Algorithm 

 

 We first developed the random algorithm as a null expectation for how 

fissions would proceed if they were random with respect to global network 

structure. The random algorithm assigns each individual from the pre-fission 

group into daughter group 1 or daughter group 2 randomly and with equal 

probability. Any individuals in the same daughter group who were bonded before 

the fission retain their original bond strength; all other bonds are severed. 

 

Democracy Algorithm 
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 For the purposes of this study, a democratic decision is one in which each 

individual influences the outcome of the fission. The democracy algorithm treats 

the fission as a collective decision wherein each individual in the group controls 

which daughter group they will join. First, two individuals are randomly selected 

from the pre-fission group and assigned as the first members of daughter group 1 

and daughter group 2. Then, individuals that have yet to be assigned a daughter 

group are successively and randomly selected from the pre-fission group and 

assigned to the daughter group in which they have the highest average bond 

strength to individuals already in that group. If a selected individual has no bonds 

with any individual in either daughter group, they are not yet assigned a group 

and returned to the pool of individuals needing assignment. Since our networks 

are connected, these individuals will eventually have connections to members of 

one or both daughter groups, so this procedure will assign every individual a 

daughter group for each simulated fission. 

 

Despotism Algorithm 

 

 To contrast with a democratic decision, we developed the despotism 

algorithm, which allows the individual with the greatest sum of bond weights (the 

despot; also, the individual with the most information about the network structure) 

to dictate the fission. Bond strengths used for the despotism algorithm were log-

transformed prior to normalization, as this produced daughter groups of more 

realistic size. First, individuals of distance one from the despot (i.e. those with 
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direct social bonds to the despot) were selected and their bond strengths to the 

despot were used as the probability they joined the despot’s daughter group 

(daughter group 1). Bonds between the despot and individuals not selected to join 

daughter group 1 were then severed. Next, all individuals from the revised 

network (with some removed bonds) of distance 2 from the despot were 

considered. The probability that these individuals were selected to join daughter 

group 1 was taken to be the product of bond strengths between the individual in 

question and the despot. Again, individuals not selected to join the despot’s group 

had their bonds to individuals in daughter group 1 removed. This procedure 

continued until the network was no longer connected. At that point, all individuals 

not chosen for daughter group 1 were assigned to daughter group 2. 

 

Community Algorithm 

 

 We next developed the community algorithm, which is intermediate 

between democracy and despotism on the collective decision making spectrum. 

First, we detected network communities using Mathematica’s centrality-based 

community detection method. This method uses bonds with high betweenness 

centrality to find tightly-bonded regions (communities) in the network. We then 

assigned entire, intact communities to daughter groups in a procedure analogous 

to the democracy algorithm. That is, first we selected two communities at random; 

then we successively and randomly assigned the remaining communities to the 

daughter group with the highest average number of bonds per individual for all 
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bonded pairs between the two communities. Although this is still a collective 

decision rather than a despotic one, it greatly reduces the number of independent 

entities involved in making the decision relative to the democracy algorithm. 

 

Sparsest Cut 

 

 The sparsity of a fission is a measure of how little it disturbs the original 

network, with respect to the strength and number of bonds broken. It is quantified 

as the sum of bond weights broken divided by the number of individuals in the 

smallest resulting post-fission group. Then, the “sparsest cut” is the fission with 

minimum sparsity. This fission is characterized by breaking few bonds while 

producing approximately equally-sized daughter groups, both desirable 

characteristics. We use the sparsest cut as another basis of comparison (along with 

the random algorithm) for our collective decision algorithms. 

 

Analysis of Resulting Post-fission Groups 

 

 The random, democracy, despotism, and community algorithms can each 

produce variable results even when applied to the same starting network, due to 

stochasticity in the order that individuals are selected for daughter group 

assignment and/or stochasticity in the assignment process itself.  Therefore, we 

applied the four stochastic algorithms 100 times to each of the seven baboon 

social networks, simulating 100 fission events in each network for each algorithm. 



 58 

Various tests were carried out to determine the extent to which the algorithms 

disturbed the social network in each simulated fission event. In particular, we 

recorded for each simulation the percent of bonds broken, the average weight of 

broken bonds, the average weight of maintained bonds, the average betweenness 

centrality (see glossary, Table 2.1) of broken bonds, the average betweenness 

centrality of maintained bonds, and the sparsity of the fission. To characterize the 

nature of the groups, we also recorded the clustering coefficient, diameter, and 

density of each pre- and post-fission groups (Table 2.1). 

 Finally, we compared the simulated fissions to the actual observed fission 

event in each social network. To do so, we calculated the average percentage of 

bonds that each algorithm correctly assigned as either broken or maintained. All 

analyses were performed using Wolfram Mathematica. 

 

Results 

 

A complete summary of results can be found in tables 2 and 3. 

 

Bonds broken during fission 

 

 All other algorithms disturb the networks less than random, as measured 

by percent of bonds broken and mean weight of broken bonds. Across groups, a 

lower percentage of bonds were broken in the democracy and community 

algorithms than the despotism algorithm (figure 2.2). In addition to breaking 
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fewer bonds, both the democracy and community algorithms have a tendency to 

break weaker bonds than the despotism algorithm. The community algorithm 

even appears to outperform the democracy algorithm by breaking weaker bonds 

on average (figure 2.3). None of the algorithms differed in the weights of 

maintained bonds. The democracy and community collective decision algorithms 

disturbed the networks similarly to their sparsest cut. 

 In addition to breaking weak bonds, the algorithms tended to break bonds 

with high betweenness centrality. Although true for all of the algorithms (except 

for random), the democracy and community algorithms produce a much greater 

difference in the centrality of broken and maintained bonds than does the 

despotism algorithm. Here, the algorithms often differ from the actual fissions. 

Only three out of seven observed fissions were such that broken bonds had a 

markedly higher centrality that maintained bonds. A complete summary of these 

metrics can be found in table 2.2. 

 

Post-fission network properties 

 

All algorithms except for random increased the groups’ density and 

clustering coefficient. The predicted post-fission groups tended to have 

approximately equal clustering coefficients for each algorithm, even despotism. 

Post-fission groups from the democracy and community algorithms also tended to 

have approximately equal densities. Notably, the despotism algorithm tended to 

produce one post-fission group with very high density and one post-fission group 
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with density equal to or lower than that of the pre-fission group. Actual fissions 

increased the density of groups at a level comparable to the democracy and 

community algorithms. Actual fissions increased the clustering coefficient of the 

groups at a level comparable to all of the algorithms except for random. The 

random algorithm tended to decrease both the density and clustering coefficient of 

the groups. A complete summary of these metrics can be found in table 2.3. 

 

Are any of the algorithms correct? 

 

 Although correctly predicting network metrics is valuable, this is very 

different than accurately assigning membership to the post-fission groups. In each 

fission except for Hook’s, all algorithms outperformed random with respect to 

predicting the observed fission. Excluding Hook’s fission, despotism was the 

second least accurate algorithm in each group except for Viola’s. In some of the 

remaining five fissions, the community algorithm outperforms the democracy 

algorithm, however these appear equal in others (figure 2.4). 

 

Discussion 

 In summary, we find that more democratic decisions (both the democracy 

and community algorithms) outperform other means of splitting the social 

network. That is, more democratic decisions break fewer and weaker bonds. 

Given the importance of the social network for baboons, we should then expect 

that actual fissions appear to be democratic. Indeed, we find evidence that in most 



 61 

cases the democracy and community algorithms more accurately predict actual 

fissions than other means of splitting the network. 

 The network theoretic approach that we have taken here highlights the 

complexity of group fissions. First, a fission is a high-dimensional, discrete 

optimization. Each individual in the group has a different and often conflicting 

view of the fission from others. As such, it is interesting to ask how such a 

collective decision occurs from the basis of an individual’s behavior. This is the 

second major source of complexity: a fission is a complex collective decision. 

Individuals need to coordinate and cooperate in their actions to form post-fission 

groups that still have strong social bonds. In our case study, we showed that they 

are most often able to do so. Notably, we believe this to be the first study of how 

permanent fissions of social networks unfold from a collective decision 

perspective. 

Collective decision theory often considers asymmetric information 

between individuals. Democratic decisions have been shown to typically 

outperform despotic decisions, even when the despot is the most experienced 

group member (Conradt and Roper 2003). In our study, information asymmetry 

can be thought of as a knowledge of the topology of the social network. If 

individuals with the most social bonds have the best information on network 

topology, then the despot has more information than most members of the group. 

Still, the despotism algorithm does much worse than either the democracy or 

community algorithms, aligning with Conradt and Roper’s (2003) result.  
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 Our results make clear that both the democracy and community algorithms 

best predict how real baboon fissions proceed. There even appears to be a weak 

trend of the community algorithm performing the best at predicting actual fission 

events (figure 2.4). Perhaps the community algorithm is a way to simplify the 

collective decision. That is, it collapses the network into 5-10 vertices 

representing the group’s communities. These few communities then split up the 

social network as opposed to the 30-50 individuals. Anecdotal evidence supports 

the idea that the community algorithm may be the closest to actual fission events 

in baboons as well. Ron (1996) observed that group fissions were preceded by 

increased subgrouping. That is, individuals first collapsed themselves into 

subgroups before completing the fission. Van Horn et al (2007) hypothesized that 

their inability to explain the dynamics of one fission was due to a subset of 

individuals with shared interests joining forces. These examples provide support 

that our community algorithm mirrors the way baboon fissions proceed in nature. 

Of course, it may also be the case that baboons are using a combination of 

strategies (i.e., democracy with the despot having unequal power in the fission). 

 An interesting result that can be seen from figures 2 and 3 is that the 

baboons consistently break more bonds than either the democracy or community 

algorithms and consistently break stronger bonds. We believe this is the first 

study equipped to test the efficiency of group fissions (defined here as the ability 

to fission the group while disturbing the social network as little as possible). Our 

results indicate that baboon fissions are not nearly as efficient as they could be. 

We believe there are three, non-mutually exclusive possibilities for why this is the 
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case: 1) the baboons are unable to be as efficient as the algorithms, 2) the baboons 

are not trying to maintain their social network, or 3) there is “another network” 

that the baboons are using to inform the fission. 

 The first possibility is that the baboons simply cannot split their social 

network as well as our computational algorithms. As we point out above, it is an 

extremely complicated collective decision to fission a complex social network. 

Supporting this possibility is the observation that actual baboon fission events can 

take many months to complete. Further, baboons are limited in their 

communication, which could exacerbate the challenge of deciding and 

coordinating the fission. Finally, individuals may make mistakes and ultimately 

end up in post-fission groups with which they are not as bonded, while our 

democratic algorithms do not include such sources of error. If these factors play a 

large role in group fissions, perhaps baboons are unable to reach the higher 

efficiency obtained by the algorithms. 

 A second possibility is that the baboons are not attempting to maintain 

their social network (that is, our definition of efficiency is flawed). Although this 

would certainly explain why baboons are more disruptive to the social network 

than our algorithms, there are reasons to believe this is unlikely. First, social 

bonds have been shown to predict lifetime reproductive success (Cameron et al 

2009; Stanton & Mann 2012; Lehmann et al 2015; Cheney et al 2016), so it seems 

likely that selection would lead to fission strategies that maintain social networks. 

Unfortunately, it is often not possible to compare the success of our algorithms 

with other strategies that have been proposed. Here, we report the percent of 
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bonds that our algorithms successfully predict as either broken or maintained. 

Such information simply does not exist from most studies (see e.g. Van Horn et al 

2007). As such, despite the discordance in efficiency from our algorithms and 

actual fissions, we believe this study provides evidence that baboon fissions can 

be viewed as a democratic collective decision. 

 Of course, this is not to say that previous hypotheses for fission strategies 

are entirely inaccurate. The final possibility is that there is other information that 

should be included in a social network. For example, many authors (Chepko-Sade 

& Oliver 1979; Dittus 1988; Holekamp et al 1993; Archie et al 2005; Widdig 

2006) claim there is evidence that fissions often follow a pattern of remaining 

with matrilineal kin. It is possible that by increasing edge weights based on 

relatedness, we would have better predicted baboon fission events, but there is 

limited support for the extent to which relatedness matters (Van Horn et al 2007). 

We believe this to be a more likely possibility than baboons simply not caring 

about maintaining their social network. 

 From a theoretical perspective, we find that democratic decisions are 

better at maintaining complex social bond structure through a group fission than 

despotic decisions, despite information asymmetry which favors the despot. 

Methodologically, our study provides a unification of network theoretic 

approaches with collective decision theory to analyze permanent group fissions. 

Our results demonstrate the promise of continuing to use network theory to better 

understand collective decisions. More concretely, we take advantage of multiple 

baboon group fissions that have been observed in the wild to show that animals 
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with complex social bond structure also consider their social network during a 

fission. Furthermore, we find support for baboon fissions proceeding 

democratically. Previously, only baboon movement has been shown to be 

democratic (Strandberg-Peshkin et al 2015).  
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Table 2.1. Glossary of network theoretic terms used here. 
Term Definition Purpose 

Betweenness 
centrality 

The sum of weights of shortest 
paths between any two individuals 
that passes through a given edge. 

A measure of how 
much one bond is in 
the middle of the 
network. 

Clustering 
coefficient 

The number of closed triplets 
divided by the total number of 
triplets. 

A measure of the 
strength of 
cliquishness in a 
network. 

Density The number of bonds divided by 
the total possible number of bonds. 

A measure of how 
well connected a 
network is. 

Diameter The longest of all shortest paths 
between any two individuals. 

A measure of how 
tightly connected a 
network is. 

Sparsity The sum of bond weights broken to 
the number of vertices in the 
smallest resulting post-fission 
group. 

A measure of how 
evenly a fission 
occurred while 
minimizing broken 
bonds. 
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Table 2.2. Summary of bond metrics from the actual fissions (bold next to group 
name) and the algorithms for each group. % broken: percentage of bonds broken 
during fission. Mean broken and maintained: average weight of broken and 
maintained bonds during fission. Broken and maintained bw: average centrality of 
broken and maintained bonds during fission. Broken, maintained, total correct: 
percent of bonds correctly broken or maintained by the algorithms. 

 % 
broken 

mean 
broken 

mean 
maintained 

sparsity broken 
bw 

maintained 
bw 

broken 
correct 

maintained 
correct 

total 
correct 

          

Dotty 44 0.11 0.20 0.44 0.30 0.19    

Despotism 40 0.14 0.17 0.53 0.26 0.24 43 63 54 

Community 14 0.08 0.18 0.11 0.34 0.23 23 92 61 

Democracy 18 0.10 0.18 0.16 0.30 0.23 24 87 60 

Random 51 0.16 0.16 0.75 0.24 0.24 52 50 51 

Sparsest Cut 25 0.09 0.19 0.21 0.30 0.22 35 82 62 

Hook 76 0.21 0.37 0.97 0.89 0.47    

Despotism 32 0.22 0.27 0.43 0.87 0.74 34 72 43 

Community 15 0.13 0.27 0.12 1.13 0.73 16 88 33 

Democracy 18 0.20 0.27 0.21 0.96 0.74 19 85 34 

Random 50 0.24 0.26 0.72 0.81 0.79 50 52 50 

Sparsest Cut 20 0.16 0.28 0.19 0.97 0.74 24 93 41 

Linda 28 0.29 0.33 0.31 0.76 0.83    

Despotism 32 0.29 0.35 0.35 0.84 0.80 32 67 59 

Community 17 0.17 0.36 0.11 1.31 0.72 24 86 71 

Democracy 19 0.27 0.33 0.19 1.01 0.76 25 84 70 

Random 49 0.32 0.32 0.59 0.80 0.81 50 51 52 

Sparsest Cut 23 0.20 0.36 0.17 0.95 0.77 35 81 70 

Lodge 23 0.41 0.30 0.35 3.22 3.87    

Despotism 9 0.26 0.33 0.09 3.87 3.63 13 91 75 

Community 3 0.20 0.33 0.02 8.87 3.50 6 98 80 

Democracy 4 0.26 0.33 0.04 6.65 3.56 2 95 76 

Random 51 0.33 0.31 0.65 3.59 3.69 48 48 49 

Sparsest Cut 5 0.20 0.33 0.04 7.67 3.43 11 97 79 

Nyayo 36 0.16 0.16 0.33 0.45 0.61    

Despotism 36 0.14 0.17 0.29 0.58 0.55 34 64 53 

Community 19 0.11 0.17 0.12 0.69 0.52 23 83 62 

Democracy 20 0.13 0.17 0.15 0.62 0.54 21 81 60 

Random 50 0.16 0.16 0.45 0.55 0.55 49 49 49 

Sparsest Cut 22 0.10 0.17 0.12 0.77 0.50 23 79 59 

Viola 35 0.37 0.37 0.38 1.48 1.21    

Despotism 31 0.35 0.37 0.33 1.37 1.27 33 70 57 

Community 14 0.23 0.38 0.10 1.96 1.21 15 87 62 

Democracy 15 0.31 0.37 0.13 1.63 1.25 14 85 61 

Random 51 0.37 0.37 0.56 1.31 1.29 51 49 50 

Sparsest Cut 13 0.23 0.38 0.10 2.02 1.19 17 88 63 

Vogue 36 0.23 0.24 0.53 0.68 0.68    

Despotism 34 0.23 0.24 0.52 0.71 0.66 38 68 57 

Community 15 0.14 0.26 0.16 0.96 0.62 17 86 62 

Democracy 17 0.19 0.26 0.20 0.86 0.64 15 82 58 
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Random 51 0.24 0.24 0.80 0.67 0.69 51 49 50 

Sparsest Cut 19 0.16 0.27 0.19 0.92 0.62 14 79 56 
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Table 2.3. Summary of connectedness metrics from the fissions. Bold group 
names give pre-fission metrics, with post-fission information listed for the two 
groups in the two columns underneath. Red “Obs” are the metrics for how the 
fission actually proceeded. n: group size. % correct: percent of pairs correctly 
placed together by the algorithms. 

 n bonds per 
individ 

Clustering Coeff Diameter Density % Correct 

            

Dotty 50 198 0.3 260 0.11 

Obs 17 43 109 115 0.35 0.4 5 4 0.23 0.17 

Despotism 21 29 193 77 0.37 0.2 4 ∞ 0.23 0.08 53 

Community 39 11 194 105 0.32 0.22 4 3 0.13 0.17 81 

Democracy 38 12 186 114 0.31 0.23 4 3 0.13 0.23 76 

Random 25 25 69 61 0.26 0.28 ∞ ∞ 0.1 0.11 50 

Sparsest 
Cut 

27 23 214 120 0.35 0.23 4 5 0.16 0.16 65 

Hook 36 74 0.1 144 0.09  

Obs 17 22 34 9 0.21 0 ∞ ∞ 0.18 0.13 

Despotism 15 21 72 37 0.16 0.08 5 ∞ 0.21 0.09 57 

Community 27 9 72 48 0.12 0.1 5.97 4.28 0.12 0.28 76 

Democracy 25 11 66 50 0.11 0.09 5.87 4.76 0.12 0.3 67 

Random 19 17 26 20 0.09 0.1 ∞ ∞ 0.09 0.1 50 

Sparsest 
Cut 

19 17 59 71 0.12 0.08 5 7 0.16 0.15 64 

Linda 37 92 0.2 139 0.11  

Obs 20 19 23 34 0.13 0.43 5 ∞ 0.14 0.15 

Despotism 21 16 89 31 0.24 0.13 5 ∞ 0.18 0.07 49 

Community 27 10 92 60 0.24 0.04 6 4 0.13 0.23 60 

Democracy 25 13 82 65 0.25 0.20 5.8 4.8 0.14 0.26 57 

Random 19 18 28 22 0.18 0.17 ∞ ∞ 0.11 0.11 47 

Sparsest 
Cut 

19 18 105 51 0.27 0.00 5 ∞ 0.22 0.11 54 

Lodge 36 38 0.09 296 0.06  

Obs 30 16 18 11 0.19 0 ∞ 4 0.08 0.22 

Despotism 5 32 33 36 0 0.12 2 ∞ 0.5 0.07 84 

Community 26 10 36 37 0.04 0.13 12 5 0.09 0.28 67 

Democracy 26 10 36 35 0.04 0.13 12 5 0.08 0.33 65 

Random 18 18 13 10 0.07 0.03 ∞ ∞ 0.06 0.06 50 

Sparsest 
Cut 

18 18 39 35 0.19 0.00 ∞ 7 0.12 0.12 62 

Nyayo 44 75 0.11 110 0.09  

Obs 28 15 22 22 0.12 0.23 ∞ ∞ 0.1 0.17 

Despotism 16 28 62 44 0.09 0.12 5 ∞ 0.19 0.09 53 

Community 29 15 68 57 0.13 0.15 5 5 0.12 0.2 56 

Democracy 30 14 65 50 0.13 0.13 6 5 0.12 0.21 58 

Random 22 22 24 20 0.10 0.10 ∞ ∞ 0.09 0.09 48 

Sparsest 
Cut 

23 21 71 57 0.17 0.12 6 6 0.14 0.15 53 

Viola 33 59 0.18 135 0.1  

Obs 17 19 10 13 0.18 0.26 ∞ ∞ 0.1 0.12 

Despotism 14 19 45 39 0.09 0.26 5 ∞ 0.19 0.11 50 

Community 21 12 55 49 0.19 0.21 7 6 0.14 0.29 51 

Democracy 23 10 55 43 0.20 0.16 7 5 0.13 0.31 56 

Random 17 16 21 14 0.17 0.14 ∞  ∞ 0.1 0.1 47 
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Sparsest 
Cut 

17 16 53 56 0.07 0.38 6 8 0.15 0.2 46 

Vogue 34 75 0.15 177 0.11  

Obs 18 9 40 24 0.2 0 4 ∞ 0.2 0.19 

Despotism 13 21 60 42 0.22 0.15 4 ∞ 0.23 0.1 53 

Community 23 11 72 55 0.20 0.17 6 5 0.14 0.23 67 

Democracy 24 11 70 52 0.16 0.11 5.7 4.9 0.14 0.26 69 

Random 18 16 27 21 0.14 0.12 ∞ ∞ 0.1 0.11 50 

Sparsest 
Cut 

18 16 64 69 0.20 0.18 5 6 0.18 0.18 49 
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Figure 2.1. Walkthrough of the group fission algorithms on simplified, example 
networks. 
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Figure 2.2. Box plots showing the percent of bonds broken from the various 
algorithms across groups. Boxes are clustered by algorithm, with different colors 
indicating the seven different baboon social groups. Solid lines going across the 
plot are the actual percent of bonds broken observed from the fissions in nature. 
The democracy and community algorithms break the lowest percentage of bonds, 
while the random algorithm breaks the highest percentage. 
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Figure 2.3. Box plots showing the relative difference in average weight of broken 
bonds for the various algorithms from the observed weights of broken bonds 
across groups. Thus, values below 0 (the black line) indicate the algorithm broke 
weaker bonds on average than was observed and values above 0 indicate the 
algorithm broke stronger bonds on average than was observed. The community 
algorithm breaks the weakest bonds on average, followed by democracy, then 
despotism. 
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Figure 2.4. Box plots showing the percent of bonds accurately assigned as either 
broken or maintained for the various groups across algorithms. 
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Appendix 1A: Sex-structured model 

Sex structure can have important consequences in populations, so we built this 

into an alternate version of our implicit pack model. In models with sex structure, we 

introduce additional state variables so that Jt = Jm,t + Jf,t, Yt = Ym,t + Yf,t, and Mt = Mm,t + 

Mf,t with subscripts m and f referring to males and females, respectively. Births and 

deaths from equation (3) are split as Jm,t = mJt and Jf,t = (1-m)Jt where m is the proportion 

of males at birth (we use 0.56; Creel & Creel, 2002; McNutt & Silk, 2008; Somers et al., 

2008; Woodroffe, 2011). We do not model differences in male and female survivorship 

(in accordance with Woodroffe (2011)), so the sex-structured yearling model is the same 

except for maintaining the sex of juveniles who aged: Ym,t+1 = Jm,t (1-dY (Ct)) and Yf,t+1 = Jf,t 

(1-dY (Ct)). Dimorphic male and female survivorship could be added to apply this model 

to another system. Again, the sex-structured model maintains the sex of surviving 

individuals: Mm,t+1 = (Mm,t + Ym,t)(1-μM) and Mf,t+1 = (Mf,t + Yf,t)(1-μM). In the models with 

sex structure, we use females as the reproductive population. In the sex-structured pack 

model, if the average number of mature females per pack is <1, only packs with adult 

females can reproduce. This means using Rt = Mf,t instead of Rt = pt when Mf,t < pt. 

Unsurprisingly, given the similarity of the models, the results from our sex-

structured model align very closely with the age-structured model (Fig. 1A.1). 
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Table 1A.1. Equations from the sex-structured model. 

 

MODEL EQUATIONS 

Model 
characteristics 

Pack model Packless model 

Age and sex structure 
Reproducers 

 

Rt = Mf,t 

Caregivers Ct = At Ct = Mt = Mm,t + Mf,t 
Equations 
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(a)      (b)    (c) 

 

Figure 1A.1. The sex-structured models. Graphs and parameter values are the same as in 
figure 1.2, with (a) the per capita population growth rate vs the population size (with 
black line from packless model), (b) the per capita population growth rate vs the average 
pack size, and (c) the average pack size vs the population size. 
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Appendix 1B: Summary of parameter values 

 

Parameters, their values, and the references on which the values were based. In many 
cases these parameters were extrapolated from more basic demographic data in the cited 
sources. For all parameters except for those marked with “*,” data were from Selous 
Game Reserve. References were used to obtain parameter values for the age-structured 
pack models (third column). These estimates were then adjusted to get comparable values 
for other the models (see text). The top value shown is the value used to obtain our main 
results; square brackets show the smallest and largest value used in the sensitivity 
analyses. Abbreviations: DD = density dependent, DI = density independent, individ = 
individual, IP = inflection point. 

 

Par
a-
met
er 

Description Value in age-
structured 
pack models 

Pack model’s 
value based on: 

Value in 
age-
structured 
packless 
model 

Value in 
unstructu
red pack 
model  

Value in 
unstructur
ed 
packless 
model 

r Maximum # pups 
born per 
reproducing unit 

15 
pups/pack 
[10, 20] 

Creel et al. 
2004 

1.13 
pups/adul

t 
[0.755, 
1.509] 

15 pups/ 
pack 

[10, 20] 

0.655 
pups/ 

individ 
[0.437, 
0.873] 

L Pack size (pack 
models) or 
population size 
(pack-less models) 
that produces r/2 
pups 

8.9 
adults/pack 

[5, 15] 

Creel et al. 
2004 

630 
adults 
[354, 
1062] 

18.9 
individs 

/pack 
[12, 26] 

1086 
individs 

[690, 
1494] 

d Maximum pup 
mortality fraction 
due to DD causes 

0.6 
[0.5, 0.65] 

Buettner et 
al. 2007; 
Creel et al. 
2004 

0.6 
[0.5, 
0.65] 

- - 

c1 Sets inflection point 
in pup DD 
mortality curve 

75 (IP at 5 
adults/pack

) 
[IP at 3, 8] 

Fuller et al. 
1992; Creel 
et al. 2004 

3.675x10-

3 (IP at 
350 

adults)  
[IP at 

210, 560] 

- - 

μJ Pup mortality 
fraction due to DI 
causes 

0.22* 
[0.15, 0.3] 

Woodroffe & 
Ginsberg 
1999; 
Buettner et 
al. 2007; 
Woodroffe et 
al. 2007 

0.22 
[0.15, 
0.3] 

- - 

c2 Controls steepness 
of yearling DD 
mortality fraction 
with suboptimal 
pack sizes 

9.6x10-3* 

(adults/pac
k)-2 

[8x10-3, 
1.1x10-2] 

Results in all 
yearlings 
dying if no 
adults 
present 

2x10-6 

adults-2 

[1.7x10-6, 
2.3x10-6] 

2.54x10-

3 

(individs
/pack)-2 

[2x10-3, 
3x10-3] 

1.26x10-

6 

individ-2 

[9.9x10-

7, 
1.5x10-6] 
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c3 Controls steepness 
of yearling DD 
mortality fraction 
with above-optimal 
pack sizes (must be 
< c2) 

2.4x10-3 * 
(adults/pac

k)-2 

[2x10-3,  
7x10-3] 

Results in 
total 
mortality at 
pack sizes 
nearing 30 
(Malcolm & 
Marten 1982)  

5x10-7 

adults-2 

[4.2x10-7, 
5.8x10-7] 

5.4x10-4 

(individs
/pack)-2 

[5x10-4, 
6x10-4] 

7.6x10-8 

individ-2 

[7x10-8, 
8.4x10-8] 

c4 Minimum DD 
yearling mortality 
fraction 

0.1 
[0.075, 
0.125] 

Woodroffe & 
Ginsberg 
1999; Creel 
et al. 2004 

0.1 
[0.075, 
0.125] 

0.1 
[0.075, 
0.125] 

0.1 
[0.075, 
0.125] 

s Pack size (pack 
models) or 
population size 
(packless models) 
that minimizes 
yearling mortality 

10 
adults/pack 

[5, 15] 

Creel & 
Creel 1995; 
Creel et al. 
2004; 
Angulo et al. 
2013 

700 
adults 
[350, 
1050] 

20 
individs 

/pack 
[15, 25] 

1207 
individs 

[905, 
1509] 

μY Yearling mortality 
fraction due to DI 
causes 

0.14 
[0.1, 0.2] 

Creel et al. 
2004 with 
Woodroffe et 
al. 2007 

0.14 
[0.1, 0.2] 

- - 

μM Adult mortality 
fraction due to DI 
causes 

0.23* 
[0.12, 0.32] 

Ginsberg et 
al. 1995; 
Woodroffe & 
Ginsberg 
1999; 
Woodroffe et 
al. 2007 

0.23 
[0.12, 
0.32] 

- - 

μ DI mortality for 
unstructured 
models 

- Weighted 
average of μJ, 
μY, μM 

- 0.165 
[0.125, 
0.175] 

0.165 
[0.125, 
0.175] 

kp Maximum number 
of packs in the 
population 

120 packs 
[80, 160] 

arbitrary for 
our 
hypothetical 
landscape 

- 120 
packs 
[60, 
180] 

- 

 
k 

# yearlings that 
results in 1 new 
pack forming 

10 
yearlings/p

ack 
[2, 8] 

 
 
Based on 
stable 
populations 

- 20 
individs 

/pack 
[6, 18] 

- 

j # adults per pack 
that results in 1 
pack failing  

8.9 
adults/pack 

[5, 15] 

described in 
Creel et al. 
2004 

- 18.9 
individs 

/pack 
[12, 26] 

- 
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Appendix 1C: Model sensitivity to dispersal function 

 The first modification we made to intergroup interactions was making pack 

formation a function of the number of yearlings per pack by replacing Yt with (Yt / pt) in 

the second term of equation (7). Now, k has the interpretation of the number of yearlings 

per pack that results in one new pack forming. We used k = 4 primarily (again based on 

stable populations described in Creel et al. (2004)) and tested values from 2 through 10. 

Overall, our results hold in this model. There is no population-level demographic Allee 

effect, there is a group-level demographic Allee effect, and pack size is strongly 

decoupled from population size (Fig. 1C.1). However, in this model, it is not possible to 

create a population-level demographic Allee effect by reducing k (contrast with Fig. 3 in 

the main text). Here, pack formation halts when packs become too small (because Yt / pt 

is then small). This explains why packs are a stronger buffer in this model. This also 

shows that when intergroup dynamics are more responsive to pack size than population 

size, social populations have greater protection. 

 In the implicit pack models with pack formation as a function of the number of 

yearlings per pack, social structure provides additional buffering against population 

extinction. When the age-structured pack and packless models start below their respective 

group and demographic Allee thresholds, only the packless model inevitably goes extinct. 

The dynamic nature of pack formation and failure prevents pack failures below the group 

Allee threshold from generating a positive feedback to cause population failure. When 

some packs fail, the average pack size can recover due to a reduction in the number of 

packs even if the population is declining (Fig. 1C.2). Thus, social structure can lead to a 

“rescue effect” when average pack size drops below the group Allee threshold.  

 Despite the ability of packs to support the population, this rescue effect does have 

its limits. It is possible for the pack model to be far enough below its group Allee 
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threshold that packs are unable to buffer against extinction. We found that packs are 

unable to save the population from extinction once the average pack size in the 

population becomes approximately two-thirds of the group level Allee threshold pack 

size (not shown). This will occur for certain initial conditions when pack formation and 

failure rates are not adjusted quickly enough to bring average pack size into a viable 

range prior to extinction. 

 We also added multiple dispersal/pack formation forms to our explicit pack 

model. First, we built a version in which each pack received an equal number of yearlings 

each year. Again, our results were not qualitatively affected (Fig. 1C.3). 

 Finally, we allowed packs in the explicit pack model to fuse upon dropping 

below a threshold size in our explicit pack model.  In this version of the model, if the 

pack in territory i drops below j adults, all adults from i disperse into territory i-1, 

whether or not that territory is occupied by a pack. Because the indexing is arbitrary (not 

assumed to contain any geographic or other information) this is similar to allowing the 

adults from pack i to move to a randomly chosen territory and join any pack that is 

present there. Dispersing adults move at most once per time step, regardless of whether 

their new pack exceeds j adults. Yearlings disperse separately, as described above, and 

we assume that juvenile pups from failed packs will die, due to the high risk associated 

with dispersal (Courchamp et al. 2000; Somers et al. 2008). In this model, packs are an 

extremely strong buffer against population-level demographic Allee effects (Fig. 1C.4). 

This is unsurprising, as packs now include an extremely strong mechanism against 

becoming too small, regardless of their size or the population size. This approach 

highlights that strong intergroup dynamics lead to groups providing populations with a 

cushion against population-level demographic effects.  
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(a)       (b)        (c) 

 

Figure 1C.1. The implicit pack model with pack formation as the number of yearlings 
per pack. Graphs and parameter values are the same as in figure 1.2 except where noted 
in the text, with (a) the per capita population growth rate vs the population size, (b) the 
per capita population growth rate vs the average pack size, and (c) the average pack size 
vs the population size. Making pack formation a function of the number of yearlings per 
pack also had no qualitative effect on the explicit pack model. 
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(a)       (b) 

 

Figure 1C.2. Example time series, showing (a) the age-structured implicit pack model 
with pack formation as a function of the number of yearlings per pack and (b) the age-
structured packless model, with initial conditions of 6.25 adults per pack and 900 adults, 
respectively. The initial conditions are below the pack model’s group Allee threshold (at 
8 adults/pack) and the packless model’s traditional Allee threshold (at 950 adults), in 
order to highlight the differences in the population level consequences between group 
Allee effects and demographic Allee effects. Small average pack size in the model creates 
a negative feedback loop with packs failing (the bottom, red line), resulting in an increase 
in the average pack size and a recovery of the population. In the packless model, small 
population sizes further lower the per capita population growth rate, which creates a 
positive feedback loop from which the population cannot recover – a strong demographic 
Allee effect.  
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(a)      (b)     (c) 

 

Figure 1C.3. The explicit pack model with homogeneous yearling dispersal. Graphs and 
parameter values are the same as in figure 1.2, with (a) the per capita population growth 
rate vs the population size, (b) the per capita population growth rate vs the average pack 
size, and (c) the average pack size vs the population size. 
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(a)       (b)     (c) 

 

Figure 1C.4. The explicit pack model with adult dispersal/pack fusion. Graphs and 
parameter values are the same as in figure 1.2, with (a) the per capita population growth 
rate vs the population size, (b) the per capita population growth rate vs the average pack 
size, and (c) the average pack size vs the population size. 
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Appendix 1D: Adult density dependence in the age-structured implicit pack model 

 As there is debate about whether adult mortality is density dependent (Somers et 

al 2008; Woodroffe 2011; Anuglo et al. 2013; Creel & Creel 2015), we explored a 

component Allee effect in adult mortality with 

𝑀𝑀𝑡𝑡+1 = (𝑀𝑀𝑡𝑡 + 𝑌𝑌𝑡𝑡)(1− 𝑑𝑑𝑚𝑚𝑐𝑐𝑛𝑛
𝑐𝑐𝑛𝑛+𝐴𝐴𝑡𝑡2

− 𝜇𝜇𝑀𝑀)    (D1) 

or 

𝑀𝑀𝑡𝑡+1 = (𝑀𝑀𝑡𝑡 + 𝑌𝑌𝑡𝑡)(1− 𝑐𝑐𝑚𝑚(𝐴𝐴𝑡𝑡 − 𝑠𝑠)2 − 𝜇𝜇𝑀𝑀).   (D2) 

Furthermore, we modeled negative density dependence in adult mortality using 

𝑀𝑀𝑡𝑡+1 = (𝑀𝑀𝑡𝑡 + 𝑌𝑌𝑡𝑡)( 𝑑𝑑𝑚𝑚𝑐𝑐𝑛𝑛
𝑐𝑐𝑛𝑛+𝐴𝐴𝑡𝑡2

− 𝜇𝜇𝑀𝑀)    (D3) 

or 

𝑀𝑀𝑡𝑡+1 = (𝑀𝑀𝑡𝑡 + 𝑌𝑌𝑡𝑡)(1− 𝑐𝑐𝑝𝑝𝐴𝐴𝑡𝑡 − 𝜇𝜇𝑀𝑀).    (D4) 

In general, we found that the group-level component Allee effects do not scale to a 

population-level demographic Allee effect regardless of density-dependent adult 

mortality (Fig. 1D.1), unless positive density dependence in adult mortality is extremely 

strong (i.e., approximately twice as strong as used for Fig. 1D.1). Although this is 

certainly of theoretical interest, we know of no evidence that suggests this is the case in 

any population that our model captures. 

  



 92 

 

 

Figure 1D.1. Plots of per capita population growth rate vs population size with adult 
mortality following (a) equation (D1) with cn = 6.75 and dm = 0.6, (b) equation (D2) with 
cm = 0.0025 and µm = 0.28, (c) equation (D3) with dm = 0.9 and cn = 350, and (d) equation 
(D4) with µm = 0.33 and cp = 0.01. All other parameters are as in Appendix 1A. 
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Appendix 1E: Demographic stochasticity in the age-structured implicit pack 

model 

 We added demographic stochasticity to our age-structured implicit pack 

model by multiplying each of equations (3), (5), and (7) by a value drawn from a 

lognormal distribution (i.e. by multiplying equation (x) by exp[εx(t)], εx(t) ~ i.i.d. 

Normal(0, σ)). We found our results were not qualitatively affected by this change 

(figure 1E.1). 
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(a)      (b)     (c)  

 
Figure 1E.1. Age-structured implicit pack model with demographic stochasticity. 
These graphs were produced with σ = 0.1; however, our results are insensitive to 
values of σ up to 0.5. Graphs and other parameter values are the same as in figure 
1.2, with (a) the per capita population growth rate vs the population size, (b) the 
per capita population growth rate vs the average pack size, and (c) the average 
pack size vs the population size. 

 
 

  

(N
t+

1 –
 N

t) 
/ N

t 

(N
t+

1 –
 N

t) 
/ N

t 

Nt 

Nt 

At 

A t 



 95 

Bibliography 

Allee, W. C. (1931). Animal Aggregations: A study in General Sociology. Chicago, IL: 

University of Chicago Press. 

Angulo, E., Luque, L. Q., Gregory, S. D., Wenzel, J. W., Bessa-Gomes, C., Berec, L., 

and Courchamp, F. (2017). Allee effects in social species. Journal of Animal 

Ecology, 87(1), 47-58. doi: 10.1111/1365-2656.12759 

Angulo, E., Rasmussen, G. S. A., Macdonald, D. W., & Courchamp, F. (2013). Do social 

groups prevent Allee effect related extinctions?: The case of wild dog. Frontiers 

in Zoology, 10. doi: 10.1186/1742-9994-10-11 

Archie, E. A., Moss, C. J. & Alberts, S. C. (2005) The ties that bind: genetic 

relatedness predicts the fission and fusion of social groups in wild African 

elephants. Proceedings of the Royal Society B, 273, 513–522. 

Armitage, K.B. (1987) Social dynamics of mammals: Reproductive success, 

kinship and individual fitness. Trends in Ecology & Evolution, 2, 279–

284.  

Barton, R.A., Byrne, R.W. & Whiten, A. (1996) Ecology, feeding competition 

and social structure in baboons. Behavioral Ecology and Sociobiology, 38, 

321–329.  

Bateman, A. W., Coulson, T., & Clutton-Brock, T. H. (2011). What do simple models 

reveal about the population dynamics of a cooperatively breeding species?. 

Oikos, 120(5), 787-794. doi: 10.1111/j.1600-0706.2010.18952.x 

Bateman, A. W., Ozgul, A., Coulson, T., & Clutton-Brock, T. H. (2012). Density 

dependence in group dynamics of a highly social mongoose, Suricata suricatta. 



 96 

Journal of Animal Ecology, 81(3), 628-639. doi: 10.1111/j.1365-

2656.2011.01934.x 

Bateman, A. W., Ozgul, A., Nielsen, J. F., Coulson, T., & Clutton-Brock, T. H. (2013). 

Social structure mediates environmental effects on group size in an obligate 

cooperative breeder, Suricata suricatta. Ecology, 94(3), 587-597. doi: 

10.1890/11-2122.1 

Berec, L., Angulo, E., & Courchamp, F. (2007). Multiple Allee effects and conservation 

management. Trends in Ecology and Evolution, 22(4), 185-191. doi: 

10.1016/j.tree.2006.12.002 

Boukal, D. S. & Berec, L. (2002). Single-species models of the Allee effect: Extinction 

boundaries, sex ratios and mate encounters. Journal of Theoretical Biology, 

218(3), 375-394. doi: 10.1006/jtbi.2002.3084 

Buettner, U. K., Davies-Mostert, H. T., Du Toit, J. T., & Mills, M. G. L. (2007). Factors 

affecting juvenille survival in African wild dogs (Lycaon pictus) in Kruger 

National Park, South Africa. Journal of Zoology, 271(1), 10-19. doi: 

10.1111/j.1469-7998.2006.00240.x 

Cameron, E.Z., Setsaas, T.H. & Linklater, W.L. (2009) Social bonds between 

unrelated females increase reproductive success in feral horses. 

Proceedings of the National Academy of Sciences, 106, 13850–13853.  

Cheney, D.L., Silk, J.B. & Seyfarth, R.M. (2016) Network connections, dyadic 

bonds and fitness in wild female baboons. Royal Society Open Science, 3, 

1–7.  



 97 

Chepko-Sade, B.D. & Olivier, T.J. (1979) Coefficient of genetic relationship and 

the probability of intragenealogical fission in Macaca mulatta. Behavioral 

Ecology and Sociobiology, 5, 263–278.  

Conradt, L. & Roper, T. J. (2003) Group decision-making in animals. Nature, 

421, 156–158. 

Conradt, L. & Roper, T. J. (2005) Consensus decision making in animals. Trends 

in Ecology and Evolution, 20, 449–456. 

Cords, M. & Rowell, T. (1986) Group Fission in Blue Monkeys of the Kakamega 

Forest, Kenya. Folia Primatologica, 46, 70–82.  

Courchamp, F. & MacDonald, D. W. (2001). Crucial importance of pack size in the 

African wild dog Lycaon pictus. Animal Conservation, 4(2), 169-174. 

Courchamp, F., Clutton-Brock, T., & Grenfall, B. (1999a). Inverse density dependence 

and the Allee effect. Trends in Ecology and Evolution, 14(10), 405-410. doi: 

10.1016/S0169-5347(99)01683-3 

Courchamp, F., Clutton-Brock, T., & Grenfall, B. (2000). Multipack dynamics and the 

Allee effect in the African wild dog, Lycaon pictus. Animal Conservation, 3(4), 

277-285. 

Courchamp, F., Grenfall, B., & Clutton-Brock, T. (1999b). Population dynamics of 

obligate cooperators. Proceedings of the Royal Society B: Biological Sciences, 

266(1419), 557-563. 

Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. (2005) Effective leadership 

and decision-making in animal groups on the move. Nature, 433, 513–

516. 



 98 

Creel, S. & Creel, N. M. (1995). Communal hunting and pack size in African wild dogs, 

Lycaon pictus. Animal Behaviour, 50(5), 1325-1339. doi: 10.1016/0003-

3472(95)80048-4 

Creel, S. & Creel, N. M. (1996). Limitation of African Wild Dogs by Competition with 

Larger Carnivores. Conservation Biology, 10(2), 536-548. doi: 10.1046/j.1523-

1739.1996.10020526.x 

Creel, S. & Creel, N. M. (2002). The African wild dog: behavior, ecology, and 

conservation. Princeton, NJ: Princeton University Press. 

Creel, S. & Creel, N. M. (2015). Opposing effects of group size on reproduction and 

survival in African wild dogs. Behavioral Ecology, 26(5), 1414-1422. doi: 

10.1093/beheco/arv100 

Creel, S., Mills, M. G. L., & Mcnutt, J. W. (2004). Demography and population dynamics 

of African wild dogs in three critical populations. Biology and Conservation of 

Wild Canid, pp: 337-350. 

Dennis, B. (2002). Allee effects in stochastic populations. Oikos, 96(3): 389-401. doi: 

10.1034/j.1600-0706.2002.960301.x 

Dittus, W.P. (1988) Group fission among wild toque macaques as a consequence 

of female resource competition and environmental stress. Animal 

Behaviour, 36, 1626–1645.  

Dunbar, R.I.M. (1992) Time: a hidden constraint on the behavioural ecology of 

baboons. Behavioral Ecology and Sociobiology, 31, 35–49.  



 99 

Frank, K. T. & Brickman, D. (2000). Allee effects and compensatory population 

dynamics within a stock complex. Canadian Journal of Fisheries and Aquatic 

Sciences, 57(3), 513-517. doi: 10.1139/f00-024 

Fuller, T. K., Kat, P. W., Bulger, J. B., Maddock, A. H., Ginsberg, J. R., Burrows, R., 

McNutt, J. W., & Mills, M. G. L. (1992). Population dynamics of African wild 

dogs. Wildlife 2001: populations. McCullough, D. R. & Barrett, R. H. (Eds). 

London: Elsevier Applied Science. 

Ginsberg, J. R., Alexander, K. A., Creel, S., Kat, P. W., McNutt, J. W., & Mills, M. G. L. 

(1995). Handling and survivorship of African wild dog (Lycaon pictus) in five 

ecosystems. Conservation Biology, 9(3), 665-674. doi: 10.1046/j.1523-

1739.1995.09030665.x 

Gregory, S. D., Bradshaw, C. J. A., Brook, B. W., & Courchamp, F. (2010). Limited 

evidence for the demographic Allee effect from numerous species across taxa. 

Ecology, 91(7), 2151-2161. doi: 10.1890/09-1128.1 

Henzi, S.P., Lycett, J.E. & Piper, S.E. (1997) Fission and troop size in a mountain 

baboon population. Animal Behaviour, 53, 525–535.  

Holekamp, K.E., Ogutu, J.O., Dublin, H.T., Frank, L.G. & Smale, L. (2010) 

Fission of a Spotted Hyena Clan: Consequences of Prolonged Female 

Absenteeism and Causes of Female Emigration. Ethology, 93, 285–299.  

IUCN/SSC. 2007. Regional Conservation Strategy for the Cheetah and African Wild Dog 

in Southern Africa. IUCN Species Survival Commission, Gland, Switzerland. 

Kerth, G., Ebert, C. & Schmidtke, C. (2006) Group decision making in fission-

fusion societies: evidence from two field experiments in Bechstein’s bats. 

Proceedings of the Royal Society B, 273, 2785–2790. 



 100 

Keynan, O. & Ridley, A. R. (2016). Component, group and demographic Allee effects in 

a cooperatively breeding bird species, the Arabian babbler (Turdoides 

squamiceps). Oecologia, 182(1), 153-161. 

Krause, J., Lusseau, D. & James, R. (2009) Animal social networks: an 

introduction. Behavioral Ecology and Sociobiology, 63, 967–973. 

Lande, R. (1998). Demographic Stochasticity and Allee Effect on a Scale with Isotropic 

Noise. Oikos, 84(2), 353-358. doi: 10.2307/3546849 

Lehmann, J., Majolo, B. & Mcfarland, R. (2015) The effects of social network 

position on the survival of wild Barbary macaques, Macaca sylvanus. 

Behavioral Ecology, 27, 20–28.  

Majer, M., Holm, C., Lubin, Y. & Bilde, T. (2018) Cooperative foraging expands 

dietary niche but does not offset intra-group competition for resources in 

social spiders. Scientific Reports, 8, 1–13.  

Malcolm, J. R. & Marten, K. (1982). Natural selection and the communal rearing of pups 

in African wild dogs (Lycaon pictus). Behavioral Ecology and Sociobiology, 

10(1), 1-13. 

Malik, I., Seth, P.K. & Southwick, C.H. (1985) Group fission in free-ranging 

rhesus monkeys of Tughlaqabad, Northern India. International Journal of 

Primatology, 6, 411–422.  

McNutt, J. W. & Silk, J. B. (2008). Pup production, sex ratios, and survivorship in 

African wild dogs, Lycaon pictus. Behavioral Ecology and Sociobiology, 62(7), 

1061-1067. 



 101 

McNutt, J. W. (1996). Sex-biased dispersal in African wild dogs, Lycaon pictus. Animal 

Behavior, 52(6), 1067-1077. doi: 10.1006/anbe.1996.0254 

Merkle, J. A., Sigaud, M. & Fortin, D. (2015) To follow or not? How animals in 

fusion-fission societies hand conflicting information during group 

decision-making. Ecology Letters, 18, 799–806. 

Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. (2013) Both information 

and social cohesion determine collective decisions in animal groups. 

PNAS, 110, 5263–5268. 

Mills, M. G. L. & Gorman, M. L. (1997). Factors affecting the density and distribution of 

wild dogs in the Kruger National Park. Conservation Biology, 11(6), 1397-1406. 

doi: 10.1046/j.1523-1739.1997.96252.x 

Okamota K. & Matsumura S. (2001) Group Fission in Moor Macaques (Macaca 

maurus). International Journal of Primatology, 22, 481–493. 

Rasmussen, G., Gusset, M., Courchamp, F., & MacDonald D. W. (2008). Achilles’ Heel 

of Sociality Revealed by Energetic Poverty Trap in Cursorial Hunters. The 

American Naturalist, 172(4), 508-518. doi: 10.1086/590965 

Rinella, D. J., Wipfli, M. S., Stricker, C. A., Heintz, R. A., & Rinella M. J. (2012). 

Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and 

energy storage in stream-dwelling salmononids increase with spawner density. 

Canadian Journal of Fisheries and Aquatic Sciences, 69(1), 73-84. doi: 

10.1139/f2011-133 

Ron, T. (1996) Who is responsible for fission in a free-ranging troop of baboons. 

Ethology, 102, 128–133. 



 102 

Ron, T., Henzi, S. & Motro, U. (1994) A new model of fission in primate troops. 

Animal Behaviour, 47, 223–226.  

Sheppard, C.E., Inger, R., Mcdonald, R.A., Barker, S., Jackson, A.L., Thompson, 

F.J., Vitikainen, E.I.K., Cant, M.A. & Marshall, H.H. (2018) Intragroup 

competition predicts individual foraging specialisation in a group-living 

mammal. Ecology Letters, 21, 665–673.  

Somers, M. J., Graf, J. A., Szykman, M., Slotow, R., & Gusset, M. (2008). Dynamics of a 

small reintroduced population of wild dogs over 25 years: Allee effects and the 

implications of sociality for endangered species’ recovery. Oecologia, 158(2), 

239-247. 

Stanton, M.A. & Mann, J. (2012) Early Social Networks Predict Survival in Wild 

Bottlenose Dolphins. PLoS ONE, 7, 1–6. 

Stephens, P. A. & Sutherland, W. J. (1999). Consequences of the Allee effect for 

behaviour, ecology, and conservation. Trends in Ecology and Evolution, 14(10), 

401-405. doi: 10.1016/S0169-5347(99)01684-5 

Stephens, P. A., Sutherland, W. J., & Freckleton, R. P. (1999). What is the Allee effect?. 

Oikos, 87(1), 185-190.  

Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D. & Crofoot, M. C. (2015) 

Shared decision-making drives collective movement in wild baboons. 

Science, 348, 1358–1361. 

Sueur, C, Deneubourg, J., Petit, O. & Couzin, I. D. (2011) Group size, grooming 

and fission in primates: A modeling approach based on group structure. 

Journal of Theoretical Biology, 273, 156–166. 



 103 

Sueur, C. & Maire, A. (2014). Modelling Animal Group Fission Using Social 

Network Dynamics. PLoS ONE, 9, 1–10. 

Sueur, C., King, A. J., Conradt, L., Kerth, G., Lusseau, D., Mettke-Hofmann, C., 

Schaffner, C. M., Williams, L., Zinner, D. & Aureli, F. (2011) Collective 

decision-making and fission-fusion dynamics: a conceptual framework. 

Oikos, 120, 1608–1617. 

Sueur, C., Petit, O. & Deneubourg, J.L. (2010) Short-term group fission processes 

in macaques: a social networking approach. Journal of Experimental 

Biology, 213, 1338–1346.  

Sundaresan, S. R., Fischhoff, I. R., Dushoff, J. & Rubenstein, D. I. (2007) 

Network metrics reveal differences in social organization between two 

fission-fusion species, Grevy’s zebra and onager. Oecologia, 151, 140–

149. 

Tensen, L., Groom, R. J., van Belkom, J., Davies-Mostert, H. T., Marnewick, K., & van 

Vuuren, B. J. (2016). Genetic diversity and spatial genetic structure of African 

wild dogs (Lycaon pictus) in the Greater Limpopo transfrontier conservation 

area. Conservation Genetics, 17(4), 785-794. 

Van Horn, R.C., Buchan, J.C., Altmann, J. & Alberts, S.C. (2007) Divided 

destinies: group choice by female savannah baboons during social group 

fission. Behavioral Ecology and Sociobiology, 61, 1823–1837.  

Widdig, A., Nürnberg, P., Bercovitch, F.B., Trefilov, A., Berard, J.B., Kessler, 

M.J., Schmidtke, J., Streich, W.J. & Krawczak, M. (2006) Consequences 

of group fission for the patterns of relatedness among rhesus macaques. 

Molecular Ecology, 15, 3825–3832.  



 104 

Wolfram Research, Inc. (2016). Mathematica Version 11.0. Wolfram Research, Inc., 

Champaigne, IL. 

Woodroffe, R. & Ginsberg, J. R. (1999). Conserving the African wild dog. I. Diagnosing 

and treating causes of decline. Oryx, 33(2), 132-142. doi: 10.1046/j.1365-

3008.1999.00052.x 

Woodroffe, R. & Sillero-Zubiri, C. (2012). Lycaon pictus. The IUCN Red List of 

Threatened Species 2012. 

Woodroffe, R. (2011). Demography of a recovering African wild dog (Lycaon pictus) 

population. Journal of Mammalogy, 92(2), 305-315. doi: 10.1644/10-MAMM-A-

157.1 

Woodroffe, R., Davies-Mostert, H., Ginsberg, J., Graf, J., Leigh, K., McCreery, K., 

Robbins, R., Mills, G., Pole, A., Rasmussen, G., Somers, M., & Szykman, M. 

(2007). Rates and causes of mortality in endangered African wild dogs Lycaon 

pictus: lessons for management and monitoring. Oryx, 41(2), 215-223. doi: 

10.1017/S0030605307001809 

 


